

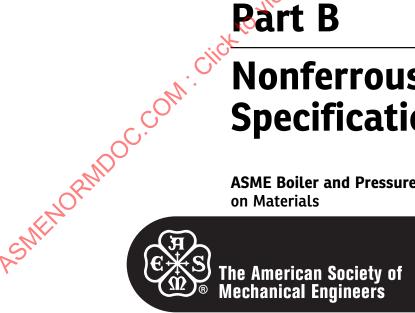
Markings such as "ASME," "ASME Standard," or any other marking including "ASME," ASME logos, or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code or Standard. Use of the ASME Single Certification Mark requires formal ASIVIE CERTIFICATION, IL 100 STATE available, such ASME markings may not be used. (For Certification and Accreditation Programs, see https://www.asme.org/certification-accreditation.) Single Certification Mark requires formal ASME certification; if no certification program is

Items produced by parties not formally possessing an ASME Certificate may not be described, either explicitly or implicitly, as ASME certified or approved in any code forms or other document.

JA ME STIME OF A SHIP BENC. II. B. ASHIP BENC. II.

AN INTERNATIONAL CODE

POF of ASME BAYC. II.B. (ASME BAYC. II.B. (ASME BAYC.) 2023 ASME Boiler & **Pressure Vessel Code**


2023 Edition

MATERIALS

Rart B

Nonferrous Material Specifications

ASME Boiler and Pressure Vessel Committee on Materials

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The standards committee that approved the code or standard was balanced to ensure that individuals from competent and concerned interests had an opportunity to participate. The proposed code or standard was made available for public review and comment, which provided an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity, ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor does ASME assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representatives or persons affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes and preamble in this document (if any) are part of this American National Standard.

ASME Collective Membership Mark

ASME Single Certification Mark

"ASME" and the above ASME symbols are registered trademarks of The American Society of Mechanical Engineers.

The ASTM standards included within this ASME publication have been reproduced through a license agreement with ASTM International.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934

Adopted by the Council of The American Society of Mechanical Engineers, 1914; latest edition 2023.

The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990

Copyright © 2023 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.

ASM

TABLE OF CONTENTS

List of Sections		ix
		X
	of the ASME Single Certification Mark and Code Authorization in Advertising	xii
		xii
Darsonnal	of ASME Marking to Identify Manufactured Items	xiii
	nittee	XXXV
-		xxxvi
	······································	xxxviii
Specifications Listed by Materia	ıls	XXXIX
Specification Removal		xliv
Summary of Changes	BPVC	xlv
Cross-Referencing in the AsME	DFVC	xlvii
	of ASME Material Specifications	1
SB-26/SB-26M	Specification for Aluminum-Alloy Sand Castings	3
SB-42	Specification for Seamless Copper Pipe Standard Sizes	17
SB-43	Specification for Seamless Red Brass Pipe, Standard Sizes	25
SB-61	Specification for Steam or Valve Bronze Castings	33
SB-62	Specification for Composition Bronze or Ounce Metal Castings	37
SB-75/SB-75M	Specification for Seamless Copper Tube	41
SB-96/SB-96M	Specification for Copper-Silicon Alloy Plate, Sheet, Strip, and Rolled Bar for	
	General Purposes and Pressure Vessels	51
SB-98/SB-98M	Specification for Copper-Silicon Alloy Rod, Bar and Shapes	57
SB-108/SB-108M	Specification for Aluminum-Alloy Permanent Mold Castings	63
SB-111/SB-111M	Specification for Copper and Copper-Alloy Seamless Condenser Tubes and	
	Ferrule Stock	81
SB-127	Specification for Nickel-Copper Alloy (UNS N04400) Plate, Sheet, and Strip	95
SB-135/SB-135M	Specification for Seamless Brass Tube	105
SB-148	Specification for Aluminum-Bronze Sand Castings	115
SB-150/SB-150M	Specification for Aluminum Bronze Rod, Bar, and Shapes	123
SB-151/SB-151M	Specification for Copper-Nickel-Zinc Alloy (Nickel Silver) and Copper-Nickel	
	Rod and Bar	131
SB-152/SB-152M	Specification for Copper Sheet, Strip, Plate, and Rolled Bar	137
SB-160	Specification for Nickel Rod and Bar	145
SB-161	Specification for Nickel Seamless Pipe and Tube	155
SB-162	Specification for Nickel Plate, Sheet, and Strip	161
SB-163	Specification for Seamless Nickel and Nickel Alloy Condenser and	
	Heat-Exchanger Tubes	177
SB-164 O	Specification for Nickel-Copper Alloy Rod, Bar, and Wire	191
SB-165	Specification for Nickel-Copper Alloy Seamless Pipe and Tube	205
SB-166	Specification for Nickel-Chromium-Aluminum Alloy, Nickel-Chromium-Iron	
	Alloys, Nickel-Chromium-Cobalt-Molybdenum Alloy, Nickel-Iron-	
7.	Chromium-Tungsten Alloy, and Nickel-Chromium-Molybdenum-Copper	
	Alloy, Rod, Bar, and Wire	213
SB-167	Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601,	
	N06603, N06690, N06693, N06025, N06045, and N06696), and Nickel-	
	Chromium-Cobalt-Molybdenum Alloy (UNS N06617), Nickel-Iron-	
	Chromium-Tungsten Alloy (UNS N06674), and Nickel-Chromium-	
	Molybdenum-Copper Alloy (UNS N06235) Seamless Pipe and Tube	223

SB-168	Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), Nickel-Iron-	
	Chromium-Tungsten Alloy (UNS N06674), and Nickel-Chromium-	
	Molybdenum-Copper Alloy (UNS N06235) Plate, Sheet, and Strip	233
SB-169/SB-169M	Specification for Aluminum Bronze Sheet, Strip, and Rolled Bar	247
SB-171/SB-171M	Specification for Copper-Alloy Plate and Sheet for Pressure Vessels, Con-	
	densers, and Heat Exchangers	253
SB-187/SB-187M	Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes	261
SB-209	Specification for Aluminum and Aluminum-Alloy Sheet and Plate	271
SB-210	Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes	297
SB-211/SB-211M	Specification for Aluminum and Aluminum-Alloy Rolled or Cold-Finished Bar, Rod, and Wire	309
SB-221	Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes	323
SB-234	Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers	339
SB-241/SB-241M	Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube	347
SB-247	Specification for Aluminum and Aluminum-Alloy Die Forgings, Hand Forgings, and Rolled Ring Forgings	367
SB-248	Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar	385
SB-249/SB-249M	Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes, and Forgings	399
SB-251/SB-251M	Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy Tube	413
SB-265	Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate	423
SB-271/SB-271M	Specification for Copper-Base Alloy Centrifugal Castings	437
SB-283/SB-283M	Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)	445
SB-308/SB-308M	Specification for Aluminum-Alloy 6061-T6 Standard Structural Profiles	461
SB-315	Specification for Seamless Copper Alloy Pipe and Tube	467
SB-333	Specification for Nickel-Molybdenum Alloy Plate, Sheet, and Strip	479
SB-335	Specification for Nickel-Molybdenum Alloy Rod	483
SB-338	Specification for Seamless and Welded Titanium and Titanium Alloy Tubes	
	for Condensers and Heat Exchangers	489
SB-348/SB-348M	Specification for Titanium and Titanium Alloy Bars and Billets	499
SB-359/SB-359M	Specification for Copper and Copper-Alloy Seamless Condenser and Heat	
	Exchanger Tubes with Integral Fins	509
SB-363	Specification for Seamless and Welded Unalloyed Titanium and Titanium Alloy Welding Fittings	521
SB-366/SB-366M	Specification for Factory-Made Wrought Nickel and Nickel Alloy Fittings	527
SB-367	Specification for Titanium and Titanium Alloy Castings	537
SB-369	Specification for Copper-Nickel Alloy Castings	545
SB-381	Specification for Titanium and Titanium Alloy Forgings	551
SB-395/SB-395M	Specification for U-Bend Seamless Copper and Copper Alloy Heat Exchanger and Condenser Tubes	561
SB-407	Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube	573
SB-408	Specification for Nickel-Iron-Chromium Alloy Rod and Bar	579
\$B-409	Specification for Nickel-Iron-Chromium Alloy Plate, Sheet, and Strip	585
SB-423	Specification for Nickel-Iron-Chromium-Molybdenum-Copper Alloy (UNS N08825 and N08221) Seamless Pipe and Tube	591
SB-424	Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS	
	N06845) Plate, Sheet, and Strip	597

	SB-425	Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825 and UNS N08221) Rod	
	SB-434	and Bar	603
		UNS N10242) Plate, Sheet, and Strip	611
	SB-435	Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and Strip	615
	SB-443	Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219)	603 611 615 619
	CD 444	Plate, Sheet, and Strip	619
	SB-444	Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube	631
	SB-446	Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and	
	CD 4/2	Bar	635
	SB-462	Specification for Forged or Rolled Nickel Alloy Pipe Flanges, Forged Fittings, and Valves and Parts for Corrosive High-Temperature Service	641
	SB-463	Specification for UNS N08020 Alloy Plate, Sheet, and Strip	647
	SB-464	Specification for Welded UNS N08020, N08024, and N08026 Alloy Pipe	651
	SB-466/SB-466M	Specification for Seamless Copper-Nickel Pipe and Tube	655
	SB-467	Specification for Welded Copper-Nickel Pipe	663
	SB-468	Specification for Welded UNS N08020, N08024, and N08026 Alloy Tubes .	671
	SB-473	Specification for UNS N08020, UNS N08024, and UNS N08026 Nickel Alloy Bar and Wire	675
	CD 402/CD 402M		675 685
	SB-493/SB-493M	Specification for Zirconium and Zirconium Alloy Forgings	
	SA-494/SA-494M	Specification for Castings, Nickel and Nickel Alloy	689
	SB-505/SB-505M	Specification for Copper Alloy Continuous Castings	697
	SB-511	Specification for Nickel-Iron-Chromium-Silicon Alloy Bars and Shapes	707
	SB-514	Specification for Welded Nickel-Iron-Chromium Alloy Pipe	717
	SB-515	Specification for Welded UNS N08120, UNS N08800, UNS N08810, and UNS N08811 Alloy Tubes	721
	SB-516	Specification for Welded Nickel-Chromium-Aluminum Alloy (UNS N06699)	
		and Nickel-Chromium-Iron Alloy (UNS N06600, UNS N06601, UNS	
		N06603, UNS N06025, UNS N06045, UNS N06690, AND UNS N06693) Tubes	725
	SB-517	Specification for Welded Nickel-Chromium-Iron Alloy (UNS N06600, UNS	
		N06603, UNS N06025, and UNS N06045) Pipe	729
	SB-523/SB-523M SB-535 SB-536	Specification for Seamless and Welded Zirconium and Zirconium Alloy Tubes	733
	SB-535	Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and	
	Clie	N08332) Seamless Pipe and Tube	739
	SB-536	Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and	= 40
		N08332) Plate, Sheet, and Strip	743
	SB-543/SB-543M	Specification for Welded Copper and Copper-Alloy Heat Exchanger Tube .	755
	SB-548	Test Method for Ultrasonic Inspection of Aluminum-Alloy Plate for Pressure	7.00
	ap 550 (ap 550) (Vessels	769
4	SB-550/SB-550M	Specification for Zirconium and Zirconium Alloy Bar and Wire	775
	SB-551/SB-551M	Specification for Zirconium and Zirconium Alloy Strip, Sheet, and Plate	781
HORY	SB-564 SB-572	Specification for Nickel Alloy Forgings	793
1		Rod	805
	SB-573	Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003,	
		N10242) Rod	811

	SB-574	Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy	0.45
	an	Rod	815
	SB-575	Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon	
		Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-	
		Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-	1
		Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate,	821
	CD F04	Sheet, and Strip	
	SB-581	Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Rod	827
	SB-582	Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Plate	022
	SB-584	Sheet, and Strip	833 837
	SB-599		037
	2B-299	Specification for Nickel-Iron-Chromium-Molybdenum-Columbium Stabilized	047
	SB-619/SB-619M	Alloy (UNS N08700) Plate, Sheet, and Strip	847 861
	SB-620	Specification for Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320)	001
	3B-020	Plate, Sheet, and Strip	869
	SB-621	Specification for Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320)	009
	3D-021	Rod	873
	SB-622	Specification for Seamless Nickel and Nickel-Cobalt Alloy Pipe and Tube	877
	SB-625	Specification for UNS N08925, UNS N08031, UNS N08034, UNS N08932, UNS	077
	55 626	N08926, UNS N08354, UNS N08830, and UNS R20033 Plate, Sheet, and	
		Strip	885
	SB-626	Specification for Welded Nickel and Nickel-Cobalt Alloy Tube	889
	SB-637	Specification for Precipitation-Hardening and Cold Worked Nickel Alloy Bars,	
		Forgings, and Forging Stock for Moderate or High-Temperature Service	895
	SB-649	Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS	
		N08031, UNS N08034, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N	
		Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy	
		(UNS N08936) Wire	903
	SB-653/SB-653M	Specification for Seamless and Welded Zirconium and Zirconium Alloy	
		Welding Fittings	911
	SB-658/SB-658M	Specification for Seamless and Welded Zirconium and Zirconium Alloy Pipe	915
	SB-666/SB-666M	Practice for Identification Marking of Aluminum and Magnesium Products	921
	SB-668	Specification for UNS N08028 Seamless Tubes	929
	SB-672	Specification for Nickel-Iron-Chromium-Molybdenum-Columbium Stabilized	
	<u>_</u>	Alloy (UNS N08700) Bar and Wire	933
	SB-673	Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Pipe	941
	SB-674	Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Tube	945
	SB-675	Specification for UNS N08367 Welded Pipe	949
	SB-673 SB-674 SB-675 SB-676 SB-688	Standard Specification for UNS N08367 Welded Tube	953
	SB-677	Specification for Nickel-Iron-Chromium-Molybdenum and Iron-Nickel-	0.5.5
	GD 400	Chromium-Molybdenum-Copper Seamless Pipe and Tube	957
	SB-688	Specification for Chromium-Nickel-Molybdenum-Iron (UNS N08366 and UNS N08367) Plate Shark and Strike	0.61
	SB-690	N08367) Plate, Sheet, and Strip	961
	28-690	and UNS N08367) Seamless Pipe and Tube	971
	SB-691	Specification for Iron-Nickel-Chromium-Molybdenum Alloys (UNS N08366	9/1
	DB-071	and UNS N08367) Rod, Bar, and Wire	979
2	SB-704	Specification for Welded UNS N06625, UNS N06219, and UNS N08825 Alloy	,,,
	55 , 01	Tubes	987
	SB-705	Specification for Nickel-Alloy (UNS N06625, N06219 and N08825) Welded	207
		Pipe	991
	SB-706	Specification for Seamless Copper Alloy (UNS NO. C69100) Pipe and Tube	995

SB-709	Specification for Iron-Nickel-Chromium-Molybdenum Alloy (UNS N08028) Plate, Sheet, and Strip	1003
SB-710	Specification for Nickel-Iron-Chromium-Silicon Alloy Welded Pipe	
	•	1009
SB-729	Specification for Seamless Nickel-Iron-Chromium-Molybdenum-Copper	1013
CD 751	Nickel Alloy Pipe and Tube	1013
SB-751	Specification for General Requirements for Nickel and Nickel-Alloy Welded Tube	1017
SB-752/SB-752M	Specification for Castings, Zirconium-Base, Corrosion Resistant, for General	, Q
,	Application	1025
SB-775	Specification for General Requirements for Nickel and Nickel-Alloy Welded	
	Pipe	1031
SB-804	Specification for UNS N08367 and UNS N08926 Welded Pipe	1037
SB-815	Specification for Cobalt-Chromium-Nickel-Molybdenum-Tungsten Alloy (UNS R31233) Rod	1045
SB-818	Specification for Cobalt-Chromium-Nickel-Molybdenum-Tungsten Alloy (UNS	1045
2D-010	R31233) Plate, Sheet, and Strip	1049
SB-824	Specification for General Requirements for Copper Alloy Castings	1053
SB-829	Specification for General Requirements for Nickel and Nickel Alloys Seamless	1061
SB-834	Pipe and Tube	1001
3D-034	/ <u> </u>	
	Chromium-Molybdenum (UNS N08367), Nickel-Chromium- Molybdenum- Columbium (Nb) (UNS N06625), Nickel- Chromium-Iron Alloys (UNS	
	N06600 and N06690), and Nickel-Chromium-Iron-Columbium-	
	Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts	1069
CD 0//1	Specification for Titanium and Titanium Alloy Seamless Pipe	
SB-861 SB-862		1075 1085
	Specification for Titanium and Titanium Alloy Welded Pipe	1085
SB-906	Specification for General Requirements for Flat-Rolled Nickel and Nickel Allers Plate Chart and Strip	1007
CD 020/CD 020M	loys Plate, Sheet, and Strip	1097
SB-928/SB-928M	Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments	1115
SB-956	Specification for Welded Copper and Copper-Alloy Condenser and Heat Ex-	1115
36-730	changer Tubes with Integral Fins	1129
SF-467	Specification for Nonferrous Nuts for General Use	1141
SF-467M	Specification for Nonferrous Nuts for General Use [Metric]	1151
SF-468	Specification for Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws,	1131
51 100	and Studs for General Use	1161
SF-468M	Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use	1101
31-400M	[Metric]	1177
SB/EN 1706	Aluminum and Aluminum Alloys — Castings — Chemical Composition and	11//
3D/EN 1700	Mechanical Properties	1189
Mandatory Appendix 1	Standard Units for Use in Equations	1191
Mandatory Appendix II	Framework of ASME Material Specifications	1192
II-100	General	1192
II-200	Source Standards	1192
II-300	Permissibility of Superseded Editions for ASME Construction	1192
II-400	Structure of ASME Material Specifications	1192
Mandatory Appendix III	Guidelines on Multiple Marking of Materials	1202
III-100	Background	1202
III-200	Guidelines	1202
Mandatory Annondiy IV	Cuidolines on the Annroyal of New Materials Under the ASME Poiler and	
Mandatory Appendix IV	Guidelines on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code	1204
IV-100	Code Policy	1204
IV-200	Application	1204
IV-300	Chemical Composition	1204
500	anome composition in	1200

	IV-400		Metallurgical Structure and Heat Treatment	1206
	IV-500		Mechanical Properties	1206
	IV-600		Definitions for Data Collection Purposes	1206
	IV-700		Required Sampling	1206
	IV-800		Time-Independent Properties	1207
	IV-900		Time-Dependent Properties	1207
	IV-1000		Low-Temperature Properties	1209
	IV-1100		Toughness Data	1209
	IV-1200		Stress-Strain Curves	1209
	IV-1300		Fatigue Data	1209
	IV-1400		Physical Properties	
	IV-1500		Data Requirements for Welds, Weldments, and Weldability	1210
	IV-1600		Long-Term Properties Stability	1210
	IV-1700		Requests for Additional Data	1212
	IV-1800		New Materials Checklist	1212
	IV-1900		Requirements for Recognized National or International Specifications	1212
	IV-2000		Publication of Recognized National or International Specifications	1212
	IV-2100		CEN Specifications	1212
	Nonmanda	atory Appendix A	Sources of Standards	1214
	FIGURE			
	II-400-1	Illustrative Table of	f ASME Material Specifications (for II-400 Explanation Purposes Only)	1201
	11 100 1	mustrative rable of	Thoriz Flaterial opecifications (for it for Explanation Full poses only)	1201
	TABLES			
	I-1	Standard Units fo	or Use in Equations	1191
	II-200-1		ations Acceptable for ASME Construction	1194
	II-200-2	_	ations Acceptable for ASME Construction	1201
	IV-100-2		Pressed Component Requirements for Austenitic Stainless Steels, Austenitic-	1201
	17 100 1	Ferritic (Duple:	x) Stainless Steels, Martensitic Stainless Steels, Ferritic Steels, and Nickel	4005
	III 000 1		1 1H % 6 B	1205
	IV-800-1		ods and Units for Reporting	1208
	IV-1500-1	Example of a Con	nparison of Allowable Stresses of Base Metals With Compositions Similar to	1211
		Those of Select	ed Welding Consumables and the Proposed New Base Metal	1211
			and the second s	
			- like	
		C C C C C C C C C C C C C C C C C C C		
		\L^		
		1,101		
		C),		
		ON,		
		O'		
		. O		
)		
	.00			
	M			
	21			
	\mathfrak{O} .			
	•			
WE				
S				
1				
		Example of a Com Those of Select		
			viji	

LIST OF SECTIONS

SECTIONS

- I Rules for Construction of Power Boilers
- II Materials
 - Part A Ferrous Material Specifications
 - Part B Nonferrous Material Specifications
 - Part C Specifications for Welding Rods, Electrodes, and Filler Metals
 - Part D Properties (Customary)
 - Part D Properties (Metric)
- III Rules for Construction of Nuclear Facility Components
 - Subsection NCA General Requirements for Division 1 and Division 2
 - Appendices
 - Division 1
 - Subsection NB Class 1 Components
 - Subsection NCD Class 2 and Class 3 Components
 - Subsection NE Class MC Components
 - Subsection NF Supports
 - Subsection NG Core Support Structures
 - Division 2 Code for Concrete Containments
 - Division 3 Containment Systems for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material
 - Division 4 Fusion Energy Devices
 - Division 5 High Temperature Reactors
- IV Rules for Construction of Heating Boilers
- V Nondestructive Examination
- VI Recommended Rules for the Care and Operation of Heating Boilers
- VII Recommended Guidelines for the Care of Power Boilers
- VIII Rules for Construction of Pressure Vessels
 - Division 1
 - Division 2 Alternative Rules
 - Division 3 Alternative Rules for Construction of High Pressure Vessels
- IX Welding, Brazing, and Fusing Qualifications
- X Fiber-Reinforced Plastic Pressure Vessels
- XI Rules for Inservice Inspection of Nuclear Reactor Facility Components
 - Division 1 Rules for Inspection and Testing of Components of Light-Water-Cooled Plants
 - Division 2 Requirements for Reliability and Integrity Management (RIM) Programs for Nuclear Reactor Facilities
- XII Rules for Construction and Continued Service of Transport Tanks
- XIII Rules for Overpressure Protection

3)

FOREWORD*

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

- (a) Committee on Power Boilers (I)
- (b) Committee on Materials (II)
- (c) Committee on Construction of Nuclear Facility Components (III)
- (d) Committee on Heating Boilers (IV)
- (e) Committee on Nondestructive Examination (V)
- (f) Committee on Pressure Vessels (VIII)
- (g) Committee on Welding, Brazing, and Fusing (IX)
- (h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
- (i) Committee on Nuclear Inservice Inspection (XI)
- (j) Committee on Transport Tanks (XII)
- (k) Committee on Overpressure Protection (XIII)
- (1) Technical Oversight Management Committee (TOMC)

Where reference is made to "the Committee" in this Foreword, each of these committees is included individually and collectively.

The Committee's function is to establish rules of safety relating only to pressure integrity, which govern the construction of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. The technical consistency of the Sections of the Code and coordination of standards development activities of the Committees is supported and guided by the Technical Oversight Management Committee. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components of transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase *engineering judgment* refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the

^{*} The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Code.

^{**} Construction, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and overpressure protection.

requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design.

The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer's freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://go.asme.org/BPVCPublicReview to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code.

The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of the ASME Single Certification Mark.

When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.

The words "shall," "should," and "may" are used in this Standard as follows:

- Shall is used to denote a requirement.
- Should is used to denote a recommendation.
- cick to view the full policy of A cick to view the full policy of the sent policy of the - May is used to denote permission, neither a requirement nor a recommendation.

STATEMENT OF POLICY ON THE USE OF THE ASME SINGLE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use the ASME Single Certification Mark for marking items of constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the ASME Single Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the ASME Single Certification Mark who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the ASME Single Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not "approve," "certify," "rate," or "endorse" any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the ASME Single Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities "are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code," or "meet the requirements of the ASME Boiler and Pressure Vessel Code." An ASME corporate logo shall not be used by any organization other than ASME.

The ASME Single Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the ASME Single Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the ASME Single Certification Mark.

STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the ASME Single Certification Mark described in the governing Section of the Code.

Markings such as "ASME," "ASME Standard," or any other marking including "ASME" or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.

PERSONNEL

ASME Boiler and Pressure Vessel Standards Committees, Subgroups, and Working Groups

January 1, 2023

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

R. E. McLaughlin, Chair	W. M. Lundy
N. A. Finney, Vice Chair	D. I. Morris
S. J. Rossi, Staff Secretary	T. P. Pastor
G. Aurioles, Sr.	M. D. Rana
R. W. Barnes	S. C. Roberts
T. L. Bedeaux	F. J. Schaaf, Jr.
C. Brown	G. Scribner
D. B. DeMichael	W. J. Sperko
R. P. Deubler	D. Srnic
J. G. Feldstein	
G. W. Galanes	R. W. Swayne
J. A. Hall	J. Vattappilly
T. E. Hansen	M. Wadkinson
G. W. Hembree	B. K. Nutter, Ex

G. W. Hembree
R. B. Keating
M. J. Pischke, Ex-Officio Member
B. Linnemann
J. F. Henry, Honorary Member

Subgroup on Research and Development (TOMC)

S. C. Roberts, Chair	R. B. Keating
S. J. Rossi, Staff Secretary	R. E. McLaughlin
R. W. Barnes	T. P. Pastor

N. A. Finney D. Andrei, Contributing Member

W. Hoffelner

Subgroup on Strategic Initiatives (TOMC)

	L.X.
N. A. Finney, Chair	M. H. Jawad
S. J. Rossi, Staff Secretary	R. B. Keating
R. W. Barnes	R.E.McLaughlin
T. L. Bedeaux	T. P. Pastor
G. W. Hembree	χ 🔾 S. C. Roberts

Task Group on Remote Inspection and Examination (SI-TOMC)

S. C. Roberts, Chair	M. Tannenbaum
P. J. Coco	J. Cameron, Alternate
N. A. Finney	A. Byk, Contributing Member
S. A. Marks	J. Pang, Contributing Member
R. Rockwood	S. J. Rossi, Contributing Member
C. Stevens	C. A. Sanna, Contributing Member

Special Working Group on High Temperature Technology (TOMC)

D. Dewees, Chair	B. F. Hantz
F. W. Brust	R. I. Jetter
T. D. Burchell	P. Smith
P R Donavin	

ADMINISTRATIVE COMMITTEE

R. E. McLaughlin, Chair	M. J. Pischke
N. A. Finney <i>, Vice Chair</i>	M. D. Rana
S. J. Rossi, Staff Secretary	S. C. Roberts
. Cameron	
R. B. Keating	R. R. Stevenson
3. Linnemann	R. W. Swayne
3. K. Nutter	M. Wadkinson

MARINE CONFERENCE GROUP

J. Oh <i>, Staff Secretary</i>	H. N. Patel
J. G. Hungerbuhler, Jr.	N. Prokopuk
G. Nair	J. D. Reynolds

CONFERENCE COMMITTEE

R. D. Troutt — Texas, Chair J. T. Amato — Ohio, Secretary W. Anderson — Mississippi R. Becker — Colorado T. D. Boggs — Missouri R. A. Boillard — Indiana D. P. Brockerville — Newfoundland and Labrador, Canada R. J. Bunte — Iowa J. H. Burpee — Maine M. Carlson — Washington T. G. Clark — Oregon B. J. Crawford — Georgia E. L. Creaser — New Brunswick, Canada J. J. Dacanay — Hawaii R. DeLury — Manitoba, Canada A. Denham — Michigan C. Dinic — Ontario, Canada D. A. Ehler — Nova Scotia, Canada S. D. Frazier — Washington T. J. Granneman II — Oklahoma S. Harder — Arizona M. L. Jordan — Kentucky R. Kamboj — British Columbia, Canada E. Kawa — Massachusetts A. Khssassi — Quebec, Canada	J. LeSage, Jr. — Louisiana A. M. Lorimor — South Dakota M. Mailman — Northwest Territories, Canada W. McGivney — City of New York New York S. F. Noonan — Maryland C. L. O'Guin — Tennessee B. S. Oliver — New Hampshire J. L. Oliver — New Hampshire J. L. Oliver — Nevada P. B. Polick — Illinois J. F. Porcella — West Virginia B. Ricks — Montana W. J. Ross — Pennsylvania M. H. Sansone — New York T. S. Seime — North Dakota C. S. Selinger — Saskatchewan, Canada J. E. Sharier — Ohio R. Spiker — North Carolina D. Srnic — Alberta, Canada D. J. Stenrose — Michigan R. J. Stimson II — Kansas R. K. Sturm — Utah D. K. Sullivan — Arkansas J. Taveras — Rhode Island G. Teel — California D. M. Warburton — Florida
K. S. Lane — Alaska	E. Wiggins — Alabama

INTERNATIONAL INTEREST REVIEW GROUP

V. Felix C. Minu Y.-G. Kim Y.-W. Park

S. H. Leong A. R. Reynaga Nogales W. Lin P. Williamson

O. F. Manafa

J. Vattappilly

Subgroup on General Requirements and Piping (BPV I)

R. V. Wielgoszinski
W. L. Lowry, Contributing Member

7e Boilers (BPV I)
A. Lee D. E. Tompkins, Chair B. J. Mollitor M. Wadkinson, Vice Chair M. Lemmons, Secretary R. Antoniuk T. E. Hansen M. Ishikawa R. E. McLaughlin

L. Moedinger

COMMITTEE ON POWER BOILERS (BPV I)

R. E. McLaughlin, Chair M. Wadkinson E. M. Ortman, Vice Chair R. V. Wielgoszinski U. D'Urso, Staff Secretary F. Zeller D. I. Anderson H. Michael, Delegate J. L. Arnold D. L. Berger, Honorary Member

K. K. Coleman P. D. Edwards, Honorary Member J. G. Feldstein D. N. French, Honorary Member S. Fincher J. Hainsworth, Honorary Member G. W. Galanes J. F. Henry, Honorary Member T. E. Hansen W. L. Lowry, Honorary Member J. S. Hunter J. R. MacKay, Honorary Member

M. Ishikawa P. A. Molvie, Honorary Member M. Lemmons J. T. Pillow, Honorary Member L. Moedinger B. W. Roberts, Honorary Member Y. Oishi

R. D. Schueler, Jr., Honorary M. Ortolani Member A. Spangenberg

D. E. Tompkins J. M. Tanzosh, Honorary Member D. E. Tuttle R. L. Williams, Honorary Member

L. W. Yoder, Honorary Member

Subgroup on Locomotive Boilers (BPV I)

J. R. Braun, Chair L. Moedinger S. M. Butler. Secretary G. M. Ray M. W. Westland G. W. Galanes D. W. Griner

M. A. Janssen

Subgroup on Materials (BPV I)

K. K. Coleman, Chair L. S. Nicol K. Hayes, Vice Chair M. Ortolani M. Lewis, Secretary D. W. Rahoi S. H. Bowes F. Zeller G. W. Galanes

B. W. Roberts, Contributing P. F. Gilston

Memher J. S. Hunter

E. Liebl J. M. Tanzosh, Contributing

F. Masuyama Memher

Executive Committee (BPV I)

U. D'Urso E. M. Ortman, Chair R. E. McLaughlin, Vice Chair P. F. Gilston D. I. Anderson K. Hayes J. L. Arnold P. Jennings J. R. Braun A. Spangenberg K. K. Coleman D. E. Tompkins H. Dalal T. Dhanraj M. Wadkinson

Subgroup on Solar Boilers (BPV I)

P. Jennings, Chair J. S. Hunter R. E. Hearne, Secretary P. Swarnkar

S. Fincher

Task Group on Modernization (BPV I)

D. I. Anderson, Chair T. E. Hansen U. D'Urso, Staff Secretary R. E. McLaughlin J. L. Arnold E. M. Ortman D. Dewees D. E. Tuttle G. W. Galanes J. P. Glaspie J. Vattappilly

Subgroup on Design (BPV I)

D. I. Anderson, Chair N. S. Ranck L. S. Tsai, Secretar J. Vattappilly P. Becker M. Wadkinson L. Krupp D. Dewees, Contributing Member C. T. McDari J. P. Glaspie, Contributing Member

Subgroup on Fabrication and Examination (BPV I)

J. L. Arnold, Chair P. Jennings P. F. Gilston, Vice Chair M. Lewis P. Becker, Secretary C. T. McDaris K. K. Coleman R. E. McLaughlin S. Fincher R. J. Newell G. W. Galanes Y. Oishi T. E. Hansen R. V. Wielgoszinski

Germany International Working Group (BPV I)

A. Spangenberg, Chair R. A. Meyers P. Chavdarov, Secretary H. Michael F. Miunske B. Daume J. Fleischfresser M. Sykora

C. Jaekel R. Helmholdt, Contributing

R. Kauer Member

D. Koelbl J. Henrichsmeyer, Contributing

S. Krebs Member

T. Ludwig B. Müller, Contributing Member

India International Working Group (BPV I)

H. Dalal, Chair	S. Purkait
T. Dhanraj, Vice Chair	M. G. Rao
K. Thanupillai, Secretary	G. U. Shanker
P. Brahma	D. K. Shrivastava
S. Chakrabarti	K. Singha
A. Hantodkar	R. Sundararaj
A. J. Patil	S. Venkataramana

COMMITTEE ON MATERIALS (BPV II)

J. Cameron, <i>Chair</i>	D. W. Rahoi
G. W. Galanes, Vice Chair	W. Ren
C. E. Rodrigues, Staff Secretary	E. Shapiro
A. Appleton	R. C. Sutherlin
P. Chavdarov	F. Zeller
K. K. Coleman	O. Oldani, Delegate
D. W. Gandy	A. Chaudouet, Contributing
J. F. Grubb	Member
J. A. Hall D. O. Henry	J. D. Fritz, Contributing Member
K. M. Hottle	$W.\ Hoffelner,\ Contributing\ Member$
M. Ishikawa	K. E. Orie, Contributing Member
K. Kimura	D. T. Peters, Contributing Member
M. Kowalczyk	B. W. Roberts, Contributing
D. L. Kurle	Member
F. Masuyama	J. M. Tanzosh, Contributing
S. Neilsen	Member
L. S. Nicol	E. Upitis, Contributing Member
M. Ortolani	R. G. Young, Contributing Member

Executive Committee (BPV II)

J. Cameron, Chair	W. Hoffelner
C. E. Rodrigues, Staff Secretary	M. Ishikawa
A. Appleton	M. Ortolani
K. K. Coleman	P. K. Rai
G. W. Galanes	and the second s
J. F. Grubb	J. Robertson
S. Guzey	E. Shapiro
	, C.

Subgroup on External Pressure (BPV II)

~ ~ ~	,
S. Guzey <i>, Chair</i>	M. H. Jawad
E. Alexis, Vice Chair	S. Krishnamurthy
J. A. A. Morrow, Secretary	D. L. Kurle
L. F. Campbell	R. W. Mikitka
H. Chen	
D. S. Griffin	P. K. Rai
J. F. Grubb	M. Wadkinson

Subgroup on Ferrous Specifications (BPV II)

	-
A. Appleton, Chair	S. G. Lee
K. M. Hottle, Vice Chair	W. C. Mack
C. Hyde, Secretary	J. Nickel
D. Amire-Brahimi	K. E. Orie
G. Cuccio	D. Poweleit
O. Elkadim	
D. Fialkowski	E. Upitis
J. F. Grubb	L. Watzke

J. D. Fritz, Contributing Member D. S. Janikowski Y.-J. Kim C. Meloy, Contributing Member

Subgroup on International Material Specifications (BPV II)

M. Ishikawa, Chair	F. Zeller
P. Chavdarov, Vice Chair	C. Zhou
A. Chaudouet	O. Oldani, Delegate
H. Chen	, 0
A F Carbolovsky	H. Lorenz, Contributing Membe

T. F. Miskell, Contributing Member D. O. Henry E. Upitis, Contributing Member W. M. Lundy

Subgroup on Nonferrous Alloys (BPV II)

E. Shapiro, Chair	J. A. McMaster
W. MacDonald, Vice Chair	D. W. Rahoi
J. Robertson, Secretary	W. Ren
R. M. Beldyk	R. C. Sutherlin
J. M. Downs	R. Wright
J. F. Grubb	S. Yem
J. A. Hall	D.B. Denis, Contributing Member
D. Maitra	D. T. Peters, Contributing Member

Subgroup on Physical Properties (BPV II)

P. K. Rai, Chair	R. D. Jones
S. Neilsen, Vice Chair	P. K. Lam
G. Aurioles, Sr.	D. W. Rahoi
D. Chandiramani	E. Shapiro
P. Chavdarov	•
H. Eshraghi	D. K. Verma
J. F. Grubb	S. Yem

D. B. Denis, Contributing Member

Subgroup on Strength, Ferrous Alloys (BPV II)

M. Ortolani <i>, Chair</i>	M. Osterfoss
L. S. Nicol <i>, Secretary</i>	D. W. Rahoi
G. W. Galanes	S. Rosinski
. A. Hall	M. Ueyama
M. Ishikawa	F. Zeller
S. W. Knowles	F. Abe, Contributing Me

1ember F. Masuyama R. G. Young, Contributing Member

Subgroup on Strength of Weldments (BPV II & BPV IX)

K. K. Coleman, Chair	J. Penso
K. L. Hayes, Vice Chair	D. W. Rahoi
S. H. Bowes, Secretary	W. J. Sperko
M. Denault	J. P. Swezy, Jr.
G. W. Galanes	M. Ueyama
D W Gandy	P D Flenner Con

P. D. Flenner, Contributing Member M. Ghahremani B. W. Roberts, Contributing

W. F. Newell, Jr. Member

Working Group on Materials Database (BPV II)

W. Hoffelner, Chair J. Cameron, Contributing Member C. E. Rodrigues, Staff Secretary J. F. Grubb, Contributing Member F. Abe D. T. Peters, Contributing Member W. MacDonald W. Ren, Contributing Member R. C. Sutherlin B. W. Roberts, Contributing D. Andrei, Contributing Member Member

J. L. Arnold, Contributing Member E. Shapiro, Contributing Member

Working Group on Creep Strength Enhanced Ferritic Steels (BPV II)

M. Ortolani, Chair	W. F. Newell, Jr.
G. W. Galanes, Vice Chair	J. J. Sanchez-Hanton
P. Becker, Secretary	I. A. Siefert
S. H. Bowes	W. J. Sperko
K. K. Coleman	, 1
K. Kimura	F. Zeller

F. Abe, Contributing Member M. Lang P. D. Flenner, Contributing Member S. Luke F. Masuyama J. M. Tanzosh, Contributing T. Melfi Member

Executive Committee (BPV III)

Executive Committee (BPV III)		
R. B. Keating, Chair A. Maslowski, Secretary T. M. Adams P. R. Donavin J. V. Gardiner J. Grimm D. W. Lewis	K. A. Manoly D. E. Matthews S. McKillop J. McLean TL. Sham W. K. Sowder, Jr. K. A. Kavanagh, Alternate	
Argentina Internat	ional Working Group (BPV)H)	
M. F. Liendo, Chair J. Fernández, Vice Chair O. Martinez, Staff Secretary O. A. Verastegui, Secretary E. H. Aldaz G. O. Anteri A. P. Antipasti D. O. Bordato	A. J. Dall'Osto J. I. Duo M. M. Gamizo I. M. Guerreiro I. A. Knorr D. E. Matthews A. E. Pastor	

Working Group on Data Analysis (BPV II)

J. F. Grubb, <i>Chair</i>	F. Abe, Contributing Member
W. Ren, Vice Chair	W. Hoffelner, Contributing Member
K. Kimura	W. C. Mack, Contributing Member
F. Masuyama	W. C. Mack, Contributing Member
S. Neilsen	D. T. Peters, Contributing Member
M. Ortolani	B. W. Roberts, Contributing
M. J. Swindeman	Member

M. F. Liendo <i>, Chair</i>	A. J. Dall'Osto
. Fernández <i>, Vice Chair</i>	J. I. Duo
D. Martinez, Staff Secretary	M. M. Gamizo
D. A. Verastegui <i>, Secretary</i>	I. M. Guerreiro
E. H. Aldaz	I. A. Knorr
G. O. Anteri	D. E. Matthews
A. P. Antipasti) '
D. O. Bordato	A. E. Pastor
G. Bourguigne	M. Rivero
M. Brusa	M. D. Vigliano
A. Claus	P. Yamamoto
R. G. Cocco	M. Zunino

China International Working Group (BPV II)

T. Xu, Secretary	S. Tan
W. Cai	C. Wang
W. Fang	Jinguang Wai
Q. C. Feng	Jiongxiang W
S. Huo	QJ. Wang
F. Kong	X. Wang
H. Leng	HC. Yang
Hli Li	J. Yang
Hongbin Li	L. Yin
J. Li	H. Zhang
S. Liu	XH. Zhang
Z. Rongcan	Y. Zhang

China International Working Group (BPV III)

. \		
Y. Wang	g, Chair	C. Peiyin
H. Yu, S	ecretary	Z. Sun
L. Feng		G. Tang
J. Gu		L. Ting
L. Guo		F. Wu
C. Jiang		C. Yang
D. Kang		P. Yang
Y. Li		0
H. Lin		W. Yang
S. Liu		H. Yin
W. Liu		D. Yuangang
J. Ma		G. Zhang
K. Mao		D. Zhao
D. E. Ma	atthews	Z. Zhong
J. Ming		Q. Zhou
W. Pei		H. Zhu

COMMITTEE ON CONSTRUCTION OF NUCLEAR FACILITY

COMPONENTS (BPV NI)		
R. B. Keating, Chair	K.Matsunaga	
T. M. Adams, Vice Chair	B. McGlone	
D. E. Matthews, Vice Chair	S. McKillop	
A. Maslowski, Staff Secretary	J. McLean	
A. Appleton	J. C. Minichiello	
S. Asada	M. N. Mitchell	
R. W. Barnes	T. Nagata	
W. H. Borter	J. B. Ossmann	
M. E. Cohen	S. Pellet	
R. P. Deubler	E. L. Pleins	
P. R. Donavin	TL. Sham	
A. C. Eberhardt	W. J. Sperko	
J. V. Gardiner	W. Windes	
J. Grimm	C. Basavaraju, Alternate	
S. Hunter	C. T. Smith, Contributing Member	
R. M. Jessee	W. K. Sowder, Jr., Contributing	
R. I. Jetter	Member	
C. C. Kim	M. Zhou, Contributing Member	
G. H. Koo	E. B. Branch, Honorary Member	

D. W. Lewis

K. A. Manoly

M. A. Lockwood

Germany International Working Group (BPV III)

J. Wendt, Chair	C. Kuschke
D. Koelbl, Vice Chair	HW. Lange
R. Gersinska, Secretary	T. Ludwig
P. R. Donavin	X. Pitoiset
R. Döring	M. Reichert
C. G. Frantescu	G. Roos
A. Huber	J. Rudolph
R. E. Hueggenberg	L. Sybertz
C. Huttner	I. Tewes
E. Iacopetta	R. Tiete
M. H. Koeppen	F. Wille

G. D. Cooper, Honorary Member

D. F. Landers, Honorary Member

C. Pieper, Honorary Member

India International Working Group (BPV III)

R. N. Sen, Chair	R. Kumar
S. B. Parkash, Vice Chair	S. Kumar
A. D. Bagdare, Secretary	M. Lakshminarasimhan
S. Aithal	T. Mukherjee
S. Benhur	D. Narain
N. M. Borwankar	A. D. Paranjpe
M. Brijlani	J. R. Patel
H. Dalal	E. L. Pleins
S. K. Goyal	T. J. P. Rao
A. Johori	V. Sehgal
A. P. Kishore	S. Singh
D. Kulkarni	B. K. Sreedhar

Korea International Working Group (BPV III)

G. H. Koo, Chair	YS. Kim
0S. Kim, Secretary	D. Kwon
H. Ahn	B. Lee
S. Cho	D. Lee
GS. Choi	S. Lee
MJ. Choi	SG. Lee
S. Choi	H. Lim
J. Y. Hong	IK. Nam
NS. Huh	CK. Oh
JK. Hwang	CY. Oh
S. S. Hwang	EJ. Oh
C. Jang	C. Park
I. I. Jeong	H. Park
S. H. Kang	Y. S. Pyun
JI. Kim	T. Shin
JS. Kim	S. Song
MW. Kim	W. J. Sperko
SS. Kim	J. S. Yang
YB. Kim	O. Yoo

Seismic Design Steering Committee (BPV III)

	-
T. M. Adams, Chair	χ 🔾 G. H. Koo
F. G. Abatt, Secretary	A. Maekawa
G. A. Antaki	K. Matsunaga
C. Basavaraju	J. McLean
D. Chowdhury	R. M. Pace
R. Döring	 D. Watkins

Task Group on Alternate Requirements (BPV III)

J. Wen <i>, Chair</i>	D. E. Matthews
R. R. Romano, Secretary	S. McKillop
P. J. Coco	B. P. Nolan
P. R. Donavin	I. B. Ossmann
J. V. Gardiner	E. C. Renaud
J. Grimm	
R. S. Hill III	M. A. Richter
M. Kris	I. H. Tseng
M. A. Lockwood	Y. Wang

United Kingdom International Working Group (BPV III)

	(BPV III)
C. D. Bell, Chair P. M. James, Vice Chair C. B. Carpenter, Secretary T. M. Adams T. Bann M. J. Chevalier A. J. Cole-Baker M. Consonni M. J. Crathorne	G. Innes S. A. Jones B. Pellereau C. R. Schneider J. W. Stairmand J. Sulley J. Talamantes-Silva A. J. Holt, Contributing Member

Special Working Group on New Plant Construction Issues (BPV III)

	J. B. Ossmann, <i>Chair</i>	R. E. McLaughlin
	A. Maslowski, Staff Secretary	E. L. Pleins
rking Group (BPV III)	M. C. Buckley, Secretary	D. W. Sandusky
	M. Arcaro	M. C. Scott
YS. Kim	A. Cardillo	R. R. Stevenson
D. Kwon	P. J. Coco	H. Xu
B. Lee	K. Harris	J. Yan
D. Lee	J. Honcharik	J. C. Minichiello, Contributing
S. Lee	M. Kris	Member
SG. Lee		
H. Lim	ν.	
IK. Nam		
CK. Oh		
CY. Oh	Special Working Group o	on Editing and Review (BPV III)
EJ. Oh		, ,
C. Park	D. E. Matthews, Chair	S. Hunter
H. Park	R. P. Deubler	J. C. Minichiello
Y. S. Pyun	A. C. Eberhardt	J. F. Strunk
T. Shin	J. V. Gardiner	C. Wilson
S. Song)	
W. J. Sperko		
J. S. Yang		
O. Yoo		
11/13	Special Working Group o	on HDPE Stakeholders (BPV III)
C. To	S. Patterson, Secretary	D. P. Munson
"Ve	S. Choi	T. M. Musto
12	C. M. Faidy	J. E. O'Sullivan
ST.	M. Golliet	V. Rohatgi
Committee (RPV III)	R. M. Jessee	V. Rohatgi

D. E. Matthews, Chair	S. Hunter
R. P. Deubler	J. C. Minichiello
A. C. Eberhardt	J. F. Strunk
J. V. Gardiner	C. Wilson

S. Patterson, Secretary	D. P. Munson
S. Choi	T. M. Musto
C. M. Faidy	J. E. O'Sullivan
M. Golliet	V. Rohatgi
R. M. Jessee	F. J. Schaaf, Jr.
J. Johnston, Jr.	, , ,
M. Kuntz	R. Stakenborghs
M. Lashley	M. Troughton
K. A. Manoly	B. Lin, Alternate

Special Working Group on Honors and Awards (BPV III)

J. C. Minichiello, Chair	R. M. Jessee
A. Appleton	D. E. Matthews
R. W. Barnes	

Special Working Group on International Meetings and IWG Liaisons (BPV III)

D. E. Matthews, Chair	P. R. Donavin
A. Maslowski, Staff Secretary	E. L. Pleins
T. M. Adams	W. J. Sperko
R. W. Barnes	

Joint ACI-ASME Committee on Concrete Components for Nuclear Service (BPV III)

J. McLean <i>, Chair</i>	G. Thomas
L. J. Colarusso, Vice Chair	A. Varma
J. Cassamassino, Staff Secretary	S. Wang
A. Dinizulu, Staff Secretary	A. Istar, A
C I Dame	,

llternate C. J. Bang A. Adediran, Contributing Member A. C. Eberhardt S. Bae, Contributing Member B. D. Hovis J.-B. Domage, Contributing Member T. C. Inman P. S. Ghosal, Contributing Member C. Jones B. B. Scott, Contributing Member T. Kang M. R. Senecal, Contributing N.-H. Lee Member

J. A. Munshi Z. Shang, Contributing Member T. Muraki M. Sircar, Contributing Member I. S. Saini J. F. Strunk C. T. Smith, Contributing Member

Special Working Group on Modernization (BPV III-2)

S. Wang, <i>Chair</i>	A. Varma
-----------------------	----------

J. McLean, Vice Chair F. Lin, Contributing Member A. Adediran J. A. Pires, Contributing Member S. Malushte I. Zivanovic, Contributing Member J. S. Saini

Task Group on Steel-Concrete Composite Containments (BPV III-2)

A. Varma, Chair	J. A. Pires
S. Malushte	J. S. Saini

J. McLean

Working Group on Design (BPV III-2)

NH. Lee, Chair	G. Thomas
S. Wang, Vice Chair	A. Istar, Alternate
M. Allam	P. S. Ghosal, Contributing Member
S. Bae	S.Y. Kim, Contributing Member
L. J. Colarusso	I. Kwon, Contributing Member
A. C. Eberhardt	
B. D. Hovis	S. E. Ohler-Schmitz, Contributing
T. C. Inman	Member
	B. B. Scott, Contributing Member
C. Jones	
J. A. Munshi	Z. Shang, Contributing Member
T. Muraki	M. Shin, Contributing Member
I. S. Saini	M. Sircar, Contributing Member

Working Group on Materials, Fabrication, and Examination (BPV III-2)

C. Jones, Chair	Z. Shang
A. Eberhardt, Vice Chair	J. F. Strunk
C. J. Bang	A. A. Aboelmagd, Contributing
D. Dinah	Monahau

Member J.-B. Domage P. S. Ghosal, Contributing Member T. Kang B. B. Scott, Contributing Member N.-H. Lee I. Zivanovic, Contributing Member

Subcommittee on Design (BPV III)

P. R. Donavin <i>, Chair</i>	B. Pellereau
S. McKillop <i>, Vice Chair</i>	TL. Sham
R. P. Deubler	W. F. Weitze
M. A. Gray	C. Basavaraju, A

Alternate R. I. Jetter G. L. Hollinger, Contributing R. B. Keating Member

I.-I. Kim M. H. Jawad, Contributing Member K. A. Manoly W. J. O'Donnell, Sr., Contributing Member D. E. Matthews M. N. Mitchell K. Wright, Contributing Member

Subgroup on Component Design (SC-D) (BPV III

D. E. Matthews, Chair T. Mitsuhashi P. Vock, Vice Chair D. Murphy. S. Pellet, Secretary T. M. Musto T. M. Adams T. Nagata G. Z. Tokarski D. I. Ammerman G. A. Antaki S. Willoughby-Braun

J. J. Arthur C. Wilson

S. Asada A. A. Dermenjian, Contributing

J. F. Ball Member

C. Basavaraju P. Hirschberg, Contributing

D. Chowdhury Member

N. A. Costanzo R. B. Keating, Contributing Member R. P. Deubler O.-S. Kim, Contributing Member M. Kassar R. J. Masterson, Contributing

D. Keck Member

H. S. Mehta, Contributing Member T. R. Liszkai K. A. Manoly I. Saito, Contributing Member J. P. Tucker, Contributing Member J. C. Minichiello

Task Group to Improve Section III/XI Interface (SG-CD) (BPV III)

P. Vock, Chair C. A. Nove E. Henry, Secretary T. Nuoffer G. A. Antaki J. B. Ossmann A. Cardillo A. T. Roberts III D. Chowdhury J. Sciulli J. Honcharik A. Udyawar J. Hurst J. Lambin S. Willoughby-Braun

Working Group on Core Support Structures (SG-CD) (BPV III)

D. Keck, Chair M. D. Snyder R. Z. Ziegler, Vice Chair R. Vollmer R. Martin, Secretary T. M. Wiger G. W. Delport C. Wilson L. C. Hartless Y. Wong T. R. Liszkai

M. Nakajima H. S. Mehta, Contributing Member

Working Group on Design of Division 3 Containment Systems (SG-CD) (BPV III)

D. J. Ammerman, Chair D. Siromani S. Klein, Secretary R. Sypulski G. Bjorkman X. Zhai V. Broz X. Zhang D. W. Lewis

C. R. Sydnor, Alternate J. M. Piotter J. C. Minichiello, Contributing A. Rigato

P. Sakalaukus, Jr. Member

Working Group on HDPE Design of Components (SG-CD) (BPV III)

T. M. Musto, Chair	K. A. Manoly
J. B. Ossmann, Secretary	D. P. Munson
M. Brandes	F. J. Schaaf, Jr.
S. Choi	R. Stakenborghs
J. R. Hebeisen	M. T. Audrain, Alternate
P. Krishnaswamy	J. C. Minichiello, Contributing
M. Kuntz	Member

Working Group on Piping (SG-CD) (BPV III)

K. E. Reid II

Member

G. A. Antaki, Chair
G. Z. Tokarski, Secretary
C. Basavaraju
J. Catalano
F. Claeys
C. M. Faidy
R. G. Gilada
N. M. Graham
M. A. Gray
R. J. Gurdal
R. W. Haupt
A. Hirano
P. Hirschberg
M. Kassar
J. Kawahata
D. Lieb
IK. Nam
J. O'Callaghan
_

D. viaicu
S. Weindorf
T. M. Adams, Contributing Member
R. B. Keating, Contributing Member
T. B. Littleton, Contributing
Member
Y. Liu, Contributing Member
J. F. McCabe, Contributing Member
J. C. Minichiello, Contributing
Member
A. N. Nguyen, Contributing Member
M. S. Sills, Contributing Member
N. C. Sutherland, Contributing

E. A. Wais, Contributing Member C.-I. Wu, Contributing Member

S. McKillop, Chair

Working Group on Pressure Relief (SG-CD) (BPV III)

8	
K. R. May, Chair	I. H. Tseng
R. Krithivasan, Secretary	B. J. Yonsky
M. Brown	Y. Wong, Alternate
J. W. Dickson	J. Yu, Alternate
S. Jones	S. T. French, Contributing Membe
R. Lack	
D. Miller	D. B. Ross, Contributing Member
T. Patel	S. Ruesenberg, Contributing
K. Shores	Member

Working Group on Pumps (SG-CD) (BPV III)

D. Chowdhury, Chair	K. B. Wilson
J. V. Gregg, Jr., Secretar	Y. Wong
B. Busse	I. H. Tseng, Alternate
M. D. Eftychiou R. A. Fleming	X. Di, Contributing Member
K. J. Noel	C. Gabhart, Contributing Member
J. Sulley	R. Ladefian, Contributing Member

Working Group on Valves (SG-CD) (BPV III)

Working Group on Valves (SG-CD) (BPV III)		
P. Vock, Chair	H. O'Brien	0
S. Jones, Secretary	J. O'Callaghan	_0
M. C. Buckley	M. Rain	20 N
A. Cardillo	K. E. Reid II	~ レ
G. A. Jolly	J. Sulley	2)
J. Lambin	I. H. Tseng	
T. Lippucci	J. P. Tucker	
C. A. Mizer	Y. Wong, Alternate	
av Section II		
Working Group on Vessels (SG-CD) (BPV III)		
D. Murphy, <i>Chair</i>	T. J. Schriefer	
S. Willoughby-Braun, Secretary	M. C. Scott	

working Group on vessels (5G-CD) (BPV III)		
D. Murphy, Chair	T. J. Schriefer	
S. Willoughby-Braun, Secretary	M. C. Scott	
J. J. Arthur	P. K. Shah	
C. Basavaraju	D. Vlaicu	
M. Brijlani	C. Wilson	
L. Constantinescu	R. Z. Ziegler	
J. I. Kim	R. J. Huang, Alternate	
OS. Kim	B. Basu, Contributing Member	
D. E. Matthews	R. B. Keating, Contributing Membe	
T. Mitsuhashi	W. F. Weitze, Contributing Membe	
⊘ >		

Subgroup on Design Methods (SC-D) (BPV III)

P. Smith

P. R. Donavin, vice Chair	R. Vollmer
J. Wen, Secretary	W. F. Weitze
K. Avrithi	T. M. Adams, Contributing Member
L. Davies	C. W. Bruny, Contributing Member
M. A. Gray	•
J. V. Gregg, Jr.	S. R. Gosselin, Contributing
K. Hsu	Member
R. Kalnas	H. T. Harrison III, Contributing
D. Keck	Member
J. I. Kim	W. J. O'Donnell, Sr., Contributing
B. Pellereau	Member
W. D. Reinhardt	K. Wright, Contributing Member

Working Group on Supports (SG-CD) (BPV III)		
N. A. Costanzo, Chair	G. Thomas	
U. S. Bandyopadhyay, Secretary	G. Z. Tokarski	
K. Avrithi	L. Vandersip	
N. M. Bisceglia R. P. Deubler	P. Wiseman	
N. M. Graham	R. J. Masterson, Contributing	
Y. Matsubara	Member	
S. Pellet	J. R. Stinson, Contributing Member	

Special Working Group on Computational Modeling for Explicit Dynamics (SG-DM) (BPV III)

G. Bjorkman, <i>Chair</i>	D. Siromani
D. J. Ammerman, Vice Chair	CF. Tso
V. Broz, Secretary	M. C. Yaksh
S. Kuehner	U. Zencker
D. Molitoris	X. Zhang
W. D. Reinhardt	Y. Wong, Contributing Member

Working Group on Design Methodology (SG-DM) (BPV III)

B. Pellereau, Chair R. Vollmer, Secretary K. Avrithi C. Basavaraju F. Berkepile C. M. Faidy Y. Gao M. Kassar J. I. Kim T. R. Liszkai

D. Lytle K. Matsunaga S. McKillop S. Ranganath

W. D. Reinhardt P. K. Shah S. Wang W. F. Weitze J. Wen

T. M. Wiger K. Hsu, Alternate

G. Banyay, Contributing Member D. S. Bartran, Contributing Member

R. D. Blevins, Contributing Member

M. R. Breach, Contributing Member

C. W. Bruny, Contributing Member D. L. Caldwell, Contributing

Member

H. T. Harrison III, Contributing

Memher

C. F. Heberling II, Contributing Member

P. Hirschberg, Contributing

Member R. B. Keating, Contributing Member

A. Walker, Contributing Member

K. Wright, Contributing Member

Working Group on Environmental Fatigue Evaluation Methods (SG-DM) (BPV III)

B. Pellereau M. A. Gray, Chair W. F. Weitze, Secretary D. Vlaicu K. Wang S. Asada K. Avrithi R. Z. Ziegler

R. C. Cipolla S. Cuvilliez, Contributing Member T. M. Damiani T. D. Gilman, Contributing Member

C. M. Faidy S. R. Gosselin, Contributing A. Hirano Member

Y. He, Contributing Member P. Hirschberg K. Hsu

H. S. Mehta, Contributing Member, J.-S. Park K. Wright, Contributing Member

Working Group on Fatigue Strength (SG-DM) (BPV III)

P. R. Donavin, Chair J. I. Kim S. H. Kleinsmith M. S. Shelton, Secretary R. S. Bass B. Pellereau T. M. Damiani S. Ranganath D. W. DeJohn Y. Wang C. M. Faidy

W. F. Weitze P. Gill S. R. Gosselin

S. Majumdar, Contributing Member R. I. Gurdal H. S. Mehta, Contributing Member C. F. Heberling II

C. E. Hinnant W. J. O'Donnell, Sr., Contributing Member P. Hirschberg

K. Wright, Contributing Member

Working Group on Probabilistic Methods in Design (SG-DM) (BPV III)

M. Golliet, Chair A. Hirano R. Kalnas, Vice Chair K. A. Manoly K. Avrithi P. J. O'Regan G. Brouette B. Pellereau J. Hakii M. Yagodich D. O. Henry R. S. Hill III, Contributing Member

Subgroup on Containment Systems for Spent Nuclear Fuel and High-Level Radioactive Material (BPV III)

D. W. Lewis, Chair R. Sypulski D. J. Ammerman, Vice Chair J. Wellwood S. Klein, Secretary X. J. Zhai G. Bjorkman X. Zhang V. Broz D. Dunn, Alternate

W. H. Borter, Contributing Member A. Rigato P. Sakalaukus, Jr. E. L. Pleins, Contributing Member N. M. Simpson, Contributing D. Siromani

D. B. Spencer

Subgroup on Fusion Energy Devices (BPV III)

W. K. Sowder, Jr., Chair C. J. Lammi A. Maslowski, Staff Secretary S. Lawler M. Ellis, Secretary P. Mokaria M. Bashir D. J. Roszman J. P. Blanchard F. J. Schaaf, Jr. T. P. Davis P. Smith B. R. Doshi Y. Song L. El-Guebaly C. Vangaasbeek G. Holtmeier I. J. Zatz D. Johnson

I. Kimihiro R. W. Barnes, Contributing Member

Special Working Group on Fusion Stakeholders (BPV III-4)

T. P. Davis, Chair S. C. Middleburgh R. W. Barnes R. J. Pearson V. Chugh W. K. Sowder, Jr. S.S. Desai D. A. Sutherland F. Deschamps N. Young M. Hua S. Lawler J. Zimmermann

Working Group on General Requirements (BPV III-4)

D. J. Roszman, Chair P. Mokaria M. Ellis W. K. Sowder, Jr.

Working Group on In-Vessel Components (BPV III-4)

M. Bashir, Chair M. Kalsey Y. Carin S. T. Madabusi

T. P. Davis

Working Group on Magnets (BPV III-4)

W. K. Sowder, Jr., Chair D. S. Bartran

Working Group on Materials (BPV III-4)

M. Porton, Chair P. Mummery T. P. Davis

Working Group on Vacuum Vessels (BPV III-4)

I. Kimihiro, Chair D. Johnson L. C. Cadwallader Q. Shijun B. R. Doshi Y. Song

Subgroup on General Requirements (BPV III)

J. V. Gardiner, Chair
N. DeSantis, Secretary
V. Apostolescu
A. Appleton
S. Bell
J. R. Berry
G. Brouette
G. C. Deleanu
J. W. Highlands
E. V. Imbro
K. A. Kavanagh

Y.-S. Kim B. McGlone

E. C. Renaud

T. N. Rezk J. Rogers R. Spuhl D. M. Vickery J. DeKleine, Contributing Member H. Michael, Contributing Member D. J. Roszman, Contributing Member C. T. Smith, Contributing Member W. K. Sowder, Jr., Contributing Member G. E. Szabatura, Contributing

T.-L. Sham, Chair Y. Wang, Secretary M. Ando N. Broom F. W. Brust P. Carter M. E. Cohen W. J. Geringer B. F. Hantz M. H. Jawad W. T. Jessup R. I. Jetter K. Kimura G. H. Koo

A. Mann M. C. Messner X. Wei W. Windes R. Wright G. L. Zeng D. S. Griffin, Contributing Member X. Li, Contributing Member W. O'Donnell, Sr., Contributing Member L. Shi, Contributing Member R. W. Swindeman, Contributing Member

Special Working Group on General Requirements Consolidation (SG-GR) (BPV III)

J. V. Gardiner, Chair J. Grimm, Vice Chair G. C. Deleanu A. C. Eberhardt

E. C. Renaud J. L. Williams

Memher

C. T. Smith, Contributing Member

B. McGlone, Chair J. Grimm, Secretary V. Apostolescu A. Appleton S. Bell J. R. Berry G. Brouette P. J. Coco N. DeSantis Y. Diaz-Castillo O. Elkadim J. Harris J. W. Highlands E. V. Imbro K. A. Kavanagh Y.-S. Kim Y. K. Law

Working Group on General Requirements (SG-GR) (BPV D. T. Meisch E. C. Renaud T. N. Rezk J. Rogers B. S. Sandhy R. Spuhl J. F. Strunk D. M. Vickery I.L. Williams J. DeKleine, Contributing Member S. F. Harrison, Jr., Contributing Member D. J. Roszman, Contributing Member G. E. Szabatura, Contributing Member

Special Working Group on High Temperature Reactor Stakeholders (SG-HTR) (BPV III)

Subgroup on High Temperature Reactors (BPV III)

M. E. Cohen, Chair G. H. Koo M. C. Albert N. J. McTiernan M. Arcaro T. Nguyen R. W. Barnes K. J. Noel N. Broom T.-L. Sham R. Christensen B. Song V. Chugh X. Wei W. Corwin G. L. Zeng G. C. Deleanu T. Asayama, Contributing Member R. A. Fleming X. Li, Contributing Member K. Harris L. Shi, Contributing Member R. I. Jetter Y. W. Kim G. Wu, Contributing Member

Task Group on Division 5 AM Components (SG-HTR) (BPV III)

R. Wright, Chair M. McMurtrey R. Bass, Secretary M. C. Messner M. C. Albert T. Patterson R. W. Barnes E. C. Renaud F. W. Brust D. Rudland T.-L. Sham Z. Feng S. Lawler I. J. Van Rooyen X. Lou X. Wei

Working Group on General Requirements for Graphite and Ceramic Composite Core Components and Assemblies (SG-GR) (BPV III)

W. J. Geringer, Chair A. Appleton J. R. Berry C. Cruz Y. Diaz-Castillo J. Lang

M. N. Mitchell J. Potgieter E. C. Renaud R. Spuhl W. Windes B. Lin, Alternate

Working Group on Allowable Stress Criteria (SG-HTR) (BPV III)

R. Wright, Chair W. Ren M. McMurtrey, Secretary T.-L. Sham R. Bass Y. Wang K. Kimura X. Wei D. Maitra M. Yoo, Alternate R. J. McReynolds

M. C. Messner R. W. Swindeman, Contributing

J. C. Poehler Memher

Working Group on Analysis Methods (SG-HTR) (BPV III)

M. C. Messner, <i>Chair</i>	TL. Sham
H. Mahajan, Secretary	X. Wei
R. W. Barnes	S. X. Xu
J. A. Blanco	J. Young
P. Carter	M. R. Breach
W. T. Jessup	T. Hassan, C

P. Carter
M. R. Breach, Contributing Member
W. T. Jessup
T. Hassan, Contributing Member
R. I. Jetter
S. Krishnamurthy, Contributing
Member
H. Qian
M. J. Swindeman, Contributing
Member

Working Group on Creep-Fatigue and Negligible Creep (SG-HTR) (BPV III)

Y. Wang, Chair	M. C. Messner
M. Ando	T. Nguyen
P. Carter	J. C. Poehler
M. E. Cohen	H. Qian
J. I. Duo	R. Rajasekaran
R. I. Jetter	TL. Sham
G. H. Koo	X. Wei
H. Mahajan	J. Young
M. McMurtrey	M. Yoo, Alterna

Working Group on High Temperature Flaw Evaluation (SG-HTR) (BPV III)

C. J. Sallaberry, Chair	H. Qian
F. W. Brust	D. A. Scarth
P. Carter	D. J. Shim
S. Kalyanam	A. Udyawar
BL. Lyow	X. Wei
M. C. Messner	S. X. Xu
J. C. Poehler	M. Yoo, <i>Alterna</i>

Working Group on Nonmetallic Design and Materials

(SG-HTR) (BPV III)		
J. Parks		
TL. Sham		
A. Tzelepi		
G. L. Zeng		
M. Yoo, Alternate		
A. Appleton, Contributing Member		
R. W. Barnes, Contributing Member		
A. A. Campbell, Contributing		
Member		
SH. Chi, Contributing Member		
Y. Katoh, Contributing Member		
A. Mack, Contributing Member		

J. B. Ossmann, Contributing

Member

M. P. Metcalfe

M. N. Mitchell

Subgroup on Materials, Fabrication, and Examination (BPV III)

J. Grimm <i>, Chair</i>	M. Kris
S. Hunter, Secretary	D. W. Mann
W. H. Borter	T. Melfi
M. Brijlani	IK. Nam
G. R. Cannell	J. B. Ossmann
A. Cardillo	J. E. O'Sullivan
S. Cho	M. C. Scott
P. J. Coco	W. J. Sperko
R. H. Davis	J. R. Stinson
D. B. Denis	J. F. Strunk
B. D. Frew	W. Windes
D. W. Gandy	
S. E. Gingrich	R. Wright
M. Golliet	S. Yee
L. S. Harbison	H. Michael, <i>Deleg</i> e

R. M. Jessee A. L. Hiser, Jr. Atternate
C. C. Kim R. W. Barnes, Contributing Member

Task Group on Advanced Manufacturing (BPV III)

D. W. Mann, Chair	T. Melfi
D. W. Gandy, Secretary	E. C. Renaud
R. Bass	W. J. Sperko
D. Chowdhury	J. F. Strunk
P. J. Coco	J. Sulley
B. D. Frew	, ,
J. Grimm	S. Tate
A. L. Hiser,	S. Wolbert
	** **
J. Lambin	H. Xu

T. Lippucci D. W. Pratt, Alternate
K. Matsunaga S. Malik, Contibuting Member

Joint Working Group on HDPE (SG-MFE) (BPV III)

M. Brandes, Chair	K. Manoly
T. M. Musto, Chair	D. P. Munson
J. B. Ossmannn, Secretary	J. O'Sullivan
G. Brouette	V. Rohatgi
M. C. Buckley	F. Schaaf, Jr.
S. Choi	S. Schuessler
M. Golliet	R. Stakenborghs
J. Hebeisen	O
J. Johnston, Jr.	M. Troughton
P. Krishnaswamy	P. Vibien
M. Kuntz	J. Wright

B. Lin T. Adams, Contributing Member

COMMITTEE ON HEATING BOILERS (BPV IV)

M. Wadkinson, Chair	C. Dinic
J. L. Kleiss, Vice Chair	J. M. Downs
C. R. Ramcharran, Staff Secretary	J. A. Hall
B. Ahee	M. Mengon
L. Badziagowski	D. Nelson
T. L. Bedeaux	H. Michael, Delegate
B. Calderon	D. Picart, Delegate
I. P. Chicoine	P. A. Molvie, Contributing Member

Executive Committee (BPV IV)

M. Wadkinson, Chair	J. P. Chicoine
C. R. Ramcharran, Staff Secretary	J. A. Hall
L. Badziagowski	J. L. Kleiss
T. L. Bedeaux	

Subgroup on Cast Boilers (BPV IV)

J. P. Chicoine, <i>Chair</i>	J. A. Hall
J. M. Downs, Vice Chair	J. L. Kleiss
C. R. Ramcharran, Staff Secretary	M. Mengon

T. L. Bedeaux

Subgroup on Materials (BPV IV)

J. A. Hall, Chair	T. L. Bedeaux
J. M. Downs, Vice Chair	Y. Teng
C. R. Ramcharran, Staff Secretary	M. Wadkinson

L. Badziagowski

N. A. Finney, Chair

Subgroup on Water Heaters (BPV IV)

J. L. Kleiss, <i>Chair</i>	B. J. Iske
L. Badziagowski, Vice Chair	M. Mengon
C. R. Ramcharran, Staff Secretary	Y. Teng
B. Ahee	O
J. P. Chicoine	T. E. Trant

C. Dinic P. A. Molvie, Contributing Member

Subgroup on Welded Boilers (BPV IV)

T. L. Bedeaux <i>, Chair</i>	J. L. Kleiss
C. R. Ramcharran, Staff Secretary	M. Mengon
B. Ahee	M. Wadkinson
L. Badziagowski	
B. Calderon	M. J. Melita, Alternate
J. P. Chicoine	D. Nelson, Alternate
C. Dinic	P. A. Molvie. Contributing N

Europe International Working Group (BPV IV)

L. Badziagowski, Chair	E. Van Bruggen
D. Picart, Vice Chair	G. Vicchi
R. Lozny	A. Alessandrini, Alternate

COMMITTEE ON NONDESTRUCTIVE EXAMINATION (BPV V)

C. May, Vice Chair	P. B. Shaw
C. R. Ramcharran, Staff Secretary	C. Vorwald
D. Bajula	S. J. Akrin, Contributing Member
P. L. Brown	J. E. Batey, Contributing Member
M. A. Burns	A. S. Birks, Contributing Member
N. Carter	N. Y. Faransso, Contributing
T. Clausing	Member
C. Emslander	J. F. Halley, Contributing Member
A. F. Garbolevsky	R. W. Kruzic, Contributing Member
P. T. Hayes	L. E. Mullins, Contributing Member
G. W. Hembree	F. J. Sattler, Contributing Member
F. B. Kovacs	H. C. Graber. Honorary Member

Executive Committee (BPV V)

T. G. McCarty, Honorary Member

C. May, Chair	G. W. Hembree
N. A. Finney, Vice Chair	F. B. Kovacs
C. R. Ramcharran, Staff Secretary	K. Krueger
N. Carter	E. Peloquin
V. F. Godinez-Azcuaga P. T. Haves	C. Vorwald
	t vorwald

Subgroup on General Requirements/Personnel Qualifications and Inquiries (BPV V)

K. Krueger

D. Bajula	C. May
N. Carter	S. J. Akrin, Contributing Member
P. Chavdarov	N. Y. Faransso, Contributing
T. Clausing	Member
C. Emslander	J. F. Halley, Contributing Member
N. A. Finney	D. I. Morris, Contributing Member
G. W. Hembree	J. P. Swezy, Jr., Contributing
F. B. Kovacs	Member

Project Team on Assisted Analysis (BPV V)

K. Hayes, Chair	C. Hansen
J. Aldrin	G. W. Hembree
J. Chen	R. S. F. Orozco
N. A. Finney	E. Peloquin
V. F. Godinez-Azcuaga	T. Thulien

C. Vorwald, Chair

Subgroup on Volumetric Methods (BPV V)

C. May, Chair	E. Peloquin
P. T. Hayes, Vice Chair	C. Vorwald
D. Adkins	S. J. Akrin, Contributing Member
P. L. Brown N. A. Finney	N. Y. Faransso, Contributing Member
A. F. Garbolevsky R. W. Hardy	J. F. Halley, Contributing Member
G. W. Hembree	R. W. Kruzic, Contributing Member
F. B. Kovacs	L. E. Mullins, Contributing Member
K Krueger	F I Sattler Contributing Member

Working Group on Radiography (SG-VM) (BPV V)

C. Vorwald, <i>Chair</i>	C. May
D. M. Woodward, Vice Chair	R. J. Mills
J. Anderson	J. F. Molinaro
P. L. Brown	T. Vidimos
C. Emslander	B. White
A. F. Garbolevsky	S. J. Akrin, Contributing Member
R. W. Hardy	,
G. W. Hembree	T. L. Clifford, Contributing Member
F. B. Kovacs	N. Y. Faransso, Contributing
B. D. Laite	Member
T. R. Lerohl	R. W. Kruzic. Contributing Member

Working Group on Ultrasonics (SG-VM) (BPV V)

K. Krueger, Chair	D. Van Allen
D. Bajula, Vice Chair	J. Vinyard
D. Adkins	C. Vorwald
C. Brown	C. Wassink
C. Emslander	N. Y. Faransso, Contributing
N. A. Finney	Member
P. T. Hayes	J. F. Halley, Contributing Member
G. W. Hembree	R. W. Kruzic, Contributing Member
B. D. Laite	P. Mudge, Contributing Member
T. R. Lerohl	0,
C. May	L. E. Mullins, Contributing Member
E. Peloquin	M. J. Quarry, Contributing Member
J. Schoneweis	F. J. Sattler, Contributing Member
D. Tompkins	J. Vanvelsor, Contributing Member

Working Group on Acoustic Emissions (SG-VM) (BPV V)

V. F. Godinez-Azcuaga, Chair

J. Catty, Vice Chair

S. R. Doctor N. F. Douglas, Jr.

R. K. Miller

N. Y. Faransso, Contributing

Memher

India International Working Group (BPV V)

P. Kumar, Chair A. V. Bhagwat J. Chahwala S. Jobanputra D. Joshi

G. R. Joshi A. Relekar V. J. Sonawane

D. B. Tanpure

Working Group on Full Matrix Capture (SG-VM) (BPV V)

G. W. Hembree E. Peloquin, Chair C. Wassink, Vice Chair K. Krueger D. Bajula M. Lozev D. Bellistri R. Nogueira J. Catty D. Richard N. A. Finney M. Sens J. L. Garner D. Tompkins

R. T. Grotenhuis J. F. Halley, Contributing Member P. T. Hayes L. E. Mullins, Contributing Member

Italy International Working Group (BPV V)

M. A. Grimoldi D. D. Raimander, Chair O. Oldani. Vice Chair G. Luoni C. R. Ramcharran, Staff Secretary U. Papponetti P. Campli, Secretary P. Pedersoli M. Agostini A. Veroni T. Aldo M. Zambon F. Bresciani

V. Calo, Contributing Member N. Caputo G. Gobbi, Contributing Member M. Colombo A. Gusmaroli, Contributing P. L. Dinelli Member

F. Ferrarese

E. Ferrari G. Pontiggia, Contributing Member

Subgroup on Inservice Examination Methods and Techniques (BPV V)

P. T. Haves. Chair G. W. Hembree E. Peloquin, Vice Chair K. Krueger M. A. Burns C. May M. Carlson D. D. Raimander N. A. Finney C. Vorwald V. F. Godinez-Azcuaga

Subgroup on Surface Examination Methods (BPV V)

P. B. Shaw

R. Tedder

6. Vorwald

C. Wassink

D. M. Woodward

N. Carter, Chair B. D. Laite, Vice Chair R. M. Beldyk P. L. Brown T. Clausing C. Emslander N. Farenbaugh N. A. Finney A. F. Garbolevsky

S. J. Akrin, Contributing Member N. Y. Faransso, Contributing Member J. F. Halley, Contributing Member K. Hayes R. W. Kruzic, Contributing Member G. W. Hembree L. E. Mullins, Contributing Member F. J. Sattler, Contributing Member C. May

COMMITTEE ON PRESSURE VESSELS (BPV VIII)

S. C. Roberts, Chair J. C. Sowinski M. D. Lower, Vice Chair D. Srnic S. J. Rossi, Staff Secretary D. B. Stewart G. Aurioles, Sr. P. L. Sturgill S. R. Babka K. Subramanian R. J. Basile D. A. Swanson P. Chavdarov J. P. Swezy, Jr. D. B. DeMichael S. Terada J. F. Grubb E. Upitis B. F. Hantz A. Viet M. Kowalczyk K. Xu D. L. Kurle P. A. McGowan, Delegate R. Mahadeen

H. Michael, Delegate S. A. Marks K. Oyamada, Delegate P. Matkovics M. E. Papponetti, Delegate R. W. Mikitka A. Chaudouet, Contributing B. R. Morelock Memher T. P. Pastor

J. P. Glaspie, Contributing Member K. T. Lau, Contributing Member U. R. Miller, Contributing Member K. Mokhtarian, Contributing Member

G. G. Karcher, Honorary Member K. K. Tam, Honorary Member

Executive Committee (BPV VIII)

Germany International Working Group (BPV V)

P. Chavdarov, Chair C. Kringe, Vice Chair H.-P. Schmitz, Secretary K.-H. Gischler

D. Kaiser S. Mann V. Reusch

M. D. Lower, Chair S. J. Rossi, Staff Secretary G. Aurioles, Sr. C. W. Cary J. Hoskinson

D. T. Peters

M. J. Pischke

G. B. Rawls, Jr.

F. L. Richter

C. D. Rodery

M. D. Rana

S. A. Marks P. Matkovics S. C. Roberts J. C. Sowinski K. Subramanian K. Xu

M. Kowalczyk

Subgroup on Design (BPV VIII)

. C. Sowinski, <i>Chair</i>	G. B. Rawls, Jr.
C. S. Hinson <i>, Vice Chair</i>	S. C. Roberts
G. Aurioles, Sr.	C. D. Rodery
S. R. Babka	T. G. Seipp
O. A. Barsky	D. Srnic
R. J. Basile	D. A. Swanson
D. Chandiramani	S. Terada
M. D. Clark	J. Vattappilly
M. Faulkner	K. Xu
R F Hantz	

B. F. Hantz
C. E. Hinnant
M. H. Jawad
S. Krishnamurthy
D. L. Kurle
K. Kuscu
M. D. Lower
M.

M. D. Lower
R. W. Mikitka
S. C. Shah, Contributing Member
B. Millet
M. D. Rana
E. Upitis, Contributing Member

Subgroup on General Requirements (BPV VIII)

J. Hoskinson, Chair F. L. Richter M. Faulkner, Vice Chair S. C. Roberts N. Barkley J. Rust R. J. Basile J. C. Sowinski T. P. Beirne P. Speranza D. B. DeMichael D. Srnic M. D. Lower D. B. Stewart T. P. Pastor D. A. Swanson J. P. Glaspie, Contributing Member I. Powell

Task Group on Fired Heater Pressure Vessels (BPV VIII)

Y. Yang, Contributing Member

J. Hoskinson, Chair
W. Kim
S. Kirk
D. Nelson
T. P. Pastor

Robles
P. Robles
J. Rust
P. Shanks
E. Smith
D. Srnic

G. B. Rawls, Jr.

Working Group on Design-by-Analysis (BPV VIII)

B. F. Hantz, Chair

T. W. Norton, Secretary

D. A. Arnett
J. Bedoya
S. Guzey
C. F. Heberling II
C. E. Hinnant
M. H. Jawad

S. Krishnamurthy
A. Mann
C. Nadarajah
P. Prueter
T. G. Seipp
M. A. Shah
S. Terada

S. Kataoka R. G. Brown, Contributing Member
S. Kilambi D. Dewees, Contributing Member

K. D. Kirkpatrick K. Saboda, Contributing Member

Task Group on Subsea Applications (BPV VIII)

M. Sarzynski, Chair
A. J. Grohmann, Vice Chair
A. P. Antalffy
R. C. Biel
J. Ellens
R. H. Patil
J. Hademenos
C. Lan
P. Lutkiewicz
N. McKie
S. K. Parimi
R. H. Patil
M. P. Vaclavik

J. Kaculi R. Cordes, Contributing Member
K. Karpanan D. T. Peters, Contributing Member
F. Kirkemo J. R. Sims, Contributing Member

Working Group on Elevated Temperature Design (BPV I and VIII)

A. Mann, Chair
C. Nadarajah, Secretary
D. Anderson
D. Dewees
B. F. Hantz
L. P. Glasnie, Con.

M. H. Jawad

J. P. Glaspie, Contributing Member

R. I. Jetter

N. McMurray, Contributing

S. Krishnamurthy Memb

Le B. J. Mollitor, Contributing Member

Subgroup on Heat Transfer Equipment (BPV VIII)

P. Matkovics, Chair
M. D. Clark, Vice Chair
L. Bower, Secretary
G. Aurioles, Sr.
S. R. Babka
J. H. Barbee
O. A. Barsky
R. Mahadeen
S. Mayeux
S. Neilsen
E. Smith
A. M. Voytko
R. P. Wiberg

T. Bunyarattaphantu J. Pasek, Contributing Member
A. Chaudouet D. Srnic, Contributing Member
D. L. Kurle Z. Tong, Contributing Member

Subgroup on Fabrication and Examination (BPV VIII)

S. A. Marks, Chair
D. I. Morris, Vice Chair
T. Halligan, Secretary
N. Carter
J. P. Swezy, Jr.
J. Lu
E. Upitis
B. R. Morelock
C. Violand

O. Mulet K. Oyamada, Delegate
M. J. Pischke W. J. Bees, Contributing Member
M. J. Rice L. F. Campbell, Contributing

J. Roberts Member

C. D. Rodery R. Uebel, Contributing Member

Working Group on Plate Heat Exchangers (BPV VIII)

D. I. Morris, Chair
S. R. Babka
M. J. Pischke
J. F. Grubb
P. Shanks
V. Gudge
E. Smith
R. Mahadeen
D. Srnic
S. A. Marks
S. Sullivan

Subgroup on High Pressure Vessels (BPV VIII)

K. Subramanian <i>, Chair</i>	Y. Xu
M. Sarzynski, <i>Vice Chair</i>	A. M. Clayton, Contributing
A. Dinizulu, Staff Secretary	Member
L. P. Antalffy	R. Cordes, Contributing Member
J. Barlow	R. D. Dixon, Contributing Member
R. C. Biel	Q. Dong, Contributing Member
P. N. Chaku	T. A. Duffey, Contributing Member
L. Fridlund	R. M. Hoshman, Contributing
D. Fuenmayor	Member
J. Gibson	F. Kirkemo, Contributing Member
R. T. Hallman	R. A. Leishear, Contributing
K. Karpanan	Memher
J. Keltjens	G. M. Mital, Contributing Member
A. K. Khare	M. Parr, Contributing Member
G. T. Nelson	
D. T. Peters	M. D. Rana, Contributing Member
E. D. Roll	C. Romero, Contributing Member
J. R. Sims	C. Tipple, Contributing Member
E. Smith	KJ. Young, Contributing Member
F. W. Tatar	D. J. Burns, Honorary Member

S. Terada

Y. Xu
A. M. Clayton, Contributing
Member
R. Cordes, Contributing Men
R. D. Dixon, Contributing Me
Q. Dong, Contributing Memb
T A Duffoy Contributing M

Member
R. Cordes, Contributing Member
R. D. Dixon, Contributing Member
Q. Dong, Contributing Member
T. A. Duffey, Contributing Membe
R. M. Hoshman <i>, Contributing</i>
Member
F. Kirkemo <i>, Contributing Membe</i> r
R. A. Leishear <i>, Contributing</i>
Member
G. M. Mital <i>, Contributing Member</i>
M. Parr, Contributing Member
M. D. Rana, Contributing Member
C. Romero, Contributing Member
C. Tipple, Contributing Member

G. J. Mraz, Honorary Member

Argentina International Working Group (BPV VIII)

A. Dominguez, Chair	M. Favareto
R. Robles, Vice Chair	M. D. Kuhn
G. Glissenti, Secretary	F. P. Larrosa
M. M. Acosta	L. M. Leccese
R. A. Barey	C. Meinl
C. Alderetes	M. A. Mendez
F. A. Andres	J. J. Monaco
A. Antipasti	C. Parente
D. A. Bardelli	M. A. A. Pipponzi
L. F. Boccanera	L. C. Rigoli
O. S. Bretones	A. Rivas
A. Burgueno	D. Rizzo
G. Casanas	J. C. Rubeo
D. H. Da Rold	S. Schamun
D. A. Del Teglia	G. Telleria
J. I. Duo	M. M. C. Tocco

China International Working Group (BPV VIII)

X. Chen, Chair	C. Miao
B. Shou, Vice Chair	L. Sun
Z. Fan, Secretary	C. Wu
Y. Chen	J. Xiaobin
J. Cui	F. Xu
R. Duan	G. Xu
JG. Gong	F. Yang
B. Han	Y. Yang
J. Hu	Y. Yuan
Q. Hu	Yanfeng Zhang
H. Hui	Yijun Zhang
K. Li	S. Zhao
D. Luo	J. Zheng
Y. Luo	G. Zhu

Subgroup on Materials (BPV VIII)

M. Varualanda Chain	E Unitio
M. Kowalczyk, <i>Chair</i>	E. Upitis
P. Chavdarov, Vice Chair	K. Xu
S. Kilambi, Secretary	S. Yem
J. Cameron	A. Di Rienzo, Contributing Member
J. F. Grubb	, 0
D. Maitra	J. D. Fritz, Contributing Member
D. W. Rahoi	M. Katcher, Contributing Member
I. Robertson	W. M. Lundy, Contributing Member
R. C. Sutherlin	J. Penso, Contributing Member

Subgroup on roug	giiiiess (Disv-viii)
K. Xu, Chair	D. A. Swanson
T. Halligan, Vice Chair	L P. Swezy, Jr.
T. Finn	S. Terada
C. S. Hinson	E. Upitis
S. Kilambi	J. Vattappilly
D. L. Kurle	K. Oyamada, Delegate
T. Newman	L. Dong, Contributing Member
J. Qu	S. Krishnamurthy, Contributing
M. D. Rana	Member
F. L. Richter	K. Mokhtarian, Contributing
K. Subramanian	Member
() -	

Germany International Working Group (BPV VIII)

R. Kauer, <i>Chair</i>	S. Krebs
M. Sykora, Vice Chair	T. Ludwig
A. Aloui	R. A. Meyers
P. Chavdarov	H. Michael
A. Emrich	S. Reich
J. Fleischfresser	A. Spangenberg
C. Jaekel	C. Stobbe
D. Koelbl	G. Naumann, Contributing Member
	•

Subgroup on Graphite Pressure Equipment (BPV VIII)

0	
C. W. Cary, Chair	J. D. Clements
A. Viet, Vice Chair	H. Lee, Jr.
G. C. Becherer	S. Mehrez
F. L. Brown	T. Rudy
R. J. Bulgin	A. A. Stupica

India International Working Group (BPV VIII)

D. Chandiramani, Chair	A. Kakumanu
D. Kulkarni, Vice Chair	V. V. P. Kumar
A. D. Dalal, Secretary	T. Mukherjee
P. Arulkumar	P. C. Pathak
B. Basu	D. Prabhu
P. Gandhi	A. Sadasivam
U. Ganesan	M. P. Shah
S. K. Goyal	R. Tiru
V. Jayabalan	V. T. Valavan
V. K. Joshi	M. Sharma, Contributing Member

Italy International Working Group (BPV VIII)

A. Teli, Chair
M. Millefanti, Vice Chair
P. Campli, Secretary
B. G. Alborali
P. Aliprandi
A. Avogadri
A. Camanni
N. Caputo
M. Colombo
P. Conti
D. Cortassa
P. L. Dinelli

F. Finco

M. Guglielmetti A. F. Magri P. Mantovani L. Moracchioli P. Pacor S. Sarti

V. Calo, Contributing Member G. Gobbi, Contributing Member A. Gusmaroli, Contributing

Member

G. Pontiggia, Contributing Member

D. D. Raimander, Contributing

COMMITTEE ON WELDING, BRAZING, AND FUSING (BPV IX)

M. J. Pischke, Chair
P. L. Sturgill, Vice Chair
R. Rahaman, Staff Secretary
M. Bernasek
M. A. Boring
D. A. Bowers
N. Carter
J. G. Feldstein
P. Gilston
S. E. Gingrich
K. L. Hayes
R. M. Jessee
J. S. Lee
W. M. Lundy
D. W. Mann
S. A. Marks
T. Melfi
W. F. Newell, Jr.
E. G. Reichelt
M. J. Rice
M. B. Sims
-

S. A. Marks, Chair

A. F. Garbølevsky

E. W. Beckman

N. Mohr

W. J. Sperko J. P. Swezy, Jr. A. D. Wilson E. W. Woelfel D. Pojatar, Delegate A. Roza, Delegate M. Consonni, Contributing Member P. D. Flenner, Contributing Member S. A. Jones, Contributing Member D. K. Peetz, Contributing Member S. Raghunathan, Contributing Member

M. J. Stanko, Contributing Member P. L. Van Fosson, Contributing Member R. K. Brown, Jr., Honorary Member

M.L. Carpenter, Honorary Member B. R. Newmark, Honorary Member S. D. Reynolds, Jr., Honorary

Member

M. J. Pischke

P. L. Sturgill

J. P. Swezy, Jr.

Special Working Group on Bolted Flanged Joints (BPV VIII)

W. Brown, Chair W. McDaniel M. Osterfoss, Vice Chair R. W. Mikitka D. Nash G. Aurioles. Sr. D. Bankston, Jr. M. Ruffin H. Bouzid R. Wacker A. Chaudouet E. Jamalyaria, Contributing H. Chen

Member D. Francis J. R. Payne, Contributing Member G. Van Zyl, Contributing Member H. Lejeune A. Mann

J. Veiga, Contributing Member

Subgroup on General Requirements (BPV IX)

Subgroup on Brazing (BPV IX)

N. Carter, Chair P. L. Sturgill P. Gilston, Vice Chair J. P. Swezy, Jr. J. P. Bell E. W. Woelfel D. A. Bowers

E. W. Beckman, Contributing M. Heinrichs

Member

A. Howard A. Davis, Contributing Member R. M. Jessee D. K. Peetz, Contributing Member S. A. Marks H. B. Porter B. R. Newmark, Honorary Member

Subgroup on Interpretations (BPV VIII)

G. Aurioles, Sr., Chair J. C. Sowinski J. Oh, Staff Secretary D. B. Stewart S. R. Babka K. Subramanian J. Cameron D. A. Swanson C. W. Cary J. P. Swezy, Jr. B. F. Hantz J. Vattappilly M. Kowalczyk A. Viet D. L. Kurle K. Xu M. D. Lower R. J. Basile, Contributing Member S. A. Marks D. B. DeMichael, Contributing P. Matkovics Member D. I. Morris R. D. Dixon, Contributing Member D. T. Peters S. Kilambi, Contributing Member F. L. Richter R. Mahadeen, Contributing S. C. Roberts Member C. D. Rodery T. P. Pastor, Contributing Member

T. G. Seipp

Subgroup on Materials (BPV IX)

M. Bernasek, Chair M. J. Pischke T. Anderson A. Roza L. Constantinescu C. E. Sainz E. Cutlip P. L. Sturgill M. Denault C. Zanfir S. E. Gingrich V. G. V. Giunto, Delegate L. S. Harbison D. J. Kotecki, Contributing Member M. James B. Krueger, Contributing Member R. M. Jessee W. J. Sperko, Contributing Member T. Melfi S. D. Nelson M. J. Stanko, Contributing Member

Subgroup on Plastic Fusing (BPV IX)

K. L. Hayes, Chair S. Schuessler R. M. Jessee M. Troughton J. Johnston, Jr. C. Violand J. E. O'Sullivan E. W. Woelfel E. G. Reichelt J. Wright M. J. Rice

xxvii

P. L. Sturgill, Contributing Member

Subgroup on Welding Qualifications (BPV IX)

T. Melfi, Chair	E. G. Reichelt
A. D. Wilson, Vice Chair	M. J. Rice
K. L. Hayes, Secretary	M. B. Sims
M. Bernasek	W. J. Sperko
M. A. Boring	P. L. Sturgill
D. A. Bowers	J. P. Swezy, Jr.
R. Campbell	C. Violand
R. B. Corbit	D. Chandiramani, Contributing
L. S. Harbison	Member
M. Heinrichs	M. Consonni, Contributing Member
J. S. Lee	M. Dehghan, Contributing Member

D. W. Mann T. C. Wiesner, Contributing W. F. Newell, Jr. Memher

W. M. Lundy

COMMITTEE ON FIBER-REINFORCED PLASTIC PRESSURE VESSELS (BPV X)

B. Linnemann, Chair D. H. McCauley D. Eisberg, Vice Chair N. L. Newhouse P. D. Stumpf, Staff Secretary G. Ramirez A. L. Beckwith I. R. Richter F. L. Brown B. F. Shellev J. L. Bustillos G. A. Van Beek B. R. Colley S. L. Wagner T. W. Cowley D. O. Yancey, Jr. I. L. Dinovo P. H. Ziehl J. Eihusen D. H. Hodgkinson, Contributing M. R. Gorman

B. Hebb Member L. E. Hunt D. L. Keeler, Contributing Member

Argentina International Working Group (BPV IX)

P. D. Flenner, Contributing Member

A. Burgueno, Chair	M. Favareto
A. R. G. Frinchaboy, Vice Chair	J. A. Gandola
R. Rahaman, Staff Secretary	C. A. Garibotti
M. D. Kuhn, Secretary	J. A. Herrera
B. Bardott	M. A. Mendez
L. F. Boccanera	A. E. Pastor
P. J. Cabot	G. Telleria
J. Caprarulo	M. M. C. Tocco

Germany International Working Group (BPV IX)

A. Roza, Chair	S. Wegener
A. Spangenberg, Vice Chair	F. Wodke
R. Rahaman, Staff Secretary	J. Daldrup, Contributing Member
P. Chavadarov	E. Floer, Contributing Member
B. Daume	
J. Fleischfresser	R. Helmholdt, Contributing
P. Khwaja	Member
S. Krebs	G. Naumann, Contributing Membe
T. Ludwig	KG. Toelle, Contributing Member
	40

Italy International Working Group (BPV IX)

Spain International Working Group (BPV IX)

D. D. Raimander, Chair L. Moracchioli F. Ferrarese, Vice Chair P. Pacor R. Rahaman, Staff Secretary P. Siboni M. Bernasek V. Calo, Contributing Member A. Camanni

G. Gobbi, Contributing Member P. L. Dinelli A. Gusmaroli, Contributing M. Mandina Member A. S. Monastra

G. Pontiggia, Contributing Member

F. J. Q. Pandelo, Chair F. Manas F. L. Villabrille, Vice Chair B. B. Miguel R. Rahaman, Staff Secretary A. D. G. Munoz F. R. Hermida, Secretary A. B. Pascual C. A. Celimendiz S. Sevil M. A. F. Garcia R. G. Garcia G. Gobbi, Contributing Member

COMMITTEE ON NUCLEAR INSERVICE INSPECTION (BPV XI)

T. Nuoffer R. W. Swayne, Chair D. W. Lamond. Vice Chair). Nygaard A. T. Roberts III, Vice Chair J. E. O'Sullivan D. Miro-Quesada, Staff Secretary N. A. Palm I. F. Ball G. C. Park W. H. Bamford D. A. Scarth M. L. Benson F. J. Schaaf, Jr. J. M. Boughman S. Takaya C. Brown D. Vetter S. B. Brown T. V. Vo T. L. Chan J. G. Weicks R. C. Cipolla M. Weis D. R. Cordes Y.-K. Chung, Delegate H. Do C. Ye, Delegate

E. V. Farrell, Jr.

B. Lin, Alternate M. J. Ferlisi R. O. McGill, Alternate T. J. Griesbach L. A. Melder, Alternate J. Hakii A. Udyawar, Alternate M. L. Hall E. B. Gerlach, Contributing Member P. J. Hennessey C. D. Cowfer, Honorary Member D. O. Henry R. E. Gimple, Honorary Member K. Hojo F. E. Gregor, Honorary Member S. D. Kulat R. D. Kerr, Honorary Member C. Latiolais P. C. Riccardella, Honorary Member J. T. Lindberg R. A. West, Honorary Member H. Malikowski C. J. Wirtz, Honorary Member S. L. McCracken S. A. Norman R. A. Yonekawa, Honorary Member

Executive Committee (BPV XI)

D. W. Lamond, Chair S. L. McCracken R. W. Swayne, Vice Chair T. Nuoffer D. Miro-Quesada, Staff Secretary N. A. Palm M. L. Benson G. C. Park M. J. Ferlisi A. T. Roberts III S. D. Kulat J. T. Lindberg B. L. Lin, Alternate

Argentina International Working Group (BPV XI)

O. Martinez, Staff Secretary F. J. Schaaf, Jr. A. Claus F. M. Schroeter I. M. Guerreiro P. Yamamoto L. R. Miño

China International Working Group (BPV XI)

J. H. Liu, <i>Chair</i>	S. Shuo
J. F. Cai, Vice Chair	Y. Sixin
C. Ye, Vice Chair	Y. X. Sun
M. W. Zhou, Secretary	G. X. Tang
H. Chen	O. Wang
H. D. Chen	Q. W. Wang
Y. Cheng	Z. S. Wang
Y. B. Guo	Ü
Y. Hongqi	L. Xing
D. R. Horn	F. Xu
Y. Hou	S. X. Xu
S. X. Lin	Q. Yin
Y. Nie	K. Zhang
W. N. Pei	Y. Zhe
L. Shiwei	Z. M. Zhong

Working Group on Spent Nuclear Fuel Storage and Transportation Containment Systems (BPV XI)

K. Hunter, Chair	K. Mauskar
M. Orihuela, Secretary	R. M. Meyer
D. J. Ammerman	R. M. Pace
W. H. Borter	E. L. Pleins
J. Broussard	M. A. Richter
C. R. Bryan	B. Sarno
T. Carraher	R. Sindelar
S. Corcoran	M. Staley
D. Dunn	
N. Fales	J. Wellwood
R. C. Folley	K. A. Whitney
G. Grant	X. J. Zhai
B. Gutherman	PS. Lam <i>, Alternate</i>
M. W. Joseph	G. White Alternate
M. Keene	J. Wise, Alternate
M. Liu	H. Smith, Contributing Memb

Germany International Working Group (BPV XI)

R. Döring, <i>Chair</i>	N. Legl
M. Hagenbruch, Vice Chair	T. Ludwig
R. Piel, Secretary	X. Pitoiset
A. Casse	M. Reicher
C. G. Frantescu	L. Sybertz
E. Iacopetta	I. Tewes
S. D. Kulat	R. Tiete
HW. Lange	I. Wendt

Task Group on Mitigation and Repair of Spent Nuclear Fuel Canisters (WG-SNFS & TCS) (BPV XI)

J. Tatman, Chair	M. Kris
D. J. Ammerman	M. Liu
J. Broussard	K. Mauskar
C. R. Bryan	S. L. McCracken
G. R. Cannell	M. Orihuela
K. Dietrich	M. Richter
D. Dunn	K. E. Ross
N. Fales	B. Sarno
R. C. Folley	R. Sindelar
D. Jacobs	J. Wellwood
N. Klymyshyn	A. Williams

nw. Lange	j. wenat	R. C D. J
India Internatio	nal Working Group (BPV XI)	% N. F
S. B. Parkash, Chair	N. Palm	
D. Narain, Vice Chair	D. Rawal	
K. K. Rai, Secretary	R. Sahai	N. A
Z. M. Mansuri	R. K. Sharma	S. X
M. R. Nadgouda	11.	W.
	<i>a</i>	M I

Subgroup on Evaluation Standards (SG-ES) (BPV XI)

N. A. Palm <i>, Chair</i>	Y. S. Li
S. X. Xu, Secretary	R. O. McGill
W. H. Bamford	K. Miyazaki
M. Brumovsky	R. M. Pace
H. D. Chung	J. C. Poehler
R. C. Cipolla	S. Ranganath
C. M. Faidy	D. A. Scarth
M. M. Farooq	D. J. Shim
B. R. Ganta	,
T. J. Griesbach	A. Udyawar
K. Hasegawa	T. V. Vo
K. Hojo	G. M. Wilkowski
D. N. Hopkins	M. L. Benson, Alternate
D. R. Lee	H. S. Mehta, Contributing Member

Special Working Group on Editing and Review (BPV XI)

R. W. Swayne, Chair	M. Orihuel
R. C. Cipolla	D. A. Scart
O Henry	

Task Group on Inspectability (BPV XI)

J. T. Lindberg, Chair	J. Honcharik
E. Henry, Secretary	C. Latiolais
A. Bushmire	G. A. Lofthus
A. Cardillo	S. Matsumoto
K. Caver	D. E. Matthews
D. R. Cordes	P. J. O'Regan
P. Gionta	J. B. Ossmann
D. O. Henry	C. Thomas

Task Group on Evaluation of Beyond Design Basis Events (SG-ES) (BPV XI)

	`
R. M. Pace, Chair	K. Hojo
S. X. Xu, Secretary	S. A. Kleinsmith
F. G. Abatt	S. M. Moenssens
G. A. Antaki	T. V. Vo
P. R. Donavin	G. M. Wilkowski
R. G. Gilada	
T. J. Griesbach	H. S. Mehta, Contributing Member
M. Hayashi	T. Weaver, Contributing Member

Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla, Chair Y. S. Li S. X. Xu, Secretary C. Liu W. H. Bamford M. Liu M. L. Benson G. A. Miessi M. Brumovsky K. Miyazaki H. D. Chung S. Noronha N. G. Cofie R. K. Qashu M. A. Erickson S. Ranganath C. M. Faidy D. A. Scarth M. M. Farooq W. L. Server B. R. Ganta D. J. Shim R. G. Gilada S. Smith C. Guzman-Leong M. Uddin P. H. Hoang A. Udyawar K. Hojo T. V. Vo D. N. Hopkins K. Wang S. Kalyanam B. Wasiluk Y. Kim V. Lacroix G. M. Wilkowski

D. R. Lee

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI)

D. A. Scarth, Chair	Y. Kim
S. Kalyanam, Secretary	V. Lacroix
K. Azuma	Y. S. Li
W. H. Bamford	R. O. McGill
M. L. Benson	G. A. Miessi
M. Brumovsky	K. Miyazaki
F. W. Brust	S. M. Parker
H. D. Chung	S. H. Pellet
R. C. Cipolla	C. J. Sallaberry
N. G. Cofie	W. L. Server
C. M. Faidy	D. J. Shim
M. M. Farooq	S. Smith
B. R. Ganta	
R. G. Gilada	M. F. Uddin
S. R. Gosselin	A. Udyawar
C. E. Guzman-Leong	T. V. Vo
K. Hasegawa	K. Wang
P. H. Hoang	B. Wasiluk
K. Hojo	G. M. Wilkowski
D. N. Hopkins	S. X. Xu
E. J. Houston	Y. Zou
D. Iamaruriale	V Crock Alternat

R. Janowiak K. Gresh. Alternate

K. Kashima H. S. Mehta, Contributing Member

Working Group on Flaw Evaluation Reference Curves (SG-ES) (BPV XI)

H. S. Mehta, Contributing Member

A. Udyawar, Chair	V. Lacroix
D. A. Scarth, Secretary	K. Miyazaki
W. H. Bamford	B. Pellereau
M. L. Benson	S. Ranganath
F. W. Brust	D. J. Shim
R. C. Cipolla	S. Smith
M. M. Farooq	M. Uddin
A. E. Freed	T. V. Vo
P. Gill	G. White
K. Hasegawa	S. X. Xu
K. Hojo	H S Mehta C

H. S. Mehta, Contributing Member K. Hojo

Task Group on Code Case N-513 (WG-PFE) (BPV XI)

Task Group on Evaluation Procedures for Degraded Buried Pipe

(WG-PFE) (BPV XI)

R. Janowiak M. Kassar

M. Moenssens

D. P. Munson

R. M. Pace

S. H. Pellet D. Rudland

D. A. Scarth

R. O. McGill, Chair	E. J. Houston
S. M. Parker, Secretary	R. Janowiak
G. A. Antaki	S. H. Pellet
R. C. Cipolla	D. Rudland
M.M. Farooq	D. A. Scarth
K Gresh	S. X. Xu
1	

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

N. A. Palm, Chair	A. D. Odell
A. E. Freed, Secretary	R. M. Pace
W. H. Bamford	J. C. Poehler
M. Brumovsky	S. Ranganath
M. A. Erickson	W. L. Server
T. J. Griesbach	
M. Hayashi	C. A. Tomes
R. Janowiak	A. Udyawar
M. Kirk	T. V. Vo
S. A. Kleinsmith	H. Q. Xu
H. Kobayashi	H. S. Mehta, Contributing Member

Task Group on Flaw Evaluation for HDPE Pipe (WG-PFE) (BPV XI)

S. Kalyanam, Chair	D. J. Shim
P. Krishnaswamy	M. Troughton
M. Moenssens	J. Wright
D. P. Munson	S. X. Xu
D. A. Casarth	

D. A. Scarth

R. O. McGill, Chair

S. X. Xu, Secretary

F. G. Abatt

G. A. Antaki

R. C. Cipolla

R. G. Gilada

K. Hasegawa K. M. Hoffman

	K. Janowiak	
	M. Kirk	T. V. Vo
	S. A. Kleinsmith	H. Q. Xu
	H. Kobayashi	H. S. Mehta, Contributing
	Task Group on Appe	ndix L (WG-OPC) (BPV XI)
	N. Glunt, Chair	CS. Oh
	R. M. Pace, Secretary	H. Park
	J. I. Duo	S. Ranganath
	A. E. Freed	A. Scott
Ch	M. A. Gray	D. J. Shim
	T. J. Griesbach H. Nam	S. Smith
\	A. Nana	A. Udyawar
	A. D. Odell	T. V. Vo

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

• .	,
J. T. Lindberg, <i>Chair</i>	S. E. Cumblidge
D. O. Henry, Vice Chair	K. J. Hacker
T. Cinson, Secretary	J. Harrison
M. Briley	D. A. Kull
C. Brown	C. Latiolais
A. Bushmire	F. J. Schaaf, Jr.
T. L. Chan	R. V. Swain
D. R. Cordes	C. A. Nove, Alternate

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

C. Brown, Chair	D. O. Henry
M. Orihuela, Secretary	J. T. Lindberg
J. Bennett	C. Shinsky
T. Cinson	R. Tedder
S. E. Cumblidge	
A. Diaz	T. Thulien
N. Farenbaugh	J. T. Timm

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

J. Harrison, <i>Chair</i>	C. Latiolais
D. A. Kull, Secretary	C. A. Nove
M. Briley	D. R. Slivon
A. Bushmire	R. V. Swain
D. R. Cordes	D. Van Allen
K. J. Hacker	
R. E. Jacob	J. Williams
W. A. Jensen	B. Lin, Alternate

Subgroup on Reliability and Integrity Management Program (SG-RIM) (BPV XI)

A. T. Roberts III, Chair	P. J. Hennessey
D. Vetter, Secretary	S. Kalyanam
T. Anselmi	D. R. Lee
M. T. Audrain	R. J. McReynold:
N. Broom	R. Meyer
F. W. Brust	M. Orihuela
V. Chugh	C. J. Sallaberry
S. R. Doctor	F. J. Schaaf, Jr.
J. D. Fletcher	H. M. Stephens
J. T. Fong	R. W. Swayne
R. Grantom	S. Takaya
K. Harris	R. Vayda
	-19

Working Group on MANDE (SG-RIM) (BPV XI)

	, , ,
H. M. Stephens, Jr., Chair	J. T. Fong
S. R. Doctor, Vice Chair	D. O. Henry
M. Turnbow, Secretary	R. J. McReynolds
T. Anselmi	R. Meyer
M. T. Audrain	M. Orihuela
N. A. Finney	K. Yamada

Task Group on Nonmetallic Component Degradation and Failure Monitoring (SG-RIM) (BPV XI)

M. P. Metcalfe, Chair	W. J. Geringer
A. Tzelepi, Secretary	K. Harris
M. T. Audrain	J. Lang
G. Beirnaert	J. Potgieter
C. Chen	

ASME/JSME Joint Working Group on RIM Processes and System-Based Code (SG-RIM) (BPV XI)

S. Takaya <i>, Chair</i>	R. Meyer
R. J. McReynolds, Vice Chair	T. Muraki
M. T. Audrain	S. Okajima
K. Dozaki	A. T. Roberts III
J. T. Fong	C. J. Sallaberry
J. Hakii	F. J. Schaaf, Jr.
K. Harris	R. Vayda
M. Hayashi	D. Watanabe
S. Kalyanam	H. Yada
D. R. Lee	K. Yamada
H. Machida	T. Asayama, Contributing Men

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

S. L. McCracken, Chair	L.A. Melder
E. V. Farrell, Jr., Secretary	S. A. Norman
J. F. Ball	G. T. Olson
M. Brandes	J. E. O'Sullivan
S. B. Brown	G. C. Park
R. Clow	R. R. Stevenson
S. J. Findlan	R. W. Swayne
M. L. Hall	D. J. Tilly
J. Honcharik	J. G. Weicks
A. B. Meichler	B. Lin, Alternate

Working Group on Design and Programs (SG-RRA) (BPV XI)

S. B. Brown, Chair	H. Malikowski
R. A. Patel, Secretary	A. B. Meichler
O. Bhatty	G. C. Park
R. Clow	M. A. Pyne
R. R. Croft	R. R. Stevenson
E. V. Farrell, Jr.	
K. Harris	K. Sullivan
B. Lin	R. W. Swayne

Task Group on Repair and Replacement Optimization (WG-D&P) (BPV XI)

S. L. McCracken, Chair	M. L. Hall
S. J. Findlan, Secretary	D. Jacobs
T. Basso	H. Malikowski
R. Clow	T. Nuoffer
K. Dietrich	G. C. Park
E. V. Farrell, Jr.	A. Patel
M. J. Ferlisi	R. R. Stevenson
R. C. Folley	I. G. Weicks

Working Group on Nonmetals Repair/Replacement Activities (SG-RRA) (BPV XI)

J. E. O'Sullivan, Chair	T. M. Musto
S. Schuessler, Secretary	A. Pridmore
M. Brandes	
D. R. Dechene	F. J. Schaaf, Jr.
M. Golliet	R. Stakenborghs
J. Johnston, Jr.	P. Vibien

B. Lin M. P. Marohl, Contributing Member

Task Group on HDPE Piping for Low Safety Significance Systems (WG-NMRRA) (BPV XI)

M. Brandes. Chair T. M. Musto J. E. O'Sullivan, Secretary F. J. Schaaf, Jr. M. Golliet S. Schuessler B. Lin R. Stakenborghs

Task Group on Repair by Carbon Fiber Composites (WG-NMRRA) (BPV XI)

C. A. Nove J. E. O'Sullivan, Chair S. F. Arnold R. P. Ojdrovic S. W. Choi A. Pridmore D. R. Dechene S. Rios M. Golliet C. W. Rowley L. S. Gordon J. Sealey P. Krishnaswamy R. Stakenborghs M. Kuntz N. Stoeva H. Lu M. F. Uddin M. P. Marohl I. Wen

L. Nadeau B. Davenport, Alternate

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

J. G. Weicks, Chair D. Jacobs G. T. Olson, Secretary M. Kris D. Barborak S. E. Marlette S. J. Findlan S. L. McCracken R. C. Follev L. A. Melder M. L. Hall J. E. O'Sullivan D. J. Tilly J. Honcharik

Task Group on Temper Bead Welding (WG-W&SRP) (BF

S. J. Findlan, Chair S. L. McCracken D. Barborak N. Mohr R. C. Folley G. T. Olson J. E. O'Sullivan J. Graham M. L. Hall A. Patel D. Jacobs I. Tatman H. Kobayashi J. G. Weick

Task Group on Weld Overlay (WG-W&SRP)(BPV XI)

S. L. McCracken, Chair C. Lohse S. Hunter, Secretary S. E. Marlette D. Barborak G. T. Olson S. J. Findlan A. Patel J. Graham D. W. Sandusky M. L. Hall D. E. Waskey D. Jacobs J. G. Weicks

Subgroup on Water-Cooled Systems (SG-WCS) (BPV XI)

M. J. Ferlisi, *Chair* S. D. Kulat J. Nygaard, Secretary D. W. Lamond J. M. Boughman T. Nomura S. T. Chesworth T. Nuoffer J. Collins M. A. Pyne H. Q. Do H. M. Stephens, Jr. K. W. Hall R. Thames P. J. Hennessey M. Weis A. E. Keyser I. A. Anchondo-Lopez, Alternate

Task Group on High Strength Nickel Alloys Issues (SG-WCS) (BPV XI)

Working Group on Containment (SG-WCS) (BPV XI)

lisi, Chair
es, Secretary
J. A. Munshi
M. Sircar H. Malikowski, Chair H. Kobayashi C. Waskey, Secretary E. Blackard T. Cinson J. Collins K. Dietrich P. R. Donavin

M. J. Ferlisi, Chair R. Thames, Secretary P. S. Ghosal H. T. Hill S. Johnson A. E. Keyser M. Weis S. G. Brown, Alternate B. Lehman

Working Group on Inspection of Systems and Components (SG-WCS) (BPV XI)

H. Q. Do, Chair J. Howard M. Weis, Secretary A. Keller I. A. Anchondo-Lopez S. D. Kulat R. W. Blyde E. Lantz K. Caver C. Cueto-Felgueroso A. Maekawa T. Nomura M.J. Ferlisi J. C. Nygaard M. L. Garcia Heras S. Orita K. W. Hall A. W. Wilkens

Working Group on Pressure Testing (SG-WCS) (BPV XI)

D. W. Lamond J. M. Boughman, Chair M. Moenssens S. A. Norman, Secretary T. Anselmi R. A. Nettles M. J. Homiack C. Thomas A. E. Keyser K. Whitney

Working Group on Risk-Informed Activities (SG-WCS) (BPV XI)

M. J. Homiack M. A. Pyne, Chair S. T. Chesworth, Secretary S. D. Kulat G. Brouette D. W. Lamond C. Cueto-Felgueroso E. Lantz R. Haessler P. J. O'Regan J. Hakii N. A. Palm K. W. Hall D. Vetter

Working Group on General Requirements (BPV XI)

T. Nuoffer, Chair T. N. Rezk J. Mayo, Secretary A. T. Roberts III I. F. Ball S. R. Scott T. L. Chan D. Vetter P. J. Hennessey S. E. Woolf B. Harris, Alternate K. A. Kavanagh R. S. Spencer, Alternate G. Ramaraj

COMMITTEE ON TRANSPORT TANKS (BPV XII)

N. J. Paulick, <i>Chair</i>	M. Pitts
M. D. Rana, Vice Chair	J. Roberts
J. Oh, Staff Secretary	T. A. Rogers
A. N. Antoniou	R. C. Sallash
K. W. A. Cheng	M. Shah
P. Chilukuri	S. Staniszewski
W. L. Garfield	A. P. Varghese

P. Miller

S. Staniszewski

Subgroup on Nonmandatory Appendices (BPV XII)

T. A. Rogers, Chair	R. C. Sallash
S. Staniszewski, Secretary	D. G. Shelton

P. Chilukuri D. D. Brusewitz, *Contributing* N. J. Paulick *Member*

M. Pitts Y. Doron, Contributing Member T. J. Rishel

Executive Committee (BPV XII)

R. Meyers, Contributing Member

J. Zheng, Contributing Member

M. D. Rana, Chair	T. A. Rogers
N. J. Paulick, Vice Chair	R. C. Sallash
J. Oh, Staff Secretary	S. Staniszewski
M. Pitts	A. P. Varghese

COMMITTEE ON OVERPRESSURE PROTECTION (BPV XIII)

	COMMITTEE ON OVERFRESSO	KE FRO LECTION (BFV AIII)
	B. K. Nutter, Chair	R. D. Danzy, Contributing Member
	A. Donaldson, Vice Chair	A Frigerio, Contributing Member
	C. E. Rodrigues, Staff Secretary	J.P. Glaspie, Contributing Member
	J. F. Ball	8. F. Harrison, Jr., Contributing
	J. Burgess	Member
	B. Calderon	A. Hassan, Contributing Member
	D. B. DeMichael	P. K. Lam, Contributing Member
	J. W. Dickson	M. Mengon, Contributing Member
	J. M. Levy	J. Mize, Contributing Member
	D. Miller	M. Mullavey, Contributing Membe
	T. Patel	S. K. Parimi, Contributing Member
	B. F. Pittel	J. Phillips, Contributing Member
	T. R. Tarbay	M. Reddy, Contributing Member
	D. E. Tompkins	S. Ruesenberg, Contributing
	Z. Wang	Member
~	A West	K. Shores, Contributing Member
	B. Engman, Alternate	•
•	H. Aguilar, Contributing Member	D. E. Tezzo, Contributing Member
	R. W. Barnes, Contributing Member	A. Wilson, Contributing Member

Subgroup on Design and Materials (BPV XII)

R. C. Sallash, Chair	A. P. Varghese
D. K. Chandiramani	K. Xu
K. W. A. Cheng	Y. Doron, Contributing Member A. T. Duggleby, Contributing Member R. D. Hayworth, Contributing Member
P. Chilukuri	
S. L. McWilliams	
N. J. Paulick	
M. D. Rana	
T. J. Rishel	
T. A. Rogers	B. E. Spencer, Contributing
M. Shah	Member /

Subgroup on Fabrication, Inspection, and Continued Service (BPV XII)

T. A. Rogers
I. M. Rogers
R. C. Sallash
S. Staniszewski
Y. Doron, Contributing Member
R. D. Hayworth, Contributing
Member
G. McRae, Contributing Member

A. Donaldson, Chair D. B. DeMichael B. K. Nutter, Vice Chair K. R. May C. E. Rodrigues, Staff Secretary D. Miller J. F. Ball

Subgroup on Gen	eral Requirements (BPV XII)
S. Staniszewski, <i>Chair</i>	R. C. Sallash
A. N. Antoniou	Y. Doron, Contributing Member
P. Chilukuri H. Ebben III	T. J. Hitchcock, Contributing Member
J. L. Freiler W. L. Garfield O. Mulet	S. L. McWilliams, Contributing Member
B. F. Pittel	T. A. Rogers, Contributing Member
M. Pitts	D. G. Shelton, Contributing Member

D. Miller, Chair J. A. West T. Patel, Vice Chair A. Williams T. K. Acharya D. J. Azukas, Contributing Member C. E. Beair R. D. Danzy, Contributing Member W. E. Chapin A. Hassan, Contributing Member J. L. Freiler R. Miyata, Contributing Member B. Joergensen M. Mullavey, Contributing Member V. Kalyanasundaram S. K. Parimi, Contributing Member R. Krithivasan G. Ramirez, Contributing Member B. J. Mollitor T. R. Tarbay K. Shores, Contributing Member

Subgroup on Design and Materials (BPV XIII)

xxxiii

Subgroup on General Requirements (BPV XIII)

- A. Donaldson, Chair B. F. Pittel, Vice Chair J. M. Levy, Secretary R. Antoniuk D. J. Azukas J. F. Ball J. Burgess D. B. DeMichael S. T. French
- J. Grace C. Haldiman I. Horne R. Klimas, Jr. Z. E. Kumana P. K. Lam
- D. Mainiero-Cessna
- K. R. May J. Mize L. Moedinger M. Mullavey K. Shores D. E. Tezzo D. E. Tompkins J. F. White

- B. Calderon, Contributing Member
- P. Chavdarov, Contributing Memher
- T. M. Fabiani, Contributing Member
- J. L. Freiler, Contributing Member
- J. P. Glaspie, Contributing Member
- G. D. Goodson, Contributing Member
- B. Joergensen, Contributing
 - Member
- C. Lasarte, Contributing Member
- M. Mengon, Contributing Member
- D. E. Miller, Contributing Member
- R. Miyata, Contributing Member
- B. Mruk. Contributing Member
- J. Phillips, Contributing Member
- M. Reddy, Contributing Member
- S. Ruesenberg, Contributing
- Member
- R. Sadowski, Contributing Member
- A. Swearingin, Contributing
 - Member
- A. P. Varghese, Contributing

Member

US TAG to ISO TC 185 Safety Devices for Protection Against 3PVC Section II Part B) 2026 **Excessive Pressure (BPV XIII)**

- D. Miller, Chair
- C. E. Rodrigues, Staff Secretary
- J. F. Ball T. J. Bevilacqua
- D. B. DeMichael
- J. W. Dickson
- B. K. Nutter T. Patel
- J. R. Thomas, Jr.
- D. Tuttle J. A. West
- J. F. White

COMMITTEE ON BOILER AND PRESSURE VESSEL CONFORMITY ASSESSMENT (CBPVCA)

- R. V. Wielgoszinski, Chair
- G. Scribner, Vice Chair
- G. Moino, Staff Secretary
- M. Blankinship
- J. P. Chicoine T. E. Hansen
- W. Hibdon
- B. L. Krasiun
- L. E. McDonald
- N. Murugappan
- I. Powell
- D. E. Tuttle
- E. A. Whittle P. Williams

- T. P. Beirne, Alternate N. Caputo, Alternate P. Chavdarov, Alternate J. M. Downs, Alternate P. D. Edwards, Alternate Y.-S. Kim. Alternate B. Morelock, Alternate M. Prefumo, Alternate R. Rockwood. Alternate K. Roewe, Alternate
- B. C. Turczynski, Alternate J. Yu, Alternate
- D. Cheetham, Contributing Member
- A. J. Spencer, Honorary Member

Subgroup on Nuclear (BPV XIII)

Subgroup on Testing (BPV XIII)

C. Sharpe

Z. Wang

J. R. Thomas, Jr.

Member

D. Nelson, Alternate

J. Mize, Contributing Member

S. Ruesenberg, Contributing

M. Mullavey, Contributing Member

K. Shores, Contributing Member

A. Wilson, Contributing Member

A. Strecker, Contributing Member

- K. R. May, Chair J. F. Ball, Vice Chair
- R. Krithivasan, Secretary
- M. Brown J. W. Dickson
- S. Jones

B. K. Nutter, Chair

R. Houk, Secretary

T. P. Beirne

B. Calderon

V. Chicola III

B. Engman

R. J. Garnett

R. Lack M. Mengon

M. Brown

J. W. Dickson, Vice Chair

- R. Lack
- D. Miller T. Patel

- K. Shores I. H. Tseng B. J. Yonsky
- J. M. Levy, Alternate
- Y. Wong, Alternate
- J. Yu, Alternate
- S. T. French, Contributing Member
- D. B. Ross, Contributing Member

COMMITTEE ON NUCLEAR CERTIFICATION (CNC)

- R. R. Stevenson, Chair
- M. A. Lockwood, Vice Chair
- S. Khan, Staff Secretary
- A. Appleton
- J. F. Ball
- G. Claffey
- N. DeSantis
- C. Dinic
- G. Gobbi
- J. W. Highlands
- K. A. Kavanagh J. C. Krane
- T. McGee
- E. L. Pleins
- T. E. Quaka
- T. N. Rezk
- D. M. Vickery E. A. Whittle

- T. Aldo, Alternate
- M. Blankinship, Alternate
- G. Brouette, Alternate
- M. Burke. Alternate
- P. J. Coco, Alternate
- Y. Diaz-Castillo, Alternate
- P. D. Edwards, Alternate
- J. Grimm, Alternate K. M. Hottle, Alternate
- P. Krane. Alternate
- S. I. Montano. Alternate
- I. Olson, Alternate
- L. Ponce, Alternate
- M. Wilson, Alternate S. Yang, Alternate
- S. F. Harrison, Jr., Contributing
 - Memher

CRSONNEL

ASME publication have been reproduced through a license agreement with a ling the ASTM standards process can be found at www.astm.org.

ASME publication have been reproduced through a license agreement with the ling the ASTM standards process can be found at www.astm.org.

ASME publication have been reproduced through a license agreement with the ling of the ASTM standards process can be found at www.astm.org.

ASME publication have been reproduced through a license agreement with the ling of the ASTM standards process can be found at www.astm.org.

ASME publication have been reproduced through a license agreement with the ling of the ASTM standards process can be found at www.astm.org.

ASME publication have been reproduced through a license agreement with the line of the line

(23)

CORRESPONDENCE WITH THE COMMITTEE

General

ASME codes and standards are developed and maintained by committees with the intent to represent the consensus of concerned interests. Users of ASME codes and standards may correspond with the committees to propose revisions or cases, report errata, or request interpretations. Correspondence for this Section of the ASME Boiler and Pressure Vessel Code (BPVC) should be sent to the staff secretary noted on the Section's committee web page, accessible at https://go.asme.org/CSCommittees.

NOTE: See ASME BPVC Section II, Part D for guidelines on requesting approval of new materials. See Section II, Part C for guidelines on requesting approval of new welding and brazing materials ("consumables").

Revisions and Errata

The committee processes revisions to this Code on a continuous basis to incorporate changes that appear necessary or desirable as demonstrated by the experience gained from the application of the Code. Approved revisions will be published in the next edition of the Code.

In addition, the committee may post errata and Special Notices at http://go.asme.org/BPVCerrata. Errata and Special Notices become effective on the date posted. Users can register on the committee web page to receive e-mail notifications of posted errata and Special Notices.

This Code is always open for comment, and the committee welcomes proposals for revisions. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent background information and supporting documentation.

Cases

- (a) The most common applications for cases are
 - (1) to permit early implementation of a revision based on an urgent need
 - (2) to provide alternative requirements
- (3) to allow users to gain experience with alternative or potential additional requirements prior to incorporation directly into the Code
 - (4) to permit use of a new material or process
- (b) Users are cautioned that not all jurisdictions or owners automatically accept cases. Cases are not to be considered as approving, recommending, certifying or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that conforms to the Code.
 - (c) The committee will consider proposed cases concerning the following topics only:
 - (1) equipment to be marked with the ASME Single Certification Mark, or
 - (2) equipment to be constructed as a repair/replacement activity under the requirements of Section XI
- (d) A proposed case shall be written as a question and reply in the same format as existing cases. The proposal shall also include the following information:
 - (1) a statement of need and background information
 - (2) the urgency of the case (e.g., the case concerns a project that is underway or imminent)
 - (3) the Code Section and the paragraph, figure, or table number(s) to which the proposed case applies
 - (4) the edition(s) of the Code to which the proposed case applies
- (a) A case is effective for use when the public review process has been completed and it is approved by the cognizant supervisory board. Cases that have been approved will appear in the next edition or supplement of the Code Cases books, "Boilers and Pressure Vessels" or "Nuclear Components." Each Code Cases book is updated with seven Supplements. Supplements will be sent or made available automatically to the purchasers of the Code Cases books until the next edition of the Code. Annulments of Code Cases become effective six months after the first announcement of the annulment in a Code Case Supplement or Edition of the appropriate Code Case book. The status of any case is available at http://go.asme.org/BPVCCDatabase. An index of the complete list of Boiler and Pressure Vessel Code Cases and Nuclear Code Cases is available at http://go.asme.org/BPVCC.

Interpretations

- (a) Interpretations clarify existing Code requirements and are written as a question and reply. Interpretations do not introduce new requirements. If a revision to resolve conflicting or incorrect wording is required to support the interpretation, the committee will issue an intent interpretation in parallel with a revision to the Code.
- (b) Upon request, the committee will render an interpretation of any requirement of the Code. An interpretation can be rendered only in response to a request submitted through the online Interpretation Submittal Form at http://go.as-me.org/InterpretationRequest. Upon submitting the form, the inquirer will receive an automatic e-mail confirming receipt.
- (c) ASME does not act as a consultant for specific engineering problems or for the general application or understanding of the Code requirements. If, based on the information submitted, it is the opinion of the committee that the inquirer should seek assistance, the request will be returned with the recommendation that such assistance be obtained. Inquirers may track the status of their requests at http://go.asme.org/Interpretations.
- (d) ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME committee or subcommittee. ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity.
- (e) Interpretations are published in the ASME Interpretations Database at http://go.asme.org/Interpretations as they are issued.

Committee Meetings

SMENOGRADOC. COM. Click to view the full policy of Ashille Box. The ASME BPVC committees regularly hold meetings that are open to the public. Persons wishing to attend any meeting should contact the secretary of the applicable committee. Information on future committee meetings can be found at

PREFACE

The American Society of Mechanical Engineers (ASME) and the American Society for Testing and Materials (ASTM) have cooperated for more than fifty years in the preparation of material specifications adequate for safety in the field of pressure equipment for ferrous and nonferrous materials, contained in Section II (Part A — Ferrous and Part B—Nonferrous) of the ASME Boiler and Pressure Vessel Code.

The evolution of this cooperative effort is contained in Professor A. M. Greene's "History of the ASME Botler Code," which was published as a series of articles in *Mechanical Engineering* from July 1952 through August 1953 and is now available from ASME in a special bound edition. The following quotations from this history, which was based upon the minutes of the ASME Boiler and Pressure Vessel Committee, will help focus on the cooperative nature of the specifications found in Section II, Material Specifications.

"General discussion of material specifications comprising Paragraphs 1 to 112 of Part 2 and the advisability of having them agree with ASTM specifications," (1914).

"ASME Subcommittee appointed to confer with ASTM," (1916).

"Because of this cooperation the specifications of the 1918 Edition of the ASME Boiler Code were more nearly in agreement with ASTM specifications. In the 1924 Edition of the Code, 10 specifications were in complete agreement with ASTM specifications, 4 in substantial agreement and 2 covered materials for which ASTM had no corresponding specifications."

"In Section II, Material Specifications, the paragraphs were given new number's beginning with S-1 and extending to S-213," (1925).

"Section II was brought into agreement with changes made in the latest ASTM specifications since 1921," (1932).

"The Subcommittee on Material Specifications arranged for the introduction of the revisions of many of the specifications so that they would agree with the latest form of the earlier ASTM specifications...," (1935).

From the preceding, it is evident that many of the material specifications were prepared by the Boiler and Pressure Vessel Code Committees, then subsequently, by cooperative action, modified and identified as ASTM specifications. Section II, Parts A and B, currently contain many material specifications that are identical with the corresponding ASTM specifications and some that have been modified for Code usage. Many of these specifications are published in dual format. That is, they contain both U.S. Customary units and SI units. The metrication protocols followed in the specifications are those adopted by ASTM, and are usually to the rules of IEEE/ASTM SI 10-1997, Standard for the Use of the International System of Units (SI): The Modern Metric System.

In 1969, the American Welding Society began publication of specifications for welding rods, electrodes, and filler metals, hitherto issued by ASTM. The Boiler and Pressure Vessel Committee has recognized this new arrangement, and is now working with AWS on these specifications. Section II, Part C, contains the welding material specifications approved for Code use.

In 1992, the ASME Board of Pressure Technology Codes and Standards endorsed the use of non-ASTM material for Boiler and Pressure Vessel Code applications. It is the intent to follow the procedures and practices currently in use to implement the adoption of non-ASTM materials.

All identical specifications are indicated by the ASME/originating organization symbols. The specifications prepared and copyrighted by ASTM, AWS, and other originating organizations are reproduced in the Code with the permission of the respective Society. The ASME Boiler and Pressure Vessel Committee has given careful consideration to each new and revised specification, and has made such changes as they deemed necessary to make the specification adaptable for Code usage. In addition, ASME has furnished ASTM with the basic requirements that should govern many proposed new specifications. Joint action will continue an effort to make the ASTM, AWS, and ASME specifications identical.

To assure that there will be a clear understanding on the part of the users of Section II, ASME publishes both the identical specifications and those amended for Code usage every 2 years.

The ASME Boiler and Pressure Vessel Code has been adopted into law by 50 states and many municipalities in the United States and by all of the Canadian provinces.

SPECIFICATIONS LISTED BY MATERIALS

Aluminum and Al	uminum Alloys	11 4
SB-26/SB-26M	Specification for Aluminum-Alloy Sand Castings	3
SB-108/SB-108M	Specification for Aluminum-Alloy Permanent Mold Castings	63
SB-209	Specification for Aluminum and Aluminum-Alloy Sheet and Plate	271
SB-210	Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes	297
SB-211/SB-211M	Specification for Aluminum and Aluminum-Alloy Rolled or Cold-Finished Bar, Rod, and	
	Wire	309
SB-221	Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and	
	Tubes	323
SB-234	Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and	
	Heat Exchangers	339
SB-241/SB-241M	Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded	
	Tube	347
SB-247	Specification for Aluminum and Aluminum-Alloy Die Forgings, Hand Forgings, and Rolled	
an acc (an acc).	Ring Forgings	367
SB-308/SB-308M	Specification for Aluminum-Alloy 6061-T6 Standard Structural Profiles	461
SB-548	Test Method for Ultrasonic Inspection of Aluminum-Alloy Plate for Pressure Vessels	769
SB-666/SB-666M	Practice for Identification Marking of Aluminum and Magnesium Products	921
SB-928/SB-928M	Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and	4445
CD /EN 1707	Similar Environments	1115
SB/EN 1706	Aluminum and Aluminum Alloys — Castings — Chemical Composition and Mechanical	1100
	Properties	1189
Cobalt Alloys		
SB-815	Specification for Cobalt-Chromium-Nickel-Molybdenum-Tungsten Alloy (UNS R31233) Rod	1045
SB-818	Specification for Cobalt-Chromium-Nickel-Molybdenum-Tungsten Alloy (UNS R31233)	1010
52 515	Plate, Sheet, and Strip	1049
Copper Alloy Cast	tings	
SB-61	Specification for Steam or Valve Bronze Castings	33
SB-62	Specification for Composition Bronze or Ounce Metal Castings	37
SB-148	Specification for Aluminum-Bronze Sand Castings	115
	Specification for Copper-Base Alloy Centrifugal Castings	437
SB-369	Specification for Copper-Nickel Alloy Castings	545
SB-505/SB-505M	Specification for Copper Alloy Continuous Castings	697
SB-584 C	Specification for Copper Alloy Sand Castings for General Applications	837
SB-824	Specification for General Requirements for Copper Alloy Castings	1053
\sim 0.		
Copper and Coppe	er Alloy Pipe and Tubes	
SB-42	Specification for Seamless Copper Pipe, Standard Sizes	17
SB-43	Specification for Seamless Red Brass Pipe, Standard Sizes	25
SB-75/SB-75M	Specification for Seamless Copper Tube	41
SB-111/SB-111M	Specification for Copper and Copper-Alloy Seamless Condenser Tubes and Ferrule Stock .	81
SB-135/SB-135M	Specification for Seamless Brass Tube	105
SB-251/SB-251M	Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy	
	Tube	413
CR-215	Specification for Seamless Copper Alloy Pine and Tube	467

SB-359/SB-359M	Specification for Copper and Copper-Alloy Seamless Condenser and Heat Exchanger Tubes	۲00
SB-395/SB-395M	with Integral Fins	509
3D-393/3D-393M	Tubes	561
SB-466/SB-466M	Specification for Seamless Copper-Nickel Pipe and Tube	655
SB-467	Specification for Welded Copper-Nickel Pipe	663
SB-543/SB-543M	Specification for Welded Copper and Copper-Alloy Heat Exchanger Tube	755
SB-706	Specification for Seamless Copper Alloy (UNS NO. C69100) Pipe and Tube	995
SB-956	Specification for Welded Copper and Copper-Alloy Condenser and Heat Exchanger Tubes	
	with Integral Fins	1129
	خ ا	110
Copper and Coppe	er Alloy Plate, Sheet, Strip, and Rolled Bar	
SB-96/SB-96M	Specification for Copper-Silicon Alloy Plate, Sheet, Strip, and Rolled Bar for General Purposes	
•		51
SB-152/SB-152M	and Pressure Vessels	137
SB-169/SB-169M	Specification for Aluminum Bronze Sheet, Strip, and Rolled Bar	247
SB-171/SB-171M	Specification for Copper-Alloy Plate and Sheet for Pressure Vessels, Condensers, and Heat	
	Exchangers	253
SB-248	Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet,	205
CD 202/CD 202M	Strip, and Rolled Bar	385
SB-283/SB-283M	Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)	445
Copper and Coppe	er Alloy Rod, Bar, and Shapes	
SB-98/SB-98M	Specification for Copper-Silicon Alloy Rod, Bar and Shapes	57
SB-150/SB-150M	Specification for Aluminum Bronze Rod, Bar, and Shapes	123
SB-151/SB-151M	Specification for Copper-Nickel-Zinc Alloy (Nickel Silver) and Copper-Nickel Rod and Bar	131
SB-187/SB-187M	Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes	261
SB-249/SB-249M	Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar,	201
,	Shapes, and Forgings	399
Nieles Alles Coef		
Nickel Alloy Cast		
SA-494/SA-494M	Specification for Castings, Nickel and Nickel Alloy	689
Nickel and Nickel	. Alloy Fittings	
SB-366/SB-366M	Specification for Pactory-Made Wrought Nickel and Nickel Alloy Fittings	527
SB-834	Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel- Chromium-	5 - 7
	Molybdenum (UNS N08367), Nickel-Chromium- Molybdenum-Columbium (Nb) (UNS	
	N06625), Nickel- Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-	
	Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings,	
	Valves, and Parts	1069
•	${oldsymbol {\cal V}}$.	
Nickel and Nickel	Alloy Pipe and Tubes	
SB-161	Specification for Nickel Seamless Pipe and Tube	155
SB-163	Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes	177
SB-165	Specification for Nickel-Copper Alloy Seamless Pipe and Tube	205
SB-167	Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690,	
()	N06693, N06025, N06045, and N06696), and Nickel-Chromium-Cobalt-Molybdenum Al-	
)	loy (UNS N06617), Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674), and Nickel-	222
CD 407	Chromium-Molybdenum-Copper Alloy (UNS N06235) Seamless Pipe and Tube	223
SB-407 SB-423	Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube	573
74-7 7D-47	N08221) Seamless Pine and Tube	591

SB-444	Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS	(21
an 460	N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube	631
SB-462	Specification for Forged or Rolled Nickel Alloy Pipe Flanges, Forged Fittings, and Valves and Parts for Corrosive High-Temperature Service	C 11
SB-464	Specification for Welded UNS N08020, N08024, and N08026 Alloy Pipe	641 651
SB-468	Specification for Welded UNS N08020, N08024, and N08026 Alloy Tubes	671
SB-514	Specification for Welded Nickel-Iron-Chromium Alloy Pipe	717
SB-515	Specification for Welded UNS N08120, UNS N08800, UNS N08810, and UNS N08811 Alloy	Q
3D-313	Tubes	721
SB-516	Specification for Welded Nickel-Chromium-Aluminum Alloy (UNS N06699) and Nickel-	., 21
3D-310	Chromium-Iron Alloy (UNS N06600, UNS N06601, UNS N06603, UNS N06025, UNS	
	N06045, UNS N06690, AND UNS N06693) Tubes	725
SB-517	Specification for Welded Nickel-Chromium-Iron Alloy (UNS N06600, UNS N06603, UNS	, 23
00 017	N06025, and UNS N06045) Pipe	729
SB-535	Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Seamless	
	Pipe and Tube	739
SB-619/SB-619M	Specification for Welded Nickel and Nickel-Cobalt Alloy Pipe	861
SB-622	Specification for Seamless Nickel and Nickel-Cobalt Alloy Pipe and Tube	877
SB-626	Specification for Welded Nickel and Nickel-Cobalt Alloy Tube	889
SB-668	Specification for UNS N08028 Seamless Tubes	929
SB-673	Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Pipe	941
SB-674	Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Tube	945
SB-675	Specification for UNS N08367 Welded Pipe	949
SB-676	Standard Specification for UNS N08367 Welded Tube	953
SB-677	Specification for Nickel-Iron-Chromium-Molybdenum and Iron-Nickel-Chromium-	
	Molybdenum-Copper Seamless Pipe and Tube	957
SB-690	Specification for Iron-Nickel-Chromium-Molybdenum Alloys (UNS N08366 and UNS	
	N08367) Seamless Pipe and Tube 💭	971
SB-704	Specification for Welded UNS N06625, UNS N06219, and UNS N08825 Alloy Tubes	987
SB-705	Specification for Nickel-Alloy (UNS N06625, N06219 and N08825) Welded Pipe	991
SB-710		1009
SB-729	Specification for Seamless Nickel-Iron-Chromium-Molybdenum-Copper Nickel Alloy Pipe and Tube	1013
SB-751		1013
SB-775		1031
SB-804		1031
SB-829	Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and	1037
30 02)	• (/)	1061
Nickel and Nickel	Alloy Plate, Sheet, and Strip	
SB-127	Specification for Nickel-Copper Alloy (UNS N04400) Plate, Sheet, and Strip	95
SB-162	Specification for Nickel Plate, Sheet, and Strip	161
SB-168	Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690,	
Oh.	N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy	
	(UNS N06617), Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674), and Nickel-	
C_1 .	Chromium-Molybdenum-Copper Alloy (UNS N06235) Plate, Sheet, and Strip	233
SB 333	Specification for Nickel-Molybdenum Alloy Plate, Sheet, and Strip	479
SB-409	Specification for Nickel-Iron-Chromium Alloy Plate, Sheet, and Strip	585
SB-424	Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS N06845) Plate, Sheet, and Strip	597
SB-434	Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, UNS N10242)	
	Plate, Sheet, and Strip	611
SB-435	Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and	
	Strip	615
SB-443	Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Plate, Sheet, and Strip	619

SB-463	Specification for UNS N08020 Alloy Plate, Sheet, and Strip	647
SB-536	Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Plate, Sheet, and Strip	743
SB-575	Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip	821
SB-582	Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Plate, Sheet, and Strip	833
SB-599	Specification for Nickel-Iron-Chromium-Molybdenum-Columbium Stabilized Alloy (UNS N08700) Plate, Sheet, and Strip	847
SB-620	Specification for Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320) Plate, Sheet, and Strip	869
SB-625	Specification for UNS N08925, UNS N08031, UNS N08034, UNS N08932, UNS N08926, UNS N08354, UNS N08830, and UNS R20033 Plate, Sheet, and Strip	885
SB-688	Specification for Chromium-Nickel-Molybdenum-Iron (UNS N08366 and UNS N08367) Plate, Sheet, and Strip	961
SB-709	Specification for Iron-Nickel-Chromium-Molybdenum Alloy (UNS N08028) Plate, Sheet, and Strip	1003
SB-906	Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip	1097
Nickel and N	ickel Alloy Rod, Bar, and Wire	
		1 4 5
SB-160	Specification for Nickel Rod and Bar	145
SB-164 SB-166	Specification for Nickel-Copper Alloy Rod, Bar, and Wire	191
an oof	Chromium-Molybdenum-Copper Alloy, Rod, Bar, and Wire	213
SB-335	Specification for Nickel-Molybdenum Alloy Rod	483 579
SB-408 SB-425	Specification for Nickel-Iron-Chromium Alloy Rod and Bar	603
SB-446	Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-	003
	Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar	635
SB-473	Specification for UNS N08020, UNS N08024, and UNS N08026 Nickel Alloy Bar and Wire	675
SB-511	Specification for Nickel-Iron-Chromium-Silicon Alloy Bars and Shapes	707
SB-564	Specification for Nickel Alloy Forgings	793
SB-572	Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Rod	805
SB-573 SB-574	Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, N10242) Rod Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-	811
	Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod	015
SB-581	Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Rod	815 827
SB-621	Specification for Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320) Rod	873
SB-637 (Specification for Precipitation-Hardening and Cold Worked Nickel Alloy Bars, Forgings, and	0/3
3D 037	Forging Stock for Moderate or High-Temperature Service	895
SB-649	Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08034, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS	0,0
SB-672	R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire	903
SB-691	N08700) Bar and Wire	933
บบ-071	N08367) Rod, Bar, and Wire	979

	Other		
	SF-467	Specification for Nonferrous Nuts for General Use	1141
	SF-467M	Specification for Nonferrous Nuts for General Use [Metric]	1151
	SF-468	Specification for Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws, and Studs for General Use	1161
	SF-468M	Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use [Metric]	1177
	Titanium and Tita	anium Alloys	, ,
	SB-265	Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate	423
	SB-338	Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers	489
	SB-348/SB-348M SB-363	Specification for Titanium and Titanium Alloy Bars and Billets	499
	SB-367	Fittings	521 537
	SB-381	Specification for Titanium and Titanium Alloy Forgings	551
	SB-861	Specification for Titanium and Titanium Alloy Seamless Pipe	1075
	SB-862	Specification for Titanium and Titanium Alloy Welded Pipe	1085
	Zirconium and Zi	rconium Alloys	
	SB-493/SB-493M		685
	SB-523/SB-523M	Specification for Seamless and Welded Zirconium and Zirconium Alloy Tubes	733
	SB-550/SB-550M	Specification for Zirconium and Zirconium Alloy Bar and Wire	775
	SB-551/SB-551M	Specification for Zirconium and Zirconium Alloy Strip, Sheet, and Plate	781
	SB-653/SB-653M	Specification for Seamless and Welded Zirconium and Zirconium Alloy Welding Fittings .	911
	SB-658/SB-658M SB-752/SB-752M	Specification for Seamless and Welded Zirconium and Zirconium Alloy Pipe	915 1025
, NOR	MDOC.COM.	Specification for Castings, Zirconium, Base, Corrosion Resistant, for General Application	
ASME			
		••••	

SPECIFICATION REMOVAL

From time to time, it becomes necessary to remove specifications from this Part of Section II. This occurs because the sponsoring society (e.g., ASTM, AWS, CEN) has notified ASME that the specification has either been replaced with an other specification, or that there is no known use and production of a material. Removal of a specification from this Section also results in concurrent removal of the same specification from Section IX and from all of the ASME Boiler and Pressure Vessel Construction Codes that reference the material. This action effectively prohibits further use of the material in ASME Boiler and Pressure Vessel construction.

The following specifications will be dropped from this Section in the next Edition, unless information concerning current production and use of the material is received before December 1 of this year:

None

(23)

ardshi we with a full pote of Ashir Bryc. I click to he with a full pote of Ashir Bryc. I ashir a full potential pot If you are currently using and purchasing new material to this specification for ASME Boiler and Pressure Vessel Code construction, and if discontinuance of this specification would present a hardship, please notify the Secretary of the

xliv

SUMMARY OF CHANGES

Changes listed below are identified on the pages by a margin note, (23), placed next to the affected area.

Page -	Location	Change
ix	List of Sections	 (1) Under Section III, Division 4 added (2) Title of Section XI and subtitle of Section XI, Division 2 revised (3) Information on interpretations and Code cases moved to "Correspondence With the Committee"
xiii	Personnel	Updated
XXXV	ASTM Personnel	Updated
xxxvi	Correspondence With the Committee	Added (replaces "Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees")
xliv	Specification Removal	Updated
xlvii	Cross-Referencing in the ASME BPVC	Updated Updated Added
1	Statement of Policy on the Use of ASME Material Specifications	Added
17	SB-42	Revised in its entirety
25	SB-43	Revised in its entirety
51	SB-96/SB-96M	Revised in its entirety
115	SB-148	Revised in its entirety
131	SB-151/SB-151M	Revised in its entirety
205	SB-165	Revised in its entirety
213	SB-166	Revised in its entirety
223	SB-167	Revised in its entirety
233	SB-168.	Revised in its entirety
247	SB-169/SB-169M	Revised in its entirety
261	SB-187/SB-187M	Revised in its entirety
309	SB-211/SB-211M	Revised in its entirety
399	SB-249/SB-249M	Revised in its entirety
413	SB-251/SB-251M	Revised in its entirety
445	SB-283/SB-283M	Revised in its entirety
461	SB-308/SB-308M	Revised in its entirety
641	SB-462	Revised in its entirety
725	SB-516	Revised in its entirety
775	SB-550/SB-550M	Revised in its entirety
811	SB-573	Revised in its entirety

Page	Location	Change	
885	SB-625	Revised in its entirety	
903	SB-649	Revised in its entirety	ŋ
911	SB-653/SB-653M	Revised in its entirety	B
915	SB-658/SB-658M	Revised in its entirety	art
957	SB-677	Revised in its entirety	1100
1009	SB-710	Revised in its entirety	
1013	SB-729	Revised in its entirety	Citie
1017	SB-751	Revised in its entirety	
1025	SB-752/SB-752M	Revised in its entirety	
1189	SB/EN 1706	Revised	₽X
1192	Mandatory Appendix II	Revised in its entirety	
1194	Table II-200-1	Updated	
1201	Table II-200-2	Updated	
	· · · · · · · · · · · · · · · · · · ·	JII POF OF ASIN	
	Click to view the s	Change Revised in its entirety Revised Revised in its entirety Updated Updated Updated xlvi	

Paragraphs within the ASME BPVC may include subparagraph breakdowns, i.e., nested lists. The following is a guide to e designation and cross-referencing of subparagraph breakdowns:

(a) Hierarchy of Subparagraph Breakdowns

(1) First-level breakdowns are designated as (a), (b), (c), etc.

(2) Second-level breakdowns are designated as (a) (b), (c), etc. the designation and cross-referencing of subparagraph breakdowns:

- - (4) Fourth-level breakdowns are designated as (-1), (-2), (-3), etc.
 - (5) Fifth-level breakdowns are designated as (+a), (+b), (+c), etc.
 - (6) Sixth-level breakdowns are designated as (+1), (+2), etc.
- (b) Cross-References to Subparagraph Breakdowns. Cross-references within an alphanumerically designated paragraph (e.g., PG-1, UIG-56.1, NCD-3223) do not include the alphanumerical designator of that paragraph. The crossreferences to subparagraph breakdowns follow the hierarchy of the designators under which the breakdown appears. The following examples show the format:
 - (1) If X.1(c)(1)(-a) is referenced in X.1(c)(1), it will be referenced as (-a).
- SMENORMOC. COM. Click to view the full policy of Active View t (2) If X.1(c)(1)(-a) is referenced in X.1(c)(2), it will be referenced as (1)(-a).
 - (3) If X.1(c)(1)(-a) is referenced in X.1(e)(1), it will be referenced as (c)(1)(-a).
 - (4) If X.1(c)(1)(-a) is referenced in X.2(c)(2), it will be referenced as X.1(c)(1)(-a).

xlvii

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

STATEMENT OF POLICY ON THE USE OF ASME MATERIAL SPECIFICATIONS

The material specifications in Section II, Part A or Section II, Part B shall be used when ordering, producing, and certifying materials for ASME BPV Code construction. The use of a specification not in Section II, Part A or Section II, Part B is acceptable only when it is referenced in an approved Code Case.

A complete list of ASME material specifications can be found in Mandatory Appendix II, Tables II-200-1 and II-200-2. Since the framework of ASME material specifications does not originate with the Section II committee (see Mandatory Appendix II, II-100 for more information), the following information is provided to assist the user in understanding and applying the specifications:

- (a) Scope. Some specifications contain a statement in the Scope about the uses or service temperatures for alloys within. Such statements are to be viewed as guidance in the corresponding ASME material specification. Alloys approved for ASME BPV Code construction are restricted by maximum design temperatures stipulated in Section II, Part D, and any stipulations of the individual construction Codes.
- (b) Units. Specifications often designate one unit (SI or Customary) as the standard for the specification with conversions of the other being cited as for information only. Compliance and acceptance for the purposes of Code usage is not governed by this. Section II, Part D has a U.S. Customary volume and an SI volume for mechanical and physical properties of all materials approved for Code construction.
- (c) References. References to other material specifications within the text often carry the original title given to it by the parent organization. The following are two examples:

- (1) From 2021 Edition of Section II, Part A, \$A-203
- 4.1 Steelmaking Practice The steel shall be killed and shall conform to the fine grain size requirement of Specification A20/A20M.
- (2) From 2021 Edition of Section II, Part B, SB-98/ SB-98M
 - 9.1 Refer to the appropriate paragraphs in Specification B249/B249M with particular reference to the following tables.

Such references shall be interpreted as referring to the corresponding ASME material specification. If no corresponding ASME specification exists, then the user is bound to the latest revision of the cited specification.

- (d) Ordering Information. The Ordering Information section of some specifications state that furnishing test reports and certification is optional. This is not valid for ASME BPVC. When alloys are purchased for use in ASME construction, test reports and certifications shall be furnished to the purchaser.
- (e) Individual Alloys. To be used for Code construction, any alloy listed in an ASME material specification shall also have either allowable stress values or mechanical properties listed in either a Section II, Part D table or a Code Case.

Material produced to an acceptable material specification is not limited to country of origin. Before the material is ordered, it is the responsibility of the user to ensure that the intended construction Code permits materials certified to the desired specification.

With the exception of ASTM International, ASME has not entered into copyright agreements with publishers of material specifications. Limits on usage appear on the specification's cover sheets. For sources from which an official English-language version of a specification can be purchased, see Nonmandatory Appendix A.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II part B 202 SB-26/SB-26M SB-26/SB-26M (Identical with ASTM Specification B26/B26M-11 except that certification and test reports have been made mandatory, and ASME feeding requirements are invoked.)

Standard Specification for Aluminum-Alloy Sand Castings

1. Scope

- 1.1 This specification covers aluminum-alloy sand castings designated as shown in Table 1.
- 1.2 This specification is not intended for aluminum-alloy sand castings used in aerospace applications.
- 1.3 Alloy and temper designations are in accordance with ANSI H35.1/H35.1M. Unified Numbering System alloy designations are in accordance with Practice E527.
- 1.4 Unless the order specifies the "M" specification designation, the material shall be furnished to the inch-pound units.
- 1.5 For acceptance criteria for inclusion of new aluminum and aluminum alloys and their properties in this specification, see Annex A1 and Annex A2.
- 1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
- 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
- B179 Specification for Aluminum Alloys in Ingot and Molten Forms for Castings from All Casting Processes

- B275 Practice for Codification of Certain Nonferrous Merals and Alloys, Cast and Wrought
- B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
- B557M Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B881 Terminology Relating to Aduminum- and Magnesium-Alloy Products
- B917/B917M Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes
- D3951 Practice for Commercial Packaging
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E94 Guide for Radiographic Examination
- E155 Reference Radiographs for Inspection of Aluminum and Magnesium Castings
- 105 Practice for Liquid Penetrant Examination for General Industry
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere
- E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis
- E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry
- E2422 Digital Reference Images for Inspection of Aluminum Castings
- IEEE/ASTM SI 10 Standard for Use of the International System of Units (SI): The Modern Metric System
- 2.3 AMS Standard:
- AMS 2771 Heat Treatment of Aluminum Alloy Castings

TABLE 1 Chemical Composition Limits

Note 1-When single units are shown, these indicate the maximum amounts permitted.

Note 2—Analysis shall be made for the elements for which limits are shown in this table.

Note 3—The following applies to all specified limits in this table: For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit in accordance with the rounding method of Practice E29.

A	lloy					Com	position, (Va	ues in Weigh	t Percent)				Oth	ers
ANSI	UNS	Aluminum	Silicon	Iron	Copper	Man- ganese	Magne- sium	Chromium	Nickel	Zinc	Tin	Titanium	Each	Total
201.0	A02010	remainder	0.10	0.15	4.0-5.2	0.20-0.50	0.15-0.55					0.15-0.35	0.05 ^A	0.10
204.0	A02040	remainder	0.20	0.35	4.2-5.0	0.10	0.15-0.35		0.05	0.10	0.05	0.15-0.30	0.05	0.15
242.0	A02420	remainder	0.7	1.0	3.7-4.5	0.35	1.2-1.8	0.25	1.7-2.3	0.35		0.25	0.05	0.15
A242.0	A12420	remainder	0.6	8.0	3.7-4.5	0.10	1.2-1.7	0.15-0.25	1.8-2.3	0.10		0.07-0.20_(0.05	0.15
295.0	A02950	remainder	0.7-1.5	1.0	4.0-5.0	0.35	0.03			0.35		0.25	0.05	0.15
319.0	A03190	remainder	5.5-6.5	1.0	3.0-4.0	0.50	0.10		0.35	1.0		0.25		0.50
328.0	A03280	remainder	7.5-8.5	1.0	1.0-2.0	0.20 - 0.6	0.20-0.6	0.35	0.25	1.5		0.25		0.50
355.0	A03550	remainder	4.5-5.5	0.6^{B}	1.0-1.5	0.50 ^B	0.40-0.6	0.25		0.35		0.25	0.05	0.15
C355.0	A33550	remainder	4.5-5.5	0.20	1.0-1.5	0.10	0.40-0.6			0.10	🕜	0.20	0.05	0.15
356.0	A03560	remainder	6.5-7.5	0.6^{B}	0.25	0.35^{B}	0.20-0.45			0.35	OX	0.25	0.05	0.15
A356.0	A13560	remainder	6.5-7.5	0.20	0.20	0.10	0.25-0.45			0.10) V	0.20	0.05	0.15
443.0	A04430	remainder	4.5-6.0	8.0	0.6	0.50	0.05	0.25		0.50	Y /	0.25		0.35
B443.0	A24430	remainder	4.5-6.0	8.0	0.15	0.35	0.05			0.35		0.25	0.05	0.15
512.0	A05120	remainder	1.4-2.2	0.6	0.35	0.8	3.5-4.5	0.25		0.35	•	0.25	0.05	0.15
514.0	A05140	remainder	0.35	0.50	0.15	0.35	3.5-4.5			0.15		0.25	0.05	0.15
520.0	A05200	remainder	0.25	0.30	0.25	0.15	9.5-10.6		١	0.15		0.25	0.05	0.15
535.0	A05350	remainder	0.15	0.15	0.05	0.10-0.25	6.2-7.5		O			0.10-0.25	0.05^{C}	0.15
705.0	A07050	remainder	0.20	8.0	0.20	0.40 - 0.6	1.4-1.8	0.20-0.40		2.7 - 3.3		0.25	0.05	0.15
707.0	A07070	remainder	0.20	8.0	0.20	0.40 - 0.6	1.8-2.4	0.20 - 0.40	" ///.	4.0-4.5		0.25	0.05	0.15
710.0^{D}	A07100	remainder	0.15	0.50	0.35-0.65	0.05	0.6-0.8		(in 1)	6.0 - 7.0		0.25	0.05	0.15
712.0^{D}	A07120	remainder	0.30	0.50	0.25	0.10	0.50-0.65	0.40-0.6	\ <u></u>	5.0-6.5		0.15-0.25	0.05	0.20
713.0	A07130	remainder	0.25	1.1	0.40-1.0	0.6	0.20-0.50	0.35	0.15	7.0-8.0		0.25	0.10	0.25
771.0	A07710	remainder	0.15	0.15	0.10	0.10	0.8-1.0	0.06 - 0.20		6.5 - 7.5		0.10-0.20	0.05	0.15
850.0	A08500	remainder	0.7	0.7	0.7-1.3	0.10	0.10	7. V	0.7-1.3		5.5-7.0	0.20		0.30
851.0 ^D	A08510	remainder	2.0-3.0	0.7	0.7-1.3	0.10	0.10	X /	0.30-0.7		5.5-7.0	0.20		0.30
852.0^{D}	A08520	remainder	0.40	0.7	1.7-2.3	0.10	0.6-0.9	77.	0.9-1.5		5.5-7.0	0.20		0.30

^A Contains silver 0.40-1.0 %.

^C Contains beryllium 0.003-0.007 %, boron 0.005 % max.

2.4 American National Standards:

H35.1/H35.1(M) Alloy and Temper Designation System for Aluminum

2.5 Military Standards:

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-276 Impregnation of Porous Nonferrous Metal Castings

NAVSEA Technical Publication \$9074-AR-GIB-010/278 2.6 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) 2.7 Other Standards:

EN 14242 Aluminum and Aluminum Alloys — Chemical Analysis — Inductively Coupled Plasma Optical Emission Spectral Analysis

3. Terminology

3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.

3.2 sand casting—a metal object produced by pouring molten metal into a sand mold and allowing it to solidify.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information (1.4 and 1.5):
- 4.1.1 This specification designation (which includes the number, year, and revision letter, if applicable),

Note 1—For inch-pound application, specify Specification B26 and for metric application specify Specification B26M. Do not mix units.

- 4.1.2 The quantity in either pieces or pounds [kilograms],
- 4.1.3 Alloy (Section 7 and Table 1),
- 4.1.4 Temper (Section 10 and Table 2), and
- 4.1.5 Applicable drawing or part number,
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether chemical analysis and tensile property reports are required (Table 1 and Table 2),
- 4.2.2 Whether castings or test bars, or both, may be artificially aged for Alloys 705.0-T5, 707.0-T5, 712.0-T5, and 713.0-T5 (10.2) and whether yield strength tests are required for these alloys;

^B If iron exceeds 0.45 %, manganese content shall not be less than one half of the iron content.

^D 710.0 formerly A712.0, 712.0 formerly D712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

TABLE 2 Tensile Requirements^A (Inch-Pound Units)

Note 1—For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

,	Alloy	TB	Tensile Strength,	Yield Strength	Elongation in	Typical Brinell Hard-
ANSI ^D	UNS	Temper ^B	min, ksi	(0.2 % offset), min, ksi	2 in. or 4 x diameter, min, %	ness, ^C 500 kgf, 10 mm
201.0	A02010	T7	60.0	50.0	3.0	
204.0	A02040	T4	45.0	28.0	6.0	
242.0	A02420	O ^E	23.0	F	F	70
		T61	32.0	20.0	F	105
A242.0	A12420	T75	29.0	F	1.0	75 60
295.0	A02950	T4	29.0	13.0	6.0	60
		Т6	32.0	20.0	3.0	75 95 70
		T62	36.0	28.0	F	95
		T7	29.0	16.0	3.0	70
319.0	A03190	F	23.0	13.0 F	1.5 F	70
		T5	25.0	F		80
		Т6	31.0	20.0	1.5	80
328.0	A03280	F	25.0	14.0	1.0	60
		Т6	34.0	21.0	1.0	80
355.0	A03550	Т6	32.0	20.0	2.0	80
		T51	25.0	18.0		65
		T71	30.0	22.0		75
C355.0	A33550	Т6	36.0	25.0	2.5	
356.0	A03560	F	19.0	9.5	2.0	55
		Т6	30.0	20.0 F	3.0	70
		T7	31.0		F	75
		T51	23.0	16.0	F	60
		T71	25.0	18.0	3.0	60
A356.0	A13560	T6	34.0	24.0 26.0	3.5	80
		T61	35.0	26.0	1.0	
443.0	A04430	F	17.0	7.0	3.0	40
B443.0	A24430	F	17.0	6.0	3.0	40
512.0	A05120	F	17.0	10.0		50
514.0	A05140	F	22.0	9.0	6.0	50
520.0	A05200	T4	42.0	22.0	12.0	75
535.0	A05350	F	35.0	18.0	9.0	70
705.0	A07050	T5	30.0	17.0 ^G	5.0	65
707.0	A07070	T7	37.0	30.0 ^{<i>G</i>}	1.0	80
710.0 ^H	A07100	T5	32.0	20.0	2.0	75
712.0 ^H	A07120	T5	34.0	25.0 ^{<i>G</i>}	4.0	75
713.0	A07130	T5	32.0	22.0	3.0	75
771.0	A07710	T5	42.0	38.0	1.5	100
		T51	32.0	27.0	3.0	85
		T52	36.0	30.0	1.5	85
		T6 💢	42.0	35.0	5.0	90
		T71 🕜	48.0	45.0	2.0	120
850.0	A08500	T71 T5 T5	16.0	F	5.0	45
851.0 ^H	A08510	T5 💉	17.0	F	3.0	45
852.0 ^H	A08520	T5	24.0	18.0	F	60

A If agreed upon between the manufacturer and the purchaser, other mechanical properties may be obtained by other heat treatments such as annealing, aging, or stress relieving.

- 4.2.3 Whether test specimens cut from castings are required in addition to, or instead of, separately cast specimens (Sections 10 and 13);
 - 4.2.4 Whether repairs are permissible (16.1),
- 42.5 Whether inspection is required at the producer's works (Section 18);
 - 4.2.6 DELETED
- 4.2.7 Whether surface requirements shall be checked against observational standards where such standards are established (19.1);
 - 4.2.8 Whether liquid penetrant inspection is required (19.2);

- 4.2.9 Whether radiographic inspection is required and, if so, the radiographic grade of casting required (19.3, Table 3);
 - 4.2.10 Whether foundry control is required (Section 9); and
- 4.2.11 Whether Practice B660 applies and, if so, the levels of preservation, packaging, and packing required (23.4).

5. Quality Assurance

5.1 Unless otherwise specified in the contract or purchase order, the producer shall be responsible for the performance of all inspections and test requirements specified herein. Unless disapproved by the purchaser, the producer may use his own or

B Refer to ANSI H35.1/H35.1M, or both, for description of tempers.

^C For information only, not required for acceptance.

^D ASTM alloy designations are recorded in Practice B275.

^E Formerly designated as 222.0-T2 and 242.0-T21.

F Not required.

^G Yield strength to be determined only when specified in the contract or purchase order.

^H 710.0 formerly A712.0, 712.0 formerly D712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

Section Thickness in. [mm] Grade A^A Grade C Grade B Grade D Discontinuity Radiograph 1/4 [6.4] 3/4 [19.0] 3/4 [19.0] 1/4 [6.4] 3/4 [19.0] 1/4 [6.4] 1/4 [6.4] Gas holes none Gas porosity (round) 1.21 3 3 none Gas porosity (elongated) 1.22 3 5 none В 2 3 Shrinkage cavity 2.1 none 2 2 Shrinkage porosity or sponge 2.2 none 2 Foreign material (less dense material) 2 3 11 none Foreign material (more dense material) 3 12 none 2 1 Segregation 3.2 none none none Cracks none Cold shuts none Surface irregularity not to exceed drawing tolerance Core shift not to exceed drawing tolerance

TABLE 3 Discontinuity-Level Requirements for Aluminum Castings in Accordance with Film Reference Radiographs E155 or Digital Reference Radiographs E2422

any other suitable facilities for the performance of the inspection and test requirements specified herein. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to confirm that the material conforms to prescribed requirements.

6. Manufacture

6.1 The responsibility of furnishing castings that can be laid out and machined to the finished dimensions within the permissible variations specified, as shown on the blueprints or drawings, shall rest with the producer, except where pattern equipment is furnished by the purchaser.

7. Chemical Composition

- 7.1 The Product shall conform to the chemical composition limits prescribed in Table 1. Conformance shall be determined by the producer by taking samples at the time castings are poured in accordance with Practice E716 and analyzed in accordance with Test Methods E607, E1251, or E34, or EN 14242. If the producer has determined the composition of the material during casting, they shall not be required to sample and analyze the finished product:
- 7.2 If it becomes necessary to analyze castings for conformance to chemical composition limits, the method used to sample castings for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with Practice E716, Test Methods E607, E1251, or E34, or EN 14242 (ICP method).
- 7.3 Other methods of analysis or in the case of a dispute the method of analysis shall be agreed upon by the producer and the purchaser.
- A sample for determining of chemical composition shall be taken to represent the following:
- 7.4.1 Not more than 4000 lb [2000 kg] of clean castings (gates and risers removed) or a single casting poured from one furnace.
- 7.4.2 The maximum elapsed time between determinations shall be established for each alloy, but in any case the maximum elapsed time shall not exceed 8 h.

8. Material Requirements—Castings Produced for Governmental and Military Agencies

8.1 Unless otherwise specified, only aluminum alloy conforming to the requirements of Specification B179 or producer's foundry scrap (identified as being made from alloy conforming to Specification B179) shall be used in the remelting furnace from which molten metal is taken for pouring directly into castings. Additions of small amounts of modifiers and grain refining elements or alloys are permitted.

Note: 1.1 Pure materials, recycled materials, and master alloys may be used to make alloys conforming to this specification, provided chemical analysis can be taken and adjusted to conform to Table 1 prior to pouring any castings.

9. Foundry Control—Castings Produced for Governmental or Military Agencies, or Both

9.1 When specified, castings shall be produced under foundry control approved by the purchaser. Foundry control shall consist of examination of castings by radiographic or other approved methods for determining internal discontinuities until the gating, pouring, and other foundry practices have been established to produce castings meeting the quality standards furnished by the purchaser or agreed upon between the purchaser and the producer. When foundry practices have been so established, the production method shall not be significantly changed without demonstrating to the satisfaction of the purchaser that the change does not adversely affect the quality of the castings. Minor changes in pouring temperature of $\pm 50^{\circ}$ F [$\pm 28^{\circ}$ C] from the established nominal temperature are permissible.

10. Tensile Properties

- 10.1 The separately cast test specimens representing the castings shall meet the mechanical properties prescribed in Table 2.
- 10.2 Although Alloys 705.0, 707.0, 712.0, and 713.0 are most frequently used in the naturally aged condition, by agreement between the producer and the purchaser, the castings may be artificially aged to the T5 temper. The producer and the purchaser may also agree to base the acceptance of castings on artificially aged test bars. The conditions of

^A Caution should be exercised in requesting Grade A.

^B Not available.

artificial aging shown in Practice B917/B917M shall be employed unless other conditions are accepted by mutual consent.

10.3 When specified, the tensile strength, yield strength, and elongation values of specimens cut from castings shall be not less than 75 % of the tensile and yield strength values and not less than 25 % of the elongation values specified in Table 2 [Table 4]. The measurement of the elongation is not required for test specimens cut from castings if 25 % of the specified minimum elongation value published in Table 2 [Table 4] is 0.5 % or less. If grade D quality castings as described in Table 3 are specified, no tensile tests shall be specified nor tensile requirements be met on specimens cut from castings.

11. Workmanship, Finish, and Appearance

11.1 The finished castings shall be uniform in composition and free of blowholes, cracks, shrinks, and other discontinuities except as designated and agreed upon as acceptable by the purchaser.

12. Number of Tests and Retests

- 12.1 Unless otherwise agreed upon between the purchaser and producer, a minimum of two tension test specimens shall be separately cast and tested to represent the following:
- 12.1.1 Not more than 4000 lb [2000 kg] of clean castings (gates and risers removed) or a single casting poured from one furnace.
- 12.1.2 The castings poured continuously from one furnace in not more than eight consecutive hours.
- 12.2 When tensile properties from castings are to be determined, one per melt-heat combination shall be tested unless otherwise shown on the drawing or specified in the purchase order.
- 12.3 If any test specimen shows defective machining or flaws, it may be discarded; in which case the purchaser and the producer shall agree upon the selection of another specimen in its stead.
- 12.4 If the results of the tension tests do not conform to the requirements prescribed in Table 2 [Table 4]; the test bars representative of the castings may be retested in accordance with the replacement tests and retest provisions of Test Methods B557 and B557M, and the results of retests shall conform to the requirements as to mechanical properties specified in Table 2 [Table 4]

13. Specimen Preparation

- 13.1 The tension test specimens shall be cast to size in sand without chills in accordance with the dimensions shown in Fig. 1 [Fig. 2]. They shall not be machined prior to test except to adapt the grip ends in such a manner as to ensure axial loading.
- 13.2 The recommended method for casting tension test specimens is shown in Fig. 1 [Fig. 2].
- 13.3 When properties of castings are to be determined, tension test specimens shall be cut from the locations designated on the drawing, unless otherwise negotiated. If no locations are designated, one or more specimens shall be taken to include locations having significant variation in casting thickness, except that specimens shall not be taken from areas directly under risers. The tension test specimens shall be the

standard 0.500-in. [12.5-mm] diameter specimens shown in Fig. 9 of Test Methods B557 and B557M or a round specimen of smaller size proportional to the standard specimen.

in.	mm
0.250	6.00
11/4	36
1.000	30.00
3/16	6
3/8	9
23/8	60
3	75
4	100
	0.250 1½ 1.000 ¾16 ¾8 2¾8 3

When necessary, a rectangular specimen may be used proportional to that shown for the 0.500-in. [12.5-mm] wide specimen in Fig. 6 of Test Methods B557 and B557M, but in no case shall its dimensions be less than the following:

, V	in.	mm
Width of reduced section	1/4	6.00
Length of reduced section	11/4	32
Radius of fillet	1/4	6
Overall length	4	100
Thickness	0.100	2.50

The specific elongation values shall not apply to tests of rectangular specimens.

13.4 If the castings are to be heat treated and separately cast specimens are to be used, the specimens representing such castings shall be heat treated with the castings they represent. If castings are to be heat treated and tests are to be obtained on the castings, the test specimens shall be taken from the castings after heat treatment.

14. Test Methods

- 14.1 The determination of chemical composition shall be made in accordance with suitable chemical (Test Methods E34), or spectrochemical (Test Methods E607 and E1251), methods. Other methods may be used only when no published ASTM method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.
- 14.2 The tensile properties shall be determined in accordance with Test Methods B557 and B557M.

15. Heat Treatment

15.1 Heat treatment of castings shall be performed in accordance with Practice B917/B917M or AMS 2771.

16. Repair of Castings

- 16.1 Castings may be repaired only by processes approved and agreed upon between the producer and purchaser, that is, welding, impregnation, peening, blending, soldering, and so forth. Limitations on the extent and frequency of such repairs, and methods of inspection of repaired areas should also be agreed upon.
- 16.2 The welding procedure and welders shall be qual/ified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code.

TABLE 4 Tensile Requirements (SI Units)-[Metric]^A

Note 1-For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 1 MPa and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

Д	Alloy	TB	Tensile Strength,	Yield Strength	Elongation in	Typical Brinell
ANSI ^E	UNS	Temper ^B	min, MPa ^C	(0.2 % offset), min, MPa ^C	5× diameter, min %	Hardness, ^D 500 kgf, 10 mm
201.0	A02010	T7	415	345	3.0	
204.0	A02040	T4	310	195	6.0	?
242.0	A02420	OF	160	G	G	70
		T61	220	140 G	G	105
A242.0	A12420	T75	200	G	1.0	75
295.0	A02950	T4	200	90	6.0	60
		Т6	220	140	3.0 _G	75 95
		T62	250	195	G	95
		T7	200	110	3.0	95 70 70 80 80
319.0	A03190	F	160	90 G	1.5 G	70
		T5	170	G	G (80
		Т6	215	140	1.5	80
328.0	A03280	F	170	95	1.0	60
		Т6	235	145	1.0 10 2.0	80
355.0	A03550	Т6	220	140	2.0	80
		T51	170	125	G	65
		T71	205	150	G	75
C355.0	A33550	Т6	250	170	2.5	
356.0	A03560	F	130	65	2.0	55
		T6	205	140 G	3.0	70
		T7	215	G C	3.0 _G	75
		T51	160	.110	G	60
		T71	170	125	3.0	60
A356.0	A13560	T6	235	1165	3.5	80
		T61	245	180	1.0	
443.0	A04430	F	115	50	3.0	40
B443.0	A24430	F	115	40	3.0	40
512.0	A05120	F	115	70		50
514.0	A05140	F	150	60	6.0	50
520.0	A05200	T4	290	150	12.0	75
535.0	A05350	F	240	125	9.0	70
705.0	A07050	T5	205	115 ^H	5.0	65
707.0	A07070	T7	205 255	205 ^H	1.0	80
710.0′	A07100	T5	220	140	2.0	75
712.0'	A07120	T5	235	170 ^H	4.0	75
713.0	A07130	T5	220	150	3.0	75
771.0	A07710	T5 <	290	260	1.5	100
771.0	7107710	T51	220	185	3.0	85
		T52	250	205	1.5	85
		T52 T6 T71	290	240	5.0	90
		T71	330	310	2.0	120
850.0	A08500	TISO	110	G	5.0	45
851.0 ⁷	A08510	TS.	115	G	3.0	45
852.0 ⁷	A08520	NT5	165	125	3.0 G	60

Alf agreed upon between the manufacturer and the purchaser, other mechanical properties may be obtained by other heat treatments such as annealing, aging, or stress relieving.

17. Repairing of Castings—Produced for Governmental and Military Agencies

17.1.1 When welding is permitted, it shall be done by methods suitable for the particular alloy. Welding methods

17.1 Welding:

^B Temper designations:

F As fabricated.

O Annealed.

T1 Cooled from an elevated temperature shaping process and naturally aged to a substantially stable condition.

T4 Solution heat-treated and naturally aged to a substantially stable condition.

T5 Cooled from an elevated temperature shaping process and then artificially aged.

T6 Solution heattreated and then artificially aged

T7 Solution heat-treated and stabilized.

Additional digits, the first of which shall not be zero, may be added to designation T1 through T10 to indicate a variation in treatment that significantly alters the characteristics of the product.

 $^{^{\}it C}$ For explanation of the SI unit "MPa" see Appendix X2.

^D For information only, not required for acceptance.

E ASTM alloy designations are recorded in Practice B275. Formerly designated as 222.0-T2 and 242.0-T21.

Yield strength to be determined only when specified in the contract or purchase order.

^{710.0} formerly A712.0, 712.0 formerly D712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

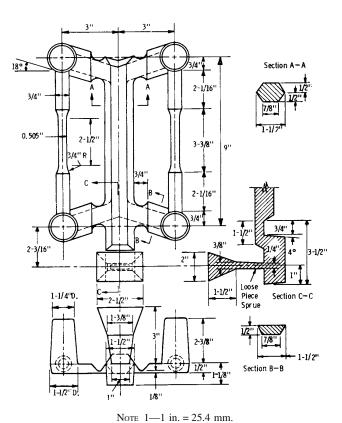


FIG. 1 Tension Test Specimen Casting

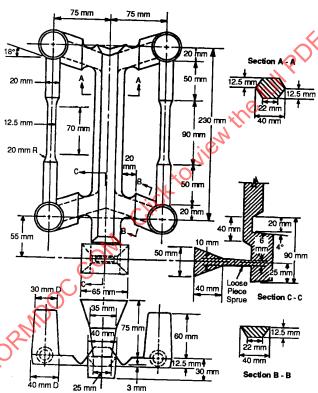


FIG. 2 Tension Test Specimen Casting [Metric]

shall be in accordance with such specifications as are referenced on the applicable drawings, or as are required by the contract or order.

- 17.1.2 All welding shall be done by qualified welders approved by the purchaser.
- 17.1.3 When castings are to be supplied in the heat-treated condition, they shall be heat treated to the required temper after welding, except that small arc welds may be performed without subsequent heat treatment upon approval of the purchaser.
- 17.1.4 Unless otherwise specified, castings that have been repaired by welding shall have the welded areas examined radiographically after all reworking and heat treatment have been completed.
- 17.1.5 All welds shall be free of cracks, excess gas, porosity, lack of fusion and meet the same quality requirements as the parent material.
- 17.1.6 Welded castings shall be marked with a symbol of three concentric circles with a letter or number designating the welder adjacent to the symbol The outer circle of the symbol shall be not larger than ½ in [6 mm] in outside diameter. All welded areas shall be encircled with a ring of white paint prior to submission for final inspection.
- 17.1.7 Naval Shipboard Applications—Repair welding of castings used in Naval shipboard pressure vessels, piping systems and prachinery shall be performed in accordance with requirements for repair of castings specified in NAVSEA Technical Publication S9074-AR-GIB-010/278.
- Impregnation—When impregnation is permitted, it shall be to correct general seepage leaks only and shall not be used to correct poor foundry technique or significant porosity. It shall be accomplished in accordance with MIL-STD-276. Unless otherwise authorized by the purchaser, castings which have been impregnated shall be marked "IMP."
- 17.3 Peening—When peening is permitted, it shall be to correct localized minor seepage leaks and small surface imperfections only, or to disclose subsurface voids for purpose of inspection. Peening will not be permitted to repair cracks, cold shuts, shrinks, misruns, defects due to careless handling, or other similar major defects. Peening may be accomplished either hot or cold and shall be performed by methods which are acceptable to the purchaser. Peened castings shall be marked with Maltese cross approximately ½ in. [6 mm] high.
- 17.4 *Blending*—Blending with suitable grinders or other tools will be permitted for the removal of surface imperfections only, and shall not result in dimensions outside the tolerances shown on the applicable drawing.

18. Source Inspection

- 18.1 If the purchaser elects to make an inspection of the casting at the producer's works, it shall be so stated in the contract or order.
- 18.2 If the purchaser elects to have inspection made at the producer's works, the producer shall afford the inspector all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. All tests and inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

ASME BPVC.II.B-2023

19. Foundry Inspection

- 19.1 Requirements such as surface finish, parting line projections, snagging projections where gates and risers were removed, and so forth, may be checked visually. It is advisable to have agreed-upon observational standards representing both acceptable and unacceptable material.
 - 19.2 *Liquid Penetrant Inspection*:
- 19.2.1 When specified, liquid penetrant inspection shall be in accordance with Test Method E165, and the required sensitivity shall be specified.
- 19.2.2 Acceptance standards for discontinuities shall be agreed upon, including size and frequency per unit area and location.
 - 19.3 Radiographic Inspection:
- 19.3.1 Radiographic inspection shall be in accordance with Guide E94 and Film Reference Radiographs E155.
- 19.3.2 When agreed upon between the manufacturer and purchaser digital radiographic inspection shall be in accordance with Guide E94 and Digital Reference Radiographs E2422.
- 19.3.3 Radiographic acceptance shall be in accordance with requirements selected from Table 3. Any modifications of this table and the frequency per unit area and location should also be agreed upon.
- 19.3.4 The number, film size, and orientation of radiographs and the number of castings radiographically inspected shall be agreed upon between the manufacturer and purchaser.

20. Rejection and Rehearing

- 20.1 Castings that show unacceptable defects revealed by operations subsequent to acceptance and within an agreed time may be rejected, and shall be replaced by the producer.
- 20.2 In the case of dissatisfaction regarding rejections based on chemical composition and mechanical properties specified in Section 7 and 10, respectively, the producer may make claim for rehearing as the basis of arbitration within a reasonable time after receipt by the producer of the rejection notification.

21. Certification

21.1 'The producer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. In "addition, "cm' vguv't gr qt vu't gs wkt gf "d {" vj ku'ur ge/" ification shall be supplied with the certification.

22. Identification and Repair Marking—Castings **Produced for Government and Military Agencies**

22.1 Identification—Unless otherwise specified, each casting shall be marked with the applicable drawing or part number. The marking shall consist of raised Arabic numerals,

- and when applicable capital letters, cast integral. The location of the identification marking shall be as specified on the applicable drawing. When the location is not specified on the drawing, the drawing/part number shall be placed in a location mutually agreeable to the purchaser and producer.
- 22.1.1 Lot Identification—When practicable, each casting shall also be marked with the melt of inspection lot number.
- 22.2 Lot—A lot shall consist of all of the cleaned castings poured from the same heat or melt when subsequent heat treatment is not required.
- 22.2.1 When the castings consist of alloys which require heat treatment, the lot shall consist of all castings from the same melt or heat which have been heat treated in the same furnace charge, or if heat treated in a continuous furnace, all castings from the same melt or heat that are discharged from the furnace during a 4-h period.
- 22.3 Repair Markings—All identification markings indicating repairs as specified in 17.16, 17.2, and 17.3, shall be made with a waterproof marking fluid.

23. Packaging, Marking, and Shipping

- 23.1 The material shall be packaged in such a manner as to prevent damage in ordinary handling and transportation. The type of packaging and gross weight of individual containers shall be left to the discretion of the producer unless otherwise agreed upon. Packaging methods and containers shall be so selected as to permit maximum utility of mechanical equipment in unloading and subsequent handling. Each package or container shall contain only one size, alloy, and temper of material when packaged for shipment unless otherwise agreed upon.
- 23.2 Each package or container shall be marked with the purchase order number, drawing number, quantity, specification number, alloy and temper, gross and net weights, and the name of the producer.
- 23.3 Packages or containers shall be such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the point of delivery.
- 23.4 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 or Practice D3951 for civil agencies and MIL-STD-129 for military agencies.

24. Keywords

24.1 aluminum; sand casting

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgement of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain

refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

	Less than 0.001 %	0.000X
	0.001 to but less than 0.01 %	0.00X
	0.01 to but less than 0.10 %	
	Unalloyed aluminum made by a refining process	0.0XX
	Alloys and unalloyed aluminum not made by a refining	
	process	0.0X
	0.10 through 0.55 %	0.XX
1	It is customary to express limits of 0.30 through 0.55 %	
	as 0.X0 or 0.X5.)	
1	Over 0.55 %	0.X, X.X, and so
•		forth

(except that combined Si + Fe limits for 99.00 % min imum aluminum must be expressed as 0.XX or 1 XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.
- Note A2.2—Aluminum is specified as minimum for unalloyed aluminum and as a remainder for aluminum alloys.

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc. com. chek to her the full poly of a sent above.

TABLE X1.1 Properties and Characteristics

NOTE 1—1 indicates best of group, 5 indicates poorest of group.

7 4444444				ance to	Pressure	Fluid-	Shrink-	Too!	ance to	Machin-			ing (Ap-	Oxide	at Ele-	ity for	Sultabil-	6M
	SNO	in./ft [mm/m]	Range, B °F [°C]	c	Tightness	ity^D	age Tend- ency ^{\mathcal{E}}	Treated	Corro- sion ^F	ing ^{<i>G</i>}	. Hgui	plating/	pear- ance) ^J	(Protection) ^K	vateu Tempera- ture ^L	Weld- ing ^M	Brazing ^N	
	A02010	[13]	1060–1200 [571–649]	4 -	е	e с	4 -	yes	4 -		- 0	ļ ,	0.0	0.4		4 -	ou :	
	A02420	%32 [13] 5%3 [13]	965-1200 [529-649]	1 4	റ ന	ი ო	4 4	yes V o	1 4	- 0	N 0		o e	1 4		4 4	2 2	
	A02950	5/32 [13]	970-1190 [521-643]	4	4	က	. ო	sex	. ო	ı 0	ı N	-	0 0	. ო	. თ	. ო	2 02	
	A03190	5/32 [13]		2	2	2	2	yes	က	က	4	2	4	က	ო	2	OU	
0	A03280	5/32 [13]	960-1135 [516-613]	- -	-	-	-	yes	က	4	2	7	4	7	7	7	ou	
_	A03550	5/32 [13]	1015-1150 [546-621]	<u>-</u> `	-	-	-	yes	က	က	က	-	4	7	0	0	OU	
	A33550	5/32 [13]	1015-1150 [546-621]	'i	-	_	-	yes	က	က	က	-	4	N	N	0	OU	
	A03560	%2 [13]	1035-1135 [557-613]	2	-		-	yes	2	4	2	N	4	N	က	N	ou	
_	A13560	%2 [13]	1035-1135 [557-613]	-	- 1	-	-	yes	7	4	2	N	4	N	ო	N	ou	
	A04430	5 ₃₂ [13]	1065-1170 [574-632]	-	*	-	-	ou	က	2	2	N	2	0	4	-	<u>t</u> q	
_	A24430	5/32 [13]	1065-1170 [574-632]	-	?	-	-	ou	7	2	2	7	2	0	4	-	Itd	
514.0 AC	A05140	5%2 [13]	1110-1185 [599-640]	4	2	2	2	no	-	-	-	2	-	-	Ø	4	OU	
520.0 AC	A05200	1/10 [8]	840-1120 [449-604]	0	2	4	2	yes	-	-	-	4	-	-	۵	2	OU	
	A05350	5/32 [13]	1020-1165 [549-629]	ဗ	2	10	2	OU	-	-	-	2	-	-	ო	4	ou	
705.0 AC	A07050	%e [16]	1105-1180 [596-638]	2	က	4	4	aged	2	-	-	က	2	7	S	4	yes	
	į				•)		only	•	,	,		•	•				
707.0 AC	A07070 A07100	%e [16] %e [16]	1085-1165 [585-629] 1105-1195 [596-646]	אט	നന	4 4	4	yes	N V			თ ი	N V	N E	ט ע	4 4	yes	E Bl
)	0	r	, (only	1	-	-	1	1))	r	50	
712.0 ^Q AC	A07120	%e [16]	1110–1185 [599–641]	2	က	4) ⁴	aged	Ø	-	-	Ø	0	က	2	4	yes	
713.0 AC	A07130	% [16]	1100–1185 [593–641]	2	က	4	4	aged	0	-	-	Ø	8	ო	2	4	yes	
								Mo										
771.0 AC 850.0 AC	A07710 A08500	%ь [16] %г [13]	1120–1190 [604–643] 435–1200 [224–649]	വവ	വ	4 0	4 6	yes	0 0			വര	o 4	01 10	7 Q	4 r	yes	-5
851.0 ^Q AC	A08510	5/32 [13]	440–1165 [227–629]	4	4	2	4	only aged	Se	-	-	2	4	5	٩	2	OL	
								only	7,	. (
852.0 ^Q A(A08520	5/32 [13]	400–1175 [204–635]	2	2	2	2	aged	ဇ	- \\ - \\	-	2	4	2	۵	2	OU	
Allowances for ave B Temperatures of sc Cability of alloy to w Cability of alloy to w Cability of alloy to w Cability of alloy to work of Composite rating b may have lower rating. Homposite rating b May have lower rating of Composite rating b May have lower rating. Hated on casting to Sating based on the Mased on ability of Mased on ability of Mased on ability of Mased on ability of Mased on a withability of ASTM alloy design Pot recommended O710.0 formerly A71	or average or average or of solids is of solids in volume atting based rating. Atting based rating to the properties of the solid or	castings. Shri and liquids are and ilquids are and contraction flow readily in see in standard I on ease and and hold an e lor, brightness stance of coal and yield streamed to be fust all to be fust all to be fust all to be fust and to be fust all to be fust and see recorder and see recorder and recorder and see recorder and to fust to formerly 712.0 formerly	Allowances for average cashings. Strindege requirements will vary with intricacy of design and dimensions. Allowances for average cashings. Strindege requirements will vary with intricacy of design and dimensions. Allowances for average cashings. Strindege requirements will vary with intricacy of design and dimensions. Allow present in contraction areasses white cooling through hot-short or brittle-temperature range. Allowing of latious to five readarly in mode and fill thin sections. Peaced on alloy townstand round reasons white conjugation of the properties of amount of compensations of the readarly teat. Peaced on alloy through a self-stray test. Composite rating based on ease of usuality of finish, and tool life. Ratings, in the case of heat-treatable alloys, based on a recompensation of an electroplate applied by present standard methods. In the case of heat-treatable alloys, based on a recompensation of the properties of profile and peaced on ease and speed of polishing and quality of finish, provided by ypical polishing procedure. Allowing to casting to take and hold are electroplate applied by present standard methods. Allowing the casting to be tristen of corresion. Fated on regiment of the straight as attemptive of corresion. Fated on committed resistance of contringent or be tristen on welface with filler rod of same alloy. Allowed the present of the properties without excessive distortion or melting. For the recommended for service at elevated temperatures. Or 10.0 formerly 2712.0, 712.0 formerly 2650.0 852.0 formerly 8850.0.	vary with in eratures w through hot s. s. suure of arr ar. s, quality of fir asent stant anodized c rrosion. To 500°F of same all without ex.	utricacy of dill be higher the higher or br nount of corn finish, and alard method coating application.	esign and ittle-tempe repensating tool life. R d by typics is a prolong or tropic or tropics or tropics.	dimension: rature rang feed meta al polishing ed heating.	aged only s. Je case of the case of the procedure. ectrolyte.	n form of ris	sers.	w o passed on g	o Great Control of the Control of th	er. Other fe	Other tempers, particularly the annealed temper,	icularly the	annealed t	emper.	

X2. SI UNITS

X2.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI) (IEEE/ASTM SI 10). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit

for pressure or stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

X3. INACTIVE ALLOYS

X3.1 Alloys listed as inactive by the Aluminum Association—208.0 and 222.0. Listing the composition limits, mechanical properties, and characteristics of the alloys is a

method of preserving this data should it be needed at some future date.

TABLE X3.1 Chemical Composition Limits-Inactive Alloys

Note 1—All applicable notes and footnotes can be found in Table 1

A	lloy					Compos	ition, (Values	in Weight Perc	ent)	O			Oth	ers
ANSI	UNS	Aluminum	Silicon	Iron	Copper	Man- ganese	Magne- sium	Chromium	Nickel	Zinc	Tin	Titanium	Each	Total
208.0	A02080	remainder	2.5-3.5	1.2	3.5-4.5	0.50	0.10		0.35	1.0		0.25		0.50
222.0	A02220	remainder	2.0	1.5	9.2-10.7	0.50	0.15-0.35	//	0.50	8.0		0.25		0.35

TABLE X3.2 Tensile Requirements (Inch-Pound Units)-Inactive Alloys

Note 1—All applicable notes and footnotes can be found in Table 2.

					3000		T : 15: "!!
AN	Alloy	UNS	Temper	Tensile Strength, min, ksi	Yield Strength (0.2 % offset), min, ksi	Elongation in 2 in. or 4 x diameter, min, %	Typical Brinell Hard ness, 500 kgf, 10 mm
20 22	8.0 2.0	A02080 A02220	F O T6	19.0 (131) 23.0 (159) 30.0 (207)	120 (83)	1.5	55 80 115
				aOF			
				(S)			
			13/10.				
			lies				
		X	0				
		Click					
		ν.· Ο,					
	0	7/					
)						
apple							
70K							
71.							
NEWORMID!							

		Suitabil- ity for Brazing ^N	00	PVC.II.B. (ASME BPVC Section II Part B) 209
		Suitabil- ity for Weld- ing ^M	0.4	*BJO
		Strength at Ele- vated Tempera- ture ^L	e +	All Park
		Chemical Oxide Coating (Protec- tion) ^K	ω 4	section.
		Anodiz- ing (Ap- pear- ance) ^J	ကက	SPVC -
		Electro- plating [/]	N +	SINE
e Alloys		. Polish- ing ^H	ю 0	NB (R
s–Inactiv		Machin- ing ⁶	e –	PAC'I
acteristic		Resistance to Corrosion ^F	4 4)`
and Char		Normally Heat Treated	yes	
operties (P	Solidi- fication Shrink- age Tend- ency ^E	0 0	
3.3. Pro	1.	Fluid- ity ^D	Nω	
TABLEX	oup. Table X1.	Pressure Tightness	0 0	
ick to	orest of gr e found in	Resistance to Hot Crack-ing C	ию	
Circles and Characteristics—Inactive Alloys	roup, 5 indicates pox and footnotes can be	Approximate Melting Range, ^{B °} F [°C]	970-1160 [521-627] 965-1155 [518-624]	
ORMO	icable notes	Pattern Shrinkage Allowance, ^A in./ft [mm/m]	5/32 [13] 5/32 [13]	
CMEN	—1 indica —All appl	SNU %	A02080 A02220	
	Note 1. Note 2-	Allc	208.0	
		16		

JC Section II part B 202 SB-42 (Identical with ASTM Specification P42-20 except the certification and mill test reports have been made mandatory, and nondestructive testing is required for all diameters.)

(23)

Specification for Seamless Copper Pipe, Standard Sizes

1. Scope

- 1.1 This specification establishes the requirements for seamless copper pipe in all nominal or standard pipe sizes, both regular and extra-strong, suitable for use in plumbing, boiler feed lines, and for similar purposes.
- 1.2 *Units*—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.
- 1.3 The following safety hazard caveat pertains only to the test methods described in this specification.
- 1.3.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes

- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- 2.2 ASME Code:

ASME Boiler and Pressure Vessel Code

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification as applicable:
 - 4.1.1 ASTM designation and year of issue;
- 4.1.2 Copper UNS No. designation, if required, (see Chemical Composition section);
 - 4.1.3 Temper (see Temper section and Table 2);

- 4.1.4 Pipe size, regular or extra-strong (see Dimensions section and Table 3);
 - 4.1.5 Length (see 10.3) if different than standard; and
- 4.1.6 Quantity—total weight, or total length or number of pieces of each size.
- 4.2 The following options are available, but may not be included unless specified at the time of placing of the order when required:
 - 4.2.1 DELETED
- 4.2.2 If product is required for bending (see 6.2) and the temper to be furnished;
 - 4.2.3 DELETED
 - 4.2.4 DELETED
- 4.2.5 Hydrostatic test, if required (see Nondestructive Testing section);
- 4.2.5.1 If hydrostatic test pressure above 1000 psi is required;
- 4.2.6 Pneumatic test, if required (see Nondestructive Testing section);
- 4.2.7 If product is purchased for agencies of the U.S. Government (see the Other Requirements section of this specification); and
- 4.2.8 If specification number is required to be shown on each shipping unit (see Packaging and Package Marking section).

5. Chemical Composition

5.1 The material shall conform to the following chemical requirements:

Copper (incl silver), min, % 99.9 Phosphorus, max, % 0.04

- 5.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified in Table 1.
- 5.2 The pipe shall be produced from one of the following coppers, and unless otherwise specified any one of them is permitted to be furnished:

Copper UNS No.	Previously Used Designation	Type of Copper
C10200	OF	Oxygen-free without residual deoxidants
C10300	-110,	Oxygen-free, extra-low phosphorus
C10800	('),	Oxygen-free, low phosphorus
C12000	DLP	Phosphorized, low residual
•		phosphorus
C12200	DHP	Phosphorized, high residual
۵)،	•	phosphorus

TABLE 1 Chemical Requirements

Copper UNS No.	Copper (incl Silver), min, %	Phosphorus, %
C10200 ^A	99.95	
C10300	99.95 ^B	0.001 to 0.005
C10800	99.95 ^B	0.005 to 0.012
C12000	99.90	0.004 to 0.012
C12200	99.9	0.015 to 0.040

^A Oxygen in C10200 shall be 10 ppm max.

- 5.3 When the copper UNS No. designation is specified, the material shall conform to the chemical requirements specified in Table 1.
- 5.4 These composition limits do not preclude the presence of other elements. By agreement between manufacturer or supplier and purchaser, limits may be established and analysis required for unnamed elements.

6. Temper

- 6.1 The standard tempers as prescribed in Classification B601, for products described in this specification are:
 - 6.1.1 Annealed O61,
 - 6.1.2 Light Drawn H55, and
 - 6.1.3 Hard Drawn H80.
- 6.2 When pipe is required for bending, it shall be so specified in the purchase order, and the pipe shall be furnished in the temper agreed upon between the manufacturer or supplier and the purchaser

7. Mechanical Property Requirements

- 7.1 Tensile Strength Requirements:
- 7.1.1 Product furnished under this specification shall conform to the tensile requirements prescribed in Table 2, when tested in accordance with Test Methods E8/E8M.

8. Performance Requirements

- **8.1.** Expansion Test:
- 8.1.1 Pipe ordered in the annealed (O61) temper, selected for test, shall withstand an expansion of 25 % of the outside diameter when expanded in accordance with Test Method B153. The expanded pipe shall show no cracking or rupture visible to the unaided eye. Pipe ordered in the drawn tempers H55 or H80 are not subject to this test.
- Note 1—The term "unaided eye," as used herein, permits the use of corrective spectacles necessary to obtain normal vision.
 - 8.2 Flattening Test:
- 8.2.1 As an alternative to the expansion test for pipe over 4 in. (102 mm) in diameter in the annealed temper, a flattening test in accordance with Test Method B968/B968M shall be performed.
 - 8.3 Microscopical Examination:
- 8.3.1 The pipe shall be made from copper that is free of cuprous oxide as determined by microscopical examination in accordance with Method A of Test Methods B577 at a 75× magnification.

TABLE 2 Tensile Requirements

Temper	Designation	Pipe Size Nominal or	Tensile Strength,	Yield Strength, ^C min.
Code	Name	Standard, in.	min, ksi ^A (MPa) ^B	ksi ^A (MPa) ^B
O61	annealed	all	30 (205)	9 (60) ^D
H80	hard drawn	1/8 −2, incl	45 (310)	40 (275)
H80	hard drawn	over 2	38 (260)	32 (220)
H55	light drawn	2-12, incl	36 (250)	30 (205)

^A ksi = 1000 psi.

^B Copper + silver + phosphorus.

^B See Appendix X1.

^C At 0.5 % extension under load.

^D Light-straightening operation is permitted.

8.3.2 When Copper UNS No. C12200 is supplied, microscopical examination for cuprous oxide is not required.

9. Other Requirements

- 9.1 Nondestructive Testing:
- 9.1.1 The material shall be tested in the final size but is permitted to be tested before the final anneal or heat treatment, when these thermal treatments are required, unless otherwise agreed upon by the manufacturer or supplier and purchaser.
- 9.1.2 The eddy current test, the hydrostatic test, or the pneumatic test shall be conducted on each tube at the manufacturer*s option. The requirements of Section 12 do not apply.
- 9.2 Eddy-Current Test—Testing shall follow the procedures of Practice E243, except for determination of "end effect." The material shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the material for the intended application.
- 9.2.1 Notch-depth standards rounded to the nearest 0.001 in. (0.025 mm) shall be 10 % of the nominal wall thickness. The notch depth tolerance shall be ± 0.0005 in. (0.013 mm). Alternatively, when a manufacturer uses speed-insensitive equipment that allows the selection of a maximum imbalance signal, a maximum imbalance signal of 0.3 % is permitted to be used.
- 9.2.2 Material that does not actuate the signaling device of the eddy-current test shall be considered as conforming to the requirements of this test. Material with discontinuities indicated by the testing unit is permitted to be re-examined or retested, at the option of the manufacturer, to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil, or moisture shall not be cause for rejection of the material provided the dimensions of the material are still within prescribed limits and the material is suitable for its intended application.
- 9.3 Hydrostatic Test—The material shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 6000 psi (41 MPa), determined by the following equation for thin hollow cylinders under tension. The material need not be tested at a hydrostatic pressure of over 1000 psi (6.9 MPa) unless so specified.

$$P = 2St/(D - 0.8t)$$
 (1)

where:

P = hydrostatic pressure, psi (or MPa);

t = wall thickness of the material, in. (or mm);

D = outside diameter of the material in. (or mm); and

S = allowable stress of the material, psi (or MPa).

9.4 Pneumatic Test—The material shall be subjected to an internal air pressure of 60 psi (415 kPa) minimum for 5s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the material under water or by the pressure-differential method. Any evidence of leakage shall be cause for rejection.

9.5 Purchases for U.S. Government—If the product is purchased for agencies of the U.S. Government, when specified in the contract or purchase order, the product furnished shall conform to the conditions specified in the Supplementary Requirements of this specification.

10. Dimensions and Permissible Variations

- 10.1 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the limiting values for any dimensions shall be sufficient cause for rejection.
- 10.2 Standard Dimensions, Wall Thickness, and Diameter Tolerances—The standard dimensions, wall dischess, and diameter tolerances shall be in accordance with Table 3.
- 10.3 Length and Length Tolerances—The standard length of copper pipe is 12 ft (3.66 m) with a tolerance of $\pm \frac{1}{2}$ in. (13 mm).
 - 10.4 Roundness:
- 10.4.1 For pipe of H (drawn) empers in straight lengths, the roundness tolerances shall be as follows:

t/d (ratio of	Roundness Tolerances as Percent of Outside Diameter
Wall Thickness to	(Expressed to the Nearest
Outside Diameter)	0.001 in. (0.025 mm))
0.01 to 0.03, incl	1.5
Over 0.03 to 0.05, incl	1.0
Over 0.05 to 0.10, incl	0.8
Over 0.10	0.7

- 10.4.2 Compliance with the roundness tolerance shall be determined by taking measurements on the outside diameter only, irrespective of the manner in which the pipe dimensions are specified.
- 10.4.3 The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube.
- 10.5 Squareness of Cut—The departure from squareness of the end of any pipe shall not exceed the following:

Outside Diameter, in. (mm)	Tolerance
Up to 5/8 (15.9), incl	0.010 in. (0.25 mm)
Over 5/8 (15.9)	0.016 in./in. (0.016 mm/mm) of diameter

10.6 Straightness Tolerance—For pipe of H (drawn) tempers of nominal pipe sizes from ½ to 12 in. inclusive, the maximum curvature (depth of arc) shall not exceed ½ in. (13 mm) in any 10 ft portion of the total length. For H temper pipe of other sizes, and for the O61 (annealed) temper, no numerical values are established; however, the straightness of the pipe shall be suitable for the intended application.

11. Workmanship, Finish, and Appearance

11.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable. It shall be well cleaned and free of dirt.

12. Sampling

12.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:

TABLE 3 Standard Dimensions, Weights, and Tolerances

Note 1-All tolerances plus and minus except as otherwise indicated.

Nominal or Standard Pipe Size, in.	Outside Diameter, in. (mm)	Average Outside Diameter Tolerance, ^A in. (mm) All Minus	Wall Thickness, in. (mm)	Tolerance, ^B in. (mm)	Theoretical Weight, lb/ft (kg/m)
			Regular		
1/8	0.405 (10.3)	0.004 (0.10)	0.062 (1.57)	0.004 (0.10)	0.259 (0.385)
1/4	0.540 (13.7)	0.004 (0.10)	0.082 (2.08)	0.005 (0.13)	0.457 (0.680)
3/8	0.675 (17.1)	0.005 (0.13)	0.090 (2.29)	0.005 (0.13)	0.641 (0.954)
1/2	0.840 (21.3)	0.005 (0.13)	0.107 (2.72)	0.006 (0.15)	0.955 (1.42)
3/4	1.050 (26.7)	0.006 (0.15)	0.114 (2.90)	0.006 (0.15)	1.30 (1.93)
1	1.315 (33.4)	0.006 (0.15)	0.126 (3.20)	0.007 (0.18)	1.82 (2.71)
11/4	1.660 (42.2)	0.006 (0.15)	0.146 (3.71)	0.008 (0.20)	2.69 (4.00)
11/2	1.900 (48.3)	0.006 (0.15)	0.150 (3.81)	0.008 (0.20)	3.20 (4.76)
2	2.375 (60.3)	0.008 (0.20)	0.156 (3.96)	0.009 (0.23)	4.22 (6.28)
21/2	2.875 (73.0)	0.008 (0.20)	0.187 (4.75)	0.010 (0.25)	6.12 (9.11)
3	3.500 (88.9)	0.010 (0.25)	0.219 (5.56)	0.012 (0.30)	8.76 (13.0)
31/2	4.000 (102)	0.010 (0.25)	0.250 (6.35)	0.013 (0.33)	11.4 (17.0)
4	4.500 (114)	0.012 (0.30)	0.250 (6.35)	0.014 (0.36)	12.9 (19.2)
5	5.562 (141)	0.014 (0.36)	0.250 (6.35)	0.014 (0.36)	16.2 (24.1)
6	6.625 (168)	0.016 (0.41)	0.250 (6.35)	0.014 (0.36)	19.4 (28.9)
8	8.625 (219)	0.020 (0.51)	0.312 (7.92)	0.022 (0.56)	31.6 (47.0)
10	10.750 (273)	0.022 (0.56)	0.365 (9.27)	0.030 (0.76)	46.2 (68.7)
12	12.750 (324)	0.024 (0.61)	0.375 (9.52)	0.030 (0.76)	56.5 (84.1)
			tra Strong		
1/8	0.405 (10.3)	0.004 (0.10)	0.100 (2.54)	0.006 (0.15)	0.371 (0.552)
1/4	0.540 (13.7)	0.004 (0.10)	0.123 (3.12)	0.007 (0.18)	0.625 (0.930)
3/8	0.675 (17.1)	0.005 (0.13)	0.127 (3.23)	0.007 (0.18)	0.847 (1.26)
1/2	0.840 (21.3)	0.005 (0.13)	0.149 (3.78)	0.008 (0.20)	1.25 (1.86)
3/4	1.050 (26.7)	0.006 (0.15)	0.157 (3.99)	0.009 (0.23)	1.71 (2.54)
1	1.315 (33.4)	0.006 (0.15)	0.182 (4.62)	0.010 (0.25)	2.51 (3.73)
11/4	1.660 (42.2)	0.006 (0.15)	0.194 (4.93)	0.010 (0.25)	3.46 (5.15)
11/2	1.900 (48.3)	0.006 (0.15)	0.203 (5.16)	0.011 (0.28)	4.19 (6.23)
2	2.375 (60.3)	0.008 (0.20)	0.221 (5.61)	0.012 (0.30)	5.80 (8.63)
21/2	2.875 (73.0)	0.008 (0.20)	0.280 (7.11)	0.015 (0.38)	8.85 (13.2)
3	3.500 (88.9)	0.010 (0.25)	0.304 (7.72)	0.016 (0.41)	11.8 (17.6)
31/2	4.000 (102)	0.010 (0.25)	0.321 (8.15)	0.017 (0.43)	14.4 (21.4)
4	4.500 (114)	0.012 (0.30)	0.341 (8.66)	0.018 (0.46)	17.3 (25.7)
5	5.562 (141)	0.014 (0.36)	0.375 (9.52)	0.019 (0.48)	23.7 (35.3)
6	6.625 (168)	0.016 (0.41)	0.437 (11.1)	0.027 (0.69)	32.9 (49.0)
8	8.625 (219)	0.020 (0.51)	0.500 (12.7)	0.035 (0.89)	49.5 (73.7)
10	10.750 (273)	0.022 (0.56)	0.500 (12.7)	0.040 (1.0)	62.4 (92.9)

A The average outside diameter of a tube is the average of the maximum and minimum outside diameters as determined at any one cross section of the pipe.

^B Maximum deviation at any one point.

12.1.1 Lot Size—The lot size shall be as follows:

Pipe Size, in.
Up to 1½, incl
Over 1½ to 4, incl
Over 4

Lot Weight, lb (kg)
5 000 (2270) or fraction thereof
10 000 (4550) or fraction thereof
40 000 (18 100) or fraction thereof

12.1.2 *Portion Size* Sample pieces shall be taken for test purposes from each of according to the following schedule:

Number of Pieces in Lot 1 to 50 1 1 2 2 2 201 to 1500 0.2 % of total number of pieces in the lot, but not to exceed ten sample pieces

Each sample piece shall be taken from a separate tube.

13. Number of Tests and Retests

13.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, and so forth shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 12.1.2 and combined into one composite sample. The

minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.

- 13.1.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semifinished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 13.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 13.1.1.2 When samples are taken from the semifinished product, a sample shall be taken to represent each 10 000 lb (4550 kg) or fraction thereof, except that not more than one sample shall be required per piece.

- 13.1.1.3 Because of the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 13.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 13.2 Rotosts
- 13.2.1 If any test specimen shows defective machining or develops flaws, it shall be discarded and another specimen substituted.
- 13.2.2 If a bend test specimen fails because of conditions of bending more severe than required by the specification, a retest shall be permitted on a new sample piece or on the remaining portion of the first sample piece.
- 13.2.3 If the results of the test on one of the specimens fail to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements. Failure of more than one specimen to meet the specified requirements for a particular property shall be cause for rejection of the entire lot.
- 13.2.4 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from additional pieces selected in accordance with 12.1. The results of this retest shall comply with the specified requirements.

14. Test Methods

- 14.1 Chemical Analysis:
- 14.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published methods, some of which may no longer be viable, which along with others not listed, may be used subject to agreement:

Test ASTM Designation^A

Chemical analysis B170,^B E53, E62, E478

^B Reference to Specification B170 is to the suggested chemical methods in the annex thereof. When Committee E01 has tested and published methods for assaying the low-level impurities in copper, the Specification B170 annex will be eliminated.

- 14.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.
- 14.2 The product furnished shall conform to the specified requirements when subjected to test in accordance with the following applicable test methods:

Test	ASTM Designation ^A
Tensile Strength	E8/E8M
Expansion (pin test)	B153
Eddy current	E243
Microscopical Examination	B577
Flattening Test	B968/B968M

^A See 2.1.

- 14.3 Tensile Strength Requirements:
- 14.3.1 Tensile test specimens shall be of the full section of the pipe and shall conform to the requirements of the Specimens for Pipe and Tube section of Test Methods E8/E8M unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M is permitted to be used when a full-section specimen cannot be tested.
- 14.3.2 Whenever tensile test results are obtained from both full-size and machined test specimens and they differ the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.
- 14.3.3 Tensile test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, it is recommended that the rate of stressing to the yield strength not exceed 100 ksi (700 MPa)/min. Above the yield strength, it is recommended that the movement per minute of the testing machine head under load not exceed 0.5 in./in. (0.5 mm/mm) of gage length (or distance between grips for full-section specimens).

15. Significance of Numerical Limits

15.1 For purposes of determining compliance with the specified lumits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property	Rounded Unit for Observed or Calculated Value
Chemical composition	nearest unit in the last right-hand place of figures of the specified limit
Tensile strength Yield strength	nearest ksi (nearest 5 MPa)

16. Inspection

- 16.1 The manufacturer or supplier shall inspect and make tests necessary to verify the furnished product conforms to the specification requirements.
- 16.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector representing the purchaser that the product is being furnished in accordance with the specification shall be included in this agreement. All testing and inspection shall be conducted so as not to interface unnecessarily with the operation of the works.
- 16.3 When mutually agreed upon, the manufacturer or supplier and purchaser shall conduct the final inspection simultaneously.

17. Rejection and Rehearing

- 17.1 Rejection:
- 17.1.1 Product that fails to conform to the specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.

^A See 2.1.

- 17.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 17.1.3 In case of dissatisfaction with results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
 - 17.2 Rehearing:
- 17.2.1 As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification or, alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

18. Certification

18.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and the requirements have been met.

18.2 DELETED

19. Test Report

19.1 A report of test results shall be furnished.

20. Packaging and Package Marking

- 20.1 Packaging:
- 20.1.1 The product shall be separated by size, composition and temper, and prepared for shipment by common carrier in such a manner as to afford protection from the normal hazards of transportation.
 - 20.2 Package Marking:
- 20.2.1 Each package shall be legibly marked with the metal or alloy designation, temper, size, gross and net weight, total length or piece count, or both, and name of supplier. Upon agreement between the purchaser and supplier, the purchase order number shall be indicated on each package or on the shipping documents.
- 20.2.2 When specified in the purchase order or contract, the product specification number shall be shown.

21. Keywords

21.1 copper pipe; extra strong; regular; standard sizes; UNS No. C10200; UNS No. C10300; UNS No. C10800; UNS No. C12000; UNS No. C12200

SUPPLEMENTARY REQUIREMENTS

S1. Scope

S1.1 The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S2. Referenced Documents

- S2.1 The following documents of the issue in effect on date of material purchase form a part of his specification to the extent referenced herein:
 - S2.1.1 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S2.1.2 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) S2.1.3 *Military Standards*:

MIL-STD 129 Marking for Shipment and Storage

MIL-ST0-2073/1 Standard Practice for Military Packaging S2.1/4 SAE Standard:

AMS-STD-185 Identification Marking of Copper and Copper-Base Alloy Mill Products

253. Quality Assurance

S3.1 Responsibility for Inspection:

S3.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S4. Identification Marking

S4.1 All material shall be properly marked for identification in accordance with AMS-STD-185 except that the ASTM specification number and the alloy number shall be used.

S5. Preparation for Delivery

- S5.1 Preservation, Packaging, Packing:
- S5.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, and packed, Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of Practice B900.
- S5.1.2 *Civil Agencies*—The requirements of MIL-STD-2073 shall be referenced for definitions of the various levels of packaging protection.

TABLE S6.1 Part or Identifying Numbers

B42	XXXXXX	XXX	-XX	X	Х	XXX	Х
			Size (S	ee Table 3)		Le	ength
Document	Alloy	Temper	inches	eighths of an	Wall thickness	inches	eighths of an
Identifier	(See Table 1)	(See 6.1)		inch	(R = regular,		inch
					S = extra strong)		

S5.2 Marking:

S5.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S5.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

S6. Part or Identifying Numbers (PINs)

S6.1 Part numbers are essential to maintain the integrity of the Department of Defense cataloging system as multiple National Stock Numbers (NSN) exist for this product. The following information is provided for cross-reference purposes. The pipe previously described in WW-P-377 and MS14302 corresponds to ASTM B42 copper pipe of copper UNS No. C12000 with a regular wall thickness.

S6.2 Part identifying numbers, for government me, shall be formulated by selecting from the options in this specification as shown in Table S6.1.

S6.3 An example of a PIN follows: A part identifying number of B42C12000H80-030R1264 indicates an ASTM B42 pipe of copper UNS No. C12000 in the hard drawn (H80) temper, 3 in. standard pipe size, regular wall thickness, and it is 10 ft $6\frac{1}{2}$ in. (3213 mm) in length.

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared (N = kg·m/s²). The derived SI unit for pressure or

stress is the newton per square metre (N/m^2) , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m^2 and N/mm^2 .

JC Section II part B) 202 SB-43 (Identical with ASTM Specification P43-20 except the certification and mill test reports have been made mandatory, and nondestructive testing is required for all diameters.)

(23)

Specification for Seamless Red Brass Pipe, Standard Sizes

1. Scope

- 1.1 This specification establishes requirements for seamless red brass (Copper Alloy UNS No. C23000) pipe in nominal pipe sizes, both regular and extra-strong. In the annealed temper (O61), the pipe is suitable for use in plumbing, boiler feed lines, and for similar purposes. In the drawn general purpose temper (H58), the pipe is suitable for architectural applications, such as guard railings and stair hand railings.
- 1.2 *Units*—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following hazard caveat pertains only to the test method portion, 9.1.1, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location. (See 9.2.)

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B154 Test Method for Mercurous Nitrate Test for Copper Alloys
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- B950 Guide for Editorial Procedures and Form of Product Specifications for Copper and Copper Alloys
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E112 Test Methods for Determining Average Grain Size
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ASME Code:

ASME Boiler and Pressure Vessel Code

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

4.1 Include the following specified choices when placing orders for product under this specification as applicable:

- 4.1.1 ASTM designation and year of issue;
- 4.1.2 Temper (see Temper section);
- 4.1.3 Pipe size, regular or extra-strong (see Table 1);
- 4.1.4 Length (see 11.3);
- 4.1.5 Quantity—total weight or total length of each size; and
 - 4.1.6 Intended application.
- 4.2 The following options are available but may not be EBRYC Section included unless specified at the time of placing the order when required:
 - 4.2.1 DELETED
 - 4.2.2 DELETED
 - 4.2.3 DELETED

TABLE 1 Standard Dimensions, Weights, and Tolerances

Nominal or Standard Pipe Size, ir	Outside Diameter in (mm)	Average Outside Diameter Tolerances, A in. (mm) All Minus	Wall Thickness, in. (mm)	Tolerance, ^B in. (mm)	Theoretical Weight lb/ft (kg/m)
		Requ	ılar	2	
1/8	0.405 (10.3)	0.004 (0.10)	0.062 (1.57)	0.004 (0.10)	0.253 (0.376)
1/4	0.540 (13.7)	0.004 (0.10)	0.082 (2.08)	0.005 (0.13)	0.447 (0.665)
3/8	0.675 (17.1)	0.005 (0.13)	0.090 (2.29)	0.005 (0.13)	0.627 (0.933)
1/2	0.840 (21.3)	0.005 (0.13)	0.107 (2.72)	0.006 (0.15)	0.934 (1.39)
3/4	1.050 (26.7)	0.006 (0.15)	0.114 (2.90)	0.006 (0.15)	1.27 (1.89)
1	1.315 (33.4)	0.006 (0.15)	0.126 (3.20)	0.007 (0.18)	1.78 (2.65)
11/4	1.660 (42.2)	0.006 (0.15)	0.146 (3.71)	0.008 (0.20)	2.63 (3.91)
11/2	1.900 (48.3)	0.006 (0.15)	0.150 (3.81)	0.008 (0.20)	3.13 (4.66)
2	2.375 (60.3)	0.008 (0.20)	0.156 (3.96)	0.009 (0.23)	4.12 (6.13)
21/2	2.875 (73.0)	0.008 (0.20)	0.187 (4.75)	0.010 (0.25)	5.99 (8.91)
3	3.500 (88.9)	0.010 (0.25)	0.219 (5.56)	0.012 (0.30)	8.56 (12.7)
31/2	4.000 (102)	0.010 (0.25)	0.250 (6.35)	0.013 (0.33)	11.2 (16.7)
4	4.500 (114)	0.012 (0.30)	0.250 (6.35)	0.014 (0.36)	12.7 (18.9)
5	5.562 (141)	0.014 (0.36)	0.250 (6.35)	0.014 (0.36)	15.8 (23.5)
6	6.625 (168)	0.016 (0.41)	0.250 (6.35)	0.014 (0.36)	19.0 (28.3)
8	8.625 (219)	0.020 (0.51)	0.312 (7.92)	0.022 (0.56)	30.9 (46.0)
10	10.750 (273)	0.022 (0.56)	0.365 (9.27)	0.030 (0.76)	45.2 (67.3)
12	12.750 (324)	0.024 (0.61)	0.375 (9.52)	0.030 (0.76)	55.3 (82.3)
47	0.405 (40.0)	Extra S		0.000 (0.45)	0.000 (0.540)
1/8	0.405 (10.3)	0.004 (0.10)	0.100 (2.54)	0.006 (0.15)	0.363 (0.540)
1/4	0.540 (13.7)	0.004 (0.10)	0.123 (3.12)	0.007 (0.18)	0.611 (0.909)
3/8	0.675 (17.1)	0.005 (0.13)	0.127 (3.23)	0.007 (0.18)	0.829 (1.23)
1/2	0.840 (21.3)	0.005 (0.13)	0.149 (3.78)	0.008 (0.20)	1.23 (1.83)
3/4	1.050 (26.7)	0.006 (0.15)	0.157 (3.99)	0.009 (0.23)	1.67 (2.48)
1	1.315 (33.4)	0.006 (0.15)	0.182 (4.62)	0.010 (0.25)	2.46 (3.66)
11/4	1.660 (42.2)	0.006 (0.15)	0.194 (4.93)	0.010 (0.25)	3.39 (5.04)
11/2	1.900 (48.3)	0.006 (0.15)	0.203 (5.16)	0.011 (0.28)	4.10 (6.10)
2	2.375 (60.3)	0.008 (0.20)	0.221 (5.61)	0.012 (0.30)	5.67 (8.44)
21/2	2.875 (73.0)	0.008 (0.20)	0.280 (7.11)	0.015 (0.38)	8.66 (12.9)
3	3.500 (88.9)	0.010 (0.25)	0.304 (7.72)	0.016 (0.41)	11.6 (17.3)
3½	4.000 (102)	0.010 (0.25)	0.321 (8.15)	0.017 (0.43)	14.1 (21.0)
4	4.500 (114)	0.012 (0.30)	0.341 (8.66)	0.018 (0.46)	16.9 (25.1)
5	5.562 (141)	0.014 (0.36)	0.375 (9.52)	0.019 (0.48)	23.2 (34.5)
6	6.625 (168)	0.016 (0.41)	0.437 (11.1)	0.027 (0.69)	32.2 (47.9)
8	8.625 (219)	0.020 (0.51)	0.500 (12.7)	0.035 (0.89)	48.4 (72.0)
10	10.750 (273)	0.022 (0.56)	0.500 (12.7)	0.040 (1.0)	61.1 (90.9)

A The average outside diameter of a tube is the average of the maximum and minimum outside diameters as determined at any one cross section of the pipe.

27

^B Maximum deviation at any one point.

- 4.2.4 Hydrostatic test, if required (see 10.3);
- 4.2.5 Pneumatic test, if required (see 10.4);
- 4.2.6 Residual stress test, if required (Performance Requirements section):
 - 4.2.6.1 Ammonia Vapor Test or Mercurous Nitrate Test;
 - 4.2.6.2 For Ammonia Vapor Test, pH value other than 10;
- 4.2.7 Inclusion of the specification number on the packaging unit (see 19.2); and
- 4.2.8 If product is purchased for agencies of the U.S. Government (see the Supplementary Requirements section of this specification) for additional requirements, if specified.

5. Chemical Composition

5.1 The material shall conform to the following chemical composition requirements:

Copper, %	84.0 to 86.0
Lead, max, %	0.05
Iron, max, %	0.05
Zinc	remainder

- 5.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified above.
- 5.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer or supplier and purchaser, limits may be established and analysis required for unnamed elements.
- 5.2.1 For copper alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of results of all other elements determined and 100 %.
- 5.2.1.1 When all the elements in the table in 5.1 are determined, the sum of the results shall be 99.8 % minimum.

6. Temper

- 6.1 All pipe shall normally be furnished in the 061 (annealed) (see Classification B601) temper.
- 6.2 The pipe is permitted to be furnished in the H58 (drawn general purpose) temper, if agreed upon between the manufacturer and the purchaser. (See Table 2.)

7. Grain Size for Annealed Temper

- 7.1 Grain size shall be the standard requirement for all product in the annealed temper.
- 7.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of a test specimen taken from each of two sample portions, and each specimen shall be within the limits prescribed in 7.3 when determined in accordance with Test Methods E112.

TABLE 2 Tensile Requirements

Temp	er Designation	Tensile Strength,	Yield Strength ^A	Elongation in
Code	Name	min. ksi (MPa)	min. ksi (MPa)	2-in. min. %
O61	Annealed	40.0 (275)	12.0 (85)	35
H58	Drawn general purpose	44.0 (300)	18.0 (125)	

7.3 In the O61 (annealed) temper, the degree of annealing shall be sufficient to produce complete recrystallization with an average grain size not in excess of 0.050 mm.

to the tensile, yield, and elongation requirements (where required) prescribed in Table 2, when tested in accordance with Test Methods E8/E8M

9. Performance Requirements
9.1 Expansi

- 9.1 Expansion Test:
- 9.1.1 Specimens in the O61 (annealed) temper shall withstand an expansion of 25 % of the outside diameter when expanded in accordance with Test Method B 153. The expanded pipe shall show no cracking or rupture visible to the unaided eye. Pipe ordered in the drawn (H) condition is not subject to this test.

Note 1—The term "unaided eye" as used herein, permits the use of corrective spectacles necessary to obtain normal vision.

- 9.1.2 As an alternative to the expansion test for pipe over 4 in. (102 mm) in diameter in the O61 (annealed) condition, a flattening test in accordance with Test Method B968/B968M shall be performed.
 - 9.2 Residual Stress Test:
- 9.2.1 When specified in the contract or purchase order, product of the O61 (annealed) shall be tested for residual stress according to the requirements of Test Method B154 or Test Method B858, and show no signs of cracking.

Warning—Mercury is a definite health hazard. With the Mercurous Nitrate Test, equipment for the detection and removal of mercury vapor produced in volatilization, and the use of protective gloves is recommended.

Note 2—A residual stress test provides information about the adequacy of the stress relief of the material. Tube straightening is a method of mechanical stress relief. Stress relief annealing is a method of thermal stress relief.

10. Other Requirements

- 10.1 Nondestructive Testing—The material shall be tested in the final size but is permitted to be tested prior to the final anneal or heat treatment, when these thermal treatments are required, unless otherwise agreed upon by the manufacturer or supplier and purchaser.
- 10.1.1 Either the eddy current, hydrostatic, or pneumatic test shall be conducted on each tube at the manufacturer's option. The sampling requirements of Section 13 do not apply.
- 10.2 Eddy-Current Test—Testing shall follow the procedures of Practice E243 except for determination of "end effect." The material shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the material for the intended application.
- 10.2.1 Notch-depth standards rounded to the nearest 0.001 in. (0.025 mm) shall be 10 % of the nominal wall thickness. The notch depth tolerances shall be ± 0.0005 in. (0.013 mm). Alternatively, when a manufacturer uses speed

insensitive equipment that allows the selection of a maximum imbalance signal, a maximum imbalance signal of 0.3% is permitted to be used.

10.2.2 Material that does not actuate the signaling device of the eddy-current test shall be considered as conforming to the requirements of this test. Material with discontinuities indicated by the testing unit is permitted to be reexamined or retested, at the option of the manufacturer, to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil or moisture shall not be cause for rejection of the material provided the dimensions of the material are still within prescribed limits and the material is suitable for its intended application.

10.3 *Hydrostatic Test*—The material shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 6000 psi (41 MPa), determined by the following equation for thin hollow cylinders under tension. The material need not be tested at a hydrostatic pressure of over 1000 psi (6.9 MPa) unless so specified.

$$P = 2St/(D - 0.8t)$$

where:

P = hydrostatic pressure, psi (or MPa);

t = wall thickness of the material, in. (or mm);

D = outside diameter of the material in. (or mm); and

S = allowable stress of the material, psi (or MPa).

10.3.1 For material less than ½ in. (12.7 mm) in outside diameter and less than 0.060 in. (1.5 mm) in wall thickness, the test is permitted to be made at the option of the manufacturer by pneumatically testing to the requirements of 10.4.

10.4 *Pneumatic Test*—The material shall be subjected to an internal air pressure of 60 psi (415 kPa) minimum for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the material under water or by the pressure-differential method. Any evidence of leakage shall be cause for rejection.

11. Dimensions and Permissible Variations

11.1 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the limiting values for any dimensions may be cause for rejection.

11.2 Standard Dimensions, Wall Thickness, and Diameter Tolerances—The standard dimensions, wall thickness, and diameter tolerances shall be in accordance with Table 1.

11.3 Length and Length Tolerances—The standard length of red brass pipe is 12 ft (3.66 m) with a tolerance of $\pm \frac{1}{2}$ in. (13 mm).

11.4 Squareness of Cut—The departure from squareness of the end of any pipe shall not exceed the following:

 Outside Diameter, in. (mm)
 Tolerance

 Up to 5/8 (15.9), incl
 0.010 in. (0.25 mm)

 Over 5/8 (15.9)
 0.016 in./in. (0.016 mm/mm)

 of diameter

11.5 Roundness—The roundness tolerance for straight length tubes with a wall thickness to outside diameter ratio of 0.01 to 0.05 (inclusive) shall be 6 % of the nominal outside diameter. For tubes with a wall thickness to outside diameter ratio over 0.05, the roundness tolerance shall be 3 % of the nominal outside diameter.

11.5.1 The measurement for roundness shall be made from the outside diameter. The deviation from roundness is measured as the difference between the major and minor diameters as determined at any one cross section of the tube. The major and minor diameters are the diameters of two concentric circles just enclosing the outside surface of the tube at the cross section.

11.6 Straightness Tolerance—For pipe of H58 (drawn general purpose) temper of Nominal Pipe Sizes from ½ to 12 in. inclusive, the maximum curvature (depth of arc) shall not exceed ½ in. (13 mm) in any 10 ft (3048 mm) portion of the total length. For H58 temper pipe of other sizes, and for the O61 (annealed) temper, no numerical values are established; however, the straightness of the pipe shall be suitable for the intended application.

12. Workmanship, Finish, and Appearance

12.1 The product shall be free of defects, but blemishes of a nature that do not interfere with normal commercial applications are acceptable. It shall be well cleaned and free of dirt.

13. Sampling

13.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:

13.1.1 Lot Size—The lot size shall be as follows:

 Pipe Size, in.
 Lot Weight, lb (kg)

 Up to 1½, incl
 5 000 (2270) or fraction thereof

 Over 1½ to 4, incl
 10 000 (4550) or fraction thereof

 Over 4
 40 000 (18 100) or fraction thereof

13.1.2 *Portion Size*—Sample pieces shall be taken for test purposes from each lot according to the following schedule:

Number of Pieces in Lot	Number of Sample Pieces to be Taken ^A
1 to 50	1
51 to 200	2
201 to 1500	3
Over 1500	0.2 % of total number of pieces
	in the lot, but not to exceed
	10 sample pieces

^A Each sample piece shall be taken from a separate tube.

^{13.1.3} Sampling for Visual and Dimensional Examination—Minimum sampling for visual and dimensional examination shall be as follows:

Lot size (Pieces/lot)	Sample size
2 to 8	Entire lot
9 to 90	8
91 to 150	12
151 to 280	19
281 to 500	21
501 to 1200	27
1201 to 3200	35
3201 to 100 000	38
10 001 to 350 000	46

In all cases, the acceptance number is zero and the rejection number is one. Rejected lots are permitted to be screened and resubmitted for visual and dimensional examination. All defective items shall be replaced with acceptable items prior to lot acceptance.

14. Number of Tests and Retests

- 14.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 13.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 14.1.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 14.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 14.1.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb (4550 kg) or fraction thereof, except that not more than one sample shall be required per piece.
- 14.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 14.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

14.2 Retests

- 14.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.
- 14.2.2 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 14.2.3 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

14.2.4 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from additional pieces selected in accordance with 13.1. The results of this retest shall comply with the specified requirements.

15. Test Methods

15.1 Chemical Analysis:

- 15.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser.
- 15.1.2 The test methods listed below and others not listed may be used, subject to agreement to determine the composition:

	Method
CNE BY	E478 E478 E478 E478
	ENE BP

15.1.3 Test methods to be followed for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.

15.2 Residual Stress Tests:

- 15.2.1 Unless otherwise agreed upon between the manufacturer or supplier and the purchaser, the manufacturer shall have the option of using either the mercurous nitrate test or the ammonia vapor test.
- 5.2.2 *Mercurous Nitrate Test*—The material shall be subjected to test in accordance with Test Method B154.
- 15.2.3 Ammonia Vapor Test—The material shall be subjected to test in accordance with Test Method B858. If the pH value is not specified in the product specification, it shall be established in accordance with agreement between the supplier and purchaser.

15.3 Other Tests:

15.3.1 The product furnished shall conform to specified requirements when subjected to test in accordance with the following table:

Test	ASTM Designation (Section 2)
Grain Size	E112
Tension	E8/E8M
Expansion (pin test)	B153

- 15.4 Tensile Test—Tensile test specimens shall be of the full section of the pipe and shall conform to the requirements of the section, Specimens for Pipe and Tube, of Test Methods E8/E8M, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M is permitted to be used when a full section specimen cannot be tested.
- 15.4.1 Whenever tensile test results are obtained from both full size and from machined test specimens and they differ, the results obtained from full size test specimens shall be used to determine conformance to the specification requirements.

15.4.2 Tensile test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, it is recommended that the rate of stressing to the yield strength not exceed 100 ksi (690 MPa)/min. Above the yield strength it is recommended that the movement per minute of the testing machine head under load not exceed 0.5 in./in. (0.5 mm/mm) of gage length (or distance between grips for full-section specimens).

16. Significance of Numerical Limits

16.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property	Rounded Unit for Observed or Calculated Value
Chemical composition	nearest unit in the last right-hand place of figures of the specified limit
Tensile Strength Yield Strength	nearest ksi (nearest 5 MPa)
Elongation	nearest 1 %
Grain size under 0.060 mm	nearest multiple of 0.005 mm
0.060 mm and over	nearest 0.01 mm

17. Inspection

- 17.1 The manufacturer or supplier shall inspect and make tests necessary to verify that the furnished product conforms of specification requirements.
- 17.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector that the product is being furnished in accordance with the specification shall be included in the agreement.
- 17.3 When mutually agreed upon, the manufacturer or supplier and the purchaser shall conduct the final inspection simultaneously.

18. Rejection and Rehearing

- 18.1 Rejection:
- 18.1.1 Product that fails to conform to the specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.

- 18.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 18.1.3 In case of dissatisfaction with results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
 - 18.2 Rehearing:
- 18.2.1 As a result of product rejection, the manufacturer of supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification, and subjected to test by both parties using the test method(s) specified by the product specification or, alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

19. Packaging and Package Marking

- 19.1 Packaging:
- 19.1.1 The product shall be separated by size and temper, and prepared for shipment by common carrier, in such a manner to afford protection from the normal hazards of transportation.
 - 19.2 Package Marking:
- 19.2.1 Bach package shall be legibly marked with the metal or alloy designation, temper, size, gross and net weights, total length or piece count, or both, and name of supplier. Upon agreement between the purchaser and supplier, the purchase order number shall be indicated on each package or on the shipping documents.
- 19.2.2 When specified in the contract or purchaser order, the specification number shall be shown.

20. Certification

- 20.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and requirements have been met.
 - 20.2 DELETED

21. Test Report

21.1 A report of test results shall be furnished.

22. Keywords

22.1 copper alloy UNS No. C23000; red brass pipe

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) S1.1.2 *Military Standards:*

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-2073/1 Standard Practice for Military Packaging S1.1.3 *ASTM Standard:*

B900 Practice for Packaging of Copper and Copper-Base Alloy Mill Products for U.S. Government Agencies

S1.1.4 SAE Standard:

AMS-STD-185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use his own or any other suitable facilities for the performance of the inspection and test requirements

unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with AMS-STD-185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, and packed, Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S4.1.2 *Civil Agencies*—The requirements of MIL-STD-2073/1 shall be referenced for definitions of the various levels of packaging protection.

S4.2 *Marking*:

S4.21 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg m s^2$). The derived SI unit for pressure or

stress is the newton per square metre (N/m^2) , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m^2 and N/mm^2 .

SPECIFICATION FOR STEAM OR VALVE BRONZE CASTINGS SB-61 (Montical with ASTM Specification R61-15 every beautification and test reports have been made mandatory.) NC Section II part B) 202

Specification for Steam or Valve Bronze Castings

1. Scope

- 1.1 This specification establishes requirements for a highgrade steam-metal or valve-bronze alloy (Copper Alloy UNS No. C92200) used for component castings of valves, flanges, and fittings.
- 1.2 The castings covered are used in products that may be manufactured in advance and supplied from stock by the manufacturer or other dealer.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

- 2.1 ASTM Standards:
- B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings
- B824 Specification for General Requirements for Copper Alloy Castings
- B846 Terminology for Copper and Copper Alloys
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- 2.2 MSS Standards:
- SWEW CHANGE CHICK TO VIEW THE SAME OF THE PARTY OF THE PA SP-25 Standard Marking System for Valves, Fittings,

3. General Requirements

- 3.1 The following sections of Specification B824 form a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
 - 3.1.1 Terminology (Section 3),
 - 3.1.2 Other Requirements (Section 7)
- 3.1.3 Dimensions, Mass, and Permissible Variations (Sec-
 - 3.1.4 Workmanship, Finish, and Appearance (Section 9),
 - 3.1.5 Sampling (Section 10),
- 3.1.6 Number of Tests and Retests (Section 11),
- 3.1.7 Specimen Preparation (Section 12),
- 3.1.8 Test Methods (Section 13),
- 3.1.9 Significance of Numerical Limits (Section 14),
- 3.1.10 Inspection (Section 15),
- 3.1.11 Rejection and Rehearing (Section 16),
- 3.1.12 Certification (Section 17),
- 3.1.13 Test Report (Section 18),
- 3.1.14 Product Marking (Section 19), and
- 3.1.15 Packaging and Package Marking (Section 20).

4. Terminology

4.1 For definitions of terms relating to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following information when placing orders for castings under this specification:
 - 5.1.1 Quantity of castings required,
 - 5.1.2 Copper Alloy UNS No. (Table 1),
 - 5.1.3 Specification title, number, and year of issue,
- 5.1.4 Pattern or drawing number and condition (as-cast, machined),
- 5.1.5 Pressure test requirements, if specified in the purchase order (Specification B824),
- 5.1.6 Soundness requirements, if specified in the purchase order (Specification B824),
 - 5.1.7 Certification.
 - 5.1.8 Foundry test report,

TABLE 1 Chemical Requirements, Copper Alloy UNS No. C92200

Elements	Composition, % max (Except as indicated)
Copper	86.0-90.0
Tin	5.5-6.5
Lead	1.0-2.0
Zinc	3.0-5.0
Nickel including Cobalt	1.0 ^A
Iron	0.25
Antimony	0.25
Sulfur	0.05
Phosphorus ^B	0.05
Aluminum	0.005
Silicon	0.005

^A In determining copper minimum, copper may be calculated as copper plus nickel.

^B For continuous castings, phosphorus shall be 1.5 % max.

- 5.1.9 Witness inspection, if specified in the purchase order (Specification B824),
- 5.1.10 ASME boiler and pressure vessel application (Section 10), and
- 5.1.11 Product marking, if specified in the purchase order (Specification B824 and Section 11).
- 5.2 When material is purchased for agencies of the U.S. Government, specify the Supplementary Requirements in Specification B824.

6. Chemical Composition

- 6.1 The alloy shall conform to the chemical requirements specified in Table 1.
- 6.2 These specification limits do not preclude the presence of other elements. Limits may be established for unnamed elements by agreement between manufacturer or supplier and purchaser. Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 1 are analyzed, their sum shall be as follows:

Copper plus named elements, 99.3 % minimum. (1)

7. Mechanical Property Requirements

7.1 Mechanical properties shall be determined from separately cast test bars and shall meet the requirements shown in Table 2.

8. Casting Repair

8.1 Castings shall not be plugged, welded, burned-in, or impregnated.

9. Sampling

9.1 Copper Alloy UNS No. C92200 test bar castings shall be cast to the form and dimensions shown in Figs. 2, 3, or 4 of Practice B208.

10. Certification and Test Report

10.1 The certification and test report requirements of Specification B824 shall apply.

11. Product Marking

11.1 Valves, flanges, and fittings shall be marked in accordance with the latest revision of the Standard Marking System for Valves, Fittings, Flanges, and Unions (No. SP-25) of the Manufacturers Standardization Society of the Valve and Fittings Industry, and in such position as not to injure the usefulness of the casting.

12. Keywords

12.1 Copper Alloy UNS No. C92200 valves; fittings; tanges; Navy M castings; steam bronze castings; valve castings; valve bronze

TABLE 2 Tensile Properties

Tensile strength, min, ksi ^A (MPa ^B)	34 (235)
Yield strength, ^C min, ksi ^A (MPa ^B)	16 (110)
Elongation in 2 in. (50.8 mm), min %	24

 $^{^{}A}$ ksi = 1000 psi.

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one knogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or

stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

^B See Appendix.

 $^{^{}C}$ Yield strength shall be determined as the stress producing an elongation under load of 0.5 % that is, 0.01 in. (0.25 mm) in a gage length of 2 in. (51 mm).

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B 202 SPECIFICATION FOR COMPOSITION BRONZE OR OUNCE METAL CASTINGS SB-62 (Identical with ASTM Specification B62-15 except that certification and foundary test research in the content of the

SOUTH ASIME WILLIAM SOUTH ASIME WILLIAM SOUTH SOUTH ASIME WAS ASIM (Identical with ASTM Specification B62-15 except that certification and foundry test reports have been made mandatory.)

Specification for **Composition Bronze or Ounce Metal Castings**

1. Scope

- 1.1 This specification establishes requirements for an alloy having a composition of copper, tin, lead, and zinc, used for component castings of valves, flanges, and fittings. The common trade name of this alloy is 85-5-5; the correct identification is Copper Alloy UNS No. C83600.
- 1.2 The castings covered are used in products that may be manufactured in advance and supplied from stock from the manufacturer or other dealer.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

- 2.1 ASTM Standards:
- B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings
- B824 Specification for General Requirements for Copper Alloy Castings
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- 2.2 MSS Standards:
- SWEW CHICK TO VIEW THE SAME OF SP-25 Standard Marking System for Valves, Fittings,

3. General Requirements

- 3.1 The following sections of Specification B824 form a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
 - 3.1.1 Terminology (Section 3),
 - 3.1.2 Other Requirements (Section 7)
- 3.1.3 Dimensions, Mass, and Permissible Variations (Sec-
 - 3.1.4 Workmanship, Finish, and Appearance (Section 9),
 - 3.1.5 Sampling (Section 10),
 - 3.1.6 Number of Tests and Retests (Sections 11 and 13),
 - 3.1.7 Specimen Preparation (Section 12),
 - 3.1.8 Test Methods (Section 13),
 - 3.1.9 Significance of Numerical Limits (Section 14),
 - 3.1.10 Inspection (Section 15),
 - 3.1.11 Rejection and Rehearing (Section 16),
 - 3.1.12 Certification (Section 17),
 - 3.1.13 Test Report (Section 18),
 - 3.1.14 Product Marking (Section 19), and
- 3.1.15 Packaging and Package Marking (Section 20)

4. Terminology

4.1 For definitions of terms relating to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following information when placing orders for castings under this specification:
 - 5.1.1 Quantity of castings required,
 - 5.1.2 Copper Alloy UNS No. (Table 1),
 - 5.1.3 Specification title, number, and year of issue,
- 5.1.4 Pattern or drawing number and condition (as-cast, machined),
- 5.1.5 Pressure test requirements, if specified in the purchase order (Specification B824),
- 5.1.6 Soundness requirements, if specified in the purchase order (Specification B824),
 - 5.1.7 Certification, (Specification B824),
 - 5.1.8 Foundry test report, (Specification B824),

TABLE 1 Chemical Requirements Copper Alloy UNS No. C83600

Elements	Composition, % max (Except as Indicated)
Copper	84.0-86.0
Tin	4.0-6.0
Lead	4.0-6.0
Zinc	4.0-6.0
Nickel including Cobalt	1.0 ^A
Iron	0.30
Antimony	0.25
Sulfur	0.08
Phosphorus ^B	0.05
Aluminum	0.005
Silicon	0.005

^A In determining copper minimum, copper may be calculated as copper plus nickel.

 $^{\it B}$ For continuous castings, Phosphorus shall be 1.5 % max.

- 5.1.9 Witness inspection, if specified in the purchase order (Specification B824),
 - **5.1.10 DELETED**
- 5.1.11 Product marking, if specified in the purchase order (Specification B824 and Section 11).
- 5.2 When material is purchased for agencies of the U.S. Government, specify the Supplementary Requirements in Specification B824.

6. Chemical Composition

- 6.1 The alloy shall conform to the requirements specified in Table 1.
- 6.2 These specification limits do not preclude the presence of other elements. Limits may be established for unnamed elements by agreement between manufacturer or supplier and purchaser. Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 1 are analyzed, their sum shall be as follows:

Copper Plus Named Elements, 99.3 % Minimum (1)

7. Mechanical Property Requirements

7.1 Mechanical properties shall be determined from separately cast test bars and shall meet the requirements shown in Table 2.

8. Casting Repair

8.1 Castings shall not be repaired, plugged, welded burned-in.

9. Sampling

9.1 Copper Alloy UNS No. C83600 test bar castings shall be cast to the form and dimensions shown in Figs. 2, Figs. 3, or Figs. 4 of Practice B208.

10. Certification and Foundry Test Report

10.1 The certification and test report requirements of Specification B824 are mandatory.

11. Packaging and Package Marking

11.1 Valves, flanges and fittings shall be marked in accordance with the latest revision of the Standard Marking System for Valves, Fittings, Flanges, and Unions (No. SP-25) of the Manufacturers Standardization Society of the Valve and Fittings Industry and in such position as not to injure the usefulness of the casting.

12. Keywords

M2.1 copper-alloy castings; Copper Alloy UNS No. C83600; fittings; flanges; ounce metal castings; red brass castings; valves

TABLE 2 Tensile Properties

Tensile strength, min, ksi ^A (MPa ^B)	30 (205)
Yield strength, ^C min, ksi ^A (MPa ^B)	14 (95)
Elongation in 2 in. or 50 mm, min, %	20

 $^{^{}A}$ ksi = 1000 psi.

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or

stress is the newton per square metre (N/m^2) , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m^2 and N/mm^2 .

^B See Appendix.

 $^{^{}C}$ Yield strength shall be determined as the stress producing an elongation under load of 0.5 %; that is, 0.01 in. (0.25 mm) in a gage length of 2 in. (51 mm).

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SB-75/SB-75M C. I.H. Specification 875/875M-19 except the delection of 11.1.3, footnote G in Table 2, footnote F in Table 3; certification and teastreplort have been made mandatory.)

Specification for Seamless Copper Tube

1. Scope

Copper UNS No.

- 1.1 This specification establishes the requirements for seamless round, rectangular, and square copper tube suitable for general engineering applications.
- 1.1.1 Tubes made from any of the following Copper UNS No. designations shall be supplied unless otherwise specified in the contract or purchase order:

• • • • • • • • • • • • • • • • • • • •	71 11
C10100	Oxygen-free electronic
C10200	Oxygen-free without residual deoxidants
C10300	Oxygen-free, extra low phosphorus
C10800	Oxygen-free, low phosphorus
C12000	Phosphorus deoxidized, low residual phosphorus
C12200	Phosphorus deoxidized, high residual phosphorus

Type of Copper

- 1.2 *Units*—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
- 1.3 The following safety hazard caveat pertains only to the test methods described in this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B170 Specification for Oxygen-Free Electrolytic Copper— Refinery Shapes
- B193 Test Method for Resistivity of Electrical Conductor
- B251/B251M Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy Tube
- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E112 Test Methods for Determining Average Grain Size
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- 2.2 ASME Standard:
- ASME Boiler and Pressure Vessel Code

3. General Requirements

3.1 The following sections of Specification B251/B251M are a part of this specification.

- 3.1.1 Terminology, General;
- 3.1.2 Material and Manufacture;
- 3.1.3 Workmanship, Finish, and Appearance;
- 3.1.4 Significance of Numerical Limits;
- 3.1.5 Inspection;
- 3.1.6 Rejection and Rehearing;
- 3.1.7 Certification;
- 3.1.8 Mill Test Reports;
- 3.1.9 Packaging and Package Marking; and
- 3.1.10 Supplementary Requirements.
- 3.2 In addition, when a section with an identical title to those referenced in section 3.1 appears in this specification, and is in conflict with the section appearing in Specification B251/B251M, the section in this specification shall prevail.

4. Terminology

4.1 *Definitions*—For definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specific choices when placing orders for product under this specification, as applicable.
 - 5.1.1 ASME designation
 - 5.1.2 Copper UNS No. (for example, C10100);
 - 5.1.3 Temper (Section 8);
- 5.1.4 Dimensions; diameter or distance between parallel surfaces, and wall thickness (Section 17);
 - 5.1.5 How furnished; coils or straight lengths;
 - 5.1.6 Number of pieces or footage; each size and type;
 - 5.1.7 Total weight.
- 5.2 The following options are available but may not be included unless specified at the time of placing the order when required:
 - 5.2.1 Electrical mass resistivity test,
 - 5.2.2 Hydrogen embrittlement test,
- 5.2.3 Hydrostatic test for pressures less than or equal to 1000 psi (21.2.8),
 - 5.2.4 Hydrostatic test for pressures over 1000 psi (21.2.8.1),
 - 5.2.5 Pneumatic test,
 - 5.2.6 DELETED
 - 5.2.7 DELETED
 - 5.2.8 Expansion test,
 - 5.2.9 DELETED
- 5.2.10 When product is purchased for agencies of the U.S. Government.

6. Material and Manufacture

6.1 Material—The material of manufacture shall be billets, bars, or tube of Copper UNS No. C10100, C10200, C10300, C10800, C12000, or C12200, and shall be of such soundness as to be suitable for processing into the tubular products described.

6.2 Manufacture:

- 6.2.1 The tube shall be manufactured by such hot-and cold-working processes as to produce a uniform wrought structure in the finished product. It shall be cold drawn to the finished size and wall thickness.
- 6.2.2 When cold-drawn temper is required the final drawing operation shall be such as to meet the specified temper. When annealed temper is required, the tube shall be annealed subsequent to the final cold draw.

7. Chemical Composition

- 7.1 The material shall conform to the requirements in Table 1 for the specified Copper UNS No. designation.
- 7.1.1 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer or supplier and the purchaser, limits may be established and analysis required for unnamed elements.

8. Temper

- 8.1 The requirements and size availability of tube in the cold-drawn tempers H55, H58, and H80, as defined in Classification B601, are specified in Table 2 or Table 3.
- 8.1.1 Rectangular, including square, tube shall normally be supplied only in H58 temper. When requested by the manufacturer or supplier, and upon agreement with the purchaser, tube may be supplied in H55 temper.
- 8.1.1.1 For any combination of diameter and wall thickness not listed under H80 temper, the requirements specified for H58 temper shall apply.
- 8.2 The requirements and size availability of tube in the annealed tempers O50, O60, and O62 as defined in Classification B601, are specified in Table 2 or Table 3.

Note 1—The purchaser shall confer with the manufacturer or supplier for the availability of product in a specific temper.

Note 2-Refer to Appendix X1 for recommended applications based on temper.

9. Grain Size Requirements

TABLE 1 Chemical Requirements

	COM				1 Tube in the annea specified in Table 2		nform to the grain
_	20°C.		TA	BLE 1 Chemical Requ	uirements		
1				Co	omposition, %		
20	Element			Co	pper UNS No.		
		C10100 ^A	C10200 ^B	C10300	C10800	C12000	C12200
(),	Copper, min	99.99	99.95			99.90	99.9
	Copper + phosphorus, min			99.95	99.95		
CNE	Phosphorus			0.001-0.005	0.005-0.012	0.004-0.012	0.015-0.040

^A Refer to Table 1, Chemical Requirements, Grade 1, of Specification B170 for impurity limits for Copper UNS No. C10100.

^B Refer to Table 1, Chemical Requirements, Grade 2, of Specification B170 for impurity limits for Copper UNS No. C10200.

TABLE 2 Mechanical Property Requirements of Drawn-Temper and Annealed-Temper Tube (inch-pound values)

								•
Ten	nper Designation	Outside Diameter, or Major Distance Between	Wall Rockwell		ll Hardness ^A	Average Grain	Tensile Strength,	Yield Strength, ^C
Code	Name	Outside Parallel Surfaces, in.	Thickness, in.	Scale	Hardness	Size, mm	ksi ^B	min., ksi ^B
H55	light-drawn ^D	all	all	30T	30 to 60		36–47	30
H58	drawn (general purpose)	all	all	30T	30 min		36 min	30
H80	hard-drawn ^D	up to 4	0.020 to 0.250, incl	30T	55 min		45 min	40
O62	heavy anneal	all	0.015 to 0.035 0.035 and over	15T ^E F ^E	60 max 55 max	0.050 max 0.050 max	30 min 30 min	6.5 6.5 8
O60	soft anneal	all	0.015 to 0.035	15T	60 max	0.040 min	30 min	S 9
			0.035 and over	F	50 max	0.040 min	30 min	9
O50	light anneal	all	0.015 to 0.035	15T	65 max	0.040 max	30 min	9
			0.035 and over	F	55 max	0.040 max	30 min	9

^A Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the purchaser and supplier.

TABLE 3 Mechanical Property Requirements of Drawn-Temper and Annealed-Temper Tube (SI Values)

			-			-		
	Temper Designation	Outside Diameter, or Major Distance	Wall Thickness mm	Rockw	rell Hardness ^A	Average - Grain	Tensile Strength, ^B	Yield Strength, ^B
Standard	Former	Between Outside Parallel Surfaces, mm	Wall Million	Scale	Hardness	Size, mm	MPa	min, MPa
H55	light-drawn ^C	all	alt	30T	30 to 60		250–325	205
H58	drawn (general purpose)	all	ali	30T	30 min		250 min	205
H80	hard-drawn ^C	up to 102	0.508 to 6.35, incl	30T	55 min		310 min	275
O62	heavy anneal	all	0.381 to 0.889	15T ^D F ^D	60 max	0.050 max	205 min	45 ^{E, F}
	-	SA	0.889 and over	F^{D}	55 max	0.050 max	205 min	45 ^{E, F}
O60	soft anneal	all	0.381 to 0.889	15T	60 max	0.040 min	205 min	62
		7.	0.889 and over	F	50 max	0.040 min	205 min	62
O50	light anneal	↓ all	0.381 to 0.889	15T	65 max	0.040 max	205 min	62
			0.889 and over	F	55 max	0.040 max	205 min	62

A Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the purchaser and supplier.

9.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of a test specimen taken from each of two sample portions, and each specimen shall be within the limits prescribed in Table 2 or Table 3 when determined in accordance with Test Methods E112.

10. Physical Property Requirements

10.1 *Electrical Resistivity*—When specified in the contract or purchase order, tube ordered for electrical conductor application produced from Copper UNS No. C10100, C10200,

 $^{^{}B}$ ksi = 1000 psi.

 $^{^{\}text{C}}$ Yield strength to be determined at 0.5 % extension under load.

 $^{^{\}it D}$ Light-drawn and hard-drawn tempers are normally available in round tubes only.

E Rockwell hardness values shall apply only to tubes having a wall thickness of 0.015 in. or over, to round tubes having an inside diameter of 5/16 in. or over, and to rectangular, including square, tubes having an inside major distance between parallel surfaces of 3/16 in. or over, For all other tube, no Rockwell values shall apply. Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the purchaser and supplier.

F Light-straightening operation is acceptable.

G DELETED

B Yield strength to be determined at 0.5 % extension under load.

^C Light-drawn and hard-drawn tempers are normally available in round tubes only.

Description of Rockwell hardness values shall apply only to tubes having a wall thickness of 0.040 mm or over, to round tubes having an inside diameter of 8.0 or over, and to rectangular, including square, tubes having an inside major distance between parallel surfaces of 5.0 mm or over. For all other tube, no Rockwell values shall apply. Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the purchaser and supplier.

E Light-straightening operation shall be permitted.

F DELETED

C10300, or C12000 shall have an electrical mass resistivity, $\Omega \cdot g/m^2$, not to exceed the following limit for the specified copper and temper when tested in accordance with Test Method B193:

Tompor		Copper	UNS No.	
Temper	C10100	C10200	C10300	C12000
O60, O50	0.151 76	0.153 28	0.156 14	0.170 31
H55, H58, H80	0.156 14	0.157 37	0.159 40	0.174 18

Note 3—Refer to Appendix X2 for the International Annealed Copper Standard (IACS) electrical conductivity equivalents.

11. Mechanical Property Requirements

- 11.1 Tensile and Yield Strength Requirements:
- 11.1.1 The tube furnished under this specification shall conform to the requirements of Table 2 or Table 3 for the specified temper and wall thickness when tested in accordance with Test Methods E8/E8M.
- 11.1.2 For any combination of diameter and wall thickness not listed under H80, the requirements for H58 shall apply.
 - 11.1.3 DELETED
 - 11.2 Rockwell Hardness Requirements:
- 11.2.1 The tube shall conform to the Rockwell hardness requirements of Table 2 or Table 3 for the specified temper and wall thickness when tested in accordance with Test Methods F18
- 11.2.1.1 The Rockwell Hardness values for tube in the H55, H58, and H80 temper shall apply only to the following:
- (a) Tubes having a wall thickness of 0.020 in. [0.508 mm] and over.
- (b) Round tubes having an inside diameter of 5/16 in. [8:0]
- (c) Rectangular and square tubes having major distances between parallel surfaces of 3/16 in. [5 mm] and over.
- 11.2.1.2 The Rockwell Hardness values for tube in the O60 and O50 temper shall apply only to the following:
- (a) Tubes having a wall thickness of 0015 in. [0.38 mm] and over;
- (b) Round tubes having an inside diameter of 5/16 in. [8 mm] and over;
- (c) Rectangular and square tubes having inside major distances between parallel surfaces of 3/16 in. [5 mm] and over.
- 11.3 *Straightening*—It shall not be prohibited to use light straightening for tube in the O60 and O50 temper.
- 11.4 When a discrepancy between tensile and Rockwell hardness exists, tensile always takes precedence for acceptance or rejection criteria.

12. Performance Requirements

- 12.1 Expansion Test for Round Tube:
- 12.1.1 When specified in the contract or purchase order, annealed tubes shall be capable of withstanding an expansion of the outside diameter of 40 % for tube 3/4 in. [19.0 mm] and under and 30 % for tube over 3/4 in. [19.0 mm] when tested in accordance with Test Method B153.

12.1.2 The expanded tube shall show no cracking or rupture visible to the unaided eye.

13. Microscopical Examination

13.1 Tubes furnished in Copper UNS No. C10100, C10200, C10300, and C12000 shall be essentially free of cuprous oxide as determined by Procedure A of Test Methods B577.

14. Hydrogen Embrittlement

14.1 When specified in the contract or purchase order, tubes produced in all designated copper material shall be capable of conforming to the requirements of Procedure B of Test Methods B577.

15. Nondestructive Test

- 15.1 The tubes shall be tested in drawn tempers or as drawn before the final-annealed temper unless otherwise agreed upon between the manufacturer and the purchaser.
 - 15.2 Electromagnetic (Eddy-Current) Test:
- 15.2.1 Each tube up to and including 3½ in. [79 mm] in outside diameter shall be subjected to test.
- 15.2.2 When tested in accordance with Practice E243, tubes which do not actuate the signaling device of the testing unit shall be considered as conforming to the requirements of the test.
- 15.3 Hydrostatic Pressure Test—When specified in the contract or purchase order, each tube shall be capable of withstanding an internal hydrostatic pressure sufficient to produce a fiber stress of 6000 psi [41 MPa] without leakage. The tube need not be subjected to a pressure gauge reading over 1000 psi [6.9 MPa] unless specifically stipulated in the contract or purchase order.
- 15.4 *Pneumatic Pressure Test*—When specified in the contract or purchase order, each tube shall be capable of withstanding an internal air pressure of 60 psi [400 kPa], minimum, for 5 s without leakage.

16. Purchases for U.S. Government Agencies

16.1 When the contract or purchase order stipulates that the purchase is for an agency of the U.S. Government, the tubes furnished shall conform to the conditions specified in the Supplementary Requirements of Specification B251/B251M.

17. Dimensions, Mass, and Permissible Variations

- 17.1 The dimensions and tolerances for product described by this specification shall be as specified in the following tables and related sections of the current edition of Specification B251/B251M:
 - 17.1.1 Wall Thickness Tolerances—Refer to Tables 1 and 2.
- 17.1.2 Tolerances for Diameter or Distance Between Parallel Surfaces—Refer to Tables 3 and 4.
 - 17.1.3 Length Tolerances—Refer to Tables 5 and 6.
 - 17.1.4 Straightness Tolerance—Refer to Table 7.
- 17.1.5 Corner Radius for Rectangular, including Square, Tube—Refer to Table 8.
- 17.1.6 Roundness, Squareness of Cut and Twist Tolerances for Rectangular and Square Tubes—Refer to titled sections.

17.2 Length Tolerances for Tube in Coils—Refer to Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9 of this specification.

18. Sampling

- 18.1 The lot size, portion size, and selection of sample portions shall be as follows:
- 18.1.1 *Lot Size*—An inspection lot shall be 10 000 lb [5000 kg] or fraction thereof,
- 18.1.2 *Portion Size*—Sample pieces shall be selected to be represented of the lot as follows:

Number of Pieces in Lot	Number of Portions to Be Taken ^A
1 to 50	1
51 to 200	2
201 to 1500	3

^A Each test portion shall be taken from a separate tube.

18.2 Chemical Composition:

- 18.2.1 The composite sample shall be taken in approximate equal weights from each portion piece selected in 18.1.2 and in accordance with Practice E255. The minimum weight of the composite shall be 150 g.
- 18.2.2 The manufacturer shall have the option of sampling at the time the castings are poured or taken from the semifinished product. The number of samples taken during the course of manufacture shall be as follows:
- 18.2.2.1 When sampled at the time castings are poured, at least two samples shall be taken, one after the start and one near the end of the pour, for each group of castings poured simultaneously from the same source of molten metal.
- 18.2.2.2 When samples are taken from the semifinished product, a sample shall be taken to represent each 10 000 bt [5000 kg] or fraction thereof, except that not more than one sample per piece shall be required.
- 18.2.2.3 When composition is determined during the course of manufacture, sampling and analyses of the finished product is not required.
- 18.3 Other Tests—Specimens for all other tests shall be taken from two of the sample portions taken in 18.1.2. In the event only one sample portion is taken, all specimens shall be taken from the portion selected.

19. Number of Tests and Retests

- 19.1 *Tests*:
- 19.1.1 *Chemical Analysis*—Chemical composition shall be determined in accordance with the element mean of the results from at least two replicate analyses of the sample(s).
- 19.1.2 Grain Size, Electrical Resistivity, Tensile and Yield Strength, and Rockwell Hardness—Results shall be reported as

ABLE 4 Coil Length Tolerances (Specific Lengths) Inch-Pound Values

Outside Diameter or Major Distance Between Parallel Surfaces, in.	Tolerances, in., All Plus, for Nominal Lengths, ft		
	Up to 50, incl	Over 50 to 100, incl	
Up to 2, incl	12	24	

TABLE 5 Coil Length Tolerances (Specific Lengths) SI Values

Outside Diameter or Major Distance Between Parallel Surfaces, mm	Tolerances, mm, All Plus, for Nominal Lengths, m		
	Up to 15, incl	Over 15 to 30, incl	
Up to 50.8, incl	300	610	

the average obtained from two test specimens, each taken from a separate test piece, where possible.

19.1.3 *Other Tests*—At least two specimens shall be prepared for each of the other tests and each shall conform to test requirements.

19.2 Retests:

- 19.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.
- 19.2.2 The retest shall be as directed in the product specification for the initial test, except for the number of test specimens shall be twice that normally required for the specified test.
- 19.2.3 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

20. Specimen Preparation

- 20.1 *Chemical Analysis*—Preparation of the analytical specimens shall be the responsibility of the reporting laboratory.
- 20.2 Tensile and Yield Strength Test—The test specimens shall be of the full section of the tube and shall conform with the requirements of the Test Specimen section of Test Methods E8/E8M, unless the limitation of the testing machine precludes the use of such specimens in which case test specimens conforming to Type No. 1 of Fig. 13 in Test Methods E8/E8M shall be used.
 - 20.3 Rockwell Hardness:
- 20.3.1 The test specimen shall be of a size and shape to permit testing by the available test equipment.
- 20.3.2 The surface of the test specimen shall be sufficiently flat and smooth so as to permit the accurate determination of hardness.
- 20.3.3 The test specimen shall be free from scale and foreign matter and care shall be taken to avoid any change in condition (for example, heating or cold working).
- 20.4 *Grain Size*—Test specimens shall be prepared in accordance with the appropriate procedure in Test Methods E112
 - 20.5 Electrical Resistivity:
- 20.5.1 The test specimen shall be full size and shall be the full cross section of the material it represents when possible.
- 20.5.2 When the test specimen is taken from material in bulk, care shall be taken that the properties are not appreciably altered in the preparation.

Note 4—Plastic deformation tends to work harden a material and raise its resistivity, while heating tends to anneal the material with a subsequent reduction in resistivity.

TABLE 6 Coil Length Tolerances (Mill Lengths) Inch-Pound Values (Applicable Only to Full-Length Pieces)

Tube Outside Diameter or Major Distance	Tolerances, %, for Nominal Lengths, ft [mm]			
Between Parallel Surfaces, in. [mm]	Up to 100 [30 480], incl	Over 100 to 2000 [30 480 to 609 600], incl		
Up to 1 [25], incl	5 ^A or 2 ft, whichever is greater	10 ^A		
Over 1 to 2 [25 to 51], incl	5 ^A or 2 ft, whichever is greater	no tolerances established		

^A Expressed to the nearest 1 ft.

TABLE 7 Coil Length Tolerances (Mill Lengths) SI Values (Applicable Only to Full-Length Pieces)

Tube Outside Diameter or Major Distance	Tolerances, %, for Nomin	al Lengths in mm
Between Parallel Surfaces, mm	Up to 30 000, incl	Over 30 000 to 600 000, inc.
Up to 25, incl	5 ^A or 600, whichever is greater	10 ^A
25 to 50, incl	5 ^A or 600, whichever is greater	no tolerances established

^A Expressed to the nearest 300 mm.

TABLE 8 Coil Schedule of Mill Lengths with Ends, Inch-Pound Values

Tube Outside Diameter or Major Distance Between Parallel Surfaces, in.	Nominal Length, ft	Shortest Permissible Length, % of Nominal Length	Maximum Permissible Weights of Ends, % of Lot Weight
Up to 1, incl	up to 100, incl	70 ^A	10
Over 1 to 2, incl	up to 100, incl	60 ^A	20
Up to 1, incl	over 100 to 2000, incl	50	50 ⁸

^A Expressed to the nearest 1 ft.

TABLE 9 Coil Schedule of Mill Lengths with Ends, SI Values

Tube Outside Diameter or Major Distance Between Parallel Surfaces, mm	Nominal Length, mm	Shortest Permissible Length, % of Nominal Length	Maximum Permissible Mass of Ends, % of Lot Weight
Up to 25, incl	up to 30 000, incl	70 ^A	10
Over 25 to 50, incl	up to 30 000, incl	60 ^A	20
Up to 25, incl	over 30 000 to 600 000, incl	50	50 ^B

^A Expressed to the nearest 300.

20.6 Expansion (Pin) Test—Test specimens shall conform to the requirements of the Specimen Preparation section of Test Method B153.

20.7 Microscopical Examination—The test specimen shall be prepared in accordance with Procedure A of Test Methods B577 and the specimen surface shall approximate a radial longitudinal section of round tube or a longitudinal section of rectangular and square tube perpendicular to, and bisecting, the major dimensional surface.

20.8 Hydrogen Embrittlement—The test specimen shall conform to the appropriate requirements of Procedure B of Test Methods B577.

21. Test Methods

21.1 Chemical Analyses—In case of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published methods, some of which may no longer be viable, which, along with others not listed, may be used subject to agreement.

Element	Test Method
Copper	E53
Phosphorus	E62

- 21.1.1 The test methods for the determination of composition for Coppers C10100 and C10200 shall be as described in Annex of Specification B170.
- 21.1.2 Test method(s) for the determination of element(s) required by contractual or purchase order agreement shall be as agreed upon between the manufacturer and the purchaser.
- 21.2 The tubes furnished shall conform to the physical and mechanical properties and other requirements of this specification when tested or examined in accordance with the following appropriate test method or practice:

Test	Test Method
Tensile strength	E8/E8M
Yield strength	E8/E8M
Rockwell Hardness	E18
Grain size	E112
Electrical resistivity	B193
Expansion (pin test)	B153

^B Short pieces of lengths between 50 ft and one-quarter of full length shall not exceed 10 % of lot weight. Short pieces of lengths between one-quarter of a full length and full length shall not exceed 40 % of lot weight.

B Short pieces are permitted to be included as follows: up to 10 % of lot weight between 15 200 and one quarter of full length and up to 40 % between one quarter and full length

Electromagnetic examination (eddy current)

Microscopical examination, Procedure A
Hydrogen embrittlement, Procedure B
Hydrostatic pressure

Pneumatic pressure

E243
B577
B577
B577
B75/B75M, 21.2.8
B75/B75M, 21.2.9

21.2.1 Whenever test results are obtained from both full-size and machined specimens and they differ, the test results from the full-size specimens shall prevail.

21.2.2 Rockwell hardness shall be determined on the inside surface of the tube and a minimum of three readings shall be taken on each specimen, each at a different location.

21.2.2.1 When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified by agreement between the manufacturer and the purchaser.

21.2.3 Grain size shall be determined, in case of dispute, by the intercept method.

21.2.4 Electrical Resistivity—The limit of measurement uncertainty shall be ± 0.30 % as a process control method and ± 0.15 % as an umpire method.

21.2.5 *Microscopical Examination*—Cuprous oxide content shall be determined in accordance with Procedure A, or, in case of dispute, Procedure C, Closed Bend Test, of Test Methods B577 shall be followed.

21.2.6 *Hydrogen Embrittlement*—Procedure B shall be followed, or, in case of dispute, Procedure C, Closed Bend Test, of Test Methods B577 shall be followed.

21.2.7 *Electromagnetic (Eddy-Current) Test*—Each tube up to and including 3½ in. [79 mm] in outside diameter shall be subjected to an eddy-current test. Testing shall follow the procedures in Practice E243.

21.2.7.1 Either notch depth or drilled hole standards shall be used.

(a) Notch depth standards, rounded to the nearest 0.001 in [0.025 mm] shall be 22 % maximum of the wall thickness. The notch depth tolerance shall be ± 0.0005 in. $[\pm 0.013 \text{ mm}]$.

(b) Drilled holes shall be drilled radially through the wall using a suitable drill jig that has a bushing to guide the drill, care being taken to avoid distortion of the tube while drilling. The diameter of the drilled hole shall be in accordance with the following and shall not vary by more than +0.001, -0.000 in. [+0.025 mm, -0.000 mm] of the hole diameter specified.

Tube Outside Diameter, in. [mm]	Diameter of Drilled Holes, in. [mm]	Drill Number
1/4 to 3/4, incl [6.0 to 19, incl.]	0.025 [0.635]	72
Over 3/4 to 1, incl [Over 19.0 to 25, incl]	0.031 [0.787]	68
Over 1 to 11/4, incl [Over 25 to 32, incl]	0.036 [0.915]	64
Over 11/4 to 11/2, incl-[Over 32 to 38, incl]	0.042 [1.07]	58
Over 11/2 to 13/4, incl [Over 38 to 45, incl]	0.046 [1.17]	56
Over 13/4 to 2, incl [Over 45 to 50, incl]	0.052 [1.32]	55

21.2.7.2 Alternatively, at the option of the manufacturer, using speed-insensitive eddy-current units that are equipped to select a fraction of the maximum imbalance signal, the following percent maximum imbalance signals shall be used:

 Standard Tube Size, in. [mm]
 Maximum Percent Imbalance Signal Magnitude

 Up to %, incl [Up to 9, incl]
 0.2

 Over % to 2, incl [Over 13 to 50, incl]
 0.3

 Over 2 to 3, incl [Over 50 to 76, incl]
 0.4

21.2.7.3 Tubes that do not activate the signaling device of the eddy-current tester shall be considered as conforming to the requirements of this test. Tubes with discontinuities indicated by the testing unit are not prohibited, at the option of the manufacturer, from being reexamined or retested to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil or moisture, shall not be cause for rejection of the tubes provided the tube dimensions are still within prescribed limits and the tube is suitable for its intended application.

21.2.8 *Hydrostatic Test*—The internal hydrostatic pressure necessary to produce the required fiber stress shall be determined by the following equation for thin hollow cylinders under tension.

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psi [or MPa];

t = thickness of tube wall, in [or mm];

D = outside diameter of tube, in. [or mm]; and

S = allowable fiber stress of the material, psi [MPa].

21.2.8.1 The tube need not be tested at a pressure gauge reading over 1000 psi [6:9 MPa] unless so specified.

21.2.9 *Pneumatic Test*—The test method shall permit easy visual detection of leakage, such as having the material under water or by the pressure differential method.

22. Rejection and Rehearing

22.1 Rejection:

22.1.1 Product that fails to conform to the specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.

22.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.

22.1.3 In case of dissatisfaction with results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.

22.2 Rehearing:

22.2.1 As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

23. Certification

23.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and requirements have been met.

23.2 DELETED

24. Test Report

24.1 A report of test results shall be furnished.

25. Keywords

25.1 seamless copper tube; seamless tube; tube; C10100; C10200; C10300; C10800; C12000; C12200

APPENDIXES

(Nonmandatory Information)

X1. RECOMMENDED APPLICATIONS

- X1.1 Tube in the H55 temper is recommended when a tube of some stiffness is required yet capable of being bent when necessary.
- X1.2 Tube in the H58 temper is recommended for general applications in which there is no specific need for high strength or bending qualities.
- X1.3 Tube in the H80 temper is recommended for applications in which there is a need for a tube as strong as technically feasible for the size indicated.

X2. INTERNATIONAL ANNEALED COPPER STANDARD (ELECTRICAL CONDUCTIVITY EQUIVALENTS)

Electrical Resistivity, Ω -g/m ²	Conductivity, %
0.151 76 0.153 28 0.156 14 0.157 37 0.159 40 0.170 31 0.174 18	101.00 100.00 98.16 97.40 96.16 90 88
*O view the full POF	
Electrical Resistivity, $\Omega \cdot g/m^2$ 0.151 76 0.153 28 0.156 14 0.157 37 0.159 40 0.170 31 0.174 18	
ASMENORIN'	

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER-SILICON ALLOY PLATE, SHEET, STRIP, AND ROLLED BAR FOR GENERAL PURPOSES AND PRESSURE VESSELS

SB-96/SB-96M

(23)

(Identical with ASTM Specification B96/B96M-20 except yield strength is required.)

Compared to the property of the property o

Specification for Copper-Silicon Alloy Plate, Sheet, Strip, and Rolled Bar for General Purposes and Pressure Vessels

1. Scope

- 1.1 This specification establishes the requirements for copper-silicon alloy plate, sheet, strip, and rolled bar for drawing, forming, stamping, bending, and general engineering applications, and for pressure vessel applications. The alloys involved are copper alloys UNS Nos. C65100, C65400, and C65500.
- 1.2 When product is ordered for ASME Boiler and Pressure Vessel Code applications, consult the Code for applicable alloys.
- 1.3 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B248 Specification for General Requirements for Wrought
Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled
Bar

Citch

Citc

B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip and Rolled Bar (Metric)

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)

E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)

E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 *ASME Code*:

ASME Boiler and Pressure Vessel Code

3. General Requirements

- 3. The following sections of Specification B248 or Specification B248M constitute a part of this specification:
 - 3.1.1 Terminology
 - 3.1.2 Materials and Manufacture
 - 3.1.3 Dimensions, Mass, and Permissible Variations
 - 3.1.4 Workmanship, Finish, and Appearance
 - 3.1.5 Sampling
 - 3.1.6 Number of Tests and Retests
- 3.1.7 Test Specimens
- 3.1.8 Test Methods
- 3.1.9 Significance of Numerical Limits
- 3.1.10 Inspection
- 3.1.11 Rejection and Rehearing
- 3.1.12 Certification
- 3.1.13 Test Reports
- 3.1.14 Product Identification
- 3.1.15 Packing and Package Marking
- 3.1.16 Supplementary Requirements

3.2 In addition, when a section with a title identical to that referenced in 3.1 above appears in this specification, it contains additional requirements which supplement those appearing in Specification B248 or Specification B248M.

4. Terminology

4.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
 - 5.1.2 Copper [Alloy] UNS No. designation (Section 1);
 - 5.1.3 Temper (Section 7);
- 5.1.4 Dimensions, Thickness, Width, and Length (Section 10);
 - 5.1.5 How furnished: straight lengths or coils;
- 5.1.6 Quantity—total weight or total length or number of pieces of each size (10.7);
 - 5.1.7 Intended application;
 - 5.1.8 Finish (11.2); and
- 5.1.9 Type of edge, if required (slit, sheared, sawed, square corners, round corners, rounded edges, or full rounded edges) (10.6).
- 5.2 The following options are available but may not be included unless specified at the time of placing of the order when required.
 - 5.2.1 DELETED
 - 5.2.2 DELETED
- 5.2.3 If product is purchased for agencies of the U.S. government (see the Supplementary Requirements section of Specification B248 or Specification B248M for additional requirements, if specified);
 - 5.2.4 DELETED
 - 5.2.5 DELETED
- 5.2.6 Whether 0.2 % yield strength is required (Tables 1 and 2): and
- 5.2.7 If specification number must be shown on package marking.

6. Chemical Composition

- 6.1 The material shall conform to the chemical composition requirements in Table 3 for the copper [alloy] UNS No. designation specified in the ordering information.
- 6.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.

6.3 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %. When all elements in Table 3 are determined, the sum of results shall be 99.5 % min.

7. Temper

- 7.1 The standard tempers for products described in this specification are in Tables 1 and 2 and Tables 4 and 5.
- 7.1.1 Hot rolled temper M20.
- 7.1.2 Hot rolled and rerolled temper M25.
- 7.1.3 Cold rolled tempers H01 to H14.
- 7.1.4 Annealed tempers O50 or O61.

8. Grain Size for Annealed Tempers

8.1 The approximate grain size values for annealed tempers given in Tables 1 and 2 and Tables 4 and 5 are for general information and shall not be used as a basis for product rejection.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 Product furnished under this specification shall conform to the tensile requirements prescribed in Table 1, Table 2, Table 4, or Table 5, when tested in accordance with Test Methods E8/E8M.
 - 91.2 DELETED
- 9.1.3 The tension test specimens shall be taken so the longitudinal axis of the specimens is parallel to the direction of rolling.
 - 9.2 Yield Strength Requirements:
- 9.2.1 Product furnished under this specification shall conform to the yield strength requirements prescribed in Tables 1 and 2 when tested in accordance with Test Methods E8/E8M. The purchaser must specify at the time of ordering which yield strength method shall be used.
 - 9.3 Elongation Requirements:
- 9.3.1 Product furnished under this specification shall be capable of conforming to the elongation requirements prescribed in Tables 1 and 2 when tested in accordance with Test Methods E8/E8M.

TABLE 1 Tensile Strength Requirements and Approximate Rockwell Hardness and Grain Size Values for Pressure Vessel Applications (Inch-Pound Units)

72	Temper Designation Code Name		Tensile Strength, ksi	Yield Strength at 0.5 % Extension Under Load, ksi min	Yield Strength ^A at 0.2 % offset, min, ksi	Elongation, min % ^B	Approximate Rockwell F Hardness	Approximate Grain Size, mm
				Copper Alloy UNS I	No. C65500			
	O61	Annealed	50-67	18	18	40	70-82	0.110 max ^C

^A See 5.2.6

B Elongation in 2 in

^C No minimum grain size requirement is specified, but all annealed material shall be fully recrystallized.

TABLE 2 Tensile Strength Requirements and Approximate Rockwell Hardness and Grain Size Values for Pressure Vessel Applications (SI Units)

				sure Vessel Application	ons (SI Units)			
•	Designation	Tensile — Strength, MPa	Yield Strength at 0.5 % Extension	Yield Strength ^A at 0.2 % offset, min, MPa	Elongation, min % ^B	Approximate Rockwell F Hardness	Approximate Grain Size, mm	์า
Code	Name	ivira	Under Load, MPa min			Патинезэ		8
				Copper Alloy UNS No. C6	5500			X
O61	Annealed	345-460	125	125	40	70-82	0.110 max ^C	
	TABLE :	3 Chemical Re	quirements	10.:	5.3 <i>Sawed Metal—</i> Ta	ible 13.	cection	
			Composition, %				So	
Elem	ent		oper Alloy UNS No.		6 Edges Contours:		Ci	
	-	C65100	C65400 C6	5500 10.0	6.1 Square Corners—	-Table 14.		
Copper, inc	cl silver r	emainder r	emainder rema	inder 10.0	6.2 Rounded Corners	—Table 15.	3	
Silicon	(8-20 2	7-34 28-3		(2 D 1 1 E1			

A See 5.2.6.

TABLE 3 Chemical Requirements

		Composition	, %			
Element		Copper Alloy UNS No.				
	C65100	C65400	C65500			
Copper, incl silver	remainder	remainder	remainder			
Silicon	0.8-2.0	2.7-3.4	2.8-3.8			
Manganese	0.7 max		0.50-1.3			
Tin		1.2-1.9				
Chromium		0.01-0.12				
Zinc, max	1.5	0.50	1.5			
Iron, max	0.8		0.8			
Nickel, max ^A			0.6			
Lead, max	0.05	0.05	0.05			

A Incl cobalt.

9.4 Rockwell Hardness Requirement:

9.4.1 The approximate Rockwell hardness values given in Tables 1 and 2 and Tables 4 and 5 are for general information and assistance in testing, and shall not be used as a basis for product rejection.

10. Dimensions, Mass, and Permissible Variation

- 10.1 The dimensions and tolerances for product described by this specification shall be as specified in Specification B248 or Specification B248M with particular reference to the following tables and related paragraphs (exceptions for ASME Pressure Vessel Code applications are noted)
 - 10.2 Thickness—Table 2.
- 10.2.1 Pressure Vessel Code Applications—The thickness of any plate or sheet shall not be more than 0.01 in. under the thickness specified.
 - 10.3 Width:
 - 10.3.1 Slit Metal and Slit Metal with Rolled Edges—Table 4.
 - 10.3.2 Square Sheared Metal—Table 5.
 - 10.3.3 Sawed Metal—Table 6.
 - 10.4 Length:
 - 10.4.1 Length Tolerance for Straight Lengths—Table 7.
- 10.4.2 Schedule for Minimum Lengths and Maximum Weights of Ends for Specific Lengths with Ends, and Stock Lengths with Ends—Table 8.
- 10.4.3 Length Tolerances for Square Sheared Metal— Table 9.
- 10.4.4 Length Tolerances for Sawed Metal—Table 10.
- 10.5 Straightness:
- 10.5.1 Slit Metal or Slit Metal Either Straightened or Edge Rolled—Table 11.
 - 10.5.2 Square Sheared Metal—Table 12.

10.6.3 Rounded Edges—Table 16.

10.6.4 Full-Rounded Edges—Table 17.

10.7 Weight:

10.7.1 Lot Weight Tolerances for Hot-Rolled Sheet and Plate—Table 18.

10.7.2 ASME Pressure Vessel Code Applications—Table 6 of this specification.

11. Workmanship, Finish, and Appearance

- 11.1 For workmanship and appearance requirements, refer to Specification B248 or Specification B248M.
- Finish—The material is supplied regularly in the following finishes:
 - 11.2.1 Black—After hot rolling retains all of the oxides.
- 11.2.2 Plain Pickled—Sulfuric acid pickle only, brick red oxide; has cuprous and silicon oxides still adherent.
- 11.2.3 Specially Cleaned—Commercially free of all oxides; has the golden color of the alloy.
- 11.2.4 Sand Blasted—Commercially free of all oxides; has a dull gray color.

12. Sampling

12.1 Refer to sampling section in Specification B248 or Specification B248M.

13. Test Methods

- 13.1 Chemical Analyses:
- 13.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published test methods, some of which may no longer be viable, which along with others not listed, may be used subject to agreement.

ASTM Test Method
E478
E54; Perchloric acid dehydration
E62
E478; Titrimetric
E118
E478; Atomic absorption
E478
E478; Photometric
E478; Atomic absorption

^B Elongation in 50 mm.

^C No minimum grain size requirement is specified, but all annealed material shall be fully recrystallized.

TABLE 4 Tensile Strength Requirements and Approximate Rockwell Hardness and Grain Size Values (Inch-Pound Units)

Te	mper Designation	Tensile Strength,	Approximate Rock	well Hardness	Approximate Grain
Code	Name	ksi	F Scale	B Scale	Size, mm
		Copper Alloy UNS N	o. C65100		
O61	Annealed	38–45	45–55		0.050-0.120
O50	Light anneal	40–50	50-75		0.060 max ^A
H01	Quarter-hard	42-52		48-63	
H02	Half-hard	47–57		64-73	
H04	Hard	60–70		74-82	
H06	Extra-hard	67–76		78–85	~0
H08	Spring	71–79		81-86	
		Copper Alloy UNS No	os. C65500		
O61	Annealed	52–58	70–82		0.110 max ^A
O50	Light anneal	55-64	76–93		0.055 max ^B
H01	Quarter-hard	60–74		65-80	
H02	Half-hard ^B	72–86		79–91	
H04	Hard ^B	85–99		88-96	
H06	Extra-hard ^B	95-109		93–98	, -
H08	Spring ^B	102-116		94–99)
M20	As hot-rolled	55-72	72 min		
M25	As hot-rolled and rerolled	58-72		60-80	
	Copper Alloy UNS No. C65400		Superficial 30T	B Scale	
O61	Annealed	65–80			0.040 ^B max
H01	Quarter hard ^B	75–90	64–77	72–91	
H02	Half hard ^B	86–101	75–79	89–95	
H03	Three-quarter hard ^B	97–112	77–81	94–97	
H04	Hard ^B	108–120	80–81	96–98	
H06	Extra hard ^B	116–126	81–82	97–100	
H08	Spring ^B	124-133	81–82	99-101	
H10	Extra spring ^B	131–140	81 min	100-102	
H14	Super spring ^B	137 min	81 min	101 min	

TABLE 5 Tensile Strength Requirements and Approximate Rockwell Hardness and Grain Size Values (SI Units)

Te	mper Designation	Tensile Strength,	Approximate Rock	kwell Hardness	Approximate Grain
Code	Name	MPa 💃 🔪	F Scale	B Scale	Size, mm
		Copper Alloy UNS No.	C65100		
O61	Annealed	260-310	45–55		0.050-0.120
O50	Light anneal	275-345	50-75		0.060 max ^A
H01	Quarter-hard	290-360		48-63	
H02	Half-hard	325–395		64-73	
H04	Hard	415–485		74-82	
H06	Extra-hard	460–525		78–85	
H08	Spring	490–545		81–86	
		Copper Alloy UNS Nos	. C65500		
O61	Annealed	360–400	70–82		0.110 max ^A
O50	Light anneal	380-440	76–93		0.055 max ^B
H01	Annealed Light anneal Quarter-hard Half-hard ^B	415–510		65-80	
H02	riaii-riaiu	495–595		79–91	
H04	Hard ^B	585-685		88–96	
H06	Extra-hard ^B	655–750		93-98	
H08	Spring ^B	705–800		94-99	
M20	As hot-rolled	380-495	72 min		
M25	As hot-rolled and rerolled	400-495		60-80	
	Copper Alloy UNS No. C65400		Superficial 30T	B Scale	
O61	Annealed	450–550			0.040 ^B max
H01 (Quarter hard ^B	515-620	64–77	72-91	
H02	Half hard ^B	595-695	75–79	89-95	
H03	Three-quarter hard ^B	670–770	77–81	94-97	
H04	Hard ^B	745–825	80–81	96–98	
H06	Extra hard ^B	800–870	81-82	97-100	
H08	Spring ^B	855–915	81-82	99-101	
√ H10	Extra spring ^B	905–965	81 min	100-102	
H14	Super spring ^B	945 min	81 min	101 min	

13.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.

A No minimum grain size requirement is specified, but all annealed material shall be fully recrystallized.

B Commercially supplied only as strip. The manufacturer should be consulted where these tempers are desired in sheet or plate.

A No minimum grain size requirement is specified, but all annealed material shall be fully recrystallized.

B Commercially supplied only as strip. The manufacturer should be consulted where these tempers are desired in sheet or plate.

TABLE 6 Lot Weight Tolerances in Percentage of Theoretical Weight for Pressure Vessel Applications—All Plus

		-	-				
	Permissible Excess in Average Weight of Lots, Expressed in Percentage of Normal Weight						
Thickness, in. [mm]	48 in. [1200 mm]	Over 48 to 60 in.	Over 60 to 72 in.	Over 72 to 96 in.	Over 96 to 120 in.	Over 120 to 132 in.	
THICKHESS, III. [IIIIII]	and Under	[1200 to 1500 mm]	[1500 to 1800 mm]	[1800 to 2500 mm]	[2500 to 3000 mm]	[3000 to 3500 mm]	
	in Width	in Width	in Width	in Width	in Width	incl in Width	
1/8 to 3/16, incl [3.0 to 5.0]	6.5	8	9	11			
Over 3/16 to 1/4, incl [6.0 to 8.0]	6.5	8	9	11	12		
Over 1/4 to 5/16, incl [8.0 to 10]	6.5	7.75	8.75	11	12	13	
Over 5/16 to 3/8, incl [9.0 to 10]	6.25	7.5	8.5	11	12	13	
Over 3/8 to 7/16, incl [10 to 12]	6	7.25	8.25	11	12	13	
Over 7/16 to 1/2, incl [12 to 14]	6	7	8	10	11	12	
Over 1/2 to 5/8, incl [14 to 16]	5.75	6.5	7.5	9	10	11	
Over 5% to 3/4, incl [16 to 20]	5.5	6	7	8	9	10	
Over 3/4 to 1, incl [20 to 25]	5	5	6.25	7	8	90	
Over 1 to 2, incl [25 to 50]	3.5	4	5	6	7	8	

13.2 Other Tests:

A and a strain of the state of 13.2.1 Mechanical Properties (Tensile Strength, Yield Strength, Elongation, Rockwell Hardness, and Grain Size)—

14. Keywords

4. Keywords

14.1 copper-silicon alloy plate, copper-silicon alloy presure vessels; copper-silicon alloy rolled bar, copper silicon sure vessels; copper-silicon alloy rolled bar; copper-silicon alloy sheet; copper-silicon alloy strip; UNS No. C65100; UNS No. C65400; UNS No. C65500

SPECIFICATION FOR COPPER-SILICON ALLOY ROD, BAR AND SHAPES SB-98/SB-98M SB-98/SB-98M Jdentical with ASTM Specification B98/B98M-13(2019) except that paras. 4.2.3 and 8.1.1.1 were deleted as the control of the cont

A98M-1. rdness test, rdness tes (Identical with ASTM Specification B98/B98M-13(2019) except that paras. 4.2.3 and 8.1.1.1 were deleted so that tensile testing rather than Rockwell hardness testing is required to show conformance with mechanical properties.)

Specification for Copper-Silicon Alloy Rod, Bar and Shapes

1. Scope

1.1 This specification establishes requirements for coppersilicon rod, bar, and shapes for UNS Copper Alloys C65100, C65500, and C66100.

Note 1—Material for hot forging is covered by Specification B124/ B124M.

NOTE 2—DELETED

- 1.2 *Units*—The values stated in either SI units or inchpound units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other and values from the two systems shall not be combined.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B124/B124M Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes

B249/B249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes and Forgings

B950 Guide for Editorial Procedures and Form of Product Specifications for Copper and Copper Alloys

B601 Classification for Temper Designations for Copper and

Copper Alloys—Wrought and Cast

E8/E8M Test Methods for Tension Testing of Metallic Materials

E18 Test Methods for Rockwell Hardness of Metallic Materials

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010) E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 ASME Standard:

ASME Boiler and Pressure Vessel Code

3. General Requirements

- 3.1 The following sections of Specification B249/B249M constitute a part of this specification:
 - 3.1.1 Terminology;
 - 3.1.2 Materials and Manufacture;
 - 3.1.3 Workmanship, Finish, and Appearance;
 - 3.1.4 Sampling;
 - 3.1.5 Number of Tests and Retests;
 - 3.1.6 Specimen Preparation;
- 3.1.7 Test Methods;
- 3.1.8 Significance of Numerical Limits;
- 3.1.9 Inspection;
- 3.1.10 Rejection and Rehearing;
- 3.1.11 Certification;
- 3.1.12 Test Reports;
- 3.1.13 Packaging and Package Marking; and
- 3.1.14 Supplementary Requirements.
- 3.2 In addition, when a section with a title identical to one of those referenced in 3.1 appears in this specification, it contains additional requirements that supplement those which appear in Specification B249/B249M.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 4.1.1 ASTM Designation and year of issue;

- 4.1.2 Copper Alloy UNS No. designation;
- 4.1.3 Temper designation (see Temper Section 7);
- 4.1.4 Quantity; total weight or length, or number of pieces of each temper, form, or alloy;
- 4.1.5 Dimensions; diameter or distance between parallel surfaces:
 - 4.1.6 Type of edge; edge contours;
- 4.1.7 How furnished; specific lengths with or without ends; and
- 4.1.8 Intended application.
- 4.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
 - 4.2.1 DELETED
 - 4.2.2 DELETED
 - 4.2.3 DELETED
- 4.2.4 If product is purchased for agencies of the U.S. Government (see Supplementary Requirements in Specification B249/B249M).

5. Material and Manufacture

- 5.1 *Materials*—The starting material shall be cast billets or rods of Copper Alloy UNS Nos. C65100, C65500, or C66100, and shall be of such soundness and structure as to enable them to be processed into the product specified in the contract or purchase order.
- 5.2 Manufacture—The product shall be manufactured by such hot-working, cold-working, straightening, and annealing processing as to produce a uniform wrought structure and obtain the required finish properties.

6. Chemical Composition

- 6.1 The material shall conform to the chemical requirements specified in Table 1 for the Copper Alloy UNS No. designated in the ordering information.
- 6.1.1 For alloys in which copper is listed as "remainder," copper is the difference between the sum of the results of all elements determined and 100 %.
- 6.1.2 When all elements listed in Table 1 are determined for the designated alloy, the sum of results shall be 99.5 % min.

TABLE 1 Chemical Requirements

-0	~	mposition, % Maxim nown as a Range or	
\mathcal{O}_{-}	C	Copper Alloy UNS No).
C_{1}	C65100	C65500	C66100
Copper (Includes silver)	remainder	remainder	remainder
Lead Iron Zinc	0.05 0.8 1.5	0.05 0.8 1.5	0.20–0.8 0.25 1.5
Manganese Silicon Nickel (includes cobalt)	0.7 0.8–2.0	0.50-1.3 2.8-3.8 0.6	1.5 2.8–3.5

6.2 These composition limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer and the purchaser.

7. Temper

- 7.1 The standard tempers, as defined in Classification B601 for products described in this specification are given in Tables 2-5.
 - 7.1.1 Soft annealed O60,
 - 7.1.2 ¹/₄-hard H01,
 - 7.1.3 ½-hard H02,
 - 7.1.4 Hard H04,
 - 7.1.5 Extra-hard H06.
 - 7.1.6 As hot rolled M20, and
 - 7.1.7 As hot extruded M30.
- 7.2 Product of bars and shapes in the temper H06 is normally not produced.

8. Mechanical Property Requirements

- 8.1 Product furnished under this specification shall conform to the tensile and hardness requirements prescribed in Tables 2-5 for the Copper Alloy UNS No. designation specified in the ordering information.
- 8.1.1 Rockwell Hardness Requirement—For the alloys and tempers listed, product 0.5 in. [12 mm] and over in diameter or in the distance between parallel surfaces shall conform with the requirements given in Table 4 and Table 5, when tested in accordance with Test Methods E18.
 - 8.1.1.1 DELETED
- 8.1.2 Tensile Strength Requirements—The product shall conform with the requirements of Table 2 and Table 3 when tested in accordance with Test Methods E8/E8M.
- 8.1.2.1 The tensile requirements for all alloys and forms of M20 and M30 tempers shall be as agreed upon between the manufacturer and purchaser at the time of order.

9. Dimensions, Mass and Permissible Variations

- 9.1 Refer to the appropriate paragraphs in Specification B249/B249M with particular reference to the following tables:
 - 9.2 Diameter or Distance Between Parallel Surfaces:
- 9.2.1 *Rod: Round, Hexagonal, Octagonal*—Refer to Table 1 for Alloy C65100 and to Table 2 for Alloys C65500 and C66100.
 - 9.2.2 Rod: Round M20 Temper—Refer to Table 6.
- 9.2.3 Rod: Round, Hexagonal, Octagonal, M30 Temper—Refer to Table 5.
- 9.2.4 *Bar: Rectangular and Square*—Refer to Tables 8 and 10 for Alloy C65100, and Tables 9 and 11 for Alloys C65500 and C66100.
- 9.2.5 Bar: M30 Temper—Refer to Table 5 for thickness and width tolerances.
- 9.3 *Shapes*—The dimensional tolerance for shapes shall be as agreed upon between the manufacturer and the purchaser, and shall be specified in the order.

TABLE 2 Tensile Requirements, Inch-Pound (see Table 3 for SI)

Temp	per Designation	Diameter or Distance Between Parallel	Tensile Strength min,	Yield Strength at 0.5 %	Elongation in 4 ×	
Code	Name	Surfaces, ^A in.	ksi	Extension Under Load, min, ksi	d, Diameter or Thickness of Specimen, min, % ^B	
		Copper Alloy	UNS No. C65100 Rods, E	Bars, and Shapes		
O60	Soft anneal	All forms, all sizes	40	12	30	
H02	Half-hard	Rods:				
		Up to 1/2, incl	55	20	11	
		Over ½ to 2, incl	55	20	12	
		Bars and shapes	С	C	8 10 6 Cection	
H04	Hard	Rods:				
		Up to 1/2, incl	65	35	8	
		Over ½ to 2, incl	65	35	10 C	
		Bars and shapes	С	С	c ;(O'	
H06	Extra-hard	Rods:			حزاري	
		Up to ½, incl	85	55	6 8	
		Over ½ to 1, incl	75	45	8	
		Over 1 to 11/2, incl	75	40	8 , 9	
		Copper Alloy UN	S Nos. C65500 and C661	00 Rectangular Bars	. 10	
O60	Soft anneal	All sizes	52	15	35	
H04	Hard	Up to 1, incl	65	38	20	
		Over 1 to 11/2, incl	60	30	25	
		Over 1½ to 3, incl	55	24	27	
				s, Square Bars, and Shapes		
	Soft anneal	All forms, all sizes	52	15	35	
H01	Quarter-hard	All forms, all sizes	55	24	25	
H02	Half-hard	Rods and square bars:		()		
		Up to 2, incl	70	38	20	
		Shapes	С	C	С	
H04	Hard	Rods and square bars:		11.		
		Up to 1/4, incl	90	55	8	
		Over 1/4 to 1, incl	90	52	13	
		Over 1 to 11/2, incl	80	43	15	
		Over 11/2 to 3, incl	70	38	17	
		Over 3	С	C	C	
		Shapes	С	C	С	
H06	Extra-hard	Rods: up to 1/2, incl	100	55	7	

^A For rectangular bar, the Distance Between Parallel Surfaces refers to thickness.

9.4 Length:

9.4.1 Rod, Bar and Shapes—Refer to Tables 13 and 15.

9.5 Straightness:

9.5.1 Rod and Bar-Refer to Table 16.

9.6 Edge Contours:

9.6.1 *Rod and Bar*—Refer to the section entitled, "Edge Contours" and to Figs. 1, 2, and 3.

10. Test Methods

10.1 In cases of disagreement, test methods for chemical composition shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published test methods some of which are considered by ASTM as no longer viable. These, and others not listed, may be used subject to agreement.

Copper Lead Manganese Nickel Silicon

E478 E478, Atomic absorption E62 E478, Photometric E62 E478, Atomic absorption

Test Methods

10.1.1 Test Method(s) to be followed for the determination of elements required by contractual or purchase order agreement shall be as agreed upon between the supplier and purchaser.

10.2 Refer to Specification B249/B249M for other appropriate test methods.

11. Keywords

11.1 copper—rod, bar, shapes; copper-silicon alloy; high silicon bronze A; low silicon bronze B; silicon bronze; UNS No. C65100; UNS No. C65500; UNS No. C66100

 $^{^{\}it B}$ In any case a minimum gage length of 1 in. shall be used. $^{\it C}$ As agreed upon between manufacturer and purchaser.

TABLE 3 Tensile Requirements, SI (see Table 2 for Inch-Pound)

Temper Designation		Diameter or Distance Between Parallel	Tensile Strength min,	Yield Strength at 0.5 %	Elongation, min, % ^B	
Code	Name	Surfaces, ^A mm	MPa			
		Copper Alloy UNS No	. C65100 Rods, Bars, and Sha	ipes		
O60	Soft anneal	All forms, all sizes	275	85	30	
H02	Half-hard	Rods:				
		Up to 12, incl	380	140	11	
		Over 12 to 50, incl	380	140	11 12 c 8 10 6 8 8 10 6	
		Bars and shapes	C	C	c	
H04	Hard	Rods:			11 4	
		Up to 12, incl	450	240	8	
		Over 12 to 50, incl	450	240	10	
		Bars and shapes	C	C	c :\O'	
H06	Extra-hard	Rods:			cili .	
		Up to 12, incl	585	380	6 - 01	
		Over 12 to 25, incl	515	310	8	
		Over 25 to 38, incl	515	275	8	
		Copper Alloy UNS Nos. C	65500 and C66100 Rectangul	ar Bars		
O60	Soft anneal	All sizes	360	105	35	
H04	Hard	Up to 25, incl	450	260	20	
		Over 25 to 38, incl	415	205	25	
		Over 38 to 75, incl	380	165	27	
		Copper Alloy UNS Nos. C65500				
O60	Soft anneal	All forms, all sizes	360	105	35	
H01	Quarter-hard	All forms, all sizes	380	165	25	
H02	Half-hard	Rods and square bars:				
		Up to 50, incl	485	260	20	
		Shapes	C		C	
H04	Hard	Rods and square bars:		>.		
		Up to 6, incl	615	380	8	
		Over 6 to 25, incl	615	360	13	
		Over 25 to 38, incl	545	295	15	
		Over 38 to 75, incl	485	260	17	
		Over 75	c	C	С	
		Shapes	C	C	C	
H06	Extra-hard	Rods: up to 12, incl	690	380	7	

TABLE 4 Rockwell Hardness Requirements, Inch-Pound^A (see Table 5 for SI)

	nper Designation	Diameter or Distance Between Paralle Surfaces. ^B in.	Rockwell B Hardness Determined on the Cross Section Midway Between Surface
Code	Name	Surfaces, III.	and Center
		Copper Alloy UNS No. C65100 Rods, Bars, and S	Shapes
H02	Half-hard 💉	0.5 to 2.0 , incl	60–85
H04	Hard	0.5 to 2.0, incl	65–90
H06	Extra-hard ^C	0.5 to 1.5, incl	75–95
	Co	opper Alloy UNS Nos. C65500 and C66100 Rectan	ngular Bars
H04	Hard	0.5 to 3.0, incl	60–95
	Copper Al	loy UNS Nos. C65500 and C66100 Rods, Square	Bars, and Shapes
H02	Half-hard	0.5 to 1.0, incl	75–95
	X	over 1.0 to 1.5, incl	75–95
	(,C)	over 1.5 to 3.0, incl	75–95
H04	Hard	0.5 to 1.0, incl	85–100
	, •	over 1.0 to 1.5, incl	80–95
	•	over 1.5 to 3.0, incl	75–95

^A Rockwell hardness requirements are not established for diameters less than 0.5 in. ^B For rectangular bar, the Distance Between Parallel Surfaces refers to thickness. ^C Bars and shapes are not produced in the H06 temper.

A For rectangular bar, the Distance Between Parallel Surfaces refers to thickness.

B Elongation values are based on a gage length of 5.65 times the square root of the area for dimensions greater than 2.5 mm.

C As agreed upon between manufacturer and purchaser.

a h atang sand sha sand sha

	r Designation	Diameter or Distance Between Parallel	Rockwell B Hardness Determined on the Cross Section Midway Between Surface
Code	Name	Surfaces, ^B mm	and Center
H02	Half-hard	Copper Alloy UNS No. C65100 Rods, Bars, and S 12 to 50, incl	Shapes 60-85
H04	Hard	12 to 50, incl	65–90
H06	Extra-hard ^C	12 to 50, incl	75–95
H04	Hard	Copper Alloy UNS Nos. C65500 and C66100 Rectang 12 to 75, incl	
		Copper Alloy UNS Nos. C65500 and C66100 Rods, Square I	Bars, and Shapes
H02	Half-hard	12 to 25, incl over 25 to 38, incl	75–95
		over 38 to 75, incl	75–95 75–95
H04	Hard	12 to 25, incl over 25 to 38, incl	85–100 80–95
		over 25 to 38, incl	75–95
		over 25 to 38, inclover 38 to 75, inclestablished for diameters less than 12 mm. In Parallel Surfaces refers to thickness. Hole temper.	JC.II.B. (ASME b)
andoc.	on click	to riew the full PDF of F	
ANDOC.	.OM. Click	io view the full PDF of F	

SB-108/SB-108M SB-108/SB-108M (Identical with ASTM Specification B108/B108M-12⁻⁸ except that certification and test reports have been made mandatory, and ASME weldfur requirements are invoked for repair welding.)

Specification for **Aluminum-Alloy Permanent Mold Castings**

1. Scope

- 1.1 This specification covers aluminum-alloy permanent mold castings designated as shown in Table 1.
- 1.2 This specification is for aluminum-alloy permanent mold castings used in general purpose applications. It may not address the mechanical properties, integrity testing, and verification required for highly loaded or safety critical applica-
- 1.3 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent unified numbering system alloy designations are in accordance with Practice E527.
- 1.4 Unless the order specifies the "M" specification designation, the material shall be furnished to the inch-pound units.
- 1.5 For acceptance criteria for inclusion of new aluminum and aluminum alloys and their properties in this specification, see Annex A1 and Annex A2.
- 1.6 Units—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
- 1.7 This standard does not purport address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applica-SMENOR MDOC. COM. bility of regulatory limitations prior to use.

2. Referenced Documents

- ion II Part B) 202 2.1 The following documents of the issue in effect on the date of casting purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B179 Specification for Aluminum Alloys in Ingot and Molten Forms for Castings from All Casting Processes
 - B275 Practice for Codification of Certain Nonferrous Metals and Alloys, Cast and Wrought
 - B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
 - B557M Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products (Metric)
 - B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
 - B88 Terminology Relating to Aluminum- and Magnesium-Alloy Products
 - B917/B917M Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes
 - D3951 Practice for Commercial Packaging
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
 - E94 Guide for Radiographic Examination
 - E155 Reference Radiographs for Inspection of Aluminum and Magnesium Castings
 - E165 Practice for Liquid Penetrant Examination for General Industry
 - E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
 - E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)

TABLE 1 Chemical Composition Limits^{A,B,C}

	TABLE 1 Chemical Composition Limits													
A	lloy						Comp	osition, %						
ANSI ^D	UNS	Aluminum	Silicon	Iron	Copper	Manga- nese	Magne- sium	Chromium	Nickel	Zinc	Titanium	Tin	Otl Elem Each	
204.0	A02040	remainder	0.20	0.35	4.2-5.0	0.10	0.15-0.35		0.05	0.10	0.15-0.30	0.05	0.05	0.15
242.0	A02420	remainder	0.7	1.0	3.5-4.5	0.35	1.2-1.8	0.25	1.7–2.3	0.35	0.25		0.05	0.15
296.0		remainder	2.0-3.0	1.2	4.0-5.0	0.35	0.05		0.35	0.50	0.25			0.35
308.0		remainder	5.0-6.0	1.0	4.0-5.0	0.50	0.10			1.0	0.25			0.50
319.0	A03190	remainder	5.5-6.5	1.0	3.0-4.0	0.50	0.10		0.35	1.0	0.25			0.50
332.0 ^{<i>G</i>}	A03320	remainder	8.5-10.5	1.2	2.0-4.0	0.50	0.50-1.5		0.50	1.0	0.25			0.50
333.0	A03330	remainder	8.0–10.0	1.0	3.0-4.0	0.50	0.05-0.50		0.50	1.0	0.25			0.50
336.0 ^{<i>G</i>}	A03360	remainder	11.0–13.0	1.2	0.50–1.5	0.35	0.7–1.3		2.0-3.0	0.35	0.25		0.05	
354.0	A03540	remainder	8.6–9.4	0.20	1.6–2.0	0.10	0.40-0.6			0.10	0.20	~	0.05	0.15
355.0	A03550	remainder	4.5–5.5	0.6^{H}	1.0–1.5	0.50 ^H	0.40-0.6	0.25		0.35	0.25	0	0.05	0.15
C355.0	A33550	remainder	4.5–5.5	0.20	1.0–1.5	0.10	0.40-0.6			0.10	0.20	CO	0.05	0.15
356.0	A03560	remainder	6.5–7.5	0.6 ^H	0.25	0.35 ^H	0.20-0.45			0.35	0.25		0.05	0.15
A356.0	A13560	remainder	6.5–7.5	0.20	0.20	0.10	0.25-0.45			0.10	0.20)	0.05	0.15
357.0		remainder	6.5–7.5	0.15	0.05	0.03	0.45-0.6			0.05	0.20		0.05	0.15
A357.0	A13570	remainder	6.5–7.5	0.20	0.20	0.10	0.40-0.7			0.10	0.04-0.20		0.05	0.15
E357.0		remainder	6.5–7.5	0.10	l	0.10	0.55-0.6				0.10-0.20		0.05 ^J	0.15
F357.0		remainder	6.5–7.5	0.10	0.20	0.10	0.40-0.7			0.10	0.04-0.20		0.05 ^J	0.15
359.0	A03590	remainder	8.5–9.5	0.20	0.20	0.10	0.50-0.7			0.10	0.20		0.05	0.15
443.0	A04430	remainder	4.5–6.0	8.0	0.6	0.50	0.05	0.25		0.50	0.25			0.35
B443.0	A24430	remainder	4.5–6.0	0.8	0.15	0.35	0.05			0.35	0.25		0.05	0.15
A444.0	A14440	remainder	6.5–7.5	0.20	0.10	0.10	0.05			0.10	0.20		0.05	0.15
513.0 ^G	A05130	remainder	0.30	0.40	0.10 0.05	0.30	3.5–4.5 6.2–7.5		O	1.4–2.2	0.20		0.05 0.05 ^K	0.15 0.15
535.0	A05350 A07050	remainder	0.15 0.20	0.15	0.05	0.10-0.25 0.40-0.6	1.4–1.8	0.20-0.40		2.7–3.3	0.10–0.25 0.25		0.05	0.15
705.0 707.0	A07050 A07070	remainder remainder	0.20	0.8 0.8	0.20	0.40-0.6	1.4–1.8	0.20-0.40	1.4	4.0-4.5	0.25		0.05	0.15
707.0 711.0 ^G	A07070 A07110	remainder	0.20	0.8 0.7–1.4		0.40-0.6	0.25-0.45	. (4.0–4.5 6.0–7.0	0.25		0.05	0.15
711.0	A07110 A07130	remainder	0.30	1.1	0.35-0.65	0.05	0.25-0.45	0.35	0.15	7.0–8.0	0.20		0.05	0.15
850.0	A07130 A08500	remainder	0.25	0.7	0.40-1.0	0.10	0.20-0.50	0.33	0.15		0.25	 5.5–7.0		0.25
851.0 ^G	A08510	remainder	2.0–3.0	0.7	0.7-1.3	0.10	0.10	0	0.7-1.3		0.20	5.5–7.0		0.30
852.0 ^G	A08510 A08520	remainder	0.40	0.7	1.7–2.3	0.10	0.10		0.3-0.7		0.20	5.5–7.0		0.30
002.0	7100020	remainder	0.40	J.1	1.7-2.0	0.10	0.0-0.9	٠	0.9-1.0		0.20	3.5-7.0		0.00

A When single units are shown, these indicate the maximum amounts permitted.

E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

E2422 Digital Reference Images for Inspection of Aluminum Castings

JEEE/ASTM SI 10 Standard for Use of the International System of Units (SI): The Modern Metric System

2.3 ANSI Standard:

H35.1/H35.1M Alloy and Temper Designation Systems for Aluminum

2.4 Military Standards:

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-276 Impregnation of Porous Nonferrous Metal Castings

NAVSEA S9074-AR-GIB-010/278 Requirements for Fabrication Welding and Inspection, and Casting Inspection and Repair for Machinery, Piping, and Pressure Vessels

2.5 AMS Specification:

AMS 2771 Heat Treatment of Aluminum Alloy Castings

^B Analysis shall be made for the elements for which limits are shown in this table. The following applies to all specified limits in this table: For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit in accordance with the rounding method of Practice E29.

^D ASTM alloy designations are recorded in Practice B275.

E Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

^G 336.0 formerly A332.0, 332.0 formerly F332.0, 513.0 formerly A514.0, 711.0 formerly C712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

H If the iron content exceeds 0.45 %, manganese content shall not be less than one half of the iron.

¹ Bervllium 0.04-0.07.

J Beryllium 0.002 max

K Beryllium 0.003-0.007, boron 0.005 max

2.6 Federal Standard:

Fed Std. No. 123 Marking for Shipment (Civil Agencies) 2.7 Other Standards:

CEN EN 14242 Aluminum and Aluminum Alloys, Chemical Analysis, Inductively Coupled Plasma Optical Emission Spectral Analysis

3. Terminology

3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information (see 1.4 and 1.5):
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

Note 1—For inch-pound application, specify Specification B108 and for metric application specify Specification B108M. Do not mix units.

- 4.1.2 Alloy (see Section 7 and Table 1),
- 4.1.3 Temper (see Section 10 and Table 2 [Table 3])

TABLE 2 Tensile Requirements^A (Inch-Pound Units)

Note 1—For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi, and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

	Alloy	—— Temper ^B	Tensile Strength, min,	Yield Strength ^C (0.2 % offset)	Elongation in 2 in. or 4 ×	Typical Brine Hardness ^D
ANSI ^E	UNS		ksi	min, ksi	Diameter, min, %	500-kgf load 10-mm ball
204.0	A02040	T4 separately cast specimens	48.0	29.0	8.0	
242.0	A02420	T571	34.0	⊘ ¬ `	F	105
		T61	40.0		F	110
296.0	A02960	T4	33.0	15.0	4.5	75
		T6	35.0	() ·	2.0	90
		T7	33.0	16.0	3.0	
308.0	A03080	F	24.0	•		70
319.0	A03190	F	27.0	14.0	2.5	95
332.0 ^{<i>G</i>}	A03320	T5	31.0		F	105
333.0	A03330	F	28.0		F	90
		T5	30.0		F	100
		T6	35.0		F	105
		T7	31.0		F	90
336.0 ^G	A03360	T551 🧏	31.0		F	105
		T65	40.0		F	125
354.0	A03540	T61	30.0 35.0 31.0 31.0 40.0			
		separately cast specimens	48.0	37.0	3.0	
		casting, designated area ^H	47.0	36.0	3.0	
		castings, no location designated ^H	43.0	33.0	2.0	
		T62				
		separately cast specimens	52.0	42.0	2.0	
		castings, designated area ^H	50.0	42.0	2.0	
		castings, no location designated ^H	43.0	33.0	2.0	
355.0	A03550	T51	27.0		F	75
		T62	42.0		F	105
		T7 • 0	36.0		F	90
C355.0	A33550	T71 T61	34.0	27.0	F	80
0333.0	A33330	separately cast specimens	40.0	30.0	3.0	85–90
		castings, designated area ^H	40.0	30.0	3.0	65–90
		castings, designated area castings, no location designated ^H	37.0	30.0	1.0	85
356.0	A03560	F	21.0	10.0	3.0	65
330.0	A03300	T6	33.0	22.0	3.0	85
	. •	T71	25.0		3.0	70
A356.0	A13560	T61	25.0		5.0	70
A000.0	110000	separately cast specimens	38.0	26.0	5.0	80–90
	~O'	castings, designated area ^H	33.0	26.0	5.0	00 00
		castings, no location designated ^H	28.0	26.0	3.0	
357.0		T6	45.0		3.0	
A357.0	A13570	T61	43.0		5.0	
A037.0	A10370	separately cast specimens	45.0	36.0	3.0	100
		castings, designated area ^H	46.0	36.0	3.0	
Min		castings, designated area castings, no location designated ^H	41.0	31.0	3.0	
E357 01		T61	41.0	31.0	3.0	
LUJ1.U		separately cast specimens	45.0	36.0	3.0	100
		castings, designated area ^H	46.0	36.0	3.0	100
		castings, designated area castings, no location designated ^H	41.0	31.0	3.0	
F357.0 ^J		T6	45.0	31.0	3.0	
	A02500		43.0		3.0	
359.0	A03590	T61	45.0	34.0	4.0	90
		separately cast specimens				90
		castings, designated area ^H	45.0	34.0	4.0	

TABLE 2 Continued

		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Commuca			
ANSI ^E	Alloy	Temper ^B	Tensile Strength, min, ksi	Yield Strength ^C (0.2 % offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %	Typical Brinell Hardness ^D 500-kgf load, 10-mm ball
		castings, no location designated ^H	40.0	30.0	3.0	
		T62				
		separately cast specimens	47.0	38.0	3.0	100
		castings, designated area ^H	47.0	38.0	3.0	
		castings, no location designated ^H	40.0	30.0	3.0	-0°
443.0	A04430	F	21.0	7.0	2.0	45
B443.0	A24430	F	21.0	6.0	2.5	45
A444.0	A14440	T4				~ ` `
		separately cast specimens	20.0		20	. 01
		castings, designated area ^H	20.0		20	*//O
513.0 ^G	A05130	F	22.0	12.0	2.5	60
535.0	A05350	F	35.0	18.0	8.0	
705.0	A07050	T1 or T5	37.0	17.0	10.0	
707.0	A07070	T1	42.0	25.0	40	
		T7	45.0	35.0	3,0	
711.0 ^{<i>G</i>}	A07110	T1	28.0	18.0	7.0	70
713.0	A07130	T1 or T5	32.0	22.0	4.0	
850.0	A08500	T5	18.0	/	8.0	
851.0 ^{<i>G</i>}	A08510	T5	17.0	💉	/ 3.0	
		T6	18.0	NI.	8.0	
852.0 ^G	A08520	T5	27.0		3.0	

A If agreed upon by manufacturer and the purchaser, other mechanical properties may be obtained by other heat treatments such as annealing, aging, or stress relieving.

TABLE 3 Tensile Requirements (SI Units) – [Metric]^{AB}

Note 1—For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 1 MPa and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

	Alloy		— Temper	Tensile Strength,	Yield Strength ^E (0.2 % offset),	Elongation in	Typical Brinell Hardness ^F
ANS	SI ^G	UNS		min, MPa ^D	min, MPa ^D	5D, min, %	500-kgf load, 10-mm ball
204	1.0	A02040	T4 separately cast specimens	330	200	7.0	
242	2.0	A02420	T571 🕜	235		Н	105
			T61	275		Н	110
296	3.0	A02960	T4 , **	230	105	4.5	75
			T4 T6 T7.	240		2.0	90
			T7.	230	110	3.0	
308		A03080	F	165			70
319		A03190	N. CF	185	95	2.5	95
332		A03320	T5	215		Н	105
333	3.0	A03330 \	► F	195		Н	90
		ιίΟ,	T5	205		Н	100
			T6	240		Н	105
		\cdot	T7	215		Н	90
336	6.0 ¹	A03360	T551	215		Н	105
	-17		T65	275		Н	125
354	1.0	A03540	T61				
	\sim		separately cast specimens	330	255	3.0	
			casting, designated area ^J	325	250	3.0	
	Ο,		castings, no location designated J T62	295	230	2.0	
			separately cast specimens	360	290	2.0	
			castings, designated area	345	290	2.0	
$\mathcal{L}_{\mathcal{L}}$.			castings, no location designated ^J	295	230	2.0	
355	5.0	A03550	T51	185		Н	75
•			T62	290		Н	105
			T7	250		Н	90
			T71	235	185	Н	80
C35	5.0	A33550	T61				
			separately cast specimens	275	205	3.0	85-90
			castings, designated area ^J	275	205	3.0	
			castings, no location designated ^J	255	205	1.0	85

^B Refer to ANSI H 35.1/H35.1(M) for description of tempers.

^C Yield strength to be evaluated only when specified in contract or purchase order.

^D Hardness values given for information only, not required for acceptance.

^E ASTM alloy designations are recorded in Practice B275.

F Not required.

^G 332.0 formerly F332.0, 336.0 formerly A332.0, 513.0 formerly A514.0, 711.0 formerly C712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

H These properties apply only to castings having section thicknesses not greater than 2 in. except that section thicknesses of ¾ in., max, shall apply to Alloy A444.0. Properties copied from A357.0–T61.

Properties copied from 357.0–16.

TABLE 3 Continued

		TABLE 3	Continued			
	lloy	— Temper ^C	Tensile Strength, min,	Yield Strength ^E (0.2 % offset), min.	Elongation in	Typical Brinell Hardness ^F 500-kgf load,
ANSI ^G UNS		MPa ^D	min, MPa ^D	5D, min, %	10-mm ball	
356.0	A03560	F	145	70	3.0	
		T6	230	150	3.0	85
		T71	170		3.0	70
A356.0	A13560	T61				
		separately cast specimens	260	180	4.0	80-90
		castings, designated area ^J	230	180	4.0	
		castings, no location designated ^J	195	180	3.0	CSE.
357.0		T6	310		3.0	
A357.0	A13570	T61				O)
		separately cast specimens	310	250	3.0	100
		castings, designated area ^J	315	250	3.0	
		castings, no location designated ^J	285	215	3.0	
E357.0 ^K		T61				~ 5
		separately cast specimens	310	250	3.0	100
		castings, designated area ^J	315	250	3.0	7
		castings, no location designated ^J	285	215	3.0	
F357.0 ^L		T6	310		3.0	
359.0	A03590	T61				
		separately cast specimens	310	235	4.0	90
		castings, designated area	310	235	4.0	
		castings, no location designated ^J	275	205	3.0	
		T62		1		
		separately cast specimens	325	260	3.0	100
		castings, designated area	325	260	3.0	
		castings, no location designated ^J	275	205	3.0	
443.0	A04430	F	145	50	2.0	45
B443.0	A24430	F	145	140	2.5	45
A444.0	A14440	T4				
		separately cast specimens	140		18.0	
		castings, designated area	140	め `	18.0	
513.0 [′]	A05130	F	150	80	2.5	60
535.0	A05350	F	240	125	7.0	
705.0	A07050	T1 or T5	255	115	9.0	
707.0	A07070	T1	290	170	4.0	
				240	3.0	
711.0'	A07110	T7 T1 T1 or T5 T5 T5	195	125	6.0	70
713.0	A07130	T1 or T5	220	150	4.0	
850.0	A08500	T5	125		7.0	
851.0 [']	A08510	T5	115		3.0	
551.0	7,00010	T6	125		7.0	
852.0 [′]	A08520	T5	185		3.0	
552.0	700020	10	100		0.0	

Alf agreed upon by manufacturer and the purchaser, other mechanical properties may be obtained by other heat treatments such as annealing, aging, or stress relieving. ^BGuidelines for metric conversion from the "Tempers for Aluminum and Aluminum Alloys, Metric Edition" (Tan Sheets) Appendix A, were used to convert the tensile and yield values to SI units.⁶
^C Refer to ANSI H 35.1/H35.1(M) for description of tempers.

- 4.1.4 Applicable drawing or part number,
- 4.1.5 The quartity in either pieces or pounds [kilograms],
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser.
 - 4.2.1 Whether foundry control is required (see Section 9),
- 4.2.2 Whether yield strength tests are required (see 10.1 and Table 2, Footnote C, [Table 4], [, Footnote D]),
- 4.2.3 Whether castings or test bars, or both, are to be artificially aged for Alloys 705.0-T5, 707.0-T5, and 713.0-T5 (see 10.3),
- 4.2.4 Whether test specimens cut from castings are required in addition to or instead of separately cast specimens (see Sections 10, 12.2, 13.2, and 15),
- 4.2.5 Whether heat treatment is to be performed in accordance with AMS 2771 (see Section 16),
 - 4.2.6 Whether repairs are permissible (see Section 17),
- 4.2.7 Whether inspection is required at the producer's works (see Section 18),
 - 4.2.8 DELETED
- 4.2.9 Whether surface requirements will be checked visually or by observational standards where such standards are established (see 19.1),

^D For explanation of the SI Unit "MPa" see Appendix X2

E Yield strength to be evaluated only when specified in contract or purchase order.

F Hardness values given for information only, not required for acceptance.
^a ASTM alloy designations are recorded in Practice B275.

^H Not required.

¹ 332.0 formerly F332.0, 336.0 formerly A332.0,513.0 formerly A514.0, 711.0 formerly C712.0, 851.0 formerly A850.0, 852.0 formerly B850.0.

^v These properties apply only to castings having section thicknesses not greater than 2 in. except that section thicknesses of 19-mm max, shall apply to Alloy A444.0.

^KProperties copied from A357.0–**T6**1. ^LProperties copied from 357.0-T6

Grade A^A Grade B Grade C Grade D Discontinuity Section Thickness, in. (mm) 1/4 to 3/4 (6.4 to 19.0) (6.4)(19.0)(6.4)(19.0)(6.4)(19.0)Gas holes none 1 2 2 5 Gas porosity (round) 3 3 7 none Gas porosity (elongated) 1 B 3 5 none 4 *B* Shrinkage cavity none 2 3 2 1 2 Shrinkage porosity or sponge none Foreign material (less dense material) none 2 2 Foreign material (more dense material) 2 1 none Segregation none none none Cracks none none none Cold shuts none none Surface irregularity not to exceed drawing tolerance Core shaft not to exceed drawing tolerance

TABLE 4 Discontinuity—Level Requirements for Aluminum Castings in Accordance with Film Reference Radiographs E155 or Digital Reference Radiographs E2422

4.2.10 Whether liquid penetrant inspection is required (see 19.2).

4.2.11 Whether radiographic inspection is required and, if so, the radiographic grade of casting required (19.3, Table 4), and

4.2.12 Whether Practices B660 applies and, if so, the levels of preservation, packaging and packing required (see 23.4).

5. Responsibility for Quality Assurance

5.1 Unless otherwise specified in the contract or purchase order, the producer shall be responsible for the performance of all inspections and test requirements specified herein. Unless otherwise agreed upon, the producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein. The purchaser shall have the right to perform any of the inspections and tests set forth in the specification where such inspections are deemed necessary to confirm that the material conforms to prescribed requirements.

6. Manufacture

6.1 The responsibility of furnishing castings that can be laid out and machined to the finished dimensions within the permissible variations specified, as shown on the blueprints or drawings, shall rest with the producer, except where mold equipment is furnished by the purchaser.

7. Chemical Composition

7.1 The product shall conform to the chemical composition limits prescribed in Table 1. Conformance shall be determined by the producer by taking samples at the time castings are poured in accordance with E716 and analyzed in accordance with E607, E1251, E34, or CEN EN 14242. If the producer has determined the composition of the material during casting, they shall not be required to sample and analyze the finished product.

7.2 If it becomes necessary to analyze castings for conformance to chemical composition limits, the method used to sample castings for the determination of chemical composition

shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, E34, or CEN EN 14242 (ICP method).

7.3 Other methods of analysis or in the case of a dispute the method of analysis shall be agreed upon by the producer and the purchaser.

7.4 A sample for determination of chemical composition shall be taken to represent one of the following:

7.4.1 Not more than 4000 lb [2000 kg] of clean castings or a single casting poured from one furnace. The maximum elapsed time between determinations shall be established for each alloy, but in any case the maximum elapsed time shall not exceed 8 hours.

8. Material Requirements—Castings Produced for Governmental and Military Agencies

8.1 Unless otherwise specified, only aluminum alloy conforming to the requirements of Specification B179 or producers foundry scrap, identified as being made from alloy conforming to Specification B179, shall be used in the remelting furnace from which molten metal is taken for pouring directly into castings. Additions of small amounts of modifying and grain refining elements or alloys are permitted.

8.2 Pure materials, recycled materials, and master alloys may be used to make alloys conforming to this specification, provided chemical analysis can be taken and adjusted to conform to Table 1 prior to pouring any castings.

9. Foundry Control—Castings Produced for Governmental or Military Agencies, or Both

9.1 When specified, castings shall be produced under foundry control approved by the purchaser. Foundry control shall consist of examination of castings by radiographic or other approved methods for determining internal discontinuities until the gating, pouring, and other foundry practices have been established to produce castings meeting the quality standards furnished by the purchaser or agreed upon between the purchaser and the producer. When foundry practices have

^A Caution should be exercised in requesting grade A because of the difficulty in obtaining this level.

^B No radiographs available. Use ½-in. [6-mm] for all thicknesses.

been so established, the production method shall not be significantly changed without demonstrating to the satisfaction of the purchaser that the change does not adversely affect the quality of the castings. Minor changes in pouring temperature of \pm 50°F [\pm 28°C] from the established nominal temperature are permissible.

10. Tensile Requirements

- 10.1 The separately cast tension test specimens representing the castings shall meet the mechanical properties prescribed in Table 2 [Table 3].
- 10.2 When specified, the tensile strength and elongation of test specimens cut from castings shall be in accordance with Table 2 [Table 3] for Alloys 354.0, C355.0, A356.0, A357.0, E357.0, 359.0, and A444.0. For other alloys a minimum of 75 % of the tensile and yield strength values and not less than 25 % of the elongation values specified in Table 2 [Table 3] are required. The measurement of elongation is not required for test specimens cut from castings if 25% of the specified minimum elongation value published in Table 2 [Table 3] is 0.5 % or less. If grade D quality castings as described in Table 4 are specified, no tensile tests shall be specified nor tensile requirements be met on specimens cut from castings.
- 10.3 Although Alloys 705.0, 707.0, and 713.0 are most frequently used in the naturally aged condition, by agreement of the producer and the purchaser, the castings may be artificially aged. The producer and the purchaser may also agree to base the acceptance of castings on artificially aged test bars. The conditions of artificial aging shown in Practice B917/B917M or AMS 2771 shall be employed unless other conditions are accepted by mutual consent.

11. Workmanship, Finish, and Appearance

11.1 The finished castings shall be uniform in composition and free of blowholes, cracks, shrinks, and other discontinuities in accordance with standards designated and agreed upon as acceptable by the purchaser.

12. Test Specimens

- 12.1 Separately cast test specimens shall be cast in iron molds. A recommended gating method is shown in Fig. 1 [Fig. 2]. The test section of the tension test specimen shall be cast to size in accordance with the dimensions shown in Fig. 1 [Fig. 2] and not machined prior to test. Grip ends may be machined to adapt them in such a manner as to ensure axial loading.
- 12.2 When properties of castings are to be determined, tension test specimens shall be cut from the locations designated on the drawings, unless otherwise negotiated. If no locations are designated, one or more specimens shall be taken to include locations having significant variation in casting thickness, except that specimens shall not be taken from areas directly under risers. The tension test specimens shall be the standard 0.500-in. [12.5-mm] diameter specimens shown in Fig. 9 of Test Methods B557 [B557M] or a round specimen of smaller size proportional to the standard specimens. In no case shall the dimensions of the smallest specimen be less than the following:

	in.	mm
Diameter of reduced	0.250	[6.00]
section.		
Length of reduced section	11/4	[32]
Radius of fillet	3/16	[5]
Diameter of end section	3/8	[10]
Overall length:		
With shouldered ends	23/8	[60]
With threaded ends	3	[75]
With plain cylindical ends	4	[100]

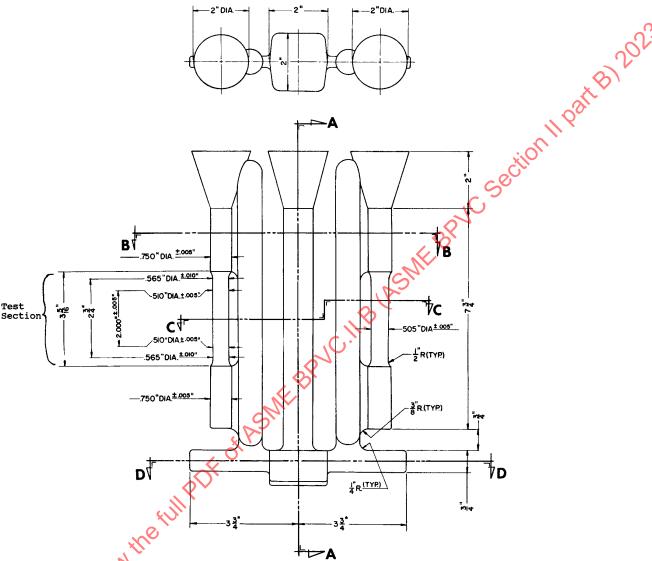
12.3 When necessary, a rectangular specimen may be used proportional to that shown for the 0.500 in. [12.5-mm] wide specimen in Fig. 6 of Test Methods B557 [B557M], but in no case shall its dimensions be less than the following:

	III.	HIIII
Width of reduced section,	1/4	[6]
Length of reduced section,	11/4	[32]
Radius of fillet,	14	[6]
Overall length,	4	[100]

The specified elongation values shall not apply to tests of rectangular specimens.

12.4 If the castings are to be heat treated and separately cast specimens are to be used, the specimens representing such castings shall be heat treated with the castings they represent. If castings are to be heat treated and tests are to be obtained on the castings, the test specimens shall be taken from the castings after heat treatment.

13. Number of Tests


- 13. Unless otherwise agreed upon by the purchaser and producer, two tension test specimens shall be separately cast and tested to represent the following:
- 13.1.1 Not more than 4000 lb [2000 kg] of clean castings (gates and risers removed) or a single casting poured from one furnace.
- 13.1.2 The castings poured continuously from one furnace in not more than eight consecutive hours.
- 13.2 When tensile properties of castings are to be determined, one per melt-heat combination shall be tested unless otherwise shown on the drawing or specified in the purchase order.
- 13.3 If any test specimen shows defective machining or flaws, it may be discarded, in which case the purchaser and the producer shall agree upon the selection of a replacement specimen.

14. Test Methods

14.1 The tensile properties shall be determined in accordance with Test Methods B557 [B557M].

15. Retests

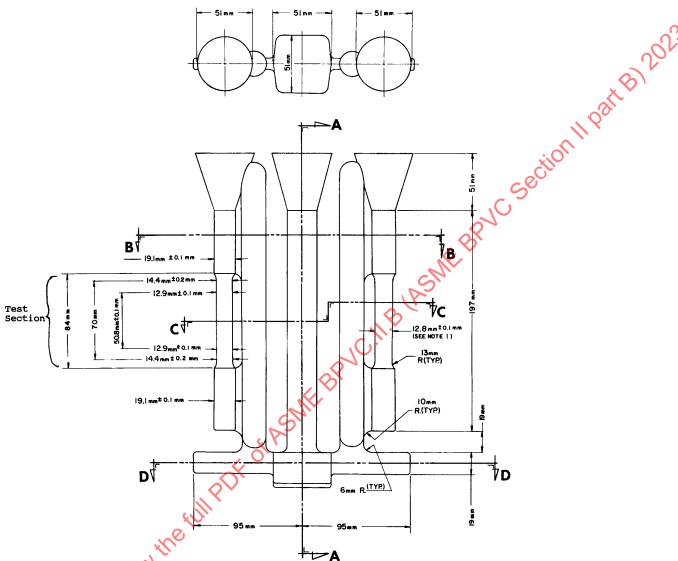
15.1 If the results of the tension test do not conform to the requirements prescribed in Table 2 [Table 4], test bars representative of the castings may be retested in accordance with the replacement tests and retest provisions of Test Methods B557 [B557M] and the results of retests shall conform to the requirements as to mechanical properties specified in Table 2 [Table 4].

Nominal draft angle to be 20° on all square or rectangular sections in direction transverse to parting line.

Test section of test bar: this section to be gradually tapered from the ends towards the center.

FIG. 1 Tension Test Specimen Casting - (Inch Pounds)

16. Heat Treatment


- 16.1 Heat treatment of castings shall be performed in accordance with Practice B917/B917M.
- 16.2 When specified, heat treatment shall be in accordance

Castings

1.1 Castings may be repaired only by processes approved and agreed upon by the producer and purchaser, such as,

welding, impregnation, peening, blending, soldering, and so forth. Limitations on the extent and frequency of such repairs, and methods of inspection of repaired areas should also be agreed upon.

- 17.1.1 The welding procedure and welders shall be qualified in accordance with Section IX of the ASME BPVC.
- 17.2 Repairing of Castings Produced for Governmental and Military Agencies:
 - 17.2.1 Welding:
- 17.2.1.1 When welding is permitted, it shall be done by methods suitable for the particular alloy. Welding methods

Nominal draft angle to be 20° on all square or rectangular sections in direction transverse to parting line.

Note 1—Test section of test bar: this section to be gradually tapered from the ends towards the center.

FIG. 2 Tension Test Specimen Casting – [Metric]

shall be in accordance with such specifications as are referenced on the applicable drawings, or as are required by the contract or order.

- contract or order.

 17.2.1.2 All welding shall be done by qualified welders and by methods approved by the purchaser.
- 17.2.1.3 When castings are to be supplied in the heat treated condition, they shall be heat treated to the required temper after welding except that small arc welds may be performed without subsequent heat treatment upon approval of the purchaser.
- 17.2.1.4 Unless otherwise specified, castings that have been repaired by welding shall have the welded areas examined radiographically after all reworking and heat treatment have been completed.
- 17.2.1.5 All welds shall be free from cracks, lack of fusion, and meet the same quality requirements as the parent material.
- 17.2.1.6 Welded castings shall be marked with a symbol of three concentric circles with a letter or number designating the welder adjacent to the symbol. The outer circle of the symbol shall be no larger than ½ in. (6 mm) in outside diameter. All welded areas shall be encircled with a ring or white paint prior to submission for final inspection.
- 17.2.1.7 Repair welding of castings used in naval shipboard pressure vessels, piping systems, and machinery shall be performed in accordance with requirements for repair of castings specified in NAVSEA Technical Publication S9074-AR-GIB-010/278.
- 17.3 *Impregnation*—When impregnation is permitted, it shall be to correct general seepage leaks only and shall not be used to correct poor foundry technique or porosity in excess of

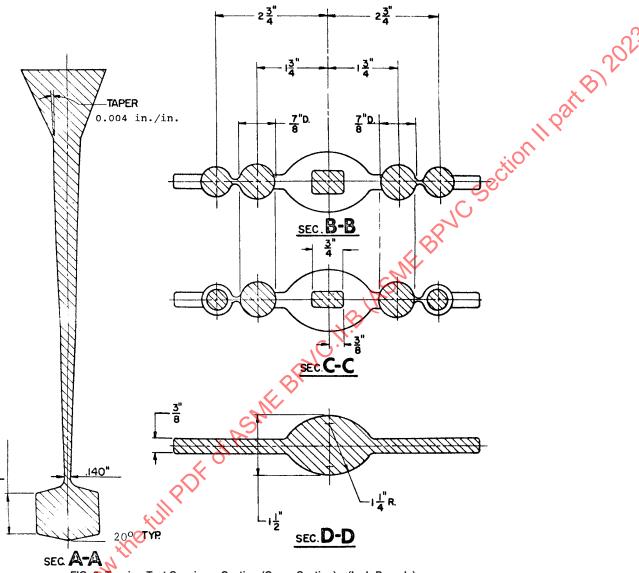


FIG. Tension Test Specimen Casting (Cross Section) - (Inch Pounds)

accepted standards. It shall be accomplished in accordance with MIL-STD-276. Unless otherwise authorized by the purchaser, castings which have been impregnated shall be marked "IMP".

17.4 Peening—When peening is permitted, it shall be to correct localized minor seepage leaks and small surface imperfections only, or to disclose subsurface voids for the purpose of inspection. Peening will not be permitted to repair cracks, cold shuts, shrinks, misruns, defects due to careless handling, or other similar major defects. Peening may be accomplished either hot or cold and shall be performed by methods which are acceptable to the purchaser. Peened castings shall be marked with a Maltese cross approximately 1/4 in. [6-mm] high.

17.5 Blending—Blending with suitable grinders or other tools will be permitted for the removal of surface imperfections only, and shall not result in dimensions outside the tolerances shown on the applicable drawings.

18. Source Inspection

18.1 If the purchaser elects to make an inspection of the castings at the producer's works, it shall be so stated in the contract or order.

18.2 If the purchaser elects to have an inspection made at the producer's works, the producer shall afford the inspector all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. All tests and inspections shall be so conducted as not to interfere unnecessarily with the operation of the works.

19. Foundry Inspection

19.1 Requirements such as surface finish, parting line projections, snagging projections where gates and risers were removed, and so forth, may be checked visually. It is advisable to have agreed upon observational standards representing both acceptable and unacceptable material.

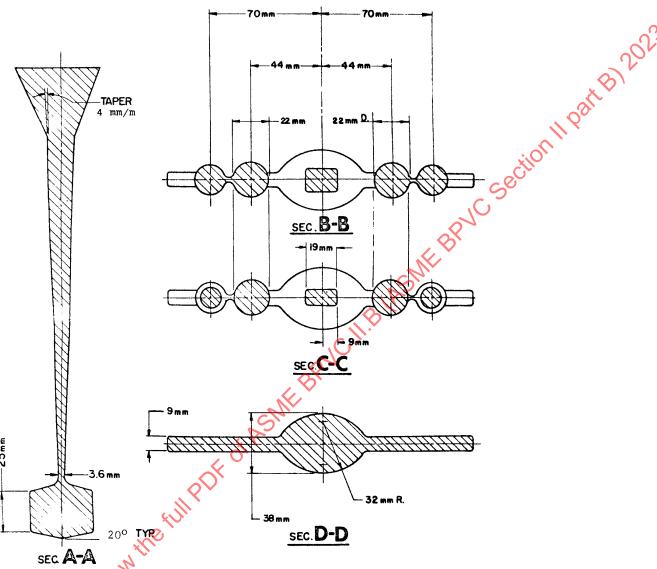


FIG. 4 Tension Test Specimen Casting Cross Section - [Metric]

19.2 Liquid Penetrant Inspection

- 19.2.1 When specified, liquid penetrant inspection shall be in accordance with Test Method E165, and the required sensitivity shall be specified.
- 19.2.2 Acceptance standards for discontinuities shall be agreed upon, including size and frequency per unit area and location.
 - 19.3 Radiographic Inspection:
- 19.3.1 Radiographic inspection shall be in accordance with Guide E94 and Film Reference Radiographs E155.
- 19.3.2 When agreed upon between the manufacturer and purchaser, digital radiographic inspection shall be in accordance with Guide E94 and Digital Reference Radiographs E2422.
- 19.3.3 Radiographic acceptance shall be in accordance with the requirements selected from Table 4. Any modifications of the table and the frequency per unit area and location of discontinuities should also be agreed upon.
- 19.3.4 The number, film size and orientation of radiographs, and the number of castings radiographically inspected shall be agreed upon by the producer and purchaser.

20. Identification and Repair Marking for Castings Produced for Government and Military Agencies

20.1 *Identification*—Unless otherwise specified, each casting shall be marked with the applicable drawing or part number. The marking shall consist of raised Arabic numbers, and when applicable upper-case letters, cast integral. The

location of the identification marking shall be as specified on the applicable drawing. When the location is not specified on the drawing, the drawing or part number, or both, shall be placed in a location mutually agreeable to the purchaser and producer.

- 20.2 Lot Identification—When practical, each casting shall also be marked with the melt or inspection lot number.
- 20.3 Lot—A lot shall consist of all of the cleaned castings poured from the same heat or melt when subsequent heat treatment is not required.
- 20.3.1 When the castings consist of alloys that require heat treatment, the lot shall consist of all castings from the same melt or heat that have been heat treated in the same furnace charge, or if heat treated in a continuous furnace, all castings from the same melt or heat that are discharged from the furnace during a 4-hour period.
- 20.4 Repair Marking—All identification markings indicating repairs as specified in 19.1, 19.2, and 19.3 shall be made with a waterproof marking fluid.

21. Rejection and Rehearing

21.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer promptly and in writing. In case of dissatisfaction with the results of the test, the producer may make claim for a rehearing.

22. Certification

22.1 The producer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and

inspected in accordance with this specification, and has met the requirements. In addition, all test reports required by this specification shall be supplied with the certification.

23. Packaging, Marking, and Shipping

- 23.1 The material shall be packaged in such a manner as to prevent damage in ordinary handling and transportation. The type of packaging and gross weight of individual containers shall be left to the discretion of the producer unless otherwise agreed upon. Packaging methods and containers shall be so selected as to permit maximum utility of mechanical equipment in unloading and subsequent handling. Each package or container shall contain only one part number, alloy, and temper of material when packaged for shipment unless otherwise agreed upon.
- 23.2 Each package or container shall be marked with the purchase order number, part number, quantity, specification number, alloy and temper, gross and net weights, and the name of the producer.
- 23.3 Packages or containers shall be such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the point of delivery.
- 23.4 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirement of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 or Practice D3951 for civil agencies and MIL-STD-129 for military agencies.

24. Keywords

24.1 aluminum; permanent mold castings

ANNEXES

(Mandatory Information)

A. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgement of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in this specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 % 0.001 to but less than 0.01 %	0.000X 0.00X
0.01 to but less than 0.10 % Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process 0.10 through 0.55 %	0.0X 0.XX
(It is customary to express limits of 0.30 through 0.55 % as 0.X0 or 0.X5) Over 0.55 % (Except that combined Si + Fe limits of 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)	0.X, X.X, etc
alaminam made 20 oxpressed to that or many	

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium; (Note A2.1); Other Elements, Each; Other Elements, Total: Aluminum (Note A2.2).

NOTE A2. Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between Titanium and Other Elements, Each, or are specified in footnotes.

NOTE A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

APPENDIXES

(Nonmandatory Information)

X1. PROPERTIES AND CHARACTERISTICS

X1.1 Data in Table X1.1 are approximate and are supplied for general information only.

TABLE X1.1 Properties and Characteristics – (Inch-Pound Units) – (SI Units) – [Metric]

	Alloy	Alloy Foundary Cha	1	Found	Foundary Characteristics	eristics					Othe	Other Characteristics	stics			
ANSI⁴	SNO	Approximate. Melting Range	Resistance to Hot Cracking	Pressure Tight- ness	Fluidity ^D	Solidifi- cation Shrinkage Tendency ^E	Normally Heat- Treated	Resistance to Corrosion ^F	Machin- ing ^G	Polish- ing ^H	Electro- plating [/]	Anodizing (Appear- ance) ^J	Chemical Oxide Coating (Protection) ^K	Strength at Elevated Temp ^L	Suitability for Welding ^M	Suitable for Brazing ^N
204.0	A02040	985 to 1200	4	e	က	4	yes	4	-	2	-	ю	4	-	4	OL
242.0	A02420	[523-543] 990 to 1175 [532-635]	4	.4C	ю	4	yes	4	2	2	-	Ø	ო	-	4	OL
296.0	A02960	0,	4	8	m	4	yes	4	-	Ø	-	ဇ	4	-	4	OU
308.0	A03080	0)	0	Ν.	27	က	yes	4	ო	ო	Ø	4	ю	ო	0	01
319.0	A03190	[521-613] 950 to 1125 [510-607]	α	α	101	ო	yes	ю	က	ღ	α	4	ღ	ღ	0	0
336.00	A03360	1080 to 1050	-	Ø	7	ω ω	yes	က	4	2	4	ß	N	Ø	8	01
332.00	A03320	0,	-	Ø	-	0	aged only	က	ო	4	ო	5	м	ო	α	OL
333.0	A03330	960 to 1085	N	Ø	0) ()	2	ო	ო	ო	ო	2	ო	ო	N	01
354.0	A03540	7	-	-	Ø	7	yes	က	ღ	ო	2	4	Ø	2	2	OL
355.0	A03550	[346-621] 1015 to 1150	-	-	Ø	7	yes	က	ო	က	7	4	0	7	7	91
C355.0	A33550	[546-621] 1015 to 1150	-	-	Ø	7	y sek	e P	ო	ო	2	4	Ø	7	2	9
356.0	A03560	1035 to 1135	-	-	α	-	yes	S	ო	ო	-	4	0	ო	7	01
A356.0	A13560		-	-	α	-	yes	N	e (*)	ო	-	4	8	ღ	α	OL
357.0		1035 to 1135	-	-	α	-	yes	N	રુ ^ર	ო	-	4	8	ო	α	01
A357.0	A13570	1035 to 1135	-	-	Ø	-	yes	0	10	ო	-	4	0	ო	α	01
E357.0		[557-613] 1035 to 1135	-	-	Ø	-	yes	7	en .	11	-	4	Ø	ო	2	01
F357.0		[557-613] 1035 to 1135 [667-613]	-	-	α	-	yes	Ø	ю	3	-	4	α	ო	α	OL
359.0	A03590	Ŧ	-	-	2	-	yes	2	ю	en en	[C]	4	7	ო	2	01
443.0	A04430	1065 to 1170	-	-	-	7	no	က	2	4		4	7	4	-	ltd
B443.0	A24430	[5/4-632] 1065 to 1170	-	-	-	7	OU	2	2	4	2	4	Ø	4	-	ltd
A444.0	A14440	[574-632] 1065 to 1145	-	-	-	-	yes	0	2	4	8	3 ₄	7	4	-	ltd
513.00	A05130	=	4	Ŋ	2	4	OU	-	-	-	4	<u> </u>	_	ო	2	01
535.0	A05350	1020 to 1165	4	2	2	2	OU	-	-	-	5	-	-E	ო	4	0
705.0	A07050	1105 to 1180 [596-	- 5	4	4	2	aged only	CI	-	-	ო	-	C N	r2	4	yes
707.0	A07070		Ŋ	4	4	2	yes	2	-	-	ო	-	2	5	2	yes
711.0		[585-629] 1120 to 1190 [604- 643]		4	4	വ	aged only	Ø			Ν	-	2 1 2	w 6	4	yes
		7												5		

70
tinii
2
Т
ž
Ц
α
TARI

SB-108/SB-108M					A	SME E	PVC.II.B-2023
		Suitable for Brazing ^N	yes	OU.	ou	ou Ou	or brittle temperature range personned risers. Solid life. Ratings, in the case of heat-gradable alloys, based on T6 temper. Other tempers, particularly the annealed temper, may by typical polishing procedure. Solid is sulfuric acid electrolyte. Solid is sulfuric acid electrolyte. Solid is sulfuric acid electrolyte. C712.0, 881.0 formerly A850.0, 852.0 formerly B850.0. The statement A850.0, 852.0 formerly B850.0. The statemen
		Suitability for Welding ^M	4	2	5	rc	annealed te
		Strength at Suitability Elevated for Temp ^L Welding ^M	2	٩	٩	٩	articularly the
	tics	Chemical Oxide Coating (Protection) ^K	7	2	5	Ŋ	ar tempers, p.
	Other Characteristics	Anodizing (Appear- ance) ^J	-	4	4	4	temper. Other
	Othe	Electro- plating/	2	2	5	Ŋ	based on T6
		. Polish- ing ^H	-	-	-	-	atable alloys, ure.
Continued		e Machin- F ing ^G	-	-	-	-	e of heat; free dure. 3. ing temperal
		Resistance to Corrosion ^F	2	ო	ო	ε ζ	erature range I metal requirage, in the cas lishing proce cid electrolyt eating at test liting.
TABLE X1.1		Normally Heat- Treated	aged only	aged only) Aes	aged	r brittle temponal life. Rating feece on sating feece by typical point in sulfuric a prolonged hystoriton or me stortion or me 5712.0, 851.0
	teristics	Solidifi- cation Fluidity Shrinkage	K	<u>س</u>	4	rO	will be highe higher to compount of compount of compinish, and to finish, and to lash methods aging applied cooks are cooks after to formerly (1.0 formerly
	Foundary Characteristics	Fluidity	4	2	5	rO	emperatures ooling throug ans. sasure of ammerature of ammics, quality of fir present stem or amodized α corrosion. Up to 500°F d or same all ures without y A514.0, 71 y A514.0, 71
W. Clic	Four	e Pressure Tight-	4	2	4	rO	ce B275. ted, pouring action while c fill thin section while c alloy and me alloy and me alloy and me applied by ormity of dea base alloy to emperatures to "the transpersion of the properties
C. CO.		Resistance to Hot Cracking ^C	3- 5	2	4	ιO	ded in Practi us are indica so from contri in mold and grifecting chig ndard types of cutting, chig and pectropala and speed of nn electropala and electropala ses, and unifi coating and I tivision-weldec standing bra. enty F332.0, : levated temp.
ENORMDOC. COM. Click		Approximate Melting Range °F ^B [°C]	1100 to 1185 [593-	641] 435 to 1200	[224-649] 440 to 1165	[227-629] 400 to 1175 [204-635]	ASTM alloy designations are recorded in Practice B275. **Preprentures of solidus and figuitus are indicated, pouring temperatures will be higher. **Ability of alloy to withstand stresses from contraction while cooling through hot-short or brittle temperature range. **Ability of alloy to withstand stresses from contraction while cooling through hot-short or brittle temperature range. **Ability of inquid alloy to flow readily in mode and fill thin sections. **E. Decreases in volume accompanying freating of alloy and measure of amount of compensating feed metal requireging to a compensation of alloy and measure of amount of compensating feed metal requireging to the strength of alloy and fill and fill and to fill and fil
	'oy	, N NU	A07130 110	A08500	A08510	A08520	alloy designal atures of soli of alloy to with a figure alloy to with a figure alloy to with a figure alloy as in rating bas are rating. Site rating bas are rating bas are rating bas on combined assed on tens on a bility of no subtability of no sumbined assed on tens on a bility of no mability of no mability of no maplity of no surfability of normenty A332.
	A	ANSI⁴	713.0	850.0	851.00	852.00	A ASTM alloy designatures of a Perperatures of a Perperatures of a Ability of liquid a percease in vol a Based on resistance of Composite rating. A Ability of casting a A Ability of casting a Patas of lightness a Rated on combitance of the percease on a Based on a Ability of Sasting based on a Sasti
							78

X2. METRIC EQUIVALENTS

X2.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI) (IEEE/ ASTM SI 10). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared (N = $kg \cdot m/s^2$). The derived SI unit

for pressure or stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

X3. INACTIVE ALLOYS

X3.1 Alloys listed as inactive by the Aluminum Association—208.0 and 222.0. Listing the composition limits, mechanical properties, and characteristics of the alloys is a method of preserving this data should it 66 needed at some future date.

TABLE X3.1 Chemical Composition Limits

Note 1-All applicable notes and footnotes can be found in Table 1

А	lloy	Alumi-					Compos	sition, %	,				7,	Other Elements
ANSI	UNS	num	Silicon	Iron	Copper	Man- ganese	Magne- sium	Chro- mium	Nickel	Zinc	Titanium	4	Each	Total
208.0	A02080	remain- der	2.5–3.5	1.2	3.5–4.5	0.50	0.10		0.35	1.0	0.25			0.50
222.0	A02220	remain- der	2.0	1.5	9.2–10.7	0.50	0.15–0.35		0.50	0.8	0.25			0.35

^ABeryllium 0.002 max

TABLE X3.2 Tensile Requirements (Inch-Pound Units)-Inactive Alloys

Note 1—All applicable notes and footnotes can be found in Table 2.

	Alloy	T	Tensile Strength,	Yield Strength	Elongation in	Typical Brinell Hard-
ANSI	UNS	Temper	min, ksi	(0.2 % offset), min, ksi (MPa)	2 in. or 4 x diameter, min, %	ness, 500 kgf, 10 mm
208.0	A02080	T4	33.0	15.0	4.5	75
		T6	35.0	22.0	2.0	90
		T7	33.0	16.0	3.0	80
222.0	A02220	T551	30.0		A	115
		T65	40.0	***	Α	140

A Not required.

TABLE X3.3 Tensile Requirements (SI Units)-[Metric]-Inactive Alloys

Note 1—All applicable notes and footnotes can be found in Table 3.

	ANSI	UNS	Temper	Tensile Strength, min, MPa	Yield Strength (0.2 % offset), min, MPa	Elongation in 5D, min, %	Typical Brinell Hard- ness, 500 kgf, 10 mm
	208.0	A02080	T4 T6	230 240	105 150	4.5 2.0	75 90
	222.0	A02220	T7 T551 T65	230 205 275	110 	3.0 A A	80 115 140
	A Not required.	1.					
	°C.	,					
	ando						
,0	5/4.						
SMENOF							
Siv							

		Suitabil- ity for Brazing ^D	OU	OL	
		Suitability for Welding $^{\mathcal{C}}$	2	4	***************************************
		Strength at Ele- vated Tempera- ture ^B	ဇ	-	all part
TABLE X3.4 Properties and Claracteristics—(Inch-Pound Units)—(S1 Units)—[Metric]—Inactive Alloys		Chemical Oxide Coating (Protection) ⁴	ဇ	4	JC.II.B. ASME BRVC Section II part B) 20
active Allo		Anodiz- ing (Ap- pear- ance) ^H	ဇ	ю	BRYC
etrric]—In		Electro- plating ^G	2	-	ASME
Units) –[M		Polish- ing ^F	3	2	CILB
Jnits) – (SI		Machin- ing ^D	e	B	
h-Pound (Resist- ance to Corro-	4	4	
stics-(Inc	\(\lambda	Normally Heat Treated	yes	yes	
Maracteri	1.	Solidi- fication Shrink- age Tend- ency	2	က	
ties and C	Table X1	Fluid- ity ^B	2	ဧ	
34 Proper	oe found ir	Pressure Tightness	N	ო	
TABLE X3	notes can b	Resist- ance to Hot Crack- ing ^{E}	2	ю	
group, 5 ii	s and foot	Approximate Melt mate Melt ing Range, °F [°C]	970-1160	[521-627] 965-1155 [518-624]	
S best of	cable note	Pattern Shrinkage Allowance, in./ft [mm/m]	5/32 [13]	% ₃₂ [13]	
-I indicat	—All appli	loy UNS	A02080	A02220	
NOTE 1-	Note 2-	All	208.0	222.0	
		80			

SPECIFICATION FOR COPPER AND COPPER ALLOY SEAMLESS CONDENSER TUBES AND FERRULE STOCK

SB-111/SB-111M ASMENORMOC. COM. Click to View the full PDF (Identical with ASTM Specification B111/B111M-18a except that certification and test reports have been made mandatory.)

Specification for Copper and Copper-Alloy Seamless Condenser Tubes and Ferrule Stock

1. Scope

1.1 This specification establishes the requirements for seamless tube and ferrule stock of copper and various copper alloys up to 3½ in. [80 mm] inclusive, in diameter, for use in surface condensers, evaporators, and heat exchangers. The following coppers and copper alloys are specified:

	0 11	* *	· .
	Copper or Copper Alloy UNS No.	Previously Used Designation	Description
	C10100 C10200 C10300 C10800 C12000 C12200 C12200 C14200 C15630 C19200 C23000 C28000 C44300 C44400 C66800 C660800 C61400 C68700 C70400 C70600 C70620 C71500 C71520	OFE OF ^A DLP ^A DHP ^A DPA	Oxygen-free electronic Oxygen-free without residual deoxidants Oxygen-free, extra low phosphorus Oxygen-free, low phosphorus Phosphorized, low residual phosphorus Phosphorized, arsenical Nickel Phosphorus Phosphorized, 1 % iron Red Brass Muntz Metal Admiralty Metals, B, C, and D Aluminum Bronze Aluminum Bronze, D Aluminum Brass, B 95-5 Copper-Nickel 90-10 Copper-Nickel 90-10 Copper-Nickel 70-30 Copper-Nickel 70-30 Copper-Nickel Welding Grade
ASMEN	ORMBOC	COM	80-20 Copper-Nickel 70-30 Copper-Nickel 70-30 Copper-Nickel Welding Grade

Copper or Copper Alloy UNS No.

C71640
C72200

^A Designations listed in Classification B224.

- 1.2 *Units*—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
- 1.3 The following safety hazards caveat pertains only to the test methods portion, Section 19, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning-Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.)
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents in the current issue of the *Annual Book of ASTM Standards* form a part of this specification to the extent referenced herein:

- 2.2 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B154 Test Method for Mercurous Nitrate Test for Copper Alloys
- B170 Specification for Oxygen-Free Electrolytic Copper— Refinery Shapes
- **B224 Classification of Coppers**
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)
- E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)
- E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E2575 Standard Test Method for Determination of Oxygen in Copper and Copper Alloys Withdrawn 2017)

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of terms relating to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 4.1.1 ASTM Designation and year of issue;
- 4.1.2 Copper or Copper Alloy UNS No. Designation (see Table 1);

- 4.1.3 Temper (Section 7);
- 4.1.4 Dimensions, outside diameter, and wall thickness, whether minimum or nominal (Section 14);
 - 4.1.5 How furnished (tube or ferrule stock);
- 4.1.6 Quantity—total weight or total length or number of pieces of each size; and
 - 4.1.7 Intended application.
- 4.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
 - 4.2.1 DELETED
- 4.2.2 Hydrostatic or pneumatic test as an alternative to eddy current test (Section 13).
- 4.2.3 If the cut ends of the tubes do not need to be deburred (Section 15).
- 4.2.4 If the product is to be subsequently welded (Table 1, Footnotes G and H).
- 4.2.5 Residual Stress Test—Ammonia Vapor Test or Mercurous Nitrate Test (Section 12).
- 4.2.6 For Ammonia vapor Test, risk level (pH value) if other than 10.
 - 4.2.7 Heat identification or traceability details.
 - 4.2.8 DELETED
 - 4.2.9 DELETED
- 4.210 If a subsequent thermal treatment after straightening is required (Section 7).
- 50vernment (see Supplementary Requirements section of this specification for additional requirements, if required).

5. Materials and Manufacture

- 5.1 Materials:
- 5.1.1 The material of manufacture shall be a form of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 5.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 5.2 Manufacture:
- 5.2.1 The product shall be manufactured by such hotworking, cold-working, annealing, straightening, trimming, and other processes as to produce a uniform seamless tube in the finished product.
- 5.2.2 The product shall be hot- or cold-worked to the finished size, and subsequently annealed, when required, to meet the temper properties specified.

6. Chemical Composition

6.1 The product shall conform to the chemical composition requirements specified in Table 1.

TABLE 1 Chemical Requirements

		Other Named Elements	O	Ċ)	:	:	:	:	:	:	:	:	:	:	:	:	. (T.	:	:	:		C.U5 max	5.02 max H		2.05 max	S.02 max	C.06 max	S.03	Si.03	max	Ti.03 max ^H
		Chromium	0.0001 max		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	: :		:		0.30-0.70		
		Phosphorus	0.0003 max			0.00-100.0	0.005-0.012	0.004-0.012	0.015-0.040	0.015-0.040	0.015-0.040	0.01-0.04	:	:	:	:	0.02-0.10	: ;	0.015 max	0.015 max	:	:		0.02 max	I		0.02 max		I		I		
		Antimony	0.0004 max		:	:	:	:	:	:	:	:	:	:	:	0.02-0.10	:	:	:	:	:	:	:	:		:	: :		:		:		
		Arsenic	0.0005	max	:	:	:	:	: !	0.15 - 0.50	:	:	:	:	0.05-0.06	:	:	0.02 - 0.35	:	:	0.02-0.06	:	:	:		:	: :		:		:		7
		Manganese	0.00005 max		:	:	:	:	:	:	:	:	:	:	:	:	:	:	0.20 max	1.0 max		0.30-0.8	1.0 max	1.0 max	1 0 max	1.0 max	1.0 max		1.5–2.5	、 こ	1.0 max	<u>ئ</u>	Y
equirements	υ, %	Zinc	0.0001	max	:	:	:	:	:	:	:	0.20 max	remainder	remainder	remainder	remainder	remainder	:	0.10 max	0.20 max	remainder	1.0 max	1.0 max	0.50 max	Hyeman	TO max	0.50 max	S	1.0 max ^H		1.0 max ^H		
TABLE 1 Chemical Requirements	Composition, %	Iron	0.0010 max		:	:	:	:	:	:	:	0.8–1.2	0.05 max	0.07 max	0.06 max	0.06 max	0.06 max	0.10 max	2.0-3.0	1.5-3.5	0.06 max	7:	1.0-1.8	1.0-1.8	0.50-1.0	0.40-1.0	0.40-1.0		1.7–2.3		0.50-1.0		
TABLE 1		Lead, max	0.0005 max		:	:	:	:	:	:	:	::	0.05	0.09	0.07	0.02	0.07	0.10	0.01	0.01	0.07	0.05	0.05	0.02	0.05H	50.5 FO O	0.02		0.05 ^H		0.05 ^H		
		Nickel, incl Cobalt	0.0010 max ^B		:	:	: *	Ç	i	7	0.60-09.0	4.	::	:	:	:	:	:	0.15 max	:		4.8–6.2	9.0–11.0	9.0-11.0	19.0-23.0	29.0-23.0	29.0-33.0		29.0–32.0		15.0–18.0		
		Aluminum	.:	C		<u>ک</u>	:	:	:	:	:	:	:	:	:	:	:	5.0-6.5	6.0-7.5	6.0–8.0	1.8–2.5	:	:	:		:	: :		:		:		
	,	J _E	0.0002 max		:	:	:	:	:	:	:	:	:	: ;	0.9–1.2	0.9–1.2	0.9–1.2	:	0.20-0.50	:	:	:	:	:		:	: :		:		:		
NEW PANN		Copper	99.99 min ^A	L	99.95 min	99.95 min	99.95 min	99.90 min	99.9 min	99.4 min ^D	remainder	98.5 min	84.0–86.0	59.0–63.0	70.0–73.0	70.0–73.0	70.0–73.0	remainder	remainder	remainder	76.0–79.0	remainder	remainder	86.5 min ²	remainder	remainder	65.0 min ^D		$remainder^D$		remainder ^D		
ASM	Copper or	Copper Alloy UNS No.	C10100		C10200	C10300	C10800	C12000=	C12200	C14200	C15630	C19200	C23000	C28000	C44300	C44400	C44500	C60800	C61300	C61400	C68700	C70400	C70600	C/0620	0.71000	C71500	C71520		C71640		C72200		

A This value is exclusive of silver and shall be determined by difference of "impurity total" is defined as the sum of sulfwage, lead, in, bismuth, arsenic, antimony, iron, nickel, mercury, zinc, phosphorus, selenium, tellurium, manganese, cadmium, and oxygen present in the sample.

A the including Cobalt

A the including Cobalt

A the including cobalt

**A the including antimory in percent for alloy C10100 shall be: bismuth 0.0001, cadmium 0.0005, selenium 0.0003, sulfur 0.0015, jetfulum 0.0002, mercury 0.0001. For C10200, oxygen should be 0.000 max.

Decoration of max.

Decoration of max.

Competing silven;

Enlis including sulven;

**Enlis incl

- 6.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 6.2.1 Copper Alloy UNS No. C19200—Copper is the difference between the sum results of all the elements determined and 100 %. When all the elements in Table 1 are determined, their sum shall be 99.8 % minimum.
- 6.2.2 For alloys in which copper is listed as "remainder," copper is the difference between the sum results of all the elements determined and 100 %. When all elements in Table 1 are determined, the sum of the results shall be as follows:

Copper Alloy UNS No.	Copper Plus Named
Copper Alloy ONS No.	Elements, % min
C15630	99.5
C60800	99.5
C61300	99.8
C61400	99.5
C70400	99.5
C70600 & C70620	99.5
C71000	99.5
C71500 & C71520	99.5
C71640	99.5
C72200	99.8

6.2.3 For alloys in which zinc is listed as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements determined and 100 %. When all elements in Table 1 are determined, the sum of the results shall be as follows:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C23000	99.8
C28000	99.7
C44300	99.6
C44400	99.6
C44500	99.6
C68700	99.5

7. Temper

- 7.1 Tubes shall be furnished in the temper designations identified in Tables 2 and 3.
 - 7.1.1 Drawn tempers H55 and H80.
 - 7.1.2 Annealed temper O61.
 - 7.1.3 Drawn and stress-relieved temper HR50.
- 7.2 Tubes for ferrule stock shall be annealed sufficiently to be fully recrystallized.
- 7.3 Optional Post-Straightening Thermal Treatment—Some tubes, when subjected to aggressive environments, may have the potential for stress corrosion cracking failure due to the residual stresses induced during straightening processing. For such applications, to is suggested that tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700 be subjected to a stress-refleving thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or

TABLE 2 Tensile Requirements—Inch-Pound Values

Note 1—See Table 3 for tensile requirements—SI values.

O and a state of O and an Allery LINIO No.		Temper Designation	Tensile Strength,	Yield Strength, ^B	Elongation
Copper or Copper Alloy UNS No.	Code	Code Name min ksi ^A		min ksi ^X	in 2 in., min %
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H55	light-drawn	36	30	
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H80	hard-drawn	45	40	
C15630	061	annealed	30	8	40
C19200	H55	light-drawn	40	35	
C19200	H80	hard-drawn	48	43	
C19200	O61	annealed	38	12	
C19200 C19200 C19200 C23000 C28000 C24300, C44400, C44500	O61	annealed	40	12	
C28000	O61	annealed	50	20	
C44300, C44400, C44500	O61	annealed	45	15	
C44300, C44400, C44500 C60800 C61300, C61400 C68700	O61	annealed	50	19	
C61300, C61400	O61	annealed	70	30	
C68700	O61	annealed	50	18	
C70400	O61	annealed	38	12	
C70400	H55	light-drawn	40	30	
C70600, C70620	O61	annealed	40	15	
C70600, C70620	H55	light-drawn	45	35	
C71000	O61	annealed	45	16	
C71500, C71520	O61	annealed	52	18	
C71500, C71520					
Wall thicknesses up to 0.048 in., incl	HR50	drawn and stress-relieved	72	50	12
Wall thicknesses over 0.048 in.	HR50	drawn and stress-relieved	72	50	15
C71640	O61	annealed	63	25	
C71640	HR50	drawn and stress relieved	81	58	
C72200	O61	annealed	45	16	
C72200	H55	light-drawn	50	45	

^A ksi = 1000 psi.

^B At 0.5 % extension under load.

TABLE 3 Tensile Requirements—SI Values

Note 1—See Table 2 for tensile requirements—inch-pound values.

O and a series of Alley LINO No.		Temper Designation	Tensile Strength,	Yield Strength, ^A	Elongation
Copper or Copper Alloy UNS No.	Code	Name	min MPa	min MPa	in 50 mm, min %
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H55	light-drawn	250	205	
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H80	hard-drawn	310	275	
C15630	O61	annealed	205	55	40
C19200	H55	light-drawn	275	240	
C19200	H80	hard-drawn	330	295	
C19200	O61	annealed	260	85	.:.O`
C23000	O61	annealed	275	85	
C28000	O61	annealed	345	140	20
C44300, C44400, C44500	O61	annealed	310	105	<i>O</i>
C60800	O61	annealed	345	130 🦰	
C61300, C61400	O61	annealed	480	205	
C68700	O61	annealed	345	125	
C70400	O61	annealed	260	125 85	
C70400	H55	light-drawn	275	205	
C70600, C70620	O61	annealed	275	105	
C70600, C70620	H55	light-drawn	310	240	
C71000	O61	annealed	310	110	
C71500, C71520	O61	annealed	360	125	
C71500, C71520:					
Wall thicknesses up to 1.2 mm incl	HR50	drawn and stress-relieved	495	345	12
Wall thicknesses over 1.2 mm.	HR50	drawn and stress-relieved	495	345	15
C71640	O61	annealed	435	170	
C71640	HR50	drawn and stress relieved	560	400	
C72200	O61	annealed	310	110	
C72200	H55	light-drawn	345	310	

^A At 0.5 % extension under load.

contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall meet the requirements agreed upon by the manufacturer and the purchaser.

8. Mechanical Properties

8.1 Material shall have tensile properties as prescribed in Table 2 or Table 3.

9. Grain Size for Annealed Tempers

- 9.1 Grain size shall be the standard requirement for all product in the annealed (O61) temper.
- 9.1.1 Other than Copper Alloy UNS Nos. C19200 and C28000, acceptance or rejection for all annealed products shall depend only on average grain size of the test specimen within the limits of 0.010 to 0.045 min taken from each of two sample portions, and each specimen shall be within the limits prescribed herein when determined in accordance with Test Methods E112.

10. Performance Requirements

- 10.1 Expansion Test:
- 10.1.1 Tube specimens selected for test shall withstand the expansion shown in Table 4 when expanded in accordance with Test Method B153. The expanded tube shall show no cracking or rupture visible to the unaided eye.
- 10.2 Hard-drawn tubes not end annealed are not subject to this test. When tubes are specified end annealed, this test is required and shall be performed on the annealed ends of the sampled tubes.

Tubes for ferrule stock are not subject to the expansion

11. Flattening Test

- 11.1 Test Method—Each test specimen shall be inspected per Test Method B968/B968M.
- 11.2 During inspection, the flattened areas of the testspecimen shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
 - 11.3 Tubes for ferrule stock are not subject to flattening test.

12. Residual Stress Test

- 12.1 A residual stress test, when specified in the purchase order, is required only for Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700 and when not supplied in an annealed temper.
- 12.2 Unless otherwise specified, the producer shall have the option of testing the product to either the mercurous nitrate test, Test Method B154, or the ammonia vapor test, Test Method B858, as prescribed below.
 - 12.2.1 Mercurous Nitrate Test:
- 12.2.1.1 **Warning**—Mercury is a definite health hazard and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended. The use of rubber gloves in testing is advisable.
- 12.2.1.2 The test specimens, cut 6 in. [150 mm] in length, shall withstand without cracking, an immersion in the standard mercurous nitrate solution prescribed in Test Method B154. The test specimen shall include the finished tube end.

TABLE 4 Expansion Requirements

Tem	Temper Designation		Expansion of Tube Outside
Code	Name	 Copper or Copper Alloy UNS No. 	Diameter, in Percent of Original Outside Diameter
O61	annealed	C15630	40
		C19200	30
		C23000	20
		C28000	15
		C44300, C44400, C44500	20
		C60800	20
		C61300, C61400	20
		C68700	20
		C70400	30
		C70600, C70620	30 (0)
		C71000	30-
		C71500, C71520	30
		C71640	9 30
		C72200	30
H55	light-drawn	C10100, C10200, C10300, C10800,	20
		C12000, C12200	
		C14200	20
		C19200	20
		C70400	20
		C70600, C70620	20
		C72200	20
HR50	drawn and stress relieved	C71500, C71520	20
		C71640	20
•••	hard-drawn and end annealed	C10100, C10200, C10300, C10800, C12000, C12200, C14200	30

12.2.2 Ammonia Vapor Test:

12.2.2.1 The test specimens, cut 6 in. [150 mm] in length, shall withstand without cracking, the ammonia vapor test as prescribed in Test Method B858. For the purposes of this specification, unless otherwise agreed between purchaser and supplier, the risk level identified in the Annex of Method B858, shall be specified as risk level (pH value) of 10.

13. Nondestructive Testing

- 13.1 Each tube shall be subjected to the eddy-current test in 13.1.1. Tubes may be tested in the final drawn annealed, or heat-treated temper or in the drawn temper before the final anneal or heat treatment unless otherwise agreed upon by the supplier and the purchaser. The purchaser may specify either of the tests in 13.1.2 or 13.1.3 as an alternative to the eddy-current test.
- 13.1.1 Eddy-Current Test Each tube shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the tube for the intended application. Testing shall follow the procedures of Practice F243
- 13.1.1.1 The depth of the round-bottom transverse notches or the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Tables 5 and 6, and Tables 7 and 8, respectively. Notches of less depth and smaller diameter drilled holes are acceptable to meet this requirement.
- 13.1.1.2 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered to conform to the requirements of this test. Tubes causing irrelevant signals because of moisture, soil, and like effects may be reconditioned and retested. Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals beyond the acceptable limits. Tubes causing

TABLE 5 Notch Depth—Inch-Pound Values

Note 1—See Table 6 for notch depth—SI values.

Tube Wall	Tube Outside Diameter, in.				
Thickness, in.	Over 1/4 to 3/4, incl	Over ³ / ₄ to 1 ¹ / ₄ , incl	Over 11/4 to 31/8, incl		
Over 0.017-0.032	0.005	0.006	0.007		
Incl 0.032-0.049	0.006	0.006	0.0075		
Incl 0.049-0.083	0.007	0.0075	0.008		
Incl 0.083-0.109	0.0075	0.0085	0.0095		
Incl 0.109-0.120	0.009	0.009	0.011		

TABLE 6 Notch Depth—SI Values

Note 1—See Table 5 for notch depth—inch-pound values.

	1		
Tube Wall	Tube	Outside Diameter, mn	1
Thickness, mm	Over 6 to 19, incl	Over 19 to 32, incl	Over 32 to 80, incl
Over 0.4–0.8	0.13	0.15	0.18
Incl 0.8-1.3	0.15	0.15	0.19
Incl 1.3-2.1	0.18	0.19	0.20
Incl 2.1-2.8	0.19	0.22	0.24
Incl 2.8-3.0	0.23	0.23	0.28

irrelevant signals because of visible and identifiable handling marks may be retested by the hydrostatic test prescribed in 13.1.2, or the pneumatic test prescribed in 13.1.3. Tubes meeting requirements of either test shall be considered to conform if the tube dimensions are within the prescribed limits, unless otherwise agreed upon between the manufacturer and the purchaser.

13.1.2 *Hydrostatic Test*—Each tube shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi [48 MPa] as determined by the following equation for thin

TABLE 7 Diameter of Drilled Holes—Inch-Pound Values

Note 1—See Table 8 for diameter of drilled holes—SI values.

Tube Outside Diameter, in.	Diameter of Drilled Holes, in.	Drill No.
¹/ ₄ −³/ ₄ , incl	0.025	72
Over 3/4 -1, incl	0.031	68
Over 1-11/4, incl	0.036	64
Over 11/4 -11/2, incl	0.042	58
Over 11/2 -13/4, incl	0.046	56
Over 1 ³ / ₄ –2, incl	0.052	55

TABLE 8 Diameter of Drilled Holes—SI Values

Note 1—See Table 7 for diameter of drilled holes—inch-pound values.

Tube Outside Diameter, mm	Diameter of Drilled Holes, mm	Drill No.
6.0-19.0, incl	0.65	72
Over 19.0-25.4, incl	0.80	68
Over 25.4-31.8, incl	0.92	64
Over 31.8-38.1, incl	1.1	58
Over 38.1-44.4, incl	1.2	56
Over 44.4–50.8, incl	1.3	55

hollow cylinders under tension. The tube need not be tested at a hydrostatic pressure of over 1000 psi [7.0 MPa] unless so specified.

$$P = 2St/(D - 0.8t)$$

where:

P = hydrostatic pressure, psig [MPa];

t = thickness of tube wall, in. [mm];

D = outside diameter of the tube, in. [mm]; and

S = allowable stress of the material, psi [MPa].

13.1.3 *Pneumatic Test*—Each tube shall be subjected to an internal air pressure of 60 psig [400 kPa], min, for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

14. Dimensions and Permissible Variations

14.1 *Diameter*—The outside of the tubes shall not vary from that specified by more than the amounts shown in Table 9 or Table 10 as measured by "go" and "no-go" ring gages.

Alternatively, micrometers may be used to ensure outer diameter tolerance at any one point; however, in cases of dispute, ring gauges shall be used for final determination.

14.2 Wall Thickness Tolerances:

14.2.1 *Tubes Ordered to Minimum Wall*—No tube wall at its thinnest point shall be less than the specified wall thickness. The maximum plus deviation from the specified wall at any point shall not exceed twice the values shown in Tables 11 and 12

14.2.2 Tubes Ordered to Nominal Wall—The maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Tables 11 and 12.

14.3 Length—The length of the tubes shall not be less than that specified when measured at room temperature, but may exceed the specified value by the amounts given in Tables 13 and 14.

14.4 Squareness of Cut—The departure from squareness of the end of the tube shall not exceed the following:

Tube, Outside
Diameter, in. [mm]

Up to % [16], incl
Over % [16]

0.010 in. [0.25]
0.016 in./in. [mm/mm] of diameter

14.5 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimensions may be cause for rejection.

15. Workmanship, Finish, and Appearance

15.1 Roundness, straightness, uniformity of the wall thickness, and inner and outer surface of the tube shall be such as to make it suitable for the intended application. Unless otherwise specified on the purchase order, the cut ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.

15.2 Annealed-temper or thermally stress-relieved tubes shall be clean and smooth but may have a superficial, dull iridescent film on both the inside and the outside surface. Drawn-temper tubes shall be clean and smooth, but may have a superficial film of drawing lubricant on the surfaces.

TABLE 9 Diameter Tolerances—Inch-Pound Values

Note 1—See Table 10 for diameter tolerances—SI values.

			Wall Thickness	s, in.	
\sim	0.020 ^A	0.032	0.035	0.042	0.049 and Over
Outside Diameter, in.	0.022				
-() ·	0.025				
	0.028				
		Diar	neter Tolerance, Plus	and Minus, in.	
Jp to 0.500, incl	0.003	0.0025	0.0025	0.0025	0.0025
over 0.500-0.740, incl	0.0040	0.004	0.004	0.0035	0.003
ver 0.740–1.000, incl	0.0060	0.006	0.005	0.0045	0.004
over 1.000–1.250, incl		0.009	0.008	0.006	0.0045
over 1.250–1.375, incl				0.008	0.005
over 1.375–2.000, incl					0.006
Over 2.000–3.125, incl					0.0065

^A Tolerances in this column are applicable to light drawn and drawn tempers only. Tolerances for annealed tempers shall be as agreed upon between the manufacturer and the purchaser.

TABLE 10 Diameter Tolerances—SI Values

Note 1—See Table 9 for diameter tolerances—inch-pound values.

	1				
	Wall Thickness, mm				
	0.508 ^A	0.813	0.889	1.07	1.24 and Over
Outside Diameter, mm	0.559				
	0.635				
	0.711				Contract of the Contract of th
		Dian	neter Tolerance, Plus	and Minus, mm	~~
Up to 12, incl	0.076	0.064	0.064	0.064	0.064
Over 12-18, incl	0.10	0.10	0.10	0.089	0.076
Over 18–25, incl	0.15	0.15	0.13	0.11	0.10
Over 25–35, incl				0.20	0.13
Over 35-50, incl					0.15
Over 50-79, incl					0.17

A Tolerances in this column are applicable to light drawn and drawn tempers only. Tolerances for annealed tempers shall be as agreed upon between the manufacturer and the purchaser.

TABLE 11 Wall Thickness Tolerances, Plus and Minus— Inch-Pound Values

Note 1—See Table 12 for SI values.

	Outside Dia	meter, in.	
Over ¹ / ₈ to ⁵ / ₈ , incl	Over ⁵ / ₈ to 1, incl	Over 1 to 2, incl	Over 2 to 3.125, incl
0.003	0.003		
0.003	0.003 0.0045	0.004 0.0045	0.005
0.0045	0.005	0.005	0.0055
0.005	0.0065	0.0065	0.0065 0.008
	to 5/s, incl 0.003 0.003 0.004 0.0045	Over ¹/s Over ⁵/s to ⁵/s, incl to 1, incl 0.003 0.003 0.003 0.003 0.004 0.0045 0.005 0.0065	to 5%, to 1, to 2, incl incl incl 0.003 0.003 0.003 0.003 0.004 0.004 0.0045 0.0045 0.0045 0.005 0.005 0.005 0.0065 0.0065

TABLE 12 Wall Thickness Tolerances, Plus and Minus— SI Values

Note 1—See Table 11 for inch-pound values.

Wall Thickness,	Outside Diameter, mm				
mm	Over 12 to 25, incl	Over 25 to 50, incl	Over 50 to 80, incl		
0.50, incl to 0.80	0.08	(3			
0.80, incl to 0. 90	0.08	0.10			
0.90, incl to 1.5	0.11	0.11	0.13		
1.5, incl to 2.1	0.13	0.13	0.14		
2.1, incl to 3.0	0.17	0.17	0.17		
3.0, incl to 3.4	0.18	0.19	0.20		

TABLE 13 Length Tolerances—Inch-Pound Values

Note 1—See Table 14 for SI values.

Specified Length, ft	Tolerance, all Plus, in.
Up to 15	3/32
Over 15–20, incl	1/8
Over 20–30, incl	5/32
Over 30–60, incl	3/8
Over 60–100, incl ^A	1/2

^A Condense tubes in lengths over 100 ft are not in demand at present. Tolerance values for the lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.020, incl. to 0.032 shall be as agreed upon between the manufacturer or supplier and the purchaser.

16. Sampling

16.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:

TABLE 14 Length Tolerances—SI Values

Note 1—See Table 13 for inch-pound values.

Specified Length, mm	Tolerance, all Plus, mm
Up to 4500	2.4
Over 4500–6000, incl	3.2
Over 6000–10 000, incl	4.0
Over 10 000–18 000 incl	9.5
Over 18 000–30 000, incl ⁴	13.0

^A Condenser tubes in lengths over 30 000 mm are not in demand at present. Tolerance values for the lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.5, inclusive to 0.8 shall be as agreed upon between the manufacturer or supplier and the purchaser.

- 16.1.1 *Lot Size*—600 tubes or 10 000 lb [4550 kg] or fraction of either, whichever constitutes the greater weight.
- 16.1.2 *Portion Size*—Sample pieces from two individual lengths of finished product.
- 16.2 Samples taken for the purpose of the tests prescribed in the specification shall be selected in a manner that will represent correctly the material furnished and avoid needless destruction of finished material when samples representative of the material are available from other sources.
- 16.3 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, and so forth shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 16.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 16.3.1 Alternatively to sampling procedures in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semifinished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:

- 16.3.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 16.3.1.2 When samples are taken from the semifinished product, a sample shall be taken to represent each 10 000 lb [4550 kg] or fraction thereof, except that not more than one sample shall be required per piece.
- 16.3.1.3 Because of the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 16.3.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired at the time of order placement.

17. Number of Tests and Retests

- 17 1 Test.
- 17.1.1 *Chemical Analysis*—Chemical composition shall be determined as per the element mean of the results from at least two replicate analyses of the sample(s).
- 17.1.2 Other Tests—For tests specified in Sections 8-12 inclusive, specimens shall be taken from each of the pieces selected in accordance with 16.1.2.
- 17.1.3 If any test specimen representing a lot fails to conform to the requirements of Sections 6-12, two additional specimens, at the option of the manufacturer, may be taken as before, and submitted for check analysis or subjected to any tests in which the original specimen failed, but each of these specimens shall conform to the requirements specified.
 - 17.2 Retest:
- 17.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.
- 17.2.2 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 17.2.3 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

18. Specimen Preparation

- 18.1 Flattening Test—Prepare specimen as per Test Method B968/B968M.
- 18.2 Expansion Test—Prepare specimen as per Test Method B153.
- 18.3 *Mercurous Nitrate Test*—Prepare specimen as per Test Method B154.
- 28.4 Ammonia Vapor Test—Prepare specimen as per Test Method B858.
- 18.5 Chemical Analysis—Prepare specimens as per Test Method listed (see 19.1).
- 18.6 *Grain Size*—Prepare specimens per Test Methods E112.

- 18.6.1 The surface of the test specimen for microscopical examination shall approximate a radial longitudinal section of the tube.
- 18.7 Tension Testing—Tubes selected for test shall be subjected to the tension test which shall, in case of disagreement, be performed in accordance with Test Methods E8/E8M. Tension test specimen shall be of the full section of the tube and shall conform to the requirements of the section, Specimens for Pipe and Tube, of Test Methods E8/E8M, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M may be used when a full section specimen cannot be tested.

19. Test Methods

- 19.1 Chemical Analyses:
- 19.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following published methods, some of which may no longer be viable, which along with others not listed, may be used, subject to agreement:

Test	ASTM Designation B170, ^A E53, E54, E62, E75, E76, E118, E478	
Chemical analysis		

^A Reference to Specification B170 is to the suggested chemical methods in the annex thereof. When E01 Committee has tested and published methods for assaying the low-level impurities in copper, the Specification B170 annex will be eliminated.

19.1.2 Test methods to be followed for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

19.2 Other Tests:

19.2.1 The product furnished shall conform to specified requirements when subjected to test in accordance with the following table:

Test	ASTM Designation	
Grain size	E112	
Expansion (pin test)	B153	
Mercurous nitrate	B154	
Tension	E8/E8M	
Nondestructive test	E243	

- 19.2.2 Whenever tension test results are obtained from both full-size and machined specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.
- 19.2.3 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the range of stressing to the yield strength should not exceed 100 ksi/min [690 MPa/min]. Above this yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. [mm/mm] of gage length (or distance between grips for full-section specimens).

20. Significance of Numerical Limits

20.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, and for dimensional tolerances, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29:

> Rounded Unit for Property Observed or Calculated Value

Chemical composition nearest unit in the last right-hand significant

digit used in expressing the limiting value

nearest ksi for over 10 to 100 ksi incl Tensile strength [nearest 5 MPa]

Yield strenath

Elongation nearest 1 %

Grain size-under 0.060 mm nearest multiple of 0.005 mm 0.060 mm and over nearest 0.01 mm

21. Inspection

- 21.1 The manufacturer, or supplier, shall inspect and make tests necessary to verify the furnished product conforms to specification requirements.
- 21.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer, or supplier, and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector, representing the purchaser, that the product is being furnished in accordance with the specification shall be included in the agreement. All testing and inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 21.3 When mutually agreed upon, the manufacturer, or supplier, and the purchaser shall conduct the final inspection simultaneously.

22. Rejection and Rehearing

- 22.1 Rejection:
- 22.1.1 Product that fails to conform to the specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.
- 22.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 22.1.3 In case of dissatisfaction with results of the test upon which rejection is based the manufacturer, or supplier, shall have the option to make claim for a rehearing.
- SWEW PANDOC. CC

22.2.1 As a result of product rejection, the manufacturer, or supplier, shall have the option to make claim for a retest to be conducted by the manufacturer, or supplier, and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

23. Certification

23.1 The purchaser shall be furnished certification that samples representing each lot have been either tested or inspected as directed in this spcification and requirements have been met.

23.2 DELETED

24. Test Report

24.1 A report of test results shall be furnished.

25. Packaging and Package Marking

- 25.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.
- 25.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, total length or piece count, or both, and name of Supplier. The specification number shall be shown, when specified.

26. Keywords

26.1 condenser tube; copper; copper alloys; evaporator; ferrule stock; heat exchanger; seamless tube; UNS No. C10100; UNS No. C10200; UNS No. C10300; UNS No. C10800; UNS No. C12000; UNS No. C12200; UNS No. C14200; UNS No. C15630; UNS No. C19200; UNS No. C23000; UNS No. C28000; UNS No. C44300; UNS No. C44400; UNS No. C44500; UNS No. C60800; UNS No. C61300; UNS No. C61400; UNS No. C68700; UNS No. C70400; UNS No. C70600; UNS No. C70620; UNS No. C71000; UNS No. C71500; UNS No. C71520; UNS No. C71640; UNS No. C72200

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

\$1.1.3 Military Specification:

B900 Specification for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S2. Quality Assurance

S2.1 Responsibility for Inspection—Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the

purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of ASTM B900.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

84.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. DENSITY OF COPPER AND COPPER ALLOYS

X1.1 The densities of the alloys covered by this specification are given in Table X1.1.

TABLE X1.1 Densities

Note 1—This information is for reference only.

Capper of Capper Alay UNS No. Demsky, thin? Demsk	Note 1—This information is for reference only.		
C10100, C10200, C10200, C10200 C12000, C10200 C10500 C10500 C10500 C20000 C2000	Copper or Copper Alloy UNS No.	Density, lb/in.3	Density, g/cm ³
C15630		0.323	
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of		0.000	0.07
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of			8.86
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of		0.316	8.75
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of			8.39
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of			8.53 8.17
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of	C61300, C61400	0.285	7.89
0.323 (3.95) C71500, C71520 0.323 (3.95) C71640 0.323 9.97 C72200 0.323 9.97 S. C. COM. Circle to view the full rab. Assame Representation of the control of	C68700	0.301	8.33
C71000 0.323 0.95 C71640 0.323 0.323 0.325 C71640 0.323 0.323 0.325 C71640 0.323 0.323 0.325 C71640 0.323 0.323 0.325 0.323 0.325 0.323 0.325 0.325 0.323 0.325 0.	C70600 C70620	0.323 0.323	8.94
C71500, C71500 0.323	C71000	0.323	8.94
C72000 0.233 RANKE BANC. II.B. ASHIF BANC. II.B.	C71500, C71520	0.323	8.94
DOC.COM. Click to view the full POF of Ashir BryC. II. B. U.S. III. B. U.S.	C71640 C72200	0.323 0.323	8.94 8.94
02	MDOC. COM. Click to view the full family	OF OF ASME BRYCHE	ASME B
93		93	

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B) 202 COPPER ALLO LIEET, AND STRIP SB-127 SB-127 (Identical with ASTM Specification B127-05(20)14) except that certification has been made mandatory.) (Identical with ASTM Specification B127-05(20)14) except that certification has been made mandatory.) SPECIFICATION FOR NICKEL-COPPER ALLOY (UNS N04400) PLATE, SHEET, AND STRIP

SPECIFICATION FOR NICKEL-COPPER ALLOY JC Section II Part B 20' (UNS N04400) PLATE, SHEET, AND STRIP

SB-127

[Identical with ASTM Specification B 127-05(2014) except that certification has been made mandatory.]

Scope

- **1.1** This specification covers rolled nickel-copper alloy (UNS N04400) plate, sheet, and strip.
- 1.2 The values stated in inch-pound units are to be regarded as the standard. The other values given are for information only.
- **1.3** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/ material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

Referenced Documents

2.1 ASTM Standards:

- B 906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip
- E 140 Hardness Conversion Tables for Metals
- F 155 Test Method for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method)

2.2 Federal Standards.

Fed. Std. No. 102 Preservation, Packaging, and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

2.3 *Military Standards:*

MIL-STD-129 Marking for Shipment and Storage MIL-STD-271 Nondestructive Testing Requirements for Metals

Terminology

3.1 Descriptions of Terms Specific to This Standard — The terms given in Table 1 shall apply.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B 906 unless otherwise provided herein.

Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - **5.1.1** Alloy Name or UNS number (see Table 2).
 - **5.1.2** ASTM designation, including year of issue.
 - **5.1.3** *Condition* See 7.1, 7.2, and Appendix X1.
 - **5.1.4** *Finish* See Appendix X1.
 - **5.1.5** *Dimensions* Thickness, width, and length.

TABLE 1 PRODUCT DESCRIPTION

Product	Thickness, in. (mm)
Hot-rolled plate ^A	³ / ₁₆ and over
Hot-rolled sheet ^A	0.018 to 0.250 (0.46 to 6.4), incl
Cold-rolled sheet ^B	0.018 to 0.250 (0.46 to 6.4), incl
Cold-rolled strip ^B	0.005 to 0.250 (0.13 to 6.4), incl

^A Material $\frac{3}{16}$ to $\frac{1}{4}$ in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition ordered.

^B Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered.

TABLE 2 CHEMICAL REQUIREMENTS

	Composition, %
Element	Alloy N04400
Nickel, min ^A	63.0
Copper	28.0 to 34.0
Iron, max	2.5
Manganese, max	2.0
Carbon, max	0.3
Silicon, max	0.5
Sulfur, max	0.024

^A Element shall be determined arithmetically by difference.

5.1.6 *Quantity.*

5.1.7 *Optional Requirements:*

- **5.1.7.1** *Sheet and Strip* Whether to be furnished in coil, in cut straight lengths, or in random straight lengths.
- **5.1.7.2** *Strip* Whether to be furnished with commercial slit edge, square edge, or round edge.
- **5.1.7.3** *Plate* Whether to be furnished specially flattened (7.2); also how plate is to be cut (8.2.1 and 8.3.2).
- **5.1.8** *Fabrication Details* Not mandatory but helpful to the manufacturer.
- **5.1.8.1** Welding or Brazing Process to be employed.
- **5.1.8.2** *Plate* Whether material is to be hotformed.
- **5.1.9** Certification Certification and a teport of test results are required (see Specification B 906, section on Material Test Report and Certification).
- **5.1.10** Samples for Product (Check) Analysis Whether samples for product (check) analysis should be furnished (see Specification B 906, section on Sampling).
- **5.1.11** Purchaser Inspection If the purchaser wishes to witness the tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (see Specification B 906, section on Inspection).

6. Chemical Composition

- **6.1** The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- **6.2** If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations prescribed in Specification B 906.

7. Mechanical and Other Requirements

7.1 *Mechanical Properties* — The material shall conform to the requirements for mechanical properties prescribed in Table 3.

- **7.2** Deep-Drawing and Spinning Quality Sheet and Strip The material shall conform to the requirements for grain size and hardness properties prescribed in Table 4.
- **7.2.1** The mechanical properties of Table 3 do not apply to deep-drawing and spinning quality sheet and strip.

8. Dimensions and Permissible Variations

8.1 *Weight:*

8.1.1 For calculations of mass or weight a density of 0.319 lb/in.³ (8.83 g/cm³) shall be used.

8.2 *Thickness*:

- **8.2.1** Plate —For plate up to 2 in. (50.8 mm) inclusive, in thickness, the permissible variation, under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Specification B 906, see Permissible Variations in Thickness and Overweight of Rectangular Plates Table.
- **8.2.2** Plate For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Specification B 906, see Permissible Variations in Thickness for Rectangular Plates Over 2 in. (51 mm) in Thickness Table.
- **8.2.3** Sheet and Strip The permissible variations in thickness of sheet and strip shall be prescribed in Specification B 906, see Permissible Variations in Thickness of Sheet and Strip Table. The thickness of strip and sheet shall be measured with the micrometer spindle $\frac{3}{8}$ in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on the strip under 1 in. in width.

8.3 *Width or Diameter:*

- **8.3.1** *Plate* The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Specification B 906, see Permissible Variations in Width of Sheared, Plasma Torch-Cut, and Abrasive-Cut Rectangular Plate Table and Permissible Variations in Diameter for Circular Plates Table.
- **8.3.2** *Sheet and Strip* The permissible variations in width for sheet and strip shall be as prescribed in Specification B 906, see Permissible Variations in Width of Sheet and Strip Table.

8.4 *Length:*

- **8.4.1** Sheet and strip of all sizes may be ordered to cut lengths in which case, a variation of $\frac{1}{8}$ in. (3.2 mm) over the specified length shall be permitted.
- **8.4.2** Permissible variations in length of rectangular plate shall be as prescribed in Specification B 906, see Permissible Variations in Length of Sheared, Plasma Torch-Cut, and Abrasive-Cut Rectangular Plate Table.

TABLE 3			
MECHANICAL PROPERTIES FOR PLATE, SHEET, AND STRIP (ALL THICKNESSES AND SIZES UNLESS			
OTHERWISE INDICATED)			

Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength ^A (0.2% offset), min, psi (MPa)	Elongation in 2 in. or 50 mm, or 4 <i>D</i> , min, %	Rockwell Hardness (B Scale) ^{B,C}
		Hot-Rolled Plate		
Annealed As-rolled ^{D, E}	70 000 (485) 75 000 (515)	28 000 (195) 40 000 (275)	35 25	
As Torica	75 000 (515)	Hot-Rolled Sheet	23	- ior
Annealed	70 000 (485)	28 000 (195)	35	Sec
		Cold-Rolled Sheet		10
Annealed	70 000 to 85 000 (485 to 585)	28 000 (195)	35	
Quarter-hard	• • •	• • •		73 to 83
Half-hard Hard	100 000 (690)	90 000 (620)	CAMP	82 to 90
		Cold-Rolled Strip	(P)	
Annealed	70 000 to 85 000 (485 to 585) ^F	28 000 (195)	35 ^F	
Skin hard		C.		68 to 73
Quarter-hard				73 to 83
Half-hard				82 to 90
Three-quarter-hard	···			89 to 94
Hard	100 000 (690) ^F	90 000 (620)	2 ^F	• • •
Spring temper	• • •			98 min

⁴ Yield strength requirements do not apply to material under 0.020 in. (0.51 mm) in thickness.

Not applicable for thickness under 0.010 in. (0.25 mm).

8.5 Straightness:

- **8.5.1** The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres).
- **8.5.2** Straightness for coiled material is subject to agreement between the manufacturer and the purchaser.

8.6 Edges:

- **8.6.1** When finished edges of strip are specified in the contract or purchase order, the following descriptions shall apply:
- **8.6.1.1** Square-edge strip shall be supplied with finished edges, with sharp, square corners, and without bevel or rounding.
- **8.6.1.2** Round-edge strip shall be supplied with finished edges, semicircular in form, and the diameter of the circle forming the edge being equal to the strip thickness.

- **8.6.1.3** When no description of any required form of strip edge is given, it shall be understood that edges such as those resulting from slitting or shearing will be acceptable.
 - **8.6.1.4** Sheet shall have sheared or slit edges.
- **8.6.1.5** Plate shall have sheared or cut (machined, abrasive-cut, powder-cut, or inert-arc-cut) edges, as specified.
- **8.7** Squareness (Sheet) For sheets of all thicknesses, the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ ($\frac{1}{16}$ in. in 24 in.) (1.6 mm in 610 mm).

8.8 Flatness:

- **8.8.1** There shall be no flatness requirements for "deep drawing quality," "spinning quality," or "as-rolled," sheet and strip (see X1.4).
- **8.8.2** Standard flatness tolerances for plate shall conform to the requirements prescribed in Table 5. "Specially

^B For Rockwell or equivalent hardness conversions see Hardness Conversion Tables E 140.

^C Caution should be observed in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

DAs-rolled plate may be given a stress-relieving heat treatment subsequent to final rolling.

^E As-rolled plate specified "suitable for hot forming" shall be furnished from heats of known good hot-malleability characteristics (see X1.2.2). There are no applicable tensile or hardness requirements for such material.

TABLE 4
GRAIN SIZE AND HARDNESS FOR COLD-ROLLED, DEEP-DRAWING, AND SPINNING QUALITY SHEET AND STRIP

	Calculated Diameter of Average Grain Section, max mm in.		Corresponding ASTM Micro-	Rockwell B ^{A,B} Hardness, max	
Thickness, in. (mm)			Grain Size No.		
	Sheet (56 in. (142	20 mm) Wide and Un	der)		
0.050 (1.3) and under	0.075	0.0030	4.5	76	
Over 0.050 to 0.250 (1.3 to 6.4), incl	0.110	0.0043	3.5	76	
	Strip (12 in. (305	mm) Wide and Und	er) $^{\mathcal{C}}$	xiO ⁽¹⁾	
0.005 ^D to 0.015 (0.13 to 0.38), incl	0.022	0.0009	8 ^E	76 ^E	
Over 0.015 to 0.024 (0.38 to 0.61), incl	0.060	0.0024	5.5	76	
Over 0.024 to 0.125 (0.61 to 3.2), incl	0.075	0.0030	4.5	76	

⁴ For Rockwell or equivalent hardness conversions see Hardness Conversion Tables E 140.

TABLE 5
PERMISSIBLE VARIATIONS FROM FLATNESS OF RECTANGULAR, CIRCULAR, AND SKETCH PLATES

-		Perr	nissible Varjati	ions from a F	lat Surface fo	r Thickness a	nd Widths Give	n. in. (mm)	
Specified Thickness	To 48 (1220), excl	48 to 60 (1220 to 1520), excl	60 to 72 (1520 to 1830), excl	72 to 84 (1830 to 2130), excl	84 to 96 (2130 to 2440), excl	96 to 108 (2440 to 2740), excl	108 to 120 (2740 to 3050), excl	120 to 144 (3050 to 3660), excl	144 (3660) and over
		N		Inch	ies				
3/16 to 1/4, excl 1/4 to 3/8, excl 3/8 to 1/2, excl 1/2 to 3/4, excl 3/4 to 1, excl 1 to 2, excl 2 to 4, incl	3/4 11/16 1/2 1/2 1/2 1/2 1/4	140 3/4 9/16 9/16 9/16 9/16 9/16 5/16	1 ¹ / ₄ ¹⁵ / ₁₆ ¹¹ / ₁₆ ⁵ / ₈ ⁵ / ₈ ⁹ / ₁₆ ³ / ₈	13/8 11/8 3/4 13/16 5/8 9/16 7/16	15/8 13/8 15/16 11/8 3/4 11/16	15/8 17/16 11/8 11/8 13/16 11/16 9/16	1%6 11/4 11/8 15/16 11/16 5/8	$1\frac{7}{8}$ $1\frac{7}{16}$ $1\frac{3}{8}$ 1 $\frac{3}{4}$	 1 ³ / ₄ 1 ³ / ₈ 1 ¹ / ₈ 1
COIL				Millim	etres				
4.8 to 6.4, excl 6.4 to 9.5, excl	19.0 17.5	27.0 19.0	31.7 23.8	34.9 28.6	41.3 35.0	41.3 36.5	 39.7	 47.6	
9.5 to 12.7, excl 12.7 to 19.0, excl	12.7 12.7	14.3 14.3	17.5 15.9	19.0 15.9	23.8 20.6	28.6 28.6	31.7 28.6	35.0 28.6	44.4 34.9
19.0 to 25.4, excl 25.4 to 50.8, excl	12.7 12.7	14.3 14.3	15.9 14.3	15.9 14.3	19.0 17.5	20.6 17.5	23.8 17.5	25.4 19.0	28.6 25.4
50.8 to 101.6, incl	6.4	7.9	9.5	11.1	12.7	14.3	15.9	19.0	22.2

NOTE 1 — Permissible variations apply to plates up to 12 ft (366 cm) in length, or to any 12 ft or longer plates.

99

^B Caution should be observed in using the Rockwell test on thin material as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

 $^{^{\}it C}$ Sheet requirements in Table 4 apply to strip thicknesses over 0.125 in. (3.2 mm), and for all thicknesses of strip over 12 in. (305 mm) in width.

 $^{^{}D}$ For ductility evaluations for strip under 0.005 in. (0.13 mm) in thickness, the spring-back test such as described in Test Method F 155 is often used and the manufacturer should be consulted.

 $^{^{\}it E}$ Accurate grain size and hardness determinations are difficult to make on strip under 0.005 in (0.13 mm) in thickness and are not recommended.

NOTE 2 — If the longer dimension is under 36 in. (914 mm), the permissible variation is not greater than $\frac{1}{4}$ in. (6.4 mm).

 $^{{\}tt NOTE~3-The~shorter~dimension}$ specified is considered the width, and the permissible variation in flatness across the width does not exceed the tubular amount of that dimension.

NOTE 4 — The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

flattened" plate when so specified, shall have permissible variations in flatness as agreed upon between the manufacturer and the purchaser.

Workmanship, Finish, and Appearance

- **9.1** The material shall be uniform in quality and temper, smooth, commercially straight or flat, and free of injurious imperfections.
- 9.2 Sheet, Strip, and Plate Sheet, strip, and plate supplied in the conditions and finishes as listed in the appendix may be ground or machined to remove surface imperfections, provided such removal does not reduce the material below the minimum specified dimensions. Surface eliminated depressions shall be faired smoothly into the SMENGANDOC. COM. Click to item the full Pute of Assure April 2011. surrounding material. The removal of a surface imperfection shall be verified by the method originally used to

Product Marking

- **10.1** Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, condition (temper), heat number, manufacturer's identification, and size. The markings shall not have a deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 10.2 When applicable, each bundle or shipping container shall be marked with the name of the material, condition (temper), this specification number, alloy, size, consignor and consignee address, contract or order number, and such other information as may be defined in the contract or order.

11. **Keywords**

11.1 N04400; plate; sheet, strip

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein. Federal Standard No. 102, No. 123, No. 182, and Military Standard MIL-STD-129.

S2. Chemical Composition

S2.1 The material shall conform to the composition limits specified in Table 2 except as specified in Table S2.1.

S3. Mechanical Properties

S3.1 Mechanical property requirements for quarter hard cold-rolled strip $\frac{1}{4}$ in. thick and less shall be as specified in Table S3.1.

S4. Nondestructive Tests

S4.1 When specified by the purchaser, each prece of each lot shall be inspected. The purchaser shall specify if one or both tests are required.

TABLE S2.1 CHEMICAL REQUIREMENTS

Element C	omposition Limits, %
Carbon Sulfur Aluminum Lead Tin Zin	0.2 max. 0.015 max. 0.5 max. 0.006 max. 0.006 max. 0.02 max. 0.02 max.

TABLE S3.1 MECHANICAL PROPERTIES FOR QUARTER-HARD COLD ROLLED STRIP

Tensile Strength, min, psi (MPa)	78 000–85 000 (538–586)
Yield Strength, min, psi (MPa)	45,000 (310)
(0.2% offset)	
Elongation in 2 in., 50 mm, or	20
4 <i>D</i> , min, %	

S4.2 *Ultrasonic Tests:*

S4.2.1 General Requirements:

S4.2.1.1 Ultrasonic testing shall be performed in accordance with MIL-STD-271 as modified by the requirements specified herein.

S4.2.1.2 Acoustic compatibility between the production material and the calibration standard material shall be within 75%. If the acoustic compatibility is within 25%, no gain compensation is required for the examination. If acoustic compatibility difference is between 25% and 75%, a change in the gain or dB controls shall be accomplished to compensate for the differences in acoustic compatibility. This method cannot be used if the ultrasonic noise level exceeds 50% of the rejection value.

S4.2.2 Calibration:

S4.2.2.1 Longitudinal Wave — The longitudinal wave test shall be calibrated on a flat-bottomed reference hole of a given diameter in accordance with Table S4.1 for specified material thickness drilled either into the piece to be tested or into a separate defect-free specimen of the same size (within $\pm \frac{1}{8}$ in. (3.18 mm)), shape, material, and condition, or acoustically similar material. Holes are to be drilled to midsection and the bottom of the hole shall be parallel to the entrant surface. The ultrasonic test instrument shall be adjusted so that the response from the reference hole shall not be less than 25% and not more then 75% of screen height.

S4.2.2.2 Recalibration — During quality conformance inspection, any realignment of the search unit that will cause a decrease in the calibrated sensitivity and resolution, or both, or any change in search unit, couplant, instrument settings, or scanning speed from that used for calibration shall require recalibration. Recalibration shall be performed at least once per 8 h shift.

S4.2.3 *Procedure* — Paragraph S4.2.3.1 describes the requirements for plate. Sheet and strip shall be excluded from these requirements.

TABLE \$4.1
ULTRASONIC TESTING REFERENCE HOLE FOR PLATE

Material Thickness, in. (mm)	Hole Diameter, in. (mm)
Up to and including 4 (102)	½ (6.4)
Over 4 (102)	½ (12.7)

S4.2.3.1 *Plate* — Plate shall be inspected by the longitudinal wave technique using the contact or immersion method. For contact, the scanning shall be on a 24 in. grid and one diagonal in each grid. For immersion, the scanning shall be continuous on a 12 in. grid. For either method, the search shall be expanded to determine the full extent of any rejectable indication if the material is to be offered on a waiver basis.

S4.2.4 Acceptance Criteria:

S4.2.4.1 Longitudinal Wave — Any material that produces indications equal to or larger than the response from the reference hole, or that produces a complete loss of back reflection shall be rejected. Material shall be tested using a square, rectangular, or circular transducer having an effective area of one square inch or less, but no dimension shall be smaller than the diameter of the reference hole. In the event of disagreement on the degree of back reflection loss, it shall be determined by the contact method using a 1 to $1\frac{1}{8}$ in. (25.4 to 28.6 mm) diameter transducer or one whose area falls within this range.

S4.2.4.2 Reference Notch Removal — If reference notches or flat-bottomed holes are made in the material to be tested, they shall be so located than their subsequent removal will not impair the suitability of the material for its intended use.

S4.3 *Liquid Penetrant Inspection:*

- **S4.3.1** *Procedure* Liquid penetrant inspection shall be in accordance with MIL-STD-271.
- **S4.3.2** Surface Requirements The surface produced by hot working is not suitable for liquid penetrant testing. Therefore, liquid penetrant testing will not be applicable to products ordered with a hot finished surface.
- **S4.3.3** Acceptance Criteria Linear defects revealed by liquid penetrant inspection shall be explored by grinding or other suitable means. Depth of defects shall not exceed the dimensional tolerance of the material.

S5. Quality Assurance

S5.1 Responsibility for Inspection — Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S6. Identification Marking

S6.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 182 except that the ASTM specification number and the alloy number shall be used.

S7. Preparation for Delivery

S7.1 Preservation, Packaging, Packing:

S7.1.1 *Military Agencies* — The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, or packed, Level A, B, or C as specified in the contract or purchase order.

S7.1.2 *Civil Agencies* — The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S7.2 *Marking:*

- **S7.2.1** *Military Agencies* In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.
- **S7.2.2** *Civil Agencies* —In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change and the manufacturer should be consulted for the latest information available.

X1.2 Plate, Hot-Rolled

- **X1.2.1** Annealed Soft with an oxide surface and suitable for heavy cold forming. Available with a descaled surface, when so specified.
- **X1.2.2** As-Rolled With an oxide surface. Available with a descaled surface, when so specified. Suitable for flat work, mild forming, or tube sheets. When intended for tube sheets, specify that plates are to be specially flattened. When intended for hot forming, this should be indicated on the purchase order so that the manufacturer may select appropriate material.

X1.3 Plate, Cold-Rolled

X1.3.1 Annealed — Soft with an oxide surface; available with a descaled surface when so specified.

X1.4 Sheet, Hot-Rolled

X1.4.1 Annealed, and Pickled — Soft with a pickled matte finish. Properties similar to X1.5.1 but with broader thickness tolerances. Not suggested for applications where the finish of a cold-rolled sheet is considered essential, or for deep drawing or spinning.

X1.5 Sheet and Strip, Cold-Rolled

- **X1.5.1** Annealed Soft with a pickled or bright annealed finish.
- **X1.5.2** Deep-Drawing or Spinning Quality Similar to X1.5.1, except furnished to controlled hardness and grain size and lightly leveled.
- **X1.5.3** *Skin Hard* Similar to X1.5.1 but given a light cold reduction to hardness range shown in Table 3.
- **X1.5.4** Quarter-Hard— Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.5** Half-Hard Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.6** Three-Quarter Hard Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.7** *Hard* Cold rolled to the tensile requirements indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.8** *Spring Temper* Cold rolled to the minimum hardness indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR SEAMLESS BRASS TUBE SB-135/SB-135MC.II.B. (ASMIT

SM-17 ex quirements of click to view the full public control of the public control of th (Identical with ASTM Specification B135/B135M-17 except for revisions to para. 8.2 and Note 1. Mechanical property requirements of Note 1 are mandatory.)

Specification for Seamless Brass Tube

1. Scope

1.1 This specification covers seamless round and rectangular including square copper alloy tube in straight lengths. Ten alloys are specified having the following nominal compositions:

Copper Alloy	Previously Used	No	minal Con	nposition, %	, 0
UNS No.	Designation ^A	Copper	Zinc	Lead	Tin
C22000	7	90.0	10.0		
C23000	1	85.0	15.0		
C26000	2	70.0	30.0		
C27000	9	65.0	35.0		
C27200	8	63.0	37.0		
C27400		62.5	37.5		
C28000	5	60.0	40.0		
C33000	3	66.0	33.5	0.5	
C33200	4	66.0	32.4	1.6	
C37000	6	60.0	39.0	1.0	
C44300		71.5	27.5		1.00

A Alloy Designations of Specification B135 – 63, which was published in the 1966 Book of ASTM Standards, Part 5.

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for additional information. Users should be aware that

selling mercury and/or mercury containing products into your state or country may be prohibited by law. (See 10.1.)

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing

B154 Test Method for Mercurous Nitrate Test for Copper Alloys

B251/B251M Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy Tube

B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast

B846 Terminology for Copper and Copper Alloys

B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys

B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube

E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

3.1 For terms related to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

- 4.1 Orders for material under the specification shall include the following information:
 - 4.1.1 Alloy (Section 1),
 - 4.1.2 Temper (Section 7),
- 4.1.3 Whether tension tests are required (for drawn tempers only (see 8.1)),
- 4.1.4 Dimensions: diameter or distance between parallel surfaces and wall thickness (see 11.2 and 11.3),
 - 4.1.5 Length (see 12.4),
- 4.1.6 Stress Corrosion Resistance Testing, if required (Section 10),
 - 4.1.7 Total length of each size,
 - 4.1.8 Hydrostatic pressure test, when specified, and
 - 4.1.9 Pneumatic test, when specified.

5. General Requirements

- 5.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification B251/B251M.
- 5.2 The following sections of Specification B251/B251M constitute a part of this specification:
 - 5.2.1 Terminology
 - 5.2.2 Materials and Manufacture
 - 5.2.3 Dimensions and Permissible Variations
 - 5.2.4 Sampling
 - 5.2.5 Number of Tests and Retests
 - 5.2.6 Specimen Preparation
 - 5.2.7 Certification
 - 5.2.8 Test Reports
- 5.3 In addition, when a section with a title identical to that referenced in 5.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B251/B251M.

6. Chemical Composition

- 6.1 The material shall conform to the chemical requirements specified in Table 1.
- 6.2 These specification limits do not preclude the presence of other elements. Limits for unnamed elements are to be established by agreement between manufacturer or supplier and purchaser.

6.2.1 For alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of results of all other elements determined and 100 %. When all elements in Table 1 are determined, the sum of the results shall be as shown in the following table:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C22000	99.8
C23000	99.8
C26000	99.7
C27000	99.7
C27200	99.7
C27400	99.7
C28000	99.7
C33000	99.6
C33200	99.6
C37000	99.6
C44300	99.6

7. Temper

- 7.1 Drawn Tempers, H—The tempers of drawn tube shall be designated as light-drawn (H55), drawn (H58), and hard-drawn (H80) (see Tables 2 and 3). Light-drawn (bending) temper is used only when a tube of some stiffness but yet capable of being bent is needed. Drawn temper is for general purposes and is most commonly used where there is no specific requirement for high strength on the one hand or for bending qualities on the other Hard-drawn temper is used only where there is need for a tube as strong as is commercially feasible for the sizes indicated. For any combination of diameter and wall thickness not covered under hard-drawn temper, the values given for drawn temper shall be used. Rectangular including square tubes shall normally be supplied only in drawn (generalpurpose) temper. When there is a need for light-drawn or hard-drawn tempers these are to be supplied as agreed upon between the manufacturer and the purchaser.
- 7.2 Annealed Tempers, O—The tempers of annealed tube shall be designated as light anneal (O50) and soft anneal (O60) (Tables 4 and 5).

Note 1—Tube of Copper Alloy UNS No. C23000, shall have in the annealed condition a minimum tensile strength of 40 ksi [275 MPa] and a minimum yield strength of 12 ksi [80 MPa] at 0.5 % extension under load.

TABLE 1	Chemical	Requirements
---------	----------	--------------

Copper Alloy UNS No		Composition,%							
Copper Ailby VNS No.	Copper	Lead	Arsenic	Tin	Iron, max	Zinc			
C22000	89.0-91.0	0.05 max			0.05	remainder			
C23000	84.0-86.0	0.05 max			0.05	remainder			
C26000	68.5-71.5	0.07 max			0.05	remainder			
C27000	63.0-68.5	0.09 max			0.07	remainder			
C27200	62.0-65.0	0.07 max			0.07	remainder			
C27400	61.0-64.0	0.09 max			0.05	remainder			
C28000	59.0-63.0	0.09 max			0.07	remainder			
C33000	65.0-68.0	$0.25^{A} - 0.7$			0.07	remainder			
C33200	65.0-68.0	1.5-2.5			0.07	remainder			
C37000	59.0-62.0	0.9-1.4			0.15	remainder			
C44300	70.0-73.0	0.07 max	0.02-0.06	0.9-1.2	0.06	remainder			

^A In the case of Copper Alloy UNS No. C33000 on tube sizes greater than 5 in. in outside diameter, or distance between outside parallel surfaces, the lead content shall be 0.7 % maximum, no minimum is specified.

Copper Alloy UNS No.	Temper Designation ^A		Outside Diameter, in. or Major Distance	Wall Thickness, in.	Tensile Strenath	Rockwell Hardness ^C
Copper Alloy ONS No.	Standard	Former	Between Outside Parallel Surfaces, in.	wall filloniess, iii.	ksi ^B	30T
C22000	H58	drawn (general purpose)	all	all	40 min	38 min
C22000	H80	hard drawn ^D	up to 1, incl	0.020 to 0.120, incl	52 min	55 min
C22000	H80	hard drawn ^D	over 1 to 2, incl	0.035 to 0.180, incl	52 min	55 min
C22000	H80	hard drawn ^D	over 2 to 4, incl	0.060 to 0.250, incl	52 min	55 min
C23000	H55	light drawn ^D	all	all	44–58	43–75
C23000	H58	drawn (general purpose)	all	all	44 min	43 min
C23000	H80	hard drawn ^D	up to 1, incl	0.020 to 0.120, incl	57 min	65 min
C23000	H80	hard drawn ^D	over 1 to 2, incl	0.035 to 0.180, incl	57 min	65 min
C23000	H80	hard drawn ^D	over 2 to 4, incl	0.0605 to 0.250, incl	57 min	65 min
C26000, C27000, C27200, C27400, C33000, and C33200	H58	drawn (general purpose)	all	all	54 min	53 min
C26000, C27000, C27200, C27400, C33000, and C33200	H80	hard drawn ^D	up to 1, incl	0.020 to 0.120, incl	66 min	70 min
C26000, C27000, C27200, C27400, C33000, and C33200	H80	hard drawn ^D	over 1 to 2, incl	0.035 to 0.180, incl	66 min	70 min
C26000, C27000, C27200, C27400, C33000, and C33200	H80	hard drawn ^D	over 2 to 4, incl	0.060 to 0.250, incl	66 min	70 min
C28000 and C37000	H58	drawn (general purpose)	all	all	54 min	55 min
C44300	H58	drawn (general purpose)	all	(all)	54 min	53 min
C44300	H80	hard drawn ^D	all	all	66 min	70 min

TABLE 2 Mechanical Property Requirements of Drawn Temper Tube—Inch-Pound Values

Light-drawn and hard-drawn tempers are available in round-tube only.

8. Mechanical Properties

8.1 Drawn Temper—Tube shall conform to the mechanical properties prescribed in Tables 2 and 3. Tension tests are required for tubes with a wall thickness under 0.020 in. [50 mm] and for round tubes having an inside diameter under 5/16 in. [8.0 mm] and for rectangular including square tubes having a major distance between inside parallel surfaces under ³/₁₆ in. [5.0 mm]. The tension test for other sizes of tubes need not be made except when indicated by the purchaser at the time of placing the order. A convenient method of indicating that the tension test is required is to specify that "Test procedure 'T' is required" (see 4.13). When agreement on the Rockwell hardness tests cannot be reached, the tensile strength requirements of Table 2 shall be the basis for acceptance or rejection.

8.2 Annealed Temper—The mechanical property requirements of Copper Alloy UNS No. C23000 tube shall be those given in 7.2, Note 1.

9. Expansion Test for Round Tube

9.1 Tube ordered in the annealed (O) condition, selected for test, shall be capable of withstanding in accordance with Test Method B153 an expansion of the outside diameter in the following amount:

Outside Diameter, in.	Expansion of Outside Diameter, %
3/4 and under	20
Over 3/4	15

The expanded tube shall show no cracking or rupture visible to the unaided eye. Tube ordered in the drawn (H) condition is not subject to this test.

Note 2-The term "unaided eye," as used herein, permits the use of corrective spectacles necessary to obtain normal vision.

- 9.2 As an alternative to the expansion test for tube over 4 in. [100 mm] in diameter in the annealed condition shall be Test Method B968/B968M.
- 9.3 Drawn temper tube shall not be required to withstand these tests.

10. Mercurous Nitrate Test

- 10.1 Warning—Mercury is a definite health hazard. Use equipment for the detection and removal of mercury vapor. Wear rubber gloves when conducting the test.
- 10.2 When specifically required, test specimens 6 in. [150 mm] in length of both annealed and drawn tempers shall withstand, after proper cleaning, an immersion for 30 min

A Standard designations defined in Classification B601.

^B ksi = 1000 psi.

C Rockwell hardness values shall apply only to tubes having a wall thickness of 0.012 in. or over and to round tubes having an inside diameter of 5/16 in. or over and to rectangular including square tubes having an inside major distance between parallel surfaces 🚧 in. or over. Rockwell hardness shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the manufacturer and the purchaser.

Outside Diameter, mm Temper Designation² Tensile Rockwell or Major Distance Copper Alloy UNS No. Wall Thickness, mm Strength, Hardness^B Between Outside Standard Former MPa 30T Parallel Surfaces, mm C22000 H58 275 min 38 min drawn (general purpose) C22000 Han up to 25, incl 0.050 to 3.0, incl hard drawn^C 360 min 55 min C22000 H80 hard drawn^C over 25 to 40, incl 0.090 to 5.50, incl 360 min 55 min C22000 H80 hard drawn^C over 50 to 100, incl 1.5 to 6.0, incl 360 min 55 min C23000 H55 light drawn^C 305-400 C23000 H58 drawn (general purpose) 305 min 43 min C23000 H80 hard drawn^C up to 25, incl 0.050 to 3.0, incl 395 min 65 min hard drawn $^{\mathcal{C}}$ C23000 H80 over 25 to 50, incl 0.090 to 5.0, incl 395 min 65 min C23000 H80 hard drawn^C over 50 to 100, incl 1.5 to 6.0. incl 395 min 65 min C26000 C27000 C27200 H58 drawn (general purpose) all 370 min 53 mm C27400, C33000, and C33200 C26000, C27000, C27200, H80 hard drawn^C up to 25, incl 0.050 to 3.0, incl 455 min 70 min C27400, C33000, and C33200 C26000, C27000, C27200, H80 hard drawn^C over 25 to 50, incl 0.090 to 5.0, ir 455 min 70 min C27400, C33000, and C33200 C26000, C27000, C27200, hard drawn^C over 50 to 100, incl H80 455 min 70 min C27400, C33000, and C28000 and C37000 H58 drawn (general purpose) all 370 min 55 min

TABLE 3 Mechanical Property Requirements of Drawn Temper Tube—SI Values

all

all

drawn (general purpose) hard drawn^C

^C Light-drawn and hard-drawn tempers are available in round tube only.

H58

H80

without cracking in the standard mercurous nitrate solution prescribed in Test Method B154. Immediately after removal from the solution, the specimen shall be wiped free of excess mercury and examined for cracks.

11. Nondestructive Testing

C44300

C44300

- 11.1 Unless nondestructive testing has been waived, tubes shall be subjected to a nondestructive test. The manufacturer shall select the nondestructive test that is most suitable for the tube size and the application.
- 11.1.1 Eddy-current testing is the standard nondestructive test, and all tubes of appropriate size shall be eddy-current tested in accordance with 11.2.
- 11.1.2 Tubes that are not of a size suitable for eddy-current test capabilities shall be tested by the hydrostatic test as described in 11.3.1, or by the pneumatic test as described in 11.3.2.
- 11.2 Eddy-Current Test—Each tube up to 3½ in. [79 mm] in outside diameter shall be subjected to an eddy-current test. Testing shall follow the procedure of Practice E243, except the determination of "end effect" is not required. Tubes shall be passed through an eddy-current test unit adjusted to provide information on the suitability of the tube for the intended application.
- 11.2.1 Notch-depth standards rounded to the nearest 0.001 in. [0.03 mm] shall be 22 % of the nominal wall thickness. The notch-depth tolerance shall be ± 0.0005 in.

[±0.01 mm]. Alternatively, if the manufacturer uses speed-insensitive eddy-current units that are equipped so that a fraction of the maximum unbalance signal is able to be selected, the following percent maximum unbalance signals shall be used.

370 min

455 min

53 min

70 min

Standard Tube Size, in. [mm]	Maximum Percent Unbalance Signal Magnitude		
Up to and including % [12 mm] 1/2 to 2 incl [15 to 54 mm incl] Over 2 to 3 incl [54 to 79 mm incl]	0.2 0.3 0.4		

- 11.2.2 Tubes that do not actuate the signalling device of the eddy-current testers shall be considered as conforming to the requirements of this test. If reexamined or retested, tubes with signals that are found to have been caused by minor mechanical damage, soil, or moisture, shall not be cause for rejection of the tubes provided the tube dimensions are still within prescribed limits and the tube is suitable for its intended application.
- 11.3 A pressure test shall be specified for tube sizes over 3½ in. [79 mm] in outside diameter or tube of dimensions beyond the capabilities of the eddy-current test apparatus or as an alternative to the eddy-current test. The purchaser shall have the option to specify either a hydrostatic test in 11.3.1 or the pneumatic test in 11.3.2. When, in the case where subsequent testing by the purchaser establishes that the material does not meet these requirements, then the tubes shall be subject to rejection.

^A Standard designations defined in Classification B601.

^B Rockwell hardness values shall apply only to tubes having a wall thickness of 0.30 mm or over and to round tubes having an inside diameter of 8.0 mm or over and to rectangular including square tubes having an inside major distance between parallel surfaces of 5.0 mm or over. Rockwell hardness shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified.

TABLE 4 Mechanical Property	Requirements of Annealed Tempo	er Tube—Inch-Pound Values
IADEL 4 Mechanical i ropert		

Copper Alloy UNS No.	Temper Designation ^A		Wall Thickness, in.	Rockwell Hardness ^B		Average Grain Size, mm	
	Standard	Former	-	Scale	Max	Min	Max
C22000	O60	soft anneal	up to 0.045, incl	30T	30	0.025	0.060
C22000	O60	soft anneal	over 0.045	F	70	0.025	0.060
C22000	O50	light anneal	up to 0.045, incl	30T	37	C	0.035
C22000	O50	light anneal	over 0.045	F	78	С	0.035
C23000	O60	soft anneal	up to 0.045, incl	30T	36	0.025	0.060
C23000	O60	soft anneal	over 0.045	F	75	0.025	0.060
C23000	O50	light anneal	up to 0.045, incl	30T	39	C	0.035
C23000	O50	light anneal	over 0.045	F	85	С	0.035
C26000, C33000, and C33200	O60	soft anneal	up to 0.030, incl	30T	40	0.025	0.060
C26000, C33000, and C33200	O60	soft anneal	over 0.030	F	80	0.025	0.060
C26000, C28000, C33000, C332000, and C37000	O50	light anneal	up to 0.030, incl	30T	60	287	0.035
C26000, C28000, C33000, C332000, and C37000	O50	light anneal	over 0.030	F	90	K	0.035
C27000, C27200, and C27400	O60	soft anneal	up to 0.030, incl	30T	40	0.025	0.060
C27000, C27200, and C27400	O60	soft anneal	over 0.030	F	80	0.025	0.060
C27000, C27200, and C27400	O50	light anneal	up to 0.030, incl	30T	60	С	0.035
C27000, C27200, and C27400	O50	light anneal	over 0.030	\$ C.	90	С	0.035
C44300	O60	soft anneal	up to 0.030, incl	30T	40	0.025	0.060
C44300	O60	soft anneal	over 0.030	F	80	0.025	0.060
C44300	O50	light anneal	up to 0.030, incl	✓ 30T	60	C	0.035
C44300	O50	light anneal	over 0.030	F	90	C	0.035

^A Standard designations defined in Classification B601.

11.3.1 Hydrostatic Test—When specified, the tube shall stand, without showing evidence of leakage an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi [48 MPa], determined by the following equation for thin hollow cylinders under tension.

$$P = 2St/(D + 08t) \tag{1}$$

where:

P = hydrostatic pressure, psi [MPa];

t = wall thickness of the material, in. [mm];

D = outside diameter of the material, in. [mm]; and

S =allowable stress of the material.

11.3.2 *Pneumatic Test*—When specified, the tube shall be subjected to an internal air pressure of 60 psig [400 kPa] minimum for 5 s without showing evidence of leakage. The test method used shall provide for easy visual detection of any leakage, such as by immersion of the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

12. Dimensions and Permissible Variations

12.1 The dimensions and tolerances for material covered by this specification shall be as prescribed in the current edition of

Specification B251/B251M, with particular reference to Section 5 and the following tables of that specification:

- 12.2 Wall Thickness Tolerances—See 5.2, Tables 1 and 6.
- 12.3 Tolerances for Diameter or Distance Between Parallel Surfaces—See 5.3, Tables 2 and 7.
 - 12.4 Length Tolerances—See 5.5, Tables 3 and 4.
 - 12.5 Roundness—See 5.4.
 - 12.6 Squareness of Cut—See 5.6
- 12.7 Straightness Tolerances—For round tubes see 5.7.1, Table 5. For rectangular including square tubes see 5.7.2.
- 12.8 Corner Radius for Rectangular Including Square Tubes—See 5.8, Table 8.
- 12.9 Twist Tolerances for Rectangular and Square Tubes—See 5.9.

13. Sampling for Visual and Dimensional Examination

13.1 Minimum sampling for visual and dimensional examination shall be as follows when specified by the purchaser in the inquiry, contract or order, for agencies of the U.S. Government:

^B Rockwell hardness values shall apply only to tubes having a wall thickness of 0.015 in or over and to round tubes having an inside diameter of 5/16 in. or over and to rectangular including square tubes having an inside major distance between parallel surfaces of 3/16 in. or over. For all other tube no Rockwell hardness values shall apply. Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the manufacturer and the purchaser.

^C Although no minimum grain size is specified, the product must nevertheless have a fully recrystallized grain structure.

TABLE 5 Mechanical Property Requirements of Annealed Temper Tube—SI Values

Copper Alloy UNS No.	Temper Designation ^A		Wall Thickness, mm		kwell ness ^B	Average Grain Size, mm	
	Standard	Former	_	Scale	Max	Min	Max
C22000	O60	soft anneal	up to 1.0, incl	30T	30	0.025	0.060
C22000	O60	soft anneal	over 1.0	F	70	0.025	0.060
C22000	O50	light anneal	up to 1.0, incl	30T	37	С	0.035
C22000	O50	light anneal	over 1.0	F	78	С	0.035
C23000	O60	soft anneal	up to 1.0, incl	30T	36	0.025	0.060
C23000	O60	soft anneal	over 1.0	F	75	0.025	0.060
C23000	O50	light anneal	up to 1.0, incl	30T	39	С	0.035
C23000	O50	light anneal	over 1.0	F	85	С	0.035
C26000, C33000, and C33200	O60	soft anneal	up to 0.080, incl	30T	40	0.025	0.060
C26000, C33000, and C33200	O60	soft anneal	over 0.080	F	80	0.025	0.060
C26000, C28000, C33000, C33200, and C37000	O50	light anneal	up to 0.080, incl	30T	60	Ro	0.035
C26000, C28000, C33000, C33200, and C37000	O50	light anneal	over 0.080	F	90	C	0.035
C27000, C27200, and C27400	O60	soft anneal	up to 0.080, incl	30T	40	0.025	0.060
C27000, C27200, and C27400	O60	soft anneal	over 0.080	F	80	0.025	0.060
C27000, C27200, and C27400	O50	light anneal	up to 0.080, incl	30T	60	С	0.035
C27000, C27200, and C27400	O50	light anneal	over 0.080	20.	90	C	0.035
C44300	O60	soft anneal	up to 0.080, incl	30T	40	0.025	0.060
C44300	O60	soft anneal	over 0.080	F	80	0.025	0.060
C44300	O50	light anneal	up to 0.080, incl	30T	60	C	0.035
C44300	O50	light anneal	over 0.080	F	90	С	0.035

^A Standard designations defined in Classification B601.

Rockwell scales and values shall be specified subject to agreement between the manufacturer and the purchaser.
^C Although no minimum grain size is specified, the product must nevertheless have a fully recrystallized grain structure.

Lot Size (Pieces Per Lot)	×	Sample Size
2 to 8	17	Entire lot
9 to 90	2/2	8
91 to 150		12
151 to 280	7.	19
281 to 500	VO.	21
501 to 1200		27
1201 to 3200		35
3201 to 10 000		38
10 001 to 35 000		46

13.2 In all cases, the acceptance number is zero and the rejection number is one. Screening and resubmittal of samples

from rejected lots for visual and dimensional examination is acceptable. All defective items shall be replaced with acceptable items before lot acceptance.

14. Workmanship, Finish, and Appearance

14.1 Annealed tube shall be either bright annealed or acid cleaned after final annealing operations.

15. Keywords

15.1 brass tube; seamless brass tube; seamless tube

Brackwell hardness values shall apply only to tubes having a wall thickness of 0.40 mm or over and to round tubes having an inside diameter of 8.0 mm or over and to round tubes having an inside diameter of 8.0 mm or over and to rectangular including square tubes having an inside major distance between parallel surfaces of 5.0 mm or over. For all other tube, no Rockwell hardness values shall apply. Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values shall be specified subject to agreement between the manufacturer and the purchaser.

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government. Supplementary Requirement S5 shall apply only when specified.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

B900, Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S1.1.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking ()

S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.22 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

S5. Tubes for Voice and Pneumatic Service

S5.1 Tubes ordered to this supplement for voice and pneumatic service shall have dimensions, tolerances, and tempers as specified in Table S5.1. For these tubes, the mercurous nitrate test shall be required and nondestructive testing shall not be required. Copper plus sum of all named elements shall be 98.85 %.

TABLE S5.1 Tubes for Voice and Pneumatic Service

Suze
A 2.000 [50.8] +0.000 0.049 [1.25] H-80 -0.004 [-0.10] B 2.000 [50.8] +0.000 0.109 [2.75] H-58 -0.004 [-0.10] C 2.000 [50.8] +0.004 [0.10] 0.049 [1.25] H-80 -0.000 D 2.250 [57.2] +0.000 0.065 [1.65] H-80 -0.004 [-0.10]
B 2.000 [50.8] +0.000 0.109 [2.75] H–58 -0.004 [-0.10] C 2.000 [50.8] +0.004 [0.10] 0.049 [1.25] H–80 -0.000 D 2.250 [57.2] +0.000 0.065 [1.65] H–80 -0.004 [-0.10]
C 2.000 [50.8] +0.004 [0.10] 0.049 [1.25] H-80 -0.000 D 2.250 [57.2] +0.000 0.065 [1.65] H-80 -0.004 [-0.10]
D 2.250 [57.2] +0.000 0.065 [1.65] H-80 -0.004 [-0.10]
-0.004 [-0.10]
F 3,000 [76:2] 40,000 0,049 [1:25] 1,080 [6:01] 0,049 [6:01] 0,049
G 3.000 [762]0.004 [-0.10] 0.109 [275] 4.000 0.009 [275] 4.000 0.004 [-0.10] 0.009 [1.25] 4.000 0.004 [-0.10] 0.009 [1.25] 4.000 0.009 [1.25] 4.000 0.009 [1.25] 4.000 0.009 [1.25] 4.000 0.009 [1.25] 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000 4.000 0.009 [1.25] 4.000
H 3000 [762] -0000 [0 10] 0000
H S.000 [762] 4-0004 [125] C. H-80 -0.000 [1.01] 0.049 [125] C. H-80 -0.000 [1.01] 0.049 [125] C. H-80 -0.000 [1.01] 0.049 [125] C. H-80
thorntoc con. Click to view the full POF of Asymte Bry C. II.B. (Asymte

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

JC Section II part B) 202 SPECIFICATION FOR ALUMINUM-BRONZE SAND CASTINGS SB-148 BRYC.II.B. ASHIE BRYC.II.B. ASHIE BRYC.II.B.

(23)

-18 excents in according to the first to view the first part of th (Identical with ASTM Specification B148-18 except certification and test report have been made mandatory, and weld repair requirements in accordance with ASME Section IX have been added.)

Specification for Aluminum-Bronze Sand Castings

1. Scope

- 1.1 This specification establishes requirements for sand castings produced from copper-base alloys having the alloy numbers, commercial designations, and nominal compositions shown in Table 1.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal and Continuous Castings
 - B824 Specification for General Requirements for Copper Alloy Castings
 - B846 Terminology for Copper and Copper Alloys
 - E8/E8M Test Methods for Tension Testing of Metallic Materials
 - E10 Test Method for Brinell Hardness of Metallic Materials E18 Test Methods for Rockwell Hardness of Metallic Materials
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B824.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification as applicable:
 - 5.1.1 ASTM designation and year of issue,
 - 5.1.2 Copper or Copper Alloy UNS. No. designation,
- 5.1.3 Temper, must include optional Heat Treatment when needed.
- 5.1.4 Dimensions, diameter, and wall thickness (For tube or pipe: specify either O.D./I.D., O.D./Wall, or I.D./Wall unless standard size such as type K are ordered; for flat products: thickness, width, and edges; for rod, bar, or shapes: by diameter or distance between parallel surfaces),
- 75.1.5 Quantity of castings required,
- 5.1.6 Intended applications,
- 5.1.7 Specification title, number, and year of issue,
- 5.1.8 Pattern or drawing number and condition (cast, machined, and so forth),
- 5.1.9 Analysis of residual elements, if specified in the purchase order (Specification B824),
- 5.1.10 Pressure test requirements, if specified in the purchase order (Specification B824),
- 5.1.11 Soundness requirements, if specified in the purchase order (Specification B824),
 - 5.1.12 Certification (Specification B824),
 - 5.1.13 Test report (Specification B824),
- 5.1.14 Witness inspection, if specified in the purchase order (Specification B824),

TABLE 1 Nominal Compositions

Copper Alloy	Old	Commercial	Nominal C	Nominal Composition, %				
UNS No.	Designation	Designation	Copper	Nickel	Iron	Aluminum	Silicon	Manganese
C95200	9A	Grade A	88.0		3.0	9.0		
C95300 ^A	9B	Grade B	89.0		1.0	10.0		
C95400 ^A	9C	Grade C	85.0		4.0	11.0		
C95410 ^A			84.0	2.0	4.0	10.0		
C95500 ^A	9D	Grade D	81.0	4.0	4.0	11.0		
C95520 ^A			78.5	5.5	5.0	11.0		
C95600	9E	Grade E	91.0			7.0	2.0	C
C95700	9F	Grade F	75.0	2.0	3.0	8.0		12.0
C95800			81.3	4.5	4.0	9.0		1.2
C95820			79.0	5.2	4.5	9.5		1.0
C95900			87.5		4.5	13.0		

^A These grades respond to heat treatment.

- 5.1.15 Approval of weld procedure and records of repairs, if specified in the purchase order (Section 10),
 - **5.1.16 DELETED**
 - 5.1.17 Castings for seawater service (6.2.3), and
- 5.1.18 Product marking, if specified in the purchase order (Specification B824).
- 5.2 When material is purchased for agencies of the U.S. Government, the Supplementary Requirements of this specification may be specified.

6. Materials and Manufacture

- 6.1 Materials:
- 6.1.1 The material of manufacture shall be sand castings of Copper Alloys, UNS No. C95200, C95300, C95400, C95410, C95500, C95520, C95600, C95700, C95800, C95820, C95900 of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.1.2 When specified in the contract or purchase order, that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 6.2 Manufacture:
- 6.2.1 As a specified option, Copper Alloy UNS Nos. C95300, C95400, C95410, C95500, and C95520 may be Supplied in the heat-treated condition to obtain the higher

TABLE 2 Mechanical Requirements

Classification		Aluminum Bronze Nickel Aluminum Bronze As-Cast As-Cast			_ Silicon Aluminum Bronze	Manganese- Nickel Aluminum	Nickel Aluminum Bronze	Aluminum Bronze	
			205,000				Bronze		
Copper Alloy UNS No.	C95200	C95300	C95400 and C95410	C95500	C95820	C95600	C95700	C95800 ^A	C95900 ^B
Tensile strength, min,	65	65	75	90	94	60	90	85	
ksi ^C (MPa ^D)	(450)	(450)	(515)	(620)	(650)	(415)	(620)	(585)	
Yield strength, E min,	25	25	30	40	39 ^F	28	40	35	
ksi ^C (MPa ^D)	(170)	(170)	(205)	(275)	(270) ^F	(195)	(275)	(240)	
Elongation in 2 in.	20	20	12	6	13	10	20	15	
(50.8 mm), %	×	O							
Brinell hardness No. ^G (3000-kg load)	110	110	150	190					
, , ,	-110			Heat-Trea	ited				
Copper Alloy UNS No.	C.	C95300	C95400 and C95410	C95500	C95520 ^H				
Tensile strength, min,	•	80	90	110	125				
ksi ^C (MPa) ^D		(550)	(620)	(760)	(862)				
Yield strength, E min,		40	45	60	95 ^{<i>F</i>} _				
ksi ^C (MPa) ^D		(275)	(310)	(415)	(655) ^F				
Elongation in 2 in. (50.8 min), %		12	6	5	2				
Brinell hardness No. ^G (3000-kg load)		160	190	200	255 ¹				241 min

As cast or temper annealed.

Normally supplied annealed between 1100 and 1300 °F for 4 h followed by air cooling.

E Yield strength shall be determined as the stress producing an elongation under load of 0.5 %, that is, 0.01 in. (0.254 mm) in a gage length of 2 in. (50.8 mm).

 $^{^{}C}$ ksi = 1000 psi.

D See Appendix X1.

F Yield strength at 0.2 % offset, min, ksi^C (MPa)^D For information only.

^H Copper Alloy UNS No. C95520 is used in the heat-treated condition only.

¹ Sand castings and sand cast test specimens shall be 25 HRC minimum.

mechanical properties shown in Table 2. Suggested heat treatments for these alloys are given in Table 3. Actual practice may vary by manufacturer.

- 6.2.2 For better corrosion resistance in seawater applications, castings in Copper Alloy UNS No. C95800 may be given a temper anneal heat treatment at 1200 to 1300 °F (650 to 705 °C) for 6 h minimum. Cooling shall be by the fastest means possible that will not cause excessive distortion or cracking. Propeller castings shall be exempt from this requirement.
- 6.2.3 Copper Alloy UNS No. C95520 is used in the heat-treated condition only.
- 6.2.4 Copper Alloy UNS No. C95900 is normally supplied annealed between 1100 °F (595 °C) and 1300 °F (705 °C) followed by air cooling.
- 6.2.5 Copper Alloy UNS No. C95820 is supplied in the as-cast condition.
- 6.2.6 Separately cast test bar coupons representing castings made in Copper Alloy UNS Nos. C95300HT, C95400HT, C95410HT, C95500HT, C95520HT, C95800 temper annealed, and C95900 annealed shall be heat treated with the castings.

7. Chemical Composition

- 7.1 The material shall conform to the chemical composition requirements in Table 4 for the copper alloy UNS. No. designation specified in the ordering information.
- 7.1.1 Results of analysis of the product sample shall conform to the composition requirements within the permitted analytical variance specified in Table 4.
- 7.1.2 These composition limits do not preclude the presence of other elements. Limits may be established by agreement between manufacturer or supplier and purchaser for the unnamed elements.
- 7.1.3 For alloys in which Copper is listed as remainder, copper is the difference between the sum of results of all elements determined and 100 %. When all the elements in Table 4 are determined, the sum of results shall be as specified in the following table:

TABLE 3 Suggested Heat Treatments

	mizzz v vuggottu ma	
Copper Alloy UNS No.	Solution Treatment (Not Less than 1 h/in. Followed by Water Quench)	Annealing Treatment (Not Less than 2 h Followed by Air Cool)
C95300	1585=1685 °F (860-890 °C)	1150-1225 °F (620-660 °C)
C95400 C95410	1600–1675 °F (870–910 °C)	1150–1225 °F (620–660 °C)
C95500 C95520	(2 h followed by water quench) 1600–1700 °F (870–925 °C)	925–1000 °F (495–540 °C)
C95800 ^A		1200–1300 °F (650–705 °C), 6 h minimum followed by air cooling

^A Corrosion inhibiting heat treatment, depends on agreement between the

	Copper Plus Named Elements,
Copper Alloy UNS Number	min, %
C95200	99.0
C95300	99.0
C95400	99.5
C95410	99.5
C95500	99.5
C95520	99.5
C95600	99.0
C95700	99.5
C95800	99.5
C95820	99.2
C95900	99.5

8. Temper

8.1 The suggested heat treatment (tempers) for products described in this specification are given in Table 3.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 The mechanical properties shall be determined from separately cast test bar castings.
- 9.1.2 Product furnished under this specification shall conform to the mechanical properties requirements specified in Table 2, when tested in accordance with Test Methods E8/F8M
- 9.1.3 Acceptance or rejection based upon mechanical properties shall depend on tensile strength, yield strength, and elongation.
 - 9.2 Hardness Requirement:
- 9.21 The approximate Brinell hardness values given in Table 2 are for general information and assistance in testing, and shall not be used as a basis for product rejection.

10. Casting Repair

- 10.1 Alloys included in this specification are generally weldable. All weld repairs shall be made utilizing procedures qualified in accordance with Section IX of the ASME BPVC, and repair welding shall be done by welders or welding operators in accordance with ASME BPVC Section IX. Weld repairs may be made at the manufacturer's discretion provided each excavation does not exceed 20 % of the casting section or wall thickness or 4 % of the casting surface area
- 10.2 Excavations that exceed those described in 10.1 may be made at the manufacturer's discretion except that when required (5.1.15) the weld procedure shall be approved by the purchaser and the following records shall be maintained:
- 10.2.1 A sketch or drawing showing the dimensions, depth, and location of excavations,
 - 10.2.2 Postweld heat treatment, when applicable,
 - 10.2.3 Weld repair inspection results,
 - 10.2.4 Casting identification number,
 - 10.2.5 Weld procedure identification number,
 - 10.2.6 Welder identification, and
 - 10.2.7 Name of inspector.
- 10.3 The castings shall not be impregnated without approval of the purchaser.

TABLE 4 Chemical Requirements

Classification		Aluminun	n Bronze		Nickel Alumi	num Bronze	Silicon Aluminum Bronze	Manganese- Nickel Aluminum Bronze	Alum	ckel ninum nze	Aluminum Bronze
Copper Alloy UNS No.	C95200	C95300	C95400	C95410	C95500	C95520 ^A	C95600	C95700	C95800	C95820 ^B	C95900
					Composi	tion, %					
Copper Aluminum Iron Manganese Nickel (incl	86.0 min 8.5–9.5 2.5–4.0	86.0 min 9.0–11.0 0.8–1.5	83.0 min 10.0–11.5 3.0–5.0 0.50 max 1.5 max	83.0 min 10.0–11.5 3.0–5.0 0.50 max 1.5–2.5	78.0 min 10.0–11.5 3.0–5.0 3.5 max 3.0–5.5	74.5 min 10.5–11.5 4.0–5.5 1.5 max 4.2–6.0	88.0 min 6.0–8.0 0.25 max	71.0 min 7.0–8.5 2.0–4.0 11.0–14.0 1.5–3.0	79.0 min 8.5–9.5 3.5–4.5 ^C 0.8–1.5 4.0–5.0 ^C	77.5 min 9.0–10.0 4.0–5.0 1.5 max 4.5–5.8	remainde(12.0–13.5 3.0–5.0 1.5 max 0.50 max
cobalt) Silicon Lead						0.15 max 0.03 max	1.8–3.2	0.10 max 0.03 max	0.10 max 0.03 max	0.10 max 0.02 max	

^A Chromium shall be 0.05 max, cobalt 0.20 max, tin 0.25 max, and zinc 0.30 max.

11. Workmanship, Finish, and Appearance

11.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

12. Sampling

- 12.1 Test bar castings for the Copper Alloy UNS Nos. in this specification shall be cast to the form and dimensions shown in Figs. 1 or 2 in Practice B208.
- 12.2 For small remelts the lot size shall not exceed 1000 lb (455 kg) of castings and shall consist of all of the metal from a single master heat poured from an individual melting unit, or group of melting units, operating during the course of one half shift, not to exceed 5 h.

13. Test Methods

- 13.1 Chemical Analysis:
- 13.1.1 In case of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer and the purchaser.
 - 13.2 Other Tests:
- 13.2.1 Brinell readings shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Method E10, with the exception that a 3000-kg load shall be used.
- 13.2.2 Rockwell hardness readings shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Methods £18.

- 13.2.3 Tensile and Yield Strength shall be determined by the extension-under-load method of Test Methods E8/E8M.
- 13.2.4 When specified in the purchase order, additional hardness testing may be performed on castings. The test location and hardness values shall be agreed upon between the manufacturer and the purchaser.

14. Certification and Test Report

14.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and requirements have been met. A report of the test results shall be furnished to the purchaser.

14.2 DELETED

15. Keywords

15.1 aluminum-bronze castings; copper alloy castings; copper-base alloy castings; UNS No. C95200; UNS No. C95300; UNS No. C95400; UNS No. C95410; UNS No. C95500; UNS No. C95520; UNS No. C95600; UNS No. C95700; UNS No. C95800; UNS No. C95820; UNS No. C95900

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

S1. Scope

S1.1 The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

S2. Referenced Documents

S2.1 The following documents of the issue effect on date of material purchase form a part of this specification to the extent referenced herein:

^B Zinc shall be 0.20 max and tin 0.20 max.

^C Iron content shall not exceed the nickel content.

S2.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging, and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) S2.1.2 Military Standards:

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-248 Welded and Brazing Procedure in Performance Qualification

MIL-STD-271 Requirements for Nondestructive Testing Methods

MIL-STD-278 Welding and Casting Standard

S2.1.3 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S3. First Article Inspection

S3.1 The initial casting shall be radiographically examined in accordance with MIL-STD-271 at locations specified by the purchaser. Subsequent to radiography, samples for mechanical testing shall be removed from the specified locations and tested. The acceptance criteria for all tests and examinations shall be as agreed upon between the manufacturer and the

S3.2 Following acceptance of the initial casting by the purchaser, the manufacturer shall not change his basic foundry practice without the specific approval of the purchaser. The manufacturer may be required to perform additional tests or inspections to verify acceptability of any changes made.

S4. Soundness

S4.1 Castings shall meet the soundness requirements of MIL-STD-278 for the category, subcategory, and criticality level specified in the purchase order.

S5. Pressure Test

SMENORMDOC. COM: Click to View S5.1 Castings shall meet the pressure test requirements of

S6. Weld Repair

S6.1 All repair welding shall be in accordance with MIL-STD-278 using welders and welding procedures qualified in accordance with MIL-STD-248.

S6.2 Surfaces of the casting that will be in contact with seawater will be identified by the purchaser. Any weld repair made on these surfaces or within 1/4 in. of these surfaces shall be postweld heat treated in accordance with 6.2.3.

S7. Quality Assurance

S7.1 Responsibility for Inspection—Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for performance of all inspection and lest requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S8. Marking

S8.1 The castings shall be marked in accordance with Specification B824. Additionally, the marking shall include the manufacturer's trademark, specification, and alloy number.

S9. Preparation for Delivery

S9.1 Preservation, Packaging, and Packing:

\$9.1.1 Military Agencies—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S9.1.2 Civil Agencies—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S9.2 Marking:

S9.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S9.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

aswon per square metre (N/m²), which has been no paced (Pa) by the General Conference on Weights of General Conference on Weights of

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

ASMENORANDOC. COM. Circk to view the full party. (Identical with ASTM Specification B150/B150M-12(2017) except that paras. 4.2.2, 4.2.3, 4.2.6, and 8.2.1 have been deleted.)

Specification for Aluminum Bronze Rod, Bar, and Shapes

1. Scope

1.1 This specification establishes the requirements for aluminum bronze rod, bar, and shapes for Copper Alloys UNS Nos. C61300, C61400, C61900, C62300, C62400, C63000, C63020, C63200, C64200, and C64210.

Note 1-Product intended for hot forging is described in Specification B124/B124M

Note 2-Warning-Mercury has been designated by many regulatory agencies as a hazardous material that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.

- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the SMENORMOC. COM. Click to Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical

- B124/B124M Specification for Copper and Copper Alloy
 Forging Rod, Bar, and Shapes
 B154 Test Method for Mercurous Nitrate Test f
 Alloys
 B249/B249M Specificat
 Wrough: Wrought Copper and Copper-Alloy Rod, Bar, Shapes and Forgings
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- EN8 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E478 Test Methods for Chemical Analysis of Copper Alloys

3. General Requirements

- 3.1 The following sections of Specification B249/B249M constitute a part of this specification:
 - 3.1.1 Terminology,
 - 3.1.2 Materials and Manufacture,
 - 3.1.3 Workmanship, Finish, and Appearance,
 - 3.1.4 Sampling,
 - 3.1.5 Number of Tests and Retests,
 - 3.1.6 Specimen Preparation,
 - 3.1.7 Test Methods,
 - 3.1.8 Significance of Numerical Limits,
 - 3.1.9 Inspection,
 - 3.1.10 Rejection and Rehearing,
 - 3.1.11 Certification,
 - 3.1.12 Mill Test Report,
- 3.1.13 Packaging and Package Marking, Preservation and Delivery, and

- 3.1.14 Supplementary Requirements.
- 3.2 In addition, when a section with a title identical to those referenced in 3.1, appears in this specification, it contains additional requirements that supplement those appearing in Specification B249/B249M.

4. Ordering Information

- 4.1 Include the following information when placing orders for product under this specification, as applicable:
 - 4.1.1 Specification designation and year of issue,
 - 4.1.2 Copper alloy UNS No. (See Table 1),
 - 4.1.3 Temper (see Temper section),
- 4.1.3.1 When Alloy UNS No. C63000 is specified, specify standard strength or high strength temper (See Table 2),
- 4.1.4 Product cross-section (for example round, hexagonal, square, and so forth),
- 4.1.5 Dimensions (diameter or distance between parallel surfaces and length) and permissible variations (Section 10),
- 4.1.5.1 When product of Copper Alloy UNS No. C63020 is specified, the tolerances for diameter, thickness, width, and length shall be part of the contract or purchase order and shall be agreed upon between the supplier and the purchaser.
- 4.1.5.2 *Shapes*—When product is shapes, the dimensional tolerances shall be as agreed upon between the manufacturer and the purchaser and shall be specified.
- 4.1.6 Quantity, total weight, footage, or number of pieces for each size.
- 4.1.7 If product is being purchased for agencies of the U.S. government.
- 4.2 The following options are available and should be specified at the time of placing the order when required:
- 4.2.1 If Copper Alloy C61300 material is intended for subsequent welding applications (See Note B, Table 2),
 - 4.2.2 DELETED
 - 4.2.3 DELETED

- 4.2.4 Residual stress test (Performance Requirements section)
- 4.2.4.1 Ammonia Vapor Test or Mercurous Nitrate Test,
- 4.2.4.2 For Ammonia Vapor Test, pH value other than 10.
- 4.2.5 If piston finish or shafting is required, (Performance Requirements and Workmanship sections), and
 - 4.2.6 DELETED

5. Materials and Manufacture

- 5.1 Manufacture:
- 5.1.1 Copper Alloy UNS C63020—Rod and Bar shall be heat-treated to 26 Rockwell hardness (C scaler (HRC) minimum as follows:
- 5.1.2 Heat to 1550°/1650°F [850/900°C] for 2 h minimum and quenched in water.
- 5.1.3 Temper at 900°/1000°F [480/540°C] for 2 h minimum and air cool to room temperature
- 5.2 Copper Alloy UNS 63200—Rod and Bar shall be heat-treated as follows:
- 5.2.1 Heat to 1550°F 850°C] minimum for 1 h minimum at temperature and quench in water or other suitable medium,
- 5.2.2 Temper anneal at $1300 \pm 25^{\circ}F$ [700 $\pm 15^{\circ}C$] for 3 to 9 h at temperature as required to obtain desired mechanical properties, and
- 5.2.3 Heat treatment is not mandatory for sections that exceed 2 in. [300 mm] in diameter or thickness.

6 Chemical Composition

- 6.1 The material shall conform by alloy to the chemical composition requirements in Table 1 for the copper alloy UNS designation specified in the ordering information.
- 6.2 For alloys in which copper is listed as "remainder," copper is the difference between the sum of all elements determined and 100~%.

TABLE 1 Chemical Requirements

		_	7,		Comp	osition, %				
Elements		χO			Copper Alloy UNS No.					
	C61300	G61400	C61900	C62300	C62400	C63000	C63020	C63200	C64200	C64210
Aluminum	6.0-7.5	6.0-8.0	8.5-10.0	8.5-10.0	10.0-11.5	9.0-11.0	10.0-11.0	8.7–9.5	6.3-7.6	6.3-7.0
Copper, incl silver	remainder (remainder	remainder	remainder	remainder	remainder	74.5 min	remainder	remainder	remainder
Iron	2.0–3.0	1.5-3.5	3.0-4.5	2.0-4.0	2.0-4.5	2.0-4.0	4.0-5.5	3.5-4.3 ^A	0.30 max	0.30 max
Nickel, incl cobalt	0.15 max			1.0 max		4.0-5.5	4.2–6.0	4.0–4.8 ^A	0.25 max	0.25 max
Manganese /	0.20 max	1.0 max		0.50 max	0.30 max	1.5 max	1.5 max	1.2-2.0	0.10 max	0.10 max
Silicon	√0 .10 max			0.25 max	0.25 max	0.25 max		0.10 max	1.5-2.2	1.5-2.0
Tin _()	0.20-0.50		0.6 max	0.6 max	0.20 max	0.20 max	0.25 max		0.20 max	0.20 max
Zinc, max	0.10 ^B	0.20	0.8			0.30	0.30		0.50	0.50
Lead, max	0.01	0.01	0.02				0.03	0.02	0.05	0.05
Arsenic, max									0.15	0.15
Phosphorus, max	0.015	0.015								
Other named	В						С			
elements										

^A Iron content shall not exceed nickel content.

^B When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zirconium 0.05 % max, and zinc 0.05 % max.

^C Chromium shall be 0.05 max and cobalt shall be 0.20 max.

TABLE 2 Tensile Requirements

	Temper Designation	Diameter or Distance Between Parallel	Tensile Strength,	Yield Strength, min ksi [MPa], at 0.5 % Extension	Elongation in 4 × Diameter
Code	Name	Surfaces, ^A in. [mm]	min ksi [MPa]	Under Load	or Thickness of Specimen min, % ^B
LIDEO	discourse and almost self-cond	Copper Alloy UNS N	o. C61300		
HR50	drawn and stress relieved	rod (round only): 1/2 [12] and under	80 [550]	50 [345]	30
		over ½ [12] to 1 [25], incl	75 [515]	45 [310]	30
		over 1 [25] to 2.0 [50] incl	72 [495]	40 [275]	30
		over 2 [50] to 3 [80], incl	70 [485]	35 [240]	30
HR50	drawn and stress relieved	rod (hexagonal and octagonal) and bar:			<i>a</i> 0 '
		½ [12] and under	80 [550]	40 [275]	300
		over ½ [12] to 1 [25], incl over 1 [25] to 2 [50], incl	75 [515] 70 [485]	35 [240] 32 [220]	C_{30}^{0}
		Copper Alloy UNS N		32 [220]	<u> </u>
HR50	drawn and stress relieved	rod (round only):	00 [550]	40 (075)	1 00
		1/2 [12] and under	80 [550] 75 [515]	40 [275]	30 30
		over ½ [12] to 1 [25], incl over 1 [25] to 2 [50], incl	75 [515] 70 [485]	35 [240] 32 [220]	30
		over 2 [50] to 3 [80], incl	70 [485]	30 [205]	30
		Copper Alloy UNS N		50 [250]	
HR50	drawn and stress relieved	rod (round only):	00 [000]		4-
		1/2 [12] and under	90 [620]	50 [345]	15
		over ½ [12] to 1 [25], incl over 1 [25] to 2 [50], incl	88 [605] 85 [585]	44 [305] 40 [275]	15 20
		over 2 [50] to 3 [80], incl	78 [540]	37 [255]	25
M20	as hot rolled	over 3 [80]	75 [515]	30 [205]	20
M20	as hot rolled		75 [515] 75 [515]		
M30	as hot extruded			O.	
O20	hot forged and annealed	shapes, all sizes	75 [515]	30 [205]	20
O25	hot rolled and annealed	}			
O30	hot extruded and annealed		\Q .		
HR50	drawn and stress relieved				
			Chi		
LIDEO	duenties and atmosp valiation	Copper Alloy UNS N	o. C62300		
HR50	drawn and stress relieved	rod (round only): 1/2 [12] and under	90 [620]	50 [345]	12
		over ½ [12] to 1 [25], incl	88 [605]	44 [305]	15
		over 1 [25] to 2 [50], incl	84 [580]	40 [275]	15
M20	as hot rolled	over 2 [50] to 3 [80], incl	76 [525]	37 [255]	20
M30	as hot extruded	0.1001	75 (545)	00 (005)	
O20	hot forged and annealed	over 3 [80]	75 [515]	30 [205]	20
O25	hot rolled and annealed				
O30	hot extruded and annealed				
HR50	drawn and stress relieved				
HR50	drawn and stress relieved	rod (hexagonal and octagonal) and bar:			
		1 [25] and under	80 [550]	35 [240]	15
1400	1 111	over 1 [25] to 2 [50], incl	78 [540]	32 [220]	15
M20	as hot rolled	over 2 [50]	75 [515]	30 [205]	20
M20	as hot rolled				
M30	as hot extruded				
O20	hot forged and annealed	shapes, all sizes	75 [515]	30 [205]	20
O25	hot rolled and annealed	7 3napcs, an sizes	75 [515]	00 [200]	20
O30	hot extruded and annealed				
HR50	drawn and stress relieved				
		Copper Alloy UNS N	o C62400		
HR50	drawn and stress relieved	rod (round only):			
		½ [12] and under	95 [655]	45 [310]	10
		over 1/2 [12] to 1 [25], incl	95 [655]	45 [310]	12
N	\	over 1 [25] to 2 [50], incl over 2 [50] to 3 [80], incl	90 [620] 90 [620]	43 [295] 40 [275]	12 12
M20	as hot rolled	5.51 Z [66] to 6 [66], moi	00 [020]	10 [210]	
M30	as hot extruded	over 3 [80] to 5 [125] incl	90 [620]	35 [240]	12
O20	hot forged and annealed	rod (hexagonal and octagonal) and bar:			
	-	. 5			
O25	hot rolled and annealed				
O25 O30	hot rolled and annealed hot extruded and annealed	½ [12] to 5 [125], incl shapes, all sizes	90 [620] 90 [620]	35 [240] 35 [240]	12 12

TABLE 2 Continued

Compared to the content of the con			IABLE 2 Con	tinuea		
Color Name		Temper Designation		Strength,		4 × Diameter
### Copper Alley UNS No. C63000 ### Copper Alley UNS No. C6400 and Operation ### Copper Alley UNS No. C64000 and Operation ### Copper Alley UNS No. C6400 and Operation ### Copper A	Code	Name	Surfaces, III. [IIIII]	min ksi [MPa]	Under Load	Specimen min, %
1	TQ50		over 3 [80] to 5 [125], incl		45 [310]	10
				o. C63000		
as hot extruded and annealed bot relied and annealed charwn and stress relieved drawn and stress	HR50	drawn and stress relieved	½ [12] to 1 [25], incl over 1 [25] to 2 [50], incl	90 [620]	45 [340]	500
### A stress relieved	M20	as hot rolled)	00 [000]	.2.0 [200]	.:O
### A stress relieved	M30	as hot extruded				die
### A stress relieved	O20	hot forged and annealed	over 3 [80] to 4 [100], incl	85 [585]	42.5 [295]	10
### A stress relieved	O25	hot rolled and annealed	over 4 [100]	80 [550]	40 [275]	12
### A stress relieved	O30					
### A stress relieved	HR50		J			
### A stress relieved						
as hot rolled as hot extruded and annealed beta for tolled and annealed beta for tolled and annealed beta for tolled and annealed drawn and stress relieved as hot rolled and annealed drawn and stress relieved as hot rolled and annealed beta for tolled and temper annealed beta for tolled and annealed bet	HR50	drawn and stress relieved	½ [12] to 1 [25], incl		50 [345]	5
Description	M20	as hot rolled)	10 [0-0]	Char	•
225	M30	as hot extruded			55.	
April	O20	hot forged and annealed	1 2 2 2			
As not extruded and annealed hot rolled and temper annealed hot rolled and a	O25	hot rolled and annealed	over 4 [100]	80 [550]	40 [275]	12
As not extruded and annealed hot rolled and temper annealed hot rolled and a	O30				(V	
As not extruded and annealed hot rolled and temper annealed hot rolled and a	HR50		J	<i>c</i> ,		
As not extruded and annealed hot rolled and temper annealed hot rolled and a	Man	as hot rolled	•	10		
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30				07		
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30			shapes, all sizes	85 [585]	42.5 [295]	10
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30		•	}			
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30						
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30			C	7.		
over 1 [25] to 2 [50], incl drawn and stress relieved hot rolled and temper annealed lemper annealed hot rolled and temper annealed lemper annealed hot emper annealed hot rolled and temper annealed rover 1 [25] to 2 [50], incl 135 [930] 100 [690]° 6 over 1 [25] to 2 [50], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 95 [650]° 6 over 2 [50] to 4 [100], incl 130 [890] 96 [620]° 6 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 9 over 5 [125] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [310] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [300] 12 over 5 [25] to 12 [300], incl 90 [620] 45 [30	пнои	drawn and stress relieved	O bink atom at the and			
Description	HR50	drawn and stress relieved				
Description	HR50	drawn and stress relieved	over 2 [50] to 3 [80] incl	105 [725]	55 [380]	10
Copper Alloy UNS No C63020	O26		}	.00 [.20]	66 [666]	
Copper Alloy UNS No C63020	TQ50	quench hardened and	over 3 [80] to 5 [125], incl	100 [690]	50 [345]	10
Copper Alloy UNS No C63020	032	hot extruded and	*No			
Copper Alloy UNS No C63020		temper annealed	9/ 2			
Copper Alloy UNS No C63020	O26	hot rolled and	674			
TQ30 quenched hardened and tempered up to 1 [25] incl 135 [930] 100 [690]^C 6		temper annealed	<u> </u>	- 000000		
and tempered up to 1 [25] incl	TQ30	quenched hardened		0 000020		
Over 1 [25] to 2 [50], incl 130 [890] 95 [650] 6	-					
Over 2 [50] to 4 [100], incl 130 [890] 90 [620] 6						
Copper Alloy UNS No. C63200 rod and bar: up to 3 [80] incl 90 [620] 50 [345] 15 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 Copper Alloy UNS No. C64200 and C64210 rod and bar: up to 3 [80] incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 Shapes, all sizes 90 [620] 40 [275] 15 Copper Alloy UNS Nos. C64200 and C64210 rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 over ½ [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12		C.				
TQ50 quench hardened and temper annealed up to 3 [80], incl 90 [620] 50 [345] 15					90 [620] ^C	6
temper annealed up to 3 [80], incl 90 [620] 50 [345] 15 over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 Copper Alloy UNS Nos. C64200 and C64210 rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 over ½ [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	TO50	guench hardened and		u. Ub3200		
Over 3 [80] to 5 [125], incl 90 [620] 45 [310] 15 Over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 shapes, all sizes 90 [620] 40 [275] 15 over 6 [125] to 12 [300], incl 90 [620] 40 [275] 15 over 7 [27] to 1 [27] to 1 [28], incl 90 [620] 45 [310] 9 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 45 [310] 12 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 42 [290] 12 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [550] 40 [275] 40 [275] 15 over 1 [28] to 2 [50], incl 80 [50] 40 [275]	. 400			90 [620]	50 [345]	15
over 5 [125] to 12 [300], incl 90 [620] 40 [275] 15 annealed, drawn, and stress relieved hot forged and annealed hot rolled and annealed all sizes 90 [620] 40 [275] 15 Copper Alloy UNS Nos. C64200 and C64210 rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 over 1/2 [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12		Company and a second				
annealed, drawn, and stress relieved bar and shapes all sizes bar and shapes all sizes copper Alloy UNS Nos. C64200 and C64210 rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 over 1/2 [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	TQ55	guench hardened temper	over 5 [125] to 12 [300], incl	90 [620]	40 [275]	15
All sizes 90 [620] 40 [275] 15	C	annealed, drawn, and	shapes, all sizes	90 [620]	40 [275]	15
Copper Alloy UNS Nos. C64200 and C64210 HR50 drawn and stress relieved rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 over 1/2 [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	O20	hot forged and annealed	bar and shapes			
HR50 drawn and stress relieved rod and bar: 1/2 [12] and under 90 [620] 45 [310] 9 0ver 1/2 [12] to 1 [25], incl 85 [585] 45 [310] 12 0ver 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	025	hot rolled and annealed			40 [275]	15
½ [12] and under 90 [620] 45 [310] 9 over ½ [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	UDE^	drown and otress relieved		1200 and C64210		
over ½ [12] to 1 [25], incl 85 [585] 45 [310] 12 over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12	пнэ0	urawn and stress relieved		90 [620]	45 [310]	Q
over 1 [25] to 2 [50], incl 80 [550] 42 [290] 12						
over 2 [50] to 3 [80] incl 75 [515] 35 [240] 15					42 [290]	12
			over 2 [50] to 3 [80], incl	75 [515]	35 [240]	15

TABLE 2 Continued

Temper Designation Code Name		Diameter or Distance Between Parallel Surfaces, ^A in. [mm]	Tensile Strength, min ksi [MPa]	Yield Strength, min ksi [MPa], at 0.5 % Extension Under Load	Elongation in 4 × Diameter or Thickness of Specimen min, % ^B	00
M10 M20 M30	as hot forged – air coole as hot rolled as hot extruded	ed	70 [485] 70 [485]	30 [205] 25 [170]	15 15	(B)
M30	as hot extruded	shapes, all sizes	70 [485]	30 [205]	15	<i>∞</i> ,
		TABLE 3 Rockwell Hardn	ness Requirements	s ^A	-Section	
	Tempe	r Designation	Diameter or Distance		iness Determined	
	Code	Name	Parallel Surfaces,		Section Midway face and Center	
		0				
		Copper Alloy UNS	No. C63020			

TABLE 5 Nockwell Hardness nequirements								
Te	emper Designation	Diameter or Distance Between	Rockwell Hardness Determined on the Cross Section Midway					
Code	Name	Parallel Surfaces, in. [mm]	Between Surface and Center					
	Copper Alloy UNS No. C63020							
TQ30	Quench hardened and tempered	all sizes	C26 min					
	Copper Alloys UNS Designations C64200 and C64210							
HR50	drawn and stress relieved	0.5 [12] to 1.0 [25], incl. over 1.0 [25] to 2.0 [50], incl.	B80 – 100 B80 – 100					
M30	as hot-extruded	over 2.0 [50] to 3.0 [80], incl. over 3.0 [80] to 4.0 [100], incl. over 4.0 [100] shapes, all sizes	B70 – 95 B65 – 95 B65 – 95 B65–95					

^A Rockwell hardness requirements are not established for diameters less than 0.5 in. [12 mm]

- 6.2.1 When all elements in Table 1 are determined, the sum of results shall be 99.5 % minimum for all alloys except \(\) accordance with Test Methods E18. C61300 which shall be 99.8 % min.
- 6.3 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and the purchaser, limits may be established and analysis required for unnamed elements.

7. Temper

- 7.1 The standard tempers for products described in this specification, and as defined in Classification B601, are given in Tables 2 and 3.
 - 7.1.1 Annealed tempers O20, O25, and O30.
 - 7.1.2 Cold worked and stress relieved temper HR50.
 - 7.1.3 As-manufactured tempers M10, M20, M30.
- 7.1.4 Heat treated tempers O26, O32, TQ30, TQ50 and

Note 3—UNS No. C63000 has two available strength levels available in rod, standard strength and high strength.

8. Mechanical Property Requirements

- 8.1 Product furnished under this specification shall conform to the mechanical property requirements prescribed in Table 2 and Table 3 for the Copper Alloy UNS No. designation specified in the ordering information.
- 8.2 Rockwell Hardness Requirement—For the alloys and tempers listed in Table 3, product 0.5 in. [12 mm] and over in diameter or distance between parallel surfaces shall conform

with the requirements prescribed in Table 3, when tested in

8.2.1 DELETED

8.3 Tensile Strength Requirements-Product furnished under this specification shall conform to the tensile requirements in Table 2 when tested in accordance with Test Methods E8/E8M.

9. Performance Requirements

- 9.1 Residual Stress Test:
- 9.1.1 When specified in the contract or purchase order, the product shall be tested for residual stress according to the requirements of Test Method B154 or Test Method B858, and show no signs of cracking.

Warning-Mercury is a definite health hazard. With the Mercurous Nitrate Test, equipment for the detection and removal of mercury vapor produced in volatilization, and the use of protective gloves is recommended.

9.1.2 When the ammonia vapor test is used, the test pH value appropriate for the intended application shall be 10 unless otherwise specified by the purchaser.

Note 4—A residual stress test provides information about the adequacy of the stress relief of the material. Bar straightening is a method of mechanical stress relief. Stress relief annealing is a method of thermal stress relief.

9.2 *Piston Finish*—When specified, round rod over 0.5 in. [12 mm] in diameter shall be furnished piston finished. Refer to Specification B249/B249M.

10. Dimensions and Permissible Variations

- 10.1 The dimensions and tolerances for product described by this specification shall be as specified in Specification B249/B249M with particular reference to the following tables and related paragraphs:
- 10.1.1 Diameter or Distance between Parallel Surfaces, Rod (Round, Hexagonal, Octagonal):
- 10.1.1.1 *Rod: Cold Drawn Tempers*—Refer to applicable Table 2 on Tolerances for Diameter or Distances Between Parallel Surfaces of Cold-Drawn Rod.
- 10.1.1.2 *Rod, M30, O30, and O32 tempers*—Refer to Table 4 on Tolerances for Diameter or Distance Between Parallel Surfaces of As-Extruded Rod and Bar.
- 10.1.1.3 Round Rod, M20 temper—Refer to Table 6 on Diameter Tolerances for Hot-Rolled Round Rod.
- 10.1.1.4 *Piston Finish Rod*—Refer to Table 3 on Diameter Tolerances for Piston-Finished Rod.
- 10.1.2 Distance between Parallel Surfaces, Bar (Rectangular and Square):
- 10.1.2.1 *Bar, Drawn Tempers*—Refer to Table 9 on Thickness Tolerances for Rectangular and Square Bar, and Table 11 on Width Tolerances for Rectangular Bar.
- 10.1.2.2 *Bar, M30, O30, and O32 Tempers*—Refer to Table 4 on Tolerances for Diameter or Distance Between Parallel Surfaces of As-Extruded Rod and Bar.
- 10.1.3 Length of Rod, Bar and Shapes—Refer to Table 13 on Length Tolerances for Rod, Bar, and Shapes, and Table 15 on Schedule of Lengths (Specific and Stock) with Ends for Rod and Bar.
 - 10.1.4 Straightness:
- 10.1.4.1 *Rod and Bar*—Refer to Table 16 on Straightness Tolerances for Rod, Bar, and Shapes.
- 10.1.4.2 *Shafting Rod*—Refer to Table 17 on Straightness Tolerances for Shafting.
- 10.1.4.3 Rod, Bar and Shapes of M20, M30, O30, and O32
 Temper—They shall be of sufficient straightness to meet the requirements of the intended application.

- 10.1.5 Edge Contours—Refer to section entitled, "Edge Contours."
- 10.2 *Shapes*—The cross section dimensional tolerances for shapes shall be as agreed upon between the manufacturer and the purchaser.

11. Workmanship, Finish, and Appearance

11.1 When specified in the contract or purchase order round rod over ½ in. [12 mm] in diameter shall be furnished as piston finish rod or shafting.

12. Test Methods

- 12.1 Chemical Analysis:
- 12.1.1 In cases of disagreement, determine the composition using the following methods:

Flement **ASTM Test Methods** Aluminum E478, Titrimetric Arsenic E62 Copper E478 E478, Photometric Iron Lead E478. Atomic absorption Manganese E478, Photometric Nickel Phosphorous E62 Silicon E62 E478. Photometric Tin Zind E478. Atomic absorption Cadmium F53 Chromium E118

12.1.2 Test methods to be followed for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

13. Keywords

13.1 aluminum bronze bar; aluminum bronze rod; aluminum bronze shapes; UNS Alloy No. C61300; UNS Alloy No. C61400; UNS Alloy No. C62300; UNS Alloy No. C62400; UNS Alloy No. C63000; UNS Alloy No. C63020; UNS Alloy No. C63020; UNS Alloy No. C64200; UNS Alloy No. C64210

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER-NICKEL-ZINC ALLOY (NICKEL SILVER) AND COPPER-NICKEL ROD AND BAR SB-151/SB-151M

(23)

ACHIEN ORINDOC. COM. Click to View the full PDF (Identical with ASTM Specification B151/B151M-20 except paras. 5.2.2 and 5.2.3 have been deleted.)

Specification for Copper-Nickel-Zinc Alloy (Nickel Silver) and Copper-Nickel Rod and Bar

1. Scope

- 1.1 This specification establishes the requirements for copper-nickel-zinc and copper-nickel rod and bar for general application produced from Copper Alloy UNS Nos. C70600, C70620, C71500, C71520, C74500, C75200, C75700, C76400, C77000, and C79200.
- 1.1.1 Copper Alloys UNS Nos. C70620 and C71520 are for product intended for welding applications.
- 1.1.2 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.

Note 1-Requirements for copper-nickel-zinc alloy wire appear in Specification B206/B206M.

1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B206/B206M Specification for Copper-Nickel Zinc (Nickel Silver) Wire and Copper-Nickel Alloy Wire

B249/B249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes and

B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast

B846 Terminology for Copper and Copper Alloys

B950 Guide for Editorial Procedures and Form of Product Specifications for Copper and Copper Alloys

E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)

E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)

E478 Test Methods for Chemical Analysis of Copper Alloys

3. General Requirements

- 3.1 The following sections of Specification B249/B249M constitute a part of this specification:
 - 3.1.1 Terminology;
 - 3.1.2 Material and Manufacture;
 - 3.1.3 Workmanship, Finish, and Appearance;
 - 3.1.4 Sampling;
 - 3.1.5 Number of Tests and Retests
 - 3.1.6 Specimen Preparation;
 - 3.1.7 Test Methods;
 - 3.1.8 Significance of Numerical Limits;
 - 3.1.9 Inspection;
 - 3.1.10 Rejection and Rehearing;
 - 3.1.11 Certification;
 - 3.1.12 Report;
 - 3.1.13 Packaging and Package Marking; and
 - 3.1.14 Supplementary Requirements.
- 3.2 m addition, when a section with a title identical to that referenced in 3.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B249/B249M.

4. Terminology

4.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
 - 5.1.2 Copper Alloy UNS No. designation (Section 1);
 - 5.1.3 Temper (Section 8 and Tables 2-6);
- 5.1.4 Form: cross section such as round, hexagonal, square, and so forth (Section 11);
- 5.1.5 Diameter or distance between parallel surfaces, length (Section 11);
 - 5.1.6 Weight: total for each form, size, and temper; and
 - 5.1.7 Intended application.

- 5.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
- 5.2.1 Heat identification or traceability details (4.1 of Specification B249/B249M),
 - 5.2.2 DELETED
 - 5.2.3 DELETED
- 5.2.4 When material is purchased for agencies of the U.S. Government (Section 11).

6. Materials and Manufacture

- 6.1 Material:
- 6.1.1 The material of manufacture as specified in the contract or purchase order, shall be of one of Copper Alloy UNS Nos. C70600, C70620, C71500, C71520, C74500, C75200, C75700, C76400, C77000, or C79200.

7. Chemical Composition

- 7.1 The material shall conform to the chemical composition requirements in Table 1 for the Copper Alloy UNS No. designation specified in the ordering information.
- 7.1.1 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and the purchaser, limits may be established and analysis required for unnamed elements.
- 7.2 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results for all elements determined and 100 %.
- 7.3 For alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of all elements determined and 100 %.
- 7.4 When all elements listed in Table 1 for a specified alloy are determined, the sum of results shall be 99.5 minimum.

TABLE 2 Grain Size Requirements for OS (Annealed) Temper Rod and Bar

Copper Alloy UNS No.	Temper	(Grain Size, mr	n
Copper Alloy ONS No.	Designation	Nominal	Minimum	Maximum
All alloys	OS015	0.015		0.030
All alloys	OS035	0.035	0.025	0.050
C74500, C75200, C75700,	OS070	0.070	0.050	0.100
C76400, and C77000				>

TABLE 3 Tensile Requirements for Copper-Nickel-Zinc Alloy Rod and Bar (Inch-Pound Units)

Note 1—SI values are stated in Table 4.

		-	Tensile St	ength, ksi	i
Temper Designa- tion	Diameter or Distance Between Parallel Surfaces, in.	Copper All Nos. C752 C792	200 and	Nos. 0 C75700,	Alloy UNS 074500, , C76400, 077000
		Min	Max	Min	Max
	Rod: round				
H01	0.02 to 0.50, incl	60	80	75	95
	Rod: round, hexagonal, octagonal				
H04	0.02 to 0.25, Incl	80	100	90	110
	Over 0.25 to 0.50, incl	70	90	80	100
	Over 0.50 to 1.0, incl	65	85	75	95
	Over 1.0	60	80	70	90
H04 /	Bar:				
	quare, rectangular				
$\angle \nabla$	all sizes	68	88	75	95

8. Temper

8.1 The standard tempers for products described in this specification and as defined in Classification B601 are: O60, OS015, OS035, OS070, M30, H01, and H04 as given in Tables 2-6.

Note 2—The purchaser should confer with the manufacturer or supplier concerning the availability of a specific form and temper.

8.2 Other tempers, and tempers for other products, including shapes, shall be subject to agreement between the manufacturer and the purchaser.

TABLE 1 Chemical Requirements

		C	omposition,	% max (unles	s shown as rang	ge or min)			
Copper Alloy UNS No.	Copper, Incl Silver	Nickel, Incl Cobalt	Lead	Iron	Manganese	Zinc	Phosphorous	Sulfur	Carbon
C70600 (remainder	9.0-11.0	0.05	1.0-1.8	1.0	1.0			
C70620	86.5 min	9.0-11.0	0.02	1.0-1.8	1.0	0.50	0.02	0.02	0.05
C71500	remainder	29.0-33.0	0.05	0.40-1.0	1.0	1.0			
C71520	65.0 min	29.0-33.0	0.02	0.40-1.0	1.0	0.50	0.02	0.02	0.05
C74500	63.5-66.5	9.0-11.0	0.05	0.25	0.50	remainder			
C75200	63.0-66.5	16.5-19.5	0.05	0.25	0.50	remainder			
C75700	63.5-66.5	11.0-13.0	0.05	0.25	0.50	remainder			
C76400	58.5-61.5	16.5-19.5	0.05	0.25	0.50	remainder			
C77000	53.5-56.5	16.5-19.5	0.05	0.25	0.50	remainder			
C79200	59.0-66.5	11.0-13.0	0.8-1.4	0.25	0.50	remainder			

TABLE 4 Tensile Requirements for Copper-Nickel-Zinc Alloy Rod and Bar [SI Units]

Note 1—Inch-Pound values are stated in Table 3.

			Tensile Str	ength, MPa	
Temper Designa tion		Copper A Nos. C75 C79	5200 and	Nos. C C75700	Alloy UNS 074500, , C76400 077000
		Min	Max	Min	Max
	Rod: round				
H01	0.5 to 10, incl Rod: round, hexagonal octagonal	415	550	515	655
H04	0.5 to 6.5 incl Over 6.5 to 10, incl Over 10 to 25, incl Over 25	550 485 450 415	690 620 590 550	620 550 515 485	760 690 655 620
H04	Bar: square, rectangular all sizes	470	605	515	650

9. Grain Size of Annealed Tempers

- 9.1 Grain size shall be the standard requirement for all product in the annealed tempers.
- 9.1.1 Product in the OS temper shall conform to the grain size requirement prescribed in Table 2 for the specified copper alloy and temper.
- 9.1.2 Grain size shall be the basis for acceptance or rejection for OS temper product produced from Copper Alloy UNS Nos. C74500, C75200, C75700, C76400, C77000, and C79200.

10. Mechanical Property Requirements

- 10.1 Tensile Strength Requirement:
- 10.1.1 Product of Copper-Nickel-Zinc Alloys UNS Nos. C74500, C75200, C75700, C76400, C77000, and C79200 in Tempers H01 and H04 furnished under this specification shall conform to the tensile requirements prescribed in Tables 3 and 4 for the specified shape and size. The tensile strength shall be the basis of acceptance or rejection for product in these tempers.
- 10.1.2 Product of Copper-Nickel Alloys UNS Nos. C70600, C70620, C71500, and C71520 in Tempers H01, H04, M30, and O60 furnished under this specification shall conform to the tensile requirements prescribed in Tables 5 and 6 for the specified shape and size. The tensile properties shall be the basis of acceptance or rejection for all tempers.

11. Purchases for U.S. Government Agencies

11.1 When specified in the contract or purchase order, product purchased for agencies of the U.S. Government shall conform to the special government regulations specified in the Supplementary Requirements section of Specification B249/B249M.

12. Dimensions, Mass, and Permissible Variations

- 12.1 The dimensions and tolerances for product described by this specification shall be as specified in Specification B249/B249M with particular reference to the following tables and related paragraphs:
 - 12.1.1 Diameter or Distance Between Parallel Surfaces:
- 12.1.1.1 Rod: round/hexagonal, octagonal—cold-drawn rod, Table 2.
- 12.1.1.2 Bar: rectangular and square—thickness, width. Tables 9 and 11.
- 12.1.2 Length—length tolerances, schedule of length, Tables 13 and 15.
- 12.1.3 Straightness tolerances for rod, bar, and shapes,
 - 12.1.4 Edge contours—see identically titled section.

13. Test Methods

- 13.1 The test methods used for quality control or production control, or both, for the determination of conformance with product property requirements are discretionary.
- 13.1.1 The test methods used to obtain data for the preparation of certification or test report, or both, shall be made available to the purchaser on request.
- 13.2 Chemical Analysis—In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published test methods some of which are considered by ASTM as no longer viable. These, and others not listed, may be used, subject to agreement.

Element	Range, %	Method
Copper	53–90	E478
Iron	0.02-8	E75
Lead	0.05-1.5	E478 (AA)
Manganese	0.05-1.0	E75
Nickel	8-34	E478 (Gravimetric)
Zinc	0-1.0	E478 (AA)
Zinc	2-40	E478 (Titrimetric)
Sulfur	0-0.1	E478 (AA)
Phosphorus	0-1.0	E478 (AA)
Carbon	0.01-1.0	E76

14. Keywords

14.1 copper alloy bar; copper alloy rod; copper-nickel alloy bar; copper-nickel alloy rod; copper-nickel-zinc alloy bar; copper-nickel-zinc alloy rod; cupronickel bar; cupronickel rod; nickel silver bar; nickel silver rod; UNS C70600 bar; UNS C71500 bar; UNS C74500 bar; UNS C75200 bar; UNS C75700 bar; UNS C76400 bar; UNS C79200 bar; UNS C70600 rod; UNS C71500 rod; UNS C74500 rod; UNS C75200 rod; UNS C75700 rod; UNS C76400 rod; UNS C77000 rod; UNS C70620; UNS C71520

TABLE 5 Tensile Requirements for Copper-Nickel Alloy Rod and Bar (Inch-Pound Units)

Note 1—SI values are stated in Table 6.

O60, M30 H04	Diameter or Distance Between Parallel Surf	aces, in.	Tensile Strength, min, ksi	Yield Strength at 0.5 % Extension Under Load, min, ksi	Elongation in 4× Diameter or Thickness of Specimen, min, % ^A
		y UNS Nos. C70600			
H04	round, hexagonal, and octagonal rods and square bars	all sizes	38	15	30
	round, hexagonal, and octagonal rods and square bars	up to %, incl over % to 1, incl	60 50	38 30	10
		over 1 to 3, incl	40	15	30
		over 3 to 5, incl	38	15	15 30 20
O60	rectangular bars and shapes	all sizes	_ 38	15	30
HOA	rectangular hara	For Thicknesses	- 55	20	
H04	rectangular bars	up to 3%, incl over 3% to 1/2 incl	55 50	30 28	12
		over ½ to 3	40	17	20
H04	shapes	all sizes	(As ag	greed upon between the ma	
	Copper Allo	y UNS Nos. C71500	and C71520	or supplier and the purch	iser)
O60, M30	round, hexagonal, and octagonal rods and square bars	up to ½, incl	52	18	30
		over 1/2 to 1, incl	48	18 18	30
		over 1	45	18	30
H01	round, hexagonal, and octagonal rods and square bars	up to ½, incl	65 60	50 45	10 15
		over ½ to 1, incl over 1 to 3, incl	60 55	45 35	15 20
		over 3 to 5, incl	45	18	20
H04		up to 1/2, incl	80	60	8
		over ½ to 1, incl	75	58	10
O60	rectangular bars and shapes	over 1 to 2, incl all sizes	70	55 15	10 30
060	rectangular bars and snapes	For Thicknesses	٠ (٣)٠٠	15	30
H04	rectangular bars	up to ½, incl	75	55	7
	C	over 1/2 to 1, incl	70	50	10
H04	shapes	all sizes	(As ag	greed upon between the ma or supplier and the purcha	
	rectangular bars and snapes rectangular bars shapes a minimum gage length of 1 in. shall be used.				
MDOO					

TABLE 6 Tensile Requirements for Copper-Nickel Alloy Rod and Bar [SI Units]

Note 1—Inch-pound values are stated in Table 5.

		aces, mm	Tensile Strength, min, MPa	0.5 % Extension Under Load, min, MPa	Elongation in 4x D eter or Thickness Specimen, min, of
	Copper Allo	y UNS Nos. C70600 a	and C70620		
O60, M30	round, hexagonal, and octagonal rods and square bars	all sizes	260	105	30
H04	round, hexagonal, and octagonal rods and square bars	up to 9.5, incl	415	260	10
		over 9.5 to 25, incl	345	205	15
		over 25 to 80, incl	275	105	30
		over 80 to 125, incl		105	20
O60	rectangular bars and shapes	all sizes	260	105	30
1104		For Thicknesses		005	راني (۲۰
H04	rectangular bars	up to 9.5, incl	380	205	100
		over 9.5 to 12, incl	345	195	C 20
1104	ala a sa	over 12 to 80, incl	275	115	
H04	shapes	all sizes	(As a	greed upon between the ma or supplier and the purcha	
	Conner Allo	y UNS Nos. C71500 a	and C71520	or supplier and the purcha	1961)
O60, M30	round, hexagonal, and octagonal rods and square bars	up to 12, incl	360	125	30
,	,,,	over 12 to 25, incl	330	125	30
		over 25	310	125	30
H01	round, hexagonal, and octagonal rods and square bars	up to 12, incl	450	345	10
1101	, nonagona, and oolagona rous and square bars	over 12 to 25, incl	415	310	15
		over 25 to 80, incl	380	240	20
		over 80 to 125, incl	310	125	20
H04		up to 12, incl	550	415	8
1104		over 12 to 25, incl	515	400	10
			485	380	
OSO	rectangular hare and change	over 25 to 50, incl	310		10
O60	rectangular bars and shapes	all sizes	310	105	30
LIO4	roctongular hara	For Thicknesses		200	7
H04	rectangular bars	up to 12, incl	575 485	380	7
Ш04	chance	over 12 to 25, incl		345 greed upon between the ma	10
H04	shapes	all sizes	(As a	greed upon between the ma or supplier and the purcha	
	The state of the s	3			
	a minimum gage length of 25 mm shall be used.	2			
SEMOC	C.Com. Click to view the full	2			

SB-152/SB-152M SB-152/SB-152M (Identical with ASTM Specification B152/B152M-19@cept for the deletion of paras. 7.3.1.1 and 10.3.1, and certification and text refuerts have been made mandatory.)

Specification for Copper Sheet, Strip, Plate, and Rolled Bar

1. Scope

1.1 This specification establishes the requirements for copper sheet, strip, plate, and rolled bar produced from the following coppers.

Copper UNS No. ^A	Previous Designation	n Type of Copper
C10100 ^B C10200 ^B	OFE OF	Oxygen-free electronic Oxygen-free without residual
C10300 C10400, C10500, C10700	OFXLP OFS	deoxidants Oxygen-free extra low phosphorus Oxygen-free, silver bearing
C10800 C10910 C11000 ^{B, C}	OFLP ETP, TP ^C	Oxygen-free low phosphorus Low oxygen Electrolytic tough pitch, C Tough pitch C
C11300, C11400, C11600 ^B C12000	STP DLP	Silver bearing tough pitch Phosphorized, low residual phosphorus
C12200 ^B	DHP	Phosphorized, high residual phosphorus
C12300 C14200 C14420 C14530	DHPS DPA 	Phosphorized, silver bearing Phosphorus deoxidized, arsenical Tin bearing tellurium copper Tin tellurium bearing copper

^A Except Copper UNS Nos. C10910 (low oxygen), C14200 (phosphoros deoxidized, arsenical), C14420 (tin bearing tellurium), and C14530 (tin tellurium bearing) these types of copper are classified in Classification B224.

NOTE 1—Each of the coppers listed has unique properties that can make it suitable for specific applications. The purchaser should consult with the supplier to determine which copper would be best suited for the intended application.

Note 2—This specification is not intended to establish requirements for material rolled to ounce-weight thicknesses. Such material is defined in Specification B370.

Flat copper products with finished (rolled or drawn) edges that wire and strip) are defined in Specification B272.

- 1.1.1 When a specific copper is not identified in the contract or purchase order, the supplier may furnish product from any of the listed coppers.
- 1.2 *Units*—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other and values from the two systems shall not be combined.
- 1.3 The following safety hazard caveat pertains only to the test method(s) described in this specification:
- 1.3.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B170 Specification for Oxygen-Free Electrolytic Copper— Refinery Shapes
- B193 Test Method for Resistivity of Electrical Conductor Materials
- B216 Specification for Tough-Pitch Fire-Refined Copper— Refinery Shapes
- B224 Classification of Coppers

⁸ SAE Specification CA101 conforms to Copper UNS No. C10100; SAE Specification CA102 conforms to the requirements for Copper UNS No. C10200; SAE Specification CA110 conforms to the requirements for Copper UNS No. C11000; SAE Specifications CA113, CA114, and CA116 conform to the requirements for Copper UNS Nos. C11300, C11400, and C11600; SAE Specification CA120 conforms to Copper UNS No. C12000; and SAE Specification CA122 conforms to the requirements for Copper UNS No. C12200.

^C Unless specified in the contract or purchase order the supplier is permitted to provide ETP copper or TP copper.

- B248 Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar
- B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar (Metric)
- B272 Specification for Copper Flat Products with Finished (Rolled or Drawn) Edges (Flat Wire and Strip)
- B370 Specification for Copper Sheet and Strip for Building Construction
- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper

B846 Terminology for Copper and Copper Alloys

E3 Guide for Preparation of Metallographic Specimens

E8/E8M Test Methods for Tension Testing of Metallic Materials

E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)

E112 Test Methods for Determining Average Grain Size E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 *ASME Standard:*

ASME Boiler and Pressure Vessel Code

3. General Requirements

- 3.1 The following sections of Specification B248 or B248M constitute a part of this specification:
 - 3.1.1 Terminology
 - 3.1.2 Materials and Manufacture
 - 3.1.3 Sampling
 - 3.1.4 Number of Tests and Retests
 - 3.1.5 Specimen Preparation
 - 3.1.6 Test Methods
 - 3.1.7 Packaging and Package Marking
 - 3.1.8 Workmanship, Finish, and Appearance
 - 3.1.9 Significance of Numerical Limits ?
 - 3.1.10 Rejection and Rehearing
- 3.2 In addition, when a section with a title identical to that referenced in 3.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B248 or B248M.

4. Terminology

4.1 *Definitions*—For definitions of terms related to copper and copper allows, refer to Terminology B846.

5. Ordering Information

5.1 Include the following specified choices when placing orders for product under this specification, as applicable:

- 5.1.1 ASTM designation and year of issue;
- 5.1.2 Copper [Alloy] UNS No. (or other internationally recognized copper [alloy]). With Alloys C10400, C10500, C10700, C11300, C11400, C11600, or C12300, the amount of silver in ounces per ton;
 - 5.1.3 Temper (Section 7);
 - 5.1.4 Dimensions: thickness, width, and edges (Section 12)
 - 5.1.5 How furnished: straight lengths or coils;
- 5.1.6 Quantity total weight or total length or number of pieces of each size;
 - 5.1.7 Length (Section 12); and
- 5.1.8 Weight of coils: coil weights or coil size limitations, if required.
- 5.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
 - 5.2.1 Embrittlement test for the alloys listed in 11.2.
 - 5.2.2 DELETED
 - 5.2.3 DELETED
- 5.2.4 Resistivity test for alloys listed in Table 5 (see Section 9);
- 5.2.5 If product is purchased for agencies of the U.S. Government (see the Supplemental Requirements section of Specifications B248 and B248M).

6. Chemical Composition

- 6.1 The materials shall conform to the chemical requirements in Table 1 for the copper [alloy] UNS No. specified in the ordering information.
 - 6.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.

7. Temper

- 7.1 The standard tempers for product described in this specification are given in Tables 2 and 3.
 - 7.1.1 As Hot Rolled Temper M20:
- 7.1.1.1 Plate not specified for ASME Boiler and Pressure Vessel Code applications are generally available in the M20 temper.
 - 7.1.2 Cold Rolled Tempers H00 to H10.
 - 7.1.3 Annealed Tempers O25, O60, or O68:
 - 7.1.3.1 DELETED

Note 3—Any product produced in a temper other than those listed in Table 2, Table 3, or Table 4 will be produced and sold by contract and cannot be said to be produced under this specification.

Note 4—Soft-anneal temper is suitable for most industrial users of copper such as forming, spinning, and simple drawing operations in which close control of temper is not essential. Deep drawing anneal temper is especially suited for very severe drawing and forming operations in which maximum ductility and close control of temper is required.

8. Grain Size for Cold Rolled Annealed Tempers

8.1 Grain size shall be standard requirement for all product of the annealed (O60 and O68) tempers.

ş
en
Ĕ
ij
B
Re
Б
<u>:</u>
en
ဌ
_
щ
TABL
₽

TABLE 1 Chemical Requirements					Composition,%				美	%"uo								
									5									
1					71,	. (Copper UNS No.	JNS No.								
16	C10100 ^A (C10200	C10300	C10400 ^B		C10500 ^B C10700 ^B	C10800	C10910	C11000	C11300°	C11400 ^C	C11600 ^C	C12000	C12200	C12300 ^D	C14200	C14420	C14530
100	99.99 ^E	99.95 ^E	99.95 ^F	99.95 ^E	99.95 ^E	99.95E	99.95 ^F	99.95	06.66		06.66	06.66			06.66		99.90 ^G	99.90 ^H
	₹	E	0.001-	200			0.005	inci silver	incl silver incl silver		inci silver	incl silver	nci silver 0.004–		0.015- 0.015-		ב מ מ מ מ מ	0.001-
			0.005	į	:		0.012						0.012	0.040	0.040	0.040		0.010
	₹	:	:	÷	:	:		:	:	:	:	:	:	:	:	0.15- 0.50	:	:
).C	0.0005	0.0010	:	0.0010	0.001	0.001	:	0,005	:	:	:	:	:	:	:) ; ;	:	:
		:	:	/8	10,	25,	:	%	:	/8	10,	25,	:	:	4	:	:	:
	₹	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	0.023
	4	-	:	:	:	:	:	5	۲		:	:	:	:	:	:	0.005-	0.003-
					:			•	C:					:				0.023
	₹	:	:	:	:	:	:	:		:	:	:	:	:	:	:	0.04-	0.003-

A Impurity maximums in ppm of C10100 shall be: antimony 4, arsenic 5, bismuth 1, cadmium 1, iron 10, lead 5, manganese 0.5, nickel 10, phosphorus 3, selenium 3, silver 25, sulfur 15, tellurium 2, tin 2, it and C10700 are oxygen-free coppers with the addition of a specified amount of silver. The compositions of these alloys are equivalent to C10200 plus the intentional addition of silver. C11300, C11400, and C11600 are electrolytic tough-pitch copper with silver additions. The compositions of these alloys are equivalent to C11000 plus the intentional addition of silver. C13300 is produced by the addition of silver to phosphorus-deoxidized copper. C1000 plus the intentional addition of silver. C1000 plus the intentional ad

 $^{\prime\prime}$ Includes tin + tellurium + selenium. $^{\prime\prime}$ Values are minimum silver Troy oz/Avoirdupois ton (1 oz/ton is equivalent to 0.0034 %).

C.I.B. ASME BRYC Section II Part B) 202

Jellurium or selenium, or both.

TABLE 2 Tensile Strength Requirements and Approximate Hardness Values (Inch-Pound Units)

Tem	per Designation	Tensile Str	ength, ksi ^A		ate Rockwell dness ^B
Code	Name	Min	Max	F Scale	Superficial 30T
	Cold-rolled tempers:				
H00	Eighth hard	32	40	54-82	up to 49
H01	Quarter hard	34	42	60-84	18–51
H02	Half hard	37	46	77–89	43-57
H03	Three-quarter-hard	41	50	82-91	47–59
H04	Hard	43	52	86–93	54–62
H06	Extra hard	47	56	88–95	56–64
H08	Spring	50	58	91–97	60–66
H10	Extra spring	52		92 and over	61 and over
	Hot-rolled tempers:				-00
M20 ^C	Hot-rolled .	30 ^E	38	up to 75	cup to 41
O25 ^D	Hot-rolled and annealed	30 [€]	38	up to 65	up to 31

 $^{^{}A}$ ksi = 1000 psi.

TABLE 3 Tensile Strength Requirements and Approximate Hardness Values (SI Units)

Tem	per Designation	Tensile St	rength, MPa		ite Rockwell Iness ^A
Code	Name	Min	Max	F Scale	Superficial 30T
	Cold-rolled tempers:				
H00	Eighth hard	220	275	54-82	up to 49
H01	Quarter hard	235	290	60-84	18–51
H02	Half hard	255	315	77–89	43-57
H03	Three-quarter-hard	285	345	82-91	47-59
H04	Hard	295	360	86-93	54-62
H06	Extra hard	325	385	88-95	56-64
H08	Spring	345	400	91–97	60-66
H10	Extra spring	345 360	•••	92 and over	61 and over
	Hot-rolled tempers:				
M20 ^B	Hot-rolled	205 ^D	260	up to 75	up to 41
O25 ^C	Hot-rolled and annealed	205 ^D	260	up to 65	up to 31

A Rockwell values apply as follows: The F scale applies to metal 0.50 mm and over in thickness. The Superficial 30-T scale applies to metal 0.30 mm and over in thickness.

B See 7.1.1.1.

TABLE 4 Grain Size Requirements and Approximate Rockwell Hardness Values for Annealed Product

Tempe	r Designation	Grain	Size, mm	Approx Rock Hardr	well
Code	Name	Min	Max -	F Sc	cale
Code	Name	IVIIII	IVIAX	Min	Max
O60	Soft anneal	В			65
O68	Deep-drawing	В	0.050	30	75
	anneal				

^A Rockwell hardness values apply as follows: The F scale applies to metal 0.020 in. or 0.50 mm and over in thickness.

8.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of a test specimen taken from each of two sample portions, and each specimen shall be within the limits prescribed in Table 4 when determined in accordance with Test Methods E112.

TABLE 5 Electrical Mass Resistivity Requirements for Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10910, C11000, C11300, C11400, and C11600

Alloy	Tempers	Electrical Resistivity max, Ω·g/m²
C10100	Annealed	0.15176
C10100	Cold Rolled	0.15614
C10200, C10300, C10400,	Annealed	0.15328
C10500,		
C10700, C10910, C11000,		
C11300,		
C11400, C11600		
C10200, C10300, C10400,	Cold Rolled	0.15775
C10500,		
C10700, C10910, C11000,		
C11300,		
C11400, C11600		

8.3 The test specimen shall be prepared in accordance with Guide E3. The average grain size shall be determined on a plane parallel to the surface of the product.

B Rockwell values apply as follows: The F scale applies to metal 0.020 in. and over in thickness. The Superficial 30-T scale applies to metal 0.012 in. and over in thickness.

^C See 7.1.1.1.

D DELLETED

 $^{^{\}it E}$ The minimum yield strength at 0.5 % extension under load or at 0.2 % offset shall be 10 ksi.

^C DELETED

^D The minimum yield strength at 0.5 % extension under toad or at 0.2 % offset shall be 70 MPa.

^B Atthough no minimum grain size is required, this material must be fully recrystallized.

9. Physical Property Requirements

- 9.1 Electrical Resistivity Requirement:
- 9.1.1 When specified in the contract or purchase order on the alloys listed below, the product shall conform to the electrical mass resistivity requirement prescribed in Table 5, when tested in accordance with Test Method B193.
- 9.1.2 Copper UNS Nos. C10800, C12000, C12200, C12300, C14200, C14420, and C14530 when specified at the time of purchase for electrical conductor use shall meet resistivity requirements as agreed upon between the manufacturer or supplier and the purchaser.

Note 5—The International Annealed Copper Standard electrical conductivity equivalents are as follows:

Electrical Resistivity, $\Omega \cdot g/m^2$	Conductivity % IACS
0.151 76	101.00
0.153 28	100.00
0.156 14	98.16
0.157 75	97.16

10. Mechanical Property Requirements

- 10.1 Tensile Requirements of As Hot-Rolled (M20), and Hot-Rolled and Annealed (O25) Tempers:
- 10.1.1 Product furnished under this specification shall conform to the tensile strength requirements prescribed in Tables 2 and 3. Furthermore, Copper [Alloy] UNS Nos. C11000 and C12200 plate shall have 40 % minimum elongation in 2 in. [50 mm] and Copper [Alloy] UNS No. C14200 plate shall have 45 % minimum elongation in 2 in. [50 mm]. The test specimens shall be taken so that the longitudinal axis of the specimen is parallel to the direction of rolling and tested in accordance with Test Methods E8/E8M.
- 10.1.2 Plate Item Test—Five specimens shall be taken either from the excess portion of the plate or from separate pieces produced under the same specification and temper.
 - 10.1.3 DELETED
 - 10.2 Tensile Requirements of Rolled (R) Tempers:
- 10.2.1 Product furnished under this specification shall conform to the tensile strength requirements prescribed in Tables 2 and 3. The test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling and tested in accordance with Test Methods E8/E8M.
- 10.2.2 Acceptance or rejection based upon mechanical properties shall depend only on tensile strength.
 - 10.3 Rockwell Hardness Requirement:
- 10.3.1 The approximate Rockwell hardness values given in Table 2, Table 3, and Table 4 are for general information and assistance in testing and shall not be used as a basis for product rejection.
- Note 6—The Rockwell hardness tests offer a quick and convenient method of checking for general conformity to the specification requirements for temper, tensile strength, and grain size.

11. Performance Requirements

- 11.1 Microscopical Examination:
- 11.1.1 Samples of Copper [Alloy] UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, and C12000 shall be substantially free of cuprous oxide as determined by Procedure A of Test Methods B577. In case of a dispute, a referee method in accordance with Procedure C of Test Methods B577 shall be used.
- 11.1.2 When Copper UNS Nos. C10800, C10910, C11000, C11300, C11400, C11600, C12200, C12300, C14200, C14420, or C14530 are supplied, microscopical examination for cuprous oxide is not required.
- 11.2 Hydrogen Embrittlement Susceptibility Test—Samples of Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10800, C12000, C12200, and C12300 shall be capable of passing the embrittlement test of Procedure B of Test Methods B577. The actual performance of this test is not mandatory under the terms of this specification unless specified in the ordering information. In case of a dispute, a referee method in accordance with Procedure C shall be used.

12. Dimensions, Mass, and Permissible Variation

- 12.1 The dimensions and tolerances for product described by this specification shall be as specified in Specification B248 or B248M with particular reference to the following tables and related paragraphs:
 - 12.2 Thickness.
 - 12.3 Width:
 - 12.3.1 Slit Metal and Slit Metal with Rolled Edges.
 - 12.3.2 Square Sheared Metal.
 - 12.3.3 Sawed Metal.
 - 12.4 Length:
 - 12.4.1 Length Tolerance for Straight Lengths.
- 12.4.2 Schedule for Minimum Lengths and Maximum Weights of Ends for Specific Lengths with Ends, and Stock Lengths with Ends.
 - 12.4.3 Length Tolerance for Square Sheared Metal.
 - 12.4.4 Length Tolerance for Sawed Metal.
 - 12.5 Straightness:
- 12.5.1 Slit Metal or Slit Metal Either Straightened or Edge Rolled.
 - 12.5.2 Square Sheared Metal.
 - 12.5.3 Sawed Metal.
 - 12.6 Weight—Hot Rolled Sheet and Plate.
 - 12.7 Edges Contours:
 - 12.7.1 Square Corners.
 - 12.7.2 Rounded Corners.
 - 12.7.3 Rounded Edges.
 - 12.7.4 Full-Rounded Edges.

13. Test Methods

- 13.1 Chemical Analyses:
- 13.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list

of published methods, some of which may no longer be viable, which along with others not listed, may be used subject to agreement.

Element	ASTM Test Method
Copper	E53
Phosphorus	E62
Selenium	Refer to Annex, Specification B216
Silver	E478
Tellurium	Refer to Annex, Specification B216
Arsenic	E62

- 13.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchaser order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.
- 13.1.3 For Copper [Alloy] UNS No. C10100, refer to the Annex of Specification B170 for test methods for chemical composition.
 - 13.2 Other Tests:
- 13.2.1 Refer to Specification B248 or B248M for the appropriate mechanical test method.

SMENORMOC.COM. Click to view the full polic of Result. Bell Policy o

14.2 When mutually agreed upon, the manufacturer or supplier and the purchaser shall conduct the final inspection simultaneously.

15. Certification

15.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and requirements have been met.

15.2 DELETED

16. Test Report

16.1 A report of test results shall be furnished.

17. Keywords

17.1 annealed; copper bars; copper plate; copper sheet; copper strip; hot-rolled; rolled; UNS No. C10100; UNS No. C10200; UNS No. C10300; UNS No. C10400; UNS No. C10500; UNS No. C10700; UNS No. C10800; UNS No. C10910; UNS No. C11000, UNS No. C11300; UNS No. C11400; UNS No. C11600; UNS No. C12000; UNS No. C12200; UNS No. C12300; UNS No. C14200; UNS No. C14420; UNS No. C14530

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR NICKEL ROD AND BAR SB-160 SB-160 With ASTM Specification B160-05(2014) excent that certification has been all the second and the second

2014) ex aximum carbo de mante en la company de la company (Identical with ASTM Specification B160-05(2014) except that certification has been made mandatory and editorial correction to maximum carbon value for UNS N02200 in Table 2.)

SPECIFICATION FOR NICKEL ROD AND BAR

SB-160

[Identical with ASTM Specification B 160-05(2014) except that certification has been made mandatory.]

Scope

- 1.1 This specification covers nickel (UNS N02200), low carbon nickel (UNS N02201), and solution strengthened nickel (UNS N02211) in the form of hot-worked and cold-worked rod and bar in the conditions shown in Table 1.
- 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

Referenced Documents

- **2.1** ASTM Standards:
- B 162 Specification for Nickel Plate, Sheet, and Strip
- B 880 Specification for General Requirements for Chemical Check Analysis of Nickel, Nickel Alloys, and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 140 Hardness Conversion Tables for Metals
- E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

3. **Terminology**

- **3.1** Definitions of Terms Specific to This Standard:
- **3.1.1** bar, n—material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and $\frac{1}{8}$ in. (3.2 mm) and over in thickness in straight lengths.
- NOTE 1 Hot-worked rectangular bar in widths 10 in. (254 mm) and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B 162, provided the mechanical property requirements of Specification B 160 are met.
- **3.1.2** rod, n material of round solid section furnished in straight lengths.

Ordering Information

- Section II Part B) 20's **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the afe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.1** ASTM designation and year of issue.
 - **4.1.2** UNS number.
- **4.1.3** Section —Rod (round) or bar (square, hexagonal, or rectangular).
 - 41.4 Dimensions Dimensions including length.
 - Condition.
 - **4.1.6** Finish.
 - **4.1.7** *Quantity* feet or number of pieces.
- **4.1.8** Certification Certification and a report of test results are required (Section 15).
- **4.1.9** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished.
- **4.1.10** Purchaser Inspection If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

Chemical Composition

- **5.1** The material shall conform to the composition limits specified in Table 2.
- **5.2** If a product (check) analysis is performed by the purchaser, the material shall be done per Specification B 880 and the material shall conform to the product (check) analysis variations defined in Check Analysis Variation table of Specification B 880.

TABLE 1			
MECHANICAL	PROPERTIES		

Condition and Diameter or Distance Between Parallel Surfaces, in. (mm)	Tensile Strength, min, psi (MPa)	Yield Strength (0.2% offset), min. psi (MPa) ⁴	Elongation in 2 in. or 50 mm or 4 <i>D</i> , min %
	Nickel (UNS NO2	200)	
Cold-worked (as worked):			. 0
Rounds, 1 (25.4) and under	80 000 (550)	60 000 (415)	10 ^B
Rounds over 1 to 4 (25.4 to	75 000 (515)	50 000 (345)	15
101.6) incl.			<i>'O'</i>
Squares, hexagons, and rectangles, all sizes	65 000 (450)	40 000 (275)	25 ^B
Hot-worked:			
All sections, all sizes	60 000 (415)	15 000 (105)	35 ^c
Rings and disks ^D	_	_	_
Annealed:			X
Rods and bars, all sizes	55 000 (380)	15 000 (105)	40 ^B
Rings and disks $^{\it E}$	_	-	_
Forging quality:	_	- Chi	_
All sizes	F		F
Low-Carbon Nick	el (UNS N02201) and Solution	Strengthened Nickel (UNS NO221	1)
Hot-worked:		11.	
All sections, all sizes	50 000 (345)	(10,000 (70)	40 ^C
Annealed:			
All products, all sizes	50 000 (345)	10 000 (70)	40 ^{<i>B</i>}

^A See 12.2.

TABLE 2 CHEMICAL REQUIREMENTS

	Composition Limits, %		
Element	Nickel (UNS N02200)	Low-Carbon Nickel (UNS N02201)	Solution Strengthened Nickel (UNS N02211)
Nickel, min ^A	99.0	99.0	93.7
Copper, max	0.25	0.25	0.25
Iron, max.	0.40	0.40	0.75
Manganese, max.	0.35	0.35	4.25-5.25
Carbon, max.	0.15	0.02	0.02
Silicon, max	0.35	0.35	0.15
Sulfur, max.	0.01	0.01	0.015

^A Element shall be determined arithmetically by difference.

Mechanical and Other Requirements

6.1 *Mechanical Properties* — The material shall conform to the mechanical properties specified in Table 1.

7. Dimensions and Permissible Variations

7.1 *Diameter, Thickness, or Width* — The permissible variations from the specified dimensions as measured on

the diameter or between parallel surfaces of cold-worked rod and bar shall be as prescribed in Table 3, and of hotworked rod and bar as prescribed in Table 4.

- **7.2** Out-of-Round Hot-worked rods and cold-worked rods (except "forging quality"), all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Tables 3 and 4, except for hot-worked rods $\frac{1}{2}$ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 4.
- **7.3** *Corners* Cold-worked bars will have practically exact angles and sharp corners.
- **7.4** Machining Allowances for Hot-Worked Materials When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 5 are recommended for normal machining operations.
- **7.5** Length The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 6.
- **7.5.1** Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut

^B Not applicable to diameters or cross sections under $\frac{3}{32}$ in. (2.4 mm).

^C For hot-worked flats $\frac{5}{16}$ in. (7.9 mm) and under in thickness the elongation shall be 25%, min.

 $^{^{\}it D}$ Hardness B 45 to B 80, or equivalent.

 $^{^{\}it E}$ Hardness B 45 to B 70 or equivalent.

 $^{^{}f}$ Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required.

TABLE 3 PERMISSIBLE VARIATIONS IN DIAMETER OR DISTANCE BETWEEN PARALLEL SURFACES OF COLD-WORKED ROD AND BAR

PERMISSIBLE VARIATIONS IN DIAM SURFACES OF COLE	Permissible Variati	ons from Specified
Specified Dimension, in. (mm) ⁴	Dimensions +	, in. (mm) –
Rounds:		
$\frac{1}{16}$ (1.6) to $\frac{3}{16}$ (4.8), excl	0	0.002 (0.05)
$\frac{3}{16}$ (4.8) to $\frac{1}{2}$ (12.7), excl	0	0.003 (0.08)
$\frac{1}{2}$ (12.7) to $\frac{15}{16}$ (23.8), incl	0.001 (0.03)	0.002 (0.05)
Over $^{15}/_{16}$ (23.8) to $1^{15}/_{16}$ (49.2), incl	0.0015 (0.04)	0.003 (0.08)
Over $1^{15}/_{16}$ (49.2) to $2^{1/}_{2}$ (63.5), incl	0.002 (0.05)	0.004 (0.10)
Over $2\frac{1}{2}$ (63.5) to 3 (76.2), incl	0.0025 (0.06)	0.005 (0.13)
Over 3 (76.2) to 3 (88.9), incl	0.003 (0.08)	0.006 (0.15)
Over $3\frac{1}{2}$ (88.9) to 4 (101.6), incl	0.0035 (0.09)	0.007 (0.18)
Hexagons, squares, rectangles:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\frac{1}{2}$ (12.7) and less	0	0.004 (0.10)
Over $\frac{1}{2}$ (12.7) to $\frac{7}{8}$ (22.2), incl	0	0.005 (0.13)
Over $\frac{7}{8}$ (22.2) to $1\frac{1}{4}$ (31.8), incl	0	0.007 (0.18)
Over $1\frac{1}{4}$ (31.8) to $2\frac{1}{4}$ (57.2), incl	0	0.009 (0.23)
Over $2\frac{1}{4}$ (57.2) to 3 (76.2), incl	0	0.011 (0.28)
Over 3 (76.2) to $3\frac{1}{2}$ (88.9), incl	0	0.015 (0.38)
Over $3\frac{1}{2}$ (88.9) to 4 (101.6), incl	0	0.017 (0.43)

^A Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 4 PERMISSIBLE VARIATIONS IN DIAMETER OR DISTANCE BETWEEN PARALLEL SURFACES OF HOT-WORKED ROD AND BAR

160	Permissible Variations from Specified Dimensions, in. (mm)	
Specified Dimension, in. (mm)	+	-
Rod and bar, hot-worked:		
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)
Over 1 (25.4) to 2 (50.8) incl	0.031 (0.79)	0.016 (0.41)
Over 2 (50.8) to 4 (101.6), incl	0.047 (1.19)	0.031 (0.79)
Over 4 (101.6)	0.125 (3.18)	0.063 (1.60)
Rod, rough-turned or rough-ground:		
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)
1 (25.4) and over	0.031 (0.79)	0
Forging quality rod: B		
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)
1 (25.4) and over	0.031 (0.79)	0

Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

 $^{^{\}emph{B}}$ Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3% of the diameter of the rod.

TABLE 5 NORMAL MACHINING ALLOWANCES FOR HOT-WORKED MATERIAL

	Normal Machining Allowance, in. (mm)			
Finished-Machined Dimensions for Finishes as	On Diameter,	Distance Between Parallel Surface, for Hexagonal	For Rectan	gular Bar
Indicated Below, in. (mm) ^A	for Rods	and Square Bar	On Thickness	On Width
Hot-worked: ^B				116
Up to $\frac{7}{8}$ (22.2), incl	½ (3.2)	½ (3.2)	½ (3.2)	$\frac{3}{16}$ (4.8)
Over $\frac{7}{8}$ to $1\frac{7}{8}$ (22.2 to 47.6), incl	½ (3.2)	$\frac{3}{16}$ (4.8)	½ (3.2)	3_{16} (4.8)
Over $1\frac{7}{8}$ to $2\frac{7}{8}$ (47.6 to 73.0), incl	$\frac{3}{16}$ (4.8)	½ (6.4)		$\frac{3}{16}$ (4.8)
Over $2\frac{7}{8}$ to $3\frac{13}{16}$ (73.0 to 96.8), incl	½ (6.4)		6	$\frac{3}{16}$ (4.8)
Over $3^{13}/_{16}$ (96.8)	½ (6.4)			³ / ₈ (9.5)
Hot-worked rods:				
Rough-turned or Rough-ground: $^{\mathcal{C}}$				
¹⁵ / ₁₆ to 4 (23.8 to 101.6), incl in diameter	½ (1.6)		√. ♥	
Over 4 to 12 (101.6 to 304.8), incl in diameter	$\frac{1}{8}$ (3.2)	• • •		

^A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagonal and square par, and separately to width and thickness of rectangular bar.

PERMISSIBLE VARIATIONS IN LENGTH OF RODS AND BARS

Random mill lengths:	"X
Hot-worked	6 to 24 ft (1.83 to 7.31 m) long with not more than 25 weight % between 6 and 9 ft (1.83 and 2.74 m) ⁴
Cold-worked	6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of ¼ in. (6.4 mm) will be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed. $^{\it B}$
Cut lengths	specified length to which all rods and bars will be cut with a permissible variation of $+\frac{1}{8}$ in. (3.2 mm), -0 for sizes 8 in. (203 mm) and less in diameter or distance between parallel surfaces. For larger sizes, the permissible variation shall be $+\frac{1}{4}$ in. (6.4 mm), -0 .

^A For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth forged products, all sections, short lengths down to 2 ft (610

^B The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lenghts of 2 ft (0.61 m) or less. Hot-worked material to be machined longer lengths should be specified showing the finished crosssectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

^C Applicable to 3 ft (0.91 m) max length.

^B For cold-worked rods and bars under $\frac{1}{2}$ in. (12.7 mm) in diameter or distance between parallel surfaces ordered to nominal or stock lengths with a 2 ft (610 mm) range, at least 93% of such material shall be within the range specified; the balance may be in shorter lengths

TABLE 7
PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF
COLD-WORKED RODS AND BARS

Specified Diameter or Distance Between Parallel Surfaces, in. (mm) ^A	Permissible Variations in Lengths Indicated, in. (mm)
Rounds: $\frac{1}{2}$ (12.7) to 4 (101.6), incl	Depth of Chord: 0.030 (0.76) per ft (305 mm) of length
Hexagons, squares, rectangles: $\frac{1}{2}$ (12.7) to 4 (101.6), incl	0.030 (0.76) per ft (305 mm) of length

 $^{^{}A}$ Material under $\frac{1}{2}$ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.

7.6 *Straightness:*

- **7.6.1** The permissible variations in straightness of cold-worked rod and bar as determined by the departure from straightness shall be as prescribed in Table 7.
- **7.6.2** The permissible variations in straightness of precision straightened cold-worked rod as determined by the departure from straightness shall be as prescribed in Table 8.
- **7.6.2.1** In determining straightness in the standard 42-in. (1.07-m) distance between supports or, when specified, in determining straightness in lengths not in excess of those shown in Table 8, the rod shall be placed on a precision table equipped with ballbearing rollers and a micrometer or dial indicator. The rod shall then be rotated slowly against the indicator, and the deviation from

straightness in any portion of the rod between the supports shall not exceed the permissible variations prescribed in Table 8. The deviation from straightness (throw in one revolution) is defined as the difference between the maximum and minimum readings of the dial indicator in one complete revolution of the rod.

7.6.3 The permissible variations in straightness of hot-worked rod and bar as determined by the departure from straightness shall be as specified in Table 9.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or that, and free of injurious imperfections.

9. Sampling

- **9.1** *Lot—Definition:*
- **9.2** A lot for chemical analysis shall consist of one heat.
- **9.2.1** A lot for mechanical properties testing shall consist of all material from the same heat, nominal diameter of thickness, and condition.
- 9.2.1.1 Where material cannot be identified by heat a lot shall consist of not more than 500 lb (227 kg) of material in the same size and condition.
 - 9.3 Test Material Selection:
- **9.3.1** *Chemical Analysis* Representative samples from each lot shall be taken during pouring or subsequent processing.
- **9.3.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.

TABLE 8
PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF PRECISION-STRAIGHTENED
COLD-WORKED NICKEL (UNS NO2200) SHAFTING

Specified Diameter of Shafting, in.	Standard Distance Between Supports	Permissible Variations (Throw in One Revolution) from Straightness, in.
1/ ₂ to 15/ ₁₆ , incl	42 in.	0.005
Over $^{15}/_{16}$ to $1^{15}/_{16}$, incl	42 in.	0.006
Over $1^{15}/_{16}$ to $2^{1}/_{2}$ incl	42 in.	0.007
Over $2\frac{1}{2}$ to 4, nc	42 in.	0.008
³ / ₄ to ¹⁵ / ₁₆ , (nc)	Specified lengths of 3 to 10 ft	0.004 + 0.0025 for each foot or fraction thereof in excess of 3 ft.
Over $\frac{15}{1}$ to 4, incl	Specified lengths of 20 ft and less	0.005 + 0.0015 for each foot or fraction thereof in excess of 3 ft.
Specified Diameter of Shafting, mm	Standard Distance Between Supports	Permissible Variations (Throw in One Revolution) from Straightness, mm
12.7 to 23.8 incl	1067 mm	0.13
Over 23.8 to 49.2, incl	1067 mm	0.15
Over 49.2 to 63.5, incl	1067 mm	0.18
	1007	
Over 63.5 to 101.6, incl	1067 mm	0.20
Over 63.5 to 101.6, incl 19.1 to 23.8 incl		0.20 10.2 + 0.2 for each metre or fraction thereof in excess of 914 mm

TABLE 9
PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF
HOT-WORKED RODS AND BARS⁴

	Permissible Variations,
Finish	in./ft. (mm/m) ^B
Rods and bars, hot-worked	0.050 (4.2) ^C
Rounds—hot-worked, rough-ground, o rough-turned	0.050 (4.2) ^C

^A Not applicable to forging quality.

9.3.2 *Mechanical Properties* — Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- **10.1** Chemical Analysis —One test per lot.
- **10.2** *Tension* —One test per lot.
- 10.3 Hardness —One test per lot.

11. Specimen Preparation

- **11.1** Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.
- 11.1.1 All rod and bar shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E 8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E 8 for rectangular bar up to $\frac{1}{2}$ in. (12.7 mm), inclusive, in thicknesses that are too wide to be pulled full size.
- **11.2** Hardness test specimens shall be taken from material in the final condition.
- 11.3 In order that the hardness determinations may be in reasonable close agreement, the following procedure is suggested:
- 11.3.1 For rod, under $\frac{1}{2}$ in. (12.7 mm) in diameter, hardness readings shall be taken on a flat surface prepared by filing or grinding approximately $\frac{1}{16}$ in. (1.6 mm) from the outside surface of the rod.
- 11.3.2 For rod, $\frac{1}{2}$ in. (12.7 mm) in diameter and larger, and for hexagonal, square, and rectangular bar, all sizes, hardness readings shall be taken on a cross section midway between the surface and center of the section.

12. Test Methods

12.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

m .	ASTM
Test	Designation
Chemical Analysis	E 1473
Tension	E 8
Rockwell Hardness	E 18
Hardness Conversion	E)40
Rounding Procedure	E 29

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

0	Rounded Unit for Observed
Test	or Calculated Value
Chemical composition, hardness and tolerances (when expressed in dec- imals)	Nearest unit in the last right-hand place of figures of the specified limit. It two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield	Nearest 1000 psi (6.9 MPa)
strength	
Elongation	Nearest 1%

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

 $^{^{\}it B}$ Material under $^{\it 1}\!\!\!/_2$ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

 $^{^{\}it C}$ The maximum curvature (depth of chord) shall not exceed the values indicated multiplied by the length in feet.

Sentagendoc Com. Clore when the full pot of sent above. He had been closed to the sent above.

152

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES

- **X1.1** The various conditions and finishes in which nickel (UNS N02200) and low-carbon nickel (UNS N02201) rods and bars are procurable are as indicated below.
- **X1.2** Low-carbon nickel (UNS N02201) is intended essentially for fused caustic and other fused salts and for temperatures above 600°F (316°C). For such applications the manufacturer should be consulted.
- **X1.2.1** *Hot-Worked* With a tightly adherent, black, mill oxide surface.
- **X1.2.2** *Hot-Worked Rough-Ground* Similar to X1.2.1 except rough-ground.
- **X1.2.3** Hot-Worked, Rough-Turned Similar to X1.2.1 except rough-turned with a broad-nosed tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (914 mm) or less.
- X1.2.4 Hot-Worked Forging Quality Roughturned and spot-ground, as necessary, for sizes 1 in.

(25.4 mm) in diameter and over; rough-ground and spot-ground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot malleability.

NOTE X1.1— For sizes 4 in. (101.6 mm) in diameter and less, cold-worked rod may be used also for forging by virtue of the fact such rod have been overhauled for removal of mechanical surface defects prior to cold drawing. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot-malleability range.

- **X1.2.5** *Hot-Worked, Amealed* Soft with a tightly adherent oxide that may vary from dark to light.
- **X1.2.6** Hot-Worked Annealed and Pickled Same as X1.2.5 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked material and often employed where welding is involved where removal of mill oxide is desired.
- NOTE X1.2— Annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is difficult.
- **X1.2.7** *Cold-Worked, As-worked* Hot-worked overhauled, cold-worked, and straightened with a smooth bright finish.
- **X1.2.8** *Cold-worked Annealed* Hot-worked overhauled, cold-worked, and straightened. Annealed for softness and with a dull matte finish.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SB-161 SB

SPECIFICATION FOR NICKEL SEAMLESS PIPE [Identical with ASTM Specification B 161-05(2014) except for deletion of 1.1.1. Certification has been made mandatory.] e 4.11 is specification covers nickel (UNS N02200) and nickel (UNS N02201) in the final nless pipe and final fi **AND TUBE**

Scope

1.1 This specification covers nickel (UNS N02200) and low-carbon nickel (UNS N02201) in the form of coldworked seamless pipe and tube in the conditions shown in Table 1 and Table X1.1.

1.1.1 DELETED

- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations.

Referenced Documents

2.1 ASTM Standards:

B 829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

General Requirement

3.1 Material furnished under this specification shall conform to the applicable requirements of Specification B 829 unless otherwise provided herein.

Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

- **4.1.4** Finish (see Appendix X2).
- **4.1.5** Dimensions:
- **4.1.5.1** Tube Specify outside diameter and nominal or minimum wall.
- **4.1.5.2** Pipe Specify standard pipe size and schedule.
 - **4.1.5.3** *Length* Cut to length or random.
 - **4.1.6** *Quantity* Feet or number of pieces.
- 4.1.7 Hydrostatic Test or Nondestructive Electric *Test* — Specify test (see 6.2).
- **4.1.8** Hydrostatic Pressure Requirements Specify test pressure if other than required by Specification B 829.

4.1.9 DELETED

- **4.1.10** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished (see 5.2).
- **4.1.11** Purchaser Inspection If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.
- 4.1.12 Small-Diameter and Light-Wall Tube (Converter Sizes) — See Appendix X1.

5. **Chemical Composition**

5.1 The material shall conform to the composition limits specified in Table 2.

ABLE 1	L PROPERTIES
1	MECHANICA

	A	SME BI	PVC.II.B-2	2023		SB-161
	mm (or 4 <i>D</i>), min, %	Low-Carbon Nickel (UNS N02201)	35	40	15	*B)20
	Elongation in 2 in. or 50 mm (or $4D$), min, $\%$	Nickel (UNS N02200)	35	40	15	A.B. A.S.M.E. BRVC Section II Part B) 20°
	set), min, psi (MPa)	Low-Carbon Nickel (UNS N02201)	12 000 (80)	10 000 (70)	30 000 (205)	BUSINEBE
TABLE 1	Yield Strength (0.2 % offset), min, psi (MPa)	Ovickel (UNS N02200)	15.000 (105)	12 000 (80)		
Willy Sulfing WECHAI	nin, psi (MPa)	Low-Carbon Nickel (UNS N02201)	50 000 (345)	50 000 (345)	60 000 (415)	
Chy. Click to vie	Tensile Strength, min, psi (MPa)	Nickel (UNS N02200)	55 000 (380)	55 000 (380)	65 000 (450)	
SMENORMDOC. COM. Click to view the 18		Condition and Size	Annealed: 5 in. (127 mm) and under outside diameter	Over 5 in. (127 mm) in outside diameter	Stress-Relieved: All sizes	

TABLE 2 CHEMICAL REQUIREMENTS

	Composition,%			
Element	Nickel (UNS N02200)	Low-Carbon Nickel (UNS N02201)		
Ni, ^A min	99.0	99.0		
Cu, max	0.25	0.25		
Fe, max	0.40	0.40		
Mn, max	0.35	0.35		
C, max	0.15			
C, max		0.02		
Si, max	0.35	0.35		
S, max	0.01	0.01		

^A Element shall be determined arithmetically by difference.

5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B 829.

6. Mechanical and Other Properties

- **6.1** Tension Test The material shall conform to the tensile properties specified in Table 1. The sampling and specimen preparation are as covered in Specification B 829.
- **6.1.1** Tensile properties for material specified as small-diameter and light-wall tube (converter sizes) shall be as prescribed in Table X1.1.
- **6.2** Hydrostatic Test or Nondestructive Electric Test Each pipe or tube shall be subjected to the Nondestructive Electric Test or the Hydrostatic Test. Unless specified by the purchaser, either test may be used at the option of the producer.

7. Dimensions and Permissible Variations

7.1 Permissible variations for material specified as small-diameter and light-wall tube (converter size) shall conform to the permissible variations prescribed in Table X1.2.

8. Number of Tests

- **8.1** Chemical Analysis One test per lot.
- **8.2** Tension One test per lot.
- **8.3** *Hydrostatic or Nondestructive Electric Test* Each piece in each lot.

9. Test Methods

9.1 Hydrostatic Test — Each pipe or tube with an outside diameter $\frac{1}{8}$ in. (3 mm) and larger and with wall thickness of 0.015 in. (0.38 mm) and over shall be tested in accordance with Specification B 829. The allowable fiber stress, for material in the condition furnished, is as follows:

	UNS N02200	UNS N02201
Annealed:	10.000 (70.14)	0000 : (55 MB.)
5 in. (127 mm) outside diam-	10 000 psi (70 MPa)	8000 psi (55 MPa)
eter and under Over 5 in. outside	8000 psi (55 MPa)	6700 psi (45 MPa)
diameter Stress-Relieved:		
All sizes	16 200 psi (110 MPa)	15 000 psi (105 MPa)

- 9.1.1 When so agreed upon by the manufacturer and purchaser, pipe or tube may be tested to $1\frac{1}{2}$ times the allowable fiber stress given above.
- **9.1.2** If any pipe or tube shows leaks during hydrostatic testing, it shall be rejected.
- **9.2** *Nondestructive Electric Test* Each pipe or tube shall be examined with a nondestructive electric test as prescribed in Specification B 829.

10. Keywords

10.1 seamless pipe; seamless tube; N02200; N02201

APPENDIXES

(Nonmandatory Information)

X1. CONVERTER SIZES

X1.1 Small-diameter and light-wall tube in outside diameters $1\frac{1}{4}$ in. (31.8 mm) and under may be furnished in the conditions listed in Table X1.1 when so specified. The material is furnished in a limited range of sizes and the manufacturer should be consulted as to the various outside diameters and wall thicknesses that may be furnished. Material will have a bright finish. Such material shall conform to the applicable requirements in Table X1.1 and Table X1.2.

X2. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X2.1 Scope

X2.1.1 This appendix lists the conditions and finishes in which pipe and tube (other than converter sizes) are

normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X2.2 Nickel (UNS N02200)

X2.2.1 Annealed — Soft, with a dull matte finish.

X2.2.2 Stress-Relieved — Thermally treated below the annealing temperature to relieve the major portion of the internal stresses, with a thin, light to medium-dark surface.

X2.3 Low-Carbon Nickel (UNS N02201)

X2.3.1 Annealed — Similar to X2.2.1.

X2.3.2 Stress-Relieved — Similar to X2.2.2.

TABLE X1.1

MECHANICAL PROPERTIES⁴ OF SMALL-DIAMETER AND LIGHT-WALL TUBING (CONVERTER SIZES)

Condition	Tensile Strength psi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm, min, %
Nickel UNS N02200			
Annealed B	75 000 (515) max	15 000 (105)	33
Half-hard $^{\mathcal{C}}$	80 000 (550) min	40 000 (275)	12
Full hard ^D	95 000 (655) min	75 000 (515)	4
Low-Carbon Nickel UNS	N02201		
Annealed B	70 000 (480) max	12 000 (85)	35
Half-hard $^{\mathcal{C}}$	70 000 (480) min	30 000 (205)	12
Full hard ^D	85 000 (585) min	65 000 (450)	4

^A Not applicable to outside diameters under $\frac{1}{8}$ in. (3.2 mm) and wall thicknesses under 0.015 in. (0.38 mm).

^B This condition is sometimes designated as "No. 1 Temper."

^C This condition is sometimes designated as "No. 2 Temper."

 $^{^{\}it D}$ This condition is sometimes designated as "No. 3 Temper."

TABLE X1.2 PERMISSIBLE VARIATIONS FOR SMALL-DIAMETER AND LIGHT-WALL TUBE (CONVERTER SIZES) A,B,C,D,E,F

	Outside Diameter		Ins	de Diameter	Wall Thickness, %	
Specified Outside Diameter, in. (mm)	Plus	Minus	Plus	Minus	Plus	Minus
Under $\frac{3}{32}$ (2.4)	0.002 (0.05)	0	0	0.002 (0.05)	10	10
$\frac{3}{12}$ to $\frac{3}{16}$ (2.4 to 4.8), excl	0.003 (0.08)	0	0	0.003 (0.08)	10	10
$\frac{3}{16}$ to $\frac{1}{2}$ (4.8 to 12.7), excl	0.004 (0.10)	0	0	0.004 (0.10)	10	10
$\frac{1}{2}$ to $1\frac{1}{4}$ (12.7 to 31.8), incl	0.005 (0.13)	0	0	0.005 (0.13)	10	10

A Ovality, Normal Wall Tubes — As Drawn (No. 2 and 3) Tempers — Ovality will be held within the outside diameter tolerances show(i) the table.

Annealed (No. 1) Temper — Ovality will be held within 2% of the theoretical average outside diameter.

B Ovality, Light-Wall Tube — As-Drawn (No. 2 and 3) Tempers — Up to but not including $1\frac{1}{4}$ in. (31.8 mm) in outside diameter, ovality will be held within 2% of the theoretical average outside diameter.

Annealed (No. 1) Temper — Ovality will be held within 3% of the theoretical average outside diameter.

^C Wall Tolerances, Light-Wall Tube — The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerance shall be ±0.0005 in. (0.013 mm).

D Random Lengths:

Where nominal random lengths on tubing $\frac{1}{8}$ in. (3.2 mm) and larger in outside diameter are specified, a length tolerance of $\pm 3\frac{1}{2}$ ft (1.06 m) applies to the nominal length. This is a total spread of 7 ft (2.10 m).

Random lengths in sizes $\frac{1}{6}$ in. (3.2 mm) and larger in outside diameter shall be subject to a length range of 5 to 24 ft (1.50 to 7.30 m). Long random lengths are subject to a range of 15 to 22 ft (4.57 to 6.70 m).

Random lengths in sizes up to, but not including 1/8 in. (3.2 mm) in outside diameter, and fragile light-wall tubes over this outside diameter are subject to the length range of 1 to 15 ft (0.30 to 4.57 m).

^E Straightness — Round tubing is subject to a straightness tolerance of one part in 600 Lequivalent to a depth of arc of 0.030 in. (0.76 mm) in any 3 ft (0.91 m) of length].

Jesired.

a the outsice of Agent the full purple of Agent the full purp F When specified, the tolerance spreads of this table may be applied as desired. However, when not specified, the tolerances in this table will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

SPECIFICATION FOR NICKEL PLATE, SHEET, AND STRIP SB-162 (Identical with ASTM Specification B162-99(2014) except that certification has been made mandatory.)

ASIME NORMEDOC. COM. Click to view the full poor of the parties of

SPECIFICATION FOR NICKEL PLATE, SHEET, AND STRIP

SB-162

[Identical with ASTM Specification B 162-99(2014) except that certification has been made mandatory.]

1. Scope

- **1.1** This specification covers rolled nickel (UNS N02200) and low-carbon nickel (UNS N02201) plate, sheet, and strip.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The other values given are for information only.

2. Referenced Documents

- **2.1** ASTM Standards:
- B 160 Specification for Nickel Rod and Bar
- B 880 General Requirements for Chemical Check Analysis of Nickel, Nickel Alloys, and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 10 Test Method for Brinell Hardness of Metallic Materials
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 39 Test Methods for Chemical Analysis of Nickel
- E 112 Test Methods for Determining the Average Grain Size
- E 140 Hardness Conversion Tables for Metals
- F 155 Test Method for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method)

3. Terminology

- **3.1** Descriptions of Terms Specific to This Standard:
 - **3.1.1** The terms given in Table 1 shall apply.

4. Ordering Information

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.1** Allow Name and UNS number. (See Table 2.)
 - **4.1.2** ASTM designation, including year of issue.
 - **4.1.3** *Condition* (See 6.1, 6.2, and Appendix X1.)
 - **41.4** Finish (See Appendix X1.)
 - **4.1.5** *Dimensions* Thickness, width, and length.
 - **4.1.6** *Quantity.*
 - **4.1.7** Optional Requirements:
- **4.1.7.1** *Sheet and Strip* Whether to be furnished in coil, in cut straight lengths, or in random straight lengths.
- **4.1.7.2** *Strip* Whether to be furnished with commercial slit edge, square edge, or round edge.
- **4.1.7.3** *Plate* Whether to be furnished specially flattened (see 7.7.2); also how plate is to be cut (see 7.2.1 and 7.3.2.)
- **4.1.8** *Fabrication Details* Not mandatory but helpful to the manufacturer.
- **4.1.8.1** Welding or Brazing Process to be employed.
- **4.1.8.2** *Plate* Whether material is to be hotformed.
- **4.1.9** *Certification* Certification and a report of test results are required (see Section 15).
- **4.1.10** Samples for Product (Check) Analysis Whether samples for product (check) analysis should be furnished (see 5.2).

TABLE 1
PRODUCT DESCRIPTION

Product	Thickness, in. (mm)	Width, in. (mm)
Hot-rolled plate ^A	$\frac{3}{16}$ and over (Tables 5 and 6)	(Table 8) ^B
Hot-rolled sheet ^A	0.018 to 0.250 (0.46 to 6.4), incl (Table 7)	(Table 10)
Cold-rolled sheet $^{\mathcal{C}}$	0.018 to 0.250 (0.46 to 6.4), incl (Table 7)	(Table 10)
Cold-rolled $strip^{\mathcal{C}}$	0.005 to 0.250 (0.13 to 6.4), incl (Table 7)	(Table 10)

^A Material $\frac{3}{16}$ to $\frac{1}{4}$ in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition ordered.

TABLE 2
CHEMICAL REQUIREMENTS

	Compos	ition, %
Element	Nickel (UNS N02200)	Low-Carbon Nickel (UNS N02201)
Nickel, A min	99.0	99.0
Copper, max	0.25	0.25
Iron, max	0.40	0.40
Manganese, max	0.35	0.35
Carbon, max	0.15	
Carbon, max		0.02
Silicon, max	0.35	0.35
Sulfur, max	0.01	0.01

 $^{^{\}it A}$ Element shall be determined arithmetically by difference.

4.1.11 Purchaser Inspection If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (see Section 13).

5. Chemical Compositions

- **5.1** The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- **5.2** If a product (check) analysis is performed by the purchaser, the material shall be done per ASTM B 880 and the material shall conform to the product (check) analysis variations defined in Table 1 of ASTM B 880.

6. Mechanical and Other Requirements

6.1 *Mechanical Properties* — The material shall conform to the requirements for mechanical properties prescribed in Table 3.

- **6.2** Deep-Drawing and Spinning Quality Sheet and Strip The material shall conform to the requirements for grain size and hardness properties prescribed in Table 4.
- **6.2.1** The mechanical properties of Table 3 do not apply to deep-drawing and spinning quality sheet and strip.

7. Dimensions and Permissible Variations

- **7.1** Thickness and Weight:
- **7.1.1** *Plate* For plate up to 2 in. (50.8 mm), inclusive, in thickness, the permissible variation under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Table 5.
- **7.1.1.1** For use with Table 5, plate shall be assumed to weigh 0.321 lb/in.³ (8.89 g/cm³).
- **7.1.2** *Plate* For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Table 6.
- **7.1.3** Sheet and Strip The permissible variations in thickness of sheet and strip shall be as prescribed in Table 7. The thickness of strip and sheet shall be measured with the micrometer spindle $\frac{3}{8}$ in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on the strip under 1 in. in width.

7.2 Width and Diameter:

- **7.2.1** *Plate* The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Tables 8 and 9.
- **7.2.2** *Sheet and Strip* The permissible variations in width for sheet and strip shall be as prescribed in Table 10.

7.3 *Length:*

7.3.1 Sheet and strip of all sizes may be ordered to cut lengths, in which case a variation of $\frac{1}{8}$ in. (3.2 mm) over the specified length shall be permitted.

^B Hot-rolled plate, in widths 10 in. (254 mm) and under, may be furnished as hot-finished rectangles with sheared or cut edges in accordance with Specification B 160, provided the mechanical property requirements of this specification are met.

^C Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered.

TABLE 3 MECHANICAL PROPERTIES FOR PLATE, SHEET, AND STRIP (ALL THICKNESSES AND SIZES UNLESS OTHERWISE INDICATED)

Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield ^A Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm, or 4 <i>D</i> , min, %	Rockwell Hardness (B Scale) ^{B,C}
	Nickel (UNS N02200) Hot-Rolled Plate		
Annealed As-rolled ^{D, E}	55 000 (380) 55 000 (380)	15 000 (100) 20 000 (135)	40 30	
	Nickel (UNS N02200) Hot-Rolled Sheet		cijo.
Annealed	55 000 (380)	15 000 (100)	40 ^F	500
	Nickel (l	JNS N02200) Cold-Rolled Sheet	t	~10
Annealed Quarter-hard Half-hard Hard	55 000 (380) 90 000 (620)	15 000 (100) 70 000 (480)	40 ^F 2	70 to 80 79 to 86
	Nickel (UNS N02200) Cold-Rolled Strip	P	
Annealed Skin-hard Quarter-hard Half-hard Three-quarter-hard Hard	55 000 (380) ⁶ 90 000 (620) ⁶	15 000 (100) 70 000 (480)	40 ^{F, G}	64 to 70 70 to 80 79 to 86 85 to 91
Spring temper	•••	SMr		95 min
	Low-Carbon N	ickel (UNS N02201) Hot-Rolled	Plate	
Annealed As-rolled ^{D, E}	50 000 (345) 50 000 (345)	12 000 (80) 12 000 (80)	40 30	
	Low-Carbon Ni	ickel (UNS N02201) Hot-Rolled	Sheet	
Annealed	50 000 (345)	12 000 (80)	40 ^F	
	Low-Carbon Ni	ckel (UNS N02201) Cold-Rollec	Sheet	
Annealed	50 000 (345)	12 000 (80)	40 ^F	
	Low-Carbon Ni	ickel (UNS N02201) Cold-Rolled	d Strip	
Annealed	50 000 (345) ^{<i>G</i>}	12 000 (80)	40 ^{F,G}	

⁴ Yield strength requirements do not apply to material under 0.020 in. (0.51 mm) in thickness.

^B For Rockwell or equivalent hardness conversions see Hardness Conversion Tables E 140.

^C Caution should be observed in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in 1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

 $^{^{}D}$ As-rolled plate may be given a stress-relieving heat treatment subsequent to final rolling.

E As-rolled plate specified "suitable for hot forming" shall be furnished from heats of known good hot-malleability characteristics (see X1.2.2). There are no applicable tensile or hardness requirements for such material.

applicable tensile or hardness requirer out of the forming of the $^{
m F}$ Sheet and strip 0.010 to 0.049 in. (0.25 to 1.2 mm), inclusive, in thickness shall have an elongation of 30% minimum. Sheet and strip 0.050 to 0.109 in. (1.3 to 2.7 mm), inclusive, in thickness shall have an elongation of 35% minimum.

GRAIN SIZE AND HARDNESS FOR COLD-ROLLED, DEEP-DRAWING, AND SPINNING QUALITY SHEET AND STRIP TABLE 4

	Calculated Diameter	Calculated Diameter of Average Grain Section, max	Corresponding ASTM	Rockwell BAB
Thickness, in. (mm)	mm %	<u>.i.i</u>	Micro-Grain Size No.	Hardness, max
	Nickel (UNS N02200)	Nickel (UNS N02200) Sheet [56 in. (1420 mm) Wide and Under $^{ m l^{ m c}}$		
0.050 (1.3) and less	0.110	0.0043	3.5	64
Over 0.050 to 0.250 (1.3 to 6.4), incl	0.120	0.0047	3.0	64
	Nickel (UNS N02200	Nickel (UNS N02209) Strip [12 in. (305 mm) Wide and Under] $^{\it D}$		
0.005^{E} to 0.010 (0.13 to 0.25), incl	0.025	0.0010	7.5 ^F	70 ^F
Over 0.010 to 0.024 (0.25 to 0.61), incl	0.065	0.0026	5.0	89
Over 0.024 to 0.125 (0.61 to 3.2), incl	0.110	0.0043	3.5	64
	Low-Carbon Nickel (UNS NO	Low-Carbon Nickel (UNS N02201) Strip Ω_{2}^{2} jn. (305 mm) Wide and Under 1D	ıder] <i>0</i>	
0.005^{E} to 0.010 (0.13 to 0.25), incl	0.030	0.0012	7.0 ^F	66 ^F
Over 0.010 to 0.024 (0.25 to 0.61), incl	0.075	0.0030	4.5	64
Over 0.024 to 0.125 (0.61 to 3.2), incl	0.110	0.0043	3.5	64

⁴ For Rockwell or equivalent hardness conversions see Hardness Conversion Tables E 140.

^B Caution should be observed in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

^c There are no applicable grain size requirements for low-carbon nickel (UNS N02201) sheet. The hardness of low-carbon pickel (UNS N02201) sheet shall be not over Rockwell B64, or equivalent.

D Sheet requirements in Table 4 apply to strip thicknesses over 0.125 in. (3.2 mm), and for all thicknesses of strip over 12 in. (305 mm) in width.

E For ductility evaluations for strip under 0.005 in. (0.13 mm) in thickness, the spring-back test, such as that described in Test Method F 155, is often used and the manufacturer should be

10 Section II Part B 2026 F Accurate grain size and hardness determinations are difficult to make on strip under 0.005 in. (0.13 mm) in thickness and are not recommended.

PERMISSIBLE WARIATIONS IN THICKNESS AND OVERWEIGHT OF RECTANGULAR PLATES **TABLE 5** ASMENORMOC.COM. Click

Specified Thickness, in. (mr 3/46 to 5/46 (4.8 to 7.9), excl 5/46 to 3/46 (7.9 to 9.5), excl 3/46 to 3/46 (9.5 to 11.1), excl 3/46 to 3/46 (11.1 to 12.7), excl 3/46 to 3/46 (11.2 to 15.9), excl 5/46 to 3/46 (15.9 to 19.0), excl 3/40 1 (19.0 to 25.4), excl 1 to 2 (25.4 to 50.8), incl 1 to 2 (25.4 to 50.8), incl each lot ⁴ in each shipment s specified thickness.	Specified Thickness, in. (mm) A8 (1220) (1520to 12) (1230to (1	Under 48 (1220) 9.0 7.5 7.0 6.0 5.0 4.5 4.0 4.0 4.0 to exceed the amount and the second of circular is shall not exceed in the and the	48 to 60 (1220 to 1520), excl 10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.0 s and not to we rount given in the of the plates of and sketch plat d the nominal w	60 to 72 (1520 to 1830), excl 12.0 10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.5 in each group wic tres shall be 25% weight by more t	72 to 84 (1830 to 2130), excl (3.5 12.0), 10.5 0.0 7.5 7.0 6.0 5.5 foot. No plat grinding is per grinding is per than 6 each % greater than 11/4 time than 11/4 time	84 to 96 (2130 to 2440), excl 15.0 13.5 12.0 10.5 70.6 6.0 group thickness an the amounts es the amount g	96 to 108 (2440 to 2740), excl 16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.0 7.5 7.0 nove surface imper ss s given in the table	108 to 120 (2740 to 3050), excl 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.5 fee, outpute B.	120 to 132 (3050 to 3350), excl 18.0 16.5 15.0 13.5 12.0 10.5 9.0 ter the thickness of the conceded of the	132 to 144 (3350 to 3660), excl 18.0 16.5 15.0 12.0 10.5 10.5 ordered, and the 0.01 in. (0.25 r	144 to 160 (3660 to 4070), incl 19.5 18.0 16.5 15.0 13.5 12.0 20verweight of
Specified Thic $\frac{3}{7}_6$ to $\frac{5}{7}_6$ (4.8 $\frac{5}{7}_6$ to $\frac{3}{8}$ (7.9 $\frac{3}{8}$ to $\frac{7}{7}_6$ (9.5 $\frac{7}{7}_6$ to $\frac{5}{8}$ (11.1 $\frac{1}{7}_6$ to $\frac{5}{8}$ (12.7 $\frac{5}{8}$ to $\frac{3}{8}$ (12.7 $\frac{5}{8}$ to $\frac{3}{8}$ to 1 (19.0 $\frac{1}{1}$ 1 to 2 (25.4 to 2 to	ckness, in. (mm) 8 to 7.9), excl 10 9.5), excl 11 to 12.7), excl 1 to 12.7), excl 1 to 15.9), excl 1 to 15.9), excl 2 to 15.9), excl 2 to 25.4), excl 2 to 25.4), excl 2 to 25.8), incl 2 to 50.8), incl 3 liplates shall be orde 3 to 50.8), incl 2 to 50.8), incl 3 liplates shall be orde 3 to 50.8), incl 4 liplates shall be orde 4 sach shipment shall no 5 kness. 1 lot' applied to this 1 lissible overweight for ht of individual plates	9.0 7.5 7.0 6.0 5.0 4.5 4.0 4.0 4.0 4.0 7.0 6.0 5.0 4.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	1520), excl 10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.5 and not to we in the plates of and sketch plates of and sketch plates of a the nominal version of the nominal version in the second sketch plates.	1830), excl excl 12.0 10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.5 feach group wir tres shall be 25% weight by more t	excl [3.5] 12.0 10.5 9.0 7.5 7.0 6.0 5.5 froot. No plat arrinding is per greater tha than 1,4 time t	2440), excl 15.0 13.5 12.0 10.5 6.0 6.0 6.0 group thicknes an the amounts	2740), excl 16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.5 7.0 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.5 8.5 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	(2740 to 3050), excl 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 1. (0.25 mm) und rfections, such sp	(3050 to 3350), excl 18.0 16.5 15.0 13.5 12.0 10.5 9.0 ler the thickness outs not to exceed	360), excl 360), excl 18.0 16.5 15.0 13.5 12.0 10.5 ordered, and the 0.01 in. (0.25 r	(3660 to 4070), incl 19.5 18.0 16.5 15.0 13.5 12.0 voerweight of
$\frac{3}{16}$ to $\frac{5}{5}$, (4.8 $\frac{5}{5}$, (6.18 $\frac{5}{5}$, (6.19 $\frac{5}{6}$, (7.9 $\frac{5}{6}$, 10.7 $\frac{7}{6}$, (9.5 $\frac{5}{6}$, 10.2 $\frac{5}{6}$, to $\frac{5}{6}$, (12.7 $\frac{5}{6}$, to $\frac{3}{6}$, (12.9 $\frac{5}{6}$, to $\frac{3}{6}$, (15.9 $\frac{3}{6}$, to 1 (19.0 t) 1 to 2 (25.4 t) 1 to 2 (25.4 t) 1 NOTE — A each lot ⁴ in es specified thick	3 to 7.9), excl to 9.5), excl to 11.1), excl 1 to 12.7), excl ' to 15.9), excl to 25.4), excl to 26.8), incl to 50.8), incl All plates shall be ord sach shipment shall no kness. "lot" applied to this nissible overweight for ht of individual plates	9.0 7.5 7.0 6.0 5.0 4.5 4.0 4.0 4.0 ered to thickness of exceed the amicable means all roles of circular is shall not exceed	10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.0 s and not to we lount given in the plates or and sketch pla	12.0 10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	13.5 10.5 9.0 7.5 7.0 6.0 5.5 foot. No plat yrinding is per dth and each % greater tha than 1 ¹ / ₄ time	15.0 13.5 12.0 10.5 10.5 6.0 6.0 fes shall vary in rmitted to remigrated to remigrate and the amounts es the amounts.	16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.0 nore than 0.01 in ove surface impersion in this table given in the table	18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.5 rfections, such sp	 18.0 16.5 15.0 13.5 12.0 10.5 9.0 ler the thickness ots not to exceed	 18.0 16.5 15.0 13.5 12.0 10.5 ordered, and the	 19.5 18.0 16.5 15.0 13.5 12.0 overweight of
$\frac{5}{36}$ to $\frac{3}{36}$ (7.9 + $\frac{3}{36}$ to $\frac{7}{36}$ (9.5 - $\frac{7}{36}$ to $\frac{1}{3}$ (11.1 - $\frac{1}{3}$ to $\frac{5}{36}$ (12.7 - $\frac{5}{36}$ to $\frac{3}{3}$ (15.9 - $\frac{3}{3}$ to 1 (19.0 to 1 to 2 (25.4 to 1 NOTE — A each lot ⁴ in essential specified thick	to 9.5), excl to 11.1), excl 1 to 12.7), excl ' to 15.9), excl to 25.4), excl to 25.4), excl to 50.8), incl All plates shall be ord ach shipment shall nc kness. "lot" applied to this iissible overweight for ht of individual plates	7.5 7.0 6.0 6.0 7.0 4.5 4.0 4.0 4.0 2.0 2.0 4.0 7.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	9.0 7.5 7.0 6.0 6.0 5.5 4.5 4.0 s and not to we lount given in the plates of and sketch pla at the nominal v	10.5 9.0 7.5 7.0 6.0 5.5 4.5 4.5 sight per square he table. Spot g	12.0 10.5 9.0 7.5 7.0 6.0 5.5 foot. No plat prinding is per greater tha dth and each % greater tha than 1½ time	13.5 12.0 10.5 7.5 7.6 6.0 6.0 tes shall vary in rmitted to remigroup thicknes an the amounts es the amount.	15.0 13.5 12.0 10.5 9.0 7.5 7.0 nore than 0.01 in ove surface impersores surface impersores so.	16.5 15.0 13.5 12.0 10.5 9.0 7.5 7.5 7.5 rfections, such sp	18.0 16.5 15.0 13.5 10.5 9.0 ler the thickness ots not to exceed	18.0 16.5 15.0 12.0 10.5 ordered, and the	19.5 18.0 16.5 15.0 13.5 12.0 werweight of
$\frac{3}{2}$ to $\frac{7}{16}$ (9.5 f) $\frac{7}{16}$ to $\frac{1}{16}$ (11.1) $\frac{1}{12}$ to $\frac{5}{16}$ (12.7) $\frac{5}{2}$ to $\frac{3}{4}$ (15.9) $\frac{3}{4}$ to 1 (19.0 f) $\frac{1}{1}$ to 2 (25.4 tr) $\frac{1}{1}$ to 2 (25.4 tr) $\frac{1}{1}$ NOTE — A each lot $\frac{3}{4}$ in easy specified thick	to 11.1), excl 1 to 12.7), excl ' to 15.9), excl > to 19.0), excl to 25.4), excl to 50.8), incl All plates shall be orde ach shipment shall nc kness. "lot" applied to this iissible overweight for ht of individual plates	7.0 6.0 5.0 4.5 4.0 4.0 ered to thickness of exceed the amutable means all roots of circular is shall not exceed	7.5 7.0 6.0 6.0 5.5 4.5 4.0 s and not to we hount given in the plates of and sketch pland the nominal version of t	9.0 7.5 7.0 6.0 5.5 4.5 4.5 sight per square he table. Spot g	10.5 9.0 7.5 7.0 6.0 6.0 5.5 foot. No plat prinding is per than dach % greater that than 1½ time	12.0 10.5 10.5 70.0 6.0 6.0 tes shall vary in rmitted to remigroup thicknes an the amounts es the amount -	13.5 12.0 10.5 9.0 7.5 7.0 nore than 0.01 in ove surface imper	15.0 13.5 12.0 10.5 9.0 7.5 7.5 rfections, such sp	16.5 15.0 13.5 12.0 10.5 9.0 ler the thickness ots not to exceed	18.0 16.5 15.0 12.0 10.5 ordered, and the	19.5 18.0 16.5 15.0 13.5 12.0 werweight of
7_{16} to 1_{2} (11.1) 1_{12} to 1_{26} (12.7) 1_{26} to 1_{24} (15.9) 1_{24} to 1 (19.0) 1_{26} to 2 (25.4 to 10.0 for 2 (25.4 to 10.0 for 2 (25.4 to 2 (25.4	1 to 12.7), excl 1 to 15.9), excl 1 to 19.0), excl 1 to 25.4), excl 2 to 50.8), incl All plates shall be orde ach shipment shall nc kness. "lot" applied to this nissible overweight for th of individual plates	6.0 5.0 4.5 4.0 4.0 6.0 5.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	7.0 6.0 5.5 4.5 4.0 s and not to we nount given in the nount given in the plates of and sketch plades of the nominal version and the nomin	7.5 7.0 6.0 5.5 4.5 4.5 sight per square he table. Spot gind per square he table spot gind with the shall be 259 weight by more t	9.0 7.5 7.0 6.0 6.0 5.5 foot. No plat prinding is per than deach % greater that than 1½ time.	10.5 70.0 6.0 6.0 tes shall vary in rmitted to remigroup thicknes an the amounts es the amount.	12.0 10.5 9.0 7.5 7.0 nore than 0.01 in ove surface impersons signer in this table given in the table	13.5 12.0 10.5 9.0 7.5 7.5 rfections, such sp	15.0 13.5 12.0 10.5 9.0 ler the thickness ots not to exceed	16.5 15.0 13.5 12.0 10.5 ordered, and the	18.0 16.5 15.0 13.5 12.0 werweight of im) under the
$\frac{1}{2}$ to $\frac{5}{8}$ (12.7 $\frac{5}{8}$ to $\frac{3}{4}$ (15.9 $\frac{3}{4}$ to 1 (19.0 to 1 to 2 (25.4 to 2 to	' to 15.9), excl to 25.4), excl to 25.4), excl to 50.8), incl All plates shall be orde ach shipment shall no kness. "lot" applied to this nissible overweight for ht of individual plates	5.0 4.5 4.0 4.0 2.0 4.0 5.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	6.0 5.5 4.5 4.0 s and not to we hount given in the plates of and sketch pla	7.0 6.0 5.5 4.5 4.5 sight per square he table. Spot g	7.5 7.0 6.0 6.0 5.5 foot. No plat prinding is per dth and each % greater tha than 1½ time	6.0 6.0 fes shall vary in rmitted to remi group thicknes an the amounts es the amount :	10.5 9.0 7.5 7.0 nore than 0.01 in ove surface impersons. ss. s given in this table given in the table	12.0 10.5 9.0 7.5 1. (0.25 mm) und rfections, such sp	13.5 12.0 10.5 9.0 ler the thickness ots not to exceed	15.0 13.5 12.0 10.5 ordered, and the	16.5 15.0 13.5 12.0 werweight of im) under the
$\frac{5_{\%} \text{ to } \frac{3}{4} \text{ (15.9)}}{\frac{3}{4} \text{ to 1 (19.0 \text{ t})}}$ 1 to 2 (25.4 tr 1 NOTE — A' each lot ⁴ in ea specified thick	to 19.0), excl to 25.4), excl to 50.8), incl All plates shall be orde ach shipment shall nc kness. "lot" applied to this iissible overweight for ht of individual plates	4.5 4.0 4.0 ered to thickness of exceed the ami table means all into of circular s shall not exceed	5.5 4.5 4.0 5 and not to we lount given in the of the plates of and sketch pla	6.0 5.5 4.5 4.5 sight per square he table. Spot g f each group wir ttes shall be 25% weight by more t	7.0 6.0 5.5 foot. No plat prinding is per dth and each % greater tha than 1½ time	tes shall vary in rmitted to remi group thicknes es the amounts	9.0 7.5 7.0 nore than 0.01 in ove surface imperson. ss. s given in this tab given in the table	10.5 9.0 7.5 7.6 10.25 mm) und rections, such sp	12.0 10.5 9.0 ler the thickness ofs not to exceed	13.5 12.0 10.5 ordered, and the 0.01 in. (0.25 r	15.0 13.5 12.0 overweight of im) under the
$\frac{3_4}{4}$ to 1 (19.0 t 1 to 2 (25.4 tt NOTE — Al each lot ⁴ in ea specified thick	to 25.4), excl to 50.8), incl All plates shall be orde ach shipment shall nc kness. "lot" applied to this iissible overweight for ht of individual plates	ered to thickness of exceed the amutable means all related to thickness shall not exceed shall not exceed shall not exceed the amutable means all related to the shall not exceed the amutable means all related to the shall not exceed the amutable means all related to the shall not exceed the amutable means all related to the shall not exceed th	4.5 4.0 s and not to we count given in the of the plates of and sketch pla	5.5 4.5 sight per square he table. Spot greather ach group wir tess shall be 259 weight by more t	6.0 5.5 foot. No plat prinding is per dth and each % greater tha than 1 ¹ / ₄ time	tes shall vary in rmitted to remi group thicknes an the amounts es the amount i	7.5 7.0 nore than 0.01 in ove surface imper ss. s. given in the table given in the table	9.0 7.5 1. (0.25 mm) und rections, such sp	10.5 9.0 ler the thickness ofs not to exceed	12.0 10.5 prdered, and the 0.01 in. (0.25 r	13.5 12.0 overweight of im) under the
1 to 2 (25.4 to NOTE — Al each lot ^A in ea specified thick	to 50.8), incl All plates shall be orde ach shipment shall no kness. "lot" applied to this iissible overweight for ht of individual plates	ered to thickness of exceed the amutable means all related to total and shall not exceed shall not exceed shall not exceed the amutable means all related to the shall not exceed	s and not to we ount given in the of the plates of and sketch plates of the nominal v	ight per square he table. Spot greed each group wickes shall be 25% weight by more t	foot. No plat rinding is per dth and each greater tha than 1½ time	tes shall vary in rmitted to remore group thicknes an the amounts es the amount.	7.0 nore than 0.01 in ove surface imper ss. sgiven in this tab given in the table	7.5 i. (0.25 mm) und rections, such sp rections and rections rect	9.0 ler the thickness ofs not to exceed	10.5 ordered, and the 0.01 in. (0.25 r	12.0 overweight of im) under the
NOTE — Al each lot ^A in ea specified thick	All plates shall be orde ach shipment shall no cness. "lot" applied to this iissible overweight for ht of individual plates	ered to thickness of exceed the amu table means all in lots of circular shall not exceed	s and not to we ount given in the office of the plates of and sketch plates and the nominal v	eight per square he table. Spot gife each group wickes shall be 25% weight by more t	foot. No plat rinding is per dth and each % greater tha than 1½ time	tes shall vary in rmitted to remore group thicknes an the amounts es the amount -	nog than 0.01 in ove surface imper ss.	1. (0.25 mm) und fections, such sp. fections, such sp. fe. fe. fe. fe. fe. fe. fe. fe. fe. fe	er the thickness of soft not to exceed	ordered, and the	overweight of
	"lot" applied to this lissible overweight for ht of individual plates	table means all or lots of circular shall not exceed	of the plates of and sketch pla [*] 3 the nominal v	f each group wic tes shall be 25% weight by more t	dth and each % greater tha than 1½ time	group thicknes in the amounts es the amount	ss. given in this table given in the table	Fe. And Footnote B.	·		
A The term	issible overweight for	lots of circular is shall not exceed	and sketch plai	tes shall be 25% weight by more t	$^{\prime\prime}_{\prime\prime}$ greater tha than 1 / 4 time	or the amounts is the amount or	given in this table	and Footnote B.			
B The permi $^{\mathcal{C}}$ The weigh:								M			
								B			
									24		
									ر ص		
									. હ		
									di di		
									'n,		
										Q	
										٥١	
											Ó

TABLE 6 PERMISSIBLE VARIATIONS IN THICKNESS FOR RECTANGULAR PLATES OVER 2 in. (50.8 mm) IN THICKNESS

	Permi	ssible Variations, i	in. (mm), over Spe	cified Thickness fo	or Widths Given, in	. (mm)
Specified Thickness, in. (mm)	To 36 (915), excl	36 to 60 (915 to 1520), excl	60 to 84 (1520 to 2130), excl	84 to 120 (2130 to 3050), excl	120 to 132 (3050 to 3350), excl	132 (3350) and over
Over 2 to 3 (51.0 to 76.0), excl 3 to 4 (76.0 to 102.0), incl	½6 (1.6) 3/64 (2.0)	$\frac{3}{32}$ (2.4) $\frac{3}{32}$ (2.4)	⁷ / ₆₄ (2.8) ⁷ / ₆₄ (2.8)	½ (3.2) ½ (3.2)	½ (3.2) ½ (3.2)	% ₄ (3.6)

 ${\tt NOTE-Permissible}$ variation under specified thickness, 0.01 in. (0.25 mm).

TABLE 7 PERMISSIBLE VARIATIONS IN THICKNESS OF SHEET AND STRIP [PERMISSIBLE VARIATIONS, PLUS AND MINUS, IN THICKNESS, in. (mm), FOR WIDTHS GIVEN IN in. (mm)]

		Shee	t ^A						
	Hot-R	olled	Cold-Ro	lled					
Specified Thickness, in. (mm)	48 (1220) and Under	0ver 48 to 60 (1220 to 1520), incl	48 (1220) and Under	Over 48 to 60 (1220 to 1520), incl					
0.018 to 0.025 (0.46 to 0.64), incl	0.003 (0.08)	0.004 (0.10)	0.002 (0.05)	0.003 (0.08)					
Over 0.025 to 0.034 (0.64 to 0.86), incl	0.004 (0.10)	0.005 (0.13)	0.003 (0.08)	0.004 (0.10)					
Over 0.034 to 0.043 (0.86 to 1.1), incl	0.005 (0.13)	0.006 (0.15)	0.004 (0.10)	0.005 (0.13)					
Over 0.043 to 0.056 (1.1 to 1.4), incl	0.005 (0.13)	0.006 (0.15)	0.004 (0.10)	0.005 (0.13)					
Over 0.056 to 0.070 (1.4 to 1.8), incl	0.006 (0.15)	0.007 (0.18)	0.005 (0.13)	0.006 (0.15)					
Over 0.070 to 0.078 (1.8 to 2.0), incl	0.007 (0. 18)	0.008 (0.20)	0.006 (0.15)	0.007 (0.18)					
Over 0.078 to 0.093 (2.0 to 2.4), incl	0.008 (0.20)	0.009 (0.23)	0.007 (0.18)	0.008 (0.20)					
Over 0.093 to 0.109 (2.4 to 2.8), incl	0.009 (0.23)	0.010 (0.25)	0.007 (0.18)	0.009 (0.23)					
Over 0.109 to 0.125 (2.8 to 3.2), incl	0.010 (0.25)	0.012 (0.30)	0.008 (0.20)	0.010 (0.25)					
Over 0.125 to 0.140 (3.2 to 3.6), incl	0.012 (0.30)	0.014 (0.36)	0.008 (0.20)	0.010 (0.25)					
Over 0.140 to 0.171 (3.6 to 4.3), incl	0.014 (0.36)	0.016 (0.41)	0.009 (0.23)	0.012 (0.30)					
Over 0.171 to 0.187 (4.3 to 4.8), incl	0.015 (0.38)	0.017 (0.43)	0.010 (0.25)	0.013 (0.33)					
Over 0.187 to 0.218 (4.8 to 5.5), incl	0.017 (0.43)	0.019 (0.48)	0.011 (0.28)	0.015 (0.38)					
Over 0.218 to 0.234 (5.5 to 5.9), incl	0.018 (0.46)	0.020 (0.51)	0.012 (0.30)	0.016 (0.41)					
Over 0.234 to 0.250 (5.9 to 6.4), inc	0.020 (0.51)	0.022 (0.56)	0.013 (0.33)	0.018 (0.46)					
Specified Thickness,		led Strip ^{A,B} Widths	Strip ^{A,B} Widths 12 in. (305 mm) and under, ±						
Up to 0.050 (1.3), incl Over 0.050 to 0.093 (1.3 Over 0.093 to 0.125 (2.4	to 2.4), incl	viutis	0.0015 (0.04) 0.0025 (0.06) 0.004 (0.11)						

^A Measured ³/₈ in. (9.5 mm) or more from either edge except for strip under 1 in. (25.4 mm) in width which is measured at any place. ^B Standard sheet tolerances apply for thicknesses over 0.125 in. (3.2 mm) and for all thicknesses of strip over 12 in. (305 mm) wide.

TABLE 8 PERMISSIBLE VARIATIONS IN WIDTH 4 OF SHEARED, PLASMA-TORCH CUT, AND ABRASIVE-CUT RECTANGULAR PLATE B,C

				· LAIL	-					
			Permissil	ole Variati	ons in Widtl	ns for Widt	hs Given in i	n. (mm)		
	Up to 30		0ver 30 (760 to inc	1830),	0ver 72 (1830 to in	2740),	0ver 108 (2740 to in	•	0ver 144 (3660 to in	4070),
Specified Thickness	+	-	+	_	+	-	+	-	+	
				Inche	S					0
Sheared: ^D										ijo.
3/16 to 5/16, excl	³ / ₁₆	1/8	1/4	1/8	3/8	1/8	1/2	1/8	0	
$\frac{5}{16}$ to $\frac{1}{2}$, excl	1/4	1/8	3/8	1/8	3/8	1/8	1/2	1/8	5/8	1/8
$\frac{5}{16}$ to $\frac{1}{2}$, excl $\frac{1}{2}$ to $\frac{3}{4}$, excl $\frac{3}{4}$ to 1, excl	3/8 1/2 5/8	1/8 1/8 1/8 1/8	3/8 3/8 1/2 5/8	1/8 1/8 1/8 1/8	3/8 3/8 1/2 5/8 3/4	1/8 1/8 1/8	1/2 1/2 5/8 3/4 7/8	1/8 1/8 1/8	3/4	1/8 1/8 1/8 1/8
3/4 to 1, excl	1/2	1/8	1/2	1/8	5/8	1/8	3/4	1/8	7/8	1/8
1 to $1\frac{1}{4}$, incl	5/8	1/8	5/8	1/8	3/4	1/8	7/8	1/8	1	1/8
Abrasive-cut: <i>E,F</i>					•			, %	•	
$\frac{3}{16}$ to $1\frac{1}{4}$, incl	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/2	1/8	1/8
Over $1\frac{1}{4}$ to $2\frac{3}{4}$, incl	³ ⁄ ₁₆	1/8	3/16	1/8	3/16	1/8	3/16	1/8	1/8 3/16	1/8 1/8
Plasma-torch-cut:		•) ` '		
$\frac{3}{16}$ to 2, excl	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0
2 to 3, incl	1/2 5/8	0	1/2 5/8	0	1/ ₂ 5/ ₈	0	2 ⁵ /8	0	1/ ₂ 5/ ₈	0
				Millime	res	C.	11.			
Sheared: ^D						20				
4.8 to 7.9, excl	4.8	3.2	6.4	3.2	9.5	3.2	12.7	3.2		
7.9 to 12.7, excl	6.4	3.2	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2
12.7 to 19.0, excl	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2	19.0	3.2
19.0 to 25.4, excl	12.7	3.2	12.7	3.2	15.9	3.2	19.0	3.2	22.2	3.2
25.4 to 31.8, incl	15.9	3.2	15.9	3.2	19.0	3.2	22.2	3.2	25.4	3.2
Abrasive-cut: E,F				Ç	~					
4.8 to 31.8, incl	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Over 31.8 to 69.8, incl	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2
Plasma-torch-cut: G				O_{\prime}						
4.8 to 50.8, excl	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0
50.8 to 76.2, incl	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0

A Permissible variations in width for powder-cut or inert-arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

^B Permissible variations in machined, powder-cut or inert-arc-cut circular plate shall be as agreed upon between the manufacturer and the purchaser.

^C Permissible variations in plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

 $^{^{}D}$ The minimum sheared width is 10 in (254 mm) for material $\frac{3}{4}$ in. (19.0 mm) and under in thickness and 20 in. (508 mm) for material over $\frac{3}{4}$ in. (19.0 mm) in thickness.

ver $\frac{7}{4}$ in. (19.0 mm) in thickness. $\frac{7}{4}$ The minimum abrasive-cut width is 2 in. (50.8 mm) and increases to 4 in. (101.6 mm) for thicker plates.

^F These tolerances are applicable to lengths of 240 in. (6100 mm), max. For lengths over 240 in. (6100 mm), an additional $\frac{1}{16}$ in. (1.6 mm) is permitted, both plus and minus.

⁶ The tolerance spread shown for plasma-torch-cutting may be obtained all on the minus side, or divided between the plus and minus side if so specified by the purchaser.

		T	ABLE 9			
PERMISSIBLE	VARIATIONS	IN	DIAMETER	F0R	CIRCULAR	PLATES

	Sheared Plate Permissible Variations Over Specified Diamete for Thickness Given in in. (mm) ^A
Specified Diameter, in. (mm)	To ³ / ₈ (9.5), incl
20 to 32 (508 to 813), excl	¹ / ₄ (6.4)
32 to 84 (813 to 2130), excl	⁵ / ₁₆ (7.9)
84 to 108 (2130 to 2740), excl	³ / ₈ (9.5)
108 to 140 (2740 to 3580), incl	7/16 (11.1)
Pla	asma-Torch-Cut Plate ^B

Permissible Variations in Specified Diameter for Thickness Given in in. (mm)^C $^{3}/_{16}$ to 2 (4.76 to 50.8), excl 2 to 3 (50.8 to 76.2), incl Thickness max, Specified Diameter, in. (mm) in. (mm) $\frac{1}{2}$ (12.7) (15.9)0 19 to 20 (483 to 508), excl 3 (76.2) 0 20 to 22 (508 to 559), excl $2\frac{3}{4}$ (69.8) $\frac{1}{2}$ (12.7) (15.9)0 $2\frac{1}{2}$ (63.5) 22 to 24 (559 to 610), excl ½ (12.7) 0 (15.9)24 to 28 (610 to 711), excl $2\frac{1}{4}$ (57.3) $\frac{1}{2}$ (12.7) 0 $\frac{1}{2}$ (12.7) 28 to 32 (711 to 812), excl 2 (50.8) (15.9)0 $1\frac{3}{4}$ (44.5) $\frac{1}{2}$ (12.7) 32 to 34 (812 to 864), excl 34 to 38 (864 to 965), excl $1\frac{1}{2}$ (38.1) ½ (12.7) . . . $1\frac{1}{4}$ (31.8) ½ (12.7) 38 to 40 (965 to 1020), excl . . . ½ (12.7) ⁵/₈ (15.9) 40 to 140 (1020 to 3560), incl 3 (76.2)0

- **7.3.2** Permissible variations in length of rectangular plate shall be as prescribed in Table 11.
 - **7.4** *Straightness:*
- **7.4.1** The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres).
- **7.4.2** Straightness for coiled material is subject to agreement between the manufacturer and the purchaser.
 - **7.5** *Edges*:
- **7.5.1** When finished edges of strip are specified in the contract or order, the following descriptions shall apply:
- 7.5.11 Square-edge strip shall be supplied with finished edges, with sharp, square corners, and without beyel or rounding.
- **7.5.1.2** Round-edge strip shall be supplied with finished edges, semicircular in form, and the diameter of the circle forming the edge being equal to the strip thickness.
- **7.5.1.3** When no description of any required form of strip edge is given, it shall be understood that edges such as those resulting from slitting or shearing will be acceptable.
 - **7.5.1.4** Sheet shall have sheared or slit edges.

- **7.5.1.5** Plate shall have sheared or cut (machined, abrasive-cut, powder-cut, or inert-arc-cut) edges, as specified.
- **7.6** Squareness (Sheet) For sheets of all thicknesses, the angle between adjacent sides shall be $90^{\circ} \pm 0.15^{\circ}$ ($\frac{1}{16}$ in. in 24 in.) (1.6 mm in 610 mm).
 - 7.7 Flatness:
- **7.7.1** There shall be no flatness requirements for "deep drawing quality," "spinning quality," or "as rolled," sheet and strip (see X1.4).
- **7.7.2** Standard flatness tolerances for plate shall conform to the requirements prescribed in Table 12. "Specially flattened" plate, when so specified, shall have permissible variations in flatness as agreed upon between the manufacturer and the purchaser.

8. Workmanship, Finish, and Appearance

- **8.1** The material shall be uniform in quality and temper, smooth, commercially straight or flat, and free of injurious imperfections.
- **8.2** Sheet, Strip, and Plate Sheet, strip, and plate supplied in the conditions and finishes as listed in the appendix may be ground or machined to remove surface imperfections, provided such removal does not reduce the material below the minimum specified dimensions. Surface

^A No permissible variations under.

^B Permissible variations in plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

^c The tolerance spread shown may also be obtained all on the minus side or divided between the plus and minus sides if so specified by the purchaser.

TABLE 11 PERMISSIBLE VARIATIONS IN LENGTH $^{\it A}$ OF SHEARED, PLASMA TORCH-CUT, $^{\it B}$ AND ABRASIVE-CUT RECTANGULAR PLATE $^{\it C}$

					NLC	HIN	JULAN	ILAI	_							
					Permis	ssible \	/ariation	in Ler	ngth for	Length	s Given,	, in. (m	ım)			
	Over 60 to 96 Up to 60 (1520 to (1520), 2440), incl incl		0v 96 to (244 305 in	120 0 to 50),	120 t (305 609	er o 240 50 to 96), cl	240 t (609 914	ver o 360 96 to 14), icl	360 t (914 11 4	ver to 450 14 to 130), ncl	450 t (11 4 13 7	ver to 540 130 to 716), ncl		716)		
Specified Thickness	+	_	+	_	+	_	+	_	+	_	+	_	+	_	·.0°	_
							Inches								C _{II}	
Sheared: ^D														Se)	
³ / ₁₆ to ⁵ / ₁₆ , excl ⁵ / ₁₆ to ¹ / ₂ , excl ¹ / ₂ to ³ / ₄ , excl ³ / ₄ to 1, excl 1 to 1 ¹ / ₄ , incl Abrasive-cut: ^E	3/16 3/8 1/2 5/8 3/4	1/8 1/8 1/8 1/8 1/8	1/4 1/2 1/2 5/8 3/4	1/8 1/8 1/8 1/8 1/8	3/8 1/2 5/8 5/8 3/4	1/8 1/8 1/8 1/8 1/8	1/2 1/2 5/8 3/4 7/8	1/8 1/8 1/8 1/8 1/8	5/8 5/8 3/4 7/8 1 ¹ /8	1/8 1/8 1/8 1/8 1/8	3/4 3/4 7/8 11/8 13/8	1/8 1/8 1/8 1/8 1/8	7/8 7/8 11/8 13/8 15/8	1/8 1/8 1/8 1/8 1/8 1/8	1 1 ³ / ₈ 1 ⁵ / ₈	1/8 1/8 1/8
$\frac{3}{16}$ to $1\frac{1}{4}$, incl Over $1\frac{1}{4}$ to $2\frac{3}{4}$, incl Plasma-torch-cut: F	1/8 3/16	1/8 1/8	1/8 3/16	1/8 1/8	1/8 3/16	1/8 1/8	1/8 3/16	1/8 1/8	1/8 3/16	1/8	1/8 3/16	1/8 1/8				
3/ ₁₆ to 2, excl 2 to 3, incl	1/ ₂ 5/ ₈	0 0	1/2 5/8	0 0	1/ ₂ 5/ ₈	0 0	1/2 5/8	0 0	1/2 5/8	0.0	1/ ₂ 5/ ₈	0 0	1/2 5/8	0 0	1/2 5/8	0
						М	illimetre	!S	270							
Sheared: ^D								, ♦								
4.8 to 7.9, excl 7.9 to 12.7, excl	4.8 9.5	3.2	6.4	3.2	9.5 12.7	3.2	12.7 12.7	3.2	15.9 15.9	3.2	19.0 19.0	3.2	22.2	3.2	25.4	3.2
12.7 to 19.0, excl 19.0 to 25.4, excl 25.4 to 31.8, incl	12.7 15.9 19.0	3.2 3.2 3.2	12.7 15.9 19.0	3.2 3.2 3.2	15.9 15.9 19.0	3.2 3.2 3.2	15.9 19.0 22.2	3.2 3.2 3.2	19.0 22.2 28.6	3.2 3.2 3.2	22.2 28.6 34.9	3.2 3.2 3.2	28.6 34.9 41.2	3.2 3.2 3.2	34.9 41.2	3.2 3.2
Abrasive-cut: ^E 4.8 to 31.8, incl Over 31.8 to 69.9, incl Plasma-torch-cut: ^F	3.2 4.8	3.2	3.2 4.8	3.2 3.2	3.2 4.8	3.2 3.2	3.2 4.8	3.2 3.2	3.2 4.8	3.2	3.2 4.8	3.2 3.2				•••
4.8 to 50.8, excl 50.8 to 76.2, incl	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0	12.7 15.9	0

^A Permissible variations in length for powder-cut or inert-arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

^B The tolerance spread shown for plasma-torch-cutting may be obtained all on the minus side, or divided between the plus and minus sides if so specified by the purchaser.

^C Permissible variations in machined, powder-cut or inert-arc-cut circular plate shall be as agreed upon between the manufacturer and the purchaser.

^D The minimum sheared length is 10 in. (254 mm).

 $^{^{\}it E}$ Abrasive cut applicable to a maximum length of 144 to 400 in. (3658 to 10 160 mm) depending on the thickness and width ordered.

F The tolerance spread shown for plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

PERMISSIBLE VARIATIONS FROM FLATNESS OF RECTANGULAR, CIRCULAR, AND SKETCH PLATES TABLE 12 ASMENORANDOC.COM

To 48 (1220 to 1220) To 1830 to 84 to 96 to 108 108 to 120	o 108 40 to), excl	96 to 108 (2440 to 2740), excl 58 (746), excl 18 (1346), excl 19 (146), excl 19 (156), excl 10 (156), excl 11 (156), excl 11 (156), excl 12 (156), excl 13 (156), excl 14 (156), excl 15 (156), excl 16 (156), excl 17 (156), excl 17 (156), excl 18 (156), excl 19 (156), excl 19 (156), excl 10 (156), excl 11 (156), excl 11 (156), excl 12 (156), excl 13 (156), excl 14 (156), excl 15 (156), excl 16 (156), excl 17 (156), exc				60 to 72 (1520 to 1830), (154)	48 to 60 (1220 to 1520), excl 154, 3, 4, 3, 4, 8,6, 8,6, 8,6, 8,6, 8,6, 8,6, 8,6,	To 48 (1220), excl	Specified Thickness 1, to 1,4 excl 1,4 to 38, excl 2,8 to 1,2, excl 1,5 to 34, excl 3,4 to 1, excl 1 to 2, excl 2 to 4, incl
Inches 34 11/16 11/4 13/8 15/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.3 6.5 6.5				1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	17. 2.7. 2.7. 3.7. 3.7. 3.7.	*41,21,01,01,01,01,01,01,01,01,01,01,01,01,01	³ / ₄₆ to ¹ / ₄ , excl ³ / ₄ to ³ / ₈ , excl ³ / ₈ to ¹ / ₂ , excl ³ / ₄ to ³ / ₄ , excl ³ / ₄ to 1, excl 1 to 2, excl 2 to 4, incl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5/8 1/16 1/8 1/8 1/16 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · ·		1 1 4 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	17,6 % % % % % % % % % % % % % % % % % % %	%4 ¹ 2,70,70,70,70;	\(\frac{1}{16} \text{ fo } \frac{1}{24} \text{ excl} \\ \(\frac{1}{24} \text{ fo } \frac{3}{8}, \text{ excl} \\ \(\frac{1}{8} \text{ fo } \frac{1}{24}, \text{ excl} \\ \(\frac{1}{2} \text{ fo } \frac{1}{24}, \text{ excl} \\ \(\frac{1}{2} \text{ fo } \frac{1}{24}, \text{ fincl} \\ \end{array} \]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.3 11.3 11.3 11.3 11.3	7,11,11,11,11,11,11,11,11,11,11,11,11,11	· · · · · · · · · · · · · · · · · · ·	1.% 5.6.4.6.7.7.7.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0	% 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	12, 12, 12, 12, 72, 73, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	11 2,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	4 to 3%, excl % to 1%, excl ½ to 34, excl ¼ to 1, excl 1 to 2, excl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1/4 1/16 1 1/8 11/8 1 1/8 11/8 1 1/16 1 1/16 1 1/8 1	11.3 11.3 11.3 11.3 11.3	1,11,11,11,11,11,11,11,11,11,11,11,11,1	. 1	7/26 7/26 Millimety	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	7,67,67,67,6	% to ½, excl ½ to ¾, excl ¼ to 1, excl to 2, excl to 4, incl
1.5	17% 11% 12% 12% 1	11.3 11.3 11.3 11.3			7.7. 7.7. Millimety	%%%% [*] %	7.6 7.6 7.8 7.8	%'76'76'	\$ to %, excl 4 to 1, excl to 2, excl to 4, incl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.76 1.37 35.0 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6	11.3 (6.5			%% %% %% %% %% %% %% %% %% %% %% %% %%	%% ⁷ %	% % % % % %	\n'\n'\	4 to 1, excl to 2, excl to 4, incl
19.0 27.0 31.7 34.9 41.3 15.9 12.7 14.3 14.3 14.3 14.3 14.3 14.3 14.3 17.5 14.3 14.3 14.3 14.3 14.3 17.5 14.3 14.3 14.3 14.3 14.3 14.3 17.5 14.3 14.3 14.3 14.3 17.5 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15	39.7 47.6	11.3 11.3 16.5		. 0	716 Or 716 Millimetr	8,7%	%16 %16 %16	75,	to 2, excl to 4, incl
19.0 27.0 31.7 34.9 41.3 41.3 17.5 19.0 23.8 28.6 12.7 14.3 15.9 15.9 19.0 20.6 28.6 12.7 14.3 15.9 19.0 20.6 20.6 12.7 14.3 14.3 14.3 14.3 17.5 19.0 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20	39.7 47.6 31.7 35.0	11.3		1 . N		×	716	,,,	12111 /1 23
19.0 27.0 31.7 34.9 41.3 41.3 17.5 19.0 23.8 28.6 35.0 23.8 28.6 12.7 14.3 15.9 15.9 19.0 20.6 28.6 12.7 14.3 15.9 15.9 19.0 20.6 20.6 12.7 14.3 14.3 14.3 17.5 17.5	39.7 47.6 31.7 35.0	11.3		Sa	Millimetro			4,	
19.0 27.0 31.7 34.9 41.3 17.5 19.0 23.8 28.6 35.0 36.5 12.7 14.3 17.5 19.0 23.8 28.6 12.7 14.3 15.9 15.9 19.0 20.6 12.7 14.3 14.3 14.3 17.5	39.7 47.6 31.7 35.0	11.3 36.5							
17.5 19.0 23.8 28.6 35.0 36.5 12.7 14.3 17.5 19.0 23.8 28.6 12.7 14.3 15.9 20.6 28.6 12.7 14.3 15.9 19.0 20.6 12.7 14.3 14.3 17.5	39.7 47.6 31.7 35.0 28.6	36.5	41	4	34.9	31.7	0.75	19.0	.8 to 6.4. excl
12.7 14.3 17.5 19.0 23.8 28.6 12.7 14.3 15.9 15.9 19.0 20.6 20.6 12.7 14.3 14.3 14.3 14.3 17.5	31.7 35.0 28.6 28.6	0.0	7-	, n	786	0 7 7 0	0.72	7.7.5	7 to 9 5 excl
12.7 14.3 15.9 15.9 20.6 28.6 12.7 14.3 15.9 15.9 17.5 17.5 17.5	7.1.7 28.6 28.6	7 00	000	0.00	0.02	25.0	19.0	L/.J	3.4 to 9.5, excl
12.7 14.3 15.9 15.9 20.6 28.6 12.7 14.3 15.9 14.3 17.5 17.5	980	0.0	287	25.8	19.0	C./I	14.0	17.7	.5 to 12.7, excl
12.7 14.3 15.9 15.9 19.0 20.6 12.7 14.3 14.3 17.5	0.04	58.6	28.	20.6	15.9	סיר	14.3	12.7	2.7 to 19.0, excl
12.7 14.3 14.3 14.3 17.5 47.5	23.8 25.4	9.03	20.	000		``	· ·		
		7.5		7.0	15.9	15.9	14.3	12.7	9.0 to 25.4, excl
6.4 7.9 9.5 11.1 12.7 14.3			77	17.5	15.9 14.3	15.9 14.3	14.3 14.3	12.7	9.0 to 25.4, excl 5.4 to 50.8, excl
0.4 /.9 7.5 11.1 12./		,	7	17.5	15.9	15.9	; 41 ; 4.3 ; 6.4.1	12.7	19.0 to 25.4, excl 25.4 to 50.8, excl

eliminated depressions shall be faired smoothly into the surrounding material. The removal of a surface imperfection shall be verified by the method originally used to detect the imperfection.

9. Sampling

- **9.1** *Lot* Definition:
- **9.1.1** A lot for chemical analysis shall consist of one heat
- **9.1.2** A lot for mechanical properties, hardness, and grain size testing shall consist of all material from the same heat, nominal thickness, and condition.
- **9.1.2.1** Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same thickness and condition, except for plates weighing over 500 lb, in which case only one specimen shall be taken.
 - 9.2 Test Material Selection:
- **9.2.1** *Chemical Analysis* Representative samples shall be taken during pouring or subsequent processing.
- **9.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.
- **9.2.2** Mechanical Properties, Hardness, and Grain Size Samples of the material to provide test specimens for mechanical properties, hardness, and grain size shall be taken from such locations in each lot as to be representative of that lot. (Hardness and grain size required only on the products as specified in Tables 3 and 4.)

10. Number of Tests

- **10.1** Chemical Analysis One test per lot.
- **10.2** *Mechanical Properties* One test per lot.
- **10.3** *Hardness* One test per lot. (Required only as specified in Table 3 and Table 4.)
- **10.4** *Grain Size* One fest per lot. (Required only as specified in Table 4.)

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material in the final condition (temper) and tested transverse to the direction of rolling when width will permit.
- 11.2 Tension test specimens shall be any of the standard or subsize specimens shown in Test Methods E 8.
- 11.3 In the event of disagreement, referee specimens shall be as follows:
- 11.3.1 Full thickness of the material, machined to the form and dimensions shown for the sheet-type specimen in Test Methods E 8 for material under $\frac{1}{2}$ in. (12.7 mm) in thickness.

11.3.2 The largest possible round specimen shown in Test Methods E 8 for material $\frac{1}{2}$ in. (12.7 mm) and over.

12. Test Methods

12.1 Determine the chemical composition, mechanical, and other properties of the material as enumerated in this specification, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Chemical analysis Tension	© 39 E 8
Brinell hardness	E 10
Rockwell hardness Hardness conversion	E 18 E 140
Grain size	E 140 E 112
Rounding procedure	E 29
Spring-back	F 155

12.2 The measurement of the average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Test Methods E 112 In case of dispute, the "referee" method for determining the average grain size shall be the planimetric method.

12.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated, in accordance with the rounding method of Practice E 29.

Rounded Unit for Observed

Test	Or Calculated Value
Chemical composition, hardness, and tolerances (when expressed in decimals)	nearest unit in the last right hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield strength	nearest 1000 psi (6.9 MPa)
Elongation	nearest 1%
Grain Size:	
0.0024 in. (0.060 mm) or larger	nearest multiple of 0.0002 in. (0.005 mm)
less than 0.0024 in. (0.060 mm)	nearest multiple of 0.0001 in. (0.002 mm)

13. Inspection

13.1 Inspection of the material shall be as agreed upon between the purchaser and the supplier as part of the purchase contract.

Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to Separation of the state of the the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet

Product Marking

- 16.1 Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, condition (temper), heat number, manufacturer's identification, and size. The markings shall not have a deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 16.2 When applicable, each bundle or shipping container shall be marked with the name of the material condition (temper), this specification number, alloy, size, consignor and consignee address, contract or order number, and such other information as may be defined in the con-

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X1.2 Plate, Hot-Rolled

- **X1.2.1** *Annealed* Soft with an oxide surface, and suitable for heavy cold forming. Available with a descaled surface, when so specified.
- **X1.2.2** As-Rolled With an oxide surface. Available with a descaled surface, when so specified. Suitable for flat work, mild forming or tube sheets. When intended for tube sheets, specify that plates are to be specially flattened. When intended for hot forming, this should be indicated on the purchase order so that the manufacturer may select appropriate material.

X1.3 Plate, Cold-Rolled

X1.3.1 *Annealed* — Soft with an oxide surface; available with a descaled surface when so specified.

X1.4 Sheet, Hot-Rolled

X1.4.1 Annealed and Pickled — Soft with a pickled matte finish. Properties similar to X1.5.1 but with broader thickness tolerances. Not suggested for applications where the finish of a cold-rolled sheet is considered essential or for deep drawing or spinning.

X1.5 Sheet and Strip, Cold-Rolled

- **X1.5.1** Annealed Soft with a pickled or bright annealed finish.
- **X1.5.2** Deep-Drawing or Spinning Quality Similar to X1.5.1, except furnished to controlled hardness and grain size and lightly leveled.
- **X1.5.3** Skin Hard Similar to X1.5.1, but given a light cold reduction to hardness range shown in Table 3.
- **X1.5.4** *Quarter-Hard* Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.5** Half-Hard Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.6** Three-Quarter Hard Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.7** *Hard* Cold rolled to the tensile requirements indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.
- **X1.5.8** Spring Temper Cold rolled to the minimum hardness indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR SEAMLESS NICKEL AND NICKEL **ALLOY CONDENSER AND HEAT-EXCHANGER TUBES** SB-163 BPVC.II.B. ASME BPVC.III.B. ASME BPVC.II.B. ASME BPVC.II.B. ASME BPVC.II.B. ASME BPVC.III.B. A

SMENORINDOC. COM. Click to view the full Public Action of the control of the cont (Identical with ASTM Specification B163-19 except that certification and test reports have been made mandatory.)

Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes

1. Scope

- 1.1 This specification covers seamless tubes of nickel and nickel alloys, as shown in Table 1, for use in condenser and heat-exchanger service.
- 1.2 This specification covers outside diameter and average wall, or outside diameter and minimum wall tube.
- 1.2.1 The sizes covered by this specification are 3 in. (76.2 mm) and under in outside diameter with minimum wall thicknesses of 0.148 in. (3.76 mm) and under, and with average wall thicknesses of 0.165 in. (4.19 mm) and under.
- 1.3 Tube shall be furnished in the alloys and conditions as shown in Table 2. For small diameter and light wall tube (converter sizes), see Appendix X2.
- 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 The following safety hazards caveat pertains only to the test method portion, Section 12, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recom-

mendations issued by the World Trade Organization technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

E18 Test Methods for Rockwell Hardness of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)

12 Test Methods for Determining Average Grain Size

E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness

E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

2.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

2.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

					ASM	1E E	BPVO	C.II.I	3-20)23					SB-163
		06990N	58.0 min ^B 0.5 	7.0–11.0 0.5	0.05	0.015	27.0–31.0 	:	: :	:	: :	:	:	: :	The determined or reported. Section II bark By Section II bark By Section II bark By Section II bark By Section III bark By S
		N06686	remainder ^B 15.0–17.0	5.0 0.75	0.010	0.02	19.0–23.0	0.02-0.25	5 :	:	: :	:	:	3.0-4.4	an II part b'
		N06603	remainder ^B 0.5 	8.0–11.0 0.15	0.20-0.40	0.010	24.0–26.0 2.4–3.0	0.01-0.25		0.01-0.10		:	:	: :	mined or reported.
		N06601	58.0–63.0 1.0 	remainder ^B 1.0	0.10	0.015	21.0–25.0 1.0–1.7	:	: :	:	: :	:	:	: :	table, there is no requirement and analysis for the element need not be determined or reported.
ments ^A	sition,%	N06600	72.0 min ^B 0.5 	6.0–10.0 1.0	0.15	0.015	14.0–17.0	:	: :	& &	3	\ \ \ \			alysis for the elemen
TABLE 1 Chemical Requirements ^A	Composition,%	N06045	45.0 min ^B 0.3 	21.0–25.0 1.0	0.05-0.12	00010	26.0-29.0	0000	0.03-0.09	:	: :	:	:	: :	aquirement and an
	- 1	N06025	remainder ^B	8.0–11.0	0.15-0.25	0.010	24.0–26.0 1.8–2.4	0.1–0.2	30 ::	0.01-0.10		:	:	: :	table, there is no n
L'EO JIO	12	N04400	63.0 min ^B 28.0–34.0 	2.5	0.3	0.024	: :	:	: :	:	: :	:	:	: :) appear in this
COM: Click		N02201	99.0 min ^B 0.25 	0.40	0.02	0.01	: :	:	: :	:	: :	:	:	: :	m. Where ellipses y by difference.
ORMOC.		N02200	99.0 min ^B 0.25 	0.40 0.35	0.15	0.01	: :	:	: :	:	: :	:	:	: :	pe or minimum is girmined arithmetical
SMENORNIDOC. COM. Click to view	,		Nickel Copper Molybdenum	Iron Manganese	Carbon Silicon	Sulfur	Chromium Aluminum	Titanium	Cerium	Zirconium	Boron	Cobalt	(Nb)	Tungsten Nitrogen	Maximum unless range or minimum is given. Where ellipses () appear in this ^A Belement shall be determined arithmetically by difference.

Maximum unless range of minimum is given. Where empses ^B Element shall be determined arithmetically by difference.

179

(00)
Justini
V V
monte
gariiro
goimar
5
ù
TARIE

		N08935	34.0–36.0	0.4	6.1–7.1	remainder ^B	1.2	0.030	20	0.020	26.0–28.0	:	:	0.030	:	:	:	:	:	:		0.05.0.36	00.0
		N08825	38.0–46.0	1.5–3.0	2.5–3.5	22.0 min ^B	1.0	0.05	0.5	0.03	19.5–23.5	0.2	0.6–1.2	:	:	:	:	:	:	:		:	:
		N08811	30.0–35.0	0.75	:	39.5 min ^B	1.5	0.06-0.10	10	0.015	19.0–23.0	$0.15-0.60^{C}$	$0.15-0.60^{C}$:	:	:	:	:	:	:		:	::
		N08810	30.0–35.0	0.75	:	39.5 min ^B	1.5	0.05-0.10	10	0.015	19.0–23.0	0.15-0.60	0.15-0.60	:	:	:	:	:	:	:		:	
	its" (continued)	N08801	30.0–34.0	0.50	:	39.5 min ^B	1.50	0.10	1 00	0.015	19.0–22.0	:	0.75-1.5	:	:	:		?		1	C	、 ,	
	IABLE 1 Chemical Requirements (continued)	N08800	30.0–35.0	0.75	:	39.5 min ^B	1.5	0.10	0 1	0.015	19.0–23.0	0.15-0.60	0.15-0.60	Y			:	:	:	:		:	:
	TABLE 1 Chem	N08120	35.0–39.0	0.50	2.50	Cremainder ^B	1.5	0.02-0.10	2	0.03	23.0–27.0	0.40	0.20	0.04	:	:	:	0.010	3.0	0.4–0.9	2 50	7.30	2.5
		N06845	44.0–50.0	2.0-4.0	5.0–7.0	remainder ^B	0.5	0.05	C 22	0.010	20.0–25.0	:	:	:	:	:	:	:	:	:	0 0 0	0.01	
COM. Cito.		66990N	remainder ^B	0.50	:	2.5	0.50	0.005-	0.10	0.01	26.0-30.0	1.9-3.0	09.0	0.02	:	0.10	:	0.008	: (0.50		 20 0	20.5
ORMDOC.		96990N	remainder ^B	1.5–3.0	1.0-3.0	2.0-6.0	1.0	0.15	1 0-2 5	0.010	28.0–32.0	:	1.0	:	:	:	:	:	:	:		:	:
ASMENORMOC.COM. Citck			Nickel	Copper	Molybdenum	Iron	Manganese	Carbon	Silicon	Sulfur	Chromium	Aluminum	Titaninm	Phosphorus	Cerium	Zirconium	Yttrium	Boron	Cobalt	Columbium	(IND) Tungsten	Nitrogon	- Alticopolis
	'		I																				1

ASME BRYC Section II Part B 202 A Maximum unless range or minimum is given. Where ellipses (...) appear in this table, there is no requirement and analysis for the element need not be determined arithmetically by difference.

C Alloy UNS NO8811: Al + Ti, 0.85 – 1.20.

TABLE 2 Alloy and Conditions

Alloy	Condition
Nickel UNS N02200 and	
low-carbon nickel UNS N02201	annealed or stress-relieved
Nickel-copper alloy UNS N04400	annealed or stress-relieved
Nickel-chromium-iron-aluminum	
alloy UNS N06603	annealed
Nickel-chromium-iron-copper alloy	
UNS N06696	annealed
Nickel-chromium-iron-aluminum	
alloy UNS N06601	annealed
Nickel-chromium-iron alloy	
UNS N06600	annealed
Low-carbon nickel-chromium-	
molybdenum-tungsten alloy	
UNS N06686	annealed
Nickel-chromium-iron alloy	
UNS N06690	annealed
Nickel-chromium-iron alloy	
UNS N06045	annealed
Nickel-iron-chromium alloy UNS N08120 ^A	annealed or cold-worked
	annealed of cold-worked
Nickel-iron-chromium alloy UNS N08800 ^A	annealed or cold-worked
Nickel-iron-chromium alloy	annealed of cold-worked
UNS N08810 ^A	annealed
Nickel-iron-chromium alloy	ailiealeu
UNS N08811 ^A	annealed
Nickel-iron-chromium alloy	amodica
UNS N08801	annealed
Nickel-iron-chromium-molybdenum	
alloy UNS N08935	annealed
Nickel-iron-chromium-molybdenum-	
copper alloy UNS N08825	annealed
Nickel-chromium-iron alloy	
UNS N06025	annealed
Nickel-iron-chromium-molybdenum-	
copper alloy	
UNS N06845	annealed
Nickel-chromium-aluminum alloy	
UNS N06699	annealed

^A Alloy UNS N08800 is normally employed in service temperatures up to and including 1100°F (593°C). Alloys UNS N08810, UNS N08811, and UNS N08120 are normally employed in service temperatures above 1100°F (539°C) where resistance to creep and rupture is required, and it is annealed to develop controlled grain size for optimum properties in this temperature range.

3. Terminology

- 3.1 Definitions:
- 3.1.1 average diameter, n—average of the maximum and minimum outside diameters, as determined at any one cross section of the tube.
- 3.1.2 *tube*, *n*—hollow product of round or any other cross section having a continuous periphery.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 4.1.1 *Alloy* (Table 1).
- 4.1.2 *Condition (Temper)* Table 3 and Appendix X1 and Appendix X2.
- 4.1.2.1 If annealed ends for stress relieved tubing are desired, state length of end to be annealed and whether or not one end or both ends are to be annealed.
 - 4.1.3 Finish.

- 4.1.4 *Dimensions*—Outside diameter, minimum or average wall thickness (in inches, not gage number), and length.
 - 4.1.5 Fabrication Operations:
 - 4.1.5.1 Cold Bending or Coiling.
 - 4.1.5.2 *Packing*.
 - 4.1.5.3 Rolling or Expanding into Tube Sheets.
 - 4.1.5.4 Welding or Brazing—Process to be employed.
- 4.1.5.5 Hydrostatic Test or Nondestructive Electric Test—Specify type of test (6.5).
- 4.1.5.6 Pressure Requirements—If other than required by 6.5.
- 4.1.5.7 Ends—Plain ends cut and debured will be furnished.
- 4.1.6 Supplementary Requirements State nature and details.
 - 4.1.7 DELETED
- 4.1.8 Samples for Product (Check) Analysis—Whether samples for product (cheek) analysis shall be furnished.
- 4.1.9 Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Section 13).
- 4.1.10 Small-Diameter and Light-Wall Tube (Converter Sizes)—See Appendix X2.

5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 1.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis per Specification B880.

6. Mechanical Properties and Other Requirements

- 6.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 3.
- 6.2 *Hardness*—When annealed ends are specified for tubing in the stress-relieved condition (see Table 3), the hardness of the ends after annealing shall not exceed the values specified in Table 3.
- 6.3 Flare—A flare test shall be made on one end of 1 % of the number of finished tube lengths from each lot. For less than 100 tubes in a lot, a flare test shall be made on one end of one tube length in the lot. In the case of stress relieved tubing with annealed ends, the test shall be made prior to, or subsequent to, annealing of the ends at the option of the manufacturer.
- 6.3.1 The flare test shall consist of flaring a test specimen with an expanding tool having an included angle of 60° until the specified outside diameter has been increased by 30 %. The flared specimen shall not exhibit cracking through the wall.
- 6.4 *Grain Size*—A transverse sample representing full-wall thickness of annealed alloys UNS N08120, UNS N08810 and UNS N08811 shall conform to an average grain size of ASTM No. 5 or coarser.

TABLE 3 Mechanical Properties of Tubes

	DEE O MICONAMIONI I TO	portion of rubon		
Material and Condition	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 % Offset), min, ksi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>) min, %	Rockwell Hardness (or equivalent) for annealed ends ^A
Nickel UNS N02200:				
Annealed	55 (379)	15 (103)	40	
Stress-relieved	65 (448)	40 (276)	15	B65 max
Low-carbon nickel UNS N02201:				
Annealed	50 (345)	12 (83)	40	
Stress-relieved	60 (414)	30 (207)	15	B62 max
Nickel-copper alloy UNS N04400:	,	` '		
Annealed	70 (483)	28 (193)	35	
Stress-relieved	85 (586)	55 (379)	15	B75 max
Nickel-chromium-iron alloys:	(/	(,		(O):
Annealed alloy UNS N06600	80 (552)	35 (241)	30	
Annealed alloy UNS N06601	80 (552)	30 (207)	30	
Annealed alloy UNS N06690	85 (586)	35 (241)	30	
Annealed alloy UNS N06045	90 (620)	35 (240)	35	, <i>-</i>
Annealed alloy UNS N06025	98 (680)	39 (270)	30	<i>)</i>
Annealed alloy UNS N06603	94 (650)	43 (300)	25	
Annealed alloy UNS N06696	85 (586)	35 (240)	30	
Low-carbon nickel-chromium-molybdenum-tungsten alloy:	(/			
Annealed UNS N06686	100 (690)	45 (310)	45	
Nickel-iron-chromium alloys:	(,	- (/		
Annealed alloy UNS N08120	90 (620)	40 (276)	30	
Annealed alloy UNS N08800	75 (517)	30 (207)	30	
Annealed alloy UNS N08801	65 (448)	25 (172)	30	
Cold-worked alloy UNS N08800	83 (572)	47 (324)	30	
Annealed alloy UNS N08810	65 (448)	25 (172)	30	
Annealed alloy UNS N08811	65 (448)	25 (172)	30	
Nickel-iron-chromium-molybdenum alloy:	33 (113)			
Annealed alloy UNS N08935	109 (750)	62 (425)	35	
Nickel-iron-chromium-molybdenum-copper alloys:	110 (700)	33,120,		
Annealed UNS N08825	85 (586)	35 (241)	30	
Annealed UNS N06845	100 (690)	40 (276)	30	
Nickel-chromium-aluminum alloys:	.50 (555)	10 (210)	00	
Annealed UNS N06699	89 (610)	35 (240)	40	

A Rockwell or equivalent hardness values apply only to the annealed ends of stress-relieved tubing. Caution should be observed in using the Rockwell test on thin material, as the results may be affected by the thickness of specimen. For thickness under 0.050 in. (1.27 mm) the use of the Rockwell superficial or the Vickers hardness test is suggested. For hardness conversions for nickel and high-nickel alloys see Hardness Conversion Tables E140.

6.5 Hydrostatic or Nondestructive Electric Test—Each tube shall be subjected to either the hydrostatic test or the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

6.5.1 Hydrostatic Test:

6.5.1.1 Each tube with an outside diameter ½ in. (3.2 mm) and larger and tubes with wall thickness of 0.015 in. (0.38 mm) and over shall be tested by the manufacturer to an internal hydrostatic pressure of 1000 psi (6.9 MPa) provided that the fiber stress calculated in accordance with the following equation does not exceed the allowable fiber stress, *S*, indicated below. The tube shall show no evidence of leakage.

$$P = 2St/D$$

where:

P = hydrostatic test pressure, psi (MPa),

S = allowable fiber stress for material in the condition furnished, as follows:

minimum wall thickness, in. (mm); equal to the specified average wall minus the permissible "minus" wall tolerance, Table 4 and Table X2.2, or the specified minimum wall thickness, and

D = outside diameter of the tube, in. (mm).

	psi	MPa
Annealed low-carbon nickel UNS N02201	8 000	55.2
Stress-relieved low-carbon nickel UNS N02201	15 000	103.4
Annealed nickel UNS N02200	10 000	68.9
Stress-relieved nickel UNS N02200	16 200	111.7
Annealed nickel-copper alloy UNS N04400	17 500	120.6
Stress-relieved nickel-copper alloy UNS N04400	21 200	146.2
Annealed nickel-chromium-aluminum alloy UNS N06699	22 100	152
Annealed nickel-chromium-iron alloy UNS N06600	20 000	137.9
Annealed nickel-chromium-iron alloy UNS N06601	20 000	137.9
Annealed nickel-chromium-iron alloy UNS N06690	21 200	146
Annealed nickel-chromium-iron alloy UNS N06045	22 500	155
Annealed nickel-chromium-iron alloy UNS N06025	24 500	169
Solution annealed low-carbon nickel-chromium-	25 000	172
molybdenum-tungsten alloy UNS N06686		
Annealed nickel-chromium-iron-aluminum alloy		
UNS N06603	24 000	165
Annealed nickel-chromium-iron-copper alloy		
UNS N06696	21 200	146
Annealed nickel-iron-chromium alloy UNS N08120	22 500	155
Annealed nickel-iron-chromium alloy UNS N08800	18 700	128.9
Annealed nickel-iron-chromium alloy UNS N08810	16 600	114.4
Annealed nickel-iron-chromium alloy UNS N08811	16 600	114.4
Annealed nickel-iron-chromium alloy UNS N08801	16 600	114.4
Annealed nickel-iron-chromium-molybdenum alloy UNS	27 200	187.5
N08935		
Annealed nickel-iron-chromium-molybdenum copper		
alloy UNS N08825	21 000	144.8
Annealed nickel-iron-chromium-molydenum-copper		
alloy UNS N06845	21 200	146.2
Cold-worked nickel-iron-chromium alloy UNS N08800	20 700	142.7

TABLE 4 Permissible Variations in Outside Diameter and Wall Thickness of Condenser and Heat Exchanger Tubes

Note 1—The tolerances in the table apply to individual measurements of outside diameter and include out-of-roundness (ovality), and apply to all materials and all conditions, except that for thin wall tubes having a nominal wall of 3 % or less of the outside diameter, the mean outside diameter shall comply with the permissible variations of the above table and individual measurements (including ovality) shall conform to the plus and minus values of the table with the values increased by $\frac{1}{2}$ % of the nominal outside diameter.

Note 2—*Eccentricity*—The variation in wall thickness in any one cross section of any one tube shall not exceed plus or minus 10 % of the actual (measured) average wall of that section. The actual average wall is defined as the average of the thickest and thinnest wall of that section.

Note 3—For tolerances of small diameter and light wall tube (converter sizes) see Appendix X2 (Table X2.2).

			Permissible Va	ariations ^A		11,
Matarial	Naminal Outsida Diameter in (mm)	Outside Diameter, in. (m	m)	Wall Thick	ness,%	<u>()</u>
Material	Nominal Outside Diameter, in. (mm)		Average	Wall	Minimu	n Wall
		+ -	+	-	ين م	-
UNS N02200, UNS N02201, and UNS N04400	½ to % (12.7 to 15.9), excl	0.005 (0.13) 0	12.5	12.5	C 25.0	0
	5/8 to 11/2 (15.9 to 38.1), incl	0.005 (0.13) 0.005 (0.13)	10.0	10.0	20.0	0
	over 11/2 to 3 (38.1 to 76.2), incl	0.010 (0.25) 0.010 (0.25)	10.0	10.0	22.0	0
UNS N06600, UNS N06601, UNS N06690, UNS N06045, UNS N06025, UNS N06603, UNS N06696, UNS N08800, UNS N06699 UNS N08811, UNS N08801, UNS N08825, UNS N06845, and UNS N08120	½ to % (12.7 to 15.9), excl	0.005 (0.13) 0.005 (0.13)	12.5 11.B (ASM)	72.5	25.0	0
UNS N06686	5% to 1½ (15.9 to 38.1), incl over 1½ to 3 (38.1 to 76.2), incl	0.0075 (0.19) 0.0075 (0.19) 0.010 (0.25)		10.0 10.0	20.0 22.0	0 0

A Wall variations as indicated above are applicable only to the wall as ordered, for instance, to minimum or to average wall, but not to both.

- 6.5.1.2 When so agreed upon between the manufacturer and the purchaser, tube may be tested to 1½ times the above allowable fiber stress.
- 6.5.1.3 When stress-relieved tubes with annealed ends are to be tested hydrostatically, such pressure testing shall be done prior to annealing of the ends of the tube.
- 6.5.2 *Nondestructive Electric Test*—Each tube shall be examined with a nondestructive electric test as prescribed in Specification B829.

7. Dimensions and Permissible Variations

7.1 Outside Diameter and Wall Thickness—The permissible variations in the outside diameter and wall thickness of tube shall not exceed those prescribed in Table 4 and Table X2.2, as applicable. (See also Table 5 and Table 6.)

- 7.2 *Length*—When tube is ordered cut-to-length, the length shall not be less than that specified, but a variation of plus ½ in. (3.2 mm) will be permitted, except that for lengths over 30 ft (9.1 m), a variation of plus ¼ in. (6.4 mm) will be permitted.
- 7.3 Straightness—Material shall be reasonably straight and free of bends or kinks.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and temper, smooth, commercially straight, and free of injurious imperfections.

9. Sampling

- 9.1 Lot—Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.

TABLE 5 Alloy, A Condition, Tube Size, and Bend Radii Limitations

Tube OD (mm)	Average Tube Well in Japan 18	Minimum Bend Radius, in. (mm)				
Tube QD, in/ (mm)	Average Tube Wall, in. (mm) ^B	Annealed Condition	Stress-Relieved Condition			
Up to ½ (12.7), incl	0.046 to 0.057 (1.17 to 1.45), incl	13/16 (30.2)	11/4 (31.8)			
Up to ½ (12.7), incl	Over 0.057 to 0.120 (1.45 to 3.05), incl	1 (25.4)	11/8 (28.6)			
Over ½ to 5/8 (12.7 to 15.9), incl	0.037 to 0.057 (0.94 to 1.45), incl	13/16 (30.2)	11/4 (31.8)			
Over ½ to % (12.7 to 15.9), incl	Over 0.057 to 0.120 (1.45 to 3.05), incl	1 (25.4)	13/16 (30.2)			
Over 5/8 to 3/4 (15.9 to 19.0), incl	0.049 to 0.057 (1.24 to 1.45), incl	11/4 (31.8)	1½ (38.1)			
Over 5% to 3/4 (15.9 to 19.0), incl	Over 0.057 to 0.109 (1.45 to 2.77), incl	13/16 (30.2)	11/4 (31.8)			
Over 3/4 to 1 (19.0 to 25.4), incl	0.049 to 0.058 (1.24 to 1.47), incl	2 (50.8)	4 (101.6)			
Over 3/4 to 1 (19.0 to 25.4), incl	Over 0.058 to 0.109 (1.47 to 2.77), incl	13/4 (44.5)	21/4 (57.2)			

^A Applies for all alloys except alloy UNS N08810, alloy UNS N08801, and UNS N08811.

B To determine the bend radius applicable to minimum wall tubing, compute the corresponding average wall from the wall tolerances in Table 4, then use Table 5.

	, c, ccagcc, a				
Alloyo	Size Range, in. (mm)	Size Range, in. (mm)			
Alloys	OD	Wall Thickness	Minimum	Maximum	
Nickel-chromium-iron Alloy UNS N06600	1/4 to 7/8 (6.35 to 22.23)	Up to 0.100 (2.54)	40 (276)	65 (448)	
Nickel-chromium-iron Alloy UNS N06601	1/4 to 7/8 (6.35 to 22.23)	Up to 0.100 (2.54)	40 (276)	65 (449)	
Nickel-iron-chromium Alloy UNS N08800	1/4 to 7/8 (6.35 to 22.23)	Up to 0.100 (2.54)	40 (276)	65 (448)	
Nickel-chromium-iron Alloy UNS N06690	1/4 to 7/8 (6.35 to 22.23)	Up to 0.100 (2.54)	40 (276)	65 (448)	

TABLE 6 Alloys, Size Ranges, and Yield Strength for Higher Yield Strength Tubes

- 9.1.2 A lot for mechanical properties, hardness, flaring, and grain size testing shall consist of all material from the same heat, nominal size (except length), and condition (temper).
- 9.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (230 kg) of material in the same condition (temper) and size.
 - 9.2 Test Material Selection:

- 9.2.1 Chemical Analysis—Representative samples shall be taken during pouring or subsequent processing.
- 9.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 9.2.2 Mechanical Properties, Hardness, and Grain Size— Samples of the material to provide test specimens for mechanical properties, hardness, and grain size shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- 10.1 Chemical Analysis—One test per lot.
- 10.2 Mechanical Properties—One test per lot.
- 10.3 Hardness—A representative sample consisting of 3 % of each lot of tubes with annealed ends (see 9.1.2).
 - 10.4 Grain Size—One test per lot.
- 10.5 Flare—A representative sample consisting of 10.5 the number of tube lengths in each lot, with a minimum of one tube per lot.

11. Specimen Preparation

- 11.1 Tension Test:
- 11.1.1 Tension test specimens shall be taken from material in the final condition (temper) and tested in the direction of fabrication.
- 11.1.2 Whenever possible, all tubes shall be tested in full tubular size. When testing in full tubular size is not possible, longitudinal strip specimens, or the largest possible round specimen, shall be used. In the event of disagreement when full tubular testing is not possible, a longitudinal strip specimen with reduced gage length as contained in Test Methods E8/E8M shall be used.
- 11.1.3 In the case of stress-relieved tubes furnished with annealed ends, the tension test shall be made on the stressrelieved tubes prior to annealing the ends.
 - N.2 Hardness Test:
- 11.2.1 Stress-Relieved Tubing with Annealed Ends—The hardness test may be made on the inside of the tube near the end or on a specimen cut from the end, at the option of the manufacturer. The test shall be made on the inside of the specimen.

12. Test Methods

12.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, maccordance with the following methods:

Test	ASTM Designation
Chemical Analysis	E76, E1473
Tension	E8/E8M
Rounding Procedure	£29
Rockwell Hardness	E18
Grain Size	E112
Hardness Conversion	E140

- 12.2 The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Test Methods E112. In case of dispute the "referee" method for determining average grain size shall be the planimetric method.
- 12.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

Rounded Unit for Observed or Calculated Value Chemical composition, hardness, nearest unit in the last right-hand place of figures of the specified limit and tolerances (when expressed in decimals) Tensile strength, yield strength nearest 1000 psi (6.9 MPa) Elongation nearest 1 % Grain size: 0.0024 in. (0.060 mm) or larger nearest multiple of 0.0002 in. (0.005 mm) less than 0.0024 in. (0.060 mm) nearest multiple of 0.0001 in. (0.002 mm)

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

- 14.1 Material not conforming to this specification or to authorized modifications will be subject to rejection.
- 14.2 Samples tested in accordance with this specification that represent rejected material shall be preserved for not less than three weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

15. Certification

15.1 A manufacturer"s certification shall be furnished to the purchaser stating that material has been manufactured, tested and inspected in accordance with this specification, and that the test results on representative samples meet specification

requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 Each bundle or shipping container shall be marked with the name of the material; condition (temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

17. Keywords

17.1 seamless tube; UNS N02200; UNS N02201; UNS N04400; UNS N06025; UNS N06045; UNS N06600; UNS N06601; UNS N06603; UNS N06686; UNS N06690; UNS N06696; UNS N06845; UNS N08120; UNS N08800; UNS BRVC Section II Part N08801; UNS N08810; UNS N08811; UNS N08825; UNS N06699; UNS N08935

SUPPLEMENTARY REQUIREMENTS

S1. U-BENT TUBES

The following supplementary requirements shall apply when U-bent tubes are specified by the purchaser in the inquiry, contract, or order.

S1.1 Limitation of Supplementary Requirements for **U-Bent Tubes**

S1.1.1 The requirements for U-bent tubes included in this supplement are limited to the alloys, conditions (tempers), tube outside diameter (OD), and wall thickness ranges and bend radii listed in Table 5.

S1.2 Permissible Variations in Dimensions (Fig. S1.1)

S1.2.1 Leg Spacing—The leg spacing, measured between the points of tangency of the bend to the legs shall not vary from the value (2R - specified tube OD) by more than the amounts shown below where R is the specified centerline bend radius:

Centerline Bend Radius (R), in. (mm)	Tolerance, in. (mm)
Up to 18 (457), incl	1/16 (1.6)
Over 18 to 30 (457 to 762), incl	3/32 (2.4)
Over 30 to 36 (762 to 914), incl	1/8 (3.2)

S122 Diameter of Tube in U-Bent Section—Neither the major, nor the minor outside diameter of the tube at any one cross section included within the points of tangency of the bend shall deviate from the nominal diameter prior to bending by more than 10 %.

S1.2.3 Wall Thickness of Tube in U-Bent Section—The wall thickness of the tube at the apex of the U-bent section shall be not less than the value determined by the following equation:

$$TF = T(2R)/(2R+D)$$

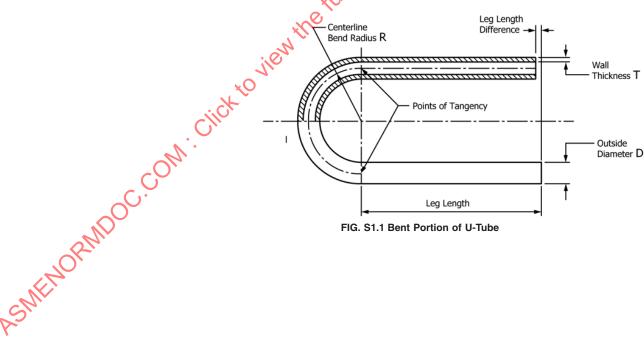


FIG. S1.1 Bent Portion of U-Tube

where:

TF = thickness after bending, in. (mm),

T = minimum permissible thickness of tube wall prior to bending, in. (mm),

R = centerline bend radius, in. (mm), and

D = nominal outside diameter of the tube, in. (mm).

When specified by the purchaser, proof of conformance to this requirement shall be obtained by bending a tube specimen, representative of the material offered, to the scheduled radius of bend, cutting the tube at the apex of the bend, measuring the tube wall at the cross section of this apex section, and comparing the measured value with the calculated value of *TF*.

S1.2.4 Length of U-Bend Tube Legs—The length of the tube legs as measured from the point of tangency of the bend and the tube leg to the end of the tube leg shall not be less than that specified, but may exceed the specified values by the following amounts:

Specified Length (L), ft (m)	Tolerance (all Plus), in. (mm)
Up to 20 (6.1), incl	1/8 (3.2)
Over 20 to 30 (6.1 to 9.1), incl	5/32 (4.0)
Over 30 to 60 (9.1 to 18.3), incl	1/4 (6.4)
Over 60 (18.3)	3/8 (10.0)

S1.2.4.1 The difference in the length of the tube legs shall not be greater than ½ in. (3.2 mm).

S1.2.5 *Squareness of Ends*—The end of any tube may depart from square by not more than the following amounts:

Tube OD, in. (mm)	Tolerance, in. (mm)
Up to 5/8 (15.9), incl	0.010 (0.25)
Over % (15.9)	0.016 (0.41)

S1.3 Hydrostatic Test

\$1.3.1 When specified by the purchaser, the hydrostatic test shall be performed after bending. The minimum holding time at pressure shall be 5 s.

S1.3.1.1 When hydrostatic testing is performed after bending, such testing will not be required on straight length tubes prior to bending.

S1.3.1.2 The required fiber stress for computing hydrostatic test pressure shall be 26 600 psi (183.3 MPa).

S2. HIGH YIELD STRENGTH TUBES

The following supplementary requirements shall apply when high yield strength tubes are specified by the purchaser in the inquiry, contract, or purchase order.

S2.1 Limitations of Supplementary Requirements for High Yield Strength Tubes

S2.1.1 The requirements for higher yield strength tubes included in this supplement are limited to the alloys, tube outside diameter (OD), and wall thickness ranges listed in Table 6.

S2.2 Higher Yield Strength

S2.2.1 The 0.2 % yield strength shall be as listed in Table 6. All other mechanical properties shall be as listed in Table 3.

S2.3 Degree of Cold Work

S2.3.1 No additional cold working over and above that normally required for these alloys shall be used in order to meet the higher yield strength.

S2.4 Annealing

S2.4.1 Tubing is to be furnished in the annealed condition. In order to meet the higher yield strength requirement, it may be necessary to control the final annealing parameters so as to preclude large grain sizes.

S2.5 Marking Requirements

S2.5.1 In addition to the marking requirements of SB-163, the marking shall include the letters HYS signifying higher yield strength.

S3. COILED OR UNSTRAIGHTENED TUBING

The following supplementary requirements shall apply when coiled or unstraightened tubing is specified by the purchaser in the inquiry, contract, or purchase order.

S3.1 Unstraightened Tubing

S3.1.1 When the purchaser specifies coiled or unstraightened tubing after final heat treatment, the tensile specimens may be machine straightened prior to testing.

S3.1.2 On the certification and wherever the grade designation for unstraightened tubing appears, it shall be identified with the suffix letter "U" (for example, UNS N06600-U).

S4. U.S. GOVERNMENT

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

S4.1 Referenced Documents

S4.1.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein: Fed. Std. No. 102, Fed. Std. No. 123, Fed. Std. No. 182, and MIL-STD-129.

S4.2 Quality Assurance

S4.2.1 Responsibility for Inspection:

S4.2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S4.3 Identification Marking

S4.3.1 The material shall be properly marked for identification in accordance with Fed. Std. No. 182 except that the ASTM specification number and the alloy number shall be used.

S4.4 Preparation for Delivery

S4.4.1 Preservation, Packaging, Packing:

S.4.4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, level A or C, packed level A, B, or C as specified in the contract or purchase order.

S4.4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.4.2 Marking:

S4.4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIXES

(Nonmandatory Information)

X1. CONDITION AND FINISHES NORMALLY SUPPLIED

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which tube (other than converter sizes) are normally supplied. These are subject to change and the manufacturer should be consulted for the latest information available.

X1.2 Nickel UNS N02200

- X1.2.1 Annealed—Soft, with a dull matte finish.
- X1.2.2 *Stress Relieved*—Thermally treated below the annealing temperature to relieve the major portion of the internal stresses, with a thin, light to medium-dark surface.
- X1.2.3 Stress Relieved with Annealed Ends—Same as X1.2.2 except with annealed ends.

X1.3 Low-Carbon Nickel UNS N02201

- X1.3.1 Annealed—Similar to X1.2.1.
- X1.3.2 Stress Relieved—Similar to X1.2.2.
- X1.3.3 Stress-Relieved With Annealed Ends—Same as X1.3.2 except with annealed ends.

X1.4 Nickel-Copper Alloy UNS N04400

X1.4.1 Annealed—Soft with a dull matte finish.

X1.4.2 Stress Relieved—Thermally treated below the annealing temperature to relieve the major portion of the internal stresses resulting from cold drawing, with a thin, light medium-dark surface.

X1.4.3 Stress-Relieved With Annealed Ends—Same as X1.4.2 except with annealed ends.

X1.5 Nickel-Chromium-Aluminum Alloy UNS N06699, Nickel-Chromium-Iron Alloy UNS N06600, Nickel-Chromium-Iron Alloy UNS N06601, Nickel-Chromium-Iron Alloy UNS N06690, Nickel-Chromium-Iron Alloy UNS N06045, Nickel-Chromium-Iron Alloy UNS N06025, Nickel-Iron-Chromium Alloys (UNS N08120, UNS N08800, UNS N08810, UNS N08811, and UNS N08801), Nickel-Iron-Chromium-Volybdenum Alloy N08935, and Nickel-Iron-Chromium-Molybdenum-Copper Alloys UNS N08825 and UNS N06845

X1.5.1 Annealed and Ground Outside Diameter—The inside diameter may have a bright finish when material is annealed in protective atmosphere; otherwise, the inside diameter is supplied descaled as necessary.

X1.5.2 Annealed and Pickled (Not Ground)—Outside and inside diameter will have dull, matte (pickled) surfaces.

X2. CONVERTER SIZES

X2.1 Small diameter and light wall tube in outside diameters 1½ in. (31.8 mm) and under all wall thicknesses may be furnished in the following conditions or tempers when so specified. The material is furnished in a limited range of sizes and the manufacturer should be consulted as to the various

outside diameters and wall thicknesses that may be furnished. Material shall be clean and scale-free. Such material shall conform to the applicable requirements indicated in Table X2.1 and Table X2.2.

TABLE X2.1 Mechanical Properties^A of Small Diameter and Light Wall Tube

Material	Tensile Strength, ksi (MPa)	Yield Strength (0.2 % offset), ^B min, ksi (MPa)	Elongation in 2 in. or 50 mm, min, %	Rockwell Hardness ^C (Scale as Indicated)
Nickel UNS N02200:				·
Annealed ^D	80 (552) max	15 (103)	33	B75, max
Half-hard ^E	80 (552) min	40 (276)	12	B75 to B90
Full hard ^F	95 (655) min	75 (517)	4	B90 to C30
Low-carbon nickel	(***)	- (- /		~?
UNS N02201:				. 0
Annealed ^D	70 (483) max	12 (83)	35	B62, max
Half-hard ^E	70 (483) min	30 (207)	12	B70 to B85
Full hard ^F	85 (586) min	65 (448)	4	B80 to B95
Nickel-copper alloy	()	(-,		XIO
UNS N04400:				
Annealed ^D	90 (621) max	28 (193)	32	B80, max
Half-hard ^E	85 (586) min	55 (379)	12	B75 to B97
Full hard ^F	110 (758) min	90 (621)	3(1)	B95 to C27
Nickel-chromium-iron alloy	(700)	33 (52.)	7/0	200 10 02.
UNS N06600:			07	
Annealed ^{DG}	80 (552) to 110 (758)	35 (241)	30	B92, max
Half-hard ^E	105 (724) min	55 (379)	13	B90 to B98
Full-hard ^F	130 (896) min	105 (724)	4	C19 to C34
UNS N06601:	100 (000)	. 55 (. 2 .)	110	0.0.00.
Annealed ^D ,G	80 (552) to 110 (758)	30 (207)	30	B92 max
Half-hard ^E	105 (724) min	55 (379)	13	B90 to B98
Full-hard ^F	130 (896) min	105 (724)	4	C19 to C34
UNS N06690:	100 (000)	.000	•	0.0.00.
Annealed ^D ,G	85 (586) to 115 (793)	35 (241)	30	B92 max
Half-hard ^E	105 (724) min	55 (379)	13	B90 to B98
Full-hard ^F			4	C19 to C34
Nickel-iron chromium alloy	100 (000)	0.00 (12.)	•	0.0.00.
UNS N08800:				
Annealed ^{DG}	75 (517) to 100 (689)	30 (207)	30	B95, max
Half-hard ^E	105 (724)	60 (414)	13	B93 to C26
Full hard ^F	130 (896)	105 (724)	4	C24 to C38
Nickel-iron chromium-	.55 (555)	.00 ()	•	02 1 10 000
molybdenum-copper alloy		30 (207) 60 (414) 105 (724)		
UNS N08825:				
Annealed ^{DG}	85 (586) to 115 (793)	35 (241)	30	B90 max
Half-hard ^E	105 (724) min	75 (517)	15	B90 to C25
Full-hard ^F	125 (862) min	100 (689)	5	C25 to C35

A Not applicable to outside diameters under 1/8 in. (3.2 mm) and to wall thicknesses under 0.015 in. (0.38 mm).

C Hardness values, indicative of tensile strength, are shown to information only. All tests are subject to confirmation by tension tests. For hardness conversions, see Hardness values, indicative of tensile strength, are shown to the following the following that the following the following that the following the following that the following that the following that the following that the following the following that the following that the following that the following that the following the following that the following the followin

ASMENORMEOC. COM. Click to

TABLE X2.2 Permissible Variations for Small Diameter and Light Wall Tube (Converter Sizes)

Note 1—Ovality, Normal Wall Tube:

As-Drawn (No. 2 and 3) Tempers—Ovality will be held within the outside diameter tolerances shown in the table. Annealed (No. 1) Temper—Ovality will be held within 2 % of the theoretical average outside diameter.

Note 2—Ovality Light Wall Tube:

As-Drawn (No. 2 and 3) Tempers—Ovality will be held within 2 % of the theoretical average outside diameter.

Annealed (No. 1) Temper—Ovality will be held within 3 % of the theoretical average outside diameter.

Note 3—Wall Tolerances, Light Wall Tube—The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. the tolerance shall be plus and minus 0.0005 in.

Note 4—Random Lengths:

- (a) Where nominal random lengths on tubing $\frac{1}{8}$ in. and larger in outside diameter are specified, a length tolerance of plus and minus $\frac{3}{2}$ ft (1.1 in applies to the nominal length. This is a total spread of 7 ft. (2.1 m).
- (b) Random lengths in sizes ½ in. (3.2 mm) and larger in outside diameter shall be subject to a length range from 5 to 24 ft (1.5 to 7.3 m). Long random lengths are subject to a range from 15 to 22 ft (4.6 to 6.7 m).
- (c) Random lengths in sizes up to, but not including, ½ in. in outside diameter, and fragile light wall tubes over this outside diameter are subject to the length range from 1 to 15 ft (0.3 to 4.6 m).

Note 5—Cut Lengths—Tolerances on cut lengths shall be as follows:

Note 6—Straightness—Round tubing is subject to a straightness tolerance of one part in 600 (equivalent to a depth of arc of 0.030 in. (0.76 mm) in any 3 ft (0.9 m) of length).

Note 7—Eccentricity—Eccentricity (as defined in Table 4, Note 2) shall be limited to plus or minus 10 % of the specified wall or calculated average wall.

Note 8—When specified, the tolerance spread may be applied as desired. However, when not specified the olerances shown below will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

Length, ft	Tub	Tube Size, in.		Permissible	Variations, in.	
Lengin, it	Tubi	e Size, III.	~	Over	Und	ler
		U.S. Custor	mary Units			
Under 1	Up to	1.250, incl	⟨ ⟩ ⟩`	1/32	0	
1 to 4, incl	Up to	1.250, incl		1/16	0	
Over 4 to 10, incl	Up to	1.250, incl		3/32	0	
Over 10	Up to	1.250, incl	CO,	3/16	0	
		Metric	Units			
Langth m	Tubo	Size, mm	. >	Permissible	Variations, mm	
Length, m	Tube	: Size, Illili	X ,	Over	Und	ler
Under 0.3	Up to	31.75, incl 🗸 🤇)	0.794	0	
0.3 to 1.2, incl	Up to	31.75, incl		1.59	0	
1.2 to 3.0, incl	Up to	31.75, incl		2.38	0	
Over 3.0	Up to	31.75, incl		4.76	0	
	Outside Diam	eter, in.	Inside Di	ameter, in.	Wall Thi	ckness,%
Specified Outside Diameter, in.	+	(<u>)</u> -	+	-	+	_
	(2)	U.S. Custor	mary Units			
Under 3/32	0.002	0	0	0.002	10	10
to 3/16 (0.1875), excl	0.003	0	0	0.003	10	10
3/16 to 1/2 (0.500), excl	0.004	0	0	0.004	10	10
½ to 1¼ (1.250), incl	0.005	0	0	0.005	10	10
	7,	Millime	etres			
Under 2.38	0.051	0	0	0.051	10	10
2.38 to 4.76, excl	0.076	0	0	0.076	10	10
4.76 to 12.70, excl	0.102	0	0	0.102	10	10
12.70 to 31.8, incl	0.127	0	0	0.127	10	10

SB-164 Grant Mith ASTM Specification 8164-93(2014) Sept that certification and reporting have been made mandatory and both definition is revised.) (Identical with ASTM Specification 8164-93(2014) Sept that certification and reporting have been made mandatory and both definition is revised.)

SPECIFICATION FOR NICKEL-COPPER ALLOY ROD, BAR, AND WIRE

SB-164

[Identical with ASTM Specification B 164-03(2014) except that certification and reporting have been made mandatory and lot definition is revised.]

1. Scope

- 1.1 This specification covers nickel-copper alloys UNS N04400 and N04405 in the form of hot-worked and coldworked rod and bar in the conditions shown in Table 1 and cold-worked wire in the conditions shown in Table 2.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- **2.1** ASTM Standards:
- B 127 Specification for Nickel-Copper Alloy (UNS N04400) Plate, Sheet, and Strip
- B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys, and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 76 Test Methods for Chemical Analysis of Nickel-Copper Alloys
- **E** 140 Hardness Conversion Tables for Metals
- E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

2.2 Military Standards:

MIL-STD-129 Marking for Shipment and Storage
MIL-STD-271 Nondestructive Testing Requirements for
Metals

3. Terminology

- **3.1** Definitions of Terms Specific to This Standard:
- 3.1.1 bar material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and $\frac{1}{8}$ in. (3.2 mm) and over in thickness in straight lengths.
- 3.1.2 *rod* material of round solid section furnished in straight lengths.
- **3.1.3** *wire* a cold-worked solid product of uniform round cross section along its whole length, supplied in coiled form.

NOTE 1 — Hot-worked rectangular bar in widths 10 in. and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B 127, provided the mechanical property requirements of Specification B 164 are met.

4. Ordering Information

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.1** ASTM designation and year of issue.
 - **4.1.2** UNS number.
- **4.1.3** *Section* Rod (round) or bar (square, hexagonal, or rectangular) or wire (round).
 - **4.1.4** *Dimensions* Dimensions including length.

		7	UNS N04405	
	::	8		Forging quality:- All sizes
B 60 to B 75	:	:		Rings and disks
:	35	25 000 (170)	70 000 (480)	not-worked (amrealed) or cold-worked (amrealed). Rod and bar, all sizes
B 75 to B 95	:	:	P	Rings and disks
	25	30 000 (207)	75 000 (5170)	Hexagons over $2\frac{1}{8}$ (54) to 4 (102), incl
	2			(356), incl
:	30	(926)	75,000 27	hexagons 2½ (54) and under Rounds equates and rectangles over 12 (305) to 14
:	300	40 000 (276)	80 000 (552)	Hot-worked (as worked or stress-relieved): Rounds, squares, and rectangles up to 12 (305), incl, and
			<i>(</i> 1)	(79.4), incl
	20	50 000 (345)	80 000 (552)	Squares, hexagons and rectangles, over 2 (50.8) to 31/8
• •	208,0	50 000 (345)	84 000 (580)	Squares, hexagons and rectangles, 2 (50.8) and under
• • • •	0 0 0	55 000 (413)	84 000 (580)	Rounds, /2 to 3/2 (12.1 to 60.9), IIICI Pounds over 31/ +0 4 (88 0 +0 101 6) incl
:	108	50 000 (345)	84 000 (580)	Rounds under ½ (12.7)
	2			Cold-worked (stress-relieved):
:	88	85 000 (585)	110 000 (760)	Cold-Worked (3s Worked): Rounds under ½ (12.7)
			UNS N04400	
Rockwell Hard- ness (or equivalent)	Elongation in 2 in. or 50 mm (or 4D), min, %	Yield Strength (0.2% offset) ⁴ min, psi (MPa)	Tensile Strength min, psi (MPa)	Condition and Diameter or Distance Between Parallel Surfaces, in. (mm)
		IF ROD AND BAR	TABLE 1 MECHANICAL PROPERTIES OF ROD AND BAR	SMENORMOC

Cold-worked (as worked or stress-relieved):).		
Rounds, under $\frac{1}{2}$ (12.7)	85 000 (585)	50 000 (345)	88	:
Rounds, ½ (12.7) to 3 (76.2), incl	85 000 (585)	50 000 (345)	15	:
Rounds, over 3 (76.2) to 4 (101.6), incl	80 000 (552)	50 000 (345)	15	:
Hexagons and squares 2 (50.8) and under	85 000 (585)	50 000 (345)	15 ^{<i>B,C</i>}	:
Hexagons and squares over 2 (50.8) to $3\frac{1}{8}$ (79.4), incl	80 000 (552)	45 000 (310)	15	:
Hot-worked (as hot-worked or stress-relieved):			<i>\</i>	
Rounds 3 (76.2) and less	75 000 (517)	35 000 (241)	30	:
Hexagons and squares, $2\frac{1}{8}$ (54) and less	75 000 (517)	35 000 (241)	30	:
Hexagons and squares, over $2\frac{1}{8}$ (54) to 4 (101.6), incl	70 000 (480)	30 000 (207)	25	:
Hot-worked (annealed) or cold-worked (annealed):			70	
Rod and Bar, All sizes	70 000 (480)	25 000 (170)	35	:
4 See 12.2. 8 Not applicable to diameters or cross sections under 3 ₅₂ in. (2.4 mm). 6 For sections under 1 ₇₂ in. (12.7 mm), the elongation shall be 10% min. 6 For hot-worked flats 4 ₇₆ in. (7.9 mm) and under in thickness the elongation shall be 20% min. 6 For hot-worked flats 4 ₇₆ in. (7.9 mm) and under in thickness the elongation only. No tensile properties are required. 6 Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required.	nm). % min. : elongation shall be 20% min. e inspection only. No tensile prope	erties are required.	Section II par	KB)
				3

See 12.2. BNot applicable to diameters or cross sections under ${}^3_{52}$ in. (2.4 mm). CF resctions under ${}^1_{52}$ in. (12.7 mm), the elongation shall be 10% min. Proverked flats ${}^5_{16}$ in. (7.9 mm) and under in thickness the elongation shall be 20% min. For hot-worked flats ${}^5_{16}$ in. (7.9 mm) and under in thickness the elongation shall be 20% min.

TABLE 2							
MECHANICAL	PROPERTIES	0F	COLD-WORKED	WIRE	ΙN	$COIL^A$	

	Tensile Streng	th, psi (MPa)	
Alloy Condition and Size, in. (mm)	Min	Max	Wrapping Test
UNS N04400 and N04405:			
Annealed, all sizes	70 000 (483)	85 000 (586)	All wire shall wrap around a rod of the
No. 0 temper, under $\frac{1}{2}$ (12.7)	80 000 (552)	95 000 (655)	same diameter as the wire without
No. 1 temper, under $\frac{1}{2}$ (12.7)	90 000 (621)	110 000 (758)	cracking
UNS N04400			
Regular temper, under $\frac{1}{2}$ (12.7)	110 000 (758)	140 000 (965)	All wire up to 0.2294 in. (5.84 mm)
Regular temper, $\frac{1}{2}$ (12.7) and over	90 000 (621)	130 000 (896)	inclusive, shall wrap around a rod of
Spring temper			the same diameter as the wire without
0.028 (0.71) and less	165 000 (1138)		cracking. Wire over 0.2294 in.
Over 0.028 (0.71) to 0.057 (1.45), incl	160 000 (1103)		(5.84 mm) diameter shall wrap around
Over 0.057 (1.45) to 0.114 (2.90), incl	150 000 (1034)		a rod of twice the wire diameter
Over 0.114 (2.90) to 0.312 (7.92), incl	140 000 (965)		without cracking.
Over 0.312 (7.92) to 0.375 (9.53), incl	135 000 (931)		
Over 0.375 (9.53) to 0.500 (12.7), incl	130 000 (896)		
Over 0.500 (12.7) to 0.563 (14.3), incl	120 000 (827)		CM.

^A Properties are not applicable to wire after straightening and cutting.

TABLE 3
CHEMICAL REQUIREMENTS

	Compositio	n Limits, %
Element	UNS N04400	UNS N04405
Nickel ^A	63.0 min	63.0 min
Copper	28.0 min	28.0 min
	34.0 max	34.0 max
Iron	2.5 max	2.5 max
Manganese	2.0 max	2.0 max
Carbon	0.3 max	0.3 max
Silicon	0.5 max	0.5 max
Sulfur	0.024 max	0.025 min
		0.060 max

^A Element shall be determined arithmetically by difference.

- 4.1.5 Condition.
- **4.1.6** Finish.
- **4.1.7** Quantity feet or number of pieces.
- **4.1.8** Certification Certification and reporting per para. 15 are mandatory.
- **4.1.9** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished
- **4.1.10** Purchaser Inspection If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 3.

5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B 880.

6. Mechanical Properties

6.1 Mechanical Properties — The material shall conform to the mechanical properties specified in Table 1 for rod or bar, or in Table 2 for wire.

7. Dimensions and Permissible Variations

- **7.1** Diameter, Thickness, or Width The permissible variations from the specified dimensions as measured on the diameter or between parallel surfaces of cold-worked rod and bar shall be as prescribed in Table 4, and of hot-worked rod and bar as prescribed in Table 5. The permissible variations in diameter of cold-worked wire shall be as prescribed in Table 6.
- **7.2** Out-of-Round Hot-worked rods and cold-worked rods (except "forging quality") all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Table 4 and Table 5, except for hot-worked rods ½ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 5. Wire shall not be out-of-round by more than one-half the total permissible variations shown in Table 6.
- **7.3** *Corners* Cold-worked bars will have practically exact angles and sharp corners.
- **7.4** Machining Allowances for Hot-Worked Materials When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 7 are

TABLE 4
PERMISSIBLE VARIATIONS IN DIAMETER OR DISTANCE BETWEEN PARALLEL SURFACES OF COLD-WORKED
ROD AND BAR

	Permissible Variations from Specified Dimension, in. (mm)			
Specified Dimension, in. (mm) ⁴	+	-		
Rounds:				
$\frac{1}{16}$ (1.6) to $\frac{3}{16}$ (4.8), excl	0	0.002 (0.05)		
$\frac{3}{16}$ (4.8) to $\frac{1}{2}$ (12.7), excl	0	0.003 (0.08)		
$\frac{1}{2}$ (12.7) to $\frac{15}{16}$ (23.8), incl	0.001 (0.03)	0.002 (0.05)		
over $^{15}/_{16}$ (23.8) to $1^{15}/_{16}$ (49.2), incl	0.0015 (0.04)	0.003 (0.08)		
over $1^{15}/_{16}$ (49.2) to $2^{1}/_{2}$ (63.5), incl	0.002 (0.05)	0.004 (0.10)		
over $2\frac{1}{2}$ (63.5) to 3 (76.2), incl	0.0025 (0.06)	0,005 (0.13)		
over 3 (76.2) to $3\frac{1}{2}$ (88.9), incl	0.003 (0.08)	0.006 (0.15)		
over $3\frac{1}{2}$ (88.9) to 4 (101.6), incl	0.0035 (0.09)	(0.007 (0.18)		
Hexagons, squares, rectangles:				
$\frac{1}{2}$ (12.7) and less	0	0.004 (0.10)		
over $\frac{1}{2}$ (12.7) to $\frac{7}{8}$ (22.2), incl	0	0.005 (0.13)		
over $\frac{7}{8}$ (22.2) to $1\frac{1}{4}$ (31.8), incl	0	0.007 (0.18)		
over $1\frac{1}{4}$ (31.8) to $2\frac{1}{4}$ (57.2), incl	0	0.009 (0.23)		
over $2\frac{1}{4}$ (57.2) to 3 (76.2), incl	0	0.011 (0.28)		
over 3 (76.2) to $3\frac{1}{2}$ (88.9), incl	0	0.015 (0.38)		
over $3\frac{1}{2}$ (88.9) to 4 (101.6), incl	0	0.017 (0.43)		

^A Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 5
PERMISSIBLE VARIATIONS IN DIAMETER OR DISTANCE BETWEEN PARALLEL SURFACES OF HOT-WORKED ROD AND BAR

91	Permissible Variations from S	Permissible Variations from Specified Dimensions, in. (mm)			
Specified Dimension, in. (mm) ^A	+	-			
Rod and bar, hot-worked:					
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)			
over 1 (25.4) to 2 (50.8), inc	0.031 (0.79)	0.016 (0.41)			
over 2 (50.8) to 4 (101.6), incl	0.047 (1.19)	0.031 (0.79)			
over 4 (101.6)	0.125 (3.18)	0.063 (1.60)			
Rod, rough-turned or ground:					
under 1 (25.4)	0.005 (0.13)	0.005 (0.13)			
1 (25.4) and over	0.031 (0.79)	0			
orging quality rod: ^B					
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)			
1 (25.4) and over	0.031 (0.79)	0			

Omensions apply to diameter of rods, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness frectangles

> 5 Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3% of the diameter of the rod.

TABLE 6
PERMISSIBLE VARIATIONS IN DIAMETER OF COLD-WORKED WIRE

Diameter, in. (mm)	Permissible Variations, in. (mm), ±
Under 0.0044 (0.11)	0.0002 (0.005)
0.0044 (0.11) to 0.0079 (0.20), incl	0.00025 (0.006)
Over 0.0079 (0.20) to 0.0149 (0.38), incl	0.0003 (0.008)
Over 0.0149 (0.38) to 0.0199 (0.51), incl	0.0004 (0.010)
Over 0.0199 (0.51) to 0.031 (0.79), incl	0.0005 (0.013)
Over 0.031 (0.79) to 0.045 (1.14), incl	0.0006 (0.015)
Over 0.045 (1.14) to 0.079 (2.01), incl	0.0007 (0.018)
Over 0.079 (2.01) to 0.1875 (4.76), incl	0.001 (0.025)
Over 0.1875 (4.76) to 0.3125 (7.93), incl	0.002 (0.051)
Over 0.3125 (7.93)	0.003 (0.076)

TABLE 7
NORMAL MACHINING ALLOWANCES FOR HOT-WORKED MATERIAL

	Normal Machining Allowance, in. (mm)				
Finished-Machined Dimensions for Finishes as Indicate Below in. (mm) ^A	On Diameter, for Rods	Distance Between Parallel Surfaces, for Hexagonal and Square Bar	For Rectan	gular Bar On Width	
Hot-worked: ^B		20.			
Up to $\frac{7}{8}$ (22.2), incl	$\frac{1}{8}$ (3.2)	1/8 (3.2)	$\frac{1}{8}$ (3.2)	$\frac{3}{16}$ (4.8)	
Over $\frac{7}{8}$ to $1\frac{7}{8}$ (22.2 to 47.6), incl	$\frac{1}{8}$ (3.2)	³ / ₁₆ (4.8)	$\frac{1}{8}$ (3.2)	$\frac{3}{16}$ (4.8)	
Over $1^{\frac{7}{8}}$ to $2^{\frac{7}{8}}$ (47.6 to 73.0), incl	³ / ₁₆ (4.8)	¹ / ₄ (6.4)		$\frac{3}{16}$ (4.8)	
Over $2^{7/8}$ to $3^{13/16}$ (73.0 to 96.8), incl	¹ / ₄ (6.4)			$\frac{3}{16}$ (4.8)	
Over $3^{13}/_{16}$ (96.8)	¹ / ₄ (6.4)			³ / ₈ (9.5)	
Hot-worked rods:	٧)				
Rough-turned or rough-ground: $^{\mathcal{C}}$					
$^{15}\!\!/_{16}$ to 4 (23.8 to 101.6), incl, in diameter	₹ ₁₆ (1.6)				
Over 4 to 12 (101.6 to 304.8), incl, in diameter	1/8 (3.2)				

^A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagonal and square bar, and separately to width and thickness of rectangular bar.

^C Applicable to 3 ft (0.91 m) max length.

recommended for normal machining operations.

7.5 Length — The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 8.

7.5.1 Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.

7.6 Straightness:

7.6.1 The permissible variations in straightness of cold-worked rod and bar as determined by the departure from straightness shall be as prescribed in Table 9.

7.6.2 The permissible variations in straightness of precision straightened cold-worked rod as determined by

the departure from straightness shall be as prescribed in Table 10.

7.6.2.1 In determining straightness in the standard 42-in. (1.07-m) distance between supports or, when specified, in determining straightness in lengths not in excess of those shown in Table 10, the rod shall be placed on a precision table equipped with ball-bearing rollers and a micrometer or dial indicator. The rod shall then be rotated slowly against the indicator, and the deviation from straightness in any portion of the rod between the supports shall not exceed the permissible variations prescribed in Table 10. The deviation from straightness (throw in one revolution) is defined as the difference between the maximum and minimum readings of the dial indicator in one complete revolution of the rod.

^B The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lengths of 2 ft (0.61 m) or less. Hot worked material to be machined in longer lengths should be specified showing the finished cross-sectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

ASME BRUC Section II Part B 202

PERMISSIBLE WARIATIONS IN LENGTH OF RODS AND BAR **TABLE 8** ASINE NORMO C. COM. Click to View the S

Random mill lengths:	2
Hot-worked	6 to 24 ft (1.83 to 7.31 m) long with not more that 25 weight % between 6 and 9 ft (1.83 and 2.74 m) ⁴
Cold-worked	6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of $\frac{1}{2}$ in. (6.4 mm) will be
	made for cutting, unless otherwise specified. At the mannacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 (L) 610 mm) with no short lengths allowed 3
Cut lengths	A specified length to which all rods and bars will be cut with a formissible variation of plus 1/8 in. (3.2 mm), minus 0 for sizes 8 in. (203 mm) and
	less in diameter or distance between parallel surfaces. For larger sizes, the permissible variation shall be $+\frac{1}{1}$ in (6.4 mm), -0 .

B For cold-worked rods and bars under ½ in. (12.7 mm) in diameter or distance between parallel surfaces ordered to nominal or stock lengths with a 2-ft (610-mm) range, at least ⁴ For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth forged products, all sections, short lengths down to 2 ft (610 mm) may be furnished. 93% of such material shall be within the range specified; the balance may be in shorter lengths but in no case shall lengths less than 4 ft (1220 mm) be furnished.

TABLE 9		
PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF COLD-WORKED	RODS AND	BARS

Specified Diameter or Distance Between Parallel Surfaces, in. (mm) ^A	Permissible Variations in Lengths Indicated, in. (mm)
Rounds:	Depth of Chord:
½ (12.7) to 4 (101.6), incl Hexagons, Squares, Rectangles:	0.030 (0.76) per ft (305 mm) of length
½ (12.7) to 4 (101.6), incl	0.030 (0.76) per ft (305 mm) of length

^A Material under $\frac{1}{2}$ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

7.6.3 The permissible variations in straightness of hot-worked rod and bar as determined by the departure from straightness shall be as specified in Table 11.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

- **9.1** Lot—Definition:
- **9.1.1** A lot for chemical analysis shall consist of one heat.
- **9.1.2** A lot for mechanical properties testing shall consist of all material from the same heat, nominal diameter or thickness, and condition.

9.1.2.1 DELETED

- 9.2 Test Material Selection:
- **9.2.1** Chemical Analysis —Representative samples from each lot shall be taken during pouring or subsequent processing.
- **9.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.
- **9.2.2** Mechanical Properties Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- **10.1** *Chemical Analysis* One test per lot.
- 10.2 Tension One test per lot.
- 10.3 Hardness One test per lot.
- **10.4** Wrapping One test per lot.

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.
- 11.1.1 All rod, bar, and wire shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E 8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E 8 for rectangular bar up to ½ in. (12.7 mm) inclusive, in thicknesses that are too wide to be pulled full size.
- 11.2 Hardness test specimens shall be taken from material in the final condition.
- 11.3 In order that the hardness determinations may be in reasonably close agreement, the following procedure is suggested:
- 11.3.1 For rod and wire under $\frac{1}{2}$ in. (12.7 mm) in diameter, hardness readings shall be taken on a flat surface prepared by filing or grinding approximately $\frac{1}{16}$ in. (1.6 mm) from the outside surface of the rod.
- 11.3.2 For rod and wire $\frac{1}{2}$ in. in diameter and larger, and for hexagonal, square, and rectangular bar, all sizes, hardness readings shall be taken on a cross section midway between the surface and center of the section.

12. Test Methods

12.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Chemical Analysis	E 76, E 1473
Tension	E 8
Rockwell Hardness	E 18
Hardness Conversion	E 140
Rounding Procedure	E 29

PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF PRECISION-STRAIGHTENED COLD-WORKED SHAFTING UNS NO4400 ONLY	CMENO STR
---	-----------

Shafting, in.	Standard Distance Between Supports	(Throw in One Revolution) from Straightness, in.
$\frac{1}{2}$ to $\frac{15}{15}$, incl Over $\frac{15}{15}$ to $\frac{1}{2}$, incl Over $\frac{1}{2}$ to $\frac{2}{2}$, incl Over $\frac{2}{2}$ to $\frac{4}{2}$, incl $\frac{3}{4}$ to $\frac{15}{15}$, incl Over $\frac{15}{15}$, incl	Solida So	0.005 0.006 0.007 0.008 0.004 plus 0.0025 for ee
Specified Diameter of Shafting, mm	Standard Distance Between Supports	Permissible Variations (Throw in One Revolution) from Straightness, mm
12.7 to 23.8, incl Over 23.8 to 49.2, incl Over 49.2 to 63.5, incl Over 63.5 to 101.6, incl 19.1 to 23.8, incl Over 23.8 to 101.6, incl	1067 mm 1067 mm 1067 mm specified lengths of 914 to 3050 mm specified lengths of 6100 mm and less	0.13 0.15 0.20 0.20 10.2 plu 12.7 plu
		NE BRYC Section II part B) 20

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E 29:

the rounding method of Practice E 29:	
Test	Rounded Unit for Observed or Calculated Value
Chemical composition, hardness, and tolerances (when expressed in decimals)	Nearest unit in the last right-hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield strength Elongation	Nearest 1000 psi (6.9 MPa) Nearest 1%

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material, tested by the purchaser, that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with

TABLE 11
PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF
HOT-WORKED RODS AND BARS^A

Finish	Permissible Variations, in./ft (mm/m) ^B
Rods and bars, hot-worked	0.050 (4.2) ^C
Round—hot worked, rough-ground,	0.050 (4.2) ^C
or rough-turned	

^A Not applicable to forging quality.

this specification and has been found to meet the requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS Number, heat number, condition (temper), ASTM B 164, the size, gross, tare, and net weight, consignor and consignee address, contract or order number, or such other information as may be defined in the contract or order.

17. Keywords

17.1 bar; rod; wire; N04400

^B Material under $\frac{1}{2}$ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

^c The maximum curvature (depth of chord) shall not exceed the values indicated multiplied by the length in feet.

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

S1. Scope

S1.1 The requirements for annealed, hot finished, and cold rolled and stress relieved rod and bar shall apply for shapes in the same conditions except as modified herein for chemistry and ultrasonic inspection.

S2. Referenced Documents

S2.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein:

S2.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

S2.1.2 *Military Standard:*

MIL-STD-129 Marking for Shipment and Storage

S3. Chemical Composition

S3.1 The material shall conform to the composition limits specified in Table 3 except as specified in Table S3.1 or Table S3.2.

S4. Mechanical Properties

S4.1 UNS N04400 cold worked bar and rod shall be supplied in the stress relieved condition.

S5. Number of Tests

S5.1 For wire, the number of samples for tension and wrapping tests shall be as specified in Table S5.1.

TABLE S3.1 CHEMICAL REQUIREMENTS

\sim		Composition Limits, %	
$\overline{\mathcal{W}}$	Element	UNS N04400	
	Carbon	0.2 max.	
	Sulfur	0.015 max.	
	Aluminum	0.5 max.	
	Lead	0.006 max.	
	Tin	0.006 max.	
	Zinc	0.02 max.	
	Phosphorus	0.02 max.	

S6. Specimen Preparation

S6.1 Tensile specimens for rod and bar up to $1\frac{1}{2}$ in. in diameter or minimum thickness shall coincide with the central axis of the piece. Tensile specimens for rod and bar $1\frac{1}{2}$ in. and over in diameter or thickness shall be located midway between the center and the rolled or drawn surface of the piece.

S6.2 Tensile specimens for wire shall be of the full cross section and not less than 15 in. in length. Specimens shall be free from sharp bends or kinks. The distance between the jaws of the testing machine, with the specimen in place ready for testing, shall be not less than 10 in.

S7. Nondestructive Tests

\$7.1 When specified by the purchaser, each piece of each lot shall be inspected. The purchaser shall specify if one or both tests are required.

TABLE \$3.2 CHEMICAL REQUIREMENTS

	Composition Limits, %
Element	UNS N04405
Aluminum	0.5 max.
Lead	0.006 max.
Tin	0.006 max.
Zinc	0.02 max.
Phosphorus	0.02 max.

TABLE S5.1
REQUIRED SAMPLES FOR TENSION AND WRAPPING
TESTS OF WIRE

Lot Size, Ibs	Number of Samples for Each Test
½ in. diameter and less:	
180 and under	1
181 to 500	2
501 to 800	3
801 to 1300	5
1301 to 3200	7
3201 to 5000	10
Over $\frac{1}{4}$ in. diameter:	
For each 500 lbs. or	1
fraction thereof	

TABLE S7.1
ULTRASONIC TESTING REFERENCE HOLE FOR ROD
AND BAR

Material Thickness, in. (mm)	Hole Diameter, in. (mm)
Up to and including 6 (152) Over 6 (152) and including 16 (406)	½ (3.18) ¼ (6.4)
Over 16 (406)	As agreed upon

S7.2 *Ultrasonic Tests:*

S7.2.1 *General Requirements:*

S7.2.1.1 Ultrasonic testing shall be performed in accordance with MIL-STD-271 as modified by the requirements specified herein. Testing shall be done by a longitudinal wave or shear wave technique as specified herein.

S7.2.1.2 Acoustic compatibility between the production material and the calibration standard material shall be within 75%. If the acoustic compatibility is within 25%, no gain compensation is required for the examination. If acoustic compatibility difference is between 25% and 75%, a change in the gain or dB controls shall be accomplished to compensate for the differences in acoustic compatibility. This method cannot be used if the ultrasonic noise level exceeds 50% of the rejection value.

S7.2.2 *Calibration:*

S7.2.2.1 Shear Wave — The shear wave test shall be calibrated on two notches, one notch cut into the inside and one into the outside surface. The notches shall be cut axially and shall have a depth of 5% of the material thickness or $\frac{1}{4}$ in. (6.4 mm), whichever is less. Notch length shall not exceed 1 in. (25.4 mm). Notches shall be made either in the piece to be examined or in a separate defect-free specimen of the same size (within $\pm \frac{1}{8}$ in. (3.18 mm)), shape, material, and condition, or acoustically similar material. The position and amplitude of the response from each note shall be marked on the instrument screen or a transparent overlay, and these marks shall be used as the evaluation reference. Indications that appear between these points shall be evaluated on the basis of a straight line joining the two peak amplitudes.

S7.2.2.2 Longitudinal Wave — The longitudinal wave test shall be calibrated on a flatbottomed reference hole of a given diameter in accordance with Table S7.1 for specified material thickness drilled either into the piece to be tested or into a separate defect-free specimen of the same size (within $\pm \frac{1}{8}$ in. (3.18 mm)), shape, material, and condition, or acoustically similar material. Holes are to be drilled to midsection and the bottom of the hole shall be parallel to the entrant surface. The ultrasonic test instrument shall be adjusted so that the response from the reference hole shall not be less than 25% and not more than 75% of screen height.

S7.2.2.3 Recalibration — During quality conformance inspection, any realignment of the search unit that will cause a decrease in the calibrated sensitivity and resolution, or both, or any change in search unit, couplant, instrument settings, or scanning speed from that used for calibration shall require recalibration. Recalibration shall be performed at least once per 8 h shift.

S7.2.3 *Procedure* — S7.2.3.1 and S7.2.3.2 describe the requirements for rod and bar. Wire shall be excluded from these requirements. Shapes other than those listed below shall be tested to the extent set forth in the approved procedure.

S7.2.3.1 *Rod* — Rod shall be tested using the longitudinal wave technique. The scanning path shall be circumferential or helical with the beam directed along a radius of the rod.

S7.2.3.2 *Bar* — Bar shall be tested using the longitudinal wave technique through one side of each pair of parallel sides (thickness and width only).

S7.2.4 Acceptance Criteria:

S7.2.4.1 Shear Wave — Any material that produces indications equal to or larger than the response from the reference notch or higher than the straight line joining the two peak amplitudes shall be rejected.

S7.2.4.2 Longitudinal Wave — Any material that produces indications equal to or larger than the response from the reference hole, or that produces a complete loss of back reflection shall be rejected. Material shall be tested using a square, rectangular, or circular transducer having an effective area of one square inch or less, but no dimension shall be smaller than the diameter of the reference hole. In the event of disagreement on the degree of back reflection loss, it shall be determined by the contact method using a 1 to $1\frac{1}{8}$ in. (25.4 to 28.6 mm) diameter transducer or one whose area falls within this range.

S7.2.4.3 Reference Notch Removal — If reference notches or flatbottomed holes are made in the material to be tested, they shall be so located than their subsequent removal will not impair the suitability of the material for its intended use.

S7.3 *Liquid Penetrant Inspection:*

S7.3.1 *Procedure* — Liquid penetrant inspection shall be in accordance with MIL-STD-271.

S7.3.2 Surface Requirements — The surface produced by hot working is not suitable for liquid penetrant testing. Therefore, liquid penetrant testing will not be applicable to products ordered with a hot finished surface.

S7.3.3 Acceptance Criteria — Linear defects revealed by liquid penetrant inspection shall be explored by grinding or other suitable means. Depth of defects shall not exceed the dimensional tolerance of the material.

S8. Quality Assurance

S8.1 Responsibility for Inspection:

S8.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements:

S9. Identification Marking

2 C. required or shipment 5, 123. C. 123. C. 123. C. 123. C. 123. C. 124. Report of Assult Bry C. 124. Report **S9.1** All material shall be properly marked for identification in accordance with Fed. Std. No. 182, except that

S10. Preparation for Delivery

S10.1 Preservation, Packaging, Packing:

S10.1.1 *Military Agencies* — The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, level A or C, packed level A, B, or C as specified in the contract or purchase order.

S10.1.2 *Civil Agencies* — The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S10.2 Marking:

S10.2.1 *Military Agencies* — In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S10.2.2 Civil Agencies —In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES NORMALLY SUPPLIED

- **X1.1** The various conditions and finishes in which rod and bar are procurable are as follows:
- **X1.1.1** *Hot-Worked* With a tightly adherent, black, mill oxide surface.
- **X1.1.2** *Hot-Worked, Rough-Ground* Similar to X1.1.1 except rough-ground.
- **X1.1.3** Hot-Worked, Rough-Turned Similar to X1.1.1 except rough turned with a broad nosed tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an over-hauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (910 mm) or less.
- **X1.1.3.1** Where material is intended for shafting for diameters over 4 in. (101.6 mm) the "stress-relieved" temper is recommended.
- **X1.1.4** Hot-Worked, Forging Quality Rough turned and spot ground, as necessary, for sizes 1 in. in diameter and over; rough ground and spot ground for sizes under 1 in. (25.4 mm) in diameter. Material is selected from heats of known, good hot malleability.
- NOTE X1.1— For sizes 4 in. in diameter and less, cold-worked rod may be used also for forging by virtue of the fact such rod has been overhauled for removal of mechanical surface defects prior to cold working. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot malleability range.
- X1.1.5 Forging Quality, Bolt Tolerance Hotworked, of known good hot malleability, but not overhauled prior to skin pass, cold-working to tolerances specified herein, which tolerances conform to the major diameter

tolerances of Class 3 fit of American Standard screw threads. No mechanical properties are offered since material is to be subsequently hot worked. Intended primarily for hot heated bolts but is of somewhat inferior quality, as to surface seams and cracks compared to forging quality, see X1.1.4.

- **X1.1.6** *Hot-Worked, Annealed*—Soft with a tightly adherent oxide that may vary from dark to light.
- **X1.1.7** Hot-Worked, Annealed, and Pickled Same as X1.1.6 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked material and often employed where welding is involved where removal of mill oxide is desired.
- NOTE X1.2—Annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is difficult.
- W1.1.8 Cold-Worked, Stress-Relieved Hot worked, overhauled, cold-worked, and straightened. Material is thermally treated to relieve the major portion of the internal stresses resulting from cold-working and may have a very thin light to medium oxide. Intended primarily for shafting and for machined parts where minimum" walking" or distortion after metal removal is desired.
- **X1.1.9** *Cold-Worked*, *Annealed* Hot-worked, overhauled, cold-worked, and straightened. Annealed for softness and with a dull matte finish.
- NOTE X1.3— *UNS N04405 Material*—This is the machining grade and is preferred generally to UNS N04400 for intricately machined parts, particularly for parts that are to be machined on automatics or require drilling.

JC Section II part B) 202 SPECIFICATION FOR NICKEL-COPPER ALLOY SEAMLESS PIPE AND TUBE SB-165 SB-165 SB-165 SB-165 SB-165-19 except for deletion of 1.1.1)

(23)

STM Specific Click to view the full Public Click to view the full (Identical with ASTM Specification B165-19 except for deletion of 1.1.1.)

Specification for **Nickel-Copper Alloy Seamless Pipe and Tube**

1. Scope

1.1 This specification covers nickel-copper alloy UNS N04400 in the form of cold-worked seamless pipe and tube in the conditions shown in Table 1 and Table X1.1.

1.1.1 DELETED

- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

E8 Test Methods for Tension Testing of Metallic Materials [Metric] E0008_E0008M

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E76 Test Methods for Chemical Analysis of Nickel-Copper SMENORMOC. COM. Alloys (Withdrawn 2003)

3. Terminology

- Terminology

 3.1 Definitions of Terms Specific to This Standard;
 3.1.1 average diameter, n—average of the maximum outside diameters, as determined at tion of the pipe or tube.

 1.2 pipe, n—tube conformercially known

 1.3 a minimum outside diameters, as determined at any one crosssection of the pipe or tube.
- commercially known as pipe sizes, see Table X2.1.
- 3.1.3 seamless pipe or tube, nopipe or tube produced with a continuous periphery in all stages of the operations.
- 3.1.4 tube, n—hollow product of round or any other crosssection having a continuous periphery.

4. Ordering Information

- 4.1 Orders for material to this specification shall include information with respect to the following:
 - 4.1.1 Alloy name or UNS number.
 - 4.1.2 ASTM designation and year of issue.
 - 4.1.3 Condition (see Appendix X3).
- 4.1.4 Finish (see Appendix X3).
 - 4.1.5 Dimensions:
- 4.1.5.1 Tube—Specify outside diameter and nominal or minimum wall.
 - 4.1.5.2 Pipe—Specify standard pipe size and schedule.
 - 4.1.5.3 Length—Cut to length or random.
 - 4.1.6 Quantity—Feet or number of pieces.
- 4.1.7 Hydrostatic Test or Nondestructive Electric Test-Specify type of test (see 6.2).
- 4.1.8 Hydrostatic Pressure Requirements—Specify test pressure if other than required by 12.3.1.

TABLE 1 Mechanical Properties of Pipe and Tube

Condition and Size	Tensile Strength, min, psi (MPa)	Yield Strength, min. (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min, %
Annealed: 5 in. (127 mm) outside			
diameter and under Over 5 in. (127 mm) outside	70 000 (480)	28 000 (195)	35
diameter Stress-Relieved:	70 000 (480)	25 000 (170)	35
All sizes	85 000 (585)	55 000 (380)	15

- 4.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 5.2).
- 4.1.10 *Purchaser Inspection*—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Section 13).
- 4.1.11 Small-Diameter Tube and Tube with Specified Wall Thickness 3 % or Less of the Specified Outside Diameter (Converter Sizes)—See Appendix X1.

5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 2.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Table 2.

6. Mechanical and Other Requirements

- 6.1 *Tension Test*—The material shall conform to the tensile properties specified in Table 1.
- 6.1.1 Tensile properties for material specified as small-diameter tube and tube with specified wall-thickness 3 % or less of the specified outside diameter (converter sizes) shall be in accordance with Table X1.1.
- 6.2 Hydrostatic or Nondestructive Electric Test—Each pipe or tube shall be subjected to either the hydrostatic test or the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

ABLE 2 Chemical Requirements

Element	Composition Limits, %	Product (Check) Analysis Variations, under min or over max, of the Specified Limit of Element
Ni ^A	63.0 min	0.45
Ni ^A Cu	28.0 min	0.15
	34.0 max	0.20
Fe	2.5 max	0.05
Mn	2.0 max	0.04
C	0.3 max	0.02
Si	0.5 max	0.03
S	0.024 max	0.005

^A Element shall be determined arithmetically by difference.

7. Dimensions and Permissible Variations

- 7.1 Diameter and Wall Thickness—The permissible variations in the outside diameter and wall thickness shall conform to the permissible variations prescribed in Table 3.
- 7.2 *Length*—When material is ordered cut-to-length, the length shall conform to the permissible variations prescribed in Table 4.
- 7.3 *Straightness*—Material shall be reasonably straight and free of bends and kinks.
 - 7.4 Ends—Ends shall be plain cut and deburred
- 7.5 Permissible variations for material specified as small-diameter tube and tube with specified wall thickness 3 % or less of the specified outside diameter (converter size) shall conform to the permissible variations prescribed in Table X1.2.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and temper, smooth, commercially straight, and free of injurious imperfections.

9. Sampling

- 9.1 Lot Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot for all other testing shall consist of all material from the same heat, nominal size (excepting length), and condition.
- 3.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same condition and nominal size (excepting length).
 - 9.2 Test Material Selection:
- 9.2.1 *Chemical Analysis*—Representative samples from each lot shall be taken during pouring or subsequent processing.
- 9.2.1.1 Product (Check) Analysis shall be wholly the responsibility of the purchaser.
- 9.2.2 Mechanical and other Properties—Samples of the material to provide test specimens for mechanical and other properties shall be taken from such locations in each lot as to be representative of that lot. Test specimens shall be taken from material in the final condition.

10. Number of Tests

- 10.1 Chemical Analysis—One test per lot.
- 10.2 Tension—One test per lot.
- 10.3 Hydrostatic or Nondestructive Electric Test—Each piece in each lot.

11. Specimen Preparation

11.1 Room Temperature Tensile Specimen—Material shall be tested in the direction of fabrication. Whenever possible, all pipe and tube shall be tested in full tubular size. When testing in full tubular size is not possible, longitudinal strip specimens, or the largest possible round specimen, shall be used. In the event of disagreement when full tubular testing is not possible, a longitudinal strip specimen with reduced gauge length as contained in Test Methods E8 shall be used.

TABLE 3 Permissible Variations for Outside Diameter and Wall Thickness of Seamless Cold Worked Pipe and Tube^{A,B}

		Permissible Vari	ations		9/ of Thickness	o of Coopified
Nominal Outside diameter, in. (mm)	Outside Diam	eter, in. (mm)		ss of Specified al Wall	 % of Thicknes Minimula 	
	+	-	+	_	+	-
Over 0.400 (10) to 5/8 (16), excl	0.005 (0.13)	0.005 (0.13)	15.0	15.0	30	0
5/8 (16) to 11/2 (38), incl	0.0075 (0.19)	0.0075 (0.19)	10.0	10.0	22	0
Over 1½ (38) to 3 (76), incl	0.010 (0.25)	0.010 (0.25)	10.0	10.0	22	0
Over 3 (76) to 41/2 (114), incl	0.015 (0.38)	0.015 (0.38)	10.0	10.0	22	0
Over 41/2 (114) to 6 (152), incl	0.020 (0.51)	0.020 (0.51)	12.5	12.5	28	0
Over 6 (152) to 65% (168), incl	0.025 (0.64)	0.025 (0.64)	12.5	12.5	28	0
Over 65/8 (168) to 85/8 (219), incl	0.031 (0.79)	0.031 (0.79)	12.5	12.5	28	0.

A Ovality—The permissible variations in this table apply to individual measurements, including out-of-roundness (ovality) except for the following:

For pipe and tube having a nominal wall thickness of 3 % or less of the nominal outside diameter, the mean outside diameter shall conform to the permissible variations of this table and individual measurements (including ovality) shall conform to the plus and minus values of the table, with the values increased by 0.5 % of the nominal outside diameter.

For pipe and tube over 4½ in. (114 mm) in outside diameter with a nominal wall thickness greater than 3 % of the nominal outside diameter, the mean outside diameter shall conform to the permissible variations of this table and individual measurements shall not exceed twice the permissible variations of the table.

B Eccentricity—The permissible variations in this table apply to individual measurements including eccentricity.

TABLE 4 Permissible Variations in Length^A

Outside Diameter, in. (mm)	Cut Length, in. (mm)		
Outside Diameter, in. (min)	Over	Under	
Under 2 (50.8)	1/8 (3.2)	0	
2 (50.8) and over	3/16 (4.8)	0	

^A These permissible variations in length apply to pipe or tube in straight lengths. They apply to cut lengths up to and including 24 ft (7.3 m). For lengths over 24 ft, an additional over-tolerance of $\frac{1}{6}$ in. (3.2 mm) for each 10 ft (3.0 m) or fraction thereof shall be permissible up to a maximum additional over-tolerance of $\frac{1}{2}$ in. (12.7 mm).

12. Test Methods

- 12.1 Chemical Composition—In case of disagreement, the chemical composition shall be determined in accordance with Test Methods E76.
- 12.2 Tension Test—Tension testing shall be conducted in accordance with Test Methods E8.
- 12.3 Hydrostatic or Nondestructive Electric Test—Each pipe or tube with an outside diameter ½ in (3 mm) and larger and with wall thickness of 0.015 in. (0.38 mm) and over shall be tested by the manufacturer to an internal hydrostatic pressure of 1000 psi (6.9 MPa) provided that the fiber stress calculated in accordance with the following equation does not exceed the allowable fiber stress, S, indicated below:

$$P = 2St/D \tag{1}$$

where:

P = hydrostatic test pressure, psi (or MPa)

S = allowable fiber stress, for material in the condition (temper) furnished as follows:

Annealed:
5 in. (127 mm) outside diameter 17 500 psi and under (120 MPa)
Over 5 in. (127 mm) outside diameter 16 700 psi (115 MPa)

Stress-relieved:
All sizes 21 200 psi (145 MPa)

- = minimum wall thickness, in. (or mm), equal to the specified nominal wall minus the permissible minus wall tolerance, or the specified minimum wall thickness, and,
- D =outside diameter of the pipe or tube, in. (or mm).
- 12.3.1 When so agreed upon between the manufacturer and purchaser, pipe or tube may be tested to $1\frac{1}{2}$ times the allowable fiber stress given above.
- 12.3.2 If any pipe or tube shows leaks during hydrostatic testing, it shall be rejected.
- 12.4 Nondestructive Electric Test—Each pipe or tube shall be examined with a nondestructive electric test in accordance with Specification B829.
- 12.5 Rounding Method—For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value, or a calculated value, shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

Test Bounded Unit for Observed or Calculated Value

Chemical composition and nearest unit in the last right-hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5 or a 5 followed only by zeros, choose the one ending in an even digit with zero defined as an even digit.

Tensile strength, yield strength Elongation nearest 1 %

13. Inspection

13.1 Inspection of the material shall be agreed upon between the purchaser and the supplier as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS number, heat number, condition (temper), this specification number, the 3ection II Part B 20% size, gross, tare and net weight, consignor and consignee address, contract or order number, or such other information as may be defined in the contract or order.

17. Keywords

17.1 seamless pipe; seamless tube; N04400

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities EMENORMIOC. COM. Click to for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is

placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 182, except that the ASTM specification number and the alloy number shall be used.

§4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, level A or C, packed level A, B, or C as specified in the contract or purchase order.

S4.1.2 Civil Agencies—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIXES

(Nonmandatory Information)

X1. CONVERTER SIZES

X1.1 Small-diameter tube and tube with specified wall thickness 3 % or less of the specified outside diameter in outside diameters 11/4 in. (31.8 mm) and under may be furnished in the conditions listed in Table X1.1 when so specified. The material is furnished in a limited range of sizes and the manufacturer should be consulted as to the various outside diameters and wall thicknesses that may be furnished. and as the agranded when the full Politic Activity the full Politic Ac Material will have a bright finish. Such material shall conform to the applicable requirements in Table X1.1 and Table X1.2.

TABLE X1.1 Mechanical Properties^A of Small-Diameter Tube and Tube with Specified Wall Thickness 3 % or Less of the Specified **Outside Diameter (Converter Sizes)**

		(- /
Condition	Tensile Strength, psi (MPa)	Yield Strength (0.2 % offset) min, psi (MPa)	Elongation in 2 in or 50 mm, (or 4 D), min,%
Annealed ^B Half-hard ^C Full hard ^D	85 000 (585) max 85 000 (585) min 110 000 (760) min	28 000 (195) 55 000 (380) 90 000 (620)	32 3

A Not applicable to outside diameters under 1/8 in. (3.2 mm) and wall thicknesses under 0.015 in. (0.38 mm).

B This condition is sometimes designated as "No. 1 Temper."

^C This condition is sometimes designated as "No-2 temper."

^D This condition is sometimes designated as "No-3 Temper."

TABLE X1.2 Permissible Variations for Small-Diameter Tube and Tube with Specified Wall Thickness \leq 3 % of the Specified Outside Diameter (Converter Sizes)^{A,B,C,D,E,F,G}

Specified Outside Diameter,	Outside D	iameter	Inside Dia	meter, in. (mm)	Wall Thi	ckness, %
in. (mm)	+	-	+	_	+	-
Under 3/32 (2.4)	0.002 (0.05)	0 (0)	0 (0)	0.002 (0.05)	10	10
3/32 to 3/16 (2.4 to 4.8), excl	0.003 (0.08)	0 (0)	0 (0)	0.003 (0.08)	10	10
3/16 to 1/2 (4.8 to 12.7), excl	0.004 (0.10)	0 (0)	0 (0)	0.004 (0.10)	10	10
1/2 to 11/4 (12.7 to 31.8), incl	0.005 (0.13)	0 (0)	0 (0)	0.005 (0.13)	10	10

A Ovality, Tube with Specified Wall Thickness > 3 % of the Specified Outside Diameter—As-Drawn (No. 2 and 3) Tempers—Ovality will be held within the outside diameter tolerances shown in the table.

TABLE X1.3 Tolerances on Cut Lengths of Tube with Specified Wall Thickness \(\leq 3 \) % of the Specified Outside Diameter

Length, ft (cm)	Tube Size, in. (mm)	Permissible in. (n	,
		Over	Under
Under 1 (30)	up to 1.250 (31.8), incl	1/32 (0.8)	0 (0)
1 to 4 (30 to 122), incl	up to 1.250 (31.8), incl	1/16 (1.6)	0 (0)
Over 4 to 10 (122 to	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
300), incl	up to 1.250 (31.8), incl	3/32 (2.4)	0 (0)
Over 10 (300)	up to 1.250 (31.8), incl	3/16 (4.8)	0 (0)

X2. PIPE SCHEDULES

X2.1 The schedules of pipe shown in Table X2.1 are regularly available. Other schedules may be furnished, and the manufacturer should be consulted. Table X2.1 is published for information only.

TABLE X2.1 Pipe Schedules^A

			Nominal Wall T	hickness, in. (mm)	
Nominal Pipe Size in.	Outside Diameter in. (mm)	Schedule No. 5	Schedule No. 10	Schedule No. 40	Schedule No. 80
		in. (mm)	in. (mm)	in. (mm)	in. (mm)
1/8	0.405 (10.3)		0.049 (1.2)	0.068 (1.7)	0.095 (2.4)
1/4	0.540 (13.7)		0.065 (1.6)	0.088 (2.2)	0.119 (3.0)
3/8	0.675 (17.1)		0.065 (1.6)	0.091 (2.3)	0.126 (3.2)
1/2	0.840 (21.3)	0.065 (1.6)	0.083 (2.1)	0.109 (2.8)	0.147 (3.7)
3/4	1.050 (26.7)	0.065 (1.6)	0.083 (2.1)	0.113 (2.8)	0.154 (3.9)
1 _()*	1.315 (33.4)	0.065 (1.6)	0.109 (2.8)	0.133 (3.4)	0.179 (4.5)
11/4	1.660 (42.2)	0.065 (1.6)	0.109 (2.8)	0.140 (3.6)	0.191 (4.8)
11/2	1.900 (48.3)	0.065 (1.6)	0.109 (2.8)	0.145 (3.7)	0.200 (5.1)
2	2.375 (60.3)	0.065 (1.6)	0.109 (2.8)	0.154 (3.9)	0.218 (5.5)
21/2	2.875 (73.0)	0.083 (2.1)	0.120 (3.0)	0.203 (5.2)	0.276 (7.0)
3	3.500 (88.9)	0.083 (2.1)	0.120 (3.0)	0.216 (5.5)	0.300 (7.6)
31/2	4.000 (101.6)	0.083 (2.1)	0.120 (3.0)	0.226 (5.7)	0.318 (8.1)
4	4.500 (114.3)	0.083 (2.1)	0.120 (3.0)	0.237 (6.0)	0.337 (8.6)
5	5.563 (141.3)	0.109 (2.8)	0.134 (3.4)	0.258 (6.5)	0.375 (9.5)
6	6.625 (168.3)	0.109 (2.8)	0.134 (3.4)	0.280 (7.1)	0.432 (10.9)
8	8.625 (219.1)			0.322 (8.2)	0.500 (12.7)

^A The pipe schedules shown above conform with standards adopted by the American National Standards Institute.

Annealed (No. 1) Temper—Ovality will be held within 2 % of the theoretical average outside diameter.

B Ovality, Tube with Specified Wall Thickness ≤ 3 % of the Specified Outside Diameter—As-Drawn (No. 2 and 3) Tempers—Up to but not including 1¼ in. (31.8 mm) in outside diameter, ovality will be held within 2 % of the theoretical average outside diameter.

Annealed (No. 1) Temper—Ovality will be held within 3 % of the theoretical average outside diameter.

[©] Wall Tolerances, Tube with Specified Wall Thickness ≤ 3 % of the Specified Outside Diameter—The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerance shall be ±0.0005 in. (0.13 mm).

to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerand ^D Random Lengths:

Where nominal random lengths on tubing ½ in. (3.2 mm) and larger in outside diameter are specified, a length tolerance of ±3½ ft (106 cm) applies to the nominal length. This is a total spread of 7 ft (210 cm).

Random lengths in sizes ½ in. (3.2 mm) and larger in outside diameter shall be subject to a length range of 5 to 24 ft (150 to 730 cm). Long random lengths are subject to a range of 15 to 22 ft (457 to 670 cm).

Random lengths in sizes up to, but not including ½ in. (3.2 mm) in outside diameter, and fragile tubes with specified wall thickness <3 % of the specified outside diameter over this outside diameter are subject to the length range of 1 to 15 ft (30 to 457 cm).

E Cut Lengths—Tolerances on cut lengths shall be in accordance with Table X1.3.

F Straightness—Round tubing is subject to a straightness tolerance of one part in 600 (equivalent to a depth of arc of 6.030 in. (0.76 mm) in any 3 ft (91 cm) of length).

G When specified, the tolerance spreads of this table may be applied as desired. However, when not specified, the tolerances in this table will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

ESMENGANDOC. COM. COOK to VIEW THE PURPLY OF A SEME ROYC. I.B. ASMER ROYC. Seekforn II. Park B. ASM. ROYC. II.B. ASMER ROYC. SEEKFORN II. PARK B. ASMER ROYC. II.B. ASMER ROYC. SEEKFORN II. PARK B. ASMER ROYC. II.B. ASMER ROYC. I

(23)

SPECIFICATION FOR NICKEL-CHROMIUM-ALUMINUM ALLOY, NICKEL-CHROMIUM-IRON ALLOYS, NICKEL-CHROMIUM-COBALT-MOLYBDENUM ALLOY, NICKEL-IRON-CHROMIUM-TUNGSTEN ALLOY, AND NICKEL-(Identical with ASTM Specification B166-19 except for the addition of UNS N06617 heat treatment requirements.)

Click to the certification and test reports have been made mandatory.)

Application of UNS N06617 heat treatment requirements.

Click to the certification and test reports have been made mandatory.) CHROMIUM-MOLYBDENUM-COPPER ALLOY, ROD,

Specification for JC Section II part B 202 Nickel-Chromium-Aluminum Alloy, Nickel-Chromium-Iron Alloys, Nickel-Chromium-Cobalt-Molybdenum Alloy, Nickel-Iron-Chromium-Tungsten Alloy, and Nickel-Chromium-Molybdenum-Copper Alloy Rod, Bar, and Wire

1. Scope

- 1.1 This specification covers nickel-chromium-aluminum alloy, nickel-chromium-iron alloys, nickel-chromium-cobaltmolybdenum alloy, nickel-iron-chromium-tungsten alloy, and nickel-chromim-molybdenum-copper alloy in the form of hotfinished and cold-worked rounds, squares, hexagons, rectangles, and cold-worked wire.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following precautionary caveat pertains only to the test methods portion, Section 12, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards Guides and Recom-SMENORMDOC.COM. Click mendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B168 Specification for Nickel-Chromium-Aluminum Alloys (UNS N06699), Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696, Nickel-Chromium-Cobalt-Molybdenum Alloy VUNS N06617), Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674), Plate, Sheet, and Strip
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys (Withdrawn 1989)
- E112 Test Methods for Determining Average Grain Size
- E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

2.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

2.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 bar, n—material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and $\frac{1}{8}$ in. (3.2 mm) and over in thickness in straight lengths.
- 3.1.2 *rod*, *n*—material of round solid section furnished in straight lengths.
- 3.1.2.1 *Discussion*—Hot-worked rectangular bar in widths 10 in. and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B168, provided the mechanical property requirements of this specification are met.
- 3.1.3 *wire*, *n*—a cold-worked solid product of uniform round cross section along its whole length, supplied in coil form.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 4.1.1 Alloy Name or UNS Number—see Table 1
 - 4.1.2 ASTM Designation, including year of issue,
- 4.1.3 Section—Rod (round), bar (square, hexagonal, or rectangular), or wire (round),
 - 4.1.4 Condition (see Table 2 and Table 3),
 - 4.1.5 *Finish*,
 - 4.1.6 Dimensions, including length (see Tables 4-8),
 - 4.1.7 Quantity—feet or number of pieces,
 - 4.1.8 Certification—Certification and test reports are required,
- 4.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis shall be furnished, and
- 4.1.10 *Purchaser Inspection*—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

5. Chemical Composition

- 5. The material shall conform to the composition limits specified in Table 1.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B880.

6. Mechanical Properties and Other Requirements

- 6.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 2 for rod and bar and Table 3 (UNS N06600 and N06690 only) for wire.
 - 6.2 Grain Size:
- 6.2.1 Grain size for N06674 shall be 7 or coarser as determined in accordance with Test Methods E112.

7. Dimensions and Permissible Variations

- 7.1 Diameter, Thickness, or Width—The permissible variations from the specified dimensions as measured on the diameter or between parallel surfaces of cold-worked rod and bar shall be as prescribed in Table 4; of hot-worked rod and bar as prescribed in Table 5; and of wire as prescribed in Table 6.
- 7.2 Out-of-Round—Hot-worked rods and cold-worked rods (except "forging quality") all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Table 4 and Table 5, except for hot-worked rods ½ in (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 5. Cold-worked wire shall not be out-of-round by more than one-half the total permissible variations in diameter shown in Table 6.
- 7.3 *Carners*—Cold-worked bars will have practically exact angles and sharp corners.
- When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 7 are recommended for normal machining operations.
- 7.5 Length—The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 8.
- 7.5.1 Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.
- 7.6 Straightness—The permissible variations in straightness of cold-worked rod and bar as determined by the departure from straightness shall be as prescribed in Table 9.
- 7.6.1 The permissible variations in straightness of hotworked rod and bar as determined by the departure from straightness shall be as specified in Table 10.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

- 9.1 Lot—Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot for mechanical properties testing and other requirements shall consist of all material from the same heat, nominal diameter or thickness, and condition.

	ΙΙ		
		Alloy N06235	10-25.0 min remainder ^B 1.0-25.0 24.0-25.0 30.0-32.5 30.0
		Alloy N06699	2.5 max 0.50 max 1.9-3.0 0.005 max 0.50 max 0.50 max 0.50 max 0.005-0.10 0.50 max 0.01 max 0.02 max 0.02 max 0.02 max 0.00 ma
		Alloy N06696	remainder ⁸ 28.0-32.0 1.0-3.0 2.0-6.0 1.0 max 0.15 max 1.10-3.0 1.0-2.3
		Alloy N06603	remainder ^g 24.0-26.0 8.0-11.0 0.15 max 2.4-3.0 0.20-0.40 0.50 max 0.010 max 0.01-0.25
		Alloy N06045	45.0 min 26.0-29.0
uirements^	Composition Limits, %	Alloy N06025	menainder ⁸ 24.0-26.0 8.0-11.0 0.15 max 1.8-2.4 0.15 max 0.15 max 0.010 max 0.020 max 0.010 max 0.01
TABLE 1 Chemical Requirements ^A	Composi	Alloy N06693	27.0–31.0 2.5–6.0 1.0 max 2.5–4.0 0.15 max 0.5 max 0.0 r max 1.0 max 0.5–2.5
TABLE 1 (Alloy N06690	58.0 min 7.0–31.0 0.05 max 0.05 max 0.05 max 0.015 max
×O	i	Alloy Alloy NO6674	remainder 8 21.5–24.5 20.0–27.0 1.50 max
on: click to		Alloy N06617	44.5 min 20.0–24.0 10.0–15.0 3.0 max 1.0 max 0.05–0.15 0.5 max 0.05–0.15 0.5 max 0.015 max 0.016
OC. COL		Alloy N06601	58.0–63.0 remainder ⁸ 1.0 max 1.0–1.7 0.10 max 0.10 max 0.10 max 0.10 max
SMENORMOC. COM. Click to		Alloy N06600	72.0 min 14.0–17.0 6.0–10.0 1.0 max 0.15 max 0.5 max 0.015 max
SMY		Element	Nickel 720 min 580-830 445 min cemainder 80 min cemainder 6 mainder 6 conclusion 140-170 210-250 200-240 215-245 870-310 270-310 240-250 C00-240 C00-240 215-245 870-310 270-310 210-250 C00-240 215-245 870-310 270-310 210-250 C00-200

^A Where ellipses (...) appear in this table, there is no requirement, and the element need neither be analyzed for nor reported. ^B Element shall be determined arithmetically by difference.

TABLE 2 Mechanical Properties of Rods and Bars

Condition and Diameter or Distance	Tensile Strength,	Yield Strength (0.2 %	Elongation in 2 in. or
Between Parallel Surfaces, in. (mm)	min, psi (MPa)	offset), min, psi (MPa)	50 mm or 4 <i>D</i> , min,%
UNS N06600:			
Cold-worked (as worked):			
Rounds: Under ½ (12.7)	120 000 (825)	90 000 (620)	7 ^A
1/2 to 1 (12.7 to 25.4), incl	110 000 (760)	85 000 (820) 85 000 (585)	10
Over 1 to 2½ (25.4 to 63.5), incl	105 000 (700)	80 000 (550)	12
Squares, hexagons, and rectangles:	103 000 (723)	00 000 (330)	12
1/4 (6.4) and under	100 000 (690)	80 000 (550)	54
Over 1/4 to 1/2 (6.4 to 12.7), excl	95 000 (655)	70 000 (480)	7
Hot worked (as worked):	,	,	
Rounds:			:\O*
1/4 to 1/2 (6.4 to 12.7), incl	95 000 (655)	45 000 (310)	20
Over ½ to 3 (12.7 to 76.2), incl	90 000 (620)	40 000 (275)	25
Over 3 (76.2)	85 000 (585)	35 000 (240)	30
Squares, hexagons, and rectangles:	/		
All sizes	85 000 (585)	35 000 (240)	20
Rings and disks ^B	_	_	_
Cold-worked (annealed) or hot-worked (annealed): Rods and bars, all sizes	80 000 (EEO)	35 000 (340)	204
Rings and disks ^C	80 000 (550)	35 000 (240)	30
Forging Quality:			_
All sizes	D	D	D
JNS N06601:			
Cold-worked (annealed) or hot-worked (annealed):		, A	
All products, all sizes	80 000 (550)	30 000 (205)	30
Forging Quality:	D	D , V	12 5 ^A 7 10 20 25 30 20 - 30 ^A - D
UNS N06617:			
Cold-worked (annealed ^G) or hot-worked (annealed ^G):		35 000 (240)	
All products, all sizes	95 000 (655)	35 000 (240)	35 D
Forging Quality:	Ъ		Б
JNS N06674	00 000 (500)	04 000 (005)	20
Cold-worked (annealed ^E) or hot-worked annealed ^E)	86 000 (590)	34 000 (235)	30
All products, all sizes			
Forging Quality:	D	D	D
UNS N06690:	20,		
Cold-worked (as worked):	95 000 (655) 86 000 (590)		
Rounds:			
Under ½ (12.7)	120 000 (825)	90 000 (620)	7 ^A
½ to 1 (12.7 to 25.4), incl	110 000 (760)	85 000 (585)	10
Over 1 to 21/2 (25.4 to 63.5), incl	105 000 (725)	80 000 (550)	12
Squares, hexagons, and rectangles:			- 4
1/4 (6.4) and under	100 000 (690)	80 000 (550)	5 ^A 7
44 (6.4) and under Over 1/4 to 1/2 (6.4 to 12.7), excl Hot worked (as worked): Rounds: 1/4 to 1/2 (6.4 to 12.7), incl Over 1/2 to 3 (12.7 to 76.2), incl	95 000 (655)	70 000 (480)	,
Rounds:			
1/4 to 1/2 (6.4 to 12.7), incl	95 000 (655)	45 000 (310)	20
Over ½ to 3 (12.7 to 76.2), incl	90 000 (620)	40 000 (275)	25
Over 3 (76.2)	85 000 (585)	35 000 (240)	30
Squares, hexagons, and rectangles:	()	(0)	
All sizes	85 000 (585)	35 000 (240)	20
Rings and disks ^B	_ ` ′	_ ` ′	_
Cold-worked (annealed) or hot-worked (annealed):			
Rods and bars, all sizes	85 000 (586)	35 000 (240)	30 ^A
Rings and disks ^C	_	_	_
Forging Quality:	_	_	_
All sizes	D	D	D
UNS N06693:			
Cold-worked (annealed) or hot-worked (annealed):	100 000 (000)	50,000 (0.45)	22
Rods and bars, all sizes	100 000 (690)	50 000 (345)	30 D
Forging Quality: All sizes			
UNS N06603:			
Cold-worked (annealed) or hot-worked (annealed):			
All products, all sizes	94 000 (650)	43 000 (300)	25
orging Quality:	0.000 (000)	10 000 (000)	25
All sizes	D	D	D
UNS N06025:			
Cold-worked (annealed) or hot-worked (annealed):			
All products, all sizes	98 000 (680)	39 000 (270)	30
Forging Quality:	D ` ′	D , ,	D
All sizes			
UNS N06045:			
Cold-worked (annealed) or hot-worked (annealed):			

TABLE 2 Continued

Condition and Diameter or Distance	Tensile Strength,	Yield Strength (0.2 %	Elongation in 2 in. or
Between Parallel Surfaces, in. (mm)	min, psi (MPa)	offset), min, psi (MPa)	50 mm or 4D, min,%
All products, all sizes	90 000 (620)	35 000 (240)	35
Hot-worked (Annealed): ^F			
Rods and bars, all sizes	75 000 (517)	30 000 (207)	30
Forging Quality:	D	D	D
All sizes			
UNS N06696			
Cold-worked (annealed and water quenched) or	85 000 (586)	35 000 (240)	30
hot-worked (annealed and water quenched)			
All products, all sizes			
UNS N06699:			
Cold-worked (annealed) or hot-worked (annealed): All products, all sizes	89 000 (610)	35 000 (240)	40
Forging Quality:	D	D	مور
All sizes			
UNS N06235			
Cold-worked (annealed) or hot-worked (annealed):	90 000 (620)	35 000 (240)	35
All products, all sizes			
Forging Quality:	D	D	D
All sizes			% .

^A Not applicable to diameters or cross sections under 3/32 in. (2.4 mm).

TABLE 3 Mechanical Properties of Cold-Worked Wire in Coil (Alloys No 6600 and No 6690 Only)

Condition and Size, in, (mm)	Tensile Streng	gth, psi (MPa)	- Wrapping Test
Condition and Size, in, (min)	Min	Max	- wrapping rest
Annealed Under 0.032 (0.81)	80 000 (552)	115 000 (793)	The wire shall be wrapped eight consecutive turns in a closed helix (pitch approximately equal to the diameter of the wire) around a mandrel as follows:
0.032 (0.81) and over	80 000 (552)	105 000 (724)	(1) For all annealed and regular temper wire and for spring temper wire 0.229 in. (5.82 mm) and less: Same as diameter of wire.
Cold-worked, regular temper, all sizes	120 000 (827)		(2) For spring temper wire over 0.229 in. (5.82 mm): Twice the diameter of wire.
Cold-worked, spring temper	FULL Y	165 000 (1138)	The wire shall withstand the wrapping test without fracture or development of a pebbled or orange-peel surface.
Up to 0.057 (1.45), incl	85 000 (1276)		or orange peer surface.
Over 0.057 (1.45) to 0.114 (2.90), incl	175 000 (1207)		
Over 0.114 (2.90) to 0.229 (5.82), incl	170 000 (1172)		
Over 0.229 (5.82) to 0.329 (8.36), incl	165 000 (1138)		
Over 0.329 (8.36) to 0.375 (9.53), incl	160 000 (1103)		
Over 0.375 (9.53) to 0.500 (12.7), incl	155 000 (1069)		
Over 0.500 (12.7) to 0.563 (14.3), incl	140 000 (965)		

^A Properties are not applicable to wire after straightening and cutting.

- 9.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same size and condition.
 - 9.2 Test Material Selection:
- 9.2.1 Chemical Analysis—Representative samples from each for shall be taken during pouring or subsequent processing.
- 9.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 9.2.2 Mechanical Properties and Other Requirements—Samples of the material to provide test specimens for mechanical properties and other requirements shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- 10.1 Chemical Analysis—One test per lot.
- 10.2 Tension—One test per lot.
- 10.3 *Hardness*—One test per lot (when required by Footnotes B or C in Table 2).
- 10.4 *Grain Size*—One test from one end of one bar or rod from each lot. See 9.1.2.

11. Specimen Preparation

11.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.

^B Hardness B75 to B100, or equivalent.

^C Hardness B75 to B95, or equivalent.

^D Forging quality is furnished to chemical requirements and surface inspection only. No mechanical properties are required.

E Solution annealed at a minimum temperature of 2150°F (1175°C) followed by a water quench or rapidly cooled by other means

^F High-temperature annealed condition.

^G Solution anneal is done at 2,100°F to 2,250°F and quenched in water or rapidly cooled by other means.

TABLE 4 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Cold-Worked Rod and Bar

Specified Dimension, in. (mm) ^A	Permissible Variations From Specified Dimension, in. (mm)			
	+	-		
Rounds:				
1/16 (1.6) to 3/16 (4.8), excl	0	0.002 (0.05)		
3/16 (4.8) to 1/2 (12.7), excl	0	0.003 (0.08)		
½ (12.7) to ½16 (23.8), incl	0.001 (0.03)	0.002 (0.05)		
over $^{15}/_{16}$ (23.8) to $1^{15}/_{16}$ (49.2), incl	0.0015 (0.04)	0.003 (0.08)		
over 115/16 (49.2) to 21/2 (63.5),	0.002 (0.05)	0.004 (0.10)		
incl				
Hexagons, squares, rectangles:				
1/2 (12.7) and less	0	0.004 (0.10)		
over 1/2 (12.7) to 7/8 (22.2), incl	0	0.005 (0.13)		
over 1/8 (22.2) to 11/4 (31.8), incl	0	0.007 (0.18)		
over 11/4 (31.8) to 2 (50.8), incl	0	0.009 (0.23)		

^A Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 5 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Hot-Worked Rod and Bar

Specified Dimension, in. (mm) ^A	Permissible Variations from Specified Dimensions, in. (mm)					
	+	_				
Rod and bar, hot-worked:						
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)				
over 1 (25.4) to 2 (50.8), incl	0.031 (0.79)	0.016 (0.41)				
over 2 (50.8) to 4 (101.6), incl	0.047 (1.19)	0.031 (0.79)				
over 4 (101.6)	0.125 (3.18)	0.063 (1.60)				
Rod, rough-turned or ground:						
under 1 (25.4)	0.005 (0.13)	0.005 (0.13)				
1 (25.4) and over	0.031 (0.79)	0				
Forging quality rod: ^B						
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)				
1 (25.4) and over	0.031 (0.79)	0				

^A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles. ^B Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3 % of the diameter of the rod.

TABLE 6 Permissible Variations in Diameter of Cold-Worked Wire

TABLE OF CHINICOIDIO VARIACIONO III BIA	motor of John Tronton Tring
Diameter, in. (mm)	Permissible Variations, in. (mm) + or -
Up to 0.0044 (0.112), incl	0.0002 (0.005)
Over 0.0044 (0.112) to 0.0079 (0.201), incl	0.00025 (0.006)
Over 0.0079 (0.201) to 0.0149 (0.378), incl	0.0003 (0.008)
Over 0.0149 (0.378) to 0.0199 (0.505), incl	0.0004 (0.010)
Over 0.0199 (0.505) to 0.031 (0.79), incl	0.0005 (0.013)
Over 0.031 (0.79) to 0.045 (1.14), incl	0.0006 (0.015)
Over 0.045 (1.14) to 0.079 (2.01), incl	0.0007 (0.018)
Over 0,079 (2.01) to 0.1875 (4.76), incl	0.001 (0.025)
Over 0.1875 (4.76) to 0.3125 (7.93), incl	0.002 (0.051)
Over 0.3125 (7.93) to 0.563 (14.3), incl	0.003 (0.076)

11.1.1 All rod, bar, and wire shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E8/E8M shall be used. Longitudinal strip specimens shall be prepared in accordance with Test

Methods E8/E8M for rectangular bar up to $\frac{1}{2}$ in. (12.7 mm), inclusive, in thicknesses that are too wide to be pulled full size.

11.2 Hardness test and grain size specimens shall be taken from material in the final condition.

Note 1—In order that the hardness determinations may be in reasonably close agreement, the following procedure is suggested as follows: (1) For rod, under ½ in. (12.7 mm) in diameter, hardness readings shall be taken on a flat surface prepared by filing or grinding approximately ½ on (1.6 mm) from the outside surface of the rod.

(2) For rod, ½ in. in diameter and larger, and for hexagonal, square, and rectangular bar, all sizes, hardness readings shall be taken on a cross section midway between the surface and center of the section.

12. Test Methods

12.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Chemical Analysis	E38, ^A E1473
Tension	E8/E8M
Rockwell Hardness	E18
Hardness Conversion	E140
Grain Size	E112
Rounding Procedure	E29

^A Methods E38 are to be used only for elements not covered by Test Methods E1473.

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29 as follows:

Test	Rounded Unit for Observed or Calculated Value
Chemical composition, hard- ness, and tolerances (when expressed in decimals)	Nearest unit in the last righthand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield strength	nearest 1000 psi (6.9 MPa)
Elongation	nearest 1 %

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the

TABLE 7 Normal Machining Allowances for Hot-Worked Material

	Normal Machining Allowance, in. (mm)				
Finished-Machined Dimensions for Finishes as Indicated Below, in.	On Diameter,	Distance Between Parallel Surfaces for Hexagonal and Square Bar	For Rectangular Bar		
(mm) ^A	for Rods		On Thickness	On Width	
Hot-worked: ^B					
Up to % (22.2), incl	1/8 (3.2)	1/8 (3.2)	1/8 (3.2)	3/16 (4.8)	
Over 7/8 to 17/8 (22.2 to 47.6), incl	1/8 (3.2)	3/16 (4.8)	1/8 (3.2)	3/16 (4.8)	
Over 1 % to 2% (47.6 to 73.0), incl	³ / ₁₆ (4.8)	1/4 (6.4)		3/16 (4.8)	
Over 27/8 to 313/16 (73.0 to 96.8), incl	¹/4 (6.4)			3/16 (4.8)	
Over 313/16 (96.8)	1/4 (6.4)			3/8 (9.5)	
Hot-worked rods: Rough-turned or rough-ground: C 15/16 to 4 (23.8 to 101.6),				ction.	
incl in diameter Over 4 to 12 (101.6 to 304.8),	1/16 (1.6)			Sem	
incl in diameter	1/8 (3.2)			. ()	

A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagonal and square bar, and separately to width and thickness of rectangular bar. E The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lengths of 2 ft (0.61 m) or less. Hot-worked material to be machined in longer lengths should be specified showing the finished cross-sectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

C Applicable to 3 ft (0.91 m) max length.

TABLE 8 Permissible Variations in Length of Rods and Bars

Random mill lengths:	
Hot-worked	6 to 24 ft (1.83 to 7.31 m) long with not more than 25 weight % between 6 and ∮tt (1.83 and 2.74 m). ^A
Cold-worked	6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits invicated above. For each multiple, an allowance of ¼ in.
	(6.4 mm) will be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may
	be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed. ⁸
Cut lengths	A specified length to which all rods and bars will be cut with a permissible variation of plus 1/6 in. (3.2 mm), minus 0 for sizes 8 in.
	(203 mm) and less in diameter or distance between parallel surfaces. For larger sizes, the permissible variation shall be + 1/4 in.
	(6.4 mm). – 0.

A For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth-forged products, all sections, short lengths down to 2 ft (610 mm) may be furnished.

TABLE 9 Permissible Variations in Straightness of Cold-Worked **Rods and Bars**

Specified Diameter or Distance	Permissible Variations
Between Parallel Surfaces, in.	in Lengths Indicated, in.
(mm) ^A	(mm)
Rounds:	Depth of Chord:
½ (12.7) to 2½ (63.5), incl	0.030 (0.76) per ft (305 mm) of
	length
Hexagons, squares,	1.
rectangles:	vO
½ (12.7) to 2 (50.8), incl	0.030 (0.76) per ft (305 mm) of
	length

A Material under 1/2 in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 The following shall be marked on the material or included on the package, or on a label or tag attached thereto: the name of the material or UNS Number, heat number, condition (temper), this specification number, the size, gross,

TABLE 10 Permissible Variations in Straightness of Hot-Worked Rods and Bars^A

	Permissible
Finish	Variations,
	in./ft (mm/m) ^B
Rods and bars, hot-worked	0.050 (4.2) ^C
Rounds hot-worked, rough-ground, or rough-turned	0.050 (4.2) ^C

^A Not applicable to forging quality.

tare, and net weight, consignor and consignee address, contract or order number, or such other information as may be defined in the contract or order.

17. Keywords

17.1 bar; rod; wire; UNS N06025; UNS N06045; UNS N06235; UNS N06600; UNS N06601; UNS N06603; UNS N06617; UNS N06674; UNS N06690; UNS N06693; UNS N06696; UNS N06699

For cold-worked rods and bars under ½ in. (12.7 mm) in diameter or distance between parallel surfaces ordered to nominal or stock lengths with a 2-ft (610-mm) range, at least 93 % of such material shall be within the range specified; the balance may lon shorter lengths but in no case shall lengths less than 4 ft (1220 mm) be furnished.

B Material under ½ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

^C The maximum curvature (depth of chord) shall not exceed the values indicated multiplied by the length in feet.

SUPPLEMENTARY REQUIREMENTS

SUPPLEMENTARY REQUIREMENTS FOR SPECIAL END USES

S1. Special End Uses

S1.1 When material is intended for nuclear applications or other critical end uses, or when any special requirements are to apply, the manufacturer shall be notified at the time of placement of the inquiry or order to determine if material of quality and inspection procedures normally employed for commercial material to this specification is adequate. In the

event that more critical quality or more rigid inspection standards than those called out in this specification are indicated, the manufacturer and the purchaser shall agree upon such standards prior to production.

SUPPLEMENTARY REQUIREMENTS FOR U.S. GOVERNMENT

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

S2. Referenced Documents

S2.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein: Federal Standards 102, 123, and 182 and Military Standard MIL-STD-129.

S3. Quality Assurance

S3.1 Responsibility for Inspection:

S3.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S4. Identification Marking

S4.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 182, except that the ASTM specification number and the alloy number shall be used.

S5. Preparation for Delivery

S5.1 Preservation, Packaging, Packing:

S5.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, level A or C, packed level A, B, or C as specified in the contract or purchase order.

S5.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S5.2 Marking:

S5.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

\$5.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. PROCURABLE CONDITIONS AND FINISHES

- X1.1 The various conditions and finishes in which rod and bar are procurable are as follows:
- X1.1.1 Hot-Worked—With a tightly adherent, dark oxide surface.
- X1.1.2 Hot-Worked, Rough-Ground-Similar to X1.1.1 except rough-ground.
- X1.1.3 Hot-Worked, Rough-Turned—Similar to X1.1.1 except rough-turned with a broad-nosed tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (0.91 m) or less.
- X1.1.4 Hot-Worked, Forging Quality-Rough-turned and spot-ground, as necessary, for sizes 1 in. (25.4 mm) in diameter and over; rough ground and spot ground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot aulea .mealed f. .meal malleability.

- coldworked rod may be used also for forging by virtue of the fact that such rod has been overhauled for removal of mechanical surface defects prior to cold-working. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot malleability range
- X1.1.5 Hot-Worked, Annealed—Soft, with a tightly atherent dark oxide.
- X1.1.6 Hot-Worked, Annealed, and Pickled Same as X1.1.5 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked material and often employed where welding is involved where removal of mill oxide is desired.
- Note X1.2—Annealing prior to picking may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is
- X1.1.7 Cold-Worked, A. Worked—Hot-worked, overhauled, cold-worked, and straightened with a smooth, bright finish.
- X1.1.8 Cold-Worked, Annealed, and Pickled—Hot-worked, overhauled, cold-worked, annealed, descaled, and straightened. Annealed for softness and with a dull matte finish.

SPECIFICATION FOR NICKEL-CHROMIUM RON ALLOYS (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, AND N06696), AND NICKEL-CHROMIUM-COBALT-MOLYBDENUM ALLOY (UNS N06617), NICKEL-IRON-CHROMIUM-TUNGSTEN ALLOY (UNS N06674), AND NICKEL-CHROMIUM-MOLYBDENUM-COPPER ALLOY (UNS N06235) SEAMLESS PIPE AND TUBE

(23)

(Identical with ASTM Specification B167-18 except for the addition of UNS N06617 heat treatment requirements.)

Specification for

BRYC Section II part B 202 Nickel-Chromium-Aluminum Alloys (UNS N06699), Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674), and Nickel-**Chromium-Molybdenum-Copper Alloy (UNS N06235) Seamless Pipe and Tube**

1. Scope

- 1.1 This specification covers nickel-chromium-aluminum alloys (UNS N06699), nickel-chromium-iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), nickel-chromium-cobalt-molybdenum alloy (UNS N06617), nickel-iron-chromium-tungsten alloy (UNS N06674), and nickel-chromium-molybdenum-copper alloy (UNS N06235) in cold-worked annealed, hot-worked annealed, and hot-finished seamless pipe and tube intended for general corrosion resistant and heat resistant applications.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following safety hazards caveat pertains only to the test methods portion, Section 13, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for Some with the state of the stat this product/material as provided by the manufacturer, to

establish appropriate safety health, and environmental practices, and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations is ued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys (Withdrawn 1989)

E112 Test Methods for Determining Average Grain Size E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys
- 2.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys

2.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 average diameter, n—the average of the maximum and minimum outside diameters, as determined at any one cross section of the pipe or tube.
- 3.1.2 *pipe*, *n*—tube conforming to the particular dimensions commercially known as pipe sizes. See Table X2.1.
- 3.1.3 *seamless pipe or tube, n*—a pipe or tube produced with a continuous periphery in all stages of the operations.
- 3.1.4 *tube*, *n*—a hollow product of round or any other cross section having a continuous periphery.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - 4.1.1 Alloy Name or UNS Number-see Table 1,
 - 4.1.2 ASTM Designation, including year of issue,
 - 4.1.3 Condition (see Appendix X3),
 - 4.1.4 Finish (see Appendix X3),
 - 4.1.5 Dimensions:
- 4.1.5.1 *Tube*—Specify outside diameter and nominal or minimum wall,
 - 4.1.5.2 *Pipe*—Specify standard pipe size and schedule,
 - 4.1.5.3 Length—Cut to length or random,
 - 4.1.6 Quantity—Feet or number of pieces,
- 4.1.7 Hydrostatic Test or Nondestructive Electric Test—Specify type of test (see 7.2).
- 4.1.8 Hydrostatic Pressure Requirements—Specify test pressure if other than required by 13.3.1,
- 4.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 5.2),
- 4.1.10 Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Section 14), and
- 4.1.11 Small-Diameter Tube and Tube with Specified Wall Thickness 3% or Less of the Specified Outside Diameter (Converter Sizes)—See Appendix X1.

5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 1.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B880.

6. Heat Treatment

6.1 Heat treatment of N06674 after cold-working or hotworking shall be solution annealing by heating to 2150°F (1175°C) minimum, followed by quenching in water or rapidly cooling by other means.

7. Mechanical Properties and Other Requirements

- 7.1 *Tensile Test*—The material shall conform to the tensile properties specified in Table 2.
- 7.1.1 Tensile properties for material specified as small-diameter tube and tube with specified wall thickness 3 % or less of the specified outside diameter (converter sizes) shall be as prescribed in Table X1.1.
- 7.2 Hydrostatic or Nondestructive Electric Test—Each pipe or tube shall be subjected to either the hydrostatic test or the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.
 - 7.3 Grain Size:
- 7.3.1 Grain size for N06674 shall be 7 or coarser, as determined in accordance with Test Methods E112.

8. Dimensions and Permissible Variations

- 8.1 Diameter, Wall Thickness, and Length—The permissible variations in the outside diameter and wall thickness shall conform to the permissible variations prescribed in the Permissible Variations for Outside Diameter and Wall Thickness of Seamless Cold-Worked Pipe and Tube, Permissible Variations for Outside Diameter and Wall Thickness of Hot-Finished Tube, and Permissible Variations for Outside Diameter and Wall Thickness of Seamless Hot-Worked Pipe tables in Specification B829. The permissible variations in the length shall conform to the permissible variations prescribed in the Permissible Variations in Length table in Specification B829.
- 8.2 Permissible variations for material specified as small-diameter and light-wall tube (converter size) shall conform to the permissible variations prescribed in Table X1.2.

9. Workmanship, Finish, and Appearance

9.1 The material shall be uniform in quality and temper, smooth, commercially straight, and free of injurious imperfections.

10. Sampling

- 10.1 Lot Definition:
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot for all other testing shall consist of all material from the same heat, nominal size (excepting length), and condition.

	ı	I	1
		Alloy N06235	N06235 remainder ⁸ 30.0-32.5 1.5 max 0.3-0.65 5.0-6.2 1.0 max 0.02-0.6 0.02-0.6 0.015 max 0.015 max 0.015 max 0.015 max 0.003 max 0.000 max
		Alloy N06699	MODOSY9 Temainder 8 Ze.0-30.0 Ze.5 max 1.9-3.0 0.050 max 0.008 max 0.00 max 0.00 max 0.00 max 0.00 max 0.05 max
		Alloy N06696	
		Alloy N06693	1.0 max
		Alloy N06690	86.0 min remainder ⁸ remainder
ements ^A	Limits, %	Alloy N06674	max max max 05-0.006 max max 05-0.006 max 05-0.006 max 0.35 0 max
TABLE 1 Chemical Recuirements ^A	Composition Limits, %	Alloy N06617	14.5 min 20.0-24.0 3.0 max 1.0
TABLE 1 Che		Alloy N06603	Nuceus remainder ⁸ 24-0-26.0 24-3.0 0.50 max 0.50 max 0.1-0.25 0.020 max 0.01-0.15
	ii	Alloy N0660	21.0-25.0
Clickic		Alloy N06600	72.0 min 72.0 min 1.0 max
C.COM		Alloy N06045	NV60245 45.0 min 26.0-29.0 21.0-25.0 1.0 max 0.05-0.12 0.3 max 0.010 max 0.020 max 1.0 max 1.
SMENORANDOC. COM. Click to		Alloy N06025	nounces remainders 8-0-26.0 8-0-10 0.15 max 1.8-2.4 0.15-0.25 0.1 max 0.020 max 0.010 max 0.01-0.10
SME		Element	Nickel remainded 45.0 miles 1

 A Where ellipses (...) appear in this table, there is no requirement and the element need neither be analyzed for nor reported. B Element shall be determined arithmetically by difference.

TABLE 2 Mechanical Properties

		Mechanical Properties		
Condition and Size	Tensile Strength, min psi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm or 4 <i>D</i> min,%	
UNS N06025:	ρο. (ω)			
Hot-worked annealed	98 000 (680)	39 000 (270)	30	
	96 000 (660)	39 000 (270)	35 35 35 35 35	
or cold worked				
annealed (all sizes)				
UNS N06045:				
Hot-worked annealed	90 000 (620)	35 000 (240)	35	
or cold-worked	00 000 (020)	55 555 (2.15)	90	
annealed (all sizes)			N .	
UNS N06600:				
Hot-worked or hot-			:.O`	
worked annealed:				
5 in. (127 mm) in	80 000 (550)	30 000 (205)	35	
outside diameter and	00 000 (000)	00 000 (200)		
under			C. 5	
Over 5 in. (127	75 000 (515)	25 000 (170)	35	
mm) in outside				
diameter		30 000 (205) 25 000 (170) 35 000 (240) 30 000 (205)	0 ~	
			05	
Cold-worked			\sim	
annealed:			⋌ ∤.▼	
5 in. (127 mm) in	80 000 (550)	35 000 (240)	30	
outside diameter and	()		7.	
			\ *	
under				
Over 5 in. (127	80 000 (550)	30 000 (205)	35	
mm) in outside				
diameter		$\mathcal{O}_{\mathcal{O}}$		
UNS N06601:		11.		
Cold-worked annealed				
or hot-worked		10		
annealed:		30 000 (205) 43 000 (300) 35 000 (240) 34 000 (235)		
	00 000 (550)	20,000 (005)	20	
All sizes	80 000 (550)	30 000 (205)	30	
UNS N06603:				
Hot-worked annealed	94 000 (650)	43 000 (300)	25	
or cold worked	, ,			
annealed (all sizes)				
UNS N06617:				
Cold-worked annealed A	95 000 (665)	35 000 (240)	35	
or hot-worked	, ,			
annealed ^A : All sizes		0,		
UNS N06674:				
Cold-worked annealed	86 000 (590)	34 000 (235)	30	
or hot-worked	\bigcirc			
annealed: All sizes				
UNS N06690:	(1),			
Hot-worked or hot-				
worked annealed:	<i>O</i> 1			
5 in. (127 mm) in	85 (000 (586)	30 000 (205)	35	
	85 000 (586)	00 000 (200)	33	
outside diameter	<i>a</i>) "			
and under	CA2			
Over 5 in. (127	75 000 (515)	25 000 (170)	35	
mm) in outside	(* *)			
	~			
diameter)			
Cold-worked				
annealed:				
5 in. (127 mm) in	85 000 (586)	35 000 (240)	30	
	33 300 (000)	00 000 (2.10)	00	
outside diameter and				
under				
Over 5 in. (127 •	85 000 (586)	30 000 (205)	35	
mm) in outside	, -/	/		
diameter				
UNS N06693:				
Cold-worked annealed	100 000 (690)	50 000 (345)	30	
or hot- worked	/	(/		
annealed: 5 in. (127				
mm) in outside				
diameter and under				
UNS N06696				
Cold-worked annealed	85 000 (586)	35 000 (240)	30	
(all sizes)	, ,	,		
UNS N06235				
Hot-worked annealed	90 000 (620)	35 000 (240)	35	
or cold worked				
annealed (all sizes) UNS N06699				

TABLE 2 Continued

Condition and Size	Tensile Strength, min psi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm or 4 <i>D</i> min,%
Hot-worked annealed or cold worked annealed (all sizes)	89 000 (610)	35 000 (240)	40

^ASolution anneal is done at 2,100°F to 2,250°F and quenched in water or rapidly cooled by other means.

- 10.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same condition and nominal size (excepting length).
 - 10.2 Test Material Selection:
- 10.2.1 *Chemical Analysis*—Representative samples from each lot shall be taken during pouring or subsequent processing.
- 10.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 10.2.2 *Mechanical and Other Properties*—Samples of the material to provide test specimens for mechanical and other properties shall be taken from such locations in each lot as to be representative of that lot. Test specimens shall be taken from material in the final condition.

11. Number of Tests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Tension—One test per lot.
- 11.3 Hydrostatic or Nondestructive Electric Test—Each piece in each lot.

12. Specimen Preparation

12.1 Room-Temperature Tension Specimen—Material shall be tested in the direction of fabrication. Whenever possible, all pipe and tube shall be tested in full tubular size. When testing in full tubular size is not possible, longitudinal strip specimens, or the largest possible round specimen, shall be used. In the event of disagreement when full tubular testing is not possible, a longitudinal strip specimen with reduced gage length as contained in Test Methods E8/E8M shall be used.

13. Test Methods

- 13.1 Chemical Composition—In case of disagreement, the chemical composition shall be determined in accordance with Test Methods E1473 or Methods E38. Methods E38 is to be used only for elements not covered by Test Methods E1473.
- 13.2 *Tension Test*—Tension testing shall be conducted in accordance with Test Methods E8/E8M.
- 13.3 Hydrostatic Test—Each pipe or tube with an outside diameter ½ in. (3 mm) and larger and with wall thickness of 0.015 in. (0.38 mm) and over shall be tested by the manufacturer to an internal hydrostatic pressure of 1000 psi (6.9 MPa) provided that the fiber stress calculated in accordance with the following equation does not exceed the allowable fiber stress, *S*, indicated as follows:

$$P = 2St/D \tag{1}$$

where:

- P = hydrostatic test pressure, psi (or MPa),
- S = allowable fiber stress, for material in the condition (temper) furnished as follows:

	(()
Hot-worked or hot-worked annealed:	
UNS N06025	24 000 (165 MPa)
UNS N06045	22 500 (155 MPa)
UNS N06600	20 000 (140 MPa)
UNS N06601	20 000 (140 MPa)
UNS N06603	24 000 (165 MPa)
UNS N06617	23 700 (163 MPa)
UNS N06690	21 200 (146 MPa)
UNS N06674	21 500 (148 MPa)
UNS N06693	25 000 (172 MPa)
UNS N06235	22 500 (155 MPa)
UNS N06699	22 100 (152 MPa)
Over 5 in. outside diameter:	
UNS N06600	16 700 (115 MPa)
UNS N06690	16 700 (115 MPa)
Cold-worked annealed—All sizes:	
UNS N06025	24 500 (169 MPa)
UNS N06045	22 500 (155 MPa)
UNS N06600	20 000 (140 MPa)
UNS N06601	20 000 (140 MPa)
UNS N06674	21 500 (148 MPa)
UNS N06690	21 200 (146 MPa)
UNS N06693	21 200 (146 MPa)
UNS N06696	21 200 (146 MPa)
UNS N06235	22 500 (155 MPa)
UNS N06699	22 100 (152 MPa)

- t = minimum wall thickness, in. (or mm), equal to the specified nominal wall minus the permissible minus wall tolerance, or the specified minimum wall thickness, and.
- D = outside diameter of the pipe or tube, in. (or mm).
- 13.3.1 When so agreed upon between the manufacturer and purchaser, pipe or tube may be tested to $1\frac{1}{2}$ times the allowable fiber stress given above.
- 13.3.2 If any pipe or tube shows leaks during hydrostatic testing, it shall be rejected.
- 13.4 *Nondestructive Electric Test*—Each pipe or tube shall be examined with a nondestructive electric test in accordance with Specification B829.
- 13.5 *Grain Size*—Grain size determinations, to demonstrate compliance with 7.3.1, shall be made on one end of one finished tube from each lot. See 10.1.2.
- 13.6 Rounding Method—For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value, or a calculated value, shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

Test

Chemical composition and tolerances (when expressed in decimals)

Tensile strength, yield strength Elongation

Rounded Unit for Observed or Calculated Value

nearest unit in the last right-hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5 or a 5 followed only by zeros, choose the one ending in an even digit with zero defined as an even digit.

nearest 1000 psi (6.9 MPa)

nearest 1 %

14. Inspection

14.1 Inspection of the material shall be agreed upon between the purchaser and the supplier as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

17. Product Marking

17.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS number, heat number, condition (temper), this specification number, the size, gross, tare and net weight, consignor and consignee address, contract or order number, or such other information as may be defined in the contract or order.

18. Keywords

18.1 seamless pipe; seamless tube; UNS N06025; UNS N06045; UNS N06600; UNS N06601; UNS N06603; UNS N06617; UNS N06674; UNS N06690; UNS N06693; UNS N06696; UNS N06235; UNS N06699

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein: Federal Standards 102, 123, and 182 and Military Standard MIL-STD-129.

S2. Quality Assurance

- S2.1 Responsibility for Inspection:
- S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 182, except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

- S4.1 Preservation, Packaging, Packing:
- S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, level A or C, packed level A, B, or C as specified in the contract or purchase order.
- S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.
 - S4.2 Marking:
- S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.
- S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIXES

(Nonmandatory Information)

X1. CONVERTER SIZES

X1.1 Small-diameter tube and tube with specified wall thickness 3 % or less of the specified outside diameter in outside diameters 11/4 in. (31.8 mm) and under may be furnished in the conditions listed in Table X1.1 when so specified. The material is furnished in a limited range of sizes

and the manufacturer shall be consulted as to the various outside diameters and wall thicknesses that may be furnished. Material will have a bright finish. Such material shall conform to the applicable requirements in Table X1.1 and Table X1.2.

TABLE X1.1 Mechanical Properties^A of Small-Diameter Tube and Tube with Specified Wall Thickness ≤ 3 % of the Specified Outside Diameter (Converter Sizes)

	Tensile Strength,	Yield Strength	Elongation in
Condition	psi (MPa)	(0.2 % offset)	2 in. or 50
	por (wir a)	min, psi (MPa)	mm, min, %
UNS N06600:			4
Annealed ^{B,C}	80 000 (550) to	35 000 (240)	30
	110 000 (760)		heta,
Half-hard ^D	105 000 (725) min	55 000 (380)	30 13
Full-hard ^E	130 000 (895) min	105 000 (725)	4
UNS N06601:			
Annealed ^{B,C}	80 000 (550) to	30 000 (205)	30
	110 000 (760)	11.	
UNS N06601:		C.N.	
UNS N06603:		10	
Annealed ^{B,C}	94 000 (650) to	43000 (300)	25
	140 000 (965)		
UNS N06617:		. 👀	
Annealed ^{B,C}	95 000 (665) to	35 000 (240)	35
	110 000 (760)		
UNS N06690:		CW.	
Annealed ^{B,C}	85 000 (586) to	35 000 (240) 35 000 (240)	30
	110 000 (760)	~	
Half-hard ^D	105 000 (725) min	55 000 (380)	13
Full-hard ^E	130 000 (895) min	105 000 (725)	4
UNS N06025:			
Annealed ^{B,C}	98 000 (680) to	39 000 (270)	30
	125 000 (860)		
UNS N06045:	· · · · · · · · · · · · · · · · · · ·		
Annealed ^{B,C}	90 000 (620) to	35 000 (240)	35
	120 000 (830)		

A Not applicable to outside diameters under 1/8 in. (3.2 mm) and wall thicknesses under 0.015 in. (0.38 mm).

^B This condition is sometimes designated as "No. 1 Temper."

^C The minimum tensile strength value applies only to tubing in straight lengths.

^D This condition is sometimes designated as "No. 2 Temper."

as "No. ed E This condition is sometimes designated as "No 3 Temper."

TABLE X1.2 Permissible Variations for Small-Diameter Tube and Tube with Specified Wall Thickness \leq 3 % of the Specified Outside Diameter (Converter Sizes)^{A,B,C,D,E,F,G}

Specified Outside Diameter,	Outside Diame	eter	li	nside Diameter		Wall thickness, %		
in. (mm)	+	– in. (mm)	+	-	+	-		
Under 3/32 (2.4)	0.002 (0.05)	0	0	0.002 (0.05)	10	10 🗪		
3/32 to 3/16 (2.4 to 4.8), excl	0.003 (0.08)	0	0	0.003 (0.08)	10	10 🔿		
3/16 to 1/2 (4.8 to 12.7), excl	0.004 (0.10)	0	0	0.004 (0.10)	10	10 0		
½ to 1¼ (12.7 to 31.8), incl	0.005 (0.13)	0	0	0.005 (0.13)	10	10		

AOvality, Tube with Specified Wall Thickness >3 % of the Specified Outside Diameter—As-Drawn (No. 2 and 3) Tempers—Ovality will be held within the outside diameter tolerances shown in the table.

TABLE X1.3 Tolerances on Cut Lengths of Tube with Specified Wall Thickness ≤3 % of the Specified Outside Diameter

Longth ft (m)	Tube Size, in. (mm)	Permis	sible Variations, in. (mm)
Length, ft (m)	Tube Size, III. (IIIIII)	Over	Under
Under 1 (0.30)	up to 1.250 (31.8), incl	1/32 (0.8)	0 (0)
1 to 4 (0.30 to 1.22), incl	up to 1.250 (31.8), incl	1/16 (1.6)	0 (0)
Over 4 to 10 (1.22 to 3.0), incl	up to 1.250 (31.8), incl	3/32 (2.4)	0 (0)
Over 10 (3.0)	up to 1.250 (31.8), incl	3/16 (4.8)	0 (0)

X2. PIPE SCHEDULES

X2.1 The schedules of pipe shown in Table X2.1 are regularly available. Other schedules may be furnished, and the manufacturer should be consulted. Table X2.1 is published for information only.

TABLE X2.1 Pipe Schedules^A

Naminal Dina	110,	Nominal Wall Thickness, in. (mm)							
Nominal Pipe Size, in.	Outside Diameter	Schedule No. 5	Schedule No. 10	Schedule No. 40	Schedule No. 80				
1/4	0.540(13.7)	•••	0.065 (1.6)	0.088 (2.2)					
3/8	0.675(17.1)	•••	0.065 (1.6)	0.091 (2.3)	0.126 (3.2)				
1/2	0.840(21.3)	0.065 (1.6)	0.083 (2.1)	0.109 (2.8)	0.147 (3.7)				
3/4	1.050(26.7)	0.065 (1.6)	0.083 (2.1)	0.113 (2.8)	0.154 (3.9)				
()1	1.315(33.4)	0.065 (1.6)	0.109 (2.8)	0.133 (3.4)	0.179 (4.5)				
11/4	1.660(42.2)	0.065 (1.6)	0.109 (2.8)	0.140 (3.6)	0.191 (4.8)				
1½	1.900(48.3)	0.065 (1.6)	0.109 (2.8)	0.145 (3.7)	0.200 (5.1)				
2	2.375(60.3)	0.065 (1.6)	0.109 (2.8)	0.154 (3.9)	0.218 (5.5)				
21/2	2.875(73.0)	0.083 (2.1)	0.120 (3.0)	0.203 (5.2)	0.276 (7.0)				
3	3.500(88.9)	0.083 (2.1)	0.120 (3.0)	0.216 (5.5)	0.300 (7.6)				
31/2	4.000(101.6)	0.083 (2.1)	0.120 (3.0)	0.226 (5.7)	0.318 (8.1)				
4	4.500(114.3)	0.083 (2.1)	0.120 (3.0)	0.237 (6.0)	0.337 (8.6)				
5	5.563(141.3)			0.258 (6.5)					
6	6.625(168.3)			0.280 (7.1)					

^A The pipe schedules shown above conform with standards adopted by the American National Standards Institute

Annealed (No. 1) Temper—Ovality will be held within 2 % of the theoretical average outside diameter.

BOvality, Tube with Specified Wall Thickness ≤ 3 % of the Specified Outside Diameter—As-Drawn (No. 2 and 3) Tempers—Up to but not including 14 in. (31.8 mm) in outside diameter, ovality will be held within 2 % of the theoretical average outside diameter.

Annealed (No. 1) Temper—Ovality will be held within 3 % of the theoretical average outside diameter.

CWall Tolerances, Tube with Specified Wall Thickness ≤ 3 % of the Specified Outside Diameter—The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerance shall be ± 0.005 in. (0.013 mm).

PRandom Lengths:

Where nominal random lengths on tubing 1/8 in. (3.2 mm) and larger in outside diameter are specified, a length of ± 3½ ft (1.06 m) applies to the nominal length. This is a total spread of 7 ft (2.10 m).

Random lengths in sizes ½ in. (3.2 mm) and larger in outside diameter shall be subject to a length range of 5 to 24 ft (1.50 to 3.0 m). Long random lengths are subject to a range of 15 to 22 ft (4.57 to 6.70 m).

Random lengths in sizes up to but not including ½ in. (3.2 mm) in outside diameter, and fragile tubes with specified wall thickness ≤3 % of the specified outside diameter over this outside diameter are subject to the length range of 1 to 15 ft (0.30 to 4.57 m).

ECut Lengths—Tolerances on cut lengths shall be in accordance with Table X1.3.

FStraightness—Round tubing is subject to a straightness tolerance of one part in 600 [equivalent to a depth of arc of 0.030 in. (0.76 mm) in any 3 ft (0.91 m) of length].

G When specified, the tolerance spreads of this table may be applied as desired. However, when not specified, the tolerances in this table will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

X3. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X3.1 Scope

X3.1.1 This appendix lists the conditions and finishes in which pipe and tube (other than converter sizes) are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X3.2 Cold-Worked Tube and Pipe

X3.2.1 Cold-Worked, Annealed, with Ground Outside Diameter—The inside diameter may have a bright finish when material is annealed in a protective atmosphere; otherwise, the inside diameter is supplied descaled as necessary. It is available in sizes ½ to 4 in. (12.7 to 102 mm), inclusive, in outside diameter in both normal and heavy-wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

X3.2.2 Cold-Worked, Annealed, and Pickled (Not A max ons may option.

Option.

Circle to view the full put of Result. Ben C. II. P. of Result. Ben C. III. P. of Result. Ben C. II. P. of Result. Ben C. III. P. of Result. Ben C. Ground)-Outside and inside diameter will have dull, matte (pickled) surfaces. It is available in sizes ½ to 65% in. (12.7 to

heavy-wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

X3.3 Hot-Worked Tube

X3.3.1 Hot-Worked or Hot-Worked-Annealed (Not Pickled) Tube—Has an oxide surface resulting from the hot-working operation. Intended generally for machined parts where the oxide surface will be removed.

X3.3.2 Hot-Worked or Hot-Worked-Annealed (Piekled) Tube—Has the oxide surface removed on both outside and inside diameters by pickling. Surface may be spot ground for removal of minor surface imperfections at the manufacturer's option.

X3.3.3 Hot-Worked or Hot-Worked Annealed (Machined Outside and Inside Diameters) Tubes—The outside and inside diameter surfaces are machined to specified dimensions. Minor surface imperfections may be spot ground for removal, at the manufacturer's option.

232

SPECIFICATION FOR NICKEL-CHROMIUM RON ALLOYS (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, AND N06696), NICKEL-CHROMIUM-COBALT-MOLYBDENUM ALLOY (UNS N06617), NICKEL-IRON-CHROMIUM-TUNGSTEN ALLOY (UNS N06674), AND NICKEL-CHROMIUM-MOLYBDENUM-COPPER ALLOY (UNS N06235) PLATE, SHEET, AND STRIP

(Identical with ASTM-Specification B168-19 except for the deletion of Footnote A in Table 3 and addition of N06617 heat treatment requirements. Certification and test reports have been made mandatory.)

Specification for

BRVC Section II part B 202 Nickel-Chromium-Aluminum Alloys (UNS N06699), Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674), and Nickel-Chromium-Molybdenum-Copper Alloy (UNS N06235) Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers rolled nickel-chromiumaluminum alloys (UNS N06699), nickel-chromium-iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), nickel-chromium-cobalt-molybdenum alloy (UNS N06617), nickel-iron-chromium-tungsten alloy (UNS N06674), and nickel-chromium-molybdenum-copper alloy (UNS N06235) plate, sheet, and strip.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following precautionary caveat pertains only to the test methods portion, Section 13, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- SMENORMIDOC. COM. Click 1.4 This international standard was developed in accordance with internationally recognized principles on standard-

ization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B166 Specification for Nickel-Chromium-Aluminum Alloy, Nickel-Chromium-Iron Alloys, Nickel-Chromium-Cobalt-Molybdenum Alloy, Nickel-Iron-Chromium-Tungsten Alloy, and Nickel-Chromium-Molybdenum-Copper Alloy Rod, Bar, and Wire
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E10 Test Method for Brinell Hardness of Metallic Materials E18 Test Methods for Rockwell Hardness of Metallic Ma-
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys (Withdrawn 1989)
- E112 Test Methods for Determining Average Grain Size
- E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell

- Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys
- F155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method) (Withdrawn 1982)
- 2.2 Federal Standards:
- Fed. Std. No. 102 Preservation, Packaging and Packing Levels
- Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 182 Continuous Identification Marking of Nickel and Nickel-Base Alloys
- 2.3 Military Standard:
- MIL-STD-129 Marking for Shipment and Storage

3. Terminology

3.1 Descriptions of Terms Specific to This Standard—The terms given in Table 1 shall apply.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 4.1.1 Alloy—Name or UNS number (see Table 2),
 - 4.1.2 ASTM designation, including year of issue,
 - 4.1.3 Condition—See 7.1 and 7.2 and Appendix X1
 - 4.1.4 Finish—Appendix X1,
 - 4.1.5 Dimensions—Thickness, width, and length
 - 4.1.6 Quantity,
 - 4.1.7 Optional Requirements:
- 4.1.7.1 Sheet and Strip—Whether to be furnished in coil, in cut straight lengths, or in random straight lengths,
- 4.1.7.2 Strip—Whether to be furnished with commercial slit edge, square edge, or round edge,
- 4.1.7.3 Plate—Whether to be turnished specially flattened (see 8.7.2); also how plate is to be cut (see 8.2.1 and 8.3.2),

- 4.1.9 Samples for Product (Check) Analysis—Whether samples for product (check) analysis should be furnished (see 5.2), and
- 4.1.10 Purchaser Inspection—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Section 14).

5. Chemical Composition

- 5.1 The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations prescribed in Specification B880.

6. Heat Treatment

6.1 Material of N06674 shall be solution annealed after cold-working or hot-working by heating to 2150°F (1175°C) minimum, followed by quenching in water or rapidly cooling by other means.

7. Mechanical Properties and Other Requirements

- 7.1 Mechanical Properties—The material shall conform to the mechanical properties prescribed in Table 3.
- 7.2 Deep Drawing and Spinning Quality Sheet and Strip— The material shall conform to the grain size and hardness requirements as prescribed in Table 4.
- 7.2.1 The mechanical properties of Table 3 do not apply to deep drawing and spinning quality sheet and strip.
- 7.3 Grain Size—Except as prescribed in 7.2, the grain size for N06674 shall be 7 or coarser, as determined in accordance with Test Methods E112.

8. Dimensions and Permissible Variations

- 8.1 Thickness and Weight:
- 8.1.1 Plate—For plate up to 2 in. (50.8 mm), inclusive, in thickness, the permissible variation under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Table 5.
- 8.1.1.1 For use with Table 5, plate shall be assumed to weigh 0.304 lb/in.3 (8.415 g/cm3).
- 8.1.2 Plate—For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Table 6.
- 8.1.3 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Table 7. The

TABLE 1 Product Description

		her to be turnished specially flattened late is to be cut (see 8.2.1 and 8.3.2),	weigh 0.304 lb/in. ³ (8.41 8.1.2 <i>Plate</i> —For plate permissible variations o exceed the amounts pres 8.1.3 <i>Sheet and Strip</i> —	Table 5, plate shall be assumed to 15 g/cm ³). over 2 in. (50.8 mm) in thickness, the ver the specified thickness shall not
	~C.	TABLE 1 Prod	uct Description	
	Product	Thicknes	s, in. (mm)	Width, in. (mm)
	Hot-rolled plate ^A	3/16 and over (Table 5 and Tal	ole 6)	(Table 8) ^B
	Hot-rolled sheet ^A	0.018 to 0.250 (0.46 to 6.4),	incl (Table 7)	(Table 10)
	Cold-rolled sheet ^C	0.018 to 0.250 (0.46 to 6.4),	incl (Table 7)	(Table 10)
νΟ,	Cold-rolled strip ^C	0.005 to 0.250 (0.13 to 6.4),	incl (Table 7)	(Table 10)
MIL	ordered. ^B Hot-rolled plate, in widths 10 provided the mechanical properties.	6.4 mm), incl, in thickness may be furnished as sheet in. (254 mm) and under, may be furnished as hot-fierty requirements of this specification are met. mm) in width may be furnished as sheet or strip prov	nished rectangles with sheared or c	cut edges in accordance with Specification B166,

A Material 3/16 to 1/4 in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition

B Hot-rolled plate, in widths 10 in. (254 mm) and under, may be furnished as hot-finished rectangles with sheared or cut edges in accordance with Specification B166, provided the mechanical property requirements of this specification are met.

Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered.

nts⁴
reme
equi
cal R
nemi
2 C
ABLE 2 (
Ž

4	% Allor Allor Allor	Alloy Alloy Alloy Alloy N06045 N06603 N06896 N06235	45.0 min remainder ^B remainder ^B 26.0–29.0 24.0–26.0 28.0–32.0		21.0–25.0 8.0–11.0 2.0–6.0	1.0 max 0.15 max 1.0 max 0.3-0.65 2.4-3.0 0.2-0.4	0.05-0.12 0.20-0.40 0.15 max 0.02-0.06 0.3 max 0.50 max 1.5-3.0 3.5-4.0	2.5-3.0 0.50 max 1.0-2.5 0.2-0.6 0.50 max 0.010 max 0.010 max 0.010 max 0.015 max	0.01-0.25 1.0 max 0.5 max 0.020 max 0.020 max 0.030 max	0.01–0.10	:::::::::::::::::::::::::::::::::::::::	0.03 max 0.05 max	0.60 max	B ASME BRYC Section II Part B 202
TABLE 2 Chemical Requirements [△]	^	Alloy Alloy No6690 N06693	58. 0 min remainder ^B remainder ^B 22.0–31.0 27.0–31.0 24.0–26.0		0.5–2.5	2.5-4.0	7	0.5 max x 0.01 max	1.0 max	:			: :	⁴ Where ellipses () appear in this table there is no requirement and the element need neither be analyzed for nor reported. ⁸ Element shall be determined arithmetically by difference.
MORMDOC.COM. Click to	NIIN NIIN	Alloy Alloy No6674 No6674	44.5 min remainder ^B 20.0–24.0 21.5–24.5	10.0–15.0 8.0–10.0		1.0 max 1.50 max 0.8–1.5	2	1.0 max 1.0 max 0.015 max 0.015 max			6 max	0.02 max 	6.0–8.0	s no requirement and the element difference.
ENORMDOC.CC	Allow	Alloy Alloy N06600 N06601	72.0 min 58.0–63.0 14.0–17.0 21.0–25.0	: :		1.0 max 1.0 max 1.0-1.7	×	0.5 max 0.5 max 0.015 max 0.015 max	: :			: :	:	() appear in this table there i be determined arithmetically by determined arithmetically by
	Flement		Nickel Chromium	Cobalt Molybdenum	Niobium Iron	Manganese Aluminum	Carbon	Silicon Suffur	Titanium Phosphorus	Zirconium	Boron	Nirogen Cerium	Tungsten	A Where ellipses B Element shall b

236

TABLE 3 Mechanical Properties for Plate, Sheet, and Strip (All Thicknesses and Sizes Unless Otherwise Indicated)

Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength ^A (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min,%	Rockwell Hardness ^{B,C}
		Hot-Rolled Plate	(OI 4D), IIIII, 70	
UNS N06600:				
Annealed	80 000 (550)	35 000 (240)	30	C Section II pa
As-rolled ^{D,E}	85 000 (586)	35 000 (240)	30	
UNS N06601:				Ò
Annealed	80 000 (550)	30 000 (205)	30	
UNS N06603:				114
Annealed	94 000 (650)	43 000 (300)	25	
UNS N06617:				
Annealed H	95 000 (655)	35 000 (240)	35	:\O`
JNS N06674:				C.C.
Annealed	86 000 (590)	34 000 (235)	30	~ (P) ···
JNS N06690:				
Annealed	85 000 (586)	35 000 (240)	30	C
As-rolled ^{D,E}	85 000 (586)	35 000 (240)	30	
Annealed ^F	75 000 (514)	30 000 (206)	30	
JNS N06693:			- X	
Annealed	100 000 (690)	50 000 (345)	30	
INS N06025:				
Annealed	98 000 (680)	39 000 (270)	30	
INS N06045:			CA	
Annealed	90 000 (620)	35 000 (240)	35	•••
JNS N06235:				
Annealed	90 000 (620)	35 000 (240)	35	
JNS N06699:				
Annealed	89 000 (610)	35 000 (240)	30 30 35 35 40	
		Hot-Rolled Sheet		
JNS N06600:				
Annealed	80 000 (550)	35 000 (240) 30 000 (205) 43 000 (300)	30	
JNS N06601:		O ₂ X		
Annealed	80 000 (550)	30 000 (205)	30	
JNS N06603:		——————————————————————————————————————		
Annealed	94 000 (650)	43 000 (300)	25	
JNS N06617:				
Annealed H	95 000 (655)	35 000 (240)	30	
JNS N06674:		6 Y -		
Annealed	86 000 (590)	34 000 (235)	30	
JNS N06690:		<i>L</i> , <i>O</i>		
Annealed	85 000 (586)	35 000 (240)	30	•••
JNS N06693:				
Annealed	100 000 (690)	50 000 (345)	30	•••
JNS N06025:				
Annealed	98 000 (680)	39 000 (270)	30	
INS N06045:				
Annealed	90 000 (620)	35 000 (240)	35	
JNS N06235:	11.			
Annealed	90 000 (620)	35 000 (240)	35	
JNS N06699:	0,7			
Annealed	89 000 (610)	35 000 (240)	40	
		Cold-Rolled Plate		
JNS N06603:	×O			
Annealed	94 00 (650)	43 000 (300)	25	
JNS N06674:				
Annealed	86 000 (590)	34 000 (235)	30	
JNS N06025:	0,			
Annealed	98 000 (680)	39 000 (270)	30	
JNS N06045:	•			
Annealed	90 000 (620)	35 000 (240)	35	***
JNS N06235:				
Annealed ()	90 000 (620)	35 000 (240)	35	
INS N06699:				
Annealed	89 000 (610)	35 000 (240)	40	
		Cold-Rolled Sheet		
INS N06600:				
Annealed	80 000 (550) ^G	35 000 (240)	30 ^G	
Hard	125 000 (̀860)́ ^G	90 000 (620)	2^G	
JNS N06601:				
Annealed	80 000 (550) ^G	30 000 (205)	30 ^{<i>G</i>}	
JNS N06603:	,	• •		
Annealed	94 000 (650)	43 000 (300)	25 ^{<i>G</i>}	
JNS N06674:	, ,	,		
Annealed	86 000 (590)	34 000 (235)	30	
		. /		

237

TABLE 3 Continued

		IADEL 3 Continued		
Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength ^A (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min,%	Rockwell Hardness ^{B,C}
Annealed H	95 000 (655) ^G	35 000 (240)	25 ^G	
UNS N06690:	(,	,		
Annealed	85 000 (586) ^G	35 000 (240)	30 ^G	
Hard	125 000 (860) ^G	90 000 (620)	2^G	
UNS N06693:		()		
Annealed	100 000 (690)	50 000 (345)	30	
UNS N06025:	(,	()		
Annealed	98 000 (680)	39 000 (270)	30	
UNS N06045:	(,			\sim .
Annealed	90 000 (620)	35 000 (240)	35	
UNS N06235:	00 000 (020)	35 353 (2.5)	33	
Annealed	90 000 (620)	35 000 (240)	35	200
UNS N06699:	00 000 (020)	00 000 (2 10)	00	
Annealed	89 000 (610)	35 000 (240)	40	
Afficaca	03 000 (010)	Cold-Rolled Strip	40	(C) ""
UNS N06600:		Cold Holled Othp		3
Annealed	80 000 (550) ^G	35 000 (240)	30 ^G	0~
Skin-hard	` '	, ,	30° 2° NE	B85 to B88
Quarter-hard	•••			B88 to B94
	•••	•••		
Half-hard	***	***		B93 to B98
Three-quarter-hard				B97 to C25
Hard	125 000 (860) ^G	90 000 (620)	2	
Spring			30° 30° 30° 30° 	C30 min
UNS N06601:	() 6	/	30 ^G	
Annealed	80 000 (550) ^G	30 000 (205)	304	
UNS N06603:				
Annealed	94 000 (650)	43 000 (300)	25 ^G	
UNS N06617:				
Annealed ^H	95 000 (655) ^G	35 000 (240)	30 ^G	
UNS N06674:			2X	
Annealed	86 000 (590)	34 000 (235)	30	***
UNS N06690:			•	
Annealed	85 000 (586) ^G	35 000 (240)	30 ^{<i>G</i>}	
Skin-hard				B85 to B88
Quarter-hard				B88 to B94
Half-hard				B93 to B98
Three-quarter-hard			···	B97 to C25
Hard	125 000 (860) ^G	90 000 (620)	2^G	
Spring				C30 min
UNS N06693:		~ ()'		
Annealed	100 000 (690)	50 000 (345)	30	
UNS N06025:	(,			
Annealed	98 000 (680)	39 000 (270)	30	
UNS N06045:	()	XO. 111 (=: 1)		
Annealed	90 000 (620)	3 5 000 (240)	35	
UNS N06696:	00 000 (020)	33 300 (2 10)	30	***
Annealed	85 000 (586)	35 000 (240)	30	
UNS N06235:	03 000 (300)	55 000 (2 4 0)	30	
Annealed	90 000 (620)	35,000 (240)	35	
UNS N06699:	90 000 (020)	35 000 (240)	ან	•••
	20,000 (630)	05 000 (010)	40	
Annealed	89 000 (610)	35 000 (210)	40	

 $^{^{\}it A}$ DELETED

thickness of strip and sheet shall be measured with the micrometer spindle 3/8 in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on the strip under 1 in. in width.

8.2 Width or Diameter:

8.2.1 *Plate*—The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Table 8 and Table 9.

8.2.2 *Sheet and Strip*—The permissible variations in width for sheet and strip shall be as prescribed in Table 10.

8.3 Length:

- 8.3.1 Sheet and strip of all sizes may be ordered to cut lengths, in which case a variation of $\frac{1}{8}$ in. (3.2 mm) over the specified length shall be permitted.
- 8.3.2 Permissible variations in length of rectangular plate shall be as prescribed in Table 11.

^B For Rockwell or equivalent hardness conversions, see Hardness Conversion Tables E140.

^C Caution should be served in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

^D As-rolled plate may be given a stress relieving heat treatment subsequent to final rolling.

E As-rolled plate specified "suitable for hot forming" shall be furnished from heats of known good hot-malleability characteristics (see X1.2.2). There are no applicable tensile or hardness requirements for such material.

F Annealed at 1850°F (1010°C) minimum.

^G Not applicable for thickness under 0.010 in. (0.25 mm).

Solution anneal is done at 2,100°F to 2,250°F and quenched in water or rapidly cooled by other means.

NC Section II Part B 202

TABLE 4 Grain Size and Hardness for Cold-Rolled, Deep-Drawing, and Spinning-Quality Sheet and Strip

Thickness, in. (mm)	Calculated Diameter of Average Grain Section, max, in. (mm)	Corresponding ASTM MicroGrain Size No.	Rockwell B ^{A,B} Hardness, max
Sheet (56 in	. (1.42 m) Wide an	d Under)	
0.050 (1.3) and less	0.0030 (0.075)	4.5	86
Over 0.050 to 0.250	0.0043 (0.110)	3.5	86
(1.3 to 6.4), incl			
Strip (12 in. (305 mm) Wide and	d Under) ^C	
0.005 ^D to 0.010 (0.13 to 0.25), incl	0.0009 (0.022)	8 ^E	88 ^E
Over 0.010 to 0.125 (0.25 to 3.2), incl	0.0030 (0.075)	4.5	86

^A For Rockwell or equivalent hardness conversions, see Hardness Conversion Tables E140.

TABLE 5 Permissible Variations in Thickness and Overweight of Rectangular Plates

Note 1—All plates shall be ordered to thickness and not to weight per square foot (cm). No plates shall vary more than 0.01 in. (0.3 mm) under the thickness ordered, and the overweight of each lot⁴ in each shipment shall not exceed the amount in the table. Spot grinding is permitted to remove surface imperfections, such spots not to exceed 0.01 in. under the specified thickness

	Permissibl	Permissible Excess in Average Weight ^{8,6} per Square Foot of Plates for Widths Given in Inches (Millimetres) Expressed in Percentage of Nominal Weights										
Specified Thickness, in. (mm)	Under 48 (1220)	48 to 60 (1220 to 1520), excl	60 to 72 (1520 to 1830); excl	72 to 84 (1830 to 2130), excl	84 to 96 (2130 to 2440), excl	96 to 108 (2440 to 2740), excl	108 to 120 (2740 to 3050), excl	120 to 132 (3050 to 3350), excl	132 to 144 (3350 to 3660), excl	144 to 160 (3660 to 4070), excl		
3/16 to 5/16 (4.8 to 7.9), excl	9.0	10.5	12.0	13.5	15.0	16.5	18.0					
5/16 to 3/8 (7.9 to 9.5), excl	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0				
3/8 to 7/16 (9.5 to 11.1), excl	7.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0	19.5		
7/16 to 1/2 (11.1 to 12.7), excl	6.0	7.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0		
½ to % (12.7 to 15.9), excl	5.0	6.0	7.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5		
5/8 to 3/4 (15.9 to 19.1), excl	4.5	5.5	6.0	7.0	7.5	9.0	10.5	12.0	13.5	15.0		
3/4 to 1 (19.1 to 25.4), excl	4.0	4.5	5.5	6.0	7.0	7.5	9.0	10.5	12.0	13.5		
1 to 2 (25.4 to 50.8), incl	4.0 4.0	4.0	4.5	5.5	6.0	7.0	7.5	9.0	10.5	12.0		

A The term "lot" applied to this table means all of the plates of each group width and each group thickness.

8.4 Straightness:

8.4.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. multiplied by the length in feet (0.04 mm multiplied by the length in centime-

8.4.2 Straightness for coiled material is subject to agreement between the manufacturer and the purchaser.

8.5 Edges:

- 8.5.1 When finished edges of strip are specified in the contract or order, the following descriptions shall apply:
- 8.5.1.1 Square-edge strip shall be supplied with finished edges, with sharp, square corners, without bevel or rounding.
- 8.5.1.2 Round-edge strip shall be supplied with finished edges, semicircular in form, the diameter of the circle forming the edge being equal to the strip thickness.

^B Caution should be observed in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

suggested.

Sheet requirements (above) apply to strip thicknesses over 0.125 in. (3.2 mm) and for all thicknesses of strip over 12 in. (305 mm) in width.

^D For ductility evaluations for strip under 0.005 in. (0.13 mm) in thickness, the springback test, such as described in Test Method F155, is often used and the manufacturer should be consulted.

^E Accurate grain size and hardness determinations are difficult to make on strip under 0.005 in. (0.13 mm) in thickness and are not recommended.

^B The permissible overweight for lots of circular and sketch plates shall be 25 % greater than the amounts given in this table.

^C The weight of individual plates stall not exceed the nominal weight by more than 11/4 times the amount given in the table and Footnote B.

TABLE 6 Permissible Variations in Thickness for Rectangular Plates Over 2 in. (51 mm) in Thickness

Note 1—Permissible variation under specified thickness, 0.01 in. (0.3 mm).

	1					
		Permissible Variations	s, in. (mm), over Spe	cified Thickness for W	/idths Given, in. (mm)	
Specified Thickness, in. (mm)	To 36 (915), excl	36 to 60 (915 to 1520), excl	60 to 84 (1520 to 2130), excl	84 to 120 (2130 to 3050), excl	120 to 132 (3050 to 3350), excl	132 (3350) and over
Over 2 to 3 (51 to 76), excl	1/16 (1.6)	3/32 (2.4)	7/64 (2.8)	1/8 (3.2)	1/8 (3.2)	9/64 (3.6)
3 to 4 (76 to 102), incl	5/64 (2.0)	3/32 (2.4)	7/64 (2.8)	1/8 (3.2)	1/8 (3.2)	9/64 (3.6)

TABLE 7 Permissible Variations in Thickness of Sheet and Strip (Permissible Variations, Plus and Minus, in Thickness, in. (mm), for Widths Given in in. (mm))

•	·		•		
		eet ^A	cille		
	Hot-	Rolled	Cold-F	Rolled	
Specified Thickness, in. (mm)	48 (1220) and Under	Over 48 to 60 (1220 to 1520), incl	48 (1220) and Under	Over 48 to 60 (1220 to 1520), incl	
0.018 to 0.025 (0.5 to 0.6), incl	0.003 (0.08)	0.004 (0.10)	0.002 (0.05)	0.003 (0.08)	
Over 0.025 to 0.034 (0.6 to 0.9), incl	0.004 (0.10)	0.005 (0.13)	0.003 (0.08)	0.004 (0.10)	
Over 0.034 to 0.043 (0.9 to 1.1), incl	0.005 (0.13)	0.006 (0.15)	0.004 (0.10)	0.005 (0.13)	
Over 0.043 to 0.056 (1.1 to 1.4), incl	0.005 (0.13)	0.006 (0.15)	0.004 (0.10)	0.005 (0.13)	
Over 0.056 to 0.070 (1.4 to 1.8), incl	0.006 (0.15)	0.007 (0.18)	0.005 (0.13)	0.006 (0.15)	
Over 0.070 to 0.078 (1.8 to 1.9), incl	0.007 (0.18)	0.008 (0.20)	0.006 (0.15)	0.007 (0.18)	
Over 0.078 to 0.093 (1.9 to 2.4), incl	0.008 (0.20)	0.009 (0.23)	0.007 (0.18)	0.008 (0.20)	
Over 0.093 to 0.109 (2.4 to 2.8), incl	0.009 (0.23)	0.010 (0.25)	0.007 (0.18)	0.009 (0.23)	
Over 0.109 to 0.125 (2.8 to 3.2), incl	0.010 (0.25)	0.012 (0.31)	0.008 (0.20)	0.010 (0.25)	
Over 0.125 to 0.140 (3.2 to 3.6), incl	0.012 (0.31)	0.014 (0.36)	0.008 (0.20)	0.010 (0.25)	
Over 0.140 to 0.171 (3.6 to 4.3), incl	0.014 (0.36)	0.016 (0.41)	0.009 (0.23)	0.012 (0.31)	
Over 0.171 to 0.187 (4.3 to 4.8), incl	0.015 (0.38)	0.017 (0.43)	0.010 (0.25)	0.013 (0.33)	
Over 0.187 to 0.218 (4.8 to 5.5), incl	0.017 (0.43)	0.019 (0.48)	0.011 (0.28)	0.015 (0.38)	
Over 0.218 to 0.234 (5.5 to 5.9), incl	0.018 (0.46)	0.020 (0.51)	0.012 (0.31)	0.016 (0.41)	
Over 0.234 to 0.250 (5.9 to 6.4), incl	0.020 (0.51)	0.022 (0.56)	0.013 (0.33)	0.018 (0.46)	
	Cold-F	Rolled Strip ^{A,B}			
Specified Thickness,	in. (mm)	Widths 12	in. (305 mm) and under, plus	and minus	
Up to 0.050 (1.27), Over 0.050 to 0.093		, ASIN	0.0015 (0.038) 0.0025 (0.063)		
Over 0.093 to 0.125	(2.39 to 3.18), incl		0.004 (0.11)		

^A Measured % in. (9.5 mm) or more from either edge except for strip under 1슜 (25.4 mm) in width which is measured at any place.

- 8.5.1.3 When no description of any required form of strip edge is given, it shall be understood that edges such as those resulting from slitting or shearing will be acceptable.
 - 8.5.1.4 Sheet shall have sheared or slit edges.
- 8.5.1.5 Plate shall have sheared or cut machined, abrasivecut, powder-cut, or inert-arc cut) edges, as specified.
- 8.6 Squareness (Sheet)—For sheets of all thicknesses, the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ ($\frac{1}{16}$ in. in 24 in. (1.6 mm in 610 mm)).
 - 8.7 Flatness:
- 8.7.1 There shall be no flatness requirements for "deep-drawing quality," spinning quality," or "as rolled" sheet and strip (see X1.4).
- 8.7.2 Standard flatness tolerances for plate shall conform to the requirements of Table 12. "Specially flattened" plate, when so specified, shall have permissible variations in flatness as agreed upon between the manufacturer and the purchaser.

9. Workmanship, Finish, and Appearance

9.1 The material shall be uniform in quality and temper, smooth, commercially straight or flat, and free of injurious imperfections.

9.2 Sheet, Strip, and Plate—Sheet, strip, and plate supplied in the conditions and finishes as listed in the appendix may be ground or machined to remove surface imperfections, provided such removal does not reduce the material below the minimum specified dimensions. Surface eliminated depressions shall be faired smoothly into the surrounding material. The removal of a surface imperfection shall be verified by the method originally used to detect the imperfection.

10. Sampling

- 10.1 *Lot*—Definition:
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot for mechanical properties, hardness, and grain size testing shall consist of all material from the same heat, nominal thickness, and condition.
- 10.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same thickness and condition, except for plates weighing over 500 lb, in which case only one specimen shall be taken.
 - 10.2 Test Material Selection:

⁸ Standard sheet tolerances apply for thicknesses over 0.125 in. (3.2 mm) and for all thicknesses of strip over 12 in. (305 mm) wide.

TABLE 8 Permissible variations A of Sheared, Plasma-Torch-Cut, and Abrasive-Cut Rectangular Plate B,C

	Permissible Variations in Widths for Widths Given, in. (mm)													
Specified Thickness	Up to 30 (760), incl		(760 to	Over 30 to 72 (760 to 1830), incl		Over 72 to 108 (1830 to 2740), incl		8 to 144 o 3660), cl	Over 144 to 160 (3660 to 4070), incl					
	+	_	+	-	+	_	+	_	+	_				
					Inches									
Sheared: ^D														
3/16 to 5/16, excl	3/16	1/8	1/4	1/8	3/8	1/8	1/2	1/8						
5/16 to 1/2, excl	1/4	1/8	3/8	1/8	3/8	1/8	1/2	1/8	5/8	1/8				
1/2 to 3/4, excl	3/8	1/8	3/8	1/8	1/2	1/8	5/8	1/8	3/4	1/8				
3/4 to 1, excl	1/2	1/8	1/2	1/8	5/8	1/8	3/4	1/8	7/8	1/8				
1 to 11/4, incl Abrasive cut: E,F	5/8	1/8	5/8	1/8	3/4	1/8	7/8	1/8	1	1/8				
3/16 to 11/4, incl	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8				
Over 11/4 to 23/4, incl Plasma-torch-cut: G	3/16	1/8	3/16	1/8	3/16	1/8	3/16	1/8		1/8				
3/16 to 2, excl	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0				
2 to 3, incl	5/8	0	5/8	0	5/8	0	5/8	0	5/8	0				
				M	llimetres									
Sheared:D														
4.8 to 7.9, excl	4.8	3.2	6.4	3.2	9.5	3.2	12.7	3.2						
7.9 to 12.7, excl	6.4	3.2	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2				
12.7 to 19.1, excl	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2	19.1	3.2				
19.1 to 25.4, excl	12.7	3.2	12.7	3.2	15.8	3.2	19.1	3.2	22.2	3.2				
25.4 to 31.8, incl Abrasive cut: ^{E,F}	15.9	3.2	15.9	3.2	19.1	3.2	22.2	3.2	25.4	3.2				
4.8 to 31.8, incl	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2				
Over 31.8 to 69.8, incl Plasma-torch-cut: ^G	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2				
4.8 to 50.8, excl	12.7	0	12.7	0	12.7		12.7	0	12.7	0				
50.8 to 76.2, incl	15.9	0	15.9	0	15.9	200	15.9	0	15.9	0				

A Permissible variations in width for powder- or inert-arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

TARLE 9 Permissible Variations in Diameter for Circular Plates

	TABLE 9 Permissible	variations in Diamet	er for Circular Pl	ates							
	<i>(1)</i>	Sheared Plate									
Specified Diameter, in. (mm)	"Ve			ations over Specified Diameterness Given, in. (mm) ^A	r for						
20 to 32 (508 to 813), excl		To % (9.5), incl 1/4 (6.4)									
32 to 84 (813 to 2130), excl	10/14			5/ ₁₆ (7.9)							
84 to 108 (2130 to 2740), excl	lie			3/8 (9.5)							
108 to 140 (2740 to 3580), incl				7/16 (11.1)							
1	,	Plasma-Torch-Cut Plate ^B									
i Cik	Perr	Permissible Variations in Specified Diameter for Thickness Given, in. $(mm)^{\mathcal{C}}$									
Specified Diameter, in. (mm)	Thickness, max,	3/16 to 2 (4.8 to 5	³ / ₁₆ to 2 (4.8 to 50.8), excl 2 to 3 (
.0	in. (mm)	+	-	+	-						
19 to 20 (483 to 508), excl	3 (76.2)	1/2 (12.7)	0	5/8 (15.9)	0						
20 to 22 (508 to 559), excl	23/4 (69.8)	1/2 (12.7)	0	5/8 (15.9)	0						
22 to 24 (559 to 610), excl	2½ (63.5)	1/2 (12.7)	0	5/8 (15.9)	0						
24 to 28 (610 to 711), excl	21/4 (57.3)	1/2 (12.7)	0	5⁄8 (15.9)	0						
28 to 32 (711 to 812), excl	2 (50.8)	1/2 (12.7)	0	5/8 (15.9)	0						
32 to 34 (812 to 864), excl	13/4 (44.5)	1/2 (12.7)	0								
34 to 38 (864 to 965), excl	1½ (38.1)	1/2 (12.7)	0								
38 to 40 (965 to 1020), excl	11/4 (31.8)	1/2 (12.7)	0								
40 to 140 (1020 to 3560), incl	3 (76.2)	1/2 (12.7)	0	5/8 (15.9)	0						

No permissible variations under.

Permissible variations in word for powder- or inert-arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

Permissible variations in machined, powder-, or inert-arc-cut circular plate shall be as agreed upon between the manufacturer and the purchaser.

Permissible variations in plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

The minimum sheared width is 10 in. (254 mm) for material ¾ in. (19.1 mm) and under in thickness and 20 in. (508 mm) for material over ¾ in. (19.1 mm) in thickness.

The minimum abrasive-cut width is 2 in. (50.8 mm) and increases to 4 in. (101.6 mm) for thicker plates.

These tolerances are applicable to lengths of 240 in. (6100 mm), max. For lengths over 240 in., an additional ½ in. (1.6 mm) is permitted, both plus and minus.

Ga The tolerance spread shown for plasma-torch cutting may be obtained all on the minus side, or divided between the plus and minus side if so specified by the purchaser.

B Permissible variations in plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

C The tolerance spread shown may also be obtained all on the minus side or divided between the plus and minus sides if so specified by the purchaser.

TABLE 10 Permissible Variations in Width of Sheet and Strip

Considered This language in (many)	Connectional Windship in (connec)	Permissible Var	Permissible Variations in Specified Width, in. (mm)					
Specified Thickness, in. (mm)	Specified Width, in. (mm)	+	-					
			Sheet					
Jp to 0.250 (6.35)	all	0.125 (3.18)	0					
			Strip ^A					
Under 0.075 (1.9)	Up to 12 (305), incl	0.007 (0.18)	0.007 (0.18)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0					
0.075 to 0.100 (1.9 to 2.5), incl	Up to 12 (305), incl	0.009 (0.23)	0.009 (0.23)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0					
Over 0.100 to 0.125 (2.5 to 3.2), incl	Up to 12 (305), incl	0.012 (0.30)	0.012 (0.30)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0					
Over 0.125 to 0.160 (3.2 to 4.1), incl	Up to 12 (305), incl	0.016 (0.41)	0.016 (0.41)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0					
Over 0.160 to 0.187 (4.1 to 4.7), incl	Up to 12 (305), incl	0.020 (0.51)	0.020 (0.51)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0					
Over 0.187 to 0.250 (4.7 to 6.4), incl	Up to 12 (305), incl	0.062 (1.6)	0.062 (1.6)					
	Over 12 to 48 (305 to 1219), incl	0.062 (1.6)	0.062 (1.6)					

A Rolled round or square-edge strip in thicknesses of 0.071 to 0.125 in. (1.80 to 3.18 mm), incl, in widths 3 in. (76.2 mm) and under, shall have permissible width variations of ±0.005 in. (±0.13 mm). Permissible variations for other sizes shall be as agreed upon between the manufacturer and the purchaser.

TABLE 11 Permissible Variations in Length^A of Sheared, Plasma-Torch-Cut,^B and Abrasive-Cut, Rectangular Plate^C

	Permissible Variation in Length for Lengths Given, in. (mm)															
Specified Thickness	Up to 60 (1520) incl			Over 60 to 96 (1520 to 2440), incl		Over 96 to 120 (2440 to 3050), incl		(3050 to 6096),		Over 240 to 360 (6096 to 9144), incl		to 450	Over 450 to 540 (11 430 to 13 716), incl		Over 54 (13 716)	
	+	_	+	-	+	-	+	-	+	~	+	-	+	-	+	-
							Inche	es		70)					
Sheared: ^D																
3/16 to 5/16, excl	3/16	1/8	1/4	1/8	3/8	1/8	1/2	1/8	5/8	1/8	3/4	1/8	7/8	1/8		
5/16 to 1/2, excl	3/8	1/8	1/2	1/8	1/2	1/8	1/2	1/8	5/8	1/8	3/4	1/8	7/8	1/8	1	1/8
1/2 to 3/4, excl	1/2	1/8	1/2	1/8	5/8	1/8	5/8	1/8	3/4	1/8	7/8	1/8	11/8	1/8	13/8	1/8
3/4 to 1, excl	5/8	1/8	5/8	1/8	5/8	1/8	3/4	1/8	1/8	1/8	1 1/8	1/8	13/8	1/8	15/8	1/8
1 to 11/4, incl	3/4	1/8	3/4	1/8	3/4	1/8	7/8	1/8	11/8	1/8	13/8	1/8	15/8	1/8		
Abrasive-cut: ^E																
3/16 to 11/4, incl	1/8	1/8	1/8	1/8	1/8	1/8	1/8 📞	1/8	1/8	1/8	1/8	1/8				
Over 11/4 to 2	3/16	1/8	3/16	1/8	3/16	1/8	3/16	1/8	3/16	1/8	3/16	1/8				
3/4, incl							1.0									
Plasma torch-cut:F							X									
3/16 to 2, excl	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0
2 to 3, incl	5/8	0	5/8	0	5/8	0	5/8	0	5/8	0	5/8	0	5/8	0	5/8	0
						7/ .	Millime	tres								
Sheared:D					61	7,										
4.8 to 7.9, excl	4.8	3.2	6.4	3.2	9.5	3.2	12.7	3.2	15.9	3.2	19.0	3.2	22.2	3.2		
7.94 to 12.7, excl	9.5	3.2	12.7	3.2	12.7	3.2	12.7	3.2	15.9	3.2	19.0	3.2	22.2	3.2	25.4	3.2
12.7 to 19.0, excl	12.7	3.2	12.7	3.2	15.9	3.2	15.9	3.2	19.0	3.2	22.2	3.2	28.6	3.2	34.9	3.2
19.0 to 25.4, excl	15.9	3.2	15.9	3.2	15.9	3.2	19.0	3.2	22.2	3.2	28.6	3.2	34.9	3.2	41.3	3.2
25.4 to 31.8, incl	19.0	3.2	19.0	3.2	19.0	3.2	22.2	3.2	28.6	3.2	34.9	3.2	41.3	3.2		
Abrasive-cut: ^E																
4.8 to 31.8, incl	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2				
Over 31.8 to 69.9, incl	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2				
Plasma torch-cut:F			Y-													
4.8 to 50.8, excl	12.7	_0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0
50.8 to 76.2, incl	15.9		15.9	0	15.9	0	15.9	0	15.9	Ō	15.9	0	15.9	0	15.9	Ö

A Permissible variations in length for powder- or inert-arc-cut plate shall be agreed upon between the manufacturer and the purchaser.

102.1 Chemical Analysis—Representative samples from each lot shall be taken during pouring or subsequent process-

10.2.1.1 Product (Check) Analysis shall be wholly the responsibility of the purchaser.

10.2.2 Mechanical Properties, Hardness, and Grain Size-Samples of the material to provide test specimens for mechanical properties, hardness, and grain size shall be taken from such locations in each lot as to be representative of that lot.

11. Number of Tests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Mechanical Properties—One test per lot.

^B The tolerance spread shown for plasma-torch-cutting may be obtained all on the minus side, or divided between the plus and minus sides if so specified by the purchaser.

^C Permissible variations in machined, powder- or inert-arc-cut circular plate shall be as agreed upon between the manufacturer and the purchaser.

^D The minimum sheared length is 10 in. (254 mm).

E Abrasive cut applicable to a maximum length of 144 to 400 in. (3658 to 10 160 mm) depending on the thickness and width ordered.

FThe tolerance spread shown for plasma-torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

TABLE 12 Permissible Variations from Flatness of Rectangular, Circular, and Sketch Plates

Note 1—Permissible variations apply to plates up to 12 ft (3660 mm) in length, or to any 12 ft (3660 mm) of longer plates.

Note 2—If the longer dimension is under 36 in. (914 mm), the permissible variation is not greater than 1/4 in. (6.4 mm).

Note 3—The shorter dimension specified is considered the width, and the permissible variation in flatness across the width does not exceed the tabular amount of that dimension.

Note 4—The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

•	Permissible Variations from a Flat Surface for Thickness and Widths Given, in. (mm)								0,0
Specified Thickness	To 48 (1220), excl	48 to 60 (1220 to 1520), excl	60 to 72 (1520 to 1830), excl	72 to 84 (1830 to 2130), excl	84 to 96 (2130 to 2440), excl	96 to 108 (2440 to 2740), excl	108 to 120 (2740 to 3050), excl	120 to 144 (3050 to 3660), excl	144 (3660), and over
		GAGI	exci			GYCI	GACI	exci (<i></i>
				Inches					<u> </u>
3/16 to 1/4, excl	3/4	1 ½16	11/4	13/8	15/8	15/8		60	•••
1/4 to 3/8, excl	11/16	3/4	¹⁵ / ₁₆	11/8	13/8	1 7/ ₁₆	19/16	17/4	
3/8 to 1/2, excl	1/2	9/16	11/16	3/4	15/16	11/8	11/4	17/16	13/4
1/2 to 3/4, excl	1/2	9/16	5/8	5/8	13/16	1 1/8	11/8	1/8	13/8
3/4 to 1, excl	1/2	9/16	5/8	5/8	3/4	13/16	15/16	1	11/8
1 to 2, excl	1/2	9/16	9/16	9/16	11/16	11/16	11/16	3/4	1
2 to 4, incl	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8
				Millimet	res				
4.8 to 6.4, excl	19.0	27.0	31.8	34.9	41.3	41.3	~W,		
6.4 to 9.5, excl	17.5	19.0	23.8	28.6	34.9	36.5	39.7	47.6	
9.5 to 12.7, excl	12.7	14.3	17.5	19.0	23.8	28.6	31.8	36.5	44.4
12.7 to 19.0, excl	12.7	14.3	15.9	15.9	20.6	28.6	28.6	28.6	34.9
19.0 to 25.4, excl	12.7	14.3	15.9	15.9	19.0	20.6	23.8	25.4	28.6
25.4 to 50.8, excl	12.7	14.3	14.3	14.3	17.5	17.5	17.5	19.0	25.4
50.8 to 101.6, incl	6.4	7.9	9.5	11.1	12.7	14.3	15.9	19.0	22.2

11.3 *Hardness*—One test per lot. (Required only as specified in Table 3 and Table 4.)

11.4 *Grain Size*—One test per lot. (Required only as specified in 7.3 or Table 4.)

12. Specimen Preparation

- 12.1 Tension test specimens shall be taken from material in the final condition (temper) and tested transverse to the direction of rolling when width will permit.
- 12.2 Tension test specimens shall be any of the standard or subsize specimens shown in Test Methods E8/E8M.
- 12.3 In the event of disagreement, referee specimens shall be as follows:
- 12.3.1 Full thickness of the material, machined to the form and dimensions shown for the sheet-type specimen in Test Methods E8/E8M for material under ½ in. (12.7 mm) in thickness.
- 12.3.2 The largest possible round specimen shown in Test Methods E8/E8M for material ½ in. (12.7 mm) and over.

13. Test Methods

13.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Chemical Analysis	E38, ^A E1473
Tension	E8/E8M
Brinell hardness	E10
Rockwell hardness	E18
Hardness conversion	E140
Grain size	E112
Rounding procedure	E29
Spring-back	F155

^A Methods E38 are to be used only for elements not covered by Test Methods E1473.

13.2 The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Test Methods E112. In case of dispute, the referee method for determining average grain size shall be the planimetric method.

13.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Test	Rounded Unit for Observed or Calculated Value
Chemical composition, hardness, and tolerances (when expressed in decimals)	nearest unit in the last right- hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield strength	nearest 1000 psi (6.9 MPa)
Elongation Grain Size:	nearest 1 %
0.0024 in. (0.060 mm) or larger less than 0.0024 in. (0.060 mm)	nearest multiple of 0.0002 in. (0.005 mm) nearest multiple of 0.0001 in. (0.002 mm)

14. Inspection

14.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

17. Product Marking

17.1 Each bundle or shipping container shall be marked with the name of the material or UNS number; condition (temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

18. Keywords

18.1 plate; sheet; strip; UNS N06025; UNS N06045; UNS N06235; UNS N06600; UNS N06601; UNS N06603; UNS N06617; UNS N06674; UNS N06690; UNS N06693; UNS N06696: UNS N06699

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchased form a part of this specification to the extent referenced herein: Federal Standards 102, 123, and 182 and Military Standard MIL-STD-129.

S2. Quality Assurance

S2.1 Responsibility for Inspection—Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 182, except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C or packed, Level A, B, or C as specified in the contract or purchase order.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X1.2 Plate, Hot-Rolled

X1.2.1 *Annealed*—Soft with an oxide surface, and suitable for heavy cold forming. Available with a descaled surface, when so specified.

X1.2.2 As-Rolled—With an oxide surface. Available with a descaled surface, when so specified. Suitable for flat work, mild forming, or tube sheets. When intended for tube sheets, specify that plates are to be specially flattened. When intended for hot forming, this should be indicated on the purchase order so that the manufacturer may select appropriate material.

X1.3 Plate, Cold-Rolled

X1.3.1 *Annealed*—Soft with an oxide surface; available in a descaled surface when so specified.

X1.4 Sheet, Hot-Rolled

X1.4.1 Annealed and Pickled—Soft with a pickled matter finish. Properties similar to X1.5.1 but with broader thickness tolerances. Not suggested for applications where the finish of a cold-rolled sheet is considered essential, or for deep drawing or spinning.

X1.5 Sheet and Strip, Cold-Rolled

X1.5.1 Annealed—Soft with a pickled or bright annealed finish.

X1.5.2 Deep-Drawing or Spinning Quality Similar to X1.5.1, except furnished to controlled hardness and grain size and lightly leveled.

X1.5.3 *Skin-Hard*—Similar to X1.5.1, but given a light cold reduction to hardness range shown in Table 3.

X1.5.4 *Quarter-Hard*—Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

X1.5.5 *Half-Hard*—Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

X1.5.6 Three-Quarter Hard—Cold rolled to the hardness range indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

X1.5.7 *Hard*—Cold rolled to the tensile requirements indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

X1.5.8 *Spring Temper*—Cold rolled to the minimum hardness indicated in Table 3, bright finish. Out-of-flatness must be expected and will vary with temper and thickness.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B 202 SB-169/SB-169M SB-169/SB-169M (Identical with ASTM Specification 8169/8169M-20 except that paras. 5.2.4 and 5.2.5 have been deleted. Certification and mill test reports have been made mandatory.)

(23)

Specification for Aluminum Bronze Sheet, Strip, and Rolled Bar

1. Scope

- 1.1 This specification establishes the requirements for Copper Alloy UNS Nos. C61300 and C61400 aluminum bronze sheet, strip, and rolled bar.
- 1.2 The products made to this specification are commonly used for drawing, forming, stamping, and bending applications and are not intended for electrical applications.

Note 1—The products produced under this general specification may be used in many applications in which the individual requirements may be too specific to be determined by normal physical or mechanical testing. Therefore, it may be advisable for the purchaser to submit samples or drawings to the manufacturer to be assured that the product furnished is suitable for the intended application.

Note 2—Refer to Specification B171/B171M for plate product.

- 1.3 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B171/B171M Specification for Copper-Alloy Plate and Sheet for Pressure Vessels, Condensers, and Heat Ex-
- B248 Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled
- B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar (Metric)
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

£290 Test Methods for Bend Testing of Material for Ductil-

3. General Requirements

- General Requirements

 3.1 The following sections of Specifications B248 or 248M constitute a part of this specification.

 3.1.1 Terminology

 3.1.2 Workmanship, Finish, and Appearance

 3.1.3 Sampling

 1.4 Number of Tests and F

 1.5 Specimen P

 1.6 C: B248M constitute a part of this specification.

 - 3.1.6 Significance of Numerical Limits
 - 3.1.7 Inspection
 - 3.1.8 Rejection and Rehearing
 - 3.1.9 Certification
 - 3.1.10 Test Reports
 - 3.1.11 Packaging and Package Marking
 - 3.1.12 Supplementary Requirements
- 3.2 In addition, when a section with a title identical to that referenced in 3.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specifications B248 or B248M.

4. Terminology

4.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
 - 5.1.2 Copper [Alloy] UNS No. designation;
 - 5.1.3 Temper, (Section 8);
 - 5.1.4 Dimensions, thickness, width, and length (Section 11);
 - 5.1.5 How furnished: straight lengths or coils; and
- 5.1.6 Quantity—total weight or total length or number of pieces of each size.

- 5.2 The following options are available but may not be included unless specified at the time of placing the order when required:
- 5.2.1 Type of edge (for example, slit, sheared, sawed, and so forth);
 - 5.2.2 Heat identification or traceability details;
 - 5.2.3 Bend test;
 - 5.2.4 DELETED
 - 5.2.5 DELETED
- 5.2.6 If product is purchased for agencies of the U.S. Government (see Supplementary Requirements section of Specifications B248 or B248M for additional requirements); and
 - 5.2.7 DELETED

6. Materials and Manufacture

- 6.1 Materials:
- 6.1.1 The material of manufacture shall be a form (cast bar, cake, slab, etc.) of Copper Alloy UNS No. C61300 or C61400 of such purity and soundness as to be suitable for processing into the products prescribed herein.
 - 6.2 Manufacture:
- 6.2.1 The product shall be manufactured by such hot working, cold working, and annealing processes as to produce a uniform wrought structure in the finished product.
- 6.2.2 The product shall be hot or cold worked to the finished size, and subsequently annealed, when required, to meet the temper properties specified.
 - 6.3 Edges:
- 6.3.1 Slit edges shall be furnished unless otherwise specified in the contract or purchase order.

7. Chemical Composition

7.1 The material shall conform to the chemical composition requirements in Table 1 for the Copper (alloy) UNS No.

TABLE 1 Chemical Requirements

	Composition,%						
Element	Copper All	oy UNS No.					
CO.	C61300 ^A	C61400					
Copper (including Silver)	remainder	remainder					
Lead, max	0.01	0.01					
Iron	2.0-3.0	1.5-3.5					
Zinc, max	0.10	0.20					
Aluminum	6.0-7.5	6.0-8.0					
Manganese, max	0.20	1.0					
Phosphorus, max	0.015	0.015					
Silicon, max	0.10						
Tin	0.20-0.50						
Nickel (including cobalt), max	0.15						

 A When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zirconium 0.05 % max, and zinc 0.05 % max.

designation specified in the ordering information.

- 7.1.1 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.2 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %. When all elements in Table 1 for the specified alloy are determined, the sum of the results shall be:

8. Temper

- 8.1 The standard tempers for products described in this specification are given in Table 2 and Table 3.
 - 8.1.1 Hot-rolled temper M20.
 - 8.1.2 Annealed-to-temper O25 or O60.

NOTE 3—Inquiry should be made to the supplier concerning the availability of the specific temper required.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 Product furnished under this specification shall conform to the tensile requirements prescribed in Table 2 or Table 3 when tested in accordance with Test Methods E8/E8M.
- 9.1.2 The test specimens shall be taken so that the longitudinal axis of the specimen is parallel to the direction of rolling.

10. Bending Requirements

10.1 When specified in the contract or purchase order, the test specimen shall withstand being bent cold perpendicular to the direction of rolling (rightway bend) through 120° around a mandrel whose radius is equal to the thickness of the product. When the outside surface of the bend is examined with an unaided eye, no sign of fracturing shall be observed.

11. Dimensions, Mass, and Permissible Variations

- 11.1 The dimensions and tolerances for product described by this specification shall be as specified in Specification B248 or B248M.
 - 11.2 Thickness (Table 1).
 - 11.3 Width:
- 11.3.1 Slit Metal and Slit Metal with Rolled Edges (Table 4)
 - 11.3.2 Square Sheared Metal (Table 5).
 - 11.4 Length:
 - 11.4.1 Length Tolerances for Straight Lengths (Table 7).
- 11.4.2 Schedule for Minimum Lengths and Maximum Weights of Ends for Specific Lengths with Ends, and Stock Lengths with Ends (Table 8).
- 11.4.3 Length Tolerance for Square Sheared Metal (Table 9).
 - 11.4.4 Length Tolerances for Sawed Metal (Table 10).
 - 11.5 Straightness:

TABLE 2 Tensile Requirements (Inch-Pound)

Copper Alloy UNS No.	Temper Designa Code	ation ^A Name	- Thickness, in.	Width, in.	Tensile Strength min, ksi ^B	Yield Strength at 0.5 % Extension Under Load, min, ksi ^B	Yield Strength at 0.2 % Extension Under Load, min, ksi ^B	Elongation in 2 in., min, %
C61300	O25, O60, or M20	soft	½ and under	all widths	75	36	34	35
			Over 1/2 to 2, incl	all widths	72	32	30	35
			Over 2 to 5, incl	all widths	65	28	26	35
C61400	O25, O60, or M20	soft	½ and under	all widths	72	32	30	35
			Over ½ to 2, incl	all widths	70	30	28	(35)
			Over 2 to 5, incl	all widths	65	28	26	35

^A Standard designations defined in Classification B601.

TABLE 3 Tensile Requirements (SI)

			.,			·- <i>)</i>		
Copper Alloy UNS No.	Temper Designation	ation ^A Name	 Thickness, mm 	Width, mm	Tensile Strength min, MPa	Yield Strength at 0.5 % Extension Under Load, min, MPa	Yield Strength at 0.2 % Extension Under Load, min, MPa	Elongation in 2 in., min, %
C61300	O25, O60, or M20	soft	12.0 and under	all widths	515	250	235	35
			Over 12.0 to 50.0, incl	all widths	495	220	205	35
			Over 50.0 to 140 incl	all widths	450	195	180	35
C61400	O25, O60, or M20	soft	12.0 and under	all widths	495	220	205	35
			Over 12.0 to 50.0, incl	all widths	485	205	195	35
			Over 50.0 to 140 incl	all widths	450	195	180	35

^A Standard designations defined in Classification B601.

- 11.5.1 Slit Metal or Slit Metal Either Straightened or Edge Rolled (Table 11).
 - 11.5.2 Square Sheared Metal (Table 12)
 - 11.5.3 Sawed Metal (Table 13).
 - 11.6 Edge Contours:
 - 11.6.1 Square Corners (Table 14).
 - 11.6.2 Rounded Corners (Table 15).
 - 11.6.3 Rounded Edges (Table 16).
 - 11.6.4 Full-Rounded Edges (Table 17).

12. Number of Tests and Retests

- 12.1 Tests:
- 12.1.1 *Chemical Analysis*—Chemical composition shall be determined in accordance with the element mean of the results from at least two replicate analyses of the sample(s).
- 12.1.2 Mechanical Properties—Tensile strength, yield strength, and elongation shall be reported as the average of results from at least two specimens.
- 12.1.3 Bending Requirements—Two specimens shall be tested and both shall pass.

13. Specimen Preparation

13.1 *Bend Test*—Bend test specimens shall be prepared as directed in Test Methods E290.

14. Test Methods

- 14.1 Chemical Analysis:
- 14.1.1 In cases of disagreement, tests methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser.
- 14.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.
 - 14.2 Other Tests:
- 14.2.1 The product furnished shall conform to specified requirements when subjected to test in accordance with the following table:

Test	Method
Tensile strength	E8/E8M
Yield strength	E8/E8M
Elongation	E8/E8M
Bending	E290

14.2.2 *Yield Strength*—The yield strength shall be determined by the extension-under-load method of Test Methods E8/E8M. When test results are obtained from both full-size and machined specimens, and they differ, the test results from the full-size specimens shall prevail.

^B ksi = 1000 psi.

- 14.2.3 Elongation shall be determined as specified in the section of Test Methods E8/E8M, entitled "Elongation."
- 14.2.4 Test results are affected by variations in speed of testing. A considerable range of testing speed is permitted. The rate of stressing to the yield strength should not exceed 100 ksi/min [690 MPa/min.]. Above the yield strength, the movement per minute of the testing machine head under load should not exceed 0.5 in./in [0.5 mm/mm].

15. Certification and Test Report

- 15.1 The manufacturer's certificate of compliance shall be furnished to the purchaser stating that samples representing each lot have been tested and inspected in accordance with this specification and the requirements have been met.
- 15.2 The manufacturer shall furnish to the purchaser a test report showing results of tests required by the specification

16. Keywords

bronze rolly ze strip; UNSE st 16.1 aluminum bronze; aluminum bronze rolled bar; aluminum bronze sheet; aluminum bronze strip; UNS C61300; UNS INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER-ALLOY PLATE AND SHEET FOR PRESSURE VESSELS, CONDENSERS, AND HEAT EXCHANGERS

SB-171/SB-171M

(Identical with ASTM Specification B171/B171M-18 except that certification and test reports have been made mandators, and temper restrictions are removed.)

(Identical with ASTM Specification B171/B171M-18 except that certification and test reports have been made mandators, and temper restrictions are removed.)

Specification for Copper-Alloy Plate and Sheet for Pressure Vessels, Condensers, and Heat Exchangers

1. Scope

1.1 This specification establishes the requirements for copper-alloy plate, sheet, and circles cut from plate and sheet for pressure vessels, condensers, and heat exchangers. The following alloys are covered:

Copper Alloy	Previously Used Designation
C36500	Leaded Muntz Metal
C44300	Admirality, Arsenical
C44400	Admirality, Antimonial
C44500	Admirality, Phosphorized
C46400	Naval Brass, Uninhibited
C46500	Naval Brass, Arsenical
C61300	Aluminum Bronze
C61400	Aluminum Bronze D
C63000	10 % Aluminum-Nickel Bronze
C63200	9 % Aluminum-Nickel Bronze
C70600	90-10 Copper Nickel
C70620	90-10 Copper Nickel-(modified for welding)
C71500	70-30 Copper Nickel
C71520	70-30 Copper Nickel-(modified for welding)
C72200	

- 1.2 *Units*—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision of Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B248 Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar

B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar (Metric)

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 4.1.1 ASTM designation and year of issue;
- 4.1.2 Whether inch-pound or SI units are applicable (see 1.2);
 - 4.1.3 Copper [Alloy] UNS. No. (see Section 6, Table 1);

TABLE 1 Chemical Requirements

Camar Allan	Composition, % max (Unless Shown as a Range)									
Copper Alloy UNS No. ^A	Copper, incl Silver	Tin	Nickel, incl Cobalt	Manganese, max	Lead	Iron	Zinc	Aluminum	Chromium	Other Named Elements
C36500	58.0-61.0 ^B	0.25			0.25-0.7	0.15	remainder			
C44300	$70.0-73.0^{B}$	0.8-1.2			0.07	0.06	remainder			0.02-0.06 As
C44400	$70.0-73.0^{B}$	0.8-1.2			0.07	0.06	remainder			0.02-0.10 Sb
C44500	$70.0-73.0^{B}$	0.8-1.2			0.07	0.06	remainder			0.02-0.10 P 🔾
C46400	59.0-62.0 ^B	0.50-1.0			0.20	0.10	remainder			?\}
C46500	$59.0-62.0^{B}$	0.50-1.0			0.20	0.10	remainder			0.02-0.06 As
C61300 ^C	remainder	0.20-0.50	0.15	0.20	0.01	2.0-3.0	0.10^{D}	6.0-7.5		0.10 Si
										0.015 P
C61400	remainder			1.0	0.01	1.5-3.5	0.20	6.0-8.0		0.015 P
C63000	remainder	0.20	4.0-5.5	1.5		2.0-4.0	0.30	9.0-11.0	🕺	0.25 Si
C63200	remainder		4.0-4.8 ^E	1.2-2.0	0.02	3.5-4.3 ^E		8.7-9.5	Ci	0.10 Si
C70600	remainder		9.0-11.0	1.0	0.05^{D}	1.0-1.8	1.0 ^D		60	
C70620	86.5 min		9.0-11.0	1.0	0.02	1.0-1.8	0.50		5	0.05 C
									C_{λ}	0.02 P
										0.02 S
C71500	remainder		29.0-33.0	1.0	0.05^{D}	0.40-1.0	1.0 ^D		•	
C71520	65.0 min		29.0-33.0	1.0	0.02	0.40-1.0	0.50	O)X		0.05 C
										0.02 P
										0.02 S
C72200	remainder		15.0-18.0	1.0	0.05^{D}	0.50-1.0	1.0 ^D		0.30-0.70	0.03 Si
							C			0.03 Ti
							, D-			D

^A Designation established in accordance with Practice E527.

- 4.1.4 Whether the alloy ordered will be used in applications requiring it to be welded (see Table 1, footnotes C and D for UNS Nos. C61300 and C72200, respectively, and UNS Nos. C70620 and C71520 in place of UNS Nos. C70600 and C71500);
 - 4.1.5 Whether plate is to be machined (see 9.13);
 - 4.1.6 How tolerance is specified (Table 2, footnote A); and
 - 4.1.7 Weight (total for each size).
- 4.2 The following options are available but may not be included unless specified at the time of placing the order, when required.
 - 4.2.1 DELETED
 - 4.2.2 DELETED
 - 4.2.3 Special marking, if required (Section 20);
 - 4.2.4 Whether yield strength 0.2 % offset is required;

4.2.5 Heat identification or traceability details (5.1.2); and 4.2.6 Source inspection (15.2).

5. Materials and Manufacture

- 5.1 Material:
- 5.1.1 The material of manufacture shall be cast cake of the Copper Alloy UNS No. specified in the purchase order of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 5.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.

Note 1—Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of finished material.

TABLE 2 Thickness Tolerances

all a	Thickness Tolerances, Plus and Minus, AB in. [mm] for Diameters or Widths					
Thickness, in. [mm]	36 in. [1000 mm] or Under, incl	Over 36 to 60 in. [1000 to 1500 mm], incl	Over 60 to 96 in. [1500 to 2500 mm], incl	Over 96 to 132 in. [2500 to 3500 mm], incl		
Over 0.125 to 0.250 [3.0 to 6.0 mm], incl	0.010 [0.25]	0.012 [0.30]	0.022 [0.56]	0.028 [0.71]		
Over 0.250 to 0.500 [6.0 to 12.0 mm], incl	0.025 [0.64]	0.027 [0.69]	0.029 [0.74]	0.031 [0.79]		
Over 0.500 to 0.750 [12.0 to 19.0 mm], incl	0.028 [0.71]	0.030 [0.76]	0.032 [0.81]	0.035 [0.89]		
Over 0.750 to 1.000 [19.0 to 25.0 mm], incl	0.033 [0.84]	0.035 [0.89]	0.037 [0.94]	0.040 [1.0]		
Over 1.000 to 1.500 [25.0 to 38.0], incl	0.038 [0.97]	0.040 [1.0]	0.042 [1.1]	0.045 [1.1]		
over 1.500 to 1.750 [38.0 to 44.0 mm], incl	0.043 [1.1]	0.045 [1.1]	0.047 [1.2]	0.050 [1.3]		
Over 1.750 to 2.000 [44.0 to 50.0 mm], incl	0.050 [1.3]	0.055 [1.4]	0.062 [1.6]	0.065 [1.7]		
Over 2.000 to 5.000 [50.0 to 127 mm], incl	0.058 [1.5]	0.062 [1.6]	0.065 [1.7]			

A When tolerances are specified as all plus or all minus, double the values given.

^B Not including silver.

^C When the product is for subsequent welding applications, and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zirconium 0.05 % max and zinc 0.05 % max.

^D When the product is for subsequent welding applications, and is so specified by the purchaser, zind shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

^E Iron content shall not exceed the nickel content.

^B See 9.1.2 for specific alloys with a difference tolerance.

- 5.2 Manufacture:
- 5.2.1 The product shall be manufactured by such hot working, cold working, and annealing processes as to produce a uniform wrought structure in the finished product.
- 5.2.2 The product shall be hot or cold worked to the finished size, and subsequently annealed, when required, to meet the temper properties specified.

6. Chemical Composition

- 6.1 The materials shall conform to the chemical compositional requirements specified in Table 1 for the copper [alloy] UNS designations specified in the ordering information.
- 6.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 6.3 For the alloys listed below, zinc is listed as "remainder," either copper or zinc, respectively, may be taken as the difference between the sum of all the elements analyzed and 100 %. When all the elements in Table 1 are analyzed their sum shall be as shown below:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C36500	99.6
C44300	99.6
C44400	99.6
C44500	99.6
C46400	99.6
C46500	99.6

6.3.1 For the alloys listed below, copper may be taken as the difference between the sum of all the elements and 100 %. When all of the elements in Table 1 are analyzed, their sum shall be as shown below:

Copper Alloy UNS No.	Copper Plus Named Elements, % mi
C61300	99.8
C61400	99.5
C63000	99.5
C63200	99.5
C70600	99.5
C70620	99.5
C71520	99.5
C71500	99.5
C72200	99.8

7. Temper

- 7.1 The standard tempers for products described in this specification are given in Table 3.
 - 7.1.1 As Hot Rolled Temper M20.
 - 7.1.2 As Hot Forged-Air Cooled M10.
 - 7.1.3 Hot Forged and Annealed O20
 - 7.1.4 Hot Rolled and Annealed O25
 - 7.1.5 DELETED
 - 7.1.6 DELETED

8. Mechanical Property Requirements

- 8.1 Tensile Strength Requirements:
- 8.1.1 Product furnished under this specification shall conform to the mechanical property requirements prescribed in Table 3, when tested in accordance with Test Methods E8/E8M.
- 8.1.2 Acceptance or rejection shall be based upon the 8.1.1 mechanical properties.

TABLE 3 Tensile Requirements—M20, M10, O20, and O25 Tempers

Copper Alloy UNS No	. Thickness, in. [mm]	Tensile Strength, min, ksi ^A [MPa]	Yield Strength, ^B min, ksi ^A [MPa]	Yield Strength 0.2 % Offset, min, ksi ^A [MPa]	Elongation in 2 in. [50.0 mm], min, %
	2 [50.0] and under	50 [345]	20 [140]	20 [140]	35 [35]
C36500	over 2 to 3.5 [50.0 to 100.0], incl	45 [310]	15 [105]	15 [105]	35 [35]
	over 3.5 to 5 [100.0 to 140.0], incl	40 [275]	12 [85]	12 [85]	35 [35]
C44300, C44400, and C44500	4 [100.0] and under	45 [310]	15 [105]	15 [105]	35 [35]
C46400, C46500	3 [80.0] and under	50 [345]	20 [140]	20 [140]	35 [35]
	over 3 to 5 [80.0 to 140,0], incl	50 [345]	18 [125]	18 [125]	35 [35]
C61300	2 [50.0] and under	75 [515]	37 [255]	36 [250]	30 [30]
	over 2 to 3 [50,0 to 80.0], incl	70 [485]	30 [205]	28 [195]	35 [35]
	over 3 to 5 [80.0140.0], incl	65 [450]	28 [195]	26 [180]	35 [35]
C61400	2 [50.0] and under	70 [485]	30 [205]	28 [195]	35 [35]
	over 2 to 5 [50.0 to 140.0], incl	65 [450]	28 [195]	26 [180]	35 [35]
C63000 and C63200	2 [500] and under	90 [620]	36 [250]	34 [235]	10 [10]
	over 2 to 3.5 [50.0 to 100.0], incl	85 [585]	33 [230]	31 [215]	10 [10]
	over 3.5 to 5.0 [100.0 to 140.0], incl	80 [550]	30 [205]	28 [195]	10 [10]
C70600 and C70620	2.5 [60.0] and under	40 [275]	15 [105]	15 [105]	30 [30]
C.	over 2.5 to 5 [60.0 to 140.0], incl	40 [275]	15 [105]	15 [105]	30 [30]
C71500 and C71520	2.5 [60.0] and under	50 [345]	20 [140]	20 [140]	30 [30]
\sim	over 2.5 to 5 [60.0 to 140.0], incl	45 [310]	18 [125]	18 [125]	30 [30]
C72200	2.5 [60.0] and under	42 [290]	16 [110]	16 [110]	35 [35]

A ksi = 1000 psi

Wield strength is measured at 0.5 % extension under load (that is, 0.01 in. [0.254 mm] in a gage length of 2 in. [50.0 mm]).

9. Dimensions, Mass, and Permissible Variations

- 9.1 Thickness:
- 9.1.1 The thickness tolerances for plates of Copper Alloy UNS Nos. C36500, C44300, C44400, C44500, C46400, and C46500 shall be as prescribed in Table 2.
- 9.1.2 The thickness tolerances for plates of Copper Alloy UNS Nos. C61300, C61400, C63000, C63200, C71500, C70620, C71520, and C72200 shall be 25 % greater than those prescribed in Table 2.
- 9.1.3 If plates are machined, the thickness tolerances shall apply to the machined portion only.
- 9.1.4 Closer thickness tolerances than those prescribed in Table 2 can be furnished by surface machining. This is a special product and is subject to agreement between the manufacturer and the purchaser. This special product shall apply only when specified by the purchaser in the contract or order.
- 9.1.5 Unless otherwise agreed to by the manufacturer and the purchaser, the thickness of plate to this specification shall be determined by measuring along the length of the plate up to a distance of 7 in. [180 mm] from the edge.
- 9.2 Diameters, Lengths, or Widths—The diameters, lengths, or widths of plates shall be not less than those specified. The diameters, lengths, or widths of plates may exceed those specified by the amounts shown in Table 4.

Note 2—For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

- 9.3 Flatness—The flatness tolerances of individual plates shall not exceed those prescribed in Table 5. The tolerances shown are the total permissible variations for plates as ordered, and do not apply to the 7 in. [180 mm] marginal area at the edge of the plate. Inspection for flatness shall be made by placing the plate on a flat surfaced table with the side marked "Straight Side" up, applying a 72 in. [2 m] straightedge when the size permits, or a shorter one equal to the dimensions to be inspected, and measuring the depth of arc between the straightedge and the plate.
- 9.4 Plate and Sheet Lot Weight for Pressure Vessels—For Copper Alloy UNS Nos. C70600, C70620, C17500, C17520 or C72200, the maximum lot weight restriction in Table 6 shall apply in addition to the thickness tolerance requirement of Table 2. The weight of each lot of five or more plates or sheets shall not exceed the nominal weight by more than the amount prescribed in Table 6. Plate and sheet of lots of less than five

TABLE 4 Diameter, Length, or Width Tolerances

Di	ameter, Length, or Width in. [mm]	Permissible Excess in Diameter, Length, or Width, in. [mm]
36	[1000] or under	3/64 [1.2]
0	ver 36 to 60 [1000 to 1500], incl	1/16 [1.6]
0	ver 60 to 96 [1500 to 2500], incl	3/32 [2.4]
O'	ver 96 to 132 [2500 to 3500], incl	7/64 [2.8]

TABLE 5 Flatness Tolerances

	Flatness Tolerances (Depth of Arc) Not to Exceed, in. [mm], for Diameters, Lengths, or Widths Shown					
Copper Alloy UNS No.	36 in. [1000 mm] or Under	Over 36 to 60 in. [1000 to 1500 mm], incl	Over 60 to 132 in. [1500 to 3500 mm], incl ^A			
C36500, C46400, and C46500	0.050 [1.3]	0.055 [1.4]	0.060 [1.5]			
C44300, C44400, and C44500	0.050 [1.3]	0.065 [1.7]	0.075 [1.9]			
C61300, C61400, C63000, and C63200	0.060 [1.5]	0.075 [1.9]	0.090 [2.3]			
C70600, C71500, C72200, C70620, and C71520	0.060 [1.5]	0.075 [1.9]	0.090 [2.3]			

^A Tolerance applies to any 72 in. [1.83 m] chord.

shall be governed solely by the thickness tolerances of Table 2. For purposes of calculating weights, the densities used shall be as listed in Table 7.

10. Workmanship, Finish, and Appearance

10.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

11. Sampling

- 11. The lot size, portion size, and selection of pieces shall be as follows:
- 11.1.1 Lot Size—10 000 lb [4550 kg] or less material of the same mill form, alloy, temper, and thickness, subject to inspection at one time.
- 11.1.2 *Portion Size*—Four individual sample pieces shall be selected as representative of each lot. If the lot consists of less than four pieces, samples shall be selected so as to be representative of each piece.
- 11.2 Chemical Analysis—A sample for chemical analysis shall be taken and prepared in accordance with Practice E255. Drillings, millings, and so forth, shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 11.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 11.2.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition by analyzing samples taken at the time castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 11.2.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 11.2.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb [4550 kg] or fraction thereof, except that not more than one sample shall be required per piece.

TABLE 6 Lot Weight Tolerances in Percentage of Theoretical Weight, All Plus Copper Alloy UNS Nos. C70600, C71500, C72200, C71520, and C70620 for Use in Pressure Vessels Exclusively

				-				
	Permissible Excess in Average Weights of Lots, Expressed in Percentage of Nominal Weights							
Specified Thicknesses, in. [mm]	48 in. [1200 mm] and Under in Width	Over 48 to 60 in. [1200 to 1500 mm] in Width, incl	Over 60 to 72 in. [1500 to 1800 mm] in Width, incl	Over 72 to 96 in. [1800 to 2500 mm] in Width, incl	Over 96 to 120 in. [2500 to 3000 mm] in Width, incl	Over 120 to 132 in [3000 to 3400 mm] in Width, incl		
Over 1/8 to 3/16 [3.0 to 5.0], incl	6.5	8	9	11				
Over 3/16 to 1/4 [5.0 to 6.0], incl	6.5	8	9	11	12			
Over 1/4 to 5/16 [6.0 to 8.0], incl	6.5	7.75	8.75	11	12	13		
Over 5/16 to 3/8 [8.0 to 10.0], incl	6.25	7.5	8.5	11	12	13		
Over 3/8 to 1/2 [10.0 to 12.0], incl	6	6	8	10	11	12		
Over ½ to 5/8 [12.0 to 16.0], incl	5.75	6.5	7.5	9	10	11		
Over 5/8 to 3/4 [12.0 to 20.0], incl	5.5	6	7	8	9	10		
Over 3/4 to 1 [20 to 25.0], incl	5	5	6.25	7	8	9		
Over 1 to 2 [25.0 to 50.0], incl	3.5	4	5	6	7	68		

TABLE 7 Densities

Copper Alloy UNS Nos.	Density lb/in.3 [g /cm3]
C36500	0.304 [8.41]
C44300, C44400, and C44500	0.308 [8.53]
C46400, C46500	0.304 [8.41]
C61300, C61400	0.285 [7.89]
C63000 and C63200	0.274 [7.58]
C70600, C71500, C72200, C70620, and	0.323 [8.94]
C71520	

- 11.2.2 Because of the discontinuous nature of the processing of castings into wrought products, it is not practical to keep specific casting analysis identified with a specific quantity of finished material.
- 11.2.3 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

12. Number of Tests and Retests

- 12.1 *Tests:*
- 12.1.1 *Chemical Analysis*—Chemical composition shall be determined as the per element mean of results from at least two replicate analyses of the sample(s).
- 12.2 Other Tests—For other tests, a specimen shall be taken from two of the sample pieces selected in accordance with 11.1.2. The required tests shall be made on each of the specimens so selected.
 - 12.3 Retests:
- 12.3.1 If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- 12.3.2 If the percent elongation of any test specimen is less than that specified and any part of the fracture is outside the middle two-thirds of the gage length, or in a punched or scribed mark within the reduced section, a retest shall be allowed.
- 12.3.3 If one of the tests made to determine any of the mechanical properties fails to meet a specified limit, this test shall be repeated on two of the remaining pieces selected in accordance with 11.1.2, and the results of both of these tests shall comply with the specified requirements.
- 12.3.4 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.

- 12.3.5 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 12.3.6 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from the pieces selected in accordance with 11.1.2. The results of the retest shall conform with the specified requirements.
- 12.3.7 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

13. Test Methods

- 13.1 The properties and chemical compositions enumerated in this specification shall, in case of disagreement, be determined in accordance with the following ASTM test methods:
- 13.1.1 *Tension*—Tensile properties shall be determined in accordance with Test Methods E8/E8M using the specimens shown in Fig. 7 or 8.
- 13.1.2 *Chemical Analysis*—In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published methods, some of which may no longer be viable, and which, along with others not listed, may be used subject to agreement:

Element	Test Method
Copper Aluminum	E478 E478
Antimony Arsenic	E62 E62
Iron <1.3 % >1.3 %	E478 E54
Lead Manganese	E34 E478 (AA) E62
Nickel:	E478 (photometric)
>5 % Phosphorus	E478 (gravimetric) E62
Silicon Tin	E54 (perchloric acid) E478
Zinc <2 %	E478 (AA)
>2 %	E478 (titrametric)

Note 3—The tension test specimen shall conform to the dimensions shown in Figs. 7 or 8 of Test Methods E8/E8M.

- 13.2 In case of disagreement, the sulfur content of the alloys covered in this specification shall be determined in accordance with the method given in the annex to Specification B248 or B248M.
- 13.3 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.

14. Significance of Numerical Limits

14.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table and for dimensional tolerances, an observed or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29:

Property

Chemical composition

Tensile strength Yield strength Elongation of 5 % and over Rounded Unit for Observed or Calculated Value
nearest unit in the last right hand significant digit used in expressing the limiting value
nearest ksi [nearest 5 MPa]
nearest ksi [nearest 5 MPa]

nearest 1 %

15. Inspection

- 15.1 The manufacturer shall inspect and make the tests necessary to verify that the product furnished conforms to the requirements of this specification.
- 15.2 If, in addition, source inspection of the material by the purchaser is agreed upon by the manufacturer and the purchaser as part of the purchase contract, the nature of the facilities needed to satisfy the inspector representing the purchaser that the product is being furnished in accordance with this specification shall be included in the agreement. All tests and the inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 15.3 When mutually agreed upon, the manufacturer or supplier and the purchaser shall conduct the final inspection simultaneously.

16. Rejection and Rehearing

- 16.1 Rejection:
- 16.1.1 Product that fails to conform to the requirements of this specification when tested by the purchaser or the purchaser's agent shall be subject to rejection.
- 16.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification shall follow.
- 16.1.3 In case of dissatisfaction with the results of the test upon which the rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
 - 16.2 Rehearing:
- 16.2.1 As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both

parties using the test method(s) specified in the product specifications, or alternatively, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

17. Certification

17.1 The manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements.

17.2 DELETED

18. Test Report

18.1 A report of test results shall be furnished.

19. Product Marking

19.1 The name or trademark of the manufacturer and the manufacturer's lot identification number shall be legibly stamped on each finished plate and sheet in two places not less than 12 in. [300 mm] from the edges. If the plate and sheet are too small to locate the markings in this way, the markings may be placed near the center of the plate and sheet. In case of butt straps, the markings may be placed 12 in. [300 mm] from the end. The plate number and type shall be legibly stamped on each plate and on each test specimen.

20. Packaging and Package Marking

- 20.1 Packaging—The product shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.
 - 20.2 Package Marking:
- 20.2.1 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, gross and net weight, and name of supplier. The specification number shall be shown, when specified.
- 20.2.2 When specified in the contract or purchaser order, the specification number shall be shown, when specified.

21. Keywords

21.1 admiralty metal plate and sheet; aluminum bronze plate and sheet; aluminum-nickel bronze plate and sheet; copper nickel plate and sheet; muntz metal plate and sheet; naval brass plate and sheet; plate and sheet for pressure vessels; UNS No. C36500; UNS No. C43300; UNS No. C44400; UNS No. C44500; UNS No. C46500; UNS No. C61300; UNS No. C61400; UNS No. C63000; UNS No. C63200; UNS No. C70600; UNS No. C70620; UNS No. C71500; UNS No. C71520; UNS No. C72200

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Reference Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent herein:

S1.1.1 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S1.1.2 Federal Standards:

Fed Std 102 Preservation, Packaging and Packing Levels

Fed Std 123 Marking for Shipment (Civil Agencies)

Fed Std 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 Responsibility for Inspection—Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use any suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time SMENORUNDOC. COM. Cick to view the full port

the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, and Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, and packed, Level A, B, or C, as specified in the contract or purchase order in accordance with the requirements of B900.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.21 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. 123.

SPECIFICATION FOR COPPER, BUS BAR, ROD, AND SHAPES AND GENERAL PURPOSE ROD, BAR, AND SHAPES

SB-187/SB-187M

(23)

(Identical with ASTM Specification B187/B183M-20 except that certification and mill test reports have been made mandatory. Table 2, Footnote F and 10.1.1 are revised; 10.1.1.1 is deleted to make tensile testing required for all product forms.)

forms.)

Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes

1. Scope

- 1.1 This specification establishes the requirements for copper conductor bar, rod, and shapes for electrical (bus) applications and rod, bar, and shapes for general applications.
- 1.1.1 The products for electrical (bus) applications shall be made from the following coppers:

Copper UNS No.	Reference Designation
C10100	OFE
C10200	OF
C10300	OFXLP
C10400, C10500, C10700	OFS
C10920, C10930, C10940	_
C11000	ETP
C11020	FRHC
C11300, C11400, C11500,	STP
C11600	
C12000	DLP

- 1.1.1.1 The product may be furnished from any copper listed unless otherwise specified in the contract or purchase order.
- 1.2 The product for general applications shall be made from any of the coppers in 1.1.1 or the following coppers:

Copper UNS No.	Reference Designation
C10800	OFLP
C12200	DHP

- 1.2.1 The product may be furnished from any copper listed above unless otherwise specified in the contract or purchase order. Other coppers may be used upon agreement between the supplier and purchaser.
- 1.3 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each

system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.

Note 1—Material for hot forging will to found in Specification B124/B124M.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B124/B124M Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes
- B 70 Specification for Oxygen-Free Electrolytic Copper— Refinery Shapes
- B193 Test Method for Resistivity of Electrical Conductor Materials
- B216 Specification for Tough-Pitch Fire-Refined Copper— Refinery Shapes
- B224 Classification of Coppers
- B249/B249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes and Foreigns
- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry

- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy Current) Method
- E2575 Test Method for Determination of Oxygen in Copper and Copper Alloys by Inert Gas Fusion
- 2.2 Other Standard:
- ASME Boiler and Pressure Vessel Code

3. Terminology

- 3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.
 - 3.2 Definitions:
- 3.2.1 bus bar, n—includes material of solid rectangular or square cross section or a solid section with two plane parallel surfaces and round or other simple regularly shaped edges up to and including 12 in. in width and 0.090 in. and over in thickness.
- 3.2.2 bus conductor stock, n—a bar, rod, or shape of high conductivity copper used to make electrical conductors.
- 3.2.3 bus rod, n—includes solid round and regular polygons of six and eight sides.
- 3.2.4 bus shapes, n—a solid section other than regular rod, bar, plate, sheet, strip, or flat wire, that may be oval, half oval, half round, triangular, pentagonal, or of any special cross section furnished in straight lengths. Shapes shall not include tube and pipe or other hollow sections.
 - 3.3 Definitions of Terms Specific to This Standard:
- 3.3.1 orange peel, n—the surface roughness resulting from working metal of large grain size. The surface is similar in texture to that of the outside surface of an orange.

4. General Requirements

- 4.1 The following sections of Specification B249/B249M are a part of this specification
 - 4.1.1 Terminology;
 - 4.1.2 Materials and Manufacture;
 - 4.1.3 Workmanship, Finish, and Appearance;
 - 4.1.4 Sampling;
 - 4.1.5 Number of Tests and Retests;
 - 4.1.6 Test Methods;
 - 4.1.7 Specimen Preparation;
- Inspection;

 4.1.10 Rejection and
 4.1.11 Certification; 4.1.8 Significance of Numerical Limits;

 - 4.1.10 Rejection and Rehearing;

- 4.1.12 Test Reports; and
- 4.1.13 Packaging and Package Marking.
- 4.2 Identical sections in this specification supplement the referenced section.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM specification designation and year of issue,;
 - 5.1.2 Copper UNS No. (see 7.1 and Table 1);
 - 5.1.3 Temper required (see 8.1 and Table 2);
 - 5.1.4 Dimensions and form;
 - 5.1.5 DELETED
- 5.1.6 Shapes: dimensional tolerances required and agreed upon (see 13.3);
- 5.1.7 Quantity: number of pounds, pieces, or footage required;
 - 5.1.8 Length: stock or specific (see 13.5); and
- 5.1.9 When material is purchased for agencies of the U.S. Government (see Section 12).
- 5.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
 - 5.2.1 Heat identification or traceability details required,
 - 5.2.2 Hydrogen embrittlement test,
 - 5.2.3 Bend test,
 - 5/2.4 DELETED,
 - 5.2.5 DELETED,
 - 5.2.6 Special packaging requirements,
 - 5.2.7 Edges other than finished edges (see 6.2.1.2),
 - 5.2.8 Edge contours other than square edge (see 13.7), and
- 5.2.9 Location for the determination of the Rockwell hardness (see 10.2.2).

6. Materials and Manufacture

- 6.1 Material:
- 6.1.1 The materials shall conform to the published compositional requirements of the Copper or Copper Alloy UNS No. designation specified in the ordering information.
- 6.1.2 In the event heat identification or traceability is required, the purchaser shall specify the details desired.
 - 6.2 Manufacture:
 - 6.2.1 *Edges*:
- 6.2.1.1 Bar shall be furnished with finished edges (see 13.7) unless otherwise specified at the time of order placement.
- 6.2.1.2 Bar may be furnished with sawed edges and deburred corners upon agreement between the manufacturer or supplier and the purchaser (see 5.2.7).

7. Chemical Composition

- 7.1 The specified copper shall conform to the chemical requirements prescribed in Table 1.
- 7.2 These specification limits do not preclude the possible presence of other elements. Limits for unnamed elements may be established and analysis required by agreement between the manufacturer or the supplier and the purchaser.

TABLE 1 Chemical Requirements

Note 1—If the type of silver-bearing copper is not specified (that is whether tough pitch, phosphorized, or oxygen-free), any one of the three types may be supplied at the option of the manufacturer.

Composition % Maximum (Unless shown as a range or minimum)						
Copper UNS No.	Copper (Incl. Silver)	Phos- phorus	Silver	Oxygen	Tellurium	Tin
C10100	99.99 ^A min	В	В	В	В	В
C10200	99.95 ^{<i>C</i>} min			0.0010		
C10300	99.95 ^D min	0.001-0.005				
C10400 ^E	99.95 ^{<i>C</i>} min		8 ^F	0.0010		
C10500 ^E	99.95 ^{<i>C</i>} min		10 ^F	0.0010		
C10700 ^E	99.95 ^{<i>C</i>} min		25 ^F	0.0010		
C10800	99.95 ^D min	0.005-0.012				
C10920	99.90 min			0.02		
C10930	99.90 min		13 ^F	0.02		~ (V)
C10940	99.90 min		25 ^F	0.02		5 0
C11000	99.90 min			G		
C11020	99.90 min			G		<i>)</i>
C11300 ^H	99.90 min		8 ^F	G	0	
C11400 ^H	99.90 min		10 ^F	G	🔿	
C11500 ^H	99.90 min		16 ^F	G		
C11600 ^H	99.90 min		25 ^F	G		
C12000	99.90 min	0.004-0.012				
C12200	99.90 min	0.015-0.040				

A Copper value is determined by the difference between the impurity total and 100 %. The copper value is exclusive of Λ

8. Temper

8.1 Tempers available under this specification and as described in Classification B601 are as follows:

	Temper Designation	
Standard		Former
		×
O60		soft anneal
H02		half hard
H04		hard
		61

9. Physical Property Requirements

9.1 Electrical Resistivity—Bar, rod, and shapes of alloys Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10920, C10930, C10940, C11000, C11020, C11300, C11400, C11500, C11600, and C12000 shall conform to the electrical resistivity limits prescribed in Table 2 for specified copper, temper, form, and size when determined in accordance with Test Method B193.

9.2 Electrical Resistivity—Unless otherwise specified in the contract or ordering information, the manufacturer has the option of using Test Method E1004 to determine conformance to the electrical resistivity limits prescribed in Table 2 for Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10920, C10930, C10940, C11000, C11020, C11300, C11400, C11500, C11600, and C12000. In case of dispute, Test Method B193 shall be used.

10. Mechanical Property Requirements

10.1 Tensile Requirements:

10.1.1 The products shall conform to the tensile, yield, and elongation requirements of Table 2.

10.1.1.1 DELETED

10.2 Rockwell Hardness:

10.2.1 Rockwell hardness tests offer a quick and convenient method of checking copper of any temper for general conformity to the requirements of tensile strength. The approximate Rockwell hardness values for the specified tempers are given in Table 2 for general information and assistance in testing.

10.2.2 When specified at the time of order and as agreed to by the purchaser and supplier or manufacturer, the location for the determination of the Rockwell hardness may be specified.

11. Performance Requirements

- 11.1 Bending Requirements:
- 11.1.1 When specified in the contract or purchase order, for bar, bus bar, flat wire, and rod, test specimens shall withstand being bent cold (right way bend) through an angle as specified in Table 2 for the specified temper and size without fracture on the outside of the bent portion and with no evidence of slivers, cracks, orange peel, or similar surface defects being visible to the unaided eye.
- 11.1.2 The bend shall be made on a radius equal to the minimum cross-sectional dimension of the specimen, and this dimension shall be radial to the bend.
- 11.1.3 The axis of the bend shall be at an angle of 90° to the direction of rolling, drawing, or extrusion (right way bend).

^B Impurity maximums in ppm of C10100 shall be: antimony 4, arsenic 5, bismuth 1, cadmium 1, iron 10, lead 5, manganese 0.5, nickel 10, oxygen 5, phosphorus 3, selenium 3, silver 25, sulfur 15, tellurium 2, tin 2, and zinc 1.

^C Copper value is determined by the difference between the impurity total and 100 %

^D Copper (includes silver) + phosphorus, min.

E C10400, C10500, and C10700 are oxygen-free coppers with the addition of a specified amount of silver. The compositions of these alloys are equivalent to C10200 plus the intentional addition of silver.

 $^{^{}F}$ Values are minimum silver in Troy ounces per Avoidupois ton (1 oz/ton is equivalent to 0.0034 %),

^G Oxygen and trace elements may vary depending on the process.

H C11300, C11400, C11500, and C11600 are electrolytic tough-pitch copper with silver additions. The compositions of these alloys are equivalent to C11000 plus the intentional addition of silver.

TABLE 2 Mechanical (All Alloys) and Electrical Requirements^A (Conductor Alloys Only)

	nper Ination		Tens Stren ksi, [M	gth,	Yield Strength, ksi, [MPa] Min ^C			Electric	al Resistivity	, ^E Max, Ω·g/	m ² at 20 °C [6	68 °F]
Standard	Former	Diameter or Distance Between Parallel Surfaces, in.	Min	Max	Min	Elongation in 4 × Diameter or Thickness of Specimen Min. % ^D	Bend Test Angle of Bend °	C10100	C10200, C10400, C10500, C10700, C10920, C10940, C11000, C11020, C11300, C11400, C11500, C11600	C10300	C12000	Rockwell Hardness F Scale, 60-kg Load, ½-e-in. Ball
O60	Soft anneal	Rod and bar:								20		
H04	Hard	All sizes Rod:	28 [195]	37 [255]	8 [55] ^C	25	180	0.15176	0.153 28	0.156 14	0.16661	50 max
H04	Hard	Up to % [10] incl. Over % [10] to 1 [25] incl.	45 [310] 40 [275]	60 [410] 55 [380]	_	12 12	120 120	0.15585 0.15585	0.157.87 0.15737	0.15940 0.15940	0.17031 0.17031	— 80 min
		Over 1 [25] to	35 [240]	50 [345]	_	15	120	0.15585	0.15737	0.15940	0.17031	75 min
		2 [50] incl. Over 2 [50] to 3 [75] incl.	33 [230]	48 [330]	_	15	120	0.15425	0.15577	0.15940	0.17031	65 min
		Over 3 [75]	30 [205]	48 [330]	_	15	120	0.15425	0.15577	0.15940	0.17031	_
H02	Half Hard	Bar: Up to % [10] incl. thickness and up to 4 [110] incl. in width	37.5 [260]	50 [345]	_	10	120	0.15585	0.15737	0.15940	0.17031	80 min
		All other sizes Channels, angles and shapes	33 [230] F	50 [345] F	F	C 15 K	120 —	0.15425 0.15425	0.15577 0.15577	0.15940	0.17031 0.17031	65 min —

^A See 9.1.

- 11.1.4 Edgewise and wrong way bend test requirements for bar or bus bar shall be by agreement between the manufacturer or supplier and the purchaser.
 - 11.2 Microscopical Examination
- 11.2.1 Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10800, and C12000 shall be substantially free of cuprous oxide as determined by Procedure A, Microscopical Examination, of Test Methods B577.
- 11.2.2 In lieu of the Microscopic examination for copper C10100, C10200, C10300, C10400, C10500, C10700, C10800 the manufacturer has the option to determine the actual oxygen content of the copper in the final size. If the oxygen level is equal to or less than 10 ppm, then it is considered free of cuprous oxide. For Copper C12000 when phosphorus content is within the specification (0.004 and 0.012 %) it should be considered substantially free of cuprous oxide. In case of dispute, testing shall be in accordance with Test Method E2575.
- 11.2.3 In case of dispute, testing shall be in accordance with Procedure C, Closed Bend Test, of Test Methods B577.
 - 11.3 Embrittlement Test:

- 11.3.1 When specified in the contract or purchase order, Copper UNS Nos. C10100, C10200, C10300, C10400, C10500, C10700, C10800, and C12000 shall pass the embrittlement test described in Procedure B, Microscopical Examination of Thermally Treated Specimens, in Test Methods B577.
- 11.3.2 In case of dispute, testing shall be in accordance with Procedure C, Closed Bend Test, of Test Methods B577.

12. Orders for U.S. Government Agencies

12.1 Orders for agencies of the U.S. Government shall conform to the special government requirements stipulated in the Supplemental Requirements section.

13. Dimensions, Mass, and Permissible Variations

- 13.1 The dimensions and tolerances for material manufactured under this specification shall be as specified in the following tables:
 - 13.2 Diameter or Distance Between Parallel Surfaces:
 - 13.2.1 Rod: Round, Hexagonal, Octagonal—See Table 3.

^B ksi = 1000 psi.

^C Light-straightening operation is permitted.

^D In any case, a minimum gage length of 1 in. shall be used.

^E See Appendix X1.

F Yield and tensile strength shall meet the requirements of the 060 temper.

TABLE 3 Diameter Tolerances for Cold-Drawn Rod (H04 and O60 Tempers)

Diameter or Distance Between	Tolerances, Plus and Minus, ^A in. [mm]		
Parallel Surfaces, in. [mm]	Round	Hexagonal or Octagonal	
Up to 0.150 [3.8] incl.	0.0013 [0.035]	0.0025 [0.06]	
Over 0.150 [3.8] to 0.500 [12] incl	0.0015 [0.04]	0.003 [0.08]	
Over 0.500 [12] to 1.00 [25] incl.	0.002 [0.05]	0.004 [0.10]	
Over 1.00 [25] to 2.00 [50] incl.	0.0025 [0.06]	0.005 [0.13]	
Over 2.00 [50]	0.15 ^B	0.30 ^B	

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 4 Thickness Tolerances for Drawn or Rolled Rectangular and Square Bar Plus and Minus,^A in. [mm]

		Widt	h, in. [mm]	
Thickness	2 [50]	Over 2 [50]	Over 4 [100]	Over 8 [200]
	and Under	to 4 [100] incl.	to 8 [200] incl.	to 12 [300] incl.
Up to 0.500 [13], incl.	0.003 [0.08]	0.004 [0.10]	0.0045 [0.11]	0.0055 [0.14]
Over 0.500 [13] to 1.000 [25], incl.	0.004 [0.10]	0.0045 [0.11]	0.005 [0.13]	0.006 [0.15]
Over 1.000 [25] to 2.000 [50], incl.	0.0045 [0.11]	0.005 [0.13]	0.006 [0.15]	

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 5 Thickness Tolerances for Sawed Edge, Deburred Corner Rectangular and Square Bar,
Plus and Minus, in. [mm] for Widths Given in Inches [mm]

	r ido dila illinao, illi	[] ioi manio aivon		
Thickness	2 [50] and Under incl.	Over 2 [50] to 4 [100] incl.	Over 4 [100] to 8 [200] incl.	Over 8 [200] to 12 [300] incl.
Up to 0.250 [6], incl.	0.0025 [0.06]	0.003 [0.08]	0.0035 [0.09]	0.005 [0.13]
Over 0.250 [6] to 0.375 [10] incl.	0.003 [0.08]	0.004 [0.10]	0.0045 [0.11]	0.005 [0.13]
Over 0.375 [10] to 0.500 [13] incl.	0.0035 [0.09]	0.0045 [0.11]	0.005 [0.13]	0.006 [0.15]
Over 0.500 [13] to 0.750 [19] incl.	0.0055 [0.14]	0.0055 [0.14]	0.0055 [0.14]	0.007 [0.18]
Over 0.750 [19] to 1.000 [25] incl.	0.007 [0.18]	0.007 [0.18]	0.007 [0.18]	0.009 [0.23]
Over 1.000 [25] to 1.500 [38] incl.	0.015 [0.38]	0.020 [0.50]	0.022 [0.55]	0.025 [0.60]
Over 1.500 [38] to 2.000 [50] incl.	0.020 [0.50]	0.024 [0.60]	0.026 [0.65]	0.030 [0.75]

A When tolerances are specified as all plus or all minus, double the values given.

TABLE 6 Width Tolerances for Drawn or Rolled Rectangular and Square Bar

Width, in. [mm]	Tolerances, Plus and Minus, ^A in. [mm]
2 [50] and under	0.008 [0.2] 0.012 [0.3]
Over 2 [50] to 4 [100], incl.	0.012 [0.3]
Over 4 [100] to 12 [310] incl.	√ 0.30 ^B

^A When tolerances are specified as all plus or all minus, double the values given. ^B Percent of specified width expressed to the nearest 0.001 in. [0.01 mm].

TABLE 7 Width Tolerances for Sawed Edge with Deburred Corner Rectangular and Square Bar, Plus and Minus, in. [mm]^A

	,				
Thickness	Width, in. [mm]				
THICKITESS	12 [300] and under incl.	Over 12 [300]			
Up to 1.500 [40], incl	1/32 [0.8]	1/16 [1.6]			
Over 1.500 [40]	1/16 [1.6]	1/16 [1.6]			

A When tolerances are specified as all plus or all minus, double the values given.

13.2.2 Bar: Rectangular and Square:

13.2.2.1 Thickness Tolerances for Rectangular and Square Bar—See Table 4 for rolled or drawn edges and Table 5 for sawed edges with deburred corners.

TABLE 8 Length Tolerances for Rod, Bar, and Shapes (Full-Length Pieces Specific and Stock Lengths with or without Ends)

Length Classification	Tolerances, All Plus, in. [mm] (Applicable Only to Full-Length Pieces)
Specific lengths	
Up to 6 ft. [1800 mm]	1/8 [3]
Over 6 to 15 ft. [1800 to 4500 mm]	1/4 [6]
Over 15 ft. [4500 mm]	1/2 [13]
Specific lengths with ends	1 [25]
Stock lengths with or without ends	1 [25]

- 13.2.2.2 Width Tolerances for Rectangular and Square Bar—See Table 6 for rolled or drawn edges and Table 7 for sawed edges with deburred corners.
- 13.3 *Shapes*—The dimensional tolerances of shapes shall be as agreed upon by the manufacturer or supplier and the purchaser and shall be specified in the order.
- 13.4 *Coils*—The coil size shall be as agreed upon between the manufacturer or supplier and the purchaser and shall be specified in the order.

^B Percent of specified diameter or distance between parallel surfaces expressed to the nearest 0.001 in. [0.025 mm].

TABLE 9 Schedule of Lengths (Specific and Stock) with Ends

Diameter or Distance Between Parallel Surfaces for Round Hexagonal, Octagonal Rod and Square Bar, in. [mm]	Rectangular Bar Area, ^A in ² [mm ²]	Nominal Length, ft [mm]	Shortest Permissible Length ^B % of Nominal Length	Maximum Permissible Weight of Ends, % of Lot Weight
1/2 [13]	0.250 [160] and under	6 to 14	75	20
and under		[1800 to 4300] incl.		×
Over ½ to 1	Over 0.250 to 1	6 to 14	70	30
[13 to 25] incl.	[160 to 650] incl.	[1800 to 4300] incl.		7.0
Over 1 to 11/2	Over 1 to 2.25	6 to 12	60	40
[25 to 40] incl.	[650 to 1450] incl.	[1800 to 3600] incl.		
Over 1½ to 2	Over 2.25 to 4	6 to 12	50	45
[40 to 50] incl.	[1450 to 2600] incl.	[1800 to 3600] incl.		:\O`
Over 2 to 3	Over 4 to 9	6 to 10	40	50
[50 to 75] incl.	[2600 to 5000] incl.	[1800 to 3000] incl.		

A Width times thickness, disregarding any rounded corner or edges.

TABLE 10 Straightness Tolerances Applicable to Any Longitudinal Surface or Edge

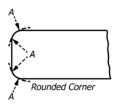
	Maximum Curvature (Depth of Arc), in. [mm]	Portion of Total Length in Which Depth of Arc Is Measured, in. [mm]
Rod	1/2 [13]	120 [3000]
Shapes	1/2 [13]	72 [1800]
Bar (except half hard rectangular bar listed in following line)	1/4 [6]	60 [1500]
Half hard rectangular bar 1/8 to 5/8 in. [3 to 15 mm] incl., in thickness, having widths ranging from 2 to 6 in. [50 to 150], incl.	1/8 [3]	96 [2400]

TABLE 11 Radius for Square Corners

Specified Thickness, in. [mm]	Maximum Radius Permissible for Square Corners, in. [mm]
Up to 3/16 [5] incl.	½4 [0.4] ½2 [0.8]
Over 3/16 to 1 [5 to 25] incl.	1/32 [0.8]
Over 1 [25]	1/16 [1.6]

13.5 Length:

- 13.5.1 Specified Length—When exact lengths are ordered, the lengths shall be not less than the ordered length and shall not exceed it by more than the amount specified in Table 8.
- 13.5.2 Stock Lengths—For material ordered in stock lengths, full-length pieces shall be not less than the designated length and shall not exceed it by more than 1 in. Short lengths may be included as prescribed in Table 9.
- 13.6 Straightness—Unless otherwise specified in the contract or purchase order, the material shall be supplied in straight lengths. The deviation from absolute straightness of any longitudinal surface or edge shall not exceed the limitations prescribed in Table 10.
- 13.6.1 To determine compliance with this section, rod and bar shall, in case of disagreement, be checked by the following method:
- 13.6.1.1 Place the rod or bar on a level table so that the arc or departure from straightness is horizontal. Measure the maximum depth of arc to the nearest $\frac{1}{32}$ in. [0.8 mm] using a steel scale and a straight edge.


13.7 Edge Contours:

- 13.7.1 Angles—All polygonal sections shall have substantially exact angles and sharp corners.
- 13.7.2 Square Corners—Onless otherwise specified in the contract or purchase order, bar shall be finished with commercially square corners with the maximum permissible radius shown in Table 11.
- 13.7.3 Rounded Corners—When specified in the contract or purchase order, bar may be finished with corners rounded as shown in Fig. 1 to a quarter circle with a radius as shown in Table 12. The tolerance on the radius shall be $\pm 25 \%$.
- 13.7.4 Rounded Edge—When specified in the contract or purchase order, bar may be finished with edges rounded as shown in Fig. 2, with a radius of curvature as shown in Table 13.
 - 13.7.5 Full Rounded Edge—When specified in the contract or purchase order, bar may be finished with substantially uniform round edges, the radius of curvature being approximately one half the thickness of the product as shown in Fig. 3, but in no case to exceed one half the thickness of the product by more than 25 %.
 - 13.7.6 *Shapes*—Products with edge or corner contours other than described in 13.7.1 13.7.5 are classified as shapes.

Note 2—For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

14. Specimen Preparation

14.1 *Microscopical Examination*—Specimen preparation shall be in accordance with Procedure A of Test Methods B577.

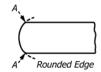

Note 1—The arc shall not necessarily be tangent at points, A, but the product shall be commercially free from sharp, rough, or projecting edges.

FIG. 1 Rounded Corners

^B Expressed to the nearest ½ ft [100 mm].

TABLE 12 Radius for Rounded Corners

	Nominal Radius of Corners, in. [mm]				
Specified Thickness, in. [mm]	For Widths Up to and Including 2x Thickness	For Widths More Than 2x Thickness			
Up to 1/8 [2], incl.	1/64 [0.4]	full rounded edges as given in 13.7.5			
Over ½ to ½ [2 to 6], incl.	1/32 [0.8]	1/32 [0.8]			
Over 3/16 to 1 [6 to 25], incl.	1/16 [1.6]	1/16 [1.6]			
Over 1 [25]	1/8 [3]	1/8 [3]			

Note 1—The arc shall be substantially symmetrical with the axis of the product. The corners, A, will usually be sharp, but shall not have rough or projecting edges.

FIG. 2 Rounded Edge

TABLE 13 Radius for Rounded Edge

Specified Thickness, in. [mm]	Nominal Radius of Rounded Edge, in. [mm]	Tolerance on Radius, Plus and Minus, in. [mm]
Up to 3/16 [5], incl.	11/4 × thickness	½ x thickness
Over 3/16 [5]	11/4 × thickness	1/4 × thickness

15. Test Methods

- 15.1 Refer to Specification B249/B249M for the appropriate mechanical test method.
- 15.2 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list

Note 1—The arc shall not necessarily be tangent at points, A, but shall be substantially symmetrical with the axis of the product, and the product shall be commercially free from sharp, rough, or projecting edges.

FIG. 3 Full Rounded Edge

of published methods, some of which may no longer be viable, which along with others not listed, may be used subject to agreement.

Element	ASTM Test Method
Copper	E53
Phosphorus	E62
Selenium	Refer to Annex, Specification B216
Silver	E478
Tellurium	Refer to Anney Specification B216

- 15.2.1 For Copper No. C10100, refer to the Annex of Specification B170 for test methods.
- 15.2.2 Test method(s) for the determination of element(s) resulting from contractual or purchaser order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

16. Certification

16.1 The certification and test report requirements of Specification B249/B249M are mandatory.

17. Keywords

17.1 bar; bus bar; copper; electrical conductors; embrittlement test; rod; shapes; UNS No. C10100; UNS No. C10200; UNS No. C10300; UNS No. C10400; UNS No. C10500; UNS No. C10700; UNS No. C10920; UNS No. C10930; UNS No. C10940; UNS No. C11000; UNS No. C11020; UNS No. C11300; UNS No. C11400; UNS No. C11500; UNS No. C11600; UNS No. C10800; UNS No. C12000; UNS No. C12200

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)
Fed. Std. No. 185 Identification Marking of Copper and
Copper-Base Alloy Mill Products

S1.1.2 Military Standards:

MIL-STD-105 Sampling Procedures and Table for Inspection by Attributes

MIL-STD-129 Marking for Shipment and Storage

S1.1.3 Military Specification:
Note 3—MIL-C-3093 Packaging of Copper and C

Note 3—MIL-C-3993, Packaging of Copper and Copper-Base Alloy Mill Products, has been withdrawn and replaced by Practice B900.

S2. Quality Assurance

S2.1 Responsibility for Inspection—Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the

purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

- S4.1 Preservation, Packaging, Packing:
- S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or B as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

- S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.
- S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. RESISTIVITY

TABLE X1.1 Resistivity Relationships

Conductivity at 68 °F, %	101.0	100.0	99.37	98.40	98.35	98.16	97.40	96.16	92.20
Ω·g/m²	0.151 76	0.153 28	0.15425	0.155 77	0.15585	0.156 14	0.157 37	0.159 40	0.16661
Ω·lb/mile ²	866.53	875.20	880.75	889.42	889.88	891.60	898.55	910.15	951.31
Ω·cmil/ft	10.268	10.371	10.437	10.539	10.54	10.565	10.648	10.785	11.273
Ω ·mm ² /m	0.017 070	0.017 241	0.017350	0.017 521	0.017530	0.017 564	0.017 701	0.017 930	.018740
μΩ∙in.	0.672 07	0.678 79	0.68309	0.689 81	0.69018	0.691 51	0.696 90	0.705 90	0.73782
μΩ⋅cm	1.7070	1.7241	1.7350	1.7521	1.7530	1.7564	1.7701	1.7930	1.8740

X1.1 "Resistivity" is used in place of "conductivity." The value of $0.153\ 28\ \Omega\cdot g/m^2$ at $20\ ^{\circ}C$ [68 $^{\circ}F$] is the international standard for the resistivity of annealed copper equal to $100\ \%$ conductivity. This term means that a who 1 m in length and weighing 1 g would have a resistance of $0.153\ 28\ \Omega$. This is equivalent to a resistivity value of $875.20\ \Omega\cdot lb/mile^2$, which signifies the resistance of a wire 1 mile in length weighing 1 lb. It is also equivalent, for example, to $1.7241\ \mu\Omega/cm$ of length of a bar 1 cm² in cross section. A complete discussion of this

subject is contained in *NBS Handbook 100* of the National Institute of Standards and Technology. Relationships that may be useful in connection with the values of resistivity prescribed in this specification are as shown in Table X1.1, each column containing equivalent expressions at 20 °C [68 °F]:

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR ALUMINUM AND ALUMINUM-ALLOY SHEET AND PLATE SB-209 Grand PLATE SB-209 Grand Research (Identical with ASTM Specification B209-10 except (6) an editorial revision to 20.1. Certification and a test report have been made mandatory.)

Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

1. Scope

- 1.1 This specification covers aluminum and aluminumalloy flat sheet, coiled sheet, and plate in the alloys (Note 1) and tempers shown in Tables 2 and 3, and in the following finishes:
- 1.1.1 Plate in all alloys and sheet in heat-treatable alloys: mill finish.
- 1.1.2 Sheet in nonheat-treatable alloys: mill finish, one-side bright mill finish, standard one-side bright finish, and standard two-sides bright finish.
- Note 1—Throughout this specification, use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.
 - Note 2—See Specification B632/B632M for tread plate.
- Note 3—See Specification B928/B928M for 5xxx-H116 and 5xxx-H321 aluminum alloys containing 3 % or more nominal magnesium and intended for marine service and similar environments. Other alloy-temper products listed in this specification, which do not require the additional corrosion testing/capability called out in ASTM B928/B928M, may be suitable for marine and similar environment applications.
- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- 1.4 This specification is the inch-pound companion to Specification B209M; therefore, no SI equivalents are presented in the specification.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 The following documents form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B548 Test Method for Ultrasonic Inspection of Aluminum-Alloy Plate for Pressure Vessels B557 Test Methods for Tension Testing Wrought and Cast
 - B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium Alloy Products
 - B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
 - B632/B632M Specification for Aluminum-Alloy Rolled Tread Plate
 - B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
 - B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
 - B881 Terminology Relating to Aluminum- and Magnesium-Andy Products
 - B918 Practice for Heat Treatment of Wrought Aluminum Alloys
 - B928/B928M Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments
 - B947 Practice for Hot Rolling Mill Solution Heat Treatment for Aluminum Alloy Plate
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
 - E290 Test Methods for Bend Testing of Material for Ductility
 - E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
 - E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)

TABLE 1 Chemical Composition Limits^{A,B,C}

Note 1—In case there is a discrepancy in the values listed in Table 1 with those listed in the "International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys" (known as the "Teal Sheets"), the composition limits registered with the Aluminum Association and published in the "Teal Sheets" should be considered the controlling composition. The "Teal Sheets" are available at http://www.aluminum.org/tealsheets.

Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Other E	lements ^D	Aluminum
Alloy									Each	Total ^E	
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.03 ^F		99.60 min ^G
1100	0.95 9	Si + Fe	0.05-0.20	0.05			0.10		0.05	0.15	99.00 min
1230 ^H	0.70 \$	Si + Fe	0.10	0.05	0.05		0.10	0.03	0.03 ^F		99.30 min ^G
2014	0.50-1.2	0.7	3.9-5.0	0.40 - 1.2	0.20-0.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2014					201	4 clad with 60	003				\cdot 0
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2024					202	4 clad with 12	230				C
2124	0.20	0.30	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02		0.10	0.02-0.10	0.05'	0.15	remainder
Alclad 2219					221	9 clad with 70)72			(C)	
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
Alclad 3003					300	3 clad with 70)72			7	
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.3		0.25		0.05	0.15	remainder
Alclad 3004					300	4 clad with 70)72	/			
3005	0.6	0.7	0.30	1.0-1.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
3105	0.6	0.7	0.30	0.30-0.8	0.20-0.8	0.20	0.40	0.10	0.05	0.15	remainder
5005	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25	Co	0.05	0.15	remainder
5010	0.40	0.7	0.25	0.10-0.30	0.20-0.6	0.15	0.30	0.10	0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1-1.8	0.10	0.25	(Y	0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5059	0.45	0.50	0.25	0.6-1.2	5.0-6.0	0.25	0.40-0.9	0.20	0.05^{J}	0.15	remainder
5083	0.40	0.40	0.10	0.40-1.0	4.0-4.9	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	10.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5252	0.08	0.10	0.10	0.10	2.2-2.8	_0~	0.05		0.03^{F}	0.10 ^F	remainder
5254	0.45 9	Si + Fe	0.05	0.01	3.1-3.9	0.15-0.35	0.20	0.05	0.05	0.15	remainder
5454	0.25	0.40	0.10	0.50-1.0	2.4-3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7–5.5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5457	0.08	0.10	0.20	0.15-0.45	0.8-1.2		0.05		0.03^{F}	0.10 ^F	remainder
5657	0.08	0.10	0.10	0.03	0.6-1.0		0.05		0.02^{K}	0.05^{K}	remainder
5754	0.40	0.40	0.10	0.50 ^L	2.6-3.6	0.30 ^L	0.20	0.15	0.05	0.15	remainder
6003 ^H	0.35-1.0	0.6	0.10	0.8	0.8-1.5	0.35	0.20	0.10	0.05	0.15	remainder
6013	0.6-1.0	0.50	0.6-1.1	0.20-0.8	0.8–1.2	0.10	0.25	0.10	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8–1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
Alclad 6061					606	1 clad with 70					
7072 ^H	0.7 S	i + Fe	0.10	0.10	0.10		0.8–1.3		0.05	0.15	remainder
7075	0.40	0.50	1.2–2.0	0.30	2.1–2.9	0.18-0.28	5.1–6.1	0.20	0.05	0.15	remainder
Alclad 7075				111		5 clad with 70					

^A Limits are in weight percent maximum unless shown as a range or stated otherwise.

E116 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry
G34 Test Method for Exfoliation Corrosion Susceptibility in
2XXX and 7XXX Series Aluminum Alloys (EXCO Test)

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these units, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the Rounding Method of Practice E29.

DOthers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming. The Total for Other Elements does not include elements shown in the footnotes with specific composition limits.

E Other Elements—Total shall be the sum of unspecified metallic elements, 0.010 % or more, rounded to the second decimal before determining the sum.

F Vanadium 0.05 max.

^G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

[&]quot;Composition of cladding alloy as applied during the course of manufacture. Samples from finished sheet or plate shall not be required to conform to these limits.

Vanadium 0.05-0.15 zirconium 0.10-0.25.

^J0.05–0.25 Zr

K Gallium 0.03 max vanadium 0.05 max.

^L 0.10-0.6 Mr + Cr.

TABLE 2 Mechanical Property Limits for Nonheat-Treatable Alloy A,B

								Bend
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, N
60	0	0.006-0.019	8.0	14.0	2.5		15	
60	0	0.020-0.050	8.0	14.0	2.5		22	
60	0	0.051-3.000	8.0	14.0	2.5		25	
60	H12 ^C or H22 ^C	0.017-0.050	11.0	16.0	9.0		6	
0	H12 ^C or H22 ^C	0.051-2.000	11.0	16.0	9.0		12	
60	H14 ^C or H24 ^C	0.009-0.019	12.0	17.0	10.0	***	1	
0	H14 ^C or H24 ^C H14 ^C or H24 ^C	0.020-0.050	12.0	17.0	10.0		5	section
0	H14° or H24° H16 ^C or H26 ^C	0.051-1.000	12.0	17.0	10.0		10	
0	H16 ^C or H26 ^C	0.006-0.019	14.0	19.0	11.0		1	X
0	H16° or H26°	0.020-0.050	14.0	19.0	11.0		4	~C)~.
0	H18 ^C or H28 ^C	0.051-0.162 0.006-0.019	14.0 16.0	19.0	11.0 12.0		5 1	CO
0	H18 ^C or H28 ^C	0.020-0.019	16.0		12.0	•••	2 _	9
0	H18 ^C or H28 ^C	0.051-0.128	16.0		12.0	•••	3 4 10	
0	H112	0.250-0.499	11.0		7.0	•••	10	•••
0	H112	0.500-1.000	10.0		5.0	***	20	
0	H112	1.001–3.000	9.0		4.0	***	25	***
0	F	0.250-3.000					/, 20	
o .	•	0.230-3.000	•••	•••	•••		15 20 25	
0	0	0.006-0.019	11.0	15.5	3.5		15	0
0	0	0.020-0.031	11.0	15.5	3.5	(/ ~	20	0
0	0	0.032-0.050	11.0	15.5	3.5	0		0
0	0	0.051-0.249	11.0	15.5	3.5	, V	30	0
0	0	0.250-3.000	11.0	15.5	3.5	11.4	28	0
0	H12 ^C or H22 ^C	0.017-0.019	14.0	19.0	11.0	C 1 · · · · ·	3	0
0	H12 ^C or H22 ^C	0.020-0.031	14.0	19.0	11.0		4	0
0	H12 ^C or H22 ^C	0.032-0.050	14.0	19.0	11.0		6	0
)	H12 ^C or H22 ^C	0.051-0.113	14.0	19.0	11.0		8	0
)	H12 ^C or H22 ^C	0.114-0.499	14.0	19.0	11.0		9	0
)	H12 ^C or H22 ^C	0.500-2.000	14.0	19.0	11.0	•••	12	0
)	H14 ^C or H24 ^C	0.009-0.012	16.0	21.0	14.0	***	1	0
)	H14 ^C or H24 ^C	0.013-0.019	16.0	21.0	14.0		2	0
)	H14 ^C or H24 ^C H14 ^C or H24 ^C	0.020-0.031	16.0	21.0	14.0	•••	3	0 0
)	H14 ^C or H24 ^C	0.032-0.050	16.0	21.0	14.0		4	
D D	H14° or H24° H14° or H24°	0.051–0.113 0.114–0.499	16.0 16.0	21.0 21.0	14.0 14.0	•••	5 6	0 0
)	H14° or H24°	0.500-1.000	16.0	21.0	14.0	•••	10	0
0	H16 ^C or H26 ^C	0.006-0.019	19.0	24.0	17.0	•••	1	4
0	H16 ^C or H26 ^C	0.020-0.019	19.0	24.0	17.0		2	4
0	H16 ^C or H26 ^C	0.032-0.050	19.0	24.0	17.0	•••	3	4
0	H16 ^C or H26 ^C	0.051-0.162	19.0	24.0	17.0	***	4	4
0	H18 ^C or H28 ^C	0.006-0.019	22.0			***	1	
0	H18 ^C or H28 ^C	0.020-0.031	22.0			***	2	
0	H18 ^C or H28 ^C	0.032-0.050	22.0	•••	•••	***	3	
0	H18 ^C or H28 ^C		22.0				4	
Ď	H112	0.051-0.128 0.250-0.499	13.0	•••	7.0		9	
0	H112	0.500-2.000	12.0		5.0		14	•••
0	H112	2.001–3.000	11.5		4.0		20	
0	F ^D	0.250-3.000						
2	0	0,000,0007	14.0	10.0	5 0		1.4	0
3 3	0	0.006-0.007 0.008-0.012	14.0	19.0	5.0		14	0
3 3	0 .		14.0	19.0	5.0		18	0
3	0	0.013-0.031 0.032-0.050	14.0 14.0	19.0 19.0	5.0 5.0		20 23	0
3		0.052-0.050	14.0	19.0	5.0	•••	25 25	0
3	0_0	0.250-3.000	14.0	19.0	5.0	***	23	
3	H12F or H22 ^C	0.250-3.000	17.0	23.0	12.0		3	0
3	H12 ^C or H22 ^C	0.020-0.031	17.0	23.0	12.0	***	4	0
3	H12 ^C or H22 ^C	0.032-0.050	17.0	23.0	12.0	•••	5	0
\leq \subset	H12 ^C or H22 ^C	0.051-0.113	17.0	23.0	12.0		6	0
	H12 ^C or H22 ^C	0.114-0.161	17.0	23.0	12.0		7	0
	H12 ^C or H22 ^C	0.162-0.249	17.0	23.0	12.0		8	0
3/1.	H12 ^C or H22 ^C	0.250-0.499	17.0	23.0	12.0	•••	9	
3	H12 ^C or H22 ^C	0.500-2.000	17.0	23.0	12.0		10	
3	H14 ^C or H24 ^C	0.009-0.012	20.0	26.0	17.0		1	0
3	H14 ^C or H24 ^C	0.013-0.019	20.0	26.0	17.0		2	0
3	H14 ^C or H24 ^C	0.020-0.031	20.0	26.0	17.0		3	0
3	H14 ^C or H24 ^C	0.032-0.050	20.0	26.0	17.0		4	0
3	H14 ^C or H24 ^C	0.051-0.113	20.0	26.0	17.0		5	0
3	H14 ^C or H24 ^C	0.114-0.161	20.0	26.0	17.0		6	2

TABLE 2 Continued

			T/	ABLE 2 Con	tinued			
			Tensile S	trength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in	Bend
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>
3003	H14 ^C or H24 ^C	0.162-0.249	20.0	26.0	17.0		7	2
3003	H14 ^C or H24 ^C	0.250-0.499	20.0	26.0	17.0		8	
3003	H14 ^C or H24 ^C	0.500-1.000	20.0	26.0	17.0		10	>
3003	H16 ^C or H26 ^C	0.006-0.019	24.0	30.0	21.0		1	4
3003	H16 ^C or H26 ^C	0.020-0.031	24.0	30.0	21.0		2	4
3003	H16 ^C or H26 ^C	0.032-0.050	24.0	30.0	21.0		3	ction Po
3003	H16 ^C or H26 ^C	0.051-0.162	24.0	30.0	21.0		4	6
3003	H18 ^C or H28 ^C H18 ^C or H28 ^C	0.006-0.019	27.0	•••	24.0	***	1	10/1.
3003	H18 ^C or H28 ^C	0.020-0.031	27.0	•••	24.0		2	X/O
3003 3003	H18 ^C or H28 ^C	0.032-0.050	27.0	•••	24.0		3	C
3003	H112	0.051-0.128 0.250-0.499	27.0 17.0		24.0 10.0	•••	4 8 12 18	
3003	H112	0.500-2.000	15.0	•••	6.0	***	12	
3003	H112	2.001–3.000	14.5		6.0	***	18	
3003	F ^D	0.250-3.000						
0000		0.200 0.000	•••			SMK	ON THE	
Alclad 3003	0	0.006-0.007	13.0	18.0	4.5		14	
Alclad 3003	0	0.008-0.012	13.0	18.0	4.5		7 18 20	•••
Alclad 3003	0	0.013-0.031	13.0	18.0	4.5	C)	20	•••
Alclad 3003 Alclad 3003	0	0.032-0.050	13.0 13.0	18.0	4.5	100	∠ئ 25	
		0.051-0.249		18.0	4.5	_ (K	25	
Alclad 3003 Alclad 3003	0	0.250-0.499 0.500-3.000	13.0 14.0 ^E	18.0 19.0 ^{<i>E</i>}	4.5 5.0 [€]	⟨ 2	23 23	
Alclad 3003	H12 ^C or H22 ^C	0.017-0.031	16.0	22.0	11.0		4	
Alclad 3003	H12 ^C or H22 ^C	0.032-0.050	16.0	22.0	11.0		5	***
Alclad 3003	H12 ^C or H22 ^C	0.051-0.113	16.0	22.0	11.0	***	6	***
Alclad 3003	H12 ^C or H22 ^C	0.114-0.161	16.0	22.0	11.0		7	
Alclad 3003	H12 ^C or H22 ^C	0.162-0.249	16.0	22.0	11.0		8	
Alclad 3003	H12 ^C or H22 ^C	0.250-0.499	16.0	22.0	11.0		9	
Alclad 3003	H12 ^C or H22 ^C	0.500-2.000	17.0 ^E	23.0 ^E	12.0 ^E		10	
Alclad 3003	$\mathrm{H}14^{\mathcal{C}}$ or $\mathrm{H}24^{\mathcal{C}}$	0.009-0.012	19.0	25.0	16.0		1	
Alclad 3003	H14 ^C or H24 ^C	0.013-0.019	19.0	25.0	16.0		2	
Alclad 3003	H14 ^C or H24 ^C	0.020-0.031	19.0	25.0	16.0		3	
Alclad 3003	H14 ^C or H24 ^C	0.032-0.050	19.0	25.0	16.0		4	
Alclad 3003	H14 ^C or H24 ^C	0.051-0.113	19.0	25.0	16.0		5	
Alclad 3003	H14 ^C or H24 ^C	0.114-0.161	19.0	25.0	16.0		6	
Alclad 3003	H14 ^C or H24 ^C	0.162-0.249	19.0	25.0	16.0		7	
Alclad 3003	H14 ^C or H24 ^C	0.250-0.499	19.0	25.0_	16.0_		8	
Alclad 3003	H14 ^C or H24 ^C	0.500-1.000	20.0 ^E	26.0 ^E	17.0 ^E		10	
Alclad 3003	H16 ^C or H26 ^C	0.006-0.019	23.0	29.0	20.0		1	
Alclad 3003	H16 ^C or H26 ^C	0.020-0.031	23.0	29.0	20.0		2	
Alclad 3003	H16 ^C or H26 ^C H16 ^C or H26 ^C	0.032-0.050	23.0	29.0	20.0	***	3	***
Alclad 3003		0.051-0.162	23.0	29.0	20.0		4	
Alclad 3003 Alclad 3003	H18 H18	0.006-0.019 0.020-0.031	26.0 26.0		•••		1 2	
Alclad 3003	H18	0.020=0.031	26.0		•••	•••	3	***
Alclad 3003	H18	0.051-0.128	26.0	•••	***	***	4	***
Alclad 3003	H112	0.250-0.499	16.0		 9.0		8	
Alclad 3003	H112	0.500-2.000	15.0 ^E		6.0 [€]	***	12	***
Alclad 3003	H112	2.001–3.000	14.5 ^E		6.0 [€]		18	
Alclad 3003	F ^p	0.250-3.000						
3004	· C//	0.006-0.007	22.0	29.0	8.5			
3004	0	0.008-0.007	22.0	29.0	8.5	•••	10	0
3004	W'	0.020-0.031	22.0	29.0	8.5		14	0
3004	(g)	0.032-0.050	22.0	29.0	8.5	•••	16	0
3004	ĬŎ	0.051-0.249	22.0	29.0	8.5		18	0
3004	Ö	0.250-3.000	22.0	29.0	8.5		16	
3004	H32 ^C or H22 ^C	0.017-0.019	28.0	35.0	21.0		1	0
3004	$H32^{C}$ or $H22^{C}$	0.020-0.031	28.0	35.0	21.0	***	3	1
3004	H32 ^C or H22 ^C	0.032-0.050	28.0	35.0	21.0		4	1
3004	H32 ^C or H22 ^C	0.051-0.113	28.0	35.0	21.0		5	2
3004	H32 ^c or H22 ^c	0.114-2.000	28.0	35.0	21.0		6	
3004	H34 ^C or H24 ^C	0.009-0.019	32.0	38.0	25.0	***	1	2
3004	H34 ^C or H24 ^C	0.020-0.050	32.0	38.0	25.0	***	3	3
3004	H34 ^C or H24 ^C	0.051-0.113	32.0	38.0	25.0		4	4
3004	H34 ^C or H24 ^C	0.114–1.000	32.0	38.0	25.0		5	
3004	H36 ^C or H26 ^C	0.006-0.007	35.0	41.0	28.0			
3004	H36 ^{<i>C</i>} or H26 ^{<i>C</i>} H36 ^{<i>C</i>} or H26 ^{<i>C</i>}	0.008-0.019	35.0	41.0	28.0	***	1	6
3004	1130 - OF H26	0.020-0.031	35.0	41.0	28.0		2	6

TABLE 2 Continued

TABLE 2 Continued Tensile Strength, ksi Yield Strength (0.2 % offset), ksi Elongation in Bend											
	_	Specified		_			2 in. or 4×	Bend Diameter			
Alloy	Temper	Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N			
3004	H36 ^C or H26 ^C	0.032-0.050	35.0	41.0	28.0		3	6			
8004	H36 ^C or H26 ^C	0.051-0.162	35.0	41.0	28.0		4	8			
8004	H38 ^C or H28 ^C	0.006-0.007	38.0		31.0						
004 004	H38 ^C or H28 ^C H38 ^C or H28 ^C	0.008-0.019	38.0	•••	31.0		1				
004 004	H38 ^C or H28 ^C	0.020-0.031	38.0 38.0		31.0 31.0		2				
004 004	H38 ^C or H28 ^C	0.032-0.050 0.051-0.128	38.0		31.0		3 4				
004	H112	0.250-3.000	23.0		9.0		7				
8004	F ^D	0.250-3.000						0			
	·	0.200 0.000		•••				Section			
Iclad 3004	0	0.006-0.007	21.0	28.0	8.0			CV			
Iclad 3004	0	0.008-0.019	21.0	28.0	8.0		10				
Iclad 3004	0	0.020-0.031	21.0	28.0	8.0		14				
Iclad 3004	0	0.032-0.050	21.0	28.0	8.0		16				
Iclad 3004	0	0.051-0.249	21.0	28.0	8.0		18 16 16				
Iclad 3004	0	0.250-0.499	21.0	28.0	8.0		16				
Iclad 3004	0	0.500-3.000	22.0 ^E	29.0 ^E	8.5 ^E		16				
Iclad 3004	H32 ^C or H22 ^C	0.017-0.019	27.0	34.0	20.0		1				
Iclad 3004	H32 ^C or H22 ^C	0.020-0.031	27.0	34.0	20.0	··· C	3	•••			
Iclad 3004 Iclad 3004	H32 ^C or H22 ^C H32 ^C or H22 ^C	0.032-0.050	27.0 27.0	34.0	20.0	, 55-	4	•••			
Iclad 3004	H32 ^C or H22 ^C	0.051-0.113		34.0	20.0 20.0	(1	5				
Iclad 3004	H32 ^C or H22 ^C	0.114-0.249 0.250-0.499	27.0 27.0	34.0 34.0	20.0	♠ `	6 6	•••			
Iclad 3004	H32 ^C or H22 ^C	0.500-2.000	28.0 ^E	35.0 ^E	21.0 ^E	11. Y	6				
Iclad 3004	H34 ^C or H24 ^C	0.009-0.019	31.0	37.0	24.0	~ //	1	•••			
Iclad 3004	H34 ^C or H24 ^C	0.020-0.050	31.0	37.0	24.0	O	3	•••			
Iclad 3004	H34 ^C or H24 ^C	0.051-0.113	31.0	37.0	24.0		4	•••			
Iclad 3004	H34 ^C or H24 ^C	0.114-0.249	31.0	37.0	24.0		5				
Iclad 3004	H34 ^C or H24 ^C	0.250-0.499	31.0	37.0	24.0		5				
clad 3004	H34 ^C or H24 ^C	0.500-1.000	32.0 ^E	38.0 [€]	25.0 ^E		5				
clad 3004	H36 ^C or H26 ^C	0.006-0.007	34.0	40.0	27.0						
Iclad 3004	H36 ^C or H26 ^C	0.008-0.019	34.0	40.0	27.0		1				
Iclad 3004	H36 ^C or H26 ^C	0.020-0.031	34.0	40.0	27.0		2				
Iclad 3004	H36 ^C or H26 ^C	0.032-0.050	34.0	40.0	27.0		3				
Iclad 3004	H36 ^C or H26 ^C	0.051-0.162	34.0	40.0	27.0		4				
Iclad 3004	H38	0.006-0.007	37.0	7, 9							
Iclad 3004	H38	0.008-0.019	37.0	~			1				
Iclad 3004	H38	0.020-0.031	37.0	>			2				
Iclad 3004	H38	0.032-0.050	37.0				3				
Iclad 3004	H38	0.051-0.128	37.0				4				
Iclad 3004	H112	0.250-0.499	22.0		8.5		7				
Iclad 3004	H112	0.500-3.000	23.0 ^E	•••	9.0 ^E	•••	7	•••			
Iclad 3004	F^D	0.250–3.000	Up								
005	0	0.006-0.007	17.0	24.0	6.5		10				
005	0	0.008-0.012	17.0	24.0	6.5		12				
005	0	0.013-0.019	17.0	24.0	6.5		14				
005	0	0.020-0.031	17.0	24.0	6.5		16				
005	0	0.032-0.050	17.0	24.0	6.5		18				
005	•	0.051-0.249	17.0	24.0	6.5		20				
105 105	H12 H12	0.017–0.019 0.020–0.050	20.0	27.0 27.0	17.0 17.0		1 2				
05	H12 +	0.020-0.050	20.0 20.0	27.0 27.0	17.0		3				
05	H12	0.114-0.161	20.0	27.0	17.0		4	***			
05	H12	0.162-0.249	20.0	27.0	17.0		5				
05	H14	0.009-0.031	24.0	31.0	21.0		1				
005	H14)	0.032-0.050	24.0	31.0	21.0		2				
05 (H14	0.051-0.113	24.0	31.0	21.0		3				
05	H14	0.114-0.249	24.0	31.0	21.0		4				
05	H16	0.006-0.031	28.0	35.0	25.0		1				
05	H16	0.032-0.113	28.0	35.0	25.0		2				
05	H16	0.114-0.162	28.0	35.0	25.0		3				
05	H18	0.006-0.031	32.0		29.0		1				
05	H18	0.032-0.128	32.0		29.0		2				
05	H19	0.006-0.012	34.0				***				
005	H19	0.013-0.063	34.0				1				
005	H25	0.016-0.019	26.0	34.0	22.0		1				
005	H25	0.020-0.031	26.0	34.0	22.0		2				
005	H25	0.032-0.050	26.0	34.0	22.0		3				
005	H25	0.051-0.080	26.0	34.0	22.0		4				

TABLE 2 Continued

	TABLE 2 Continued											
			On a sifi a d	Tensile S	Strength, ksi	Yield Strength (0.2 % offset), ksi	Elongation in	Bend			
4	Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>			
3005		H27	0.016-0.019	29.5	37.5	25.5		1				
3005		H27	0.020-0.031	29.5	37.5	25.5		2				
3005		H27	0.032-0.050	29.5	37.5	25.5		3				
3005		H27	0.051-0.080	29.5	37.5	25.5		4	?			
3005 3005		H28 H28	0.016-0.019	31.0		27.0	•••	1 2	O			
3005		п26 H28	0.020-0.031 0.032-0.050	31.0 31.0		27.0 27.0	•••	3				
3005		H28	0.051-0.080	31.0		27.0		4	<u>~</u> "			
0000		1120	0.001 0.000	01.0	•••	27.0		7	stion I pa			
3105		0	0.013-0.019	14.0	21.0	5.0		16 _ (2				
3105		0	0.020-0.031	14.0	21.0	5.0		18				
3105		0	0.032-0.080	14.0	21.0	5.0		20				
3105		H12	0.017–0.019	19.0	26.0	15.0	•••	10				
3105		H12	0.020-0.031	19.0	26.0	15.0	•••					
3105		H12	0.032-0.050	19.0	26.0	15.0	•••	2 3				
3105		H12	0.051-0.080	19.0	26.0	15.0		3				
3105		H14	0.013-0.019	22.0	29.0	18.0	ASME	1				
3105		H14	0.020-0.031	22.0	29.0	18.0		1				
3105		H14	0.032-0.050	22.0	29.0	18.0	C	2				
3105		H14	0.051-0.080	22.0	29.0	18.0	100	2				
3105		H16	0.013-0.031	25.0	32.0	21.0	(F)	1				
3105		H16	0.032-0.050	25.0	32.0	21.0	Ch.	_				
3105		H16	0.051-0.080	25.0	32.0	21.0		2				
3105		H18	0.013-0.031	28.0	•••	24.0		1				
3105		H18	0.032-0.050	28.0	•••	24.0		1				
3105		H18	0.051-0.080	28.0	,,,	24.0		2				
3105		H22	0.013-0.019	19.0	•••	15.0 15.0		3				
3105		H22	0.020-0.031 0.032-0.050	19.0	•••			4				
3105 3105		H22 H22		19.0		15.0		5 6				
3105		п22 H24	0.051-0.080	19.0		15.0		2				
3105		п2 4 Н24	0.013-0.019 0.020-0.031	22.0 22.0		18.0 18.0		3				
3105		H24	0.032-0.050	22.0		18.0	•••	4				
3105		H24	0.051-0.080	22.0		18.0		6	•••			
3105		H25	0.013-0.019	23.0	× /	19.0		2	•••			
3105		H25	0.020-0.031	23.0	, O'	19.0		3				
3105		H25	0.032-0.050	23.0	(19.0		4				
3105		H25	0.051-0.080	23.0		19.0		6				
3105		H26	0.013-0.031	25.0	•••	21.0		3				
3105		H26	0.032-0.050	25.0		21.0		4				
3105		H26	0.051-0.080	25.0		21.0		5				
3105		H28	0.013-0.031	28.0		24.0		2				
3105		H28	0.032-0.050	28.0		24.0		3				
3105		H28	0.051–0.080	28.0	•••	24.0		4				
5005		0	0.006-0.007	15.0	21.0	5.0		12	***			
5005		0	0.008-0.012	15.0	21.0	5.0		14				
5005		0	√ 0.013–0.019	15.0	21.0	5.0		16				
5005		0	0.020-0.031	15.0	21.0	5.0		18				
5005		0	0.032-0.050	15.0	21.0	5.0		20				
5005		0	0.051–0.113	15.0	21.0	5.0		21				
5005		0 (0.114-0.249	15.0	21.0	5.0		22				
5005		0	0.250-3.000	15.0	21.0	5.0		22				
5005		H12	0.017-0.019	18.0	24.0	14.0		2				
5005		H12	0.020-0.031	18.0	24.0	14.0		3				
5005	~(H12	0.032-0.050	18.0	24.0	14.0		4				
5005		H12	0.051-0.113	18.0	24.0	14.0		6				
5005	Ci	H12	0.114-0.161	18.0	24.0	14.0		7				
5005	\sim	H12	0.162-0.249	18.0	24.0	14.0		8				
5005)	H12	0.250-0.499	18.0	24.0	14.0		9				
5005		H12	0.500-2.000	18.0	24.0	14.0		10				
5005		H14	0.009-0.031	21.0	27.0	17.0		1				
5005		H14	0.032-0.050	21.0	27.0	17.0		2				
5005		H14	0.051-0.113	21.0	27.0	17.0		3				
5005		H14	0.114-0.161	21.0	27.0	17.0		5				
5005		H14	0.162-0.249	21.0	27.0	17.0		6				
5005		H14	0.250-0.499	21.0	27.0	17.0		8				
5005		H14	0.500-1.000	21.0	27.0	17.0		10				
5005 5005		H16	0.006-0.031	24.0	30.0	20.0		1				
		H16	0.032-0.050	24.0	30.0	20.0		2				

TABLE 2 Continued

			Tensile St	rength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in	Bend	
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, N	
05	H16	0.051-0.162	24.0	30.0	20.0		3		
)5	H18	0.006-0.031	27.0		•••	•••	1		
5	H18	0.032-0.050	27.0		•••	•••	2		
5 5	H18 H32 ^C or H22 ^C	0.051-0.128 0.017-0.019	27.0 17.0	23.0	 12.0		3 3		
5 5	H32 ^C or H22 ^C	0.017-0.019	17.0	23.0	12.0	•••	3 4 5 7 8 9 10 2 3 4 5 6 8 8		
5	H32 ^C or H22 ^C	0.032-0.050	17.0	23.0	12.0	•••	5		
5	H32 ^C or H22 ^C	0.051-0.113	17.0	23.0	12.0		7	🔨	
5	H32 ^C or H22 ^C	0.114-0.161	17.0	23.0	12.0	•••	8	.:.0	
5	$H32^{C}$ or $H22^{C}$	0.162-0.249	17.0	23.0	12.0		9		
5	$H32^{C}$ or $H22^{C}$	0.250-2.000	17.0	23.0	12.0		10		
5	H34 ^C or H24 ^C	0.009-0.012	20.0	26.0	15.0		2	CO	
5	H34 ^C or H24 ^C	0.013-0.031	20.0	26.0	15.0		3 🦰		
5	H34 ^C or H24 ^C	0.032-0.050	20.0	26.0	15.0		4		
5	H34 ^C or H24 ^C	0.051-0.113	20.0	26.0	15.0	•••	5		
5	H34 ^C or H24 ^C	0.114-0.161	20.0	26.0	15.0	•••	6		
5	H34 ^C or H24 ^C	0.162-0.249	20.0	26.0	15.0		77		
5	H34 ^C or H24 ^C	0.250-0.499	20.0	26.0	15.0		8		
5	H34 ^C or H24 ^C	0.500-1.000	20.0	26.0	15.0		10		
5	H36 ^C or H26 ^C	0.006-0.007	23.0	29.0	18.0	··· C	1		
5 F	H36 ^C or H26 ^C H36 ^C or H26 ^C	0.008-0.019	23.0 23.0	29.0	18.0		2 3		
5 5	H36 ^C or H26 ^C	0.020-0.031 0.032-0.162	23.0	29.0 29.0	18.0 18.0	(1	4		
5 5	H38	0.006-0.012	26.0			⊘ `	1		
5 5	H38	0.013-0.019	26.0			11.V	2		
5	H38	0.020-0.031	26.0	•••		- //	3		
5	H38	0.032-0.128	26.0			J	4	•••	
5	H112	0.250-0.499	17.0		<i>~~</i>		8		
5	H112	0.500-2.000	15.0	•••		•••	12		
5	H112	2.001-3.000	14.5				18		
5	F ^D	0.250-3.000							
0	0	0.010-0.070	15.0	21.0	5.0		3		
0	H22	0.010-0.070	17.0	23.0	14.0		2		
0	H24	0.010-0.070	20.0	26.0	17.0	•••	1		
0	H26	0.010-0.070	23.0	29.0	21.0		1		
0	H28	0.010-0.070	26.0	OK					
•		0.000.007	400	24.0	0.0			0	
0 0	0	0.006–0.007 0.008–0.019	18.0	24.0 24.0	6.0	•••		0	
0 0	0	0.008-0.019	18.0 18.0	24.0 24.0	6.0 6.0		16 18	0	
0 0	0	0.020-0.031	18:0	24.0 24.0	6.0 6.0		20	0	
0	0	0.032-0.113	18.0	24.0	6.0	•••	20 22	0	
0	0	0.050.0000.4	18.0	24.0	6.0		20	2	
0	H32 ^C or H22 ^C	0.250-3.000	22.0	28.0	16.0		4	1	
0	H32 ^C or H22 ^C	0.051-0.249	22.0	28.0	16.0		6	2	
0	H34 ^C or H24 ^C	0.009-0.031	25.0	31.0	20.0	•••	3	1	
0	H34 ^C or H24 ^C	0.032-0.050	25.0	31.0	20.0		4	1	
)	H34 ^C or H24 ^C	0.051-0.249	25.0	31.0	20.0		5	3	
0	H36 ^C or H26 ^C	0.006-0.019	27.0	33.0	22.0	***	2	3	
0	H36 ^C or H26 ^C	0.020-0.050	27.0	33.0	22.0		3	3	
0	H36 ^C or H26 ^C	0.051-0.162	27.0	33.0	22.0		4	4	
)	H38	0.006-0.007	29.0						
0	H38	0.008-0.031	29.0		***	***	2		
)	H38	0.032-0.050	29.0				3		
)	H38	0.051-0.128	29.0				4		
)	H112	0.250-3.000	20.0		8.0	•••	12	•••	
) <u> </u>	<u>C.</u>	0.250–3.000							
	0	0.006-0.007	25.0	31.0	9.5			0	
	0	0.008-0.012	25.0	31.0	9.5		14	0	
2	0	0.013-0.019	25.0	31.0	9.5		15	0	
2	0	0.020-0.031	25.0	31.0	9.5		16	0	
2	0	0.032-0.050	25.0	31.0	9.5		18	0	
2	0	0.051-0.113	25.0	31.0	9.5		19	0	
2	0	0.114-0.249	25.0	31.0	9.5		20	0	
2	0	0.250-3.000	25.0	31.0	9.5		18		
2	H141	0.090-0.174	35.5		24.0	***	6	•••	
2	H141	0.175-0.300	34.0		24.0		8		

TABLE 2 Continued

			TA	BLE 2 Con	tinued			
-			Tensile St	rength, ksi	Yield Strength (0.2 % offset), ksi	Elongation in	Bend
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>
5052	H32 ^C or H22 ^C	0.017-0.019	31.0	38.0	23.0		4	0
5052	H32 ^C or H22 ^C	0.020-0.050	31.0	38.0	23.0		5	1
5052	H32 ^C or H22 ^C	0.051-0.113	31.0	38.0	23.0		7	2
5052	H32 ^C or H22 ^C	0.114-0.249	31.0	38.0	23.0		9	iore and a
5052	$H32^{C}$ or $H22^{C}$ $H32^{C}$ or $H22^{C}$	0.250-0.499	31.0	38.0	23.0		11	O
5052	H34 ^C or H24 ^C	0.500-2.000	31.0	38.0	23.0		12	
5052 5052	H34° or H24°	0.009-0.019 0.020-0.050	34.0 34.0	41.0 41.0	26.0 26.0		3 4	1
5052	H34 ^C or H24 ^C	0.051-0.113	34.0	41.0	26.0		6	3
5052	H34 ^C or H24 ^C	0.114-0.249	34.0	41.0	26.0		7	4
5052	H34 ^C or H24 ^C	0.250-1.000	34.0	41.0	26.0		10 2 50	O'
5052	H36 ^C or H26 ^C	0.006-0.007	37.0	44.0	29.0		2	4
5052	H36 ^C or H26 ^C	0.008-0.031	37.0	44.0	29.0		3	4
5052	H36 ^C or H26 ^C	0.032-0.162	37.0	44.0	29.0		4	5
5052	H38 ^C or H28 ^C	0.006-0.007	39.0		32.0		2	
5052	H38 ^C or H28 ^C	0.008-0.031	39.0		32.0		3 4	
5052	H38 ^C or H28 ^C	0.032-0.128	39.0		32.0		4	
5052	H112	0.250-0.499	28.0		16.0		7	
5052	H112	0.500-2.000	25.0		9.5		12	
5052	H112	2.001-3.000	25.0		9.5	C/A	16	
5052	H322	0.020-0.050	31.0	35.0	21.0		5	•••
5052	H322	0.051-0.113	31.0	35.0	21.0	(1)	7	•••
5052	H322	0.114-0.125	31.0	35.0	21.0	0	9	
5052	F ^D	0.250-3.000						
5059	0	0.078-0.249	48.0		23.0		24	
5059	0	0.250-0.787	48.0		23.0		24	
5059	0	0.788-1.575	48.0		23.0		20	
5059	0	1.576-7.000	44.0		21.0		17	
5059	H111	0.078-0.249	48.0		23.0		24	
5059	H111	0.250-0.787	48.0		23.0		24	
5059	H111	0.788–1.575	48.0	S	23.0		20	***
5059	H111	1.576–7.000	44.0	¿ P	21.0	•••	17	•••
5083	0	0.051-1.500	40.0	51.0	18.0	29.0	16	
5083	0	1.501-3.000	39.0	50.0	17.0	29.0	16	
5083	0	3.001-4.000	38.0		16.0		16	
5083	0	4.001-5.000	38.0		16.0		14	
5083	0	5.001-7.000	37.0		15.0		14	
5083	0	7.001–8.000	36.0		14.0		12	
5083	H32	0.125-0.187	44.0	56.0	31.0		10	
5083	H32	0.188–1.500	44.0	56.0	31.0		12	
5083	H32	1.501–3.000	41.0	56.0	29.0		12	***
5083	H112	0.250-1.500	40.0	•••	18.0		12	
5083	H112 F ^D	1.501-3.000	39.0		17.0		12	
5083	F-	0.250-8.000	***	***	•••		•••	
5086	0	0.020-0.050	35.0	44.0	14.0		15	
5086	0	0.051-0.249	35.0	44.0	14.0		18	***
5086	0	0.250-2.000	35.0	44.0	14.0		16	
5086	H32 ^C or H22 ^C	0.020-0.050	40.0	47.0	28.0		6	
5086	H32 ^C or H22 ^C	0.051-0.249	40.0	47.0	28.0		8	
5086	H32 ^C or H22 ^C	0.250-2.000	40.0	47.0	28.0		12	
5086	H34 ^C or H24 ^C	0.009-0.019	44.0	51.0	34.0		4	
5086	H34 ^C or H24 ^C	0.020-0.050	44.0	51.0	34.0		5	
5086	H34 ^C or H24 ^C	0.051-0.249	44.0	51.0	34.0		6	
5086		0.250-1.000	44.0 47.0	51.0 54.0	34.0		10	
5086 5086	H36 ^C or H26 ^C H36 ^C or H26 ^C	0.006-0.019 0.020-0.050	47.0 47.0	54.0 54.0	38.0 38.0		3 4	
5086	H36 ^C or H26 ^C	0.020-0.050	47.0 47.0	54.0 54.0	38.0		6	•••
5086	H38 ^C or H28 ^C	0.001-0.162	50.0		41.0		3	
5086	H112	0.188-0.499	36.0		18.0		8	
5086	H112	0.500-1.000	35.0		16.0		10	***
5086	H112	1.001-2.000	35.0		14.0		14	•••
5086	H112	2.001–2.000	34.0		14.0		14	
5086	F ^D	0.250-3.000						
	-	230 0.000	***	•••	•••		•••	•••
5154	0	0.020-0.031	30.0	41.0	11.0		12	

TABLE 2 Continued

		-	Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in	Bend
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>
54	0	0.032-0.050	30.0	41.0	11.0	***	14	
54	0	0.051-0.113	30.0	41.0	11.0	•••	16	
54 54	O H32 ^C or H22 ^C	0.114-3.000	30.0	41.0	11.0	•••	18	•••
54 54	H32 ^C or H22 ^C	0.020-0.050 0.051-0.249	36.0 36.0	43.0 43.0	26.0 26.0		5 8	
54	H32 ^C or H22 ^C	0.250-2.000	36.0	43.0	26.0	***	12	
54	H34 ^C or H24 ^C	0.009-0.050	39.0	46.0	29.0		4	section
54	H34 ^C or H24 ^C	0.051-0.161	39.0	46.0	29.0		6	
i 4	H34 ^C or H24 ^C	0.162-0.249	39.0	46.0	29.0		7	(O)
64	H34 ^C or H24 ^C	0.250-1.000	39.0	46.0	29.0		10	
4	H36 ^C or H26 ^C	0.006-0.050	42.0	49.0	32.0		3	- 01
4	H36 ^C or H26 ^C	0.051-0.113	42.0	49.0	32.0		4	<i>ح</i> ک
4	H36 ^C or H26 ^C	0.114-0.162	42.0	49.0	32.0		5 3 4	
4	H38 ^C or H28 ^C	0.006-0.050	45.0	•••	35.0	***	3	
4	H38 ^C or H28 ^C	0.051-0.113	45.0		35.0		4	
4	H38 ^C or H28 ^C	0.114-0.128	45.0		35.0		5	
4	H112	0.250-0.499	32.0		18.0		0	
4	H112	0.500-2.000	30.0		11.0		11	
4	H112 F ^D	2.001-3.000	30.0	•••	11.0		15	
4	F	0.250-3.000				··· C)/4	
2	H24	0.030-0.090	30.0	38.0		2	10	
2	H25	0.030-0.090	31.0	39.0	•••		9	•••
2	H28	0.030-0.090	38.0			CII BAC	3	
4	0	0.051-0.113	30.0	41.0	11.0		16	
4	0	0.114-3.000	30.0	41.0	11.0		18	
1	$H32^{C}$ or $H22^{C}$	0.051-0.249	36.0	43.0	26.0		8	
4	$H32^{C}$ or $H22^{C}$	0.250-2.000	36.0	43.0	26.0		12	
1	H34 ^C or H24 ^C	0.051-0.161	39.0	46.0	29.0		6	
4	H34 ^C or H24 ^C	0.162-0.249	39.0	46.0	29.0		7	
4	H34 ^C or H24 ^C	0.250-1.000	39.0	46.0	29.0		10	
4	H36 ^C or H26 ^C	0.051-0.113	42.0	49.0	32.0		4	
4	H36 ^C or H26 ^C	0.114-0.162	42.0	49.0	32.0	***	5	
4	H38 ^C or H28 ^C	0.051–0.113	45.0	C	35.0	***	4	
4	H38 ^C or H28 ^C	0.114-0.128	45.0	~X	35.0		5	
4	H112	0.250-0.499	32.0)	18.0		8	
4	H112	0.500-2.000	30.0	•••	11.0	***	11	
4	H112 F ^D	2.001–3.000	30.0	•••	11.0	***	15	
4	F	0.250-3.000			***	***	***	***
4	0	0.020-0.031	31.0	41.0	12.0		12	
4	0	0.032-0.050	31.0	41.0	12.0		14	
1	0	0.032-0.050	31.0	41.0	12.0		16	
1	0	0.114-3.000	31.0	41.0	12.0		18	
4	H32 ^C or H22 ^C	0.020-0.050	36.0	44.0	26.0		5	
4	H32 ^C or H22 ^C	0.051-0.249	36.0	44.0	26.0		8	
1	H32 ^C or H22 ^C	0.250-2.000	36.0	44.0	26.0		12	
1	H34 ^C or H24 ^C	0.020-0.050	39.0	47.0	29.0	•••	4	
1	H34 ^C or H24 ^C	0.051-0.161	39.0	47.0 47.0	29.0	***	6	•••
1	H34 ^C or H24 ^C H34 ^C or H24 ^C	0.162-0.249	39.0	47.0 47.0	29.0	***	7	•••
1		0.250-1.000 0.250-0.499	39.0 32.0	47.0	29.0		10 8	
! !	H112	0.250-0.499	32.0		18.0		8 11	
!	H112 H112	2.001–3.000	31.0 31.0	•••	12.0 12.0		11 15	•••
• !	FD 1	0.250-3.000		•••		***		•••
· (C).	J.250 J.000	•••				•••	
· ~O	0	0.030-0.055	29.0	39.0	12.0		17	
	0	0.056-0.087	29.0	39.0	12.0		18	
Him	0	0.088-0.138	29.0	39.0	12.0		19	
6	0	0.051-1.500	42.0	53.0	19.0	30.0	16	
6	O	1.501-3.000	41.0	52.0	18.0	30.0	16	
6	O	3.001-5.000	40.0		17.0		14	
6	O	5.001-7.000	39.0		16.0		14	
6	0	7.001-8.000	38.0		15.0		12	
6	H32	0.188-0.499	46.0	59.0	33.0		12	

TABLE 2 Continued

			Tensile St	rength, ksi	Yield Strength (0.2 % offset), ksi	Elongation in	Bend
Alloy	Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>
5456	H32	0.500-1.500	44.0	56.0	31.0		12	
5456	H32	1.501-3.000	41.0	54.0	29.0		12	
5456	H112	0.250-1.500	42.0		19.0		12	>
5456	H112	1.501-3.000	41.0		18.0		12	
5456	F ^D	0.250-8.000						1160
5457	0	0.030-0.090	16.0	22.0			20	KION,
5657	H241	0.030-0.090	18.0	26.0			13 _ (,C*
5657	H25	0.030-0.090	20.0	28.0			8 6	
5657	H26	0.030-0.090	22.0	30.0			70.	
5657	H28	0.030-0.090	25.0				5	

^A To determine conformance to this specification each value for tensile strength and yield strength shall be rounded to the nearest 0.5 %, both in accordance with the Rounding Method of Practice E29.

G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products

2.3 ANSI Standards:

H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Products

2.4 AMS Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials

2.5 Other Standards:

CEN EN 14242 Aluminum and Aluminum Alloys. Chemical Analysis. Inductively Coupled Plasma Optical Emission Spectral Analysis

3. Terminology

- 3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—The term capable of, as used in this specification, means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (7.1),
 - 4.1.4 Temper (9.1),
- 4.1.5 Finish for sheet in nonheat-treatable alloys (Section 1),
 - 4.1.6 For sheet, whether flat or coiled.
 - 4.1.7 Dimensions (thickness, width, and length or coil size),
- 4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 or Table 3 of this specification and in ANSI H35.2, respectively.
- 4.2 Additionally, orders for material meeting the requirements of this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether a supply of one of the pairs of tempers where shown in Table 2, (H14 or H24) or (H34 or H24), is specifically excluded (Table 2, Footnote *C*),
- 4.2.2 Whether heat treatment in accordance with Practice B918 is required (8.2),
 - 4.2.3 Whether bend tests are required (12.1),
- 4.2.4 Whether testing for stress-corrosion cracking resistance of alloy 2124-T851, 2219-T851, or 2219 -T87 is required (13.1),
- 4.2.5 Whether ultrasonic inspection for aerospace or pressure vessels applications is required (Section 17),
- 4.2.6 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (18.1),

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied at the option of the supplier, unless one is specifically excluded by the contract or purchase order. When ordered as H2x tempers, the maximum tensile strength and minimum yield strength do not apply. When H2x tempers are supplied instead of ordered H1x or H3x tempers, the supplied H2x temper material shall meet the respective H1x or H3x temper tensile property limits.

^D Tests of F temper plate for tensile properties are not required.

E The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding alloy.

TABLE 3 Tensile Property Limits for Heat-Treatable Alloys $^{\!A\!,\!B}$

		Specified	Axis of	Tens Streng	sile	Yield Si (0.2 %	offset),	Elongation in 2 in. or	Bend Diameter Factor, N
Alloy	Temper	Thickness, in.	Test Specimen ^C			KS	91	2 in. or 4x Diameter, min, %	racior, /V
				min	max	min	max		
2014	0	0.020-0.124			32.0		16.0	16	0
2014 2014	0	0.125-0.249 0.250-0.499			32.0 32.0		16.0 16.0	16 16	1
2014	T3	0.020-0.039		59.0		35.0		14	3
2014	T3	0.040-0.124		59.0		36.0		14	3
2014	T3	0.125-0.249		59.0		36.0		14	O 4
2014	T4 ^D	0.020-0.124		59.0		35.0		14	3
2014	T4 ^D	0.125-0.249		59.0		35.0		140	4
2014 2014	T42 ^E T42 ^E	0.020-0.124		58.0		34.0 34.0		14	3 4
014	T42 ^E	0.125-0.249 0.250-0.499	•••	58.0 58.0		34.0		14	5
014	T42 ^E	0.500-1.000		58.0		34.0		14	
014	T451 ^F	0.250-1.000		58.0		36.0	Δ	14	
014	T451 ^F	1.001-2.000		58.0		36.0	V	12	
014	T451 ^F	2.001-3.000		57.0		36.0	,	8	
014	T6, T62 ^E	0.020-0.039		64.0		57.0		6	4
014	T6, T62 ^E	0.040-0.050		66.0		58.0		7	5
014	T6, T62 ^E	0.051-0.124		66.0		58.0		7	6
014	T6, T62 ^E	0.125-0.249		66.0	\	58.0		7	8
014	T62 ^E , T651 ^F	0.250-0.499		67.0	\sim	59.0		7	10
)14)14	T62 ^E , T651 ^F T62 ^E , T651 ^F	0.500-1.000 1.001-2.000		67.0 67.0	11.	59.0 59.0		6 4	
)14	T62 ^E , T651 ^F	2.001–2.500		65.0		58.0		2	
014	T62 ^E , T651 ^F	2.501–2.500		63.0	J	57.0		2	
)14	T62 ^E , T651 ^F	3.001-4.000		59.0		55.0		1	
14	F ^G	0.250-1.000		, 65 ^X					
clad 2014	0	0.020-0.499	SM	~	30.0		14.0	16	
Iclad 2014	0	0.500-1.000			32.0 ^H			10	
clad 2014	T3	0.020-0.024		54.0		33.0		14	
clad 2014	T3	0.025-0.039	ζ.Χ	55.0		34.0		14	
clad 2014	T3_	0.040-0.249	· O,···	57.0		35.0		15	
Iclad 2014	T4 ^D	0.020-0.024	~	54.0		31.0		14	
clad 2014	T4 ^D	0.025-0.039		55.0		32.0		14	
clad 2014	T4 ^D	0.040-0.249		57.0		34.0		15	
Iclad 2014	T42 ^E T42 ^E	0.020-0.024	•••	54.0		31.0		14	
clad 2014	T42 ^E	0.025-0.0 39 0.040-0.499		55.0 57.0		32.0 34.0		14 15	
clad 2014 clad 2014	T42 ^E	0.500-1.000		57.0 58.0 ^H		34.0 ^H		14	
clad 2014	T451 ^F	0.250-0.499		57.0		36.0		15	
clad 2014	T451 ^F	0.500-1.000		58.0 ^H		36.0 ^H		14	
clad 2014	T451 ^F	1.001–2.000		58.0 ^H		36.0 ^H		12	
clad 2014	T451 ^F	2.001–3.000		57.0 ^H		36.0 ^H		8	
clad 2014	T6, T62 ^E	0.020-0.024		62.0		54.0		7	
clad 2014	T6, T62 ^E	0.025-0.039		63.0		55.0		7	
clad 2014	T6, T62 ^E	0.040-0.249		64.0		57.0		8	
clad 2014	T62 ^E , T651 ^F	0.250-0.499		64.0		57.0		8	
clad 2014	T62 ^E , T651	0.500-1.000		67.0 ^H		59.0 ^H		6	
clad 2014 clad 2014	T62 ^E , T651 ^F T62 ^E , T651 ^F	1.001-2.000 2.001-2.500		67.0 ^H 65.0 ^H		59.0 ^H 58.0 ^H		4 2	
clad 2014	T62 ^E , T651 ^F	2.501–2.500	•••	63.0 ^H		57.0 ^H		2	
clad 2014	T62 ^F , T651 ^F	3.001-4.000		59.0 ^H		55.0 ^H		1	
clad 2014	F. 7001	0.250-1.000							
)24	0	0.010-0.032			32.0		14.0	12	0
24	Ö	0.033-0.063			32.0		14.0	12	1
24	0	0.064-0.128			32.0		14.0	12	4
24	0	0.129-0.499			32.0		14.0	12	6
24	T3	0.008-0.009		63.0		42.0		10	4
24	T3	0.010-0.020		63.0		42.0		12	4
24	T3	0.021-0.051		63.0		42.0		15	5
24	T3	0.052-0.128		63.0		42.0		15	6
124	T3	0.129-0.249		64.0	•••	42.0		15	8
024	T351 ^F T351 ^F	0.250-0.499		64.0 63.0		42.0 42.0		12 g	
)24)24	T351 ^F	0.500–1.000 1.001–1.500		63.0 62.0	•••	42.0 42.0		8 7	
/6T	1001	1.001–1.500		02.0		42.0 42.0		/	

TABLE 3 Continued

		TABI	LE 3 Continued						
Alloy	Temper	Specified Thickness, in.	Axis of Test Specimen ^C	Tens Strengt		Yield St (0.2 % ks	offset),	Elongation in 2 in. or 4x Diameter,	Bend Diameter Factor, N
-				min	may	min	may	min, %	
2024	T351 ^F	2.0012.000			max		max		
2024	T351 ^F	2.001-3.000 3.001-4.000		60.0 57.0		42.0 41.0		4 4	20
2024	T361 ¹	0.020-0.051		67.0		50.0		8	4
2024	T361'	0.052-0.062		67.0		50.0		8	8
2024	T361 ¹	0.063-0.249		68.0		51.0		9	8
2024	T361 ¹	0.250-0.499		66.0		49.0		9	
2024	T361 ¹	0.500		66.0		49.0		(10)	
2024	T4 ^D	0.010-0.020		62.0		40.0		12	4
2024	T4 ^D T4 ^D	0.021-0.051	•••	62.0		40.0		15	5
2024 2024	T4 ^D	0.052-0.128 0.129-0.249		62.0 62.0		40.0 40.0	(C)	15 15	6 8
2024	T42 ^E	0.010-0.020	•••	62.0		38.0	7	12	4
2024	T42 ^E	0.021-0.051		62.0		38.0		15	5
2024	T42 ^E	0.052-0.128		62.0		38.0		15	6
2024	T42 ^E	0.129-0.249		62.0		38.0		15	8
2024	T42 ^E	0.250-0.499		62.0		38.0		12	10
2024	T42 ^E	0.500-1.000		61.0	C	38.0		8	
2024	T42 ^E	1.001-1.500		60.0		38.0		7	
2024	T42 ^E	1.501–2.000		60.0	1.1	38.0		6	
2024	T42 ^E	2.001–3.000		58.0	⟨ >`	38.0		4	
2024 2024	T62 ^E T62 ^E	0.010-0.499 0.500-3.000		64.0 63.0		50.0 50.0		5 5	
2024	T72 ^{E,J}	0.010-0.249		60.0	•	46.0		5	
2024	T81	0.010-0.249		67.0		58.0		5	
2024	T851 ^F	0.250-0.499		67.0		58.0		5	
2024	T851 ^F	0.500-1.000	0	66.0		58.0		5	
2024	T851 ^F	1.001-1.499	/ . 🔻	66.0		57.0		5	
2024	T861 ¹	0.020-0.062		70.0		62.0		3	
2024	T861 ⁷	0.063-0.249	COI.	71.0		66.0		4	
2024	T861 ⁷	0.250-0.499	~ (2)	70.0		64.0		4	
2024 2024	T861 [/] F ^G	0.500 0.250–3.000		70.0		64.0		4	
2024	Г	0.230–3.000	3,	•••		•••			•••
Alclad 2024	0	0.008-0.009			30.0		14.0	10	0
Alclad 2024	Ö	0.010-0.032	•••		30.0		14.0	12	0
Alclad 2024	Ō	0.033-0.062			30.0		14.0	12	1
Alclad 2024	0	0.063-0.249			32.0		14.0	12	2
Alclad 2024	0	0.250-0.499			32.0		14.0	12	3
Alclad 2024	O T3 T3 T3 T3 T3	0.500-1.750			32.0 ^H			12	
Alclad 2024	T3	0.008-0.009		58.0		39.0		10	4
Alclad 2024	T3	0.010-0.020		59.0		39.0		12	4
Alclad 2024 Alclad 2024	T3	0.021-0.040 0.041-0.062		59.0 59.0		39.0 39.0		15 15	4 5
Alclad 2024 Alclad 2024	T3	0.063-0.128		61.0	•••	40.0		15	5
Alclad 2024	T3	0.129-0.249		62.0		40.0		15	8
Alclad 2024	T351 ^F	0.250-0.499		62.0		40.0		12	
Alclad 2024	T351 ^F	0.500-1.000		63.0 ^H		42.0 ^H		8	
Alclad 2024	T351	1.001-1.500		62.0 ^H		42.0 ^H		7	
Alclad 2024	T351	1.501–2.000		62.0 ^H		42.0 ^H		6	
Alclad 2024	1351 F	2.001-3.000		60.0 ^H		42.0 ^H		4	
Alclad 2024	T351 ^F	3.001-4.000		57.0 ^H		41.0 ^H		4	
Alclad 2024 Alclad 2024	T361 ¹ T361 ¹	0.020-0.062 0.063-0.187		61.0 64.0	•••	47.0 48.0		8 9	4 6
Alclad 2024	T361 ⁷	0.188-0.249		64.0		48.0		9	8
Alclad 2024	T361 ⁷	0.250-0.499		64.0		48.0		9	
Alclad 2024	T361 ¹	0.500		66.0 ^H		49.0 ^H		10	
Alclad 2024	T4 ^D	0.010-0.020		58.0		36.0		12	4
Alclad 2024	T4 ^D	0.021-0.040		58.0		36.0		15	4
Alclad 2024	T4 ^D	0.041-0.062		58.0		36.0		15	5
Alclad 2024	T4 ^D	0.063-0.128		61.0	•••	38.0		15	5
Alclad 2024 Alclad 2024	T42 ^E T42 ^E	0.008-0.009		55.0 57.0		34.0 34.0		10 12	4 4
Alclad 2024 Alclad 2024	T42 ^E	0.010-0.020 0.021-0.040		57.0 57.0		34.0		15	4
Alclad 2024 Alclad 2024	T42 ^E	0.021-0.040		57.0		34.0		15	5
Alclad 2024	T42 ^E	0.063-0.128		60.0		36.0		15	5
Alclad 2024	T42 ^E	0.129-0.187		60.0		36.0		15	8
Alclad 2024	T42 ^E	0.188-0.249		60.0		36.0		15	8
Alclad 2024	T42 ^E	0.250-0.499		60.0		36.0		12	10

TABLE 3 Continued

Alloy	Temper	Specified Thickness, in.	Axis of Test Specimen ^C	Tens Strengt		Yield Si (0.2 % c ks	offset),	Elongation in 2 in. or 4× Diameter, min, %	Bend Diameter Factor, N
				min	max	min	max	, ,,	
Alclad 2024	T42 ^E	0.500-1.000		61.0 ^H		38.0 ^H		8	
Alclad 2024	T42 ^E	1.001-1.500		60.0^{H}		38.0 ^H		7	, 🤇
Alclad 2024	T42 ^E	1.501–2.000		60.0 ^H		38.0 ^H		6	
Alclad 2024	T42 ^E	2.001–3.000		58.0 ^H		38.0 ^H		4	
Alclad 2024	T62 ^E	0.010-0.062		60.0		47.0		5 5 5	$\cdot \circ$
Alclad 2024	T62 ^E	0.063-0.499		62.0		49.0		5	
Alclad 2024	T72 ^{E,J}	0.010-0.062	•••	56.0		43.0		5	د
Alclad 2024 Alclad 2024	T72 ^{E,J} T81	0.063-0.249		58.0		45.0		Co	
Alciad 2024 Alciad 2024	T81	0.010-0.062 0.063-0.249		62.0 65.0		54.0 56.0		5	
Alciad 2024 Alciad 2024	T851 ^F	0.250-0.249		65.0		56.0		5	
Alclad 2024	T851 ^F	0.500-1.000		66.0 ^H		58.0 ^H		5	
Alclad 2024	T861 ⁷	0.020-0.062		64.0		58.0	\sim	3	
Alclad 2024	T861 [/]	0.063-0.187		69.0		64.0	V	4	
Alclad 2024	T861 [/]	0.188-0.249		69.0		64.0	,	4	
Alclad 2024	T861 [/]	0.250-0.499		68.0		62.0		4	
Alclad 2024	T861 ⁷	0.500		70.0 ^H		64.0 ^H		4	
Alclad 2024	F^G	0.250-3.000			,	2			
					~ \	7			
1½ % Alclad 2024	0	0.188-0.499			32.0		14.0	12	
1½ % Alclad 2024	Ö	0.500-1.750			32.0 ^H			12	
1½ % Alclad 2024	T3	0.188–0.249		63.0		41.0		15	
1½ % Alclad 2024	T361	0.188–0.249		65.0		49.0		9	
1½ % Alclad 2024	T361	0.250-0.499		65.0		48.0		9	
11/2 % Alclad 2024	T361	0.500		66.0 ^H		49.0 ^H		10	
11/2 % Alclad 2024	T351 ^F	0.250-0.499		63.0		41.0		12	
11/2 % Alclad 2024	T351 ^F	0.500-1.000		63.0 ^H		42.0 ^H		8	
11/2 % Alclad 2024	T351 ^F	1.001-1.500		62.0 ^H		42.0 ^H		7	
11/2 % Alclad 2024	T351 ^F	1.501-2.000	6	62.0 ^H		42.0 ^H		6	
11/2 % Alclad 2024	T351 ^F	2.001–3.000		60.0 ^H		42.0 ^H		4	
1½ % Alclad 2024	T351 ^F	3.001-4.000	£\	57.0 ^H		41.0 ^H		4	
1½ % Alclad 2024	T42 ^E	0.188-0.249	` O,	61.0		37.0		15	
1½ % Alclad 2024	T42 ^E	0.250-0.499		61.0		37.0		12	
1½ % Alclad 2024	T42 ^E	0.500-1.000		61.0 ^H		38.0 ^H		8	
1½ % Alclad 2024	T42 ^E T42 ^E	1.001–1.500		60.0 ^H 60.0 ^H		38.0 ^H 38.0 ^H		7	
1½ % Alclad 2024 1½ % Alclad 2024	T42 ^E	1.501–2.000 2.001–3.000		58.0 ^H		38.0 ^H		6 4	
1½ % Alclad 2024	T62 ^E	0.188-0.499		62.0		49.0		5	
1½ % Alclad 2024	T72 ^{E, J}	0.188-0.249		59.0		45.0		5	
1½ % Alclad 2024	T81	0.188-0.249		66.0		57.0		5	
1½ % Alclad 2024	T851 ^F	0:250-0.499		66.0		57.0		5	
11/2 % Alclad 2024	T851 ^F	0.500–1.000		66.0 ^H		58.0 ^H		5	
11/2 % Alclad 2024	T861	0.188–0.249		70.0		65.0		4	
11/2 % Alclad 2024	T861	0.250-0.499		69.0		63.0		4	
11/2 % Alclad 2024	T861	0.500		70.0^{H}		64.0 ^H		4	
1½ % Alclad 2024	F ^G	0.250–3.000							
		0.500 0.250-3.000 0.008-0.009 0.010-0.062							
Alclad 1-Side 2024	0	0.008-0.009			31.0		14.0	10	
Alclad 1-Side 2024	0 0	0.010-0.062			31.0		14.0	12	
Alclad 1-Side 2024	Q	0.063-0.499			32.0		14.0	12	
Alclad 1-Side 2024	13	0.010-0.020		61.0		40.0		12	
Alclad 1-Side 2024	73	0.021-0.062		61.0		40.0		15	
Alclad 1-Side 2024	T3	0.063-0.128		62.0		41.0		15	
Alclad 1-Side 2024	T3	0.129-0.249		63.0	•••	41.0		15	
Alclad 1-Side 2024	T351 ^F	0.250-0.499	•••	63.0		41.0		12	
Alclad 1-Side 2024 Alclad 1-Side 2024	T361 T361	0.020-0.062 0.063-0.249		64.0 66.0		48.0 49.0		8 9	
Alclad 1-Side 2024 Alclad 1-Side 2024	T361	0.063-0.249		66.0 65.0		49.0 48.0		9	
Alclad 1-Side 2024	T42 ^E	0.010-0.020	•••	59.0		35.0		12	
Alciad 1-Side 2024	T42 ^E	0.021-0.062	•••	59.0		36.0		15	
Alclad 1-Side 2024	T42 ^E	0.063-0.249		61.0		37.0		15	
Alclad 1-Side 2024	T42 ^E	0.250-0.499		61.0		37.0		12	
Alclad 1-Side 2024	T42 ^E			- ***	***				•
Alclad 1-Side 2024	T62 ^E	0.010-0.062		62.0		48.0		5	
Alclad 1-Side 2024	T62 ^E	0.063-0.499		63.0		49.0		5	
Alclad 1-Side 2024	T72 ^{E,J}	0.010-0.062		58.0		44.0		5	
Alclad 1-Side 2024	T72 ^{E,J}	0.063-0.249		59.0		45.0		5	

TABLE 3 Continued

		TABI	LE 3 Continued						
Alloy	Temper	Specified Thickness, in.	Axis of Test Specimen ^C	Tens Strengtl		Yield S (0.2 % ks	offset),	Elongation in 2 in. or 4x Diameter, min, %	Bend Diameter Factor, N
				min	max	min	max		
Alclad 1-Side 2024	T81	0.010-0.062		64.0		56.0		5	0
Alclad 1-Side 2024	T81	0.063-0.249		66.0		57.0		5	
Alclad 1-Side 2024	T851 ^F	0.250-0.499		66.0		57.0		5	1 6
Alclad 1-Side 2024 Alclad 1-Side 2024	T861	0.020-0.459		67.0		60.0		3	
Alclad 1-Side 2024 Alclad 1-Side 2024	T861	0.063-0.249		70.0		65.0		4	***
Alclad 1-Side 2024 Alclad 1-Side 2024	T861	0.250-0.499		69.0		63.0		O	
Alclad 1-Side 2024 Alclad 1-Side 2024	F ^G	0.250-0.499	•••						•••
Alciau 1-Side 2024	r	0.230-0.499	•••		•••			. 60	
41/ 0/ Alalad 4 Cida	0	0.100, 0.400			00.0		(14.0	9	
1½ % Alclad 1-Side 2024	0	0.188–0.499	•••		32.0		١٩٩٥	12	
1½ % Alclad 1-Side	T3	0.188-0.249		63.0		41.0		15	
2024 1½ % Alclad 1-Side	T351 ^F	0.250-0.499		63.0		41.0		12	
2024									
1½ % Alclad 1-Side 2024	T361	0.188-0.249		66.0		49.0		9	
1½ % Alclad 1-Side	T361	0.250-0.499		65.0	100	48.0		9	
2024 1½ % Alclad 1-Side	T42 ^E	0.188-0.249		61.0		37.0		15	
2024 1½ % Alclad 1-Side	T42 ^E	0.250-0.499		61.0	Ÿ.	37.0		12	
2024	142	0.230-0.499	•••	01.0	•	37.0		12	
1½ % Alclad 1-Side 2024	T62 ^E	0.188-0.499		63.0		49.0		5	
1½ % Alclad 1-Side 2024	T72 ^{E,J}	0.188-0.249	··· . Q	59.0		45.0		5	
1½ % Alclad 1-Side 2024	T81	0.188-0.249		66.0		57.0		5	
1½ % Alclad 1-Side 2024	T851 ^F	0.250-0.499	S	66.0		57.0		5	
1½ % Alclad 1-Side 2024	T861	0.188-0.249	K / 2	70.0		65.0		4	
1½ % Alclad 1-Side 2024	T861	0.250-0.499	 J.	69.0		63.0		4	
1½ % Alclad 1-Side 2024	F^G	0.250-0.499							
		(111)							
2124	T851 ^F	1.000-2.000 ^K	longitudinal	66.0		57.0		6	
2124	T851 ^F	1.000-2.000 ^K	long transverse	66.0		57.0		5	
2124	T851 ^F	1.000-2.000 ^K 1.000-2.000 ^K	short	64.0		55.0		1.5	
	0	7,7	transverse						
2124	1001	2.001-3.000	longitudinal	65.0		57.0		6	
2124	T851 ^F	2.001–3.000	long	65.0		57.0		4	
2124	T851 ^F	2.0012.000	transverse	60.0		EE O		1 5	
2124	1001	2.001-3.000	short transverse	63.0		55.0		1.5	
2124	T851	3.001-4.000	longitudinal	65.0		56.0		5	
2124	7851 ^F	3.001-4.000	long	65.0		56.0		4	
	*.		transverse						
2124	T851 ^{<i>F</i>}	3.001-4.000	short	62.0		54.0		1.5	
0104	T851 ^F	4 004 5 000	transverse	04.0		FF 0		_	
2124 2124	T851 ^F	4.001-5.000 4.001-5.000	longitudinal long	64.0 64.0		55.0 55.0		5 4	
(1)			transverse						
2124	T851 ^{<i>F</i>}	4.001–5.000	short transverse	61.0		53.0		1.5	
2124	T851 ^F	5.001-6.000	longitudinal	63.0		54.0		5	
2124	T851 ^F	5.001–6.000	long	63.0		54.0		4	
2124	T851 ^{<i>F</i>}	5.001-6.000	transverse short	58.0		51.0		1.5	
		0.001 0.000	transverse	55.5	•••	01.0		1.0	•••
2219	0	0.020-0.250			32.0		16.0	12	4
2219	0	0.251-0.750			32.0	•••	16.0	12	6
2219	0	0.751-1.000			32.0		16.0	12	8

TABLE 3 Continued

	Temper	Specified Thickness, in.	Test Specimen ^C			ks	ji	2 in. or 4x Diameter, min, %	Diameter Factor, <i>N</i>
				min	max	min	max		
2219	0	1.001-2.000			32.0		16.0	12	
2219	T31 ^L (flat sheet)	0.020-0.039	•••	46.0		29.0		8	
2219	T31 ^L (flat sheet)	0.040-0.249		46.0		28.0		10	
2219	T351 ^{F,L} plate (formerly	0.250-2.000		46.0		28.0		10	
0010	T31 plate)	0.004.0.000		44.0		00.0		10	.01
2219	T351 ^{F,L} plate (formerly T31 plate)	2.001–3.000	•••	44.0		28.0		10	XIV.
2219	T351 ^{F,L} plate (formerly	3.001-4.000		42.0		27.0		92	کر
	T31 plate)							00	
2219	T351 ^{F,L} plate (formerly	4.001-5.000		40.0		26.0		_ 9	
***	T31 plate)	5 004 0 000				05.0	\		
2219	T351 ^{F,L} plate (formerly T31 plate)	5.001–6.000	•••	39.0	•••	25.0		8	
2219	T37 ^L	0.020-0.039		49.0		38.0	\sim	6	
2219	T37 ^L	0.040-2.500	•••	49.0		37.0	O.	6	
2219	T37 ^L	2.501–3.000		47.0		36.0		6	
2219	T37 ^L	3.001-4.000	***	45.0		35.0		5	
2219	T37 ^L	4.001–5.000	***	43.0		34.0		4	
2219	T62 ^E	0.020-0.039		54.0		36.0		6	
2219	T62 ^E	0.020-0.039		54.0	\	36.0		7	•••
2219 2219	T62 ^E	0.250-1.000		54.0 54.0	~ `	36.0		8	
2219	T62 ^E	1.001–2.000	***	54.0	. 🛇	36.0		7	
2219 2219	T81 sheet	0.020-0.039		62.0	11.	46.0		6	
2219				4	- Ni			7	
	T81 sheet T851 ^F plate (formerly	0.040-0.249		62.0	O '	46.0			
2219	T81 plate)	0.250-1.000		62.0		46.0		8	
2219	T851 ^F plate (formerly	1.001-2.000		62.0		46.0		7	
2219	T81 plate) T851 ^F plate (formerly	2.001-3.000	<	62.0		45.0		6	
2219	T81 plate) T851 ^F plate (formerly	3.001-4.000	1	60.0					
	T81 plate)					44.0		5	
2219	T851 ^F plate (formerly T81 plate)	4.001–5.000	8 /2	59.0		43.0		5	
2219	T851 ^F plate (formerly T81 plate)	5.001-6.000	/ O	57.0		42.0		4	
2219	T87	0.020-0.039	X	64.0		52.0		5	
2219	T87	0.040-0.249)	64.0		52.0		6	
2219	T87	0.250-1.000	•••	64.0		51.0		7	
2219	T87	1.001-2.000		64.0		51.0		6	
2219	T87	2.001-3.000		64.0		51.0		6	
2219	T87	3.001-4.000		62.0		50.0		4	
2219	T87	4.001-5.000		61.0		49.0		3	
2219	F^G	0.250-2.000							
	â	h							
Alcad 2219	0	0.020-0.499	•••		32.0		16.0	12	
Alcad 2219	0	0.500-2.000			32.0 ^H		16.0 ^H		
Alcad 2219	T31 ^L (flat sheet)	0.040-0.099		42.0		25.0		10	
Alcad 2219	T31 ^L (flat sheet)	0.100-0.249		44.0		26.0		10	
Alcad 2219	T351 F,L plate (formerly	0.250-0.499		44.0		26.0		10	
	T31 plate)								
Alcad 2219	T37 ^L	0.040-0.099		45.0		34.0		6	
Alcad 2219	T37 ⁴	0.100-0.499		47.0		35.0		6	
Alcad 2219	T62 ^E	0.020-0.039		44.0		29.0		6	
Alcad 2219	T62 ^E	0.040-0.099		49.0		32.0		7	
Alcad 2219	T62 ^E	0.100-0.249		51.0		34.0		7	
Alcad 2219	T62 ^E	0.250-0.499		51.0		34.0		8	
Alcad 2219	T62 ^E	0.500-1.000		54.0 ^H		36.0 ^H		8	
Alcad 2219	T62 ^E	1.001-2.000		54.0 ^H		36.0 ^H		7	
Alcad 2219	T81 (flat sheet)	0.020-0.039		49.0		37.0		6	
Alcad 2219	T81 (flat sheet)	0.040-0.099		55.0	•••	41.0		7	
Alcad 2219	T81 (flat sheet)	0.100-0.249		58.0	•••	43.0		7	
Alcad 2219	T851 ^F plate (formerly	0.250-0.499		58.0		42.0		8	
Alcad 2219	T81 plate) T87	0.040-0.099	•••	57.0		46.0		6	
Alcad 2219	T87	0.100-0.249		60.0		48.0		6	
Alcad 2219	T87	0.250-0.499		60.0		48.0		7	
Alcad 2219	F ^G	0.250-2.000							

TABLE 3 Continued

		TAB	LE 3 Continued						
Alloy	Temper	Specified Thickness, in.	Axis of Test	Tens Strengt		Yield St (0.2 % c ks	offset),	Elongation in 2 in. or 4x	Bend Diameter Factor, N
		,	Specimen ^C					Diameter, min, %	
				min	max	min	max		
6013	T4	0.020-0.249		40.0		21.0		20	?
6013	T6	0.020-0.249		52.0		46.0		8	., Q.
6013 6013	T651 T651	0.250-1.500 1.501-3.000		53.0 54.0	•••	44.0 47.0		5 5	
6013	T651	3.001–6.000		55.0		47.0		4	
								dilo	•
6061	0	0.006-0.007			22.0		12.0	O 10	0
6061	0	0.008-0.009			22.0		12.0	12	0
6061 6061	0	0.010-0.020 0.021-0.128			22.0 22.0		12.0 12.0	14 16	0 1
6061	0	0.129-0.249			22.0		12.0	18	2
6061	0	0.250-0.499			22.0		12.0	18	3
6061	0	0.500-1.000			22.0			18	
6061	0	1.001-3.000			22.0			16	
6061	T4	0.006-0.007		30.0	🦽	16.0		10	2
6061 6061	T4 T4	0.008-0.009 0.010-0.020		30.0 30.0	(16.0 16.0		12 14	2 2
6061	T4	0.021-0.249		30.0		16.0		16	3
6061	T451 ^F	0.250-0.499		30.0	2	16.0		18	4
6061	T451 ^F	0.500-1.000		30.0	V	16.0		18	
6061	T451 ^F	1.001-3.000		30.0		16.0		16	
6061	T42 ^E	0.006-0.007		30.0		14.0		10	2
6061	T42 ^E T42 ^E	0.008-0.009		30.0	•••	14.0		12	2
6061 6061	T42 ^E	0.010-0.020 0.021-0.249		30.0 30.0	•••	14.0 14.0		14 16	2 3
6061	T42 ^E	0.250-0.499	, 🗸	30.0		14.0		18	4
6061	T42 ^E	0.500-1.000		30.0		14.0		18	
6061	T42 ^E	1.001-3.000		30.0		14.0		16	
6061	T6, T62 ^E	0.006-0.007		42.0		35.0		4	2
6061	T6, T62 ^E	0.008-0.009	, P	42.0		35.0		6	2
6061 6061	T6, T62 ^E T6, T62 ^E	0.010-0.020 0.021-0.036 (<i>X</i> ,	42.0 42.0	•••	35.0 35.0		8 10	2 3
6061	T6, T62 ^E	0.021-0.030	3	42.0		35.0		10	4
6061	T6, T62 ^E	0.065-0.128		42.0		35.0		10	5
6061	T6, T62 ^E	0.129-0.249		42.0		35.0		10	6
6061	T62 ^E , T651 ^F	0.250-0.499		42.0		35.0		10	7
6061	T62 ^E , T651 ^F	0.500-1.000		42.0		35.0		9	
6061 6061	T62 ^{<i>E</i>} , T651 ^{<i>F</i>} T62 ^{<i>E</i>} , T651 ^{<i>F</i>}	1.001-2.000		42.0		35.0		8	
6061	T62 ^E , T651 ^F	2:001-4.000 4.001-6.000 ^M		42.0 40.0		35.0 35.0		6 6	
6061	F ^G	0.250–3.000							
	. O.N								
Alclad 6061	0	0.010-0.020			20.0		12.0	14	
Alclad 6061 Alclad 6061	0	0.021-0.128 0.129-0.499			20.0		12.0	16	
Alclad 6061	o chick	0.500-1.000			20.0 22.0 ^H		12.0	18 18	
Alclad 6061	0	1.001–3.000			22.0 ^H			16	
Alclad 6061	J4	0.010-0.020		27.0		14.0		14	
Alclad 6061	T4 14	0.021-0.249		27.0		14.0		16	
Alclad 6061	T451 ^F	0.250-0.499		27.0		14.0		18	
Alclad 6061	T451 ^F	0.500-1.000		30.0 ^H	•••	16.0 ^H		18	
Alclad 6061 Alclad 6061	T451 ^{<i>F</i>} T42 ^{<i>E</i>}	1.001–3.000		30.0 ^H		16.0 ^H		16 14	
Alclad 6061	T42 ^E	0.010-0.020 0.021-0.249		27.0 27.0		12.0 12.0		16	
Alclad 6061	T42 ^E	0.250-0.499		27.0		12.0		18	
Alclad 6061	T42 ^E	0.500-1.000		30.0 ^H		14.0 ^H		18	
Alclad-6061	T42 ^E	1.001-3.000		30.0 ^H		14.0 ^H		16	
Alclad 6061	T6, T62 ^E	0.010-0.020		38.0		32.0		8	
Alclad 6061 Alclad 6061	T6, T62 ^{<i>E</i>} T62 ^{<i>E</i>} , T651 ^{<i>F</i>}	0.021-0.249 0.250-0.499		38.0		32.0		10 10	
Alciad 6061	T62 ^E , T651 ^F	0.250-0.499		38.0 42.0 ^H		32.0 35.0 ^H		10 9	
Alclad 6061	T62 ^E , T651 ^F	1.001–2.000		42.0 ^H		35.0 ^H		8	
Alclad 6061	T62 ^E , T651 ^F	2.001-4.000		42.0 ^H		35.0 ^H		6	
Alclad 6061	T62 ^{<i>E</i>} , T651 ^{<i>F</i>}	4.001-5.000		40.0 ^H		35.0 ^H		6	
Alclad 6061	F^G	0.250-3.000	***						

TABLE 3 Continued

Alloy	Temper	Specified Thickness, in.	Axis of Test Specimen ^C	Tens Streng		Yield S (0.2 % k:	offset),	Elongation in 2 in. or 4x Diameter, min, %	Bend Diameter Factor, N
				min	max	min	max	111111, 70	
7075	0	0.015-0.020			40.0		21.0	10	1
7075	0	0.021-0.062			40.0		21.0	10	2
7075	0	0.063-0.091			40.0		21.0	10	3
7075	0	0.092-0.125			40.0		21.0	10	4
7075	0	0.126-0.249			40.0		21.0	10	5
7075	0	0.250-0.499			40.0		21.0	10	6
7075	0	0.500-2.000			40.0			10_(
7075	T6, T62 ^E	0.008-0.011		74.0		63.0		-50	7
7075	T6, T62 ^E	0.012-0.020		76.0		67.0		_ 🧐	7
7075	T6, T62 ^E	0.021-0.039		76.0		67.0		8	8
7075	T6, T62 ^E	0.040-0.062		78.0		68.0		9	8
7075	T6, T62 ^E	0.063-0.091		78.0		68.0		9	9
7075	T6, T62 ^E	0.092-0.125		78.0		68.0	OX.	9	10
7075	T6, T62 ^E	0.126-0.187		79.0		69.0	V	9	11
7075	T6, T62 ^E	0.188-0.249		80.0		69.0	,	9	11
7075	T62 ^E , T651 ^F	0.250-0.499		78.0		67.0		9	14
7075	T62 ^E , T651 ^F	0.500-1.000		78.0		68.0		7	
7075	T62 ^E , T651 ^F	1.001-2.000		77.0		67.0		6	
7075	T62 ^E , T651 ^F	2.001-2.500		76.0		64.0		5	
7075	T62 ^E , T651 ^F	2.501-3.000		72.0	0	61.0		5	
7075	T62 ^{<i>E</i>} , T651 ^{<i>F</i>}	3.001-3.500		71.0		58.0		5	
7075	T62 ^E , T651 ^F	3.501-4.000		67.0	_ ////	54.0		3	
7075	T73 sheet	0.040-0.249		67.0	7 1	56.0		8	
7075	T7351 ^F plate	0.250-1.000		69.0	<u> </u>	57.0		7	
7075	T7351 ^F plate	1.001-2.000		69.0		57.0		6	
7075	T7351 ^F plate	2.001-2.500		66.0		52.0		6	
7075	T7351 ^F plate	2.501-3.000		64.0		49.0		6	
7075	T7351 ^F plate	3.001-3.500		63.0		49.0		6	
7075	T7351 ^F plate	3.501-4.000		61.0		48.0		6	
7075	T76 sheet	0.063-0.125		73.0		62.0		8	
7075	T76 sheet	0.126-0.249		73.0		62.0		8	
7075	T7651 plate	0.250-0.499	c Y	72.0		61.0		8	
7075	T7651 plate	0.500-1.000		71.0		60.0		6	
7075	T7651 plate	1.001-2.000	/, U	71.0		60.0		5	
7075	F ^G	0.250-4.000							
Alclad 7075	0	0.008-0.014			26.0		20.0	9	4
	0				36.0		20.0		1
Alclad 7075	0	0.015-0.032			36.0		20.0	10	1
Alclad 7075	0	0.033-0.062			36.0		20.0	10	2
Alclad 7075	0	0.063-0.125			38.0		20.0	10	3
Alclad 7075	0	0.126-0.187			38.0		20.0	10	4
Alclad 7075	0	0.188-0.249			39.0	•••	21.0	10	4
Alclad 7075	0	0.250-0.499			39.0		21.0	10	6
Alclad 7075	O Te Teo#	0.500-1.000			40.0 ^H			10	
Alclad 7075	T6, T62 ^E	0.008-0.011		68.0		58.0		5	6
Alclad 7075	T6, T62 ^E	0.012-0.020	•••	71.0		61.0		8	6
Alclad 7075	T6, T62 ^E	0.021-0.039		71.0		61.0		8	7
Alclad 7075	T6, T62 ^E	0.040-0.062		72.0		62.0	•••	9	7
Alclad 7075	T6, T62 ^E	0.063-0.091		74.0		64.0	•••	9	8
Alclad 7075	T6, T62 ^E	0.092-0.125		74.0		64.0		9	9
Alclad 7075	T6, T62 ^E	0.126-0.187		74.0		64.0		9	10
Alclad 7075	T6, T62 [€]	0.188-0.249		76.0		65.0		9	10
Alclad 7075	T62 ^E ,T651 ^F	0.250-0.499		75.0		65.0		9	12
Alclad 7075	√T62 ^E ,T651 ^F	0.500-1.000	•••	78.0 ^H		68.0 ^H		7	
Alclad 7075	T62 ^E ,T651 ^F	1.001–2.000		77.0 ^H		67.0 ^H		6	
Alclad 7075	T62 ^E ,T651 ^F	2.001-2.500	•••	76.0 ^H		64.0 ^H		5	
Alclad 7075	T62 ^E ,T651 ^F	2.501-3.000		72.0 ^H		61.0 ^H		5	
Alclad 7075	T62 ^E ,T651 ^F	3.001-3.500		71.0 ^H		58.0 ^H		5	
Alclad 7075	T62 ^E ,T651 ^F	3.501-4.000		67.0 ^H		54.0 ^H		3	
Alclad 7075	T76 sheet	0.040-0.062		67.0		56.0		8	
Alclad 7075	T76 sheet	0.063-0.125		68.0		57.0		8	
Alclad 7075	T76 sheet	0.126-0.187		68.0		57.0		8	
Alclad 7075	T76 sheet	0.188-0.249		70.0		59.0		8	
Alclad 7075	T7651 ^F plate	0.250-0.499		69.0		58.0		8	
Alclad 7075	T7651 ^F plate	0.500-1.000		71.0 ^H		60.0 ^H		6	
Alclad 7075	F ^G	0.250-4.000							

TABLE 3 Continued

		IADI	L 3 Continued						
Alloy	Temper	Specified Thickness, in.	Axis of Test Specimen ^C	Tensile Strength, ksi			Yield Strength (0.2 % offset), ksi		Bend Diameter Factor, N
				min	max	min	max		
Alclad One Side 7075	0	0.015-0.032			38.0		21.0	10	1 (
Alclad One Side 7075	0	0.033-0.062			38.0		21.0	10	. 3
Alclad One Side 7075	0	0.063-0.091			39.0		21.0	10	3
Alclad One Side 7075	0	0.092-0.125			39.0		21.0	10	4
Alclad One Side 7075	0	0.126-0.187			39.0		21.0	10	5
Alclad One Side 7075	0	0.188-0.249			39.0		21.0	10	5
Alclad One Side 7075	0	0.250-0.499			39.0		21.0	(10	6
Alclad One Side 7075	0	0.500-1.000			40.0 ^H			10	
Alclad One Side 7075	T6, T62 ^E	0.008-0.011		71.0		60.0	9	5	
Alclad One Side 7075	T6, T62 ^E	0.012-0.014		74.0		64.0	. (8	
Alclad One Side 7075	T6, T62 ^E	0.015-0.032		74.0		64.0		8	7
Alclad One Side 7075	T6, T62 ^E	0.033-0.039		74.0		64.0	-	8	8
Alclad One Side 7075	T6, T62 ^E	0.040-0.062		75.0		65.0		9	8
Alclad One Side 7075	T6, T62 ^E	0.063-0.091		76.0		66.0		9	9
Alclad One Side 7075	T6, T62 ^E	0.092-0.125		76.0		66.0		9	10
Alclad One Side 7075	T6, T62 ^E	0.126-0.187		77.0	🦠	67.0		9	11
Alclad One Side 7075	T6, T62 ^E	0.188-0.249		78.0	🧭	67.0		9	11
Alclad One Side 7075	T62 ^E , T651 ^F	0.250-0.499		76.0	. 5	66.0		9	13
Alclad One Side 7075	T62 ^E , T651 ^F	0.500-1.000		78.0 ^H	(68.0 ^H		7	
Alclad One Side 7075	T62 ^E , T651 ^F	1.001-2.000		77.0 ^H	On	67.0 ^H		6	
Alclad One Side 7075	F^G	0.250-2.000			V				

^A To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the Rounding Method of Practice E29.

4.2.7 DELETED

- 4.2.8 Whether there are exceptions to identification marking as provided in B666/B666M (20.1)
- 4.2.9 Whether Practice B660 applies and, if so, the levels of preservation, packaging, and packing required (21.3), and
- 4.2.10 For sheet and plate with tensile properties having more than one test direction shown in Table 2 and Table 3, whether tensile testing should be in a direction other than the direction specified in Test Method B557 (Section 9.4).

5. Responsibility for Quality Assurance

5.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use their own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.

- 5.2 Lot Definition—An inspection lot shall be defined as follows:
- 5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness subjected to inspection at one time.

6. General Quality

- 6.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not covered is subject to negotiation between producer and purchaser.
- 6.2 Each sheet and plate shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^CLong transverse unless otherwise noted

D Coiled sheet.

^E Material in the T42, T62, and T72 tempers is not available from the material producer.

For stress-relieved tempers (T351, T451, T651, T7351, T7651, and T851), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

^G Test for tensile properties in the F temper are not required.

H The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding.

Applicable to flat sheet and plate only.

The T72 temper is applicable only to Alloys 2024 and Alclad 2024 sheet solution heat treated and artificially overaged by the user to develop increased resistance to stress-corrosion cracking.

K Short transverse tensile property limits are not applicable to material less than 1.500 in. in thickness.

^L Use of Alloys 2219 and Alclad 2219 in the T31, T351, and T37 tempers for finished products is not recommended.

^M The properties for this thickness apply only to the T651 temper.

7. Chemical Composition

7.1 Limits—The sheet and plate shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are poured in accordance with E716 and analyzed in accordance with E607, E1251, E34 or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze sheet and plate for conformance to chemical composition limits, the method used to sample sheet or plate for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, E34 or EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, of material in the lot, except that not more than one sample shall be required per piece.

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

7.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

8. Heat Treatment

- 8.1 Unless specified in 8.2 or except as noted in 8.3, producer or supplier heat treament for the applicable tempers in Table 3 shall be in accordance with AMS 2772.
- 8.2 When specified, heat treatment of applicable tempers in Table 3 shall be in accordance with Practice B918.
- 8.3 Unless otherwise specified, alloy 6061 plate may be produced using hot rolling mill solution heat treatment in accordance with Practice B947 when aged in accordance with Practice B918 for the production of T651 tempers, as applicable

9 Tensile Properties of Material as Supplied

9.1 *Limits*—The sheet and plate shall conform to the requirements for tensile properties as specified in Table 2 and Table 3 for nonheat-treatable and heat-treatable alloys, respectively.

- 9.1.1 Tensile property limits for sizes not covered in Table 2 or Table 3 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
- 9.2 *Number of Samples*—One sample shall be taken from each end of each parent coil, or parent plate, but no more than one sample per 2000 lb of sheet or 4000 lb of plate, or part thereof, in a lot shall be required. Other procedures for selecting samples may be employed if agreed upon between the producer and purchaser.
- 9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Method B557.
- 9.4 Test Direction—Unless otherwise specified, tensile testing shall be in the direction specified in Test Method B557. When a direction other than specified in Test Method B557 is tested, the tensile testing direction shall be noted on all documentation.
- 9.5 *Test Methods*—The tension test shall be made in accordance with Test Method B557.

10. Producer Confirmation of Heat-Treat Response

- 10.1 In addition to the requirements of 9.1, material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.
- 10.2 Also, material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, and Alclad one-side 7075 shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.
- 10.3 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1 and 10.2 shall be as specified in 9.2.

11. Heat Treatment and Reheat-Treatment Capability

11.1 Mill-produced material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

- 11.2 Mill-produced material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, and Alclad one-side 7075 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.
- 11.3 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and natural aging for four days at room temperature, be capable of attaining the properties specified in Table 3 for the T42 temper.

Alloys	Tempers
2014 and Alclad 2014	T3, T4, T451, T6, T651
2024 and Alclad 2024	T3, T4, T351, T81, T851
1½ % Alclad 2024, Alclad one-side 2024 and 1½ % Alclad one-side 2024	T3, T351, T81, T851

Note 6—Beginning with the 1974 revision, 6061 and Alclad 6061 T4, T451, T6, and T651 were deleted from this paragraph because experience has shown that reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 3.

11.4 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the T62 temper.

Alloys	Tempers
2219 and Alclad 2219	T31, T351, T81, T851
7075	T6, T651, T73, T7351, T76, T7651
Alclad 7075	T6, T651, T76, T7651
Alclad one-side 7075	T6, T651

11.5 Mill-produced material in the following alloys and tempers and T42 temper material shall, after proper precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the aged tempers listed below.

Alloy and Temper	Temper after Aging
2014 and Alclad 2014-T3, T4, T42, T451	T6, T6, T62, T651, respectively
2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024 and 1½ % Alclad one-side 2024-T3, T351, T361, T42	T81, T851, T861, T62 or T72, respectively
2219 and Alclad 2219-T31, T351, T37 6061 and Alclad 6061-T4, T451, T42	T81, T851, T87, respectively T6, T651, T62, respectively

12. Bend Properties

12.1 *Limits*—Sheet and plate shall be capable of being bent cold through an angle of 180° around a pin having a diameter equal to *N* times the thickness of the sheet or plate without cracking, the value of *N* being as prescribed in Table 2 and Table 3 for the different alloys, tempers, and thicknesses. The test need not be conducted unless specified on the purchase order.

12.2 Test Specimens—When bend tests are made, the specimens for sheet shall be the full thickness of the material, approximately ³/₄ in. in width, and when practical, at least 6 in. in length. Such specimens may be taken in any direction and their edges may be rounded to a radius of approximately ¹/₁₆ in. if desired. For sheet less than ³/₄ in. in width, the specimens should be the full width of the material.

12.3 Test Methods—The bend tests shall be made in accordance with Test Method E290 except as stated otherwise in 12.2

13. Stress-Corrosion Resistance

- 13.1 When specified on the purchase order or contract, alloys 2124-T851, 2219-T851, and 2219-T87 plate shall be subjected to the test specified in 13.3 and shall exhibit to evidence of stress-corrosion cracking. One sample shall be taken from each parent plate in each lot and a minimum of three adjacent replicate specimens from this sample shall be tested. The producer shall maintain records of all lot acceptance test results and make them available for examination at the producer's facility.
- 13.2 Alloy 7075 in the T73-type and T76-type tempers, and Alclad 7075 in the T76-type tempers, shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.3.
- 13.2.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
- 13.2.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.3 on each applicable alloy-temper for each thickness range 0.750 in. and over listed in Table 3, produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.
- 13.3 The stress-corrosion cracking test shall be performed on plate 0.750 in. and over in thickness as follows:
- 13.3.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. For alloy 2124-T851, the stress levels shall be 50 % of the specified minimum long transverse yield strength. For alloy 2219-T851 and T87, the stress levels shall be 75 % of the specified minimum long transverse yield strength. For alloy 7075 in the T73-type tempers, the stress level shall be 75 % of the specified minimum yield strength and for alloy 7075 and Alclad 7075 in the T76-type, it shall be 25 ksi.
- 13.3.2 The stress-corrosion test shall be made in accordance with Test Method G47.
- 13.3.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

14. Exfoliation-Corrosion Resistance

- 14.1 Alloys 7075 and Alclad 7075, in the T76-type tempers, shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Photo EB in Fig. 2 of Test Method G34 when subjected to the test in 14.2
- 14.1.1 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers

Lot Acceptance Criteria Lot Acceptance Alloy and Temper Electrical Conductivity, A Level of Mechanical Properties Status %, IACS 40.0 or greater per specified requirements acceptable 38.0 through 39.9 per specified requirements but yield strength does not acceptable exceed minimum by more than 11.9 ksi 7075-T73 and T7351 38.0 through 39.9 per specified requirements but yield strength exceeds unacceptable^E minimum by 12.0 ksi or more less than 38.0 unacceptable anv level per specified requirements acceptable 38.0 or greater 36.0 through 37.9 per specified requirements suspect less than 36.0 any level unacceptable 7075 - T76 and T7651 Alclad 7075 - T76 and T7651

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

When material in these tempers is found to be suspect it is either tested for exfoliation corrosion resistance per ASTM G34 or it is reprocessed (additional precipitation heat treatment or resolution heat treatment and precipitation heat treatment). Favorable exfoliation corrosion test results must never be used as an acceptance criteria for stress corrosion resistance.

Alloy-Temper	Thickness, in.			Location
7075-T73 and T7351	all			surface of tension-test sample
	up through 0.100	 		surface of tension-test sample
7075-T76 and T7651	0.101 and over		1 5	sub-surface after removal of approximately
			•	10 % of the thickness

For alclad products, the cladding shall be removed and the electrical conductivity determined on the core alloy.

listed in 14.1 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

14.1.2 For surveillance purposes, each month the producer shall perform at least one test for exfoliation-corrosion resistance on each applicable alloy-temper for each thickness range listed in Table 3, produced that month. The samples for test shall be selected at random from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. The producer shall maintain records of all surveillance test results and make them available for examination.

14.2 The test for exfoliation-corrosion resistance shall be made in accordance with Test Method 634 and the following:

14.2.1 The specimens shall be a minimum of 2 in. by 4 in. with the 4-in. dimension in a plane parallel to the direction of final rolling. They shall be full section thickness specimens of the material except that for material 0.101 in. or more in thickness, 10 % of the thickness shall be removed by machining one surface. The cladding of alclad sheet of any thickness shall be removed by machining the test surface; the cladding on the back side (nontest surface) of the specimen for any thickness of alclad material shall also either be removed or masked off For machined specimens, the machined surface shall be evaluated by exposure to the test solution.

15. Cladding

15.1 Preparatory to rolling alclad sheet and plate to the specified thickness, the aluminum or aluminum-alloy plates which are bonded to the alloy ingot or slab shall be of the composition shown in Table 1 and shall each have a thickness not less than that shown in Table 5 for the alloy specified.

When the thickness of the cladding is to be determined on finished material, not less than one transverse sample approximately ³/₄ in. in length shall be taken from each edge and from the center width of the material. Samples shall be mounted to expose a transverse cross section and shall be polished for examination with a metallurgical microscope. Using 100× magnification, the maximum and minimum cladding thickness on each surface shall be measured in each of five fields approximately 0.1 in. apart for each sample. The average of the ten values (five minima plus five maxima) on each sample surface is the average cladding thickness and shall meet the minimum average and, when applicable, the maximum average specified in Table 5.

16. Dimensional Tolerances

16.1 *Thickness*—The thickness of flat sheet, coiled sheet, and plate shall not vary from that specified by more than the respective permissible variations prescribed in Tables 7.7a, 7.7b, 7.26, 7.31, and 8.2 of ANSI H35.2. Permissible variations in thickness of plate specified in thicknesses exceeding 6 in shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed.

16.2 Length, Width, Lateral Bow, Squareness, and Flatness—Coiled sheet shall not vary in width or in lateral bow from that specified by more than the permissible variations prescribed in Tables 7.11 and 7.12, respectively, of ANSI H35.2. Flat sheet and plate shall not vary in width, length, lateral bow, squareness, or flatness by more than the permissible variations prescribed in the following tables of ANSI H35.2 except that where the tolerances for sizes ordered are not

A The electrical conductivity shall be determined in accordance with Practice E1004 in the locations specified below.

^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable).

SB-209

TABLE 5 Components of Clad Products

	Component Alloys ^A		Total Composite Thickness		Cladding percent of	Thickness Composite	
Alloy	Core	Cladding	of Finished Sheet and Plate, in.	Sides Clad	Nominal —	Ave	rage ^B
			and riato, in.		Nominai —	min	max
Alclad 2014	2014	6003	up through 0.024	both	10	8	
			0.025-0.039	both	7.5	6	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	3 ^c
Alclad 2024	2024	1230	up through 0.062	both	5	4	17
			0.063 and over	both	2.5	2	3¢
11/2 % Alclad 2024	2024	1230	0.188 and over	both	1.5	1.2	√ 3 ^D
Alclad one-side 2024	2024	1230	up through 0.062	one	5	4	
			0.063 and over	one	2.5	2	3 ^C
1½ % Alclad one-side 2024	2024	1230	0.188 and over	one	1.5	769)	3^D
Alclad 2219	2219	7072	up through 0.039	both	10 🦰	8	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	3^{C}
Alclad 3003	3003	7072	all	both	5	4	6 ^C
Alclad 3004	3004	7072	all	both	5	4	6 ^C
Alclad 6061	6061	7072	all	both /	5	4	6 ^C
Alclad 7075	7075	7072	up through 0.062	both	4	3.2	
			0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3^D
Alclad one-side 7075	7075	7072	up through 0.062	one	4	3.2	
			0.063-0.187	one	2.5	2	
			0.188 and over	one	1.5	1.2	3^D

A Cladding composition is applicable only to the aluminum alloy bonded to the alloy ingot or slab preparatory to rolling to the specified composite product. The composition of the cladding may be altered subsequently by diffusion between the core and cladding due to thermal treatment.

covered by this specification, the permissible variations shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed:

Table No.	Title
7.8	Width, Sheared Flat Sheet and Plate
7.9	Length, Sheared Flat Sheet and Plate
7.10	Width and Length, Sawed Flat Sheet and Plate
7.13	Lateral Bow, Flat Sheet and Plate
7.14	Squareness, Flat Sheet and Plate
7.17	Flatness, Flat Sheet
7.18	Flatness, Sawed or Sheared Plate

16.3 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be as agreed upon between the producer and purchaser and shall be specified in the contract or purchase order.

16.4 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

17. Internal Quality

17.1 When specified by the purchaser at the time of placing the order, plate 0.500 in. to 4.500 in. in thickness and up to 2000 lb in maximum weight in alloys 2014, 2024, 2124, 2219, and 7075, both bare and Alclad where applicable, shall be tested in accordance with Practice B594 to the discontinuity acceptance limits of Table 6.

17.2 When specified by the purchaser at the time of placing the order, plate 0.500 in. in thickness and greater for ASME

TABLE 6 Ultrasonic Discontinuity Limits for Plate^A

Alloy	Thickness, in.	Maximum Weight Per Piece, lb ^B	Discontinuity Class ^C
2014 ^D 2024 ^D	0.500-1.499	2000	В
2124 2219 ^D	1.500–3.000	2000	А
7075 ^D	3.001–6.000	2000	В

A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.

B The maximum weight is either the ordered weight of a plate of rectangular shape or the planned weight of a rectangular plate prior to removing metal to produce a part or plate shape to a drawing.

B Average thickness per side as determined by averaging cladding thickness measurements when determined in accordance with the procedure specified in 15.2.

^C Applicable for thicknesses of 0.500 in. and greater.

^D For thicknesses of 0.500 in. and over with 1.5 % of nominal cladding thickness, the average maximum thickness of cladding per side after rolling to the specified thickness of plate shall be 3 % of the thickness of the plate as determined by averaging cladding thickness measurements taken at a magnification of 100 diameters on the cross section of a transverse sample polished and etched for examination with a metallurgical microscope.

The discontinuity class limits are defined in Section 11 of Practice B594.

^D Also applies for alclad plate.

pressure vessel applications in alloys 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 6061, and Alclad 6061 shall be tested in accordance with Test Method B548. In such cases, the material will be subject to rejection if the following limits are exceeded unless it is determined by the purchaser that the area of the plate containing significant discontinuities will be removed during the subsequent fabrication process or that the plate may be repaired by welding:

- 17.2.1 If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95 % or greater) exceeds 1.0 in.
- 17.2.2 If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95 % or greater) exceeds 3.0 in.
- 17.2.3 If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95 % or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other.

18. Source Inspection

- 18.1 If the purchaser desires that their representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 18.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

19. Retest and Rejection

- 19.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.
- 19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All

specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.

- 19.3 Material which is determined to be non-conforming subsequent to inspection may be rejected.
- 19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

20. Identification Marking of Product

- 20.1 All sheet and plate shall be marked in accordance with Practice B666/B666M.
- 20.2 The requirements specified in 20.1 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

21. Packaging and Package Marking

- 21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, allow and temper, gross and net weights, and the producer's name or trademark.
- 21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practice B660. The applicable levels shall be as specified in the contract or order.

22. Certification

22.1 The producer or supplier shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. A test report shall be supplied that includes the results of all tests required by this specification.

23. Keywords

23.1 aluminum alloy; aluminum-alloy plate; aluminum-alloy sheet

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Mechanical property limits are established in accord with section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)".

Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products".

Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products". Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Where centative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.

All tests are performed in accordance with the appropriate ASTM test methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1 (M). The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, and
	so forth

(except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium; (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between Titanium and Other Elements, Each, or are specified in footnotes.
- Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR ALUMINUM AND MINUM-ALLOY DRAWN SEAMLESS TO ALUMINUM-ALLOY DRAWN SEAMLESS TUBES SB-210 BRYC.II.B. (A.S.)

-12 except to the full price of the full price o (Identical with ASTM Specification B210-12 except that certification, test reports, and testing for leaks have been made mandatory.)

Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes

1. Scope

- 1.1 This specification covers aluminum and aluminumalloy drawn seamless tubes in straight lengths and coils for general purpose and pressure applications in alloys (Note 2), tempers, and thicknesses shown in Table 2. Coiled tubes are generally available only as round tubes with a wall thickness not exceeding 0.083 in. and only in nonheat-treatable alloys.
- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum designation 1100 in accordance with Practice E527.

Note 1—See Specification B483/B483M for aluminum-alloy drawn tubes for general purpose applications; Specification B234 for aluminum-alloy drawn seamless tubes for condensers and heat exchangers; and Specification B241/B241M for aluminum-alloy seamless pipe and seamless extruded tube.

Note 2—Throughout this specification, use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

- 1.3 A complete metric companion to Specification B210 has been developed—Specification B210M; therefore, no metric equivalents are presented in this specification.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

- B234 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers
- B241/B241M Specification for Aluminum and Auminum-Alloy Seamless Pipe and Seamless Extruded Tube
- B483/B483M Specification for Aluminum and Aluminum-Alloy Drawn Tube and Pipe for General Purpose Applications (Withdrawn 2012)
- B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium Alloy Products
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
- B807/B807M Practice for Extrusion Press Solution Heat Treatment for Aluminum Alloys
- B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- B918/B918M Practice for Heat Treatment of Wrought Aluminum Alloys
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E215 Practice for Standardizing Equipment for Electromagnetic Testing of Seamless Aluminum-Alloy Tube
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)
- E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis
- E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method

TABLE 1 Chemical Composition Limits^{A,B,C,D}

Alleri	Ciliaaa	luese	0	Managana	- M	Characitus	7:	Titourious	Diamenth	Laad	Other E	lements ^E	Aluminum,
Alloy	Silicon	Iron	Copper	wanganes	e Magnesium	Chromiun	1 ZINC	Titanium	Bismuth	Lead -	Each	Total ^F	min
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03			0.03 ^G		99.60 min ^H
1100	0.95 Si	+ Fe	0.05-0.20	0.05			0.10				0.05	0.15	99.00 min ^H
2011	0.40	0.7	5.0-6.0				0.30		0.20-0.6	0.20-0.6	0.05	0.15	remainder
2014	0.50-1.2	0.7	3.9-5.0	0.40 - 1.2	0.20-0.8	0.10	0.25	0.15			0.05	0.15	remainder
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15			0.05	0.15	remainder 🎺
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10				0.05	0.15	remainder
Alclad 30031													. 0
3102	0.40	0.7	0.10	0.05-0.40			0.30	0.10			0.05	0.15	remainder
Alclad 3102 ^J													
5005	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25				0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1-1.8	0.10	0.25				0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10				0.05	0.15	remainder
5083	0.40	0.40	0.10	0.40-1.0	4.0-4.9	0.05-0.25	0.25	0.15			0.05	0:150	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15			0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20			0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7-5.5	0.05-0.20	0.25	0.20			0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15			0.05	0.15	remainder
6063	0.20-0.6	0.35	0.10	0.10	0.45-0.9	0.10	0.10	0.10			0.05	0.15	remainder
6262	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.14	0.25	0.15	0.40-0.7	0.40-0.7	0.05	0.15	remainder
7072 cladding	0.7 Si + F	е	0.10	0.10	0.10		0.8-1.3				0.05	0.15	remainder
7075 ^K	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28	5.1–6.1	0.20		MIL	0.05	0.15	remainder

^A Limits are in weight percent maximum unless shown as a range or otherwise stated.

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

2.3 ANSI Standards:

H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Products

2.4 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

2.6 Federal Standard:
Fed. Std. No. 123 Marking for Shipment (Civil Agencies) AMS-2772 Heat Treatment of Aluminum Alloy Raw Mate-

3. Terminology

3.1 Definitions:

- 3.1.1 alclad seamless pipe or alclad seamless tube—a composite pipe or tube product composed of a seamless aluminum alloy core having on either the inside or the outside surface a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.2 extruded seamless round tube—an extruded hollow product having a round cross section and a uniform wall thickness, which does not contain any line junctures resulting from method of manufacture.
 - 3.1.3 *producer*—the primary manufacturer of the material.
- 3.1.4 seamless pipe—extruded or drawn seamless tube having certain standardized sizes of outside diameter and wall thickness commonly designated by "Nominal Pipe Sizes" and American National Standards Institute (ANSI) Schedule Numbers. Note that while this is a combined SI and Metric Units

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

^DIn case of a discrepancy in the values listed in Table 1 with those listed in the International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys (known as the "Teal Sheets"), the composition limits registered with the Aluminum Association and published in the "Teal Sheets" shall be considered the controlling composition. The "Teal Sheets" are available at http://www.aluminum.org/tealsbeets.

E Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.

F Other elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

 $^{^{\}it G}$ Vanadium 0.05 % max.

HThe aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

Allov clad with Allov 7072.

^J Composition of cladding alloy as applied during the course of manufacture. The samples from finished tube shall not be required to conform to these limits.

KA Zr +Ti limit of 0.25 percent maximum may be used with this alloy designation for extruded and forged products only, but only when the supplier or producer and the purchaser have mutually so agreed. Agreement may be indicated, for example, by reference to a standard, by letter, by order note, or other means which allow the Zr +Ti

^L Bismuth and lead each 0.40-0.7 %.

M Bismuth and lead each 0.20-0.6 %

TABLE 2 Tensile Property Limits A,B

			E 2 Tensile Property	Limits ^{A,B}		
	Specified Wall -	Tensile S	Strength, ksi	Yield Strength ^D	Elongation in 2 in. or	4 × Diameter, ^E min, %
Temper	Thickness, C in.	min	max	(0.2 % offset), min, ksi	Full-Section	Cut-Out
					Specimen	Specimen
	0.014.0.500	0.5	Aluminum 1060 ^F	0.5		
O H12	0.014-0.500	8.5 10.0	13.5	2.5 4.0		
H14		12.0		10.0	•••	•••
H18		16.0		13.0		
H113 ^G		8.5	···	2.5		
			Aluminum 1100 ^F			
0	0.010-0.500	11.0	15.5	3.5		Section
H12		14.0		11.0		
H14		16.0		14.0		wi0
H16		19.0		17.0		
H18		22.0		20.0		C.O
H113 ^G		11.0	All 0044	3.5		
TO	0.010.0040	47.0	Alloy 2011	40.0		$igcup_{}$
Т3	0.018-0.049 0.050-0.500	47.0 47.0	•••	40.0 40.0	10	 8
T4511	0.050-0.500	44.0		25.0	10	
14311	0.016-0.049	44.0	•••	25.0	··· (b)	
	0.050-0.259	44.0		25.0	20/	 18
	0.260-0.500	44.0		25.0	20	20
T8	0.018-0.500	58.0		46.0	10	8
			Alloy 2014		1	
0	0.018-0.500		32.0	16.0 max		
T4, T42 ^H	0.018-0.024	54.0		30.0	10	
	0.025-0.049	54.0		30.0	12	10
	0.050-0.259	54.0		30.0	14	10
	0.260-0.500	54.0		30.0	16	12
T6, T62 ^H	0.018-0.024	65.0		55.0	7	
	0.025-0.049	65.0		55.0	7	6
	0.050-0.259	65.0		5 5.0	8	7
	0.260-0.500	65.0		55.0	9	8
	0.040.0.500		Alloy 2024	15.0		
O	0.018-0.500		32.0	15.0 max		
Т3	0.018-0.024	64.0	~	42.0	10	
	0.025-0.049	64.0	X	42.0	12	10
	0.050-0.259	64.0	χ',	42.0	14	10
T42 ^H	0.260–0.500 0.018–0.024	64.0 64.0	√ ⊙'	42.0 40.0	16 10	12
142	0.025-0.049	64.0	~ · · · ·	40.0	12	 10
	0.050-0.259	64.0	(),	40.0	14	10
	0.260-0.500	64.0		40.0	16	12
			Alloy 3003 ^F			
0	0.010-0.024	14.0	19.0	5.0		
	0.025-0.049	14.0	19.0	5.0	30	20
	0.050-0.259	14.0	19.0	5.0	35	25
	0.260-0.500	14.0	19.0	5.0		30
H12	0.010-0.500	7.0		12.0		
H14	0.010-0.024	20.0		17.0	3	
	0.025-0.049	20.0		17.0	5	3
	0.050-0.259	20.0		17.0	8	4
	0.260-0.500	20.0		17.0		
H16	0.010-0.024	24.0		21.0		
	0.025-0.049	24.0		21.0	3	2
	0.050-0.259	24.0	•••	21.0	5	4
LI10	0.260-0.500	24.0		21.0		•••
H18	0.010-0.024	27.0	•••	24.0	2	 2
	0.025-0.049	27.0		24.0	3	2
	0.050-0.259	27.0		24.0	5	3
H113 ^{<i>G</i>}	0.260-0.500 0.010-0.500	27.0 14.0		24.0 5.0		
	0.010-0.000	14.0	Alloy Alclad 3003 ^F	5.0		•••
0	0.010-0.024	13.0	19.0	4.5		
	0.025-0.049	13.0	19.0	4.5	30	20
	0.050-0.259	13.0	19.0	4.5	35	25
NI	0.260-0.500	13.0	19.0	4.5		30
H14	0.010-0.024	19.0		16.0		
),	0.025-0.049	19.0		16.0	5	3
	0.050-0.259	19.0		16.0	8	4
	0.260-0.500	19.0		16.0		
H18	0.010-0.500	26.0		23.0		
H113 ^G	0.010-0.500	13.0		4.5		
			Alloy 3102 ^F			
0	0.018-0.049	12.0	17.0	4.0	30 ⁷	20′

TABLE 2 Continued

			TABLE 2 Continued	1		
	Crestiad Mall	Tensile S	trength, ksi	Yield Strength ^D	Elongation in 2 in. or	4 × Diameter, ^E min, %
Temper	Specified Wall – Thickness, ^C in.	min	max	(0.2 % offset), min, ksi	Full-Section Specimen	Cut-Out Specimen
	0.050-0.065	12.0	17.0 Alloy Alclad 3102 ^F	4.0	35	25
0	0.018-0.049	10.0	17.0	3.5	30'	20'
	0.050-0.065	10.0	17.0	3.5	35	25
0	0.018-0.500	15.0	Alloy 5005 ^F 21.0	5.0		
0	0.010-0.500	18.0	Alloy 5050 ^F 24.0	6.0		
H32	0.010-0.500	22.0		16.0		(O)
H34	0.010-0.500	25.0		20.0		C.L.
H36	0.010-0.500	27.0		22.0		. 00
H38	0.010-0.500	29.0		24.0		<u> </u>
0	0.010-0.450	25.0	Alloy 5052 ^F 35.0	10.0	(()	
H32	0.010-0.450	31.0		23.0		•••
H34	0.010-0.450	34.0		26.0		
H36	0.010-0.450	37.0		29.0	(5)	
H38	0.010-0.450	39.0		24.0		•••
ПОО	0.010-0.450	39.0	Alloy 5083 ^F	24.0		
0	0.018-0.450	39.0	51.0	16.0		14
			Alloy 5086 ^F	-)	
0	0.010-0.450	35.0	46.0	14.0		
H32	0.010-0.450	40.0		28.0		
H34	0.010-0.450	44.0		34.0		
H36	0.010-0.450	47.0		38.0	•••	
			Alloy 5154 ^F	<u> </u>		
0	0.010-0.500	30.0	41.0	11.0	10	10
H34	0.010-0.500	39.0		29.0	5	5
H38	0.010-0.250	45.0	Allow 5450F	34.0		
0	0.018-0.450	41.0	Alloy 5456 ^F 53.0	19.0		14
			Alloy 6061			
0	0.018-0.500		22.0	14.0 max	15	15
T4	0.025-0.049	30.0		16.0	16	14
	0.050-0.259 0.260-0.500	30.0 30.0	5K Of 12	16.0 16.0	18 20	16 18
			6			
T42 ^H	0.025-0.049	30.0		14.0	16	14
	0.050-0.259 0.260-0.500	30.0 30.0		14.0 14.0	18 20	16 18
	0.200 0.000	33.3				.0
T6, T62 ^H	0.025-0.049	42.0	•••	35.0	10	8
	0.050-0.259	42.0 42.0		35.0	12	10
	0.260-0.500	42.0		35.0	14	12
		11.	Alloy 6063			
Ō	0.018-0.500	<i>"</i> …	19.0		•••	•••
T4, T42 ^H	0.025-0.049	22.0		10.0	16	14
14, 142	0.025-0.049	22.0		10.0	18	16
		22.0	···	10.0	20	18
	0.260-0.500	22.0				.0
T6, T62 ^H	0.025-0.049	33.0		28.0	12	8
	0.050-0.259	33.0		28.0	14	10
	0.260-0.500	33.0		28.0	16	12
T00	0 005 0 050	00.0		00.0	-	
T83	0.025-0.259	33.0	•••	30.0	5	•••
T831	0.025–0.259	28.0		25.0	5	
T832	0.025-0.049	41.0	•••	36.0	8	5
	0.050-0.259	40.0		35.0	8	5
\sim			Alloy 6262			
T6, T62 ^H	0.025-0.049	42.0		35.0	10	8
N	0.050-0.259	42.0	***	35.0	12	10
11.	0.260-0.500	42.0		35.0	14	12
Т9	0.025-0.375	48.0		44.0	5	4
10	0.025-0.375	+0.0	Alloy 7075	TT.U	<u> </u>	
0	0.025-0.049		40.0	21.0 max ^J	10	8
	0.050-0.500		40.0	21.0 max ^J	12	10
Te TeoH	0.005.0.050	77.0		66.0	0	7
T6, T62 ^H	0.025-0.259	77.0 77.0	•••	66.0	8	7
	0.260-0.500	77.0	•••	66.0	9	8

TABLE 2 Continued

Temper	Specified Wall — Thickness, $^{\mathcal{C}}$ in.	Tensile Str	Tensile Strength, ksi		Elongation in 2 in. or 4 × Diameter, E min, %	
		min	max	Yield Strength ^D (0.2 % offset), min, ksi	Full-Section Specimen	Cut-Out Specimen
Т73 ^к	0.025–0.259	66.0		56.0	10	8
	0.260-0.500	66.0		56.0	12	10

A See Annex A1

TABLE 3 Lot Acceptance Criteria for Resistance to Stress-Corrosion

	Lot A		
Alloy and Temper	Electrical Conductivity, A,B % IACS	Level of Mechanical Properties	Lot Acceptance Status
7075–T73	40.0 or greater	per specified requirements	acceptable
	38.0 through 39.9	per specified requirements and yield strength does not exceed minimum by more than 11.9 ksi	acceptable
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^C
	less than 38.0	any level	unacceptable C

^A The electrical conductivity shall be determined in accordance with Practice 1004 in the locations noted below.

When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or resolution heat treatment and precipitation

neat treatment).		
Wall Thickness, in.		Location
up through 0.100	$\chi_{\mathcal{O}}$	surface of tensile sample
0.101 and over	the.	subsurface after removal of approximately 10 % of thickness.

Specification, there are no standard equivalent metric sizes for Pipe. Metric sizes are converted and shown only for user convenience.

- 3.1.5 *supplier*—jobber or distributor as distinct from producer.
- 3.1.6 *Definitions* Refer to Terminology B881 for definitions of other product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *capable of*—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.
- 3.2.2 *drawn seamless tube*—seamless tube that is subjected to drawing after extrusion.

4. Ordering Information

4.1 Orders for material to this specification shall include the following information:

- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (Section 7),
 - 4.1.4 Temper (Section 8),
- 4.1.5 Cross-sectional dimensions (outside diameter and wall thickness, or inside diameter and wall thickness for round tube; for tube other than round, square, rectangular, hexagonal, or octagonal with sharp corners, a drawing is required),
 - 4.1.6 Length (straight or coiled),
- 4.1.7 Nominal inside diameter of coils and weight or maximum outside diameter, if applicable,
- 4.1.8 For alloy Alclad 3003 or Alclad 3102 state clad inside or outside (17.1).
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:

^B To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 % both in accordance with the rounding-off method of Practice E29.

^C Coiled tube is generally available with a maximum wall thickness of 0.083 in. and only in nonheat-treatable alloys.

^D Yield strength to be determined only on straight tube.

Elongation of full-section and cut-out sheet-type specimens is measured in 2 in. of cut-out round specimens, in 4x specimen diameter.

F In this alloy tube other than round is produced only in the F (as drawn) and O tempers. Properties for F temper are not specified or guaranteed.

^G Beginning with the 1982 issue the requirements for the H112 tempers were replaced by the H113 temper, applicable to other than round tube, which is fabricated by cold-forming annealed round tube and acquires some temper in this forming operation.

^H Material in the T42 or T62 tempers is not available from the material producers.

For specified wall thickness under 0.025 in., elongation is not required.

Applicable only to round tube. The maximum yield strength for other-than-round tube shall be negotiated.

K Material in this temper exhibits improved resistance to stress corrosion compared to that of the T6 temper. The stress-corrosion resistance capability of individual lots is determined by testing the previously selected tension-test samples in accordance with the applicable electrical conductivity acceptance criteria of Table 3.

^B For curved surfaces, the conductivity shall be measured on a machined flat spot; however, for small size tubes, a cut-out piece may be flattened and the conductivity determined.

- 4.2.1 For alloys 6061, 6063, and 6262, specify if Press Solution Heat Treatment in accordance with Practice B807/B807M is not acceptable (11.2).
- 4.2.2 Whether heat treatment in accordance with Practice B918/B918M is required (11.3),
- 4.2.3 Whether flattening tests are required (Section 9 and Table 4),
 - 4.2.4 Whether flare testing is required (Section 10),
- 4.2.5 Whether 7075-O material is required to develop requirements for T73 temper (12.3),
- 4.2.6 When eddy current indications are allowed, the number allowed and the manner of marking (15.1.3.2),
- 4.2.7 Whether inside cleanness test is required on coiled tubes (16.2) and frequency of testing required,
- 4.2.8 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 20),
 - 4.2.9 DELETED
- 4.2.10 Whether marking for identification is required (Section 23), and
- 4.2.11 Whether Practices B660 applies, and if so, the levels of preservation, packaging, and packing required (Section 24).
- 4.2.12 Whether 7075 alloy Zr+Ti limit applies (Table 1 Footnote J).

5. Materials and Manufacture

5.1 The tube shall be produced by drawing an extruded tube made from hollow extrusion ingot (cast in hollow form or pierced) and extruded by the use of the die and mandrel method.

TABLE 4 Minimum Outside Diameter Flattening Factor

	TABLE 4 Willimum Outside Diameter Flattening Factor				
	Alloy	Temper	Wall Thickness, in.	Minimum Diameter Flattening Factor, F	
	1100	0	0.014-0.500	2	
		H12	0.014–0.500	3	
		H14	0.014-0.500	6	
		H16	0.014-0.500	8	
	3003	0	0.025-0.500	2	
		H12	0.025-0.500	3	
		H14	0.025–0.500	6	
		H16	0.025-0.500	8	
	2024	0 110	0.018-0.049	3	
		C_{N}	0.050-0.500	4	
		Т3	0.018-0.500	8	
	5052	No	0.010-0.450	3	
		H32	0.010-0.450	6	
		H34	0.010-0.450	8	
	5086	0	0.010-0.450	3	
)	H32	0.010-0.450	8	
NV	6061	0	0.018-0.120	3	
7.			0.121-0.238	4	
			0.239-0.500	6	
		T4	0.025-0.500	6	
		T6	0.025-0.500	8	
	7075	0	0.025-0.049	4	
			0.050-0.259	5	
		T6	0.025-0.259	10	

5.2 The ends of coiled tube shall be crimped or otherwise sealed to avoid contamination during shipment.

6. Responsibility for Quality Assurance

- 6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of signing the contract. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.
- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 6.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions subjected to inspection at one time.

7. Chemical Composition

Dosition limits specified in Table 1. Conformance shall be determined by the producer, by taking samples in accordance with Practices E716, when the ingots are poured, and analyzing those samples in accordance with E607, E1251, or E34. At least one sample shall be taken for each group of ingots pouredsimultaneously from the same source of molten metal. If the producer has determined the chemical composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.

Note 3—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze tubes for conformance to chemical composition limits, the method used to sample the tubes for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, or E34. The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken from tubes, a sample shall be taken to represent each 4000 lb or fraction thereof of material in the shipment, except that not more than one sample shall be required per piece.
- 7.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

Note 4—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if

the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

8. Tensile Properties of Material as Supplied

- 8.1 *Limits*—Tube shall conform to the tensile property requirements specified in Table 2.
 - 8.2 Number of Specimens:
- 8.2.1 For tubes having a nominal weight of less than 1 lb/linear ft, one tension test specimen shall be taken for each 1000 lb, or fraction thereof, in a lot.
- 8.2.2 For tubes having a nominal weight of 1 lb or more/ linear ft, one tension test specimen shall be taken for each 1000 ft, or fraction thereof, in a lot.
- 8.2.3 If the shipment contains tubes of more than one alloy, temper, or size, only those tubes of the same alloy, temper, and size shall be grouped for the purpose of selecting tension test specimens. Other procedures for selecting samples may be employed if agreed upon by the producer and the purchaser.
- 8.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Method B557.
- 8.4 *Test Methods*—The tension tests shall be made in accordance with Test Method B557.

9. Flattening Properties

- 9.1 *Limits*—When specified by the purchaser at the time of placing the order, round tube in alloys and tempers listed in Table 4 shall be tested in full section and withstand, without cracking, the minimum outside diameter flattening factor specified in Table 4.
 - 9.2 Number of Specimens:
- 9.2.1 For tubes having a nominal weight of less than 1 lb/linear ft, one flattening test specimen shall be taken for each 1000 lb or fraction thereof in a lot.
- 9.2.2 For tubes having a nominal weight of 1 lb or more/linear ft, one flattening test specimen shall be taken for each 1000 ft, or fraction thereof, in a lot.
- 9.3 *Methods of Test*—Flattening test specimens shall be flattened sidewise under a gradually applied load so as to give a uniform radius of bend until the minimum outside diameter under load is not more than *F* times the wall thickness of the tube as specified in Table 4.
- 9.4 Alternative Bend Test—In case the tube does not flatten so as to give a uniform radius of bend, suitable jigs may be used to bring about this result, or a section of tube of not less than ½ in. in length, with the subtended arc not greater than one half nor less than one third of the circumference of the original tube, shall be removed from the material in question and without further treatment shall be bent around a mandrel having a diameter N times the wall thickness of the tube as specified in Table 5. The bend shall be made with the pin placed on the inside surface of the specimen, with the longi-

TABLE 5 Minimum Bend Factor

Alloy	Temper	Wall Thickness, in.	Minimum Bend Factor, N
2024	Т3	0.018-0.128	6
5052	0	0.010-0.249	1
	H32	0.010-0.249	4
	H34	0.010-0.249	6
5086	0	0.010-0.249	1
	H32	0.010-0.249	6
6061	0	0.018-0.120	100
		0.121-0.238 0.239-0.500	2
	T4	0.025-0.500	- 014
	T6	0.025-0.500	6
7075	0	0.025-0.125	4
		0.126-0.259	6
	T6	0.025-0.062	8
		0.063-0.125	10
		0.126-0.259	12

tudinal axis of the pin and the specimen parallel. The bend shall be continued until the specimen encloses at least 180° of the pin.

9.4.1 After the flattening test, the outer surface of the tube shall be examined visually for cracks. Any evidence of cracking shall be cause for rejection.

10. Flaring Properties

101 Limits—When specified by the purchaser at the time of placing the order, round tube in straight lengths in alloys and tempers 1100-H14, 3003-H14, 5052-O, and 6061-O with a nominal outside diameter of 0.375 in. or less, shall be capable of being double-flared to the configuration of Fig. 1, and with a nominal outside diameter over 0.375 in. shall be capable of being single-flared to the configuration of Fig. 2, without formation of cracks or other defects clearly visible to the unaided eye.

10.2 Number of Specimens—When flare testing is specified in the order, for tube sizes having a nominal weight of less than 1 lb/linear ft, one flaring test specimen shall be taken for each 1000 lb or fraction thereof in the lot. For tubes having a nominal weight of 1 lb or more/linear ft, one flaring test specimen shall be taken for each 1000 ft, or fraction thereof, in the lot.



FIG. 1 Double Flare

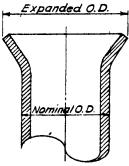


FIG. 2 Single Flare

- 10.3 Preparation of Specimens—Specimens for flaring may be cut from any portion of the tube, or an entire tube may be used as a specimen. The end of the specimen to be flared shall be cut square, with the cut end smooth and free from burrs, but not rounded, except for sizes 0.375 in. and under.
- 10.4 *Test Methods*—The specimen shall be forced axially with steady pressure over a hardened and polished tapered steel pin having a 74° included angle, to produce a flare having the permanent expanded outside diameter specified in Table 6.

11. Heat Treatment

- 11.1 For the production of T3, T4, T6, T7, and T8-type tempers, except as noted in 11.2 or 11.3, shall be in accordancewith AMS 2772.
- 11.2 Unless otherwise specified (4.2.1), alloys, 6061, 6063, and 6262 may be Extrusion Press Solution Heat Treated in accordance with Practice B807/B807M for the production of T4 and T6-typetempers, as applicable.
- 11.3 When specified (4.2.2), heat treatment for the production of T3, T4, T6, T7, and T8-type tempers shall be in accordance with Practice B918/B918M.

12. Producer's Confirmation of Heat-Treat Response

12.1 In addition to the requirements of Section 8, material in Alloys 2014, 2024, 6061, and 6063 produced in the O or F temper (within the size limits specified in Table 2) shall, after proper solution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 2 for T42 temper material. The heat-treated samples may be tested prior to 4 days natural aging, but if they

TABLE 6 Flare Dimensions, in.

Nominal OD	Expanded OD, min	Nominal OD	Expanded OD, min
0.125	0.224	0.750	0.937
0.188	0.302	1.000	1.187
0.250	0.359	1.250	1.500
0.312	0.421	1.500	1.721
0.375	0.484	1.750	2.106
0.500	0.656	2.000	2.356
0.625	0.781		

A Tube with intermediate nominal diameters shall meet the same requirements as those for the next largest diameter. Tube with nominal diameters larger than 2.000 or less than 0.125 in. shall meet requirements as agreed by the purchaser and producer. fail to conform to the T42 temper properties, the tests may be repeated after completion of 4 days natural aging without prejudice.

- 12.2 Alloy 7075 material produced in the O or F temper (within the size limits specified in Table 2) shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 for T62 temper material.
- 12.3 When specified, 7075-O material (within the size limits specified in Table 2) shall, after proper solution and precipitation heat treatment, conform to the properties specified for T73 temper in Table 2 and Section 14.
- 12.4 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to verify conformance with Section 12 shall be as specified in 8.2.

13. Heat Treatment and Reheat Treatment Capability

- 13.1 As-received material in the O or F temper and in Alloys 2014, 2024, 6061, and 6063 (within the size limitations specified in Table 2 and without the imposition of cold work) shall, after proper solution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 2 for T42 temper material.
- 13.2 As-received Alloy 7075 material in the O or F temper (within the size limitations specified in Table 2 and without the imposition of cold work) shall, after proper solution and precipitation heat treatment, conform to the properties specified in Table 2 for the T62 temper.
- 13.3 Material in Alloys and Tempers 2014-T4, T6; 2024-T8; and 6063-T4, T6 shall, after proper resolution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 2 for the T42 temper.
- Note 5—Beginning with the 1975 revision of B210, 6061-T4 and T6 were deleted from this paragraph because experience has shown the reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 2.
- 13.4 Alloy 7075 material in T6 and T73 tempers shall, after proper resolution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 for the T62 temper.
- 13.5 Material in T4 and T42 tempers shall, after proper precipitation heat treatment, conform to the properties specified in Table 2 for the T6 and T62 tempers, respectively.

14. Stress-Corrosion Resistance

- 14.1 For lot acceptance purposes, resistance to stress-corrosion cracking for each lot of 7075-T73 material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 3.
- 14.2 The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

15. Test for Leaks

- 15.1 Tube shall be tested for leaks by one of the following methods at the option of the producer.
- 15.1.1 *Method 1*—Tubes 1½ in. or less in diameter shall be tested pneumatically at not less than 60 psi air pressure while immersed in water or other suitable liquid. Any evidence of leakage shall be cause for rejection.
- 15.1.2 Method 2—Tubes 1½ in. or less in diameter shall be tested pneumatically at not less than 90 psi air pressure with a gage that will indicate loss of pressure. There shall not be any loss of pressure during a test period of at least 15-s duration.
- 15.1.3 Method 3—Tubes shall be subjected to an eddy-current test in accordance with the procedures described in Practice E215. Reference standards or secondary standards having equivalent eddy-current response shall serve to define acceptance-rejection limits. These reference standards are acceptable for testing any strain-hardened temper of the nonheat-treatable alloys and the F temper of heat-treatable alloys of Table 2 in tubes 1½ in. or less in diameter having a maximum wall thickness of 0.083 in.
- 15.1.3.1 For *straight lengths* of tube reference standards described in Appendixes X1 and X2 of Practice E215 shall be used to standardize the equipment. Tubes 1½ in. or less in diameter and maximum wall thickness of 0.083 in. that produce eddy-current indications less than those from the 2A holes of the applicable reference standard or an equivalent secondary standard shall be acceptable. Any tube having a discontinuity that produces an eddy-current indication equal to or greater than those from the 2A holes of the applicable reference standard or an equivalent secondary standard shall be rejected.
- 15.1.3.2 For coiled tube secondary standards having an equivalent eddy-current response to a No. 70 (0.028 in.) and No. 60 (0.040 in.) drill holes shall be used to standardize the equipment. Tubes 3/16 to 1 in., incl, in diameter and maximum wall thickness of 0.083 in. that produce eddy-current indications less than those from the No. 60 hole of the secondary standard shall be acceptable. Any tube that produces an indication equal to or greater than those from the No. 60 hole of the secondary standard shall be rejected. Setup procedures shall include a check to ensure that tubes containing defects giving responses equal to or greater than that from a No. 60 hole are rejected at the speed of inspection. Tube in long coils may contain up to a specified number of defects per coil when agreed upon between the producer and purchaser. In cases where a specified number of defects per coil is allowed, the need for marking such defects in a coil shall be handled as agreed upon between the producer and purchaser.

16. Special Requirements for Coiled Tubes

16.1 Expansion Test—Coiled tube in the annealed temper only shall be capable of being expanded on a hardened ground tapered steel pin having an included angle of 60°, to the following amounts, without signs of cracks, ruptures, or other defects clearly visible to the unaided eye:

Nominal Outside Diameter, in.
Up through 0.750
0.751 and over

Expansion of Outside Diameter, % 40

Note 6—Other expansion capabilities may be required in special cases but shall be the subject of negotiation between the producer and the purchaser.

- 16.2 Inside Cleanness Requirements and Test—When specified by the purchaser at the time of placing the order, the inside of coiled tube in the annealed temper only shall be sufficiently clean so that, when a test sample of 50 ft or a minimum of 375 in.² internal surface is washed with 1,1,1-trichloroethane or trichloroethylene or equivalent, the residue remaining upon evaporation of the solvent shall not exceed 6.002 g/ft² of interior surface
- 16.2.1 To perform the test a measured quantity of the solvent shall be pulled through the tube into a flask which is, in turn, attached to an aspirator or vacuum pump. The solvent shall then be transferred to a weighed container (crucible, evaporating dish, or beaker). The solvent in the container shall be evaporated to dryness on a low-temperature hot plate or steam bath. Overheating of the container shall be avoided to prevent charring of the residue. The container shall then be dried in an oven at 100 to 110°C for 10 min, cooled in a desiccator, and weighed. A blank determination shall be run on the measured quantity of solvent, and the gain in weight for the blank shall be subtracted from the weighings of the residue sample. The corrected weight shall then be calculated in grams of residue per internal area of tube.
- 162.2 The quantity of the solvent used may vary with the size of tube being examined. A minimum quantity of 100 mL should be used for diameters up to ½ in. and should be increased proportionately for the larger sizes. The quantity of solvent used for the blank run shall be the same as that used for the actual examination of the tube sample.
- 16.2.3 In performing the test, care must be exercised to clean the outside surface of the end of the sample to be immersed in the solvent. The sample must be prepared in such a manner as to prevent the inclusion in the residue of aluminum chips or dust resulting from the cutting of the sample.

17. Cladding

- 17.1 The aluminum-alloy cladding of Alloy Alclad 3003 and Alloy Alclad 3102 tubes shall comprise either the inside surface (only) or the outside surface (only) of the tube as specified. The purchaser shall specify whether "clad inside" or "clad outside" tubes are required.
- 17.2 The Alloy Alclad 3003 and Alloy Alclad 3102 tubes shall be fabricated in such a manner that the cladding thickness will be approximately $10\,\%$ of the specified composite wall thickness for "clad inside" and $7\,\%$ for "clad outside."
- 17.3 When the thickness of the cladding is to be determined on finished tubes, transverse cross sections of at least three tubes from the lot shall be polished for examination with a metallurgical microscope. Using a magnification of 100×, the cladding thickness at four points, 90° apart, in each sample shall be measured and the average of the twelve measurements shall be taken as the thickness. In the case of tubes having a

diameter larger than can properly be mounted for polishing and examination, the portions of the cross section polished for examination may consist of an arc about ½ in. in length.

18. Dimensional Tolerances

- 18.1 Variations from the specified or nominal dimensions shall not exceed the permissible variations prescribed in tables of ANSI H35.2 in accordance with Table 7.
- 18.2 Sampling for Inspection—Examinations for dimensions shall be made to ensure conformance to the tolerances specified.

19. General Quality

- 19.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between producer and purchaser.
- 19.2 Each tube shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

20. Source Inspection

- 20.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and the producer as part of the purchase contract.
- 20.2 When such inspection or witness of inspection and testing is agreed upon, the producer or supplier shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

21. Retest and Rejection

21.1 If any material fails to conform to all the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.

TABLE 7 Index to Tables of Tolerances in ANSI H35.2

Table No	D. Title
12.20	Diameter Drawn, Round Tube
12.21	Width and Depth, Drawn Square, Rectangular, Hexagonal and
	Octagonal Tube
12.22	Diameter-Drawn, Oval, Elliptical, and Streamline Tube
12.23	Corner Radii-Drawn Tube
12.24	Wall Thickness-Drawn Round and Other-than-Round Tube
12.25	Straightness-Drawn Tube
12.26	Twist-Drawn Tube
12.27	Length-Drawn Tube
12.28	Flatness, (Flat Surfaces) Other-than-Round Drawn Tube
12.29	Squareness of Cut Ends-Drawn Tube
12.30	Angularity-Drawn Tube
12.31	Surface Roughness-Drawn Tube
12.32	Dents-Drawn Tube

- 21.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 21.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 21.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of the material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier.

22. Certification

22.1 The producer or supplier shall furnish to the purchaser a certificate stating that the material has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. In addition, all tests reports required by this specification shall be supplied with the certification.

23. Identification Marking of Product

- 23.1 When specified in the contract or purchase order all tubes in straight lengths shall be marked in accordance with Practice B666/B666M and the marking legend shall include the word "seamless."
- 23.2 The foregoing requirements are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

24. Packaging and Package Marking

- 24.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packing and gross weight of containers shall, unless otherwise agreed upon, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 24.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 24.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practice B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MIL-STD-129 for military agencies.

25. Keywords

25.1 aluminum alloy; aluminum-alloy drawn seamless tubes

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accord with Section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum andAluminum Alloy Products (Yellow and Tan Sheets)".
- A1.2 Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products".
- A1.3 Limits denoted as "Tentative" by the AluminumAssociation may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products". Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italies and footnoted as Tentative in the standard.
- A1.4 All tests are performed in accordance with the appropriate ASTM Test Methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5)	
Over 0.55 %	0.X, X.X,
	and so forth.

(except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc, Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- NOTE A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between Titanium and Other Elements, Each, or are specified in footnotes.
- Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

SPECIFICATION FOR ALUMINUM AND PURPLE SPECIFICATION FOR ALUMINUM AND P ALUMINUM-ALLOY ROLLED OR COLD-FINISHED BAR,

SB-211/SB-211M

(23)

(Identical with ASTM Specification B211/B211M-19 except that certification and test reports have been made mandatory.)

Specification for Aluminum and Aluminum-Alloy Rolled or Cold Finished Bar, Rod, and Wire

1. Scope

1.1 This specification covers rolled or cold-finished bar, rod, and wire in alloys (Note 1) and tempers as shown in Table 2 [Table 3].

Note 1—Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.

Note 2—The term *cold finished* is used to indicate the type of surface finish, sharpness of angles, and dimensional tolerances produced by drawing through a die.

Note 3—See Specification B221 [B221M] for aluminum and aluminum-alloy extruded bars, rods, wire, shapes, and tubes; and Specification B316/B316M for aluminum and aluminum-alloy rivet and coldheading wire and rods.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1M. The equivalent UNS alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

B221 Specification for Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

B221M Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric)

B316/B316M Specification for Aluminum and Aluminum-Alloy Rivet and Cold-Heading Wire and Rods

B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products

B557M Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)

B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products

B660 Practices for Packaging/Packing of Aluminum and Magnesium Products

B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products

B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products

B918/B918M Practice for Heat Treatment of Wrought Aluminum Allovs

B985 Practice for Sampling Aluminum Ingots, Billets, Castings and Finished or Semi-Finished Wrought Aluminum Products for Compositional Analysis

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E290 Test Methods for Bend Testing of Material for Ductility

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)

E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of

TABLE 1 Chemical Composition Limits^{A,B,C,D}

Alloy	Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Ti	Bi	Pb	Sn		her ents ^E	Al, min
Alloy	Si	ге	Cu	IVIII	ivig	Oi	INI	211	11	ы	ги	SII	Each	Total ^F	AI, IIIIII
1100 ^G	0.95 Si -	+ Fe	0.05-0.20	0.05				0.10					0.05	0.15	99.00 ^G
2011	0.40	0.7	5.0-6.0					0.30		0.20-0.6	0.20-0.6		0.05	0.15	rem
2111	0.40	0.7	5.0-6.0					0.30		0.20-0.8		0.10-0.50	0.05	0.15	rem
2014	0.50 - 1.2	0.7	3.9-5.0	0.40 - 1.2	0.20-0.8	0.10		0.25	0.15				0.05	0.15	rem 🦌
2017	0.20-0.8	0.7	3.5-4.5	0.40 - 1.0	0.40-0.8	0.10		0.25	0.15				0.05	0.15	rem
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10		0.25	0.15				0.05	0.15	rem
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02			0.10	0.02-0.10				0.05^{H}	0.15^{H}	rem
3003	0.6	0.7	0.05-0.20	1.0-1.5				0.10					0.05	0.15	rem
4032	11.0-13.5	1.0	0.50 - 1.3		0.8 - 1.3	0.10	0.5 - 1.3	0.25					0.05	0.15	rem
5052	0.25	0.40	0.10	0.10	2.2 - 2.8	0.15-0.35		0.10					0.05	0.15	rem
5056	0.30	0.40	0.10	0.05-0.20	4.5 - 5.6	0.05-0.20		0.10					0.05	0.15	rem
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35		0.20	0.20				0.05	0.15	rem
6013	0.6-1.0	0.50	0.6-1.1	0.20-0.8	0.8 - 1.2	0.10		0.25	0.10			(0.05	0.15	rem
6020	0.40-0.9	0.50	0.30-0.9	0.35	0.6 - 1.2	0.15		0.20	0.15		0.05	0.9–1.5	0.05	0.15	rem
6026	0.6-1.4	0.7	0.20-0.50	0.20-1.0	0.6 - 1.2	0.30		0.30	0.20	0.50 - 1.5	0.40	0.05	0.05	0.15	rem
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8 - 1.2	0.04-0.35		0.25	0.15			270	0.05	0.15	rem
6110	0.7-1.5	8.0	0.20-0.7	0.20-0.7	0.50-1.1	0.04-0.25		0.30	0.15			Q	0.05	0.15	rem
6262	0.40-0.8	0.7	0.15-0.40	0.15	0.8 - 1.2	0.04-0.14		0.25	0.15	0.40-0.7	0.40-0.7)	0.05	0.15	rem
7075	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28		5.1-6.1	0.20		· (1)	Y	0.05	0.15	rem

A In case of any discrepancy in the values listed in this table when compared with those listed in the "Teal Sheets" (International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys), the composition limits registered with The Aluminum Association and published in the "Teal Sheets" shall be considered the controlling composition. The "Teal Sheets" are available at http://www.aluminum.org/tealsheets.

Chemical Composition by Spark Atomic Emission Spectrometry

E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy Current) Method

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

E3061 Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based Method)

G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products

2.3 ANSI Standards:

H35.1/H35.1M Alloy and Temper Designation Systems for Aluminum

H35.2 [H35.2M] Dimensional Tolerances for Aluminum Mill Products

2.4 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

2.5 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

2.6 Aerospace Material Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials

2.7 The Aluminum Association:

International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys ("Teal Sheets")

2.8 Other Standards:

CEN EN 14242 Aluminium and Aluminium Alloys-Chemical Analysis-Inductively Coupled Plasma Optical Emission Spectral Analysis

3. Terminology

- 3.1 Definitions:
- 3.1.1 Refer to Terminology B881 for definitions of product terms in this specification.
- 3.1.2 *flattened and slit wire*—Flattened wire which has been slit to obtain square edges.
 - 3.2 Definitions of Terms Specific to This Standard:

^B Limits are in mass percent maximum unless otherwise shown.

^C Analysis shall be made for the elements for which limits are shown in this table.

^D For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

EOthers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.

FOther Elements—Total: Total shall be the sum of unspecified metallic elements 0.010 % or more each, rounded to the second decimal before determining the sum.

Gauther The aluminum content is the difference between 100.00 % and the sum of all other metallic elements and silicon present in amounts of 0.010 % or more each, rounded

to the second decimal before determining the sum.

H Vanadium 0.05–0.15 % zirconium 0.10–0.25 %. The total for other elements does not include vanadium and zirconium.

TABLE 2 Mechanical Property Limits^A (US Customary)

Temper	Specified Diameter or	Ter	nsile Strength, ksi	Yield Strength ^B (0.2 %	Elongation ^B in 2 in. or
remper	Thickness, in.	min	max	offset), min, ksi	4× Ďiameter, min %
			Aluminum 1100		
0	0.124 and under	11.0	15.5		
	0.125 and over	11.0	15.5	3.0	25
H12	0.374 and under	14.0			
H14	0.374 and under	16.0			
H16	0.374 and under	19.0			
H18	0.374 and under	22.0			
H112	all	11.0		3.0	
F	all	D	All 0044	D	<u>···</u>
T3	0.125–1.500	45.0	Alloy 2011	38.0	100
13	1.501–2.000	45.0 43.0	• • •	34.0	10
	2.001–3.500	42.0	• • •	30.0	(2)
T4 and T451 ^E	0.125-8.000	40.0		18.0	16
T6 and T651 ^E	0.375–6.500	54.0		40.0	10
T8	0.125–3.250	54.0		40.0	10
	0.120 0.200	00	Alloy 2111	10.0	3
Τ8	0.500-3.500	52.0		38.0	10
			Alloy 2014 ^F	, V	
0	0.124 and under		35.0		
	0.125-8.000		35.0		12
T4, T42 ^{<i>G</i>} , & T451 ^{<i>E</i>}	0.124 and under	55.0		S	
	0.125-8.000 ^H	55.0		32.0	16
T6, T62 ^{<i>G</i>} , & T651 ^{<i>E</i>}	0.124 and under	65.0		V	
	0.125-8.000 ^H	65.0		55.0	8
0	0.124 and under		Alloy 2017 ^F		
5			35.0		16
T4, T42 ^G , & T451 ^E	0.125-8.000 0.124 and under	55.0	35.0	<u> </u>	16
14, 142 , 0 1431	0.125-8.000 ⁷	55.0		32.0	 12
	0.125-0.000	33.0	Alloy 2024 ^F	32.0	12
)	0.124 and under		35.0		
	0.125-8.000		35.0		16
Г36	0.124 and under	69.0			
	0.125-0.375	69.0	C/A	52.0	10
Γ4 ^J	0.124 and under	62.0	N		
	0.125-0.499	62.0	ς Υ ·	45.0 ⁷	10
	0.500-4.500 ^H	62.0		42.0 ^{<i>J</i>}	10
	$4.501-6.500^{K}$	62.0	<u> </u>	40.0	10
	6.501-8.000 ^K	58.0		38.0	10
T42 ^G	0.124 and under	62.0	• • • • • • • • • • • • • • • • • • • •	:::	
T42 ^{<i>G</i>}	0.125-1.000	62.0		40.0	10
TOF4F	1.001-6.500 ^H	62.0		40.0	10
T351 ^E	0.500-6.500 ^H	62.0		45.0	10
T6	6.501-8.000 0.124 and under	62.0	• • •	45.0	9
10	0.125-6.500 ^H	62.0	• • •	50.0	 5
T62 ^{<i>G</i>}	0.123-6.300 0.124 and under	60.0			
102	0.125-6.500 ^H	60.0		46.0	 5
T851 ^E	0.500-6.500 ^H	66.0		58.0	5
	4.		Alloy 2219		
T851 ^E	0.500-2.000	58.0		40.0	4
	2.001-4.000	57.0		39.0	4
	.:.(6)		Alloy 3003		
)	all	14.0	19.0	5.0	25
H12	0.374 and under	17.0			
H14	0.374 and under	20.0			
H16	0.374 and under	24.0			
- 118	0.374 and under	27.0			
H112	✓ all	14.0		5.0	
f O	all	<i>D</i>		D	
F00	0.075.0.750	-1.0	Alloy 4032	10.0	
T86	0.375-0.750	51.0	Alloy FOE2	46.0	4
	0.124 and under		Alloy 5052		
	0.124 and under	 25 0	32.0		
100	0.125 and over	25.0	32.0	9.5	25
132	0.124 and under	31.0		22.0	
H34	0.125-0.374 0.374 and under	31.0 34.0		23.0 26.0	
H36	0.374 and under 0.124 and under	34.0	• • •		
100	0.124 and under 0.125-0.374	37.0 37.0	• • •	29.0	
H38	0.374 and under	39.0			• • • •
F	all			D	
1	uli .		• • •		

TABLE 2 Continued

		IABLE 2				
Temper	Specified Diameter or	Tensile S	Strength, ksi	Yield Strength ^B (0.2 %	Elongation ^B in 2 in. or	
Temper	Thickness, in.	min	max	offset), min, ksi	4× Diameter, min %	
		Allo	y 5056			
0	0.124 and under		46.0			
	0.125 and over		46.0		20	
H111	0.374 and under	44.0				
H12	0.374 and under	46.0				
H32 H14	0.374 and under 0.374 and under	44.0 52.0				
H34	0.374 and under	50.0			···· · · · · · · · · · · · · · · · · ·	
H18	0.374 and under	58.0				
H38	0.374 and under	55.0				
H192	0.374 and under	60.0			×/O	
H392	0.374 and under	58.0				
0	all .		y 5154	11.0	05	
<u>O</u> H32	all 0.374 and under	30.0 36.0	41.0	11.0	25	
H34	0.374 and under	39.0		····)	
H36	0.374 and under	42.0		27		
H38	0.374 and under	45.0		2		
H112	all	30.0		11.0		
		Allo	y 6013			
T651 ^E	0.500-4.000	56.0		52.0	7	
T8	0.750-1.500	58.0		56.0	8	
	1.501-5.500	57.0		55.0	7	
T8	0.187-0.375	43.0	y 6020	40.0	12	
18	0.187-0.375	43.0 42.0		39.0	12	
	2.000-3.250	39.0		36.0	12	
	2.000 0.200		y 6026	30.0	12	
T6	0.200-3.000	54.0		44.0	6	
T8	0.200-3.000	50.0	0	46.0	3	
Т9	0.200-3.000	52.0	O2.	48.0	3	
		Alloy	/ 6061 ⁻ /			
0	0.124 and under		22.0			
T4 & T451 ^E	0.125-8.000		22.0		18	
14 & 1451 ⁻	0.124 and under 0.125-8.000'	30.0 30.0	S	16.0	18	
T42 ^G	0.125-8.000 ¹	30.0		14.0	18	
T6, T62 ^G , & T651 ^E	0.124 and under	42.0				
. 0, . 02 , 0 00 .	0.125–8.000′	42.0		35.0	10	
T89 & T94	0.374 and under	54.0		47.0		
		Allo	y 6110			
T9	0.374 and under	65.0		63.0	2	
			y 6262			
T6 & T651 ^E	0.125-8.000 ^H	42.0		35.0	10	
T8 T9	0.750-2.000	45.0		43.0	12	
19	0.125-2.000	52.0	• • •	48.0	5 5	
	2.001–3.000	50.0	, 7075 ^F	46.0	5	
0	0.124 and under		40.0			
	0.125-8.000	• • •	40.0		10	
T6, T62 ^G	0.124 and under	77.0		66.0		
	0.125-4:000	77.0		66.0	7	
T651 ^E	0.124 and under	77.0		66.0		
	0.125-4.000 ^L	77.0		66.0	7	
	4.001-6.000	75.0		64.0	7	
T70 0 T7054F	6.001–7.000	73.0		62.0	7	
T73 & T7351 ^E	0.124 and under	68.0	• • •			
	0.125-4.000	68.0		56.0 55.0	10	
~()`	4.001–5.000 5.001–6.000	66.0 64.0		55.0 52.0	8 8	
	0.001 0.000	0 1.0		02.0		
Temper (Specified Diame	ter or Thickness, in	Bend Diame	ter Factor, N	
			y 2017			
T4, T42, & T451			and under		M	
WV			5–8.000′	6	М	
Ź1.			y 2024			
0			and under		1	
T351, T4, T42			and under		3	
			5–6.500 v 3003		6	
0			y 3003 all		0	
<u>0</u> H12			and under		2	
H14			and under		2	
H16			and under		8	
-		0.07 1 0				

- A To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi [1 MPa] and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29. The basis for establishment of tensile property limits is shown in Annex A1.

 The measurement of yield strength and elongation is not required for wire less than 0.125 in. [3.20 mm] in thickness or diameter.
- ^c Elongations in 50 mm applies to rectangular bar up through 12.5 mm thickness from which a standard rectangular tension test specimen is machined. The 5x diameter $(5.65\sqrt{A})$ requirements, where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round specimens tested in full section or to standard or proportional, round-machined, tension test specimens.
- ^D There are no tensile requirements for material in the F temper but it usually can be expected that material 1½ in. [40 mm] or less in thickness or diameter (except sections over 4 in. [100 mm] in width) will have a strength about equivalent to the H14 or H34 temper. As size increases the strength decreases to nearly that of the O temper. For stress-relieved tempers, characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.
- F Also available in the F temper for which no properties are specified or test results provided. Producers shall perform tension tests to confirm response to heat treatment as required by Section 10.
- G Material in the T42 or T62 tempers is not available from the materials producers. These properties can usually be obtained by the user when material is propertify solution heat treated or solution and precipitation heat treated from the O or F temper. These properties also apply to samples of material in the O or F temper that are solution heat treated or solution and precipitation heat treated by the producer to determine that the material will respond to proper heat treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the O temper, prior to solution heat treatment. ^H Properties listed for this full size increment are applicable to rod. Properties listed are also applicable to square, rectangular, hexagonal, or octagonal bar having a maximum thickness of 4 in. [100 mm] and a maximum cross-sectional area of 36 in.² [23 000 mm²].
- ¹ For bar, maximum cross-sectional area is 50 in.² [32 000 mm²].
- / Minimum yield strength for 2024-T4 wire and rod 0.125 in. [3.20 mm] and larger in thickness or diameter, produced in coil form for both straight length and coiled products, is 40.0 ksi [275 MPa].
- K Properties listed for this size increment are applicable to rod only.
- For rounds, maximum diameter is 4 in. [100 mm]; for square, hexagonal, or octagonal bar, maximum thickness is 3½ in. [90 mm]; for estangular bar, maximum thickness is 3 in. [80 mm] with corresponding maximum width of 6 in. [150 mm]; for rectangular bar less than 3 in. [80 mm] in thickness, maximum width is 10 in. [250 mm].
- M Bend diameter factor values stated for this full size increment apply to T4 product only. Values listed also apply to T451 product in the 0.500-8.000 in. [12.20-200 mm]
- 3.2.1 capable of—The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds [kilograms],
 - 4.1.3 Alloy (Section 7),
 - 4.1.4 Temper (Section 9),
- 4.1.5 Product Form, rolled or cold finished bar, rolled or cold finished rod, or wire,
- 4.1.6 Geometry and Dimensions, Diameter for rounds; distance across flats for square-cornered squares, hexagons, or octagons; width and depth for square-cornered rectangles (orders for squares, hexagons, octagons, or rectangles with rounded corners usually require a drawing),
 - 4.1.7 Length, and
- 4.1.8 Tensile property limits and dimensional tolerances for sized not covered in Table 2 [Table 3] and in ANSI H35.2 [H35.2M], respectively.
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.21 Whether heat treatment in accordance with Practice B918/B918M is required (8.2),
- 4.2.2 Whether 7075-O material is required to develop requirements for T73 temper (see 10.1.2),
- 4.2.3 Whether bend testing is required for 2017, 2024, or 3003 (Section 12),
- 4.2.4 When specified finish of bar and rod is not required (Section 15),

- 4.2.5 Whether marking for identification is required (Section 16),
- 4.2.6 Whether ultrasonic inspection is required (Section 17, Table 5Table 5),
- 4.2.7 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 19),
- 4.2.8 DELETED
- 4.2.9 Whether Practices B660 apply, and if so, the levels of preservation, packaging, and packing required (Section 22).

5. Manufacture

5.1 The products covered by this specification shall be produced either by hot extruding and cold finishing or by hot rolling with or without cold finishing, at the option of the producer.

6. Quality Assurance

- 6.1 Responsibility for Inspection and Tests-Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use their own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.
- 6.2 Lot Definition-An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.

ASME BPVC.II.B-2023

TABLE 3 Mechanical Property Limits (Metric SI)^A

-	Specified Diameter or Thickness, mm		Tensile Str	ength, MPa	Yield Strength ⁴ M	³ (0.2 % offset), Pa	Elongation, B, C min, %		
Temper	over	through	min	max	min	max	in 50 mm	in 5× Diame $(5.65\sqrt{A})$	
			ı	Numinum 1100				(V	
)	2.20	3.20	75 75	105			 05	 22	
112	3.20	10.00	95	105	20		25		
114		10.00	110						
116		10.00	130					7.77	
118		10.00	150					. 1111	
112	all all		75 D		20 D			/// 0	
	all			Alloy 2011			-01	٠٠٠.	
3	3.20	40.00	310		260		10	9	
	40.00	50.00	295		235			10	
4 17454F	50.00	90.00	290		205			12	
4 and T451 ^E 6 and T651	3.20 10.00	200.00 160.00	275 370		125 275		16	14 9	
8	3.20	80.00	370		275	···· Q	10	9	
	0.20	00.00	0.0	Alloy 2111	2.0	- 4/			
3	12.70	88.90	360		260	2/1		9	
				Alloy 2014 ^F					
	2.00	3.20		240		, D			
4, T42 ^{<i>G</i>} , & T451 ^{<i>E</i>}	3.20	200.00 3.20	380	240		<u>, (,</u>	12	10	
	3.20	200.00 ^H	380		220		16	14	
5, T62 ^{<i>G</i>} , & T651 ^{<i>E</i>}		3.20	450		_ ///.				
	3.20	200.00 ^H	450		380		8	7	
		0.00		Alloy 2017 ^F	7				
	3.20	3.20 200.00		240 240	2		16	14	
I, T42 ^G , & T451 ^E		3.20	380	240	◇ .				
, , , , , ,	3.20	200.00 ^{H,I}	380		220		12	10	
				Alloy 2024					
		3.20		240					
36	3.20	200.00 3.20	475	240			16	14	
30	3.20	10.00	475	%	360		10		
1^{J}		3.20	425						
	3.20	12.50	425		310 ^{<i>J</i>}		10		
	12.50	120.00 ^H	425		290 ^J			9	
	120.00 160.00	160.00 ^K 200.00 ^K	425 425		275 260			9 9	
42 ^{<i>G</i>}		3.20	400		200				
	3.20	25.00	425		275		10	9	
	25.00	160.004	425		275			9	
351 ^E	12.50	160.00	425		310			9	
,	160.00	200.00	425		310			8	
6	3.20	3.20 160.00 ^H	425 425		345		 5	4	
62 ^{<i>G</i>}	3.20	3.20	415						
	3.20	160.00 ^H	415		315		5	4	
351 ^E	12.50	160.00 ^H	455		400			4	
351 ^E	<u></u>	F0.00	100	Alloy 2219	075				
351-	12.50 50.00	50.00 100.00	400 395		275 270			3 3	
	*	100.00	000	Alloy 3003	270				
		3.20	95	130					
	3.20		95	130	35		25	22	
12		10.00	115						
16		10.00 10.00	140 165						
18		10.00	185						
12	all		95		35				
V	all		D		D				
	10.00	00.00	050	Alloy 4032	045				
36	10.00	20.00	350	Alloy 5052	315		4	3	
		3.20	170	Alloy 5052 220					
	3.20	0.20	170	220	65		25	22	
32		3.20	215						
	3.20	10.00	215		160				
34		3.20	235						

TABLE 3 Continued

			TABL	E 3 Continue					
Temper		eter or Thickness, nm	Tensile Stre	ength, MPa	Yield Strength ^E M		Elongation, B, C min, %		
	over	through	min	max	min	max	in 50 mm	in 5× Diameter $(5.65\sqrt{A})$	
H36		3.20	Alloy 255	5052 (Continue					
ПОО	3.20	10.00	255 255		200				
F	all		D		D				
				Alloy 5056					
0		3.20		320					
H111	3.20	10.00	300	320			20	18	
H12		10.00	315					<u> </u>	
H32		10.00	300					-C),	
H14		10.00	360					~ 6	
H34		10.00	345					<u> </u>	
H18 H38		10.00 10.00	400 380		• • • •			• • • • • • • • • • • • • • • • • • • •	
H192		10.00	415				07	• • • • • • • • • • • • • • • • • • • •	
H392		10.00	400				0		
				Alloy 5154			/ V		
0		3.20	205	285			/		
Цоо	3.20	10.00	205	285	75		25	22	
H32 H34		10.00 10.00	250 270			<u>S`</u>		• • • • • • • • • • • • • • • • • • • •	
H36		10.00	290			11		• • • • • • • • • • • • • • • • • • • •	
H38		10.00	310			0			
H112	all		205		75	V			
=				Alloy 6013					
T651 ^E T8	12.50 20.00	100.00 40.00	385		360			<u>6</u> 7	
18	40.00	140.00	400 395		385 380			6	
	40.00	140.00	393	Alloy 6020					
T8	5.00	10.00	295		275		12		
	10.00	50.00	290	'	270		12	10	
	50.00	80.00	270		250			10	
T6	5.00	80.00	370	Alloy 6026	300		6	8	
T8	5.00	80.00	345	- <u> </u>	315		3	4	
T9	5.00	80.00	360	O)	330		3	4	
				Alloy 6061 ^F			-	<u> </u>	
0		3.20	(155					
	3.20	200.00	0	155			18	16	
T4 & T451 ^E		3.20	205						
T42 ^G	3.20 3.20	200.00 ⁷ 200.00 ⁷	205		110 95		18 18	16 16	
T6, T62 ^G , & T651 ^E	3.20	3.20	290						
.0, .02 , a .00.	3.20	200.00′	290		240		10	9	
T89 and T94		10.00	370		325				
		N		Alloy 6110					
<u>T9</u>		10.00	450		435		2		
T6 and T651 ^E	3.20	200.00 ^H	290	Alloy 6262	240		10	9	
T8	20.00	50.00	310		295		12	10	
T9	3.20	50.00	360		330		5	4	
	50.00	80.00	345		315			4	
				Alloy 7075 ^F					
0		3.20		275					
Te TeoG	3.20	200.00	 F20	275			10	9	
T6, T62 ^G	3.20	3.20 100.00 ^L	530 530		455 455		7	6	
T651 ^E	3.20	3.20	530		455 455				
1501	3.20	100.00 ^L	530		455		7		
Ci	100.00	160.00	515		440		7		
\sim	160.00	200.00	505		425		7		
T73 and T7351 ^E	:::	3.20	470		:::				
	3.20	100.00	470		425		10	9	
07/2	100.00 120.00	120.00 160.00	455 440		380 360		8	9 7	
~ X -	120.00	100.00	440		500			/	

Tompor	Specified Diamete	r or Thickness, mm	Bend Diameter Factor, N
Temper	over	through	Bend Diameter Factor, N
	Alloy	/ 2017	
T4, T42, and T451		3.20	3 ^M
	3.20	200.00′	6 ^M
	Alloy	/ 2024	
0		3.20	1
T351, T4, and T42		3.20	3
	3.20	160.00	6
	Alloy	/ 3003	~??
0	all		0
H12		10.00	2
H14		10.00	2
H16		10.00	80
	(See Table 2	for footnotes.)	Cille

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion

	Lot Acce	ptance Criteria	⟨ ⟨ ⟩,			
Alloy and Temper	Electrical Conductivity, A % IACS	Level of Mechanical P	roperties / Lot Acceptance Status			
7075-T73 and T7351	40.0 or greater	per specified requirements	acceptable			
	38.0 through 39.9	per specified requirements and yield acceptable strength does not exceed minimum by more than 11.9 ksi [82 MPa]				
	38.0 through 39.9	per specified requirements strength exceeds minimum [82 MPa] or more				
	less than 38.0	any level	unacceptable ^B			
Product ^{A,B}	Thickness, ir	n. [Thickness, mm]	Location			
Rolled or cold finished from rolled stock	all	NE.	surface of tension-test sample			
Cold finished from extruded stock	up through 0.100 [up through 2.50 mm]	ASIA	surface of tension-test sample			
	over 0.100 through 0.50 [over 2.50 through 12.50		subsurface after removing approximately 10 $\%$ of the thickness by machining			
	over 0.500 through 1.50 [over 12.50 through 40.6		subsurface at approximate center of thickness on a plane parallel to the longitudinal centerline of the material			
	over 1.500 [over 40.00 mm]		subsurface of tension-test sample surface that is closest to the center of the material and on a plane parallel to the extrusion surface			

TABLE 5 Ultrasonic Discontinuity Limits for Rolled or Cold-Finished Bar^A

, O				
Alloys	Thickness, in.	Maximum Weight per Piece, lb	Maximum Width to Thickness	Discontinuity Class ^B
-W	[Thickness, mm]	[kg]	Ratio	Discontinuity Class
2014, 2219, 2024, 7075	0.500-1.499	600		В
	[12.50–35.00 mm]	[300 kg]		
~C.,	1.500-3.000	600		Α
	[35.00–80.00 mm]	[300 kg]		
	3.001-6.000	1000		В
14	[80.00-155.00 mm]	[500 kg]		

^A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas. ^B The discontinuity class limits are defined in Section 11 of Practice B594.

A The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations:

B When material is found to be unacceptable is all be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable).

6.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions subjected to inspection at one time.

7. Chemical Composition

7.1 Limits—The bars, rods, and wire shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by taking samples in accordance with E716 when the ingots are poured and analyzing those samples in accordance with E607, E1251, E3061, or CEN EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical composition of the material during pouring of the ingots, they shall not be required to sample and analyze the product.

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze bars, rod or wire for conformance to chemical composition limits, the method used to sample for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with Practices E716, Test Methods E607, E1251, or E3061, or CEN EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 *Methods of Sampling*—Samples for chemical analysis shall be taken in accordance with Practice B985.
- 7.2.2 Methods of Analysis—Analysis shall be performed in accordance with Test Methods E607, E1251, E3061, or CBN EN 14242 (ICP Method).
- 7.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

8. Heat Treatment

- 8.1 Unless otherwise specified in 8.2, producer or supplier heat treatment for the applicable tempers in Table 2 [Table 3] shall be in accordance with AMS 2772.
- 8.2 When specified, heat treatment of applicable tempers in Table 2 [Table 3] shall be in accordance with Practice B918/B918M.

9. Tensile Properties of Material As Supplied

- 9.1 *Limits*—The bar, rod, and wire shall conform to the tensile requirements in Table 2 [Table 3].
 - 9.2 Number of Specimens:

- 9.2.1 For material having a nominal weight of less than 1 lb/linear ft [up through 1.7 kg/linear meter], one tension test specimen shall be taken for each 1000 lb [500 kg] or fraction thereof in the lot. Only one specimen shall be taken from any one piece when more than one piece is available.
- 9.2.2 For material having a nominal weight of 1 lb or more/linear ft [over 1.7 kg/linear meter], one tension test specimen shall be taken for each 1000 ft [300 m] or fraction thereof in the lot. Only one specimen shall be taken from any one piece when more than one piece is available.
- 9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B557 [B557M].
- 9.4 Test Methods—The tension tests shall be made in accordance with Test Method B557 [B557M].

10. Producer Confirmation of Heat Treat Response

- 10.1 In addition to the requirements of 9.1, material in Alloys 2014, 2017, 2024, and 6061 produced in the O or F temper (within the size limits specified in Table 2 [Table 3]) shall, after proper solution heat treatment and natural aging for not less than four days at room temperature, conform to the properties specified in Table 2 [Table 3] for T42 temper material. The heat treated samples may be tested prior to four days natural aging, but if they fail to conform to the T42 temper properties, the tests may be repeated after completion of four days natural aging without prejudice.
- 10 11 Alloy 7075 material produced in the O or F temper (within the size limits specified in Table 2 [Table 3]) shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 [Table 3] for T62 temper material.
- 10.1.2 When specified, 7075-O material (within the size limits specified in Table 2 [Table 3]) shall, after proper solution and precipitation heat treatment, conform to the properties specified for T73 temper in Table 2 [Table 3] and Section 13.
- 10.2 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to verify conformance with 10.1 shall be as specified in 9.2.

11. Heat Treatment and Reheat Treatment Capability

- 11.1 As-received material in the O or F temper and in Alloys 2014, 2017, 2024, and 6061 (within the size limitation specified in Table 2 [Table 3] and without the imposition of cold work) shall, after proper solution heat treatment and natural aging for not less than four days at room temperature, conform to the properties specified in Table 2 [Table 3] for T42 temper material.
- 11.2 As-received Alloy 7075 material in the O or F temper (within the size limitation specified in Table 2 [Table 3] and without the imposition of cold work) shall, after proper solution and precipitation heat treatment, conform to the properties specified in Table 2 [Table 3] for T6 and T62 tempers.
- 11.3 Material in Alloys and Tempers 2014-T4, T451, T6, T651; 2017-T4, T451; 2024-T4, T6, T351, and T851, shall,

after proper resolution heat treatment and natural aging for not less than four days at room temperature, conform to the properties specified in Table 2 [Table 3] for the T42 temper.

Note 6—Beginning with the 1975 revision, 6061-T4, T6, T451, and T651 were deleted from this paragraph because experience has shown the reheat-treated material tends to develop large recrystallized grains and may fail to develop the expected level of properties.

- 11.4 Alloy 7075 material in T6, T651, T73, and T7351 tempers shall, after proper resolution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 [Table 3] for T6 and T62 tempers.
- 11.5 Material in T3, T4, T42, T351, and T451 tempers shall, after proper precipitation heat treatment, conform to the properties specified in Table 2 [Table 3] for the T8, T6, T62, T851 and T651 tempers, respectively.

12. Bend Properties

12.1 When bend testing is specified for the alloys, tempers, and dimensions as listed with Bend Diameter Factor, N, values in Table 2 [Table 3]; bend test specimens shall be prepared and tests shall be made in accordance with the applicable requirements of Test Method E290. Bend test samples shall be bent cold without cracking through an angle of 180° around a pin having a diameter equal to N times the product diameter or least thickness of the specimen.

13. Stress-Corrosion Resistance

- 13.1 Alloy 7075 in the T73-type tempers shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.2.
- 13.1.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
- 13.1.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.2 in the T73 type temper, for each thickness range 0.750 in. [20.00 mm] and over listed in Table 2 [Table 3], produced that month Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.
- 13.2 The stress-corrosion cracking test shall be performed on material 0.750 in. [20.00 mm] and over in thickness as follows:
- 13.2.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. The stress level shall be 75 % of the specified minimum yield strength.
- 13.2.2 The stress-corrosion test shall be made in accordance with Test Method G47.
- 13.2.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 20.2 shall apply.

14. Dimensional Tolerances

- 14.1 Material ordered to this specification shall meet the applicable dimensional requirements of ANSI H35.2 [H35.2M].
- 14.2 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

15. Finish

15.1 Unless otherwise specified, rod up to and including 3 in. in diameter and bar up to and including 2 in thick (with maximum width for rectangles of 4 in.) shall be supplied cold finished. Rod and bar in larger sizes may be furnished either as rolled or cold finished, at the producer's or supplier's discretion.

16. Identification Marking of Product

16.1 When specified in the contract or purchase order, all material shall be marked in accordance with Practice B666/B666M.

17. Internal Quality

17.1 When specified by the purchaser at the time of placing the order, each bar 0.500 in. or greater in thickness or smallest dimension in Alloys 2014, 2024, 2219, and 7075 shall be tested in accordance with Practice B594 to the discontinuity acceptance limits of Table 5.

18. General Quality

- 18.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between the producer and the purchaser.
- 18.2 Each inspection lot of bar, rod, and wire shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

19. Source Inspection

- 19.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 19.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

20. Rejection and Retest

20.1 If any material fails to conform to all of the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.

- 20.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for re-test shall meet the requirements of the specification or the lot shall be subject to rejection.
- 20.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 20.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of the material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier.

21. Certification and Test Report

21.1 The producer or supplier shall furnish to the purchaser a certificate of inspection stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has been found to meet the requirements. In addition, all test reports required by this specification shall be supplied with the certification.

22. Packaging and Package Marking

22.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each

package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packing and gross weight of containers shall, unless otherwise agreed upon, be at the producer's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.

- 22.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weight, and the producer's name and trademark.
- 22.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practice B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MID-STD-129 for military agencies.

23. Keywords

23.1 aluminum allow rolled or cold-finished bar; rolled or cold-finished rod; rolled or cold-finished wire

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Mechanical property limits are established in accordance with section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)".

Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, nechanical property limits are based on the statistical analyses of at least 100 tests from at least five cast lots of standard production material with no more than ten observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products".

Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products". Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %.

Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least three cast lots of standard production material with no more than ten observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.

All tests are performed in accordance with the appropriate ASTM test methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1M. The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1M. A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain of the control of t

refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

1 2 1	
Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 % Unalloyed aluminum made by a refining process Alloys and unalloyed aluminum not made by a refining process	0.0XX 0.0X
0.10 through 0.55 % (It is customary to express limits of 0.30 through 0.55 % as 0.X0 or 0.X5)	0.XX
Over 0.55 % (except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)	0.X, X.X, etc.

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

NOTE A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.

Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR ALUMINUM AND NUM-ALLOY EXTRUDED BARS, RODG PROFILES, AND TUBES ALUMINUM-ALLOY EXTRUDED BARS, RODS, WIRE, PROFILES, AND TUBES

(Identical with ASTM Specification B221-12 except that certification and text reports have been made mandatory.) ASMENORANDOC. COM. Click to view the full

Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

1. Scope

1.1 This specification covers aluminum and aluminumalloy extruded bars, rods, wire, profiles, and tubes in the aluminum alloys (Note 1) and tempers shown in Table 2.

Note 1—Throughout this specification, the use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2—For rolled or cold-finished bar and rod refer to Specification B211, for drawn seamless tube used in pressure applications, Specification B210, for structural pipe and tube, Specification B429/B429M, and for seamless pipe and tube used in pressure applications, Specification B241/B241M.

Note 3—Structural pipe and tube produced in accordance with B221 is not intended for fluid-carrying applications involving pressure. Refer to either Specification B210 or B241/B241M, as appropriate, for seamless pipe and tube used in fluid-carrying applications involving pressure.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1M. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9; for example, A91100 for Aluminum 1100 in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex 42.
- 1.4 A complete metric companion to B221 has been developed—B221M; therefore, no metric equivalents are presented in this specification.

2. Referenced Documents

2.1 The following documents of the issue in effect on the date of material purchase, unless otherwise noted, form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

- B210 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes
- B211 Specification for Aluminum and Aluminum-Alloy Rolled or Cold Finished Bar, Rod, and Wire
- B241/B241M Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube
- B429/B429M Specification for Aluminum-Alloy Extruded Structural Pipe and Tube
- B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
- B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
- B807M Practice for Extrusion Press Solution Heat Treatment for Aluminum Alloys
- B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
 - B918 Practice for Heat Treatment of Wrought Aluminum Alloys
 - B945 Practice for Aluminum Alloy Extrusions Press Cooled from an Elevated Temperature Shaping Process for Production of T1, T2, T5 and T10–Type Tempers
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
 - E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
 - E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)

- E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis
- E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method
- E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry
- G34 Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test)
- G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products
- 2.3 ANSI Standards:
- ANSI H35.1/H35.1M Alloy and Temper Designation Systems for Aluminum
- H35.2 Dimensional Tolerances for Aluminum Mill Products 2.4 *Federal Standard:*
- Fed. Std. No. 123 Marking for Shipment (Civil Agencies) 2.5 *Military Standard*:
- MIL-STD-129 Marking for Shipment and Storage
- 2.6 AMS Specification:
- AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials
- 2.7 CEN Standard:
- EN 14242 Aluminium and aluminium alloys Chemical analysis Inductively coupled plasma optical emission spectral snalysis

3. Terminology

- 3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard
- 3.2.1 capable of—The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (Section 7 and Table 1),
 - 4.1.4 Temper (Section 8 and Table 2),
 - 4.1.5 Nominal cross-sectional dimensions as follows:
 - 4.1.5.1 For rod and round wire—diameter,
 - 4.1.5.2 For square-cornered bar and wire—depth and width,

- 4.1.5.3 For sharp-cornered hexagonal or octagonal bar and wire—distance across flats.
- 4.1.5.4 For round tube—outside or inside diameter and wall thickness,
- 4.1.5.5 For square or sharp-cornered tube other than round—distance across flats and wall thickness,
- 4.1.5.6 For round-cornered bars, profiles, tube other than round, square, rectangular, hexagonal, or octagonal with sharp corners—drawing required,
 - 4.1.6 Length,
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether solution treatment at the press is unacceptable (9.3),
- 4.2.2 Whether heat treatment in accordance with Practice B918 is required (9.4),
- 4.2.3 Whether ultrasonic inspection is required (Section 17, Table 3).
- 4.2.4 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 18),
 - 4.2.5 DELETED
- 4.2.6 Whether marking for identification is required in accordance with Practice B666/B666M, Section 20,
- 4.27 Whether Practice B660 applies and, if so, the levels of preservation, packaging, and packing required (21.3), and
- 4.2.8 Requirements for tensile property and dimensional tolerance for sizes not specifically covered (8.1.3 and 15.1.1).
- 4.2.9 Whether Titanium and Zirconium algorithm is allowed as shown in Table 1, Footnote G, when ordering 2014 or 2024.
- 4.2.10 Whether Titanium and Zirconium algorithm is allowed as shown in Table 1, Footnote N, when ordering 7075.

5. Materials and Manufacture

5.1 The products covered by this specification shall be produced by the hot extrusion method or by similar methods at the option of the producer, provided that the resulting products comply with the requirements in this specification.

6. Quality Assurance

- 6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.
- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill

TABLE 1 Chemical Composition Limits A,B,C

Note 1—In case of a discrepancy between the values listed in Table 2 and those listed in the "International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys" (known as the "Teal Sheets"), the composition limits registered with the Aluminum Association and published in the "Teal Sheets" should be considered the controlling composition. The "Teal Sheets" are available at http://www.aluminum.org/tealsheets.

Alloy	Silicon	Iron	Copper	Manga-	Magne-	Chromium	Zinc	Titanium	Vanadium	Other E	lements ^D	– Aluminum
Alloy	Silicon	IIOH	Coppei	nese	sium	Chromium	ZITIC	Hanium	variaulum	Each	Total ^E	- Aluminum
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.05	0.03		99.60 min ^F
1100	0.95	Si + Fe	0.05-0.20	0.05			0.10			0.05^{G}	0.15	99.00 min ^F
2014	0.50 - 1.2	0.7	3.9-5.0	0.40 - 1.2	0.20-0.8	0.10	0.25	0.15 ^H		0.05 ^H	0.15	remainder
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15 ^H		0.05^{H}	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02		0.10	0.02-0.10	0.05-0.15	0.05	0.15'	remainder
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10			0.05	0.15	remainder
Alclad 3003		3003	Clad with 70	72 alloy								
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.3		0.25			0.05	0.15	remainder
3102	0.40	0.7	0.10	0.05 - 0.40			0.30	0.10		0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10			0.05	0.15	remainder
5083	0.40	0.40	0.10	0.40 - 1.0	4.0-4.9	0.05-0.25	0.25	0.15		0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20 - 0.7	3.5-4.5	0.05-0.25	0.25	0.15		0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20		0.05^{G}	0.15	remainder
5454	0.25	0.40	0.10	0.50 - 1.0	2.4-3.0	0.05-0.20	0.25	0.20		0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50 - 1.0	4.7-5.5	0.05-0.20	0.25	0.20	(0.05	0.15	remainder
6005	0.6-0.9	0.35	0.10	0.10	0.40-0.6	0.10	0.10	0.10		0.05	0.15	remainder
6005A	0.50-0.9	0.35	0.30	0.50 ^J	0.40-0.7	0.30^{J}	0.20	0.10	, 65	0.05	0.15	remainder
6020 ^K	0.40-0.9	0.50	0.30-0.9	0.35	0.6-1.2	0.15	0.20	0.15		0.05	0.15	remainder
6041 ^L	0.50-0.9	0.15-0.7	0.15-0.6	0.05-0.20	0.8-1.2	0.05-0.15	0.25	0.15		0.05	0.15	remainder
6042 ^M	0.50-1.2	0.7	0.20-0.6	0.40	0.7-1.2	0.04-0.35	0.25	0.15	<u>ک</u>	0.05	0.15	remainder
6060	0.30-0.6	0.10-0.30	0.10	0.10	0.35-0.6	0.5	0.15	0.10	Y	0.05	0.15	remainder
6061 ^N	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15		0.05	0.15	remainder
6063	0.20-0.6	0.35	0.10	0.10	0.45-0.9	0.10	0.10	0.10		0.05	0.15	remainder
6064 ⁰	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.05-0.14	0.25	0.15		0.05	0.15	remainder
6066	0.9-1.8	0.50	0.7-1.2	0.6-1.1	0.8-1.4	0.40	0.25	0.20		0.05	0.15	remainder
6070	1.0-1.7	0.50	0.15-0.40	0.40 - 1.0	0.50 - 1.2	0.10	0.25	0.15		0.05	0.15	remainder
6082	0.7 - 1.3	0.50	0.10	0.40 - 1.0	0.6-1.2	0.25	0.20	0.10		0.05	0.15	remainder
6105	0.6-1.0	0.35	0.10	0.15	0.45 - 0.8	0.10	0.10	0.10		0.05	0.15	remainder
6162	0.40-0.8	0.50	0.20	0.10	0.7-1.1	0.10	0.25	0.10		0.05	0.15	remainder
6262	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.14	0.25	0.15		0.05 ^P	0.15 ^P	remainder
6351	0.7 - 1.3	0.50	0.10	0.40-0.8	0.40-0.8		0.20	0.20		0.05	0.15	remainder
6360	0.35-0.8	0.10-0.30	0.15	0.02-0.15	0.25-0.45	0.05	0.10	0.10		0.05	0.15	remainder
6463	0.20-0.6	0.15	0.20	0.05	0.45-0.9	O,	0.05			0.05	0.15	remainder
6560	0.30-0.7	0.10-0.30	0.05-0.20	0.20	0.20-0.6	0.05	0.15	0.10		0.05	0.15	remainder
7005	0.35	0.40	0.10	0.20 - 0.7	1.0-1.8	0.06-0.20	4.0-5.0	0.01-0.06		0.05 ^Q	0.15 ^Q	remainder
7072 ^R	0.7	Si + Fe	0.10	0.10	0.10		0.8-1.3					remainder
7075	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28	5.1-6.1	0.20 ^S		0.05 ^S	0.15	remainder
7116	0.15	0.30	0.50-1.1	0.05	0.8-1.4		4.2-5.2	0.05	0.05	0.05^{T}	0.15	remainder
7129	0.15	0.30	0.50-0.9	0.10	√1.3–2.0	0.10	4.2-5.2	0.05	0.05	0.05^{T}	0.15	remainder
7178	0.40	0.50	1.6-2.4	0.30	2.4–3.1	0.18-0.28	6.3-7.3	0.20		0.05	0.15	remainder

^A Limits are in weight percent maximum unless shown as a range, or stated otherwise.

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For the purpose of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of the figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

^D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

E Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

F The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

^GBe 0.0003 max for welding electrode, welding rod, and filler wire.

H Upon agreement between the purchaser and the producer or supplier, a Zr + Ti limit of 0.20 % max is permitted. Properties in Specification (Table 2) are not based on the Zirconium and Titanium algorithm.

¹ Zirconium, 0.10–0.25 %. The total for other elements does not include zirconium.

J Manganese plus chromium shall total 0.12-0.50.

^KLead 0.05 % max, Tin 0.9-1.5 %.

^LBismuth 0.30-0.9 %, Tin 0.35-1.2 %.

^MBismuth 0.20-0.8 % Lead 0.15-0.40 %.

N In 1965 the requirements for 6062 were combined with those for 6061 by revising the minimum chromium from "0.15 %" to "0.04 %." This action cancelled alloy 6062.

Plismuth 0.50-0.7 %, Lead 0.20-0.40 %, Bismuth and lead shall be 0.40-0.7 % each.

Zirconium 0.08–0.20 %. The total for other elements does not include zirconium.

R Composition of cladding alloy applied during the course of manufacture. Samples from finished tube shall not be required to conform to these limits.

S Upon agreement between the purchaser and the producer or supplier, a Zr + Ti limit of 0.25 % max is permitted. Properties in Specification (Table 2) are not based on the Zirconium and Titanium algorithm.

^T Gallium 0.03 % max.

TABLE 2 Mechanical Property Limits^{A,B}

Note 1—Strength values shown in parentheses are for information only.

Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile S ks		Yield Stru (0.2 % offs		Elongation i 2 in. or 4 × Diameter, min, % ^C
			min	max	min	max	•
		Aluminum 10	060 ^D				
)	all	all	8.5	14.0	2.5		25 🧹
1112	all	all	8.5		2.5		25
		Aluminum 11					
)	all 	all 	11.0	15.5	3.0		25
1112	all	all	11.0		3.0		25
)	all all	Alloy 2014		20.0		10.0	<u> </u>
· ·4	all	all		30.0		18.0	12
4510 ^E	all	all	50.0		35.0		12
4511 ^E	aii	uii	30.0	• • •	00.0	30	12
-42 ^F	all	all	50.0		29.0	X	12
6	up through 0.499	all	60.0		53.0		7
6510 ^E	0.500-0.749	all	64.0		58.0		7
6511 ^E	· ·	up through 25	68.0		60.0		7
J	0.750 and over	over 25 through 32	68.0	8	58.0		6
	up through 0.749	all	60.0	-11:	53.0		7
62 ^F	0.750 and over	up through 25	60.0	Q.:	53.0		7
	· ·	over 25 through	60.0		53.0		6
		Alloy 202	₽				
)	all	all 💛		35.0		19.0	12
	up through 0.249	all 💃 🚺	57.0		42.0		12 ^G
3	0.250-0.749	all O	60.0		44.0		12 ^G
3510 ^E 3511 ^E }	0.750–1.499	all	65.0 70.0		46.0		10
)		up through 25	70.0		52.0 ^H	• • •	10
	1.500 and over	over 25 through	68.0		48.0′		8
	1.500 and over	32	00.0		40.0		0
	up through 0.749	all	57.0		38.0		12
	0.750-1.499	all	57.0 57.0		38.0		10
42 ^F	1.500 and over	up through 25	57.0 57.0		38.0		10
	(.0)	{	2	-	- 2		
	0.050-0.249 0.250-1.499 1.500 and over	over 25 through 32	57.0		38.0		8
31	0.050-0.249	all	64.0		56.0		4
8510 ^E	0.250-1.499	all	66.0		58.0		5
3511 ^E	1.500 and over	up through 32	66.0		58.0		5
ON.							
-	all	Alloy 2219 all) ^D	32.0		18.0	12
31 3510 ⁵ 3511 ⁶	up through 0.499	up through 25	42.0		26.0		14
351)E	0.500–2.999	up through 25	45.0		27.0		14
			540		22.2		6
62 ^F	up through 0.999	up through 25	54.0		36.0		6

TABLE 2 Continued

			TABLE 2 Cor	ntinued					
Temper	· c	ied Section or Wall kness, in.	Area, in. ²	Tensile S		Yield Street (0.2 % offset		Elongation in 2 in. or 4 × Diameter, min, % ^C	
				min	max	min	max	- 111111, /6	
T81 T8510 ^E T8511 ^E	up throi	ugh 2.999	up through 25	58.0		42.0		6	
			Alloy 3003	D					
0	all		all	14.0	19.0	5.0		25	
H112	all		all	14.0		5.0		25	
0	all		Alloy Alclad 30	13.0	18.0	4.5		25	
H112	all		all	13.0		4.5 ^{<i>J</i>}		25	
			Alloy 3004				70		
0	all		all	23.0	29.0	8.5	Q.7		
H112 ^K	0.028-0	0.050	Alloy 3102	11.0	18.0	4.0	♦ `	25	
11112	0.020		Alloy 5052		10.0	1.0	/		
0	all		all	25.0	35.0	10.0			
0			Alloy 5083		F1.0	700			
H111		ugh 5.000 ^L ugh 5.000 ^L	up through 32 up through 32	39.0 40.0	51.0	16.0 24.0		14 12	
H112		ugh 5.000	up through 32	39.0		16.0		12	
	•		Alloy 5086			V			
0		ugh 5.000 ^L	up through 32	35.0	46.0	14.0		14	
H111 H112		ugh 5.000 ^L ugh 5.000 ^L	up through 32 up through 32	36.0 35.0	10°	21.0 14.0		12 12	
11112	up tillot	agii 5.000	Alloy 5154		\sim	14.0		12	
0	all		all	30.0	41.0	11.0			
H112	all		all	30.0	/	11.0			
		1 5 000/	Alloy 5454		44.0	10.0			
O H111		ugh 5.000 ^L ugh 5.000 ^L	up through 32 up through 32	31.0 33.0	41.0	12.0 19.0		14 12	
H112		ugh 5.000 ^L	up through 32	31.0		12.0		12	
		J	Alloy 5456			-			
0		ugh 5.000 ^L	up through 32	41.0	53.0	19.0		14	
H111		ugh 5.000 ^L	up through 32	42.0		26.0		12	
H112	up triroi	ugh 5.000 ^L	up through 32 Alloy 6005	41.0		19.0		12	
T1	up thro	ugh 0.500	all	25.0		15.0		16	
	up throi	ugh 0.124	all	38.0		35.0		8	
T5	0.125–1	1.000	all	38.0		35.0		10	
	(
		KLI							
		N	Alloy 6005						
T1		igh 0.249	all	25.0		14.5		15	
T5	up throi 0.250–0	úgh 0.249	all all	38.0 38.0		31.0 31.0		7 9	
T61		ugh 0.249	all	38.0		35.0		8	
	0.250-0		all	38.0		35.0		10	
T0544	,,,,,,,		Alloy 6020)		05.5			
T6511	3.250-6	.000	Alloy 6041	38.0		35.0		10	
T6 ^M	0.400-2	.000	all	45.0		40.0		10	
T6511 ^M	0.400-2		all	45.0		40.0		10	
			Alloy 6042						
T5	0.400-0		all	38.0		35.0		10	
T5511	0.500-1 0.400-0		all all	42.0 38.0		35.0 35.0		10 10	
10011	0.500-1		all	42.0		35.0		10	
\sim			Alloy 6060)					
T51		ugh 0.125	all	22.0		16.0		8	
T61		ugh 0.124		30.0		25.0		8	
*	0.125–1	1.000	Alloy 6061	30.0	•••	25.0		10	
0	all		all		22.0		16.0	16	
T1		ugh 0.625	all	26.0		14.0		16	
				_	_		_		

form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.

6.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill

TABLE 2 Continued

		TABLE 2 Co	ntinued					
Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 × Diameter, min, % ^C	
			min	max	min	max	-	
74 74510 ^E 74511 ^E	all	all	26.0		16.0		16 16 16 8	
42 ^F 51 6, T62 ^F	all up through 0.625	all all	26.0 35.0		12.0 30.0		16 N	
6510 ^E 6511 ^E	up through 0.249 0.250 and over	all all	38.0 38.0		35.0 35.0	S	8 10	
		Alloy 606	3			70		
)	all	all		19.0	111 (2)		18	
Г1	up through 0.500 0.501-1.000	all all	17.0 16.0		9.0		12 12	
⁻ 4, T42 ^{<i>F</i>}	up through 0.500 0.501-1.000	all all	19.0 18.0	B	10.0 9.0		14 14	
5	up through 0.500 0.501-1.000	all all	22.0 21.0	C'II.	16.0 15.0		8 8	
52	up through 1.000	all	22.0	30.0	16.0	25.0	8	
T54	up through 0.124 0.125–0.499	all all	33.0 33.0		30.0 30.0		8 10	
Г6, Т62 ^{<i>F</i>}	up through 0.124 0.125–1.000	all O	30.0 30.0		25.0 25.0		8 10	
Г65	up through 0.182	all	36.0		33.0		8	
-6 ^M	0.400-2.000	Alloy 606	38.0		35.0		10	
⁻ 6511 ^M	0.400-2.000	all	38.0		35.0		10	
)		Alloy 606	6	29.0		18.0	16	
, 4, T4510, 4511 ^E 42 ^F	all	all	40.0	29.0	25.0	16.0	14	
6, T6510, 6511 ^E 62 ^F	all all	all all all	40.0 50.0 50.0		24.0 45.0 42.0		14 8 8	
02	o an	Alloy 607			42.0		0	
6, T62	up through 2.999	up through 32 Alloy 608			45.0		6	
G,T6511	0.200-0.750	all	45.0		38.0		6	
CO.	0.751-6.000 6.001-8.000	all all	45.0 41.0		38.0 35.0		8 6	
		Alloy 610	5					
1	up through 0.500	all	25.0		15.0		16	
	up through 0.124 { 0.125–1.000	all all	38.0 38.0		35.0 35.0		8 10	
		Alloy 616	2					
75, T5510, ^E 75511 ^E	up thru 1.000	all	37.0		34.0		7	
⁻ 6, T6510, ^E -6511 ^E	up thru 0.249 0.250–0.499	all all	38.0 38.0		35.0 35.0		8 10	

TABLE 2 Continued

			TABLE 2 Cont					
Temper		Specified Section or Wall Thickness, in.	Area, in. ²	Tensile S ks		Yield Stre (0.2 % offse		Elongation in 2 in. or 4 × Diameter, min, % ^C
			_	min	max	min	max	- '
			Alloy 6262					
6)							
[6510 ^E	(all	all	38.0		35.0		10
76511 ^E	{							
)							
			Alloy 6351					
1		up through 0.499	up through 20	26.0		13.0		15
11		up through 0.749	all	26.0		16.0		16
4		up through 0.749	all	32.0		19.0		16
5		up through 0.249	all	38.0		35.0	, C	8
		0.250-1.000	all	38.0		35.0		10
51		0.125-1.000	all	36.0		33.0	07	10
54		up through 0.500	all	30.0		20.0	Co ^X	10
	(up through 0.124	all	42.0		37.0	, V	8
6	{	0.125-0.749	all	42.0		37.0		10
	(- W	•	
						~2°,		
			Alloy 6360			11		
5		up through 0.250	all	22.0		16.0		8
T6		up through 0.120	all	30.0		25.0		8
		0.121-0.250	all	30.0		25.0		10
			All 0.400		_,(`)`			
1		up through 0.500	Alloy 6463 up through 20	17.0	~~	9.0		12
5		up through 0.500	up through 20	22.0	Q + i +	16.0		8
6		up through 0.124	up through 20	30.0		25.0		8
0	ſ	0.125-0.500	up through 20	30.0		25.0		10
	Ì	0.120 0.000	ap anoagn zo			20.0		
				2/2				
			Alloy 6560					
T5		0.090-0.125	all	22.0		16.0		8
T6		0.090-0.125	all O	30.0		25.0		8
			Alloy 7005					
T53		up through 0.750	all Alloy 7005	50.0		44.0		10
			Alloy 7075 ^D		40.0			
)		all	all	70.0	40.0	70.0	24.0	10
	(up through 0.249	all	78.0		70.0		7
6, T62 ^F		0.250-0.499 0.500-1.499	all all	81.0 81.0		73.0 72.0		7 7
0, 102)	0.500-1.499	all	01.0		72.0		/
6510 ^E	}	1.500-2.999	all	81.0		72.0		7
6511 ^E	J {		up through 20	81.0		71.0		7
0311	·	3.000-4.499	up illiough 20	01.0		71.0		,
		VO	over 20 through	78.0		70.0		6
	KL.		32					-
	67	4.500–5.000	un through 22	70.0		69.0		6
		4.500-5.000	up through 32	78.0		68.0		6
73	, O	0.062-0.249	up through 20	68.0		58.0		7
73510 ^E		0.250-1.499	up through 25	70.0		61.0		8
73510 73511 ^E	-N'	1.500-2.999	up through 25	69.0		59.0		8
. 5011	C. Click	7.000 2.000	ap anough 20	00.0		00.0		J
	\sim	3.000-4.499	up through 20	68.0		57.0		7
	\bigcirc		over 20 through	65.0		55.0		7
~C)		32					

form, alloy, temper, and nominal dimensions subjected to inspection at one time.

7. Chemical Composition

7.1 *Limits*—The material shall conform to the chemical composition limits in Table 1. Conformance shall be deter-

mined by the producer by taking samples in accordance with Practices E716 when the ingots are poured and analyzing those samples in accordance with Test Methods E607, E1251, E34, or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical

TABLE 2 Continued

			IABLE 2 Cont	inuea					
Temper		Specified Section or Wall Thickness, in.	or Wall Area, in. ²		strength, si	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 × Diameter, min, % ^C	
			-	min	max	min	max	-	
		up through 0.049	all	73.0		63.0		7	
T76)	0.050-0.124	all	74.0		64.0		7 7 7 7	
T76510 ^E		0.125-0.249	up through 20	74.0		64.0		7	
T76511 ^E	}	0.250-0.499	up through 20	75.0		65.0		7 P	
		0.500-1.000	up through 20	75.0		65.0			
		1.001–2.000	up through 20	75.0		65.0		∴(O ¹ 7	
		2.001–3.000	up through 20	74.0		64.0		Cil ^O 7 7	
		3.001-4.000	up through 20	74.0		63.0	CO CO	7	
							10		
			Alloy 7116				7		
T5		0.125-0.500	all	48.0		42.0		8	
			Alloy 7129			, V	*		
T5, T6		up through 0.500	all	55.0		49.0		9	
			Alloy 7178 ^D			"U			
0		all	up through 32		40.0	S	24.0	10	
		up through 0.061	up through 20	82.0		76.0			
		0.062-0.249	up through 20	84.0		76.0		5	
T6)	0.250-1.499	up through 25	87.0		78.0		5	
T6510 ^E	}	J	up through 25	86.0	O	77.0		5	
T6511 ^E	J	1.500–2.499	over 25 through 32	84.0		75.0		5	
		2.500–2.999	up through 32	82.0		71.0		5	
		up through 0.061	up through 20	79.0		73.0		5	
		0.062-0.249	up through 20	82.0		74.0		5	
		0.250-1.499	up through 25	86.0		77.0		5	
T62 ^F		1.500–2.499	up through 25	86.0		77.0		5	
		1.500 E.455	arran OE Alanarrah	84.0		75.0		5	
		ILIA	over 25 through 32	64.0		75.0		5	
		2.500-2.999	up through 32	82.0		71.0		5	
T76	,	0.125-0.249	up through 20	76.0		66.0		7	
T76510 ^E		250-0.499	up through 20	77.0		67.0		7	
T76511 ^E	}	0.500-1.000	up through 20	77.0		67.0		7	
	J	×O							

A The basis for establishment of tensile property limits is shown in Annex A1.

B To determine conformance to this specification, each value shall be rounded to the nearest 0.1 ksi for strength and nearest 0.5 % for elongation in accordance with the rounding-off-method of Practice E29.

^C Elongation of full-section and cut-out sheet-type specimens is measured in 2 in. Elongation of cut-out round specimens is measured in 4x specimen diameter. See 8.1.1

and 8.1.2 for conditions under which measurements are not required.

Description These alloys are also produced in the F temper for which no tensile properties are specified or guaranteed.

For stress relieved tempers (T3510, T3511, T4510, T4511, T5510, T5511, T6510, T6511, T73510, T73511, T76510, T76511, T8510, T8511), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

F Material in the T42 and T62 tempers is not available from the material producers.

^G Minimum elongation for tube, 10 %.

H Minimum yield strength for tube, 48.0 ksi.

Minimum yield strength for tube, 46.0 ksi.

Weld strength is not applicable in tube.

Only in tube form.

Properties not applicable to extruded tube over 2.999 in wall thickness.
 M Tentative; properties subject to revision.

TABLE 3 Ultrasonic Discontinuity Limits for Extruded Bar and

Alloy	Thickness, ^B in.	Weight, max per Piece, lb	Max Width: Thickness Ratio	Discontinuity Class ^C
2014 2024 2219	0.500 and over	600	10:1	В
7075 7178	0.500–1.499 1500 and over	600 600	10:1 10:1	B A

^A Discontinuities in excess of those listed in this table shall be allowed, subject to the approval of the procuring activity, if it is established that they will be removed by machining or that they are in noncritical areas.

^B The thickness of any element of a profile shall be deemed to be the smallest

composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze extrusions for conformance to chemical composition limits, the method used to sample extrusions for the determination of chemical compositions shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with Practices E716, Test Methods E607, E1251, E34, EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, in the lot, except that not more than one sample shall be required per piece.
- 7.3 Other methods of analysis, or in the case of dispute, may be decided by agreement between the producer and the purchaser.

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

A Methods of Analysis—The determination of chemical composition shall be made in accordance with suitable chemical (Test Method E34) or spectrochemical (Test Methods E607 and E1251) methods. Other methods may be used only when no published ASTM test method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.

8. Tensile Properties of Material from the Producer

- 8.1 *Limits*—The material shall conform to the tensile property requirements specified in Table 2.
- 8.1.1 The elongation requirements shall not be applicable to the following:
- 8.1.1.1 Material of such dimensions that a standard test specimen cannot be taken in accordance with Test Method B557, and of such a profile that it cannot be satisfactorily tested in full section.
 - 8.1.1.2 Material thinner than 0.062 in.
 - 8.1.1.3 Wire less than 0.125 in. in diameter.
- 8.1.2 The measurement for yield strength is not required for wire less than 0.125 in. in diameter.
- 8.1.3 Tensile property limits for sizes not covered in Table 2 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
 - 8.2 Number of Specimens:
- 8.2.1 For material having a nominal weight of less than 1 lb/linear ft, one tension test specimen shall be taken for each 1000 lb or fraction thereof in the lot.
- 8.2.2 For material having a nominal weight of 1 lb or more per linear foot, one tension test specimen shall be taken for each 1000 ft or fraction thereof in the lot.
- 8.2.3 Other procedures for selecting samples may be employed if agreed upon between the producer or supplier and the purchaser.
- 8.3 Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Method B557.
- 8.4 *Test Methods*—The tension tests shall be made in accordance with Test Method B557.
- 8.5 *Retests*—When there is evidence that the test specimen is defective or is not representative of the lot of material, retesting may be performed in accordance with Sections 8 and 9 of Test Method B557.

9. Heat Treatment

- 9.1 For the production of T1 and T5-type tempers, producer or supplier heat treatment shall be in accordance with ASTM Practice B945.
- 9.2 For the production of T3, T4, T6, T7 and T8-type tempers, except as noted in 9.3 or 9.4, shall be in accordance with AMS 2772.
- 9.3 Unless otherwise specified (4.2.1), alloys 6005A, 6041, 6060, 6061, 6063, 6064, 6066, 6162, 6082, 6262, 6351, 6360, 6463, and 6560 may be solution heat treated and quenched at the extrusion press in accordance with Practice B807/B807M for the production of T4 and T6-type tempers.
- 9.4 When specified (4.2.2), heat treatment of the production of T3, T4, T6, T7, and T8-type tempers shall be in accordance with Practice B918.

10. Producer Confirmation of Heat-Treat Response

10.1 In addition to the requirements of Section 8, material in alloys 2014, 2024, and 6061 produced in the O or F temper (within the size limits specified in Table 2) shall, after proper

^B The thickness of any element of a profile shall be deemed to be the smallest dimension of that element and the discontinuity class applicable to that particular thickness shall apply to that element of the profile.

^C The discontinuity class limits are defined in Section 11 of Practice B594.

solution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 2 for T42 temper material. The heat-treated sample may be tested prior to 4 days natural aging but if they fail to conform to the T42 temper properties, the test may be repeated after completion of 4 days natural aging without prejudice.

10.2 Alloys 2219, 7075, and 7178 material produced in the O or F temper, (within the size limits specified in Table 2) shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 for T62 temper material.

10.3 Number of Specimens—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1 and 10.2 shall be as specified in 8.2.

11. Heat Treatment and Reheat-Treatment Capability

11.1 As-received material in the O or F temper in alloys 2014, 2024, and 6061 (within the size limitations specified in Table 2 and without the imposition of cold work) shall be capable of conforming to the properties specified in Table 2 for T42 temper, upon being properly solution heat-treated and naturally aged for not less than 4 days at room temperature.

11.2 As-received material in the O and F tempers in alloys 2219, 7075, and 7178 (within the size limitations specified in Table 2 and without the imposition of cold work) shall be capable of conforming to the properties specified in Table 2 for the T62 temper, upon being properly solution and precipitation heat-treated.

11.3 Material in alloys and tempers 2014-T4, T4510, T4511, T6, T6510, and T6511, and 2024-T3, T3510, T3511, T81, T8510, and T8511 shall be capable of conforming to the properties specified in Table 2 for the T42 temper upon being properly resolution heat-treated and naturally aged for not less than 4 days at room temperature.

Note 6—Beginning with the 1975 revision, 6061-T4, T6, T4510, T4511, T6510, and T6511 were deleted from 1.3 because experience has shown the reheat-treated material tends to develop large recrystallized grains and may fail to develop the tensile properties shown in Table 2.

11.4 Alloy 2219 in the T31 T3510, T3511, T81, T8510, and T8511 tempers, and alloys 7075 and 7178 in the T6, T651, T6510, and T6511 tempers shall be capable of conforming to the properties specified in Table 2 for the T62 temper, upon being properly resolution heat-treated and precipitation heat-treated.

11.5 Material in T3/T31, T3510, T3511, T4, T4510, and T4511 tempers shall be capable of conforming, upon being properly precipitation heat-treated, to the properties specified in Table 2 for the T81, T8510, T8511, T6, T6510, and T6511 tempers, respectively.

12. Stress-Corrosion Resistance

12.1 Alloy 7075 in the T73 and T76-type tempers and alloy 7178 in the T76-type tempers shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 12.2.

12.1.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

12.1.2 For surveillance purposes, each month the producer shall perform at least one test for stress corrosion resistance on each applicable alloy-temper, for each thickness range 0.750 in. and over produced that month. Each sample shall be taken from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

12.2 The stress-corrosion cracking test shall be performed on material 0.750 in. and over in thickness as follows:

12.2.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. The stress level shall be 75 % of the specified minimum yield strength for T73-type tempers and 25 ksi for T76-type tempers.

12.2.2 The stress corrosion test shall be made in accordance with Test Method G47.

12.2.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

13. Exfoliation-Corrosion Resistance

13.1 Alloys 7075 and 7178 in the T76, T76510, and T76511 tempers shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Category B in Fig. 2 of Test Method G34 when tested in accordance with 13.1.1.

13.1.1 For surveillance purposes, each month at least one exfoliation-corrosion test shall be performed for each size range of extrusions produced during that month. The test shall be in accordance with Test Method G34 on material considered acceptable in accordance with lot-acceptance criteria of Table 4. Specimens shall be selected at random and shall be, if possible, a minimum of 2 by 4 in. with the 4-in. dimension in a plane parallel to the direction of extrusion. The test location shall be in accordance with that specified in Table 4. The producer shall maintain records of all surveillance test results and make them available for examination at the producer's facility.

13.2 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers listed in 13.1 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

14. Cladding

14.1 The aluminum-alloy cladding on clad tube shall comprise the inside surface (only) of the tube and its thickness shall be approximately $10\,\%$ of the total wall thickness.

14.2 When the cladding thickness is to be determined on finished tube, transverse cross sections of at least three tubes from the lot shall be polished for examination with a metallurgical microscope. Using a 100× magnification, the cladding

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

Alley and Temper	Lot A	Acceptance Criteria		
Alloy and Temper	Electrical Conductivity, % IACS ^A	Level of Mechanical Properties	Lot Acceptance Status	
7075-T73, T73510, and	40.0 or greater	per specified requirements	acceptable	
T73511	38.0 through 39.9	per specified requirements and yield strength does not exceed minimum by more than 11.9 ksi	acceptable	
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^B	
	less than 38.0	any level	unacceptable ^B	
7075-T76, T76510, and	38.0 or greater	per specified requirements	acceptable	
T76511	36.0 through 37.9 less than 36.0	per specified requirements any level	suspect ^C unacceptable	
7178-T76, T76510, and	38.0 or greater	per specified requirements	acceptable	
T76511	35.0 through 37.9	per specified requirements	suspect	
	less than 35.0	any level	unacceptable ^B	

A Sampling for electrical conductivity tests shall be the same as for tensile tests as specified in 8.2. Test specimens may be prepared by machining a flat, smooth surface of sufficient width for proper testing. For small sizes of tubes, a cut-out portion may be flattened and the conductivity determined on the surface. Chemical milling may be used on flat surface samples. The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations.

When material in these tempers is found to be suspect it is either tested for exfoliation corrosion resistance in accordance with Test Method G34 (see Table 6.7) or it is reprocessed (additional precipitation heat treatment or resolution heat treatment). Favorable exfoliation corrosion test results shall never be used as acceptance criteria for stress corrosion resistance.

Section thi	ickness, in.	
over	through	Location
	0.100	surface of tension sample
0.100	0.500	subsurface after removal of approximately 10 % of the thickness
0.500	1.500	subsurface at approximate center of section thickness, on a plane parallel to the longitudinal center line of the material
1.500		subsurface on tension-test specimen surface that is closest to the center of the section thickness and on a plane parallel to the extrusion surface

thickness at four points 90° apart in each sample shall be measured and the average of the 12 measurements shall be taken as the thickness. For a tube having a diameter larger than can be properly mounted for polishing and examination, the portions of the cross section polished for examination may consist of an arc about $\frac{1}{2}$ in. in length.

15. Dimensional Tolerances

- 15.1 *Dimensions*—Variations from the specified dimensions for the type of material ordered shall not exceed the permissible variations prescribed in the tables of ANSI H35.2 (see Table 5).
- 15.1.1 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be agreed upon between the producer and purchaser and shall be specified in the contract or purchase order.
- 15.2 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

16. General Quality

- 16. Unless otherwise specified the extruded bar, rod, wire, profile, and tube shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between the producer and purchaser.
- 16.2 Each bar, rod, wire, profile, or tube shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the

purchaser, however, the producer or the supplier may use a system of statistical quality control for such examination.

17. Internal Quality

17.1 When specified by the purchaser at the time of placing the contract or order, each bar or profile 0.500 in. or greater in thickness or smallest dimension, in alloys 2014, 2024, 2219, 7075, and 7178 shall be tested ultrasonically in accordance with Practice B594 to the discontinuity acceptance limits of Table 3.

18. Source Inspection

- 18.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and the producer or supplier as part of the purchase contract.
- 18.2 When such inspection or witness of inspection and testing is agreed upon, the producer or supplier shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's or supplier's operations.

19. Retest and Rejection

19.1 If any material fails to conform to all of the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.

^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment stress relieving, straightening, and precipitation heat treatment, when applicable).

TABLE 5 Tables of ANSI H35.2

	TABLE 5 Tables of ANSI H35.2
Table No.	Title
11.2	Cross-Sectional Dimension Tolerances: Profiles Except for Pro- files in T3510, T4510, T6510, T73510, T76510 and T8510 Tem- pers
11.3	Diameter or Distance across Flats-Round Wire and Rod – Square, Hexagonal and Octagonal Wire and Bar
11.4	Thickness or Width (Distance Across Flats)-Rectangular Wire and Bar
11.5	Length: Wire, Rod, Bar and Profiles
11.6	Straightness: Rod, Bar and Profiles
11.7	Twist Bar and Profiles
11.8	Flatness (Flat Surfaces)-Bar, Solid Profiles and Semihollow Profiles Except for O, T3510, T4510, T6510, T73510, T76510 and T8510 Tempers
11.9	Flatness (Flat Surfaces)-Hollow Profiles Except for O, T3510, T4510, T6510, T73510, T76510 and T8510 Tempers
11.10	Surface Roughness- Wire, Rod, Bar and Profiles
11.11	Contour (Curved Surfaces) Profiless
11.12	Squareness of Cut Ends- Wire, Rod, Bar and Profiles
11.13	Corner and Fillet Radii- Bar and Profiles
11.14	Angularity- Bar and Profiles Except for O, T3510, T4510, T6510, T73510, T76510, and T8510 Tempers
12.2	Diameter Round Tube Except for T3510, T4510, T6510, T73510, T76510 and T8510 Tempers
12.3	Width and Depth- Square, Rectangular, Hexagonal, Octagonal Tube Except for T3510, T4510, T6510, T73510, T76510 and T8510 Temper
12.4	Wall Thickness- Round Extruded Tube
12.5	Wall Thickness- Other Than Round Extruded Tube
12.6	Length- Extruded Tube
12.7	Twist- Other Than Round Extruded Tube
12.8	Straightness- Tube in Straight Lengths
12.9	Flatness(Flat Surfaces)
12.10	Squareness of Cut Ends
12.11	Corner and Fillet Radii: Tube Other Than Round
12.12	Angularity: Tube Other Than Round
12.13	Surface Roughness: Extruded Tube
12.14	Dents: Extruded Tube

- 19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 19.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of the material to

the purchaser. As much of the rejected material as possible shall be returned to the producer or supplier by the purchaser.

20. Identification Marking of Product

20.1 When specified in the contract or purchase order, all material shall be marked in accordance with Practice B666/B666M.

NOTE 7—Ordering per B666/B666M will require the supplier to mark the lot number on each extruded section.

20.2 The requirements specified in 20.1 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification and shall be agreed upon between the producer and purchaser.

21. Packaging and Package Marking

- 21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed upon. The type of packing and gross weight of containers shall, unless otherwise agreed upon, be at the producer or supplier's discretion, provided they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable level shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MIL-STD-129 for Military agencies.

22. Certification

22.1 The producer or supplier shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements. In addition, all test reports required by this specification shall be supplied with the certification.

23. Keywords

23.1 aluminum alloy; extruded bars; extruded profiles; extruded rods; extruded tubes; extruded wire

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accordance with Section 6, Standards Section, of the most current edition of *Aluminum Standards and Data* and the latest edition of the Aluminum Association publication *Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)*.
- A1.2 Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements that are provided in *Tempers for Aluminum and Aluminum Alloy Products*.
- A1.3 Limits denoted as "tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of *Tempers for Aluminum and Aluminum Alloy Products*. Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as "tentative" in the standard.
- A1.4 All tests shall be performed in accordance with the appropriate ASTM test methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1M. The Aluminum Association⁵ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1M. A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain

refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining	0.0X
process 0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, and so forth

(except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between titanium and other elements, each, or are specified in footnotes.
- Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

APPENDIX

(Nonmandatory Information)

X1. DESIGNATIONS FOR METALS AND ALLOYS FORMERLY ASSIGNED IN CONFORMANCE WITH PRACTICE B275

		API	PENDIX			
		(Nonmandat	tory Information)			
X1. DESIGNATI	ONS FOR METALS A	AND ALLOYS FORM	ERLY ASSIGNED IN (CONFORMANCE W	ITH PRACTICE B275	2)
tice were used for alloys in ASTM saluminum and aluminum and aluminum designations of dard Alloys and Te (ANSI H35.1/H35. E527 for information the corresponding alloys are as shown	wrought aluminum are specifications prior to the minum alloys and instance on forming to the American Designation Systems (1M) are standard with an only. The former Assauss and UNS designation with the standard	rmance with this prac- nd wrought aluminum to 1960 and for cast got prior to 1974 but nerican National Stan- ystems for Aluminum ith the UNS, Practice STM designations and ignations for wrought alloys and ingot are as		MEBR	ITH PRACTICE B275	``
	Designations	TABLE X1.1 Wrot	ught Aluminum Alloys	Designations		
ANSI H35.1/H35.1M 1060 1100 2011 2014 2017 2018 2024 2117 3003 3004 4032 5005 5050 †5052 †Editorially corrected.	996A 990A CB60A CS41A CM41A CN42C CG42A CG30A M1A MG11A SG121A G1B G1A GR20A	UNS A91060 A91100 A92011 A92014 A92017 A92018 A92024 A92117 A93003 A93004 A94032 A95005 A95050 A95052	ANSI H35.1/H35.1M 5056 5083 5086 5154 5254 5456 5652 6053 6061 7075	Former B275 – 63 GM50A GM41A GM40A GR40B GM31A GM51A GR20B GS11B GS11A GS10A GS10B ZG62A	UNS A95056 A95083 A95086 A95154 A95254 A95456 A95652 A96053 A96061 A96063 A96101 A97075	

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR ALUMINUM AND NUM-ALLOY DRAWN SEAMLESS TOP ONDENSERS AND HEAT EXCHA ALUMINUM-ALLOY DRAWN SEAMLESS TUBES FOR

(Identical with ASTM Specification B234-10 except that certification and test reports have been made mandatory.)

Standard Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers

1. Scope

1.1 This specification covers aluminum-alloy (Note 1) drawn seamless round tube in straight lengths designated as shown in Table 2, for use in surface condensers, evaporators, and heat exchangers.

Note 1—Throughout this specification use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2—For drawn seamless tubes used in general applications, see Specifications B210 and B210M; for extruded tubes see Specifications B221 and B221M; for seamless pipe and seamless extruded tube used in pressure applications see Specification B241/B241M; and for structural pipe and tube see Specification B429/B429M.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91060 for aluminum 1060, in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- 1.4 This specification is the inch-pound companion to Specification B234M; therefore, no SI equivalents are presented in the specification.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

- B210 Specification for Aluminum and Aluminum Alloy Drawn Seamless Tubes
- B210M Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes (Metric)
- B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
- B221M Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric)
- B241/B241M Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube
- B429/B429M Specification for Aluminum-Alloy Extruded Structural Pipe and Tube
- B557 Test Methods for Tension Testing Wrought and Cast Aluminum, and Magnesium-Alloy Products
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
- B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- B918 Practice for Heat Treatment of Wrought Aluminum Alloys
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E215 Practice for Standardizing Equipment for Electromagnetic Testing of Seamless Aluminum-Alloy Tube
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)
- E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of

TABLE 1 Chemical Composition Limits^{A,B,C}

Aller	Silicon Iron Copper Manganese Magnesium Chromium Zinc	Titominum	Other Elements ^D		Aluminum						
Alloy	Silicon	Iron	Copper Manganese Magnesium Chromium Z	Zinc	Titanium	Each	Total ^E	– Aluminum			
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.03 ^F		99.60 min ^G
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
Alclad 3003	}				3003 alloy	clad with 707	'2 alloy				
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5454	0.25	0.40	0.10	0.50-1.0	2.4-3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder 🎺
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
7072 ^H	0.7 Si	+ Fe	0.10	0.10	0.10		0.8-1.3		0.05	0.15	remainder

^A Limits are in percent maximum unless shown as a range or otherwise stated.

TABLE 2 Tensile Property Limits^{A,B}

		IADLI	2 rensile Property	LIIIIII		
Alloy	Tompor	Wall Thickness, in.	Tensile Strength,	Yield Strength,		on in 2 in., or a, ^C min, %
Alloy	Temper	vvaii mickness, in.	min, ksi	(0.2 % offset), - min, ksi	Full-Section Specimen	Cut-Out Specimen
1060	H14	0.010-0.200	12.0	10.0		
3003	H14	0.010-0.024 0.025-0.049	20.0	17.0 17.0	3 5	 3
	H25	0.050-0.200 0.010-0.200	20.0 22.0	17.0 19.0	8 	4
Alclad 3003	H14	0.010-0.024 0.025-0.049	19.0 19.0	16.0 16.0	 5	 3
	H25	0.050-0.200 0.010-0.200	19.0 21.0	16.0 18.0	8 	4
5052	H32	0.010-0.200	31.0	23.0		
	H34	0.010–0.200	34.0	26.0		
5454	H32	0.010-0.050 0.051-0.200	36.0 36.0	26.0 26.0		5 8
	H34	0.010-0.050 0.051-0.200	39.0 39.0	29.0 29.0		4 6
6061	T4	0.025-0.049	30.0	16.0	16	14
	Т6 🎺	0.050-0.200 0.025-0.049 0.050-0.200	30.0 42.0 42.0	16.0 35.0 35.0	18 10 12	16 8 10

A To determine conformance to this specification, each value for ultimate strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

Chemical Composition by Spectrochemical Analysis E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry ANSI Standards:

H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Products 2.4 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

2.5 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearestunit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

DOthers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in this specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered

EOther Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

F Vanadium 0.05 max.

G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all the metallic elements present in amounts of 0.010 % or more, rounded to the second decimal before determining the sum.

H Composition of cladding alloy as applied during the course of manufacture. The sample from finished tube shall not be required to conform to these limits.

The basis for establishment of mechanical property limits is shown in Annex A1.

^C Elongation of full-section and cut-out sheet-type specimens is measured in 2 in., of cut-out round specimens, in 4 × specimen diameter.

2.6 AMS Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials

2.7 EN Standard:

CEN EN 14242 Aluminum and Aluminum Alloys, Chemical Analysis, Inductively Coupled Plasma Optical Emission Spectral Analysis

3. Terminology

- 3.1 Refer to Terminology B881 for definitions of product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—the term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (Section 7),
 - 4.1.4 Temper (Section 8),
 - 4.1.5 Outside or inside diameter, wall thickness, and length,
- 4.1.6 For alloy Alclad 3003, state clad inside or outside (12.1).
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether heat treatment in accordance with Practice B918 is required (9.2),
- 4.2.2 Whether cut ends of tube are to be deburred Section 14).
- 4.2.3 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 15),
 - 4.2.4 DELETED
- 4.2.5 Whether marking for identification is required (Section 18), and
- 4.2.6 Whether Practices 1860 applies and, if so, the level of preservation, packaging, and packing required (19.3).

5. Manufacture

5.1 The tube shall be produced by drawing an extruded tube made from hollow extrusion ingot (cast in hollow form or pierced) and extruded by use of the die and mandrel method.

6. Responsibility for Quality Assurance

6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is

responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to assure that material conforms to prescribed requirements.

- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 6.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness subjected to inspection at one time.

7. Chemical Composition

7.1 Limits—The tube shall conform to the chemical composition limits in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are poured in accordance with E716 and analyzed in accordance with E607, E1251, E34 or EN 14242. At least one sample shall be taken for each group of ingots poured from the same source of molten metal. If the producer has determined the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product.

Note 3—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze the finished or semifinished product for conformance to chemical composition limits, the method used to sample the finished or semifinished product for the determination of chemical composition shall be as agreed between the buyer and seller. Analysis shall be performed in accordance with E716, E607, E1251, E34, or EN 14242 (ICP method). The number of samples shall be as follows:
- 7.2.1 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb or fraction thereof, of materal in the lot, except that not more than one sample shall be required per piece.
- 7.2.2 Other methods of analysis, in the case of dispute, may be used by agreement between the producer and purchaser.

Note 4—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

8. Tensile Properties of Material as Supplied

- 8.1 *Limits*—The tube shall conform to the tensile property requirements in Table 2.
 - 8.2 *Number of Specimens:*
- 8.2.1 For material having a nominal weight of less than 1 lb/linear ft, one tension test specimen shall be taken for each 1000 lb, or fraction thereof, in the lot.
- 8.2.2 For material having a nominal weight of 1 lb or more/linear ft one tension test specimen shall be taken for each 1000 ft, or fraction thereof, in the lot.
- 8.2.3 Other procedures for selecting samples may be employed if agreed upon by the producer and the purchaser.
- 8.3 *Test Methods*—The tension tests shall be made in accordance with Test Methods B557.

9. Heat Treatment

- 9.1 Unless otherwise specified in 9.2, producer or supplier heat treatment for the applicable tempers in Table 2 shall be in accordance with AMS 2772.
- 9.2 When specified, heat treatment of applicable tempers in Table 2 shall be in accordance with Practice B918.

10. Leak Test

- 10.1 Each length of tube 1.5 in. or less in diameter shall be tested by either of the following methods, at the option of the producer or supplier, consistent with the size limitations indicated:
- 10.1.1 *Method 1*—Applicable to tube with a wall thickness of 0.200 in. max. Each tube shall be subjected to an internal air gage pressure of 250 psi for 5 s while immersed in a suitable liquid. Any evidence of leakage shall be cause for rejection.
- 10.1.2 Method 2—Applicable to tube with a wall thickness of 0.083 in. maximum, as covered by Practice E215. Each tube shall be subjected to an eddy current test in accordance with the procedures described in Practice E215. Reference standards described in Annex A1 and Annex A2 shall be used to standardize the equipment. These same reference standards or secondary standards having equivalent eddy current response shall also serve to define acceptance-rejection limits. Tubes that produce eddy current indications less than those from the 2A holes of the applicable reference standard or an equivalent secondary standard shall be acceptable. Any tube having a discontinuity that produces an eddy current indication equal to or greater than those from the 2A holes of the applicable reference standard or an equivalent secondary standard or an equivalent secondary standard shall be rejected.

11. Expansion Test

The tube ends shall be capable of being flared, without showing cracks or ruptures visible to the unaided eye when corrected for normal vision, by forcing a steel pin having a taper of 1.5 in./ft into the tube until the inside diameter has been increased 20 %.

12. Cladding

12.1 The aluminum alloy cladding of Alclad 3003 tube shall, as specified, comprise either the inside surface (only) and

its thickness shall be approximately $10\,\%$ of the total wall thickness, or the outside surface (only) in which case its thickness shall be approximately $7\,\%$ of the total wall thickness.

12.2 When the thickness of the cladding is to be determined on finished tube, transverse cross sections of at least three tubes from the lot shall be polished for examination with a metallurgical microscope. Using a magnification of 100×, the cladding thickness at four points, 90° apart, in each sample shall be measured and the average of all measurements shall be taken as the thickness. In the case of tubes having a diameter larger than can properly be mounted for polishing and examination, the portions of the cross section polished for examination may consist of an arc about ½ in. in length.

13. Dimensional Tolerances

- 13.1 Variations from the specified wall thickness, length, outside diameter, straightness, and squareness of cut ends shall not exceed the tolerances specified in the tables of ANSI H35.2 (see Table 3).
- 13.2 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

14. General Quality

- 14.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between producer and purchaser.
- 14.2 Grinding to remove minor surface imperfections shall not be cause for rejection, provided the repaired area is within dimensional tolerances.
- 14.3 When so specified on the purchase order, the cut ends of each tube shall be deburred by the use of a wire wheel, file, or other suitable tool or device.
- 14.4 Each tube shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser however, the producer may use a system of statistical quality control for such examinations.

15. Source Inspection

15.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to

TABLE 3 Tables of ANSI H35.2

lable No.	litle
12.36	Heat-Exchanger Tube Wall Thickness
12.37	Heat-Exchanger Tube Length
12.34	Heat-Exchanger Tube Outside Diameter, Heat-
	Treatable Tube
12.35	Heat-Exchanger Tube Outside Diameter, Non-Heat- Treatable Tube
12.38	Heat-Exchanger Tube Straightness
12.39	Heat-Exchanger Tube Squareness of Cut Ends

shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.

15.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

16. Retest and Rejection

- 16.1 If any material fails to conform to all of the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.
- 16.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 16.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 16.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of the material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

17. Certification

17.1 The producer or supplier shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. In addition, all test reports required by this specification shall be provided.

18. Identification Marking of Product

- 18.1 When specified in the contract or purchase order all material shall be marked in accordance with Practice B666/B666M.
- 18.2 The foregoing requirements are minimum; marking systems which involve added information, large characteristics, and greater frequencies are acceptable under this specification.

19. Packaging and Package Marking

- 19.1 The material shall be packaged to provide adequate protection during normal handling and transportation, and each package shall contain only one alloy, temper, and size of material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed upon, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest fate to the delivery point.
- 19.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 19.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MIL-STD-129 for Military agencies.

20. Keywords

20.1 aluminum alloy; drawn seamless tubes; heat exchangers

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accord with Section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)."
- A1.1.1 Dimits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated

products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products."

A1.1.2 Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products." Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat

treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.

A1.1.3 All tests are performed in accordance with the appropriate ASTM test methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION A2.1 Prior to acceptance for inclusion in this specification a composition of wrought or cost of low shall the composition of wrought or cost of the cost of the

- the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/ H35.1(M). The Aluminum Association holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain

99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining	0.0X
process 0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, and
	so forth.
(except that combined Si + Fe limits for 99.00 % minimum	

aluminum must be expressed as 0.XX or 1.XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.
- Note A2.2—Aluminum is specified as minimum for unalloyed aluminum and as a remainder for aluminum alloys.

APPENDIX

(Nonmandatory Information)

X1. GENERAL INFORMATION

- X1.1 The following information does not constitute a part of this specification but is intended to assist in the proper selection and use of the materials.
- X1.2 Alloys 1060, 3003, alclad 3003, 5052, and 5454 are supplied in a strain-hardened temper to meet the specified tensile and yield strengths. Alloy 6061 is supplied in the heat-treated temper (-T4) and in the heat-treated and aged temper (-T6): the -T4 temper is more workable, and after forming work is completed may be aged to the stronger -T6 temper. A typical aging treatment would be to hold the material at 340°F for 6 to 10 h in a suitable furnace and allow to cool at room temperature.
- X1.3 Aluminum heat-exchanger tubes are resistant to most petroleum products and a large number of organic and inorganic chemicals. Aluminum is very resistant to hydrogen sulfide and carbon dioxide. Alloy alclad 3003 tubes are generally recommended in those heat-exchanger services where salt or fresh cooling waters within a pH range of 5 to 8 pass through the tubes. Waters with a pH outside of this range may or may not be corrosive, depending on what compounds present in the water contribute to the acidity or alkalinity.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR ALUMINUM AND NUM-ALLOY SEAMLESS PIPE AND SEA EXTRUDED TUBE ALUMINUM-ALLOY SEAMLESS PIPE AND SEAMLESS

SB-241/SB-241M

(Identical with ASTM Specification B241/B241M-10 except that certification and test reports have been made mandatory, Note 4 has been deleted in para. 7, and the reference to Table 5 in para. 7.1 has been corrected.) Releted in click to view the full action to the ful

Standard Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube

1. Scope

1.1 This specification covers aluminum and aluminum-alloy seamless pipe in the alloys (Note 1) and tempers shown in Table 1 [Table 2] and seamless extruded round tube in the alloys and tempers shown in Table 3 [Table 4] intended for pressure applications. The standard sizes for seamless pipe are listed in Table 16.7 of ANSI H35.2 and H35.2M. Nonstandard alloys, tempers, and sizes of pipe are produced as seamless extruded tube.

Note 1—Throughout this specification, use of the term *alloy*, in the general sense, includes aluminum as well as aluminum alloy.

Note 2—For other seamless drawn tubes, see Specification B210 or Specification B483/B483M. For extruded tube see Specification B221, and for structural pipe and tube see Specification B429/B429M.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1M. The equivalent Unified Numbering System alloy designations are those of Table 5preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2
- 1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other Combining values from the two systems may result in non-conformance with the standard.
- 1.4.1 The SI units are shown either in Brackets or in separate tables.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B210 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes
 - B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
 - B429/B429M Specification for Aluminum-Alloy Extruded Structural Pipe and Tube
 - B483/B483M Specification for Aluminum and Aluminum-Alloy Drawn Tube and Pipe for General Purpose Applications (Withdrawn 2012)
 - B557 Text Methods for Tension Testing Wrought and Cast
 - B357M Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)
- B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
 - B647 Test Method for Indentation Hardness of Aluminum Alloys by Means of a Webster Hardness Gage
 - B648 Test Method for Indentation Hardness of Aluminum Alloys by Means of a Barcol Impressor
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
- B807/B807M Practice for Extrusion Press Solution Heat Treatment for Aluminum Alloys
- B918 Practice for Heat Treatment of Wrought Aluminum Alloys

TABLE 1 Tensile Property Limits for Pipe, Inch-Pound Units^{A,B}

ASME BPVC.II.B-2023

Alloy	Temper	Pipe Size, in.	Tensile Strength, min, ksi	Yield Strength (0.2 % Offset), min, ksi	Elongation in 2 in. or $4 \times$ Diameter, min, $\%^{C}$
3003	H18	Under 1	27.0	24.0	4
	H112	1 and over	14.0	5.0	25
6005	T1	All	25.0	15.0	16
	T5	All	38.0	35.0	8
6005A	T1	All	25.0	14.5	15
	T5	All	38.0	31.0	7
	T61	Under 0.250	38.0	35.0	8
		0.250-1.000	38.0	35.0	10
6041 ^D	T6	All	45.0	40.0	10
6042	T5, T5511	All	38.0	35.0	× 10
6061	T6 (Extruded)	Under 1	38.0	35.0	8
		1 and over	38.0	35.0	10 ^E
	T6 (Drawn)	Under 1	42.0	35.0	8 ^F
		1 and over	38.0	35.0	10 ^G
6063	T6	All	30.0	25.0	8
6064 ^D	T6	All	38.0	35.0	10
6082	T6	All	45.0	38.0	8
6105	T1	All	25.0	15.0	16
	T5	All	38.0	35.0	8
6262	T6	All	38.0	35.0	10
6351	T5	All	38.0	35.0	10 ^E
	T6	All	42.0	37.0	10 ^H

^A The basis for establishment of tensile property limits is shown in Annex A1.

TABLE 2 Tensile Property Limits for Pipe [SI Units]^{A,B}

	T	Š	Tanaila Chranath	Yield Strength	Elongation	on, ^C min, %
Alloy	Temper (Product)	Pipe Size, Designation	Tensile Strength, min, MPa	(0.2 % Offset), min, MPa	in 50 mm	in $5 \times \text{Diameter}$ $(5.65 \sqrt{A})$
3003	H18	Under 1	185	165	4	
	H112	1 and over	95	35	25	22
6005	T1	All	170	105	16	14
	T5	All	260	240	8	
6005A	T1	AI	170	100	15	
	T5	All	260	215	7	6
	T61	All	260	240	8	
6041 ^D	Т6	N All	310	275	10	9
6042	T5, T5511	All	260	240	10	9
6061	T6 (Extruded)	Under 1	260	240	8	
		1 and over	260	240	10 ^E	9
	T6 (Drawn)	Under 1	290	240	8 ^F	
		1 and over	260	240	10 ^{<i>G</i>}	9
6063	T6)	All	205	170	8	7
6064 ^D	<u> 76</u>	All	260	240	10	9
6082		All	310	260	10	8
6105	• T5	All	260	240	8	7
-N	T6	All	290	255	10	9
6262	T6	All	260	240	10	9
6351	T5	All	260	240	10 [€]	9
	T6	All	290	255	10 ^H	9

^A The basis for establishment of mechanical property limits is shown in Annex A1.

For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi, and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding-off method of Rractice E29.

^c Elongation of full-section and cut-out sheet-type specimens is measured in 2 in.; of round specimens, in 4× specimen diameter.

^DTentative—Properties subject to revision.

^E For wall thicknesses less than 0.250 in., the minimum elongation is 8 %.

^F For wall thickness 0.050 to 0.259 in., the minimum elongation is 10 %.

^G For wall thickness 0.260 to 0.500 in., the minimum elongation is 12 %.

^H For wall thickness less than 0.125 in., the minimum elongation is 8 %.

^B For purposes of determining conformance with this specification, each value for ultimate strength and yield strength shall be rounded to the nearest 1 MPa, and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

congations in 50 mm apply for pipe tested in full-section and to sheet type specimens taken from pipes having a wall up to 12.50 mm thick. Elongations in $5D(5.65\sqrt{A})$, where D and A are diameter and cross-sectional area of the specimens respectively, apply to round test specimens machined from wall thicknesses over 6.30 mm.

 $^{^{\}it D}$ Tentative, are subject to modification.

^E For wall thicknesses up through 6.30 mm the minimum elongation is 8 %.

FFor wall thicknesses over 1.25 through 6.60 mm, the minimum elongation is 10 %.

^G For wall thicknesses over 6.60 through 12.50 mm, the minimum elongation is 12 %.

^H For wall thicknesses up through 3.20 mm the minimum elongation is 8 %.

TABLE 3 Tensile Property Limits for Extruded Tube, Inch-Pound Units $^{\!A,\!B}$

Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile Streng	ıth, ksi	Yield St (0.2 % Of	-	Elongation in 2 in. or 4 × Diameter, min % ^C
		_	Min	Max	Min	Max	
			Aluminum 1060)			
)	all	all	8.5	14.0	2.5		25
1112	all	all	8.5		2.5		25
D	all	all					
			Aluminum 1100				^ \
)	all	all	11.0	15.5	3.0		25
1112	all	all	11.0		3.0		25
D	all	all					
			Alloy 2014				So
)	all	all		30.0		18.0	12
⁻⁴ _)						11	
4510 ^E 4511 ^E	all	all	50.0		35.0	027	12
,					•	NE BE	
42	all	all	50.0		29.0		12
r6 , ,	up thru 0.499	all	60.0		53.0		7
「6510 ^E	0.500-0.749	all	64.0		58.0		7
6511 ^{<i>E</i>}	0.750 and over	up thru 25	68.0		60.0		7
		over 25 thru 32	68.0		58.0		6
62	up thru 0.749	all	60.0	Co ^X	53.0		7
02	0.750 and over	up thru 25	60.0	/, V	53.0		, 7
	0.700 and 000	over 25 thru 32	60.0		53.0		6
D	all	all		\mathcal{U} .			
			Alloy 2024)			
)	all	all		35.0		19.0	12
3 ,	up thru 0.249	all	57.0		42.0		10
3510 ^E	0.250-0.749	all	60.0		44.0		10
3511 ^E	0.750-1.499	all	60.0 65.0		46.0		10
) [S	1				
	1 500 and over	up thru 25	70.0		48.0		10
l	1.500 and over	up thru 25 over 25 thru 32	70.0 68.0		48.0 46.0		10 8
l	1.500 and over	up thru 25 over 25 thru 32	70.0 68.0		48.0 46.0		10 8
(42	1.500 and over up thru 0.749						
4 2	•	over 25 thru 32	68.0		46.0		8
4 2	up thru 0.749	over 25 thru 32	68.0 57.0		46.0 38.0	• • •	8 12
4 2	up thru 0.749 0.750–1.499	over 25 thru 32 all all	68.0 57.0 57.0		46.0 38.0 38.0		8 12 10
	up thru 0.749 0.750–1.499 1.500 and over	over 25 thru 32 all all up thru 25 over 25 thru 32	68.0 57.0 57.0 57.0 57.0		46.0 38.0 38.0 38.0 38.0		8 12 10 10 8
·81	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249	over 25 thru 32 all all up thru 25 over 25 thru 32 all	68.0 57.0 57.0 57.0 57.0		46.0 38.0 38.0 38.0 38.0		8 12 10 10 8
	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499	over 25 thru 32 all all up thru 25 over 25 thru 32 all all	68.0 57.0 57.0 57.0 57.0 64.0 66.0		46.0 38.0 38.0 38.0 38.0 56.0 58.0		8 12 10 10 8 4 5
	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249	over 25 thru 32 all all up thru 25 over 25 thru 32 all	68.0 57.0 57.0 57.0 57.0		46.0 38.0 38.0 38.0 38.0		8 12 10 10 8 4
81 8510 ⁼ 8511 ⁼	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499	over 25 thru 32 all all up thru 25 over 25 thru 32 all all	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0		46.0 38.0 38.0 38.0 38.0 56.0 58.0		8 12 10 10 8 4 5
81 8510 ^E 8511 ^E	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499 1.500 and over	all all up thru 25 over 25 thru 32 all all up thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0 Alloy 2219		46.0 38.0 38.0 38.0 38.0 56.0 58.0 58.0		8 12 10 10 8 4 5 5
F81 F8510 ^E F8511 ^E	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499	all all up thru 25 over 25 thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0		46.0 38.0 38.0 38.0 38.0 56.0 58.0		8 12 10 10 8 4 5
881 88510 ^E 88511 ^E	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499 1.500 and over	all all up thru 25 over 25 thru 32 all all up thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0 Alloy 2219		46.0 38.0 38.0 38.0 38.0 56.0 58.0 58.0		8 12 10 10 8 4 5 5
781 78510 ^E 78511 ^E	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499 1.500 and over	all all up thru 25 over 25 thru 32 all all up thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0 Alloy 2219		46.0 38.0 38.0 38.0 38.0 56.0 58.0 58.0		8 12 10 10 8 4 5 5
	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499 1.500 and over	all all up thru 25 over 25 thru 32 all all up thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0 Alloy 2219	32.0	46.0 38.0 38.0 38.0 38.0 56.0 58.0 58.0 		8 12 10 10 8 4 5 5
881 88510 ^E 88511 ^E	up thru 0.749 0.750–1.499 1.500 and over 0.050–0.249 0.250–1.499 1.500 and over	all all up thru 25 over 25 thru 32 all all up thru 32 all all up thru 32	68.0 57.0 57.0 57.0 57.0 64.0 66.0 66.0 Alloy 2219	32.0	46.0 38.0 38.0 38.0 38.0 56.0 58.0 58.0 		8 12 10 10 8 4 5 5

TABLE 3 Continued

Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile Str	ength, ksi	Yield St (0.2 % Of		Elongation in 2 in. or 4 × Diameter, min, % ^C
			Min	Max	Min	Max	
T81 T8510 ^E T8511 ^E	up thru 2.999	up thru 25	58.0		42.0		6 00
F ^D	all	all					
•			Alloy 300				
O H112	all all	all all	14.0 14.0	19.0	5.0 5.0		25 25
F ^D	all	all	14.0		5.0		
			Alclad Alloy			(C)	
0	all	all	13.0	18.0	4.5	770	25
H112	all	all	13.0		4.5	Q	25
F ^D	all	all				A ,	
	all .	all .	Alloy 505		10.0	•	
0 F ^D	all all	all all	25.0	35.0	10.0		
<u> </u>	all	all	Alloy 508	3	~~~~		
0	all	up thru 32	39.0	51.0	16.0		14
H111	all	up thru 32	40.0		24.0		12
H112	all	up thru 32	39.0		16.0		12
F ^D	all	all					
			Alloy 508	6			
0	all	up thru 32	35.0	46.0	14.0		14
H111	all	up thru 32	36.0	6 27	21.0		12
H112	all	up thru 32	35.0	. (, Y	14.0		12
F ^D	all	all	All 5				
0	all	all	Alloy 515 30.0	41.0	11.0		
u H112	all	all	30,0		11.0		
11112	all	an	Alloy 545	4	11.0		
0	all	up thru 32	31.0	41.0	12.0		14
H111	all	up thru 32	33.0		19.0		12
H112	all	up thru 32	31.0		12.0		12
F ^D	all	all	K				
		111	Alloy 545	6			
0	all	up thru 32	41.0	53.0	19.0		14
H111	all 	up thru 32	42.0		26.0		12
H112 F ^D	all	up thru 32	41.0		19.0		12
r ^r	all	all	Alloy 600	· · · ·			• • • •
T1	Up thru 0.500	all	25.0	5	15.0		16
T5	Up thru 0.124	all	38.0		35.0		8
	0.125–1.000	all	38.0		35.0		10
	V-		Alloy 6005	5A			-
T1	Up thru 0.249	all	25.0		14.5		15
T5	Up thru 0.249	all	38.0		31.0		7
	0.250-0.999	all	38.0		31.0		9
T61	Up thru 0.249	all	38.0		35.0		8
$O_{I_{\sigma}}$	0.250-1.000	all	38.0		35.0		10
	0.400.000		Alloy 604	1	40.0		
T6, T6511 ^F	0.400–2.000	all	45.0		40.0		10
10011			Alloy 604	2			
T5.	0.400-0.499	all	38.0	_	35.0		10
T6511	300		- 3.0		-3.0		
<u>, </u>	0.500-1.800	all	42.0		35.0		10
			Alloy 606	1			
0	all	all		22.0		16.0	16
T1	up thru 0.625	all	26.0		14.0		16

TABLE 3 Continued

Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile Stre	ngth, ksi	Yield St (0.2 % O		Elongation in 2 in. or 4 × Diameter, min,
			Min	Max	Min	Max	
T4 T4510 ^E T4511 ^E	all	all	26.0		16.0		16 Section 11 8 10
T42	all	all	26.0		12.0		aija)
T51	up thru 0.625	all	35.0		30.0		500 8
T6, T62		_				10	
T6510 ^E T6511 ^E	up thru 0.249 0.250 and over	all all	38.0 38.0		35.0 35.0	07	8 10
)	0.230 and over	all	30.0		55.0	, B'	10
F ^D	all	all				<u> </u>	
0	all	all	Alloy 6063	19.0	- C	7.	18
O	all	all		19.0	, P		10
T1 ^{<i>G</i>}	up thru 0.500	all	17.0		9:0		12
	0.501-1.000	all	16.0		8.0		12
T4, T42	up through 0.500	all	19.0		10.0		14
	0.501–1.000	all	18.0	ME BP	9.0		14
T5	up thru 0.500	all	22.0	4	16.0		8
	0.501–1.000	all	21.0	W.	15.0		8
T52	up thru 1.000	all	22.0	30.0	16.0	25.0	8
T6, T62	up thru 0.124	all	30.0		25.0		8
	0.125-1.000	all	30.0		25.0		10
F ^D	all	all	Alloy 6064				
,T6 T6511 ^F	0.400–2.000	all	38.0		35.0		10
10011		~~~	Alloy 6066				
0	all	all W		29.0		18.0	16
T4, T4510 ^E	all	all N	40.0		25.0		14
T4511 ^E		: (O)	10.0		20.0		
T42	all all	all	40.0		24.0		14
T6,	it,						
T6510, ^E	all	all	50.0		45.0		8
T6511 ^E	· Q,						
T62	all	all	50.0		42.0		8
			Alloy 6082				
<u>T6</u>	0.200-1.000	all	45.0 Alloy 6105		38.0		8
T1 0.	Up thru 0.500	all	25.0		15.0		16
T5	Up thru 0.500	all	38.0		35.0		8
T5.			Alloy 6162				
T5, T5510 [€]	up thru 1.000	all	37.0		34.0		7
T5511 ^E							
Т6,							
T6510 ^E	up thru 0.249	all	38.0		35.0		8
T6511 ^E	0.250-0.499	all	38.0 Alloy 6262		35.0		10

TABLE 3 Continued

Temper			Specified Section or Wall Thickness, in.	Area, in. ²	Tensile St	trength, ksi	Yield S (0.2 % O	trength lffset), ksi	Elongation in 2 in. or $4 \times$ Diameter, min, $\%^{C}$
					Min	Max	Min	Max	_
T6, T6511			all	all	38.0		35.0		10
					Alloy 63	51			
T4			up thru 0.749	all	32.0		19.0		16
T6			up thru 0.124		42.0		37.0		8
			0.125-0749		42.0		37.0		10
0			all		Alloy 70	40.0		24.0	10
J			all	• • •		40.0		24.0	20 10
T6, T62)	ſ	up through 0.249	all	78.0		70.0		7
Γ6510 ^{<i>E</i>}	Ì		0.250-0.499	all	81.0		73.0	07	7
T6511 ^{<i>E</i>}	J	{	0.500-1.499	all	81.0		72.0	OX	7
			1.500-2.999	all	81.0		72.0	•	7
T73 T73510 T73511	}	{	0.062–0.249 0.250–1.499 1.500–2.999	all up thru 25 up thru 25	68.0 70.0 69.0		58.0 61.0 59.0		7 8 8
F ^D			all	all	 Alloy 71	78 25 10			
0			all	up thru 32	Alloy 71	40.0		24.0	10
0			all	ap ana oz		40.0		24.0	10
		ſ	up through 0.061	all	82.0	1 2.	76.0		
		{	0.062-0.249	up thru 20	84.0		76.0		5
Γ6)		0.250-1.499	up thru 25	87.0		78.0		5
Γ6510 ^E	}	(1.500-2.499	up thru 25	86.0		77.0		5
Γ6511 ^{<i>E</i>}	J		1.000 2.100	over 25 thru 32	84.0		75.0		5
			2.500-2.999	up thru 32	82.0		71.0		5
T62			up thru 0.061	all	79.0		73.0		
			0.062-0.249	up thru 20	82.0		74.0		5
			0.250-1.499	up thru 25	86.0		77.0		5
			1.500-2.499	up thru 25	86.0		77.0		5
			1	over 25 thru 32	84.0		75.0		5
			2.500-2.999	up through 32	82.0		71.0		7
F ^D			all	all					

^AThe basis for establishment of mechanical property limits is shown in Annex A1.

B945 Practice for Aluminum Alloy Extrusions Press Cooled from an Elevated Temperature Shaping Process for Production of T1, T2, T5 and T10–Type Tempers

E18 Test Methods for Rockwell Hardness of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys

E227 Test Method for Optical Emission Spectrometric

^eTo determine conformance to this specification, each value for ultimate strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off-method of Practice E29.

^CElongation of full-section and cut-out sheet-type specimens is measured in 2 in.; of round specimens, in 4 × specimen diameter. See 9.1.1 for conditions under which measurements are not required.

^DTests for tensile properties in the F temper are not required.

For stress relieved tempers (T3510, T3511, T4510, T4511, T5510, T5511, T6510, T6511, T73510, T73511, T8510, T8511), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

Figure 1. Temperative, Properties subject to revision.

^GFormerly designated T42 temper. When properly aged (precipitation heat-treated) 6063-T1 extruded products are designated T5.

TABLE 4 Tensile Property Limits for Extruded Tube [SI Units] A,B

nper							Uliset,	, MPa		
	over	through	over	through	min	max	min	max	in 50 mm	in 5 × diameter $(5.65\sqrt{A})$
					Aluminum 1060					
440	all		all		60	95	15		25	22
112 D	all		all all		60		15		25	22
	all		all		Aluminum 1100					
	all		all		75	105	20		25	22
112	all		all		75		20		25	22
D	all		all		 Allan 0014					<u> </u>
	all		all		Alloy 2014	205		125	12 ~ (10
	an an		an .			200		120	5	10
4 4510 ^E 4511 ^E	all		all		345		240	CAL	7 (12)	10
,									X	
42 ^F	all		all		345		200	//	12	10
6)	ſ	12.50	all		415		365		7	6
6510 ^E }	12.50	18.00	all		440		400	Ch.	,	6
5511 ^E	18.00			16 000	470		415			6
,	18.00		16 000	20 000	470		400			5
	(S		_	
	18.00	18.00	all	16 000	415 415		365 365		7	6 6
62 ^F	18.00		16 000	20 000	415		365			5
) <u>_</u>	(10.00		10 000	20 000	110		10000			Ü
)	all		all			🔿				
					Alloy 2024			100		- 10
	all		all			240		130	12	10
3)		6.30	all		395		290		10	
3510 ^E }	6.30	18.00	all		415		305		10	9 ^H
511 ^E	18.00	35.00	all		450		315			9
ŕ	35.00			16 000	485		330			9
	35.00		16 000	20 000	470		315			7
	,	18.00	all		395		260		12	10
	18.00	35.00	all		395		260			9
2 ^F	35.00			16 000	395		260			9
	35.00		16 000	20 000	395		260			7
1)	(1.20	6.30	all	NO.	440		385		4	
510 ^E }	6.30	35.00	all	~©	455		400		5	4
511 ^E	35.00			20 000	455		400			4
,			N							
	all		all 🕜		All 0040					
	all		all		Alloy 2219	220		125	12	10
	all		×Q.			220		123	12	10
31	(12.50		16 000	290		180		14	12
510 ^E	12.50	80.00		16 000	310		185			12
511 ^E	l									
	ſ .	25.00		16 000	370		250		6	5
62 ^F	25.00	20.00		20 000	370		250			5
	, Olz	•								
1)	\sim									_
510 ^E }	\sim	80.00		16 000	400		290		6	5
311	\mathcal{O}									
	all		all							
			-11		Alloy 3003	400	0.5			
5/4	all		all		95	130	35		25	22
12		1.60	all		95		35			
	1.60		all		95		35		25	22
)	all		all							
			-11		Alclad Alloy 3003					
10	all		all		90	125	30		25 25	22
12	all all		all all		90		30		25	22
	ali		ali							

TABLE 4 Continued

		Section or kness, mm	Area	, mm²	Tensile Stre	ngth, MPa	Yield Stren offset)		Elongation	n, ^C %, min
emper	over	through	over	through	min	max	min	max	in 50 mm	in 5 × diameter $(5.65\sqrt{A})$
					Alloy 5052					` v
) · D	all all		all all		170	240	70 			
			un		Alloy 5083					. 0
)	all			20 000	270	350	110		14	12
111 112	all all			20 000 20 000	275 270		165 110		12 12	10 10
D	all		all	20 000					- ji) <u>.</u>
\	oll .			20,000	Alloy 5086 240	015	95		<u>-4</u>	12
) 111	all all			20 000 20 000	250	315	95 145		S 2	10
l112	all			20 000	240		95		12	10
D.	all		all							
	all		all		Alloy 5154 205	285	75			
1112	all		all		205		75	7.		
)	- 11			22.222	Alloy 5454	005	05	N/		
1 1111	all all			20 000 20 000	215 230	285	85 130	4,	14 12	12 10
1112	all			20 000	215		85		12	10
:D	all		all							
)	all			20 000	Alloy 5456 285	365	130		14	12
1111	all			20 000	290		180		12	10
1112 :D	all			20 000	285	(130		12	10
	all		all		Alloy 6005	-27				
1		12.50	all		170	2 2	105		16	14
5		3.20			260	, V	240		8	
	3.20	25.00			260 Alloy 6005A		240		10	9
1		6.30	all		170		100		15	
5		6.30	all		260		215		7	
61	6.30	25.00 6.30	all all		260 260		215 240		9 8	8
01	6.30	25.00	all	6	260		240		10	9
				0,	Alloy 6041					
Γ6, Γ6511	10.00	50.00			310 ^G		275		10	9
					Alloy 6042					
T5,	10.00	12.50	all <i>O</i>		260		240		10	
5511	12.50	50.00	all		290		240			9
	12.30	30.00	an d		Alloy 6061		240			<u> </u>
)	all		all			150		110	16	14
1		16.00	all		180		95		16	14
		10.00	all		100		93		10	14
4 4510 ^E	all	40:	all		180		110		16	14
「4511 ^E										
42 ^F	all		all		180		85		16	14
	W.	10.00								
T51	·O,	16.00	all		240		205		8	7
6, 62 ^F)	6.30	all		260		240		8	
6, 62 ^f 6510 ^e	6.30		all		260		240		10	9
	all		all							
`					Alloy 6063	100				10
)	all		all		• • •	130			18	16
1		12.50	all		115		60		12	10
	12.50	25.00	all		110		55			10
- 4,		12.50	all		130		70		14	12
42 ^F		00	~··		.00		, ,		• • • • • • • • • • • • • • • • • • • •	12

TABLE 4 Continued

		Section or	Are	a, mm²	Tensile Strei		Yield Stren		Elongation	n, ^C %, min
emper	over	through	over	through	min	max	offset), min	max	in 50 mm	in 5 × diameter
	12.50	25.00	all		125		60			$\frac{(5.65\sqrt{A})}{12}$
5	12.50	12.50 25.00	all all		150 145		110 105		8	7
52		25.00	all		150	205	110	170	8	Z
⁻ 6	3.20	3.20 25.00	all all		205 205		170 170		8 10	
:D	all		all						Se	
¯6, ¯6511	10.00	50.00			Alloy 6064 260		240		710	9
9					Alloy 6066				X	
)	all		all			200		125/	16	14
74, 74510 ^E 74511 ^E	all		all		275	• • •	170	SM	14	12
42	all		all		275		165		14	12
6, 6510 ^E 6511 ^E	all		all		345		310		8	7
· - - - - - - - - - - - - - - - - - - -	all		all		345 Alloy 6082		290		8	7
6	5.00	25.00			310	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	260		8	10 ^H
1 5		12.50 12.50	all all		Alloy 6105 170 260	N	105 240		16 8	14 7
		12.50	all		Alloy 6162)	240		0	,
5, 5510 ^E 5511 ^E		25.00	all		255		235		7	6
⁷ 6, ⁶ 6510 ^E ⁶ 6511 ^E	6.30	6.30 12.50	all all		260 260		240 240		8 10	9
				, (V)	Alloy 6262					
Г6, Г6511	all		all	ille	260		240		10	9
T4		20.00	all • O		Alloy 6351 220		130		16	14
T6	3.20	3.20 25.00	1/10		290 290		255 255		8 10	9
		20.00	×O		Alloy 7075	075				
)	all	6	all		• • •	275		165	10	9
[6, [62 ^F]	\	6.30	all		540		485	• • •	7	• • •
「62510 ^E 「6511 ^E	6.30 12.50	12.50 70.00	all all		560 560		505 495		7	6 6
73)	(- 1.60	6.30	all	13 000	470		400		7	
73510 ^E	6.30	35.00 70.00		16 000 16 000	485 475		420 405		8	7 7
73511 ^E :⊅	all		all							
	all			20 000	Alloy 7178	275		165	10	9
(/)	_	1.60	all		565		525			
<i>,</i>	1.60	6.30	all	13 000	580		525		5	
Γ6 Γ6510 ^E }	6.30	35.00		16 000 16 000	600		540 520		5	4
Г6510 ⁻ } Г6511 ⁻	35.00 35.00	60.00 60.00	16 000	16 000 20 000	595 580		530 515			4 4
1 11601		•								

TABLE 4 Continued

		Section or kness, mm	Area	a, mm²	Tensile Str	ength, MPa		ngth (0.2 %), MPa	Elongation	n, ^C %, min
Temper	over	through	over	through	min	max	min	max	in 50 mm	in 5 × diameter $(5.65\sqrt{A})$
	(1.60	all	13 000	545		505			
	1.60	6.30		13 000	565		510		5	
	6.30	35.00		16 000	595		530		5	4.0
T62 ^F	35.00	60.00		16 000	595		530			. 40
	35.00	60.00	16 000	20 000	580		515			4
	60.00	80.00		20 000	565		490			4
F^D	all	all							is) ,

^AThe basis for establishment of tensile property limits is shown in Annex A1.

Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique (Withdrawn 2002)

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)

E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis

E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products

2.3 ANSI Standards: (

H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Prod-

H35.2(M) Dimensional Tolerances for Aluminum Mill Products [Metric]

24 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) 2.5 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

2.60AMS Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Mate-

2.7 CEN EN Standards

CEN EN 14242 Aluminum and Aluminum Alloys. Chemical analysis. Inductively coupled plasma optical emission spectral analysis

3. Terminology

3.1 Definitions:

- 3.1.1 alclad seamless pipe or alclad seamless tube—a composite pipe or tube product composed of a seamless aluminum alloy core having on either the inside or the outside surface a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.2 extruded seamless round tube—an extruded hollow product having a round cross section and a uniform wall thickness, which does not contain any line junctures resulting from method of manufacture.
 - 3.1.3 *producer*—the primary manufacturer of the material.
- 3.1.4 seamless pipe—extruded or drawn seamless tube having certain standardized sizes of outside diameter and wall thickness commonly designated by "Nominal Pipe Sizes" and American National Standards Institute (ANSI) Schedule Num-
- 3.1.5 supplier—jobber or distributor as distinct from producer.

^eTo determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 1 MPa and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

Elongation in 50 mm apply for shapes tested in full section and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5 D (5.65 \sqrt{A}), where D and A are diameter and cross-sectional area of the specimen respectively, apply to round test specimens machined from thicknesses over 6.30. See 9.1.1 for conditions under which measurements are not required.

PNo mechanical properties are specified or guaranteed. For stress-relieved tempers (T3510, T3511, T4510, T4511, T5510, T5511, T6510, T6511, T73510, T73511, T76510, T76511, T76510, T8511), characteristics and properties offer than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

FMaterial in the T42 and T62 tempers is not available from the material producers.

^G Tentative, Properties subject to revision.

^HFor Table 12.1 in both ASD and ASD(M):

For purposes of harmonization, the 5D and 50 mm elongation limits were established to match extruded tube elongation values previously published in EN 755-2 [1997]. The relationship among the US customary and metric elongation values does not comply with the conversion rules of the Aluminum Association.

- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *capable of*—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

Note 3—For inch-pound orders specify Specification B241; for metric orders specify Specification B241M. Do not mix units.

- 4.1.2 Quantity in pieces or pounds [kilograms],
- 4.1.3 Alloy (Section 7),
- 4.1.4 Temper (Section 9),
- 4.1.5 Pipe size and schedule number (Table 12.55 of ANSI H35.2 and H35.2(M)), or outside diameter and wall thickness (extruded tube), and
 - 4.1.6 Length.
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether solution treatment at the press is unacceptable (8.3),
- 4.2.2 Whether heat treatment in accordance with Practice B918 is required (8.4),
- 4.2.3 Whether pipe size under 1 in. (25 mm) shall be extruded only (5.1 and Table 1 or [Table 2], Footnote F),
 - 4.2.4 Whether threaded ends are required (see 15.2),
- 4.2.5 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 16),
- 4.2.6 Whether Practices B660 applies and, if so, the levels of preservation, packaging, and packing required (20.3),
 - 4.2.7 DELETED
- 4.2.8 Requirements for tensile property and dimensional tolerance for sizes not specifically covered (9.1.2 and 14.2), and
- 4.2.9 Whether ultrasonic inspection is required (Section 16, Table 6 [Table 7]).

5. Materials and Manufacture

5.1 The pipe and tube shall be produced from hollow extrusion ingot (cast in hollow form, or drilled, or pierced from solid ingot) and shall be extruded by use of the die and mandrel method. Pipe and tube may be subsequently cold drawn at the option of the producer.

6. Quality Assurance

6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless dis-

approved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections and tests are deemed necessary to ensure that material conforms to prescribed requirements.

- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 6.2.2 For non-heat treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form alloy, temper, and nominal dimensions subjected to inspection at one time.

7. Chemical Composition

- 7.1 Limits—The pipe or tube shall conform to the chemical composition limits specified in Table 5. Conformance shall be determined by the producer, by taking samples in accordance with E716, when the ingots are poured, and analyzing those samples in accordance with E607, E1251, E34 or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.
- 7.2 If it becomes necessary to analyze the finished or semifinished product for conformance to chemical composition limits, the method used to sample the finished or semifinished product for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, E34 or EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken from pipe or tube, a sample shall be taken to represent each 4000 lb [2000 kg] or fraction thereof of material in the shipment, except that not more than one sample shall be required per piece.
- 7.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

NOTE 4—DELETED

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

8. Heat Treatment

8.1 For the production of T1 and T5-type tempers, producer or supplier heat treatment shall be in accordance with Practice B945.

TABLE 5 Chemical Composition Limits^{A,B,C,D}

					ABLE 5 Ch	emical Comp	ABLE 5 Chemical Composition Limits ABLE 5	(S',5',5',5')						
Allox	Gooilio		2000		Mography	Chromina	Zino	Titonium	ä	700	Ë	Other Elements ^E	$nents^{E}$	Aliminim
Alloy			cobbei	Maligaliese Magnesiulli	Magnesium		ZIIIC		ō	Lead	Ē	Each	Total ^F	Aldillillillilli
1060	0.25	0.35	0.05	0.03	0.03	:	0.05	0.03	ŧ	:	:	0.03 ^G	:	99.60 min ^H
1100	0.95 Si + Fe	+ Fe	0.05-0.20	0.05	:	÷	0.10	÷	i	÷	i	0.05	0.15	99.00 min ^H
2014	0.50-1.2	0.7	3.9-5.0	0.40-1.2	0.20-0.8	0.10	0.25	0.15	:	:	:	0.05	0.15	remainder
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2–1.8	0.10	0.25	0.15	:	:	:	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02	:	0.10	0.02-0.10	:	:	:	0.05	0.15^{J}	remainder
3003	9.0	0.7	0.05-0.20	1.0–1.5	:	:	0.10	:	:	:	:	0.05	0.15	remainder
Alclad 3003 ^K	:	:	:	Ü	:	i	:	:	:	:	:	:	:	:
5052	0.25	0.40	0.10	0.10	2.2–2.8	0.15 - 0.35	0.10	:	:	:	:	0.05	0.15	remainder
5083	0.40	0.40	0.10	0.40-4.0	4.0-4.9	0.05-0.25	0.25	0.15	:	:	:	0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05 - 0.25	0.25	0.15	:	:	:	0.05	0.15	remainder
5454	0.25	0.40	0.10	0.50-1.0	2.4–3.0	0.05-0.20	0.25	0.20	:	:	:	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7-5.5	0.05-0.20	0.25	0.20	:	:	:	0.05	0.15	remainder
9009	6.0-9.0	0.35	0.10	0.10	0.40-0.6	0.10	0.10	0.10	:	:	:	0.05	0.15	remainder
6005A	0.50-0.9	0.35	0.30	0.50	0.40-0.7	0.30	0.20	0.10	:	:	:	0.05^{4}	0.15	remainder
6041	0.50-0.9	0.15-0.7	0.15-0.6	0.05-0.20	0.8 - 1.2	0.05-0.15	0.25	0.15	0.30-0.9	:	0.35-1.2	0.05	0.15	remainder
6042	0.5–1.2	0.7	0.20-0.6	0.40	0.7–1.2	0.04-0.35	0.25	0.15	0.20-0.8	0.15 - 0.40	:	0.05	0.15	remainder
6061 ^M	0.40-0.8	0.7	0.15 - 0.40	0.15	0.8–1.2	0.04-0.35	0.25	0.15	:	:	:	0.05	0.15	remainder
6063	0.20-0.6	0.35	0.10	0.10	0.45 - 0.9	0.10	0.10	0.10	:	:	:	0.05	0.15	remainder
6064	0.40-0.8	0.7	0.15-0.40	0.15	0.8–1.2	0.05-0.14	0.25	0.15	0.50-0.7	0.20-0.40	:	0.05	0.15	remainder
9909	0.9–1.8	0.50	0.7-1.2	0.6–1.1	0.8–1.4	0.40	0.25	0.20	:	:	:	0.05	0.15	remainder
6082	0.7-1.3	0.50	0.10	0.40-1.0	0.6–1.2	0.25	0.20	0.10	:	:	:	0.05	0.15	remainder
6105	0.6-1.0	0.35	0.10	0.15	0.45 - 0.8	0.10	0.10	0.10	:	:	:	0.05	0.15	remainder
6162	0.40-0.8	0.50	0.20	0.10	0.7-1.1	0.10	0.25	0.10	:	:	:	0.05	0.15	remainder
6262	0.40-0.8	0.7	0.15 - 0.40	0.15	0.8–1.2	0.04-0.14	0.25	0.15	0.40-0.7	0.40-0.7		0.05	0.15	remainder
6351	0.7-1.3	0.50	0.10	0.40-0.8	0.40-0.8	:	0.20	0.20	:	:	:	0.05	0.15	remainder
7072 ^N	0.7 Si + Fe	+ Fe	0.10	0.10	0.10	:	0.8–1.9	::	:	:	:	0.05	0.15	remainder
7075	0.40	0.50	1.2–2.0	0.30	2.1–2.9	0.18-0.28	5.1–6.1	0.200	:	:	:	0.05	0.15	remainder
7178	0.40	0.50	1.6–2.4	0.30	2.4–3.1	0.18-0.28	6.3–7.3	0.20	:	:	:	0.05	0.15	remainder
Δ	and the first of the second			1 -1-1-				,						

⁴ Limits are in weight [mass] percent maximum unless shown as a range or stated otherwise.

 $^{\it B}$ Analysis shall be made for the elements for which limits are shown in this table

C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing

the specified limit, in accordance with the rounding-off method of Practice E29

known as the "Teal Sheets"), the composition limits registered with The Aluminum Association and published in the "Teal Sheets" should be consulping composition. The "Teal Sheets" are available at PIn case there is a discrepancy in the values listed in Table 5 with those listed in the International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys (commonly http://www.aluminum.org/tealsheets.

E Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements for which no specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

He aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

^G Vanadium 0.05 % maximum.

¹ A maximum limit of 0.20 % for zirconium + titanium is permitted upon agreement between the purchaser and producer.
² Vanadium 0.05–0.15 %; zirconium, 0.10–0.25 %. The total for other elements does not include vanadium and zirconium.
^K Alloy 3003 clad with alloy 7072.

M Beginning in the 1965 issue, the requirements for alloy 6062 were combined with alloy 6061 by revision of the minimum chromium content of 6061 from 0.15 to 0.04. This action cancelled alloy 6062

Oladding on Alclad 3003.

 o A maximum limit of 0.25 % for zirconium + titanium is permitted upon agreement between the purchaser and producer

TABLE 6 Ultrasonic Discontinuity Limits^A for Seamless Extruded Tube, Inch-Pound Units

Alloy	Wall Thickness, in.	Max Weight per Piece, lb	Max Width: Thickness Ratio	Discontinuity Class ^B
2024	0.500 & over	600	10:1	В
7075	0.500-1.499	600	10:1	В
7178	1.500 & over	600	10:1	Α

^A Discontinuities in excess of those listed in this table shall be allowed, subject to the approval of the procuring activity, if it is established that they will be removed by machining or that they are in noncritical areas.

TABLE 7 Ultrasonic Discontinuity Limits^A for Seamless Extruded Tube, [SI Units]

			,			
	loy	Wall Thick	ness, mm ^B	Max Mass per Piece,	Max Width: Thickness	Discontinuity
AI	юу	Over Through		kg	Ratio	Class ^C
20	24	12.50		300	10:1	В
70	75	12.50	35.00	300	10:1	В
		35.00		300	10:1	Α
71	78	12.50	35.00	300	10:1	В
		35.00		300	10:1	Α

^A Discontinuities in excess of those listed in this table shall be allowed, subject to the approval of the procuring activity, if it is established that they will be removed by machining or that they are in noncritical areas.

- 8.2 For the production of T3, T4, T6, T7, and T8-type tempers, except as noted in 8.3 or 8.4, shall be in accordance with AMS 2772.
- 8.3 Unless otherwise specified (4.2.1), alloys 6005A 6041, 6061, 6063, 6064, 6162, 6082, and 6351 may be solution heat treated and quenched at the extrusion press in accordance with Practice B807/B807M for the production of T4 and T6-type tempers, as applicable.
- 8.4 When specified (4.2.2), heat treatment for the production of T3, T4, T6, T7, and T8-type tempers shall be in accordance with Practice B918.

9. Tensile Properties

- 9.1 *Limits*—The material shall conform to the tensile property requirements specified in Table 1 [Table 2] and Table 3 [Table 4] as applicable.
- 9.1.1 The elongation requirements shall not be applicable to the following:
- 9.1.1.1 Material of such dimensions that a standard test specimen cannot be taken in accordance with Test Methods B557 B557M].
- 1.1.2 Tubes less than 0.062 in. [up through 1.60 mm] in wall thickness.
- 9.1.2 Tensile property limits for sizes not covered in Table 3 and [Table 4] shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
 - 9.2 Number of Specimens:

- 9.2.1 For material having a nominal weight of less than 1 lb/linear ft [up through 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 lb [500 kg] or fraction thereof in the lot.
- 9.2.2 For material having a nominal weight of 1 lb or more/linear ft [over 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 ft [300 m] or fraction thereof in the lot.
- 9.2.3 Other procedures for selecting samples may be employed if agreed upon by the producer and the purchaser
- 9.3 *Test Methods*—The tension tests shall be made in accordance with Test Methods B557 [B557M]

10. Producer Conformation of Heat Treatment Response

- 10.1 The producer shall determine that heat treatable alloys supplied in the O or F tempers (within the size limits specified in Table 3 and [Table 4]) respond to heat treatment in accordance with the following:
- 10.1.1 Alloys 2014, 2024, 6061, and 6063 shall, after proper solution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 3 and [Table 4] for T42 temper material. The heat-treated samples may be tested prior to 4 days natural aging but if they fail to conform to the T42 temper properties, the tests may be repeated after completion of the 4 days natural aging without prejudice.
- 10.1.2 Alloys 2024, 2219, 6061, 6063, 7075, and 7178 shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 3 and [Table 4] for T62 temper material.
- 10.2 *Number of Specimens*—The number of specimens from each lot of O and F temper material shall be as specified in 9.2.
- 10.3 Quality Assurance Screening of Extrusion Press Heat Treated Pipe and Tube—Pipe and tube heat-treated at the extrusion press shall conform to all the requirements of Section 9. In addition, hardness tests shall be performed on each extruded length or, with the approval of the purchaser, on samples selected in accordance with a mutually agreeable sampling plan. The minimum hardness control value shall be in accordance with Table 8 [Table 9] for pipe and with Table 10 [Table 11] for tube for the type of hardness tester used. The specific type of hardness tester shall be left to the discretion of the producer, but the test method shall be in accordance with Test Methods B647, B648, or E18, as applicable.
- 10.3.1 Individual pieces within a lot that fail to conform to the minimum applicable hardness values may be accepted provided that samples from the two pieces exhibiting the lowest minimum hardness values are tension tested and found to conform to the requirements of Table 1 [Table 2] for pipe or Table 3 [Table 4] for tube.

Note 6—It may be necessary in the case of 6xxx—naturally aged tempers to allow for the elapse of four days subsequent to heat treatment for the material to attain its expected strength. Material in these tempers that has been tested for mechanical properties prior to an elapse of four days and fails may be retested after four days without prejudice.

^BThe discontinuity class limits are defined in Section 11, Discontinuity Class Limits, of Practice B594.

^BThe thickness of any element of a "profile" is deemed to be the smallest dimension of that element and the discontinuity class applicable to that particular thickness applies to that element of the profile.

 $^{^{\}it C}$ The discontinuity class limits are defined in Section 11, Discontinuity Class Limits, of Practice B594.

TABLE 8 Hardness Screening Values for Seamless Extruded Tube, Inch-Pound Units^A

Alless and Temper	Considered Well Thickness in		Hardness Number, min	B,C
Alloy and Temper	Specified Wall Thickness, in.	Webster	Barcol	Rockwell E
6005-T5	0.050 and over	15	76	89
6005A-T61	0.050 and over	15	76	89
6041-T6 ^D	0.050 and over	15	80	92
6042-T5, T5511	0.050 and over	15	76	89
6061-T4	0.050 and over		64	
-T6	0.050 through 0.075	15	76	89
	0.076 through 0.499	15	76	89
	0.500 through 1.000	15	76	
6063-T1	0.050 through 0.500		50	
-T4	0.050 through 0.500	•••	60	\
-T5	0.050 through 0.500		65	
-T6	0.050 through 1.000	12	72	75
6064-T6 ^D	0.050 and over	15	76	C 89
6082-T6	0.050 and over	16	80	92
6105-T5	0.050 and over	15	76	89
6262-T6	0.050 and over	15	76	89
6351-T6	0.050 through 0.749	16		

^A See 10.3.

TABLE 9 Hardness Screening Values for Seamless Extruded Tube [SI Units]^A

Allow and Tamper	Specified Wall Thickness, mm	Hardness Number, Minimum ^{B,C}							
6005-T5 6005A-T61 6005A-T61 6041-T6 ^D 6042-T5, T5511 6061-T4 -T6 6063-T1 -T4 -T5 -T6 6064-T6 ^D 6082-T6	Specified Wall Trickness, film	Webster	Barcol	Rockwell E					
6005-T5	1.25 and over	15	76	89					
6005A-T61	1.25 and over	15	76	89					
6041-T6 ^D	1.25 and over	15	7	89					
6042-T5, T5511	1.25 and over	15	76	89					
6061-T4	1.25 and over	~0"	64						
-T6	1.25 through 1.50	15)	76	89					
	over 1.50 through 12.5	15	76	89					
	over 12.5 through 25.0	15	76						
6063-T1	1.25 through 12.5	, O'	50						
-T4	1.25 through 12.5		60						
-T5	1.25 through 12.5		65						
-T6	1.25 through 25.0	12	72	75					
6064-T6 ^D	1.25 and above	15	76	89					
6082-T6	1.25 and above	16	80	92					
6105-T5	1.25 and above	15	76	89					
6262-T6	1.25 and above	15	76	89					
6351-T6	1.25 through 19.00	16							

^A See Section 10.3.

11. Heat Treatment and Reheat Treatment Capability

11.1 As-received material in the O or F temper in alloys 2014, 2024, 6061, and 6063 (within the size limits specified in Table 3 [Table 4] and without the imposition of cold work) shall be capable of attaining the properties specified in Table 3 [Table 4] for T42 temper material, upon being properly solution heat-treated and natural aged for not less than 4 days at room temperature.

11.2 As-received material in the O or F temper in alloys 2014, 2219, 6061, 6063, 7075, and 7178 (within the size limits specified in Table 3 [Table 4] and without the imposition of cold work) shall be capable of attaining the properties specified in Table 3 [Table 4] for T62 tempers, upon being properly solution and precipitation heat-treated.

11.3 Material in alloys and tempers 2014-T4, T4510, T4511, T6, T6510, and T6511 and 2024-T3, T3510, T3511, T81, T8510, and T8511 shall be capable of attaining the properties specified in Table 3 [Table 4] for the T42 temper, upon being properly resolution heat-treated and natural aged for not less than 4 days at room temperature.

11.4 Material in alloys and tempers 2219-T31, T3510, T3511, T81, T8510, and T8511, 7075-T6, T6510 and T6511 and 7178-T6, T6510 and T6511 shall be capable of attaining the properties specified in Table 3 [Table 4] for T62 tempers, upon being properly resolution heat-treated and precipitation heat-treated.

11.5 Material in T31, T3510, T3511, T4, T4510, and T4511 tempers shall be capable of attaining the properties specified in

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

C The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but a vior informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

^DTentative—Properties subject to revision.

^B Alternative minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

^C The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

Description to establish the relationship between the hardness values and tensile properties.

TABLE 10 Hardness Screening Values for Seamless Pipe, Inch-Pound Units^A

Allan and Tamanan	Pipe Size,	Wall Thickness,		Hardness Number, min ^E	3,C		
Alloy and Temper	emper in. in.		Webster	Barcol	Rockwell E		
6005-T5	All	0.050 and over	15	76	89		
6005A-T61	All	0.050 and over	15	76	89		
6041-T6 ^D	All	0.050 and over	15	76	89		
6042-T5, T5511	All	0.050 and over	15	76	89		
6061-T6	less than 1 in.	0.050 and over	16				
	1 in. and over	0.050 to 0.075	15	76	89		
		0.076 to 0.499	15	76	89		
		0.500 through 1.000	15	76			
6063-T6	All	0.050 through 1.000	12	72	75		
6351-T5	All	0.050 through 1.000	15	76	89		
-T6	All	0.050 through 1.000	16		<i>ki</i> 0		
6064-T6 ^D	All	0.050 and over	<i>15</i>	76	89		
6082-T6	All	0.050 and over	16	80	92		
6105-T5	All	0.050 and over	15	76	989		
6262-T6	All	0.050 and over	15	76	89		

^A See 10.3.

TABLE 11 Hardness Screening Values for Seamless Pipe [SI Units]

			Har	Hardness Number, Minimum ^{B,C}					
Alloy and Temper	Pipe Size Designation	Wall Thickness, mm	Webster	Barcol	Rockwell E				
6005-T5	All	1.25 and over	15	76	89				
6005A-T61	All	1.25 and over	15	76	89				
6041-T6 ^D	All	1.25 and over	15.	76	89				
6042-T5, T5511	All	1.25 and over	.15	76	89				
6061-T6	Less than 1	1.25 and over	16						
	1 and over	1.25 through 1.50	15	76	89				
		over 1.50 through 12.5	15	76	89				
		over 12.5 through 25.0	15	76					
6063-T6	All	over 1.25 through 25.0	12	72	75				
6351-T5	All	over 1.25 through 25.0	15	76	89				
-T6	All	over 1.25 through 25.0	16		•••				
6064-T6 ^D	All	1.25 and over	15	76	89				
6082-T6	All	1.25 and over	16	80	92				
6105-T5	All	1.25 and over	15	76	76				
6262-T6	All	1.25 and over	15	76	89				

A See 10.3

remative—Properties subject to revision.

Table 3 [Table 4] for the T81, T8510, T8511, T6, T6510, and T6511 tempers, respectively, upon being properly precipitation heat-treated.

12. Stress-Corrosion Resistance

12.1 Alloy 70.75 extruded tube in the T73-type tempers shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 12.2.

- 12.1.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot shall be established by testing the previously selected tension-test samples to the criteria shown in Table 12 [Table 13].
- 12.1.2 For surveillance purposes, each month the producer shall perform at least one stress-corrosion test in accordance with 12.2 on each of the T73-type tempers for each thickness range 0.750 in. [20.00 mm] and over listed in Table 3 [Table 4]

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchase and supplier or producer.

^C The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

Description:

Alternative minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the

The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

Description:

material

parallel

TABLE 12 Lot Acceptance Criteria for Resistance to Stress Corrosion, Inch-Pound Units

		Lot Acceptance Criteria	
Alloy and	Electrical Conductivity ^A , %	Level of Tensile Properties	Lot Acceptance
Temper	IACS		Status
7075-T73,	40.0 or greater	per specified requirements	acceptable
T73510, and T73511	38.0 thru 39.9	per specified requirements and yield strength does not exceed minimum by more than 11.9 ksi	acceptable
	38.0 thru 39.9	per specified requirements but yield strength exceeds minimum 12.0 ksi or more	unacceptable ^B
	less than 38.0	any level	unacceptable ^B

A Sampling for electrical conductivity tests shall be the same as for tensile tests as specified in 9.2. Test specimens may be prepared by machining a flat smooth surface of sufficient width for proper testing. For small sizes of tubes, a cut-out portion may be flattened and the conductivity determined on the surface Chemical milling may be used on flat surface samples. The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations:

Wall Thickness. in.

Up thru 0.100 0.101 thru 0.500 0.501 thru 1.500

Over 1 500

surface of tensile sample

subsurface after removal of approximately 10 % of thickness of tensile sample subsurface at approximately center of wall thickness on a plane parallel to the longitudinal center line of the material

subsurface on tensile test sample surface which is closest to the center of the wall thickness and on a plane parallel to the extrusion surface

TABLE 13 Lot Acceptance Criteria for Resistance to Stress Corrosion, [SI Units]

		Lot Acceptance Properties	
Alloy and Temper	Electrical Conductivity ^A , MS/m	Level of Mechanical Properties	Lot Acceptance Status
7075-T73,	23.2 or greater	per specified requirements	acceptable
T73510, and	22.0 thru 23.1	per specified requirements and yield strength does not exceed	acceptable
T73511	J	minimum by more than 82 MPa	
	38.0 to 39.9	per specified requirements but yield strength exceeds minimum by 83 MPa or more	unacceptable ^B
	less than 38.0	any level	unacceptable ^B

A Sampling for electrical conductivity tests shall be the same as for tensile tests as specified in 0.2. Test specimens may be prepared by matching a flat, smooth surface of sufficient width for proper testing. For small sizes of tubes, a cut-out portion may be flattened and the conductivity determined on the surface. Chemical milling may be used on flat surface samples. The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations:

Wall Thickness, mm Over Through 2.50		
Over	Through	Location
	2.50	surface of tensile sample
2.50	12.50	subsurface after removal of approximately 10 % of thickness of tensile sample
12.50	40.00	subsurface at approximately center of wall thickness on a plane parallel to the longitudinal center line of the
40.00		subsurface on tensile test sample surface which is closest to the center of the wall thickness and on a plane

to the extrusion surface

B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving, straightening, and precipitation heat treatment, when applicable).

produced that month Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 8 [Table 9]. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

- The stress-corrosion cracking test shall be performed on extruded tube with wall thickness 0.750 in. [20.00 mm] and over as follows:
- 12.2.1 The stress-corrosion test shall be made in accordance with Test Method G47.
- 12.2.2 Specimens shall be stressed in tension in the short transverse direction with respect to the grain flow and held at constant strain. The stress level shall be 75 % of the specified minimum yield strength.

12.2.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 17.2 shall apply.

13. Cladding

- 13.1 The aluminum alloy coating of clad tube shall comprise the inside surface (only) of the tube and its thickness shall be approximately 10 % of the total wall thickness of the tube.
- 13.2 When the thickness of the coating is to be determined on finished tube, transverse cross sections of at least three tubes from the lot shall be polished for examination with a metallurgical microscope. Using a magnification of $100 \times$, the coating thickness at four points, 90° apart, in each sample shall be measured and the average of all measurements shall be taken as the thickness. In the case of tube having a diameter

B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment, or re-solution heat treatment, stress relieving, straightening and precipitation heat treatment. when applicable).

larger than can properly be mounted for polishing and examination, the portions of the cross section polished for examination may consist of an arc about ½ in. [13 mm] in length.

14. Dimensional Tolerances

14.1 Variations from the specified dimensions for the type of material ordered shall not exceed the permissible variations prescribed in the following tables of ANSI H35.2 [H35.2M]:

Table No.	Title
(Section) 12.	Extruded Tube and Pipe
12.2	Diameter, Round Tube
12.4	Wall Thickness, Round Extruded Tube
12.6	Length-Extruded Tube
12.8	Straightness, Tube in Straight Lengths
12.10	Squareness of Cut Ends
12.	Tube and Pipe
12.49	Outside Diameter Tolerance-Extruded
	Pipe and Extruded and Drawn Pipe
12.50	Wall Thickness Tolerance-Extruded
	Pipe and Extruded and Drawn Pipe
12.51	Weight Tolerances-Extruded Pipe and
	Extruded and Drawn Pipe
12.52	Length Tolerance-Extruded Pipe and
	Extruded and Drawn Pipe
12.55	Diameters, Wall Thicknesses, Weights

- 14.2 Tolerances for tempers and sizes not included in ANSI H35.2 [H35.2M] shall be as agreed upon between producer and purchaser and shall be so specified in the contract or purchase order.
- 14.3 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

15. General Quality

- 15.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between producer and purchaser.
- 15.2 When so specified in the contract of order, both ends of each length of pipe, or extruded tube except pipe of alloy 3003, temper H112, shall be threaded using an American National Standard Taper Pipe Thread. The variation from standard, when tested with the standard working gage, shall not exceed $\pm 1\frac{1}{2}$ turns. The threaded ends shall be free from burrs and suitably protected against damage in transit.
- 15.3 Each pipe and tube shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser however, the producer may use a system of statistical quality control for such examinations.

16. Internal Quality

16.1 When specified by the purchaser at the time of placing the contract or order, each tube 0.500 in. or greater [over 12.50 mm] in thickness, in alloys 2024, 7075, and 7178 shall be tested ultrasonically in accordance with Practice B594 to the discontinuity acceptance limits of Table 6 [Table 7].

17. Source Inspection

- 17.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 17.2 When such inspections or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

18. Retest and Rejection

- 18.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.
- 18.2 When there is evidence that a failed specimen was not representative of the inspection for and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 18.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 18.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier.

19. Identification Marking of Product

- 19.1 All pipe and tube shall be marked in accordance with Practice B666/B666M, unless otherwise specified.
- 19.2 The requirements specified in 19.1 are minimum. Marking systems that involve added information, larger characters and greater frequencies are acceptable under this specification.

20. Packaging and Package Marking

- 20.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed upon. The type of packaging and gross weight of containers shall, unless otherwise agreed upon, be at the producer's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 20.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 20.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for

shipment of such material shall be in accordance with Fed. Std. No. 123 for civilian agencies and MIL-STD-129 for military agencies.

21. Certification

21.1 The supplier or producer shall furnish to the purchaser a certificate stating that the material has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. In addition, all test reports required by

this specification shall be provided and shall show the results of the tests.

22. Keywords

2. Keywords

22.1 aluminum alloy; seamless extruded tube; seamless pipe

S

mation)

F PROPERTY LIMITS

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accord with section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)".
- A1.2 Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products".
- A1.3 Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication Tempers for Aluminum and Aluminum Alloy Products". Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.
- A1.4 All tests are performed in accordance with the appropriate ASTM test methods.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICA-

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/ H35.1(M). The Aluminum Association⁵ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.

- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X,
	etc.
(except that combined Si + Fe limits for 99.00 % minimum	

aluminum must be expressed as 0.XX or 1.XX)

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.

Note A2.2—Aluminum is specified as minimum for unalloyed aluminum and as a remainder for aluminum alloys.

A3. PART OR IDENTIFYING NUMBERS (PINs) FOR USE BY THE DEPARTMENT OF DEFENSE

A3.1 Part numbers are essential to maintain the integrity of the Department of Defense cataloging system as multiple National Stock Numbers (NSN) exist for this product.

A3.2 Part numbers shall be formulated by selecting from the options in this specification as follows:

A3. option	2 Part numb s in this spe	ers shall be cification a	formulated is follows:	by selecti	ng from the	B429–300 B429M st
B241	-XXXX	-XXXX	-XX	-XX	-XX	that is 1 i
Docum Identifi	ent Alloy er	Temper	Pipe size in 0.25 in. increments	Schedule size	Length in feet	of ASME
A3. option B241 Docum Identifi				ine	ill POF	
		c.\`	ick to jie	M		
	20 0.	PM.				
MENORM						

A3.3 Examples of Part Numbers:

B429-6063-T6-03-40-20 indicates a Specification B429/ B429M standard structural pipe in 6063 alloy and T6 temper that is ³/₄-in. pipe size, ANSI schedule 40, with a 20-ft length. B429-3003-H112-04-10-10 indicates a Specification B429/ B429M standard structural pipe in 3003 alloy and H112 temper that is 1-in pipe size, ANSI schedule 10, with a 10-ft length.

SPECIFICATION FOR ALUMINUM AND TUM-ALLOY DIE FORGINGS, HANDE FOR AND ROLLED RING FORGING ALUMINUM-ALLOY DIE FORGINGS, HAND FORGINGS,

(Identical with ASTM Specification B247-09 except that certification, product marking, and a test report have been made mandatory.) ASMENORANDOC. COM. Click to view the full

SPECIFICATION FOR ALUMINUM AND ALUMINUMion II Part B) 20's ALLOY DIE FORGINGS, HAND FORGINGS, AND ROLLED RING FORGINGS

SB-247

(Identical with ASTM Specification B 247-09 except that certification, product marking, and a test report have been made mandatory.)

1. Scope

- **1.1** This specification covers aluminum-alloy (Note 1) die forgings, hand forgings, and rolled ring forgings as shown in Table 2, Table 3 and Table 4 in Section 10 for heat-treatable alloy forgings supplied in the F and 01 tempers. The maximum thicknesses for forgings within the scope of this specification are as indicated in those tables.
- NOTE 1 Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.
- NOTE 2 For forging stock supplied as rolled or cold-finished bar or rod see Specification B211. For forging stock supplied as extruded bar or rod see Specification B221.
- **1.2** Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- **1.3** For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- **1.4** This specification is the inch-pound companion to Specification B247M; therefore, no SI equivalents are presented in the specification.

Referenced Documents

- **2.1** The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - **2.2** ASTM Standards:
- B2N Specification for Aluminum and Aluminum-Alloy Bar, Rod, and Wire
- B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

- B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
- B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
- B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- B918 Practice for Heat Treatment of Wrought Aluminum Alloys
- E10 Test Method for Brinell Hardness of Metallic Materials
- £29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E165 Practice for Liquid Penetrant Examination for General Industry
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere
- E716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis
- E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method
- E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Atomic Emission Spectrometry
- G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products
 - **2.3** ANSI Standard:
- H35.1/H35.1(M) Alloy and Temper Designation Systems

CHEMICAL COMPOSITION LIMITS A.B.C TABLE 1

		Aluminum	99.00 min ^F	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder	remainder
	Other Elements ^D	$Total^{\it E}$	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Otl Elem	Each	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Zirconium	:	:	:	:	:	0.10 - 0.25	:	:	:	:	•	:	:	:	0.08 - 0.15	•	•	:
		Titanium	:	$0.15^{\it G}$:	0.15	:	0.02-0.10	0.04-0.10	:	:	0.15	0.15	0.20	0.15	0.10	90.0	0.20^{I}	0.20	0.10
ITS4 <i>8,C</i>		Zinc	0.10	0.25	0.25	0.25	0.25	0.10	0.10	0.10	0.25	0.25	0.25	0.25	0.25	7.2-8.2	5.7-6.7	5.1 - 6.1	7.0-8.0	5.1-6.1
E 1		Nickel	:	:	1.7–2.3	:	1.7–2.3	:	0.9 - 1.2	:	0.50 - 1.3	:		:			N	\ '\'	8	:
TABLE 1 CHEMICAL COMPOSITION LIMITS ^{AB,C}		Chromium	:	0.10	0.10	0.10	0.10	:	:	Q	0.10	0.05-0.25	0.04-0.35	0.40	0.15-0.35	0.10-0.22	0.04	0.18-0.28	:	0.18-0.28
CHEMI		Magnesium	:	0.20-0.8	9.0-45-0.9	0.05	12-1.8	0.02	1.3 - 1.8	:	0.8 - 1.3	4.0-4.9	0.8 - 1.2	0.8 - 1.4	0.45-0.8	2.0-2.9	1.9–2.6	2.1–2.9	1.2-2.0	2.1–2.9
		Manganese	0.05	0.40-1.2	0.20	0.40 - 1.2	0.20	0.20-0.40	:	1.0-1.5	:	0.40 - 1.0	0.15	0.6 - 1.1	0.20	0.20	0.10	0.30	0.30-0.8	0.10
ASMENORMDOC.COM.		Copper	0.05-0.20																	
and oc.		Iron	+ Fe	0.7	1.0	1.0	1.0	0.30	0.9 - 1.3	0.7	1.0	0.40	0.7	0.50	1.0	0.35	0.15	0.50	9.0	0.20
CMENOR.		Silicon	0.95 Si +	0.50 - 1.2	6.0	0.50-1.2	6.0	0.20	0.10 - 0.25	9.0	11.0 - 13.5	0.40	0.40-0.8	0.9-1.8	0.6 - 1.2	0.25	0.12	0.40	0.40	0.15
AS.		Alloy	1100	2014	2018	2025	2218	2219	2618	3003	4032	5083	1909	9909	6151	7049	7050	7075	9/0/	7175

Limits are in weight percent maximum unless shown as a range or stated otherwise.

Analysis shall be made for the elements for which limits are shown in this table.

Aniatysis shall be inface for the elements for Which limits are shown in this table.

For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the

last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

Differentiated metallical elements for which as energial, in this shown as well as unlisted metallical elements. The energian may and the

However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer of the purchaser establish that an Others element exceeds the Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

CSection II Part B) 2026 The aluminum content shall be calculated by subtracting from 100.00% the sum of all metallic elements present in amounts of 0.010% of more each, rounded to the second decimal before determining the sum.

Other Elements — Total shall be the sum of unspecified metallic elements 0.010% or more, rounded to the second decimal before determining the sum.

Upon agreement between purchaser and producer or supplier, a zirconium-plus-titanium limit of 0.20% maximum is permitted. Vanadium, 0.05-0.15%. The total for other elements does not include Vanadium. Upon agreement between purchaser and producer or supplier, a zirconium-plus-titanium limit of 0.25% maximum is permitted.

TABLE 2 MECHANICAL PROPERTY LIMITS FOR DIE FORGINGS A,B

			MECH	ANICAL P	KUPEKIT LI	MECHANICAL PROPERTY LIMITS FOR DIE FORGINGS	KGINGS		
	S	Specimen	Specimen Axis Parallel to D	lel to Direction of Grain Flow $^{\mathcal{C}}$	rain Flow $^{\mathcal{C}}$	Specimen Axi	Specimen Axis Not Parallel to Direction of Grain Flow $^{\mathcal{C}}$	of Grain Flow $^{\mathcal{C}}$	
	J. ~			Elongati or 4 × 1	Elongation ^E in 2 in. or $4 \times Dia$, min,%				
		Tensile	Yield Strength $^{\it E}$		Separate Test Coupon			Elongation ^E	Brinell
Alloy and Temper	Specified Thickness, in.	Strength ^E min, ksi	(0.2% Offset), min, ksi	Forgings	(from stock or forged) ^F	Tensile Strength $^{\it E}_{\it i}$ min, ksi	Yield Strength $^{\it E}$ (0.2% Offset), min, ksi	in 2 in. or $4 \times Dia$, min,% Forgings	Hardness ^D , min
1100-H112	up through 4.000	11.0	7.4.0 4.0	18	25	:	:	÷	20
2014-T4	up through 4.000	55.0	30.0	11	16	:	:	:	100
2014-T6	up through 1.000	65.0	56.0	9	80	64.0	55.0	т	125
	1.001-2.000	65.0	56.0	9	:	64.0	55.0	2	125
	2.001–3.000	65.0	55.0	Ne Se	:	63.0	54.0	7 5	125
	3.001-4.000	65.0	0.66		:	63.0	54.0	7	125
2018-T61	up through 4.000	55.0	40.0	,,	10	:	:	:	100
2025-T6	up through 4.000	52.0	33.0	11	2,5	:	:	:	100
2218-T61	up through 4.000	55.0	40.0	7	SE SE	:	:	÷	100
2219-T6	up through 4.000	58.0	38.0	∞	201 201	56.0	36.0	4	100
2618-T61	up through 4.000	58.0	45.0	4	9	55.0	42.0	4	115
3003-H112	up through 4.000	14.0	5.0	18	25	NE	:	:	25
4032-T6	up through 4.000	52.0	42.0	т	S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	:	:	115
5083-H111	up through 4.000	42.0	22.0	14	14	39.0	20.0	12	:
5083-H112	up through 4.000	40.0	18.0	16	16	39.0	16.0	14	:
6061-T6	up through 4.000	38.0	35.0	7	10	38.0	35.0	5	80
9L-9909	up through 4.000	50.0	45.0	∞	12	:	P	÷	100
6151-T6	up through 4.000	44.0	37.0	10	14	44.0	37.0	9	06
7049-T73	up through 1.000	72.0	62.0	7	10	71.0	019	3	135
	1.001-2.000	72.0	62.0	7	10	70.0	0.09	6	135
	2.001-3.000	71.0	61.0	7	10	70.0	?	ω	135
	3.001-4.000	71.0	61.0	7	10	70.0	7	2	135
	4.001-5.000	70.0	0.09	7	10	68.0	28.0	2	135
7050-T74 $^{\it G}$	up through 2.000	72.0	62.0	7	10	68.0		50	135
	2.001-4.000	71.0	61.0	7	10	0.79		4	135
	4.001–5.000	70.0	0.09	7	10	0.99		Ö	135
	5.001-6.000	70.0	59.0	7	10	0.99	54.0	0	135

MECHANICAL PROPERTY LIMITS FOR DIE FORGINGS^{A,B} (CONT'D) TABLE 2

		•		! !					
		Specimen	Specimen Axis Parallel to Di	lel to Direction of Grain ${\sf Flow}^{\mathcal C}$	rain Flow ^C	Specimen Axi	Specimen Axis Not Parallel to Direction of Grain ${\sf Flow}^{\cal C}$	ıf Grain Flow ^C	
			ict.	Elongatic	Elongation ^{E} in 2 in. or 4 × Dia, min,%				
Alloy and Temper	Specified Thickness, in.	Tensile Strength $^{\it E}$, min, ksi	Yield Strength ^E (0.2% Offset)	Forgings	Separate Test Coupon (from stock or forged) ^F	Tensile Strength ^E , min, ksi	Yield Strength ^E (0.2% Offset), min, ksi	Elongation ^{E} in 2 in. or 4 × Dia, min,% Forgings	Brinell Hardness ^D , min
7075-T6	up through 1.000	75.0	64.0	E	10	71.0	61.0	т	135
	1.001-2.000	74.0	63.0	1	:	71.0	61.0	8	135
	2.001-3.000	74.0	63.0	7	:	70.0	0.09	8	135
	3.001-4.000	73.0	62.0		25	70.0	0.09	2	135
7075-T73	up through 3.000	0.99	56.0	7	×	62.0	53.0	8	125
	3.001-4.000	64.0	55.0	7	O	61.0	52.0	2	125
7075-T7352	up through 3.000	0.99	56.0	7	P	62.0	51.0	8	125
	3.001-4.000	64.0	53.0	7		61.0	49.0	2	125
7076-T61	up through 4.000	70.0	60.0	10	14	0.78	58.0	8	140
7175-T74 $^{\it G}$	up through 3.000	76.0	0.99	7	10		62.0	4	:
7175-T7452 ⁶	7175-T7452 $^{\it G}$ up through 3.000	73.0	63.0	7	10	68.0	55.0	4	:
7175-T7454 ⁶	up through 3.000	75.0	65.0	7	10	70.0	61.0	4	

To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to mearest 0.1 ksi and each value for elongation to the nearest 0.5% (or the nearest 0.1% if measured in accordance with 7.8.4 of Test Methods B557), in accordance with the rounding-off method of Practice E29.

For the basis for establishment of strength property limits, see Annex A1. В

S

These values apply to standard specimens. For the heat-treatable alloys the thicknesses shown are the maximum thickness at time of heat treatment for which the indicated properties apply. Forgings machined prior to heat treatment shall develop the properties applicable to the heat-treated thickness provided the as forget thickness is not more than twice the heat-treated

For information only. The hardness is usually measured on the surface of a forging using a 500-kgf load and 10-mm ball. Q Ę

Tensile property test requirements in any direction are limited to a minimum material dimension of 2.000 in. because of the difficulty to obtain a tension test specimen suitable for routine These values apply to standard ½-in. diameter test specimens machined from the stock used in making the forgings, or from separately forged coupons representative of the forgings. control testing.

Beginning with the 1985 issue the T736, T73652, and T73654 tempers were replaced by the T74, T7452, and T7454 tempers respectively as applicable to alloys 7050 and 7175.

371

TABLE 3 MECHANICAL PROPERTY LIMITS FOR ROLLED RING FORGINGS $^{A,B,\mathcal{C}}$

Alloy and Temper	Maximum Heat Treat Section Thickness, in.	Direction	Tensile Strength, Min., ksi ^D	Yield Strength (0.2% Offset), Min., ksi ^D	Elongation in 2 in. or 4 × Diameter, Min., %
2014-T6 and 2014-T652 ^E	up through 2.500	tangential	65.0	55.0	7
		axial	62.0	55.0	3
		radial ^F	60.0	52.0	2
	2.501 to 3.000	tangential	65.0	55.0	.:60
		axial	62.0	52.0	2
		radial ^F			Sec
2219-T6	up through 2.500	tangential	56.0	40.0	6
		axial	55.0	37.0	4
		radial ^F	53.0	35.0	2
2618-T61	up through 2.500	tangential	55.0	41.0	6
		axial	55.0	41.0	5
		radial ^F		CN	
6061-T6 and 6061-T652 ^E	up through 2.500	tangential	38.0	35.0	10
		axial	38.0	35.0	8
		radial ^F	37.0	33.0	5
	2.501 to 3.500	tangential	38.0	35.0	8
		axial	38.0	35.0	6
		radial ^F	37.0	33.0	4
6151-T6 and 6151-T652 ^E	up through 2.500	tangential	44.0	37.0	5
		axial	44.0	35.0	4
		radial ^F	42.0	35.0	2
7075-T6 and 7075-T652 ^E	up through 2.000	tangential 🔎 🕻	73.0	62.0	7
		axial 👗	72.0	61.0	3
		radial 🗸 🔾	68.0	58.0	2
	2.001 to 3.500	tangential	71.0	60.0	6
		axial	70.0	59.0	3
		radial ^F			

A To determine conformance to this specification each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5% for the nearest 0.1% if measured in accordance with 7.8.4 of Test Methods B557), in accordance with the rounding-off method of Practice E29.

⁸ Tensile property test requirements in any direction are limited to a minimum material dimension of 2.000 in. because of the difficulty to obtain a tension test specimen suitable for routine control testing.

Applicable only to rings which have an OD-to-wall thickness ratio of 10/1 or greater. Those having a smaller ratio shall be the subject of agreement between the purchaser and producer.

^D The basis for establishment of mechanical property limits is shown in Annex A1.

Forgings may be available in the T651 temper but shall be the subject of agreement between the purchaser and producer.

Radial properties are not specified requirements. For wall thicknesses 2 in. and greater, they will be determined when specifically requested for informational purposes only.

TABLE 4
ULTRASONIC DISCONTINUITY LIMITS FOR
DIE AND HAND FORGINGS⁴

Alloy	Thickness, in.	Product	Maximum Weight per Piece, Ib	Discontinuity Class ^B
2014	0.500-4.000	die forgings	300	В
2219	0.500-4.000			
7049	0.500-4.000			
7050	0.500-4.000			
7075	0.500-4.000			
7175	0.500-4.000			
2014	1.000-8.000	hand forgings	600	Α
2219	1.000-8.000			
7049	1.000-8.000			
7050	1.000-8.000			
7075	1.000-8.000			
7175	1.000-8.000			

- Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.
- B The discontinuity class limits are defined in Section 11 of Practice B594.

2.4 Military Standards:

MIL-STD-129 Marking for Shipment and Storage (referenced in MIL-STD-649 and applies only to direct shipments to Department of Defense agencies).

2.5 SAE:

AMS 2772 Heat Treatment of Aluminum Alloys Raw Materials

2.6 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

2.7 National Aerospace Standard:

NAS 410 Certification and Qualification of Nondestructive Test Personnel

2.8 Other Standards

CEN EN 14242 Aluminum and aluminum alloys. Chemical Analysis. Inductively coupled plasma optical emission spectral analysis

3. Terminology

3.1 Definitions:

- **3.1.1** Refer to Terminology B881 for definitions of product terms used in this specification.
 - **3.2** Definitions of Terms Specific to This Standard:
- **3.2.1** capable of The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material

does not meet the requirements, the material shall be subject to rejection.

4. Ordering Information

- **4.1** Orders for material to this specification shall include the following information:
- **4.1.1** This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - **4.1.2** Quantity in pieces or pounds.
 - **4.1.3** Alloy (Section 7),
 - **4.1.4** Temper (Section 8),
- **4.1.5** Dimensions (Section 13). A drawing is required for die forgings and for hand forgings whose shapes are not simple rectangles,
- **4.2** Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- **4.2.1** For die forgings, whether tensile property and grain flow survey shall be made (8.2.1.1),
- **4.2.2** For die forgings, whether tension tests are required using specimens not parallel to the direction of grain flow and whether such test specimens shall be prepared by a specific method (8.3.1),
- **4.2.3** For hand forgings, whether tension tests shall be made in other than the long transverse and short transverse directions (8.3.3),
- **4.2.4** For rolled ring forgings, whether tension tests shall be made in the radial direction (8.3.4),
- **4.2.5** Whether it is required in tension tests that small elongations shall be measured by a special procedure (8.4.2),
- **4.2.6** Whether heat treatment in accordance with Practice B918 is required (9.2),
- **4.2.7** Whether 7075-F material shall meet the requirements for T73 temper (10.3),
- **4.2.8** Whether ultrasonic inspection is required (Section 14 and Table 4),
- **4.2.9** Whether liquid-penetrant inspection is required (15.3),
- **4.2.10** Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 16),

4.2.11 DELETED

- **4.2.12** Whether hand forgings shall be marked for identification (Section 19), and
- **4.2.13** Whether Practices B660 applies and, if so, the levels of preservation, packaging, and packing required (Section 20).

5. Materials and Manufacture

5.1 The forgings may be manufactured by pressing, hammering, or rolling at the option of the producer.

6. Responsibility for Quality Assurance

- **6.1** Responsibility for Inspection and Tests Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use their own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspection and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.
- **6.2** Lot Definition An inspection lot shall be defined as follows:
- **6.2.1** For heat-treated tempers, an inspection lot shall consist of forgings of the same shape, or a group of forgings of similar size and shape, of the same alloy and heat-treated in the same furnace charge. If forgings are heat-treated in a continuous furnace, forgings charged consecutively during continuous operation of the furnace shall be considered a furnace charge; for such forgings weighing 5 lb or less the maximum weight of a lot shall be 2000 lb, and for heavier forgings it shall be 6000 lb.
- **6.2.2** For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of forgings of similar size and shape of the same alloy and temper subjected to inspection at one time.

7. Chemical Composition

- **7.1** Limits The forgings shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken when the ingots are poured in accordance with E716 and analyzed in accordance with E607, E1251, E34, or EN 14242. If the producer has determined the chemical composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.
- **7.2** Sampling during pouring of ingots When samples are taken at the time the ingots are poured, at least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal.
- NOTE 3 It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- **7.3** If it becomes necessary to analyze forgings for conformance to chemical composition limits, the method used to sample forgings for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, E34, or EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- **7.3.1** When samples are taken from forgings each weighing 5 lb or less, a sample shall be taken to represent each 2000 lb or fraction thereof of material in the lot.
- **7.3.2** When samples are taken from forgings each weighing more than 5 lb, a sample shall be taken to represent each 6000 lb or fraction thereof of material in the lot.
- **7.4** Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

8. Mechanical Properties of Material as Supplied

8.1 *Limits:*

- **8.1.1** Die forgings shall conform to the tensile requirements in Table 2.
- **8.1.1.1** Die forgings shall be capable of conforming to the Brinell hardness requirements in Table 2 when measured at or near the surface, except that in case of question the basis for acceptance shall be conformance with the specified minimum tensile requirements of Table 2.
- **8.1.2** Hand forgings shall conform to the tensile requirements in Table 5.
- **8.1.3** Rolled ring forgings shall conform to the tensile property requirements in Table 3.

8.2 *Number of Specimens:*

- **8.2.1** For die forgings, hand forgings, and rolled ring forgings, there shall be at least one tension specimen taken from each lot (see 6.2).
- **8.2.1.1** For die forgings, when specified, a grainflow pattern and tensile-property survey shall be made on a forging representative of the first production parts (see 8.3.2). It shall be repeated after any major change in forging technique.

8.3 Test Specimen:

- **8.3.1** For die forgings, unless otherwise specified by the purchaser at the time of placing the order, test specimens shall be prepared with the axis of the specimen as nearly parallel to the direction of maximum metal flow as possible, and, at the option of the forging producer, by one of the following methods:
- **8.3.1.1** *Method* I Machined from a section of the stock used in making the forgings.

TABLE 5 MECHANICAL PROPERTY LIMITS FOR HAND FORGING $^{A,\mathcal{B}}$

Alloy and Temper	Thickness, ^C in.	Direction	Tensile Strength, min, ksi	Yield Strength (0.2% Offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %
2014-T6	up through 2.000	longitudinal long transverse	65.0 65.0	56.0 56.0	8
	2.001–3.000	longitudinal long transverse short transverse	64.0 64.0 62.0	56.0 55.0 55.0	Section 8 8 3
	3.001–4.000	longitudinal long transverse short transverse	63.0 63.0 61.0	55.0 55.0 54.0	8 3 2
	4.001-5.000	longitudinal long transverse short transverse	62.0 62.0 60.0	54.0 54.0 53.0	7 2 1
	5.001-6.000	longitudinal long transverse short transverse	61.0 61.0 59.0	53.0 53.0 53.0	7 2 1
	6.001-7.000	longitudinal long transverse short transverse	60.0 60.0 58.0	52.0 52.0 52.0	6 2 1
	7.001–8.000	longitudinal long transverse short transverse	\$9.0 59.0 57.0	51.0 51.0 51.0	6 2 1
2014-T652	up through 2.000	longitudinal long transverse	65.0 65.0	56.0 56.0	8
	2.001–3.000	longitudinal long transverse short transverse	64.0 64.0 62.0	56.0 55.0 52.0	8 3 2
	3.001–4.000	longitudinal long transverse short transverse	63.0 63.0 61.0	55.0 55.0 51.0	8 3 2
	4.001–5.000	longitudinal long transverse short transverse	62.0 62.0 60.0	54.0 54.0 50.0	7 2 1
	5.001–6.000	longitudinal long transverse short transverse	61.0 61.0 59.0	53.0 53.0 50.0	7 2 1
	6.001–7.000	longitudinal long transverse short transverse	60.0 60.0 58.0	52.0 52.0 49.0	6 2 1
2219.T6	7.001–8.000	longitudinal long transverse short transverse	59.0 59.0 57.0	51.0 51.0 48.0	6 2 1
2219-16	up through 4.000	longitudinal long transverse short transverse	58.0 55.0 53.0	40.0 37.0 35.0	6 4 2

TABLE 5 MECHANICAL PROPERTY LIMITS FOR HAND FORGING A,B (CONT'D)

Alloy and Temper	Thickness, $^{\mathcal{C}}$ in.	Direction	Tensile Strength, min, ksi	Yield Strength (0.2% Offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %
2219-T852	up through 4.000	longitudinal long transverse	62.0 62.0	50.0 49.0	6
2618-T61	up through 2.000	short transverse ^D longitudinal long transverse short transverse ^D	60.0 58.0 55.0 52.0	46.0 47.0 42.0 42.0	3 701 804
	2.001–3.000	longitudinal long transverse short transverse	57.0 55.0 52.0	46.0 42.0 42.0	7 5 4
	3.001–4.000	longitudinal long transverse short transverse	56.0 53.0 51.0	45.0 40.0 39.0	7 5 4
5083-H111	up through 4.000	longitudinal long transverse	42.0 39.0	22.0 20.0	14 12
5083-H112	up through 4.000	longitudinal long transverse	40.0 39.0	18.0 16.0	16 14
6061-T6 or T652	up through 4.000	longitudinal long transverse short transverse ^D	38.0 38.0 37.0	35.0 35.0 33.0	10 8 5
	4.001-8.000	longitudinal long transverse short transverse	37.0 37.0 35.0	34.0 34.0 32.0	8 6 4
7049-T73	2.001–3.000	longitudinal long transverse short transverse	71.0 71.0 69.0	61.0 59.0 58.0	9 4 3
	3.001–4.000	longitudinal long transverse short transverse	69.0 69.0 67.0	59.0 57.0 56.0	8 3 2
	4.001–5.000	long transverse short transverse	67.0 67.0 66.0	56.0 56.0 55.0	7 3 2
7049-T7352	1.001-3.000	longitudinal long transverse short transverse ^D	71.0 71.0 69.0	59.0 57.0 56.0	9 4 3
	3.001-4.000	longitudinal long transverse short transverse	69.0 69.0 67.0	57.0 54.0 53.0	8 3 2
~	4.001–5.000	longitudinal long transverse short transverse	67.0 67.0 66.0	54.0 53.0 51.0	7 3 2

TABLE 5
MECHANICAL PROPERTY LIMITS FOR HAND FORGING^{A,B} (CONT'D)

Alloy and Temper	Thickness, $^{\mathcal{C}}$ in.	Direction	Tensile Strength, min, ksi	Yield Strength (0.2% Offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %
7050-T7452 ^E	up through 2.000	longitudinal long transverse	72.0 71.0	63.0 61.0	9
	2.001–3.000	longitudinal long transverse short transverse	72.0 70.0 67.0	62.0 60.0 55.0	section 4 9 5
	3.001-4.000	longitudinal long transverse short transverse	71.0 70.0 67.0	61.0 59.0 55.0	9 5 4
	4.001–5.000	longitudinal long transverse short transverse	70.0 69.0 66.0	60.0 58.0 54.0	9 4 3
	5.001-6.000	longitudinal long transverse short transverse	69.0 68.0 66.0	59.0 56.0 53.0	9 4 3
	6.001-7.000	longitudinal long transverse short transverse	68.0 67.0 65.0	58.0 56.0 52.0	9 4 3
	7.001–8.000	longitudinal long transverse short transverse	67.0 66.0 64.0	57.0 52.0 50.0	9 4 3
7075-T6	up through 2.000	longitudinal long transverse	74.0 73.0	63.0 61.0	9 4
	2.001–3.000	longitudinal long transverse short transverse	73.0 71.0 69.0	61.0 59.0 58.0	9 4 3
	3.001–4.000	longitudinal long transverse short transverse	71.0 70.0 68.0	60.0 58.0 57.0	8 3 2
	4.001-5.000	longitudinal long transverse short transverse	69.0 68.0 66.0	58.0 56.0 56.0	7 3 2
	5.001-6.000	longitudinal long transverse short transverse	68.0 66.0 65.0	56.0 55.0 55.0	6 3 2
7075-T652	up through 2.000	longitudinal long transverse	74.0 73.0	63.0 61.0	9 4
COM	2.001–3.000	longitudinal long transverse short transverse	73.0 71.0 69.0	61.0 59.0 57.0	9 4 2
7075-T652	3.001–4.000	longitudinal long transverse short transverse	71.0 70.0 68.0	60.0 58.0 56.0	8 3 1
•	4.001–5.000	longitudinal long transverse short transverse	69.0 68.0 66.0	58.0 56.0 55.0	7 3 1
	5.001-6.000	longitudinal long transverse short transverse	68.0 66.0 65.0	56.0 55.0 54.0	6 3 1

TABLE 5 MECHANICAL PROPERTY LIMITS FOR HAND FORGING A,B (CONT'D)

Alloy and Temper	Thickness, ^C in.	Direction	Tensile Strength, min, ksi	Yield Strength (0.2% Offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %
7075-T73	up through 3.000	longitudinal	66.0	56.0	7
		long transverse	64.0	54.0	4
		short transverse ^D	61.0	52.0	4 3
	3.001-4.000	longitudinal	64.0	55.0	30
		long transverse	63.0	53.0	-(3)
		short transverse	60.0	51.0	CO 2
	4.001-5.000	Iongitudinal	62.0	53.0	7
		long transverse	61.0	51.0	3
		short transverse	58.0	50.0	2
	5.001-6.000	longitudinal	61.0	51.0	6
		long transverse	59.0	50.0	3
		short transverse	57.0	49.0	2
7075-T7352	up through 3.000	longitudinal	66.0	54.0	7
		long transverse	64.0	52.0	4
		short transverse ^D	61.0	50.0	3
	3.001-4.000	longitudinal	64.0	53.0	7
		long transverse	63.0	50.0	3
		short transverse	60.0	48.0	2
	4.001-5.000	longitudinal	62.0	51.0	7
		long transverse	61.0	48.0	3
		short transverse	58.0	46.0	2
	5.001-6.000	Iongitudinal	61.0	49.0	6
		long transverse	59.0	46.0	3
		short transverse	57.0	44.0	2
7175-T74 ^{<i>E</i>}	up through 3.000	longitudina	73.0	63.0	9
		long transverse	71.0	60.0	5
		short transverse ^D	69.0	60.0	4
	3.001-4.000	longitudinal	71.0	61.0	9
		long transverse	70.0	58.0	5
		short transverse	68.0	57.0	4
	4.001–5.000	longitudinal	68.0	57.0	8
	11	long transverse	67.0	56.0	5
	×O	short transverse	66.0	55.0	4
	5.001 _ 6.000	longitudinal	65.0	54.0	8
	Cliv	long transverse	64.0	52.0	5
	O'	short transverse	63.0	52.0	4

Alloy and Temper	Thickness, $^{\mathcal{C}}$ in.	Direction	Tensile Strength, min, ksi	Yield Strength (0.2% Offset), min, ksi	Elongation in 2 in. or 4 × Diameter, min, %
7175-T7452 ^E	up through 3.000	longitudinal	71.0	61.0	9 ~ 7
		long transverse	69.0	58.0	5
		short transverse ^D	67.0	54.0	4
	3.001-4.000	longitudinal	68.0	57.0	40 9
		long transverse	67.0	55.0	5
		short transverse	65.0	51.0	4
	4.001-5.000	longitudinal	65.0	54.0	8
		long transverse	64.0	52.0	5
		short transverse	63.0	49.0	4
	5.001-6.000	longitudinal	63.0	51.0	8
		long transverse	61.0	49.0	5
		short transverse	60.0	46.0	2

TABLE 5 MECHANICAL PROPERTY LIMITS FOR HAND FORGING^{A,B} (CONT'D)

- To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5% (or the nearest 0.1% if measured in accordance with 7.8.4 of Test Methods B557), in accordance with the rounding-off method of Practice E29.
- ^B For the basis for establishment of strength property limits, see Annex A1.
- Maximum cross-sectional area is 256 in.², except that for 2618-T61 it is 144 in.³. Thickness at heat treatment is measured in the short transverse direction and applies to the dimension as-forged and before any machining operation.
- ^D Tensile properties in any direction are limited to a minimum material dimension of 2.000 in. because of the difficulty to obtain a tensile specimen suitable for routine control testing.
- ^E Beginning with the 1985 issue the T736 and T73652 tempers were replaced by the T74 and T7452 tempers respectively as applicable to alloys 7050 and 7175.
- **8.3.1.2** *Method* 2 Machined from a coupon forged from the stock.
- **8.3.1.3** *Method 3* Machined from a prolongation of the forging.
- **8.3.1.4** *Method* 4 Machined from one of the forgings in the lot.
- NOTE 4 Test specimens obtained by Method 1, 2, or 3 will usually have different properties from those obtained by Method 4. Samples obtained by Methods 1, 2, or 3 indicate only the general strength level of the forging that would be obtained with proper heat treatment.
- **8.3.1.5** Specimens representing heat-treated forgings shall be heat-treated with the forgings they represent or shall be machined from coupons that have been so treated.
- **8.3.2** If required, a die forging representative of the first production parts shall be selected after forging techniques have been established, and shall be tested as follows:
- **8.3.2.1** Tension test specimens shall be taken in two directions: (*I*) substantially parallel to, and (*2*) not parallel to the forging flow lines. The locations shall be as indicated on the forging engineering drawing or, if not indicated, from generally representative areas.
- **8.3.2.2** A sample forging shall be sectioned at the locations of the specimens, to show the grain flow.

- **8.3.3** For hand forgings, the specimens shall be taken from a prolongation of the forgings or from a forging chosen to represent the lot. Tests will regularly be made only in the long transverse and short transverse directions, but when required by the purchaser tests shall also be made in the longitudinal direction.
- **8.3.4** For rolled ring forgings, the specimens shall be taken from a prolongation of the forging or from a forging chosen to represent the lot. Unless otherwise specified, rolled ring forging sections shall be taken from an area representative of the center of mass where size permits. Tests will regularly be made only in the tangential and axial directions, but when required by the purchaser tests shall also be made in the radial direction for informational purposes.
 - **8.4** Test Methods:
- **8.4.1** The tension tests shall be made in accordance with Test Method B557.
- **8.4.2** If required when the specified elongation is less than 3% and the elongation measured in the usual manner is less than 4%, the elongation of round tension specimens shall be measured in accordance with 7.8.4 of Test Methods B557.
- **8.4.3** Brinell hardness tests shall be made in accordance with Test Method E10, by applying a 500-kgf load

on a 10-mm ball for 10 to 15 s. Other equivalent combinations of load and ball or alternative methods of testing may be used if desired provided that, in case of dispute, the results secured with the 500-kgf load and 10-mm ball shall be the basis of acceptance.

9. Heat Treatment

- **9.1** Unless otherwise specified in 9.2, heat treatment for the applicable tempers designated in Tables 2 and 3 shall be in accordance with AMS 2772.
- **9.2** When specified, heat treatment for the applicable tempers in Tables 2 and 3 shall be in accordance with Practice B918.

10. Producer Confirmation of Heat-Treat Response

- 10.1 In addition to the requirements of Section 8, die forgings in alloys 2014, 2018, 2025, 2218, 2219, 2618, 4032, 6061, 6066, 6151, 7075, and 7076 produced in the 01 and F tempers (within the size limits specified in Table 2) shall, after proper solution heat treatment and precipitation heat treatment, conform to the tensile properties specified in Table 2 for T6 temper forgings except for 2018, 2218, 2618, and 7076 for which T61 temper requirements apply.
- 10.2 In addition to the requirements of Section 8, hand forgings in alloys 2014, 2219, 2618, 6061, and 7075 produced in the 01 and F tempers (within the size limits specified in Table 5) shall, after proper solution heat treatment and precipitation heat treatment, conform to the tensile properties specified in Table 5 for T6 temper forgings except for 2618 for which T61 temper requirements apply.
- 10.3 Alloy 7049 die and hand forgings in the F and O tempers and, when specified, 7075 die and hand forgings in the 01 and F tempers (within the size limits specified in Tables 2 and 5, respectively) shall, after proper solution heat treatment and precipitation heat treatment, conform to the tensile properties specified in Tables 2 and 5, as applicable for T73 type temper, and Section 12.
- 10.4 Alloys 7050 and 7175 die and hand forgings in the F and O tempers (within the size limits specified in Table 2 and Table 5, respectively) shall, after proper solution heat freatment and precipitation heat treatment, conform to the tensile properties specified in Table 2 and Table 5, as applicable for T74 type temper, and Section 12.
- 10.5 In addition to the requirements of Section 8, rolled ring forgings in alloys 2014, 2219, 2618, 6061, 6151, and 7075 produced in F and 01 tempers (within the size limits specified in Table 3) shall, after proper heat treatment, conform to the tensile properties specified in Table 3 for T6 temper forgings except for 2618 for which T61 temper requirements apply.

10.6 Number of Specimens — One specimen from each lot of 01 and F temper die forgings, hand forgings, and rolled ring forgings shall be tested to verify conformance with 10.1–10.5, as applicable.

11. Heat-Treatment and Reheat-Treatment Capability

- 11.1 As-received die and hand forgings in the 01 and F tempers in alloys 2014, 2018, 2025, 2218, 2219, 2618, 4032, 6061, 6066, 6151, 7075, and 7076 (within the size limitations specified in Tables 2 and 5) shall, after proper solution heat treatment and precipitation heat treatment, be capable of conforming to the tensile properties specified in Tables 2 and 5 for the T6 temper except for 2018, 2218, 2618, and 7076 for which T61 temper requirements apply.
- 11.2 Alloy 7075 die and hand forgings in T6, T652, T73, and T7352 tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of conforming to the tensile properties specified in Tables 2 and 5 for the T6 temper.
- 11.3 Die forgings in alloy 2014-T4 shall, after proper precipitation heat treatment, be capable of conforming to the tensile properties specified in Table 2 for the T6 temper.
- As-received rolled ring forgings in the F and 01 tempers in alloys 2014, 2219, 2618, 6061, 6151, and 7075 (within the size limits specified in Table 3) shall, after proper solution heat treatment and precipitation heat treatment, be capable of conforming to the tensile properties specified in Table 3 for the T6 temper except for 2618 for which T61 temper requirements apply.

12. Stress-Corrosion Resistance

- **12.1** Alloys 7049 and 7075 in the T73-type tempers and alloys 7050 and 7175 in the T74-type tempers shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 12.2.
- **12.1.1** For lot acceptance purposes, resistance to stress-corrosion cracking of each lot of alloys 7049, 7050, 7075, and 7175 in the applicable tempers shall be established by testing the previously selected tension-test samples to the criteria shown in Table 6.
- 12.1.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 12.2.2 on each of the applicable alloy-tempers for each thickness range 0.750 in. and over produced that month. Each sample shall be taken from material considered acceptable in accordance with the lot acceptance criteria of Table 6. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so

TABLE 6
LOT ACCEPTANCE CRITERIA FOR THE CONTROL OF STRESS-CORROSION RESISTANCE FOR ALLOYS 7049 AND 7075 IN T73 TYPE TEMPERS, AND ALLOYS 7050 AND 7175 IN T74 TYPE TEMPERS

		Lot Acceptance Criteria	_
Alloy and Temper	Electrical Conductivity % IACS ^A	Level of Mechanical Properties	Lot Acceptance Status
7049-T73 and T7352	40.0 or greater 38.0 through 39.9	per specified requirements per specified requirements and longitudinal yield strength does not exceed minimum by more than 9.9 ksi	acceptable acceptable
	38.0 through 39.9 less than 38.0	per specified requirements but longitudinal yield strength exceeds minimum by 10 ksi or more any level	unacceptable ^B unacceptable ^B
7050-T74 $^{\mathcal{C}}$ Die forgings and 7050-T7452 $^{\mathcal{C}}$ Hand forgings	38.0 or greater ^D 38.0 or greater less than 38.0	per specified requirements and SCF^E is 32.0 or less per specified requirements but SCF^E is over 32.0 any level	acceptable unacceptable ^B unacceptable ^B
7075-T73 and T7352 and 7175-T74 c , T7452 c and T7454 c	40.0 or greater 38.0 through 39.9	per specified requirements per specified requirements and longitudinal yield strength does not exceed minimum by more than 11.9 ksi	acceptable acceptable
	38.0 through 39.9	per specified requirements but longitudinal yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^B
	less than 38.0	any level	unacceptable $^{\it B}$

⁴ Electrical conductivity measurements shall be made on the surface of the tensile sample in accordance with Test Method E1004.

Alloy 7049 material in tempers T73 and T7352, alloy 7050 material in tempers T74 and T7452, 7075 in tempers T73 and T7352, and T7175 in tempers T74, T7452, and T7454 when unacceptable in accordance with the lot acceptance criteria, shall be subject to reprocessing by additional precipitation heat treatment or re-solution heat treatment and precipitation heat treatment and retested.

Beginning with the 1985 issue the temper designations T736, T73652, and T73654 were replaced by the T74, T7452, and T7454 tempers respectively as applicable to alloys 7050 and 7175.

7050 Die forgings in the T74 temper also are restricted to having yield strength, parallel to the direction of grain flow, not to exceed 72.0 ksi.

^E Stress-Corrosion Susceptibility Factor (SCF) equals yield strength💥X.X ksi) — electrical conductivity (XX.X% IACS).

tested and make them available for examination at the producer's facility.

- **12.2** The stress-corrosion cracking test shall be performed on material 0.750 in. and over in thickness as follows:
- **12.2.1** Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. The stress level shall be as follows:
- **12.2.1.1** For T73-type tempers: 75% of the minimum yield strength or the minimum longitudinal yield strength specified in Table 2 or Table 5 as applicable.
- **12.2.1.2** For T74-type tempers: 35.0 ksi for die and hand forgings up through 3.000 in., and 50% of the minimum longitudinal yield strength specified in Table 5 for hand forgings over 3.000 in.
- 12.2.2 The stress-corrosion test shall be made in accordance with Test Method G47.
- **12.2.3** There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provision of 17.2 shall apply.

13. Dimensional Tolerances

13.1 The forgings shall conform to the shape and dimensions specified in the contract or order within such

dimensional tolerances as may be specified in the contract, order, or referenced drawings.

14. Internal Quality

14.1 When specified by the purchaser at the time of placing the order, each die forging not more than 300 lb, in thicknesses 0.500 to 4.000 in., in alloys 2014, 2219, 7049, 7050, 7075, and 7175, and each hand forging not more than 600 lb, in thicknesses 1.000 to 8.000 in., in alloys 2014, 2219, 7049, 7050, 7075, and 7175 shall be tested ultrasonically in accordance with Practice B594 to the discontinuity acceptance limits of Table 4. For rolled ring forgings ultrasonic testing requirements and the applicable discontinuity acceptance limits in accordance with Practice B594 shall be the subject of agreement between the purchaser and producer.

15. General Quality

15.1 The forgings shall be of uniform quality and condition as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered shall be subject to agreement between the purchaser and producer.

- 15.2 Visual Inspection Prior to visual inspection each die forging or rolled ring forging shall be etched in an aqueous solution of sodium hydroxide to provide a surface suitable for visual or penetrant inspection. At the option of the producer, an inhibitor may be used in the sodium hydroxide.
- NOTE 5 An inhibitor in the sodium hydroxide solution is desirable to prevent intergranular attack of copper-bearing alloys. A suitable solution consists of 50 g of sodium hydroxide and 2.5 g of sodium sulphide dissolved in 1 L of water. Etching time for this solution when maintained at 150 to 160°F should be 1 min. Other inhibited solutions may be used to provide the same etching effect. Subsequently, the parts shall be thoroughly rinsed in water followed by a wash in nitric acid or a chromic-sulphuric acid solution or any other equivalent solution to produce a surface suitable for visual or penetrant inspection.
- **15.3** Unless otherwise specified, each etched forging shall be inspected visually for surface defects such as seams, laps, bursts, and quench cracks.
- **15.3.1** When specified, each etched forging shall be penetrant inspected in accordance with Test Method E165, using post-emulsifiable penetrants or water-washable penetrants, for injurious surface defects. Penetrant inspection personnel shall be certified to NDT Level II in accordance with NAS 410.

NOTE 6 — All parts or areas of parts to be inspected must be clean and dry before the penetrant is applied.

16. Source Inspection

- **16.1** If the purchaser desires that his representative inspect or witness the inspection and testing of the forgings prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 16.2 When such inspection or witness of inspection and testing is agreed upon the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the forgings meet the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

17. Retest and Rejection

- 17.1 If any material fails to conform to all of the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.
- 17.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 17.3 Material in which defects are discovered subsequent to inspection may be rejected.

17.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of the material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier.

18. Certification

18.1 The producer shall furnish to the purchaser a certificate stating that each lot of forgings has been sampled, tested, and inspected in accordance with this specification and has met the requirements. A test report shall be supplied that includes the results of all tests required by the specification.

19. Identification Marking of Product

- **19.1** Each die forging shall be identification marked in accordance with the requirements of the forging drawing.
- 19.2 Hand forgings shall be identification marked with the producer's name or trademark, the applicable alloy and temper designations, and the specification number. Identification characters shall have a minimum height of $\frac{1}{4}$ in. The marking material shall be such as to resist obliteration during normal handling.

20. Packaging and Package Marking

- **20.1** The forgings shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed upon. The type of packaging and gross weight of containers shall, unless otherwise agreed upon, be at the producer's discretion, provided they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- **20.2** Each shipping container shall be marked with the purchase order number, forging size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- **20.3** When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MIL-STD-129 for military agencies.

21. Keywords

21.1 aluminum alloy; die forgings; hand forgings; rolled ring forgings

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99% of the population obtained from all standard material meets the limit with 95% confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association Inc. holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- **A2.2** If it is documented that The Aluminum Association Inc. could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- **A2.2.2** The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.

- **A2.2.3** The complete chemical composition limits are submitted.
- **A2.2.4** The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- **A2.2.5** For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00% aluminum.
- **A2.2.6** Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001%	0.000X
0.001 to but less than 0.01%	0.00X
0.01 to but less than 0.10%	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a	0.0X
refining process	
0.10 through 0.55%	0.XX
(It is customary to express limits of 0.30 through	
0.55% as 0.X0 or 0.X5.)	
Over 0.55%	0.X, X.X, etc.
(except that combined Si+Fe limits for 99.00%	
minimum aluminum must be expressed as 0.XX	
or 1.XX)	

- **A2.2.7** Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- NOTE A2.1 Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between Titanium and Other Elements, Each, or are specified in footnotes.
- NOTE A2.2 Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR GENERAL REQUIREMENTS FOR SB-248 BRYC.II.B WROUGHT COPPER AND COPPER-ALLOY PLATE, SHEET, STRIP, AND ROLLED BAR

(Identical with ASTM Specification B248-17 except that certification and a test report have been made mandatory.) ASMENORANDOC. COM. Click to view the full

Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar

1. Scope

- 1.1 This specification establishes the general requirements common to several wrought product specifications. Unless otherwise specified in the purchase order or in an individual specification, these general requirements shall apply to copper and copper-alloy plate, sheet, strip, and rolled bar supplied under each of the following product specifications issued by ASTM: B19, B36/B36M, B96/B96M, B103/B103M, B121/ B121M, B122/B122M, B130, B152/B152M, B169/B169M, B194, B422/B422M, B465, B534, B591, B592, B694, B740, B747, B768, B888/B888M, and B936.
- 1.2 Units—This specification is the companion specification to SI Specification B248M; therefore, no SI equivalents are shown in this specification.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
- SWENORWOOC. COM. Cick to view B19 Specification for Cartridge Brass Sheet, Strip, Plate,

- B36/B36M Specification for Brass Plate, Sheet, Strip, And Rolled Bar
- B96/B96M Specification for Copper-Silicon Alloy Plate, Sheet, Strip, and Rolled Bar for General Purposes and Pressure Vessels
- B103/B103M Specification for Phosphor Bronze Plate, Sheet, Strip, and Rolled Bar
- B121/B121M Specification for Leaded Brass Plate, Sheet, Strip, and Rolled Bar
- B122/B122M Specification for Copper-Nickel-Tin Alloy, Copper-Nickel-Zinc Alloy (Nickel Silver), and Copper-Nickel Alloy Plate, Sheet, Strip, and Rolled Bar
- B130 Specification for Commercial Bronze Strip for Bullet Jackets
- B152/B152M Specification for Copper Sheet, Strip, Plate, and Rolled Bar
- B169/B169M Specification for Aluminum Bronze Sheet, Strip, and Rolled Bar
- >B193 Test Method for Resistivity of Electrical Conductor Materials
 - B194 Specification for Copper-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar
 - B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar (Metric)
 - B422/B422M Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip
 - B465 Specification for Copper-Iron Alloy Plate, Sheet, Strip, and Rolled Bar
 - B534 Specification for Copper-Cobalt-Beryllium Alloy and Copper-Nickel-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar
 - B591 Specification for Copper-Zinc-Tin and Copper-Zinc-Tin-Iron-Nickel Alloys Plate, Sheet, Strip, and Rolled Bar
 - B592 Specification for Copper-Zinc-Aluminum-Cobalt Alloy, Copper-Zinc-Tin-Iron Alloy Plate, Sheet, Strip, and Rolled Bar

- B694 Specification for Copper, Copper-Alloy, Copper-Clad Bronze (CCB), Copper-Clad Stainless Steel (CCS), and Copper-Clad Alloy Steel (CAS) Sheet and Strip for Electrical Cable Shielding
- B740 Specification for Copper-Nickel-Tin Spinodal Alloy Strip
- B747 Specification for Copper-Zirconium Alloy Sheet and Strip
- B768 Specification for Copper-Cobalt-Beryllium Alloy and Copper-Nickel-Beryllium Alloy Strip and Sheet
- B846 Terminology for Copper and Copper Alloys
- B888/B888M Specification for Copper Alloy Strip for Use in Manufacture of Electrical Connectors or Spring Contacts
- B936 Specification for Copper-Chromium-Iron-Titanium Alloy Plate, Sheet, Strip and Rolled Bar
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E50 Practices for Apparatus, Reagents, and Safety Considerations for Chemical Analysis of Metals, Ores, and Related Materials
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)
- E106 Test Methods for Chemical Analysis of Copper-Beryllium Alloys (Withdrawn 2011)
- E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E121 Test Methods for Chemical Analysis of Copper-Tellurium Alloys (Withdrawn 2010)
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

- 3.1 For definitions of terms related to copper and copper alloys, see Terminology B846.
- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *lengths, mill, n*—straight lengths, including ends, that can be conveniently manufactured in the mills. Full-length pieces are usually 8, 10, or 12 ft and subject to established length tolerances.

- 3.2.2 *lengths*, *stock*, *n*—straight lengths that are mill cut and stored in advance of orders. They are usually 8, 10, or 12 ft and subject to established length tolerances.
- 3.2.3 *rolled bar*, *n*—a rolled flat product over 0.188 in. thick and up to and including 12 in. wide, with sheared, sawed, or machined edges, in straight lengths or coils (rolls).

4. Materials and Manufacture

- 4.1 Materials:
- 4.1.1 The material of manufacture shall be a cast bar, cake, or slab of such purity and soundness as to be suitable for processing into the products to the product specification listed in Section 1.
- 4.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 4.2 Manufacture:
- 4.2.1 The product shall be manufactured by such hotworking, cold-working and annealing processes as to produce a uniform wrought structure in the finished product.
- 4.2.2 The product shall be hot- or cold-worked to the finished size and subsequently annealed, when required, to meet the temper properties specified.
- 4.3 Edges—The edges shall be slit, sheared, sawed, or rolled edges as specified. Slit edges shall be furnished unless otherwise specified in the contract or purchase order. See 5.6 for edge descriptions and corresponding tables for tolerances.

5. Dimensions, Weights, and Permissible Variations

5.1 *General*—For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

NOTE 1—Blank spaces in the tolerance tables indicate either that the material is not available or that no tolerances have been established.

- 5.2 Thickness—The standard method of specifying thickness shall be in decimal fractions of an inch. For material 0.021 in. and under in thickness, it is recommended that the nominal thicknesses be stated not closer than the nearest half-thousandth. (For example, specify 0.006 or 0.0065 in., but not 0.0063 in.) For material over 0.021 in. in thickness, it is recommended that the nominal thicknesses be stated not closer than the nearest thousandth. (For example, specify 0.128 or 0.129 in., but not 0.1285 in.) A list of preferred thicknesses is shown in Appendix X1. The thickness tolerances shall be those shown in Tables 1-3 for the product specification indicated:
- 5.2.1 Table 1—Thickness tolerances applicable to Specifications B36/B36M, B103/B103M, B121/B121M, B152/B152M, B465, B591, B592, B747, and B888/B888M.
- 5.2.2 Table 2—Thickness tolerances applicable to Specifications B96/B96M, B122/B122M, B169/B169M, B194, B422/B422M, B534, B740, and B768.
- 5.2.3 Table 3—Special thickness tolerances applicable to Copper Alloy UNS No. C72500 when ordered to Specification B122/B122M, and to Specifications B194, B534, B740, and B768 as noted in the table.

TABLE 1 Thickness Tolerances									
(Applicable to Specifications B36/B36M,	B103/B103M,	B121/B121M,	B152/B152M,	B465,	B591,	B592,	B747	B888/B888M,	and B936)

		Thickness Tolerances, plus and minus, ^A in.							
			Strip					Sheet	
Thickness, in.	8 in. and Under in Width	Over 8 to 12 in., incl, in Width	Over 12 to 14 in., incl, in Width	Over 14 to 20 in., incl, in Width	Over 20 to 24 in., incl, in Width	Over 24 to 28 in., incl, in Width	Over 28 to 36 in., incl, in Width	Over 36 to 48 in., incl, in Width	Over 48 to 60 in., incl, in Width
0.004 and under	0.0003	0.0006	0.0006						
Over 0.004 to 0.006, incl	0.0004	0.0008	0.0008	0.0013					
Over 0.006 to 0.009, incl	0.0006	0.0010	0.0010	0.0015					
Over 0.009 to 0.013, incl	0.0008	0.0013	0.0013	0.0018	0.0025	0.0025	0.003	0.0035	0.004
Over 0.013 to 0.017, incl	0.0010	0.0015	0.0015	0.002	0.0025	0.0025	0.003	0.0035	0.0045
Over 0.017 to 0.021, incl	0.0013	0.0018	0.0018	0.002	0.003	0.003	0.0035	0.004	0.005
Over 0.021 to 0.026, incl	0.0015	0.002	0.002	0.0025	0.003	0.003	0.0035	0.004	0.005
Over 0.026 to 0.037, incl	0.002	0.002	0.002	0.0025	0.0035	0.0035	0.004	0.005	0.006
Over 0.037 to 0.050, incl	0.002	0.0025	0.0025	0.003	0.004	0.004	0.005	0.006	0.007
Over 0.050 to 0.073, incl	0.0025	0.003	0.003	0.0035	0.005	0.005	0.006	0.007) 0.008
Over 0.073 to 0.130, incl	0.003	0.0035	0.0035	0.004	0.006	0.006	0.007	0.008	0.010
Over 0.130 to 0.188, incl	0.0035	0.004	0.004	0.0045	0.007	0.007	0.008	0.010	0.012
			Rolled Bar					Plate	
Over 0.188 to 0.205, incl	0.0035	0.004	0.004	0.0045	0.007	0.007	0.008	0.010	0.012
Over 0.205 to 0.300, incl	0.004	0.0045	0.0045	0.005	0.009	0.009	0.010	0.012	0.014
Over 0.300 to 0.500, incl	0.0045	0.005	0.005	0.006	0.012	0.012	0.013	0.015	0.018
Over 0.500 to 0.750, incl	0.0055	0.007	0.007	0.009	0.015	0.015	0.017	0.019	0.023
Over 0.750 to 1.00, incl	0.007	0.009	0.009	0.011	0.018	0.018	0.021	0.024	0.029
Over 1.00 to 1.50, incl	0.022	0.022	0.022	0.022	0.022	0.022	0.025	0.029	0.036
Over 1.50 to 2.00, incl	0.026	0.026	0.026	0.026	0.026	0.026	0,030	0.036	0.044

^A When tolerances are specified as all plus or all minus, double the values given.

- 5.3 *Width*—The width tolerances shall be those shown in Tables 4-6, depending on the type of edge required (see 5.3.1, 5.3.2, and 5.3.3):
- 5.3.1 Table 4—Width tolerances for slit metal and slit metal with rolled edges.
 - 5.3.2 Table 5—Width tolerances for square-sheared metal.
 - 5.3.3 Table 6—Width tolerances for sawed metal.
- 5.4 Length—The material shall be furnished in coils or straight lengths of plate, sheet, strip, or rolled bar as specified. The length tolerances for straight lengths shall be those shown in Tables 7-10, depending on the method of cutting required (see 5.4.1 5.4.4). When ends are permitted, the length and quantity of the ends shall be in accordance with the schedule in Table 8.
 - 5.4.1 Table 7—Length tolerances, for straight lengths.
- 5.4.2 Table 8—Schedule of minimum length and maximum weight of ends for mill lengths specific lengths with ends, and stock lengths with ends.
- 5.4.3 Table 9—Length tolerances for square-sheared metal in all widths 120 in and under.
 - 5.4.4 Table 10—Length tolerances for sawed metal.
- 5.5 Straighmess—The straightness tolerances, which are the maximum edgewise curvature (depth of arc) in any 72-in. portion of the total length, shall be those shown in Tables 11-13, depending on the type of edge required.
- 5.5.1 Table 11—Straightness tolerances for metal as slit, or as slit and straightened, or as slit and edge-rolled, or metal with drawn edges.
- 5.5.2 Table 12—Straightness tolerances for square-sheared metal.
 - 5.5.3 Table 13—Straightness tolerances for sawed metal.

- 5.6 Edges—When rolled edges are required, they may be produced by either rolling or drawing to one of the following specified edge contours:
- 5.6.1 Square Edges (Square Corners)—Edges shall have commercially squared corners and with a maximum corner radius as prescribed in Table 14.
- 5.6.2 *Rounded Corners*—Edges shall have rounded corners as shown in Fig. 1 with a radius as prescribed in Table 15.
- 5.6.3 *Rounded Edges*—Edges shall be rounded as shown in Fig. 2 with a radius as prescribed in Table 16.
- 5.6.4 *Full-Rounded Edges*—Edges shall be full rounded as shown in Fig. 3 with a radius as prescribed in Table 17.
 - 5.7 Weight Tolerances for Hot-Rolled Material:
- 5.7.1 Table 18—Lot weight tolerances for hot-rolled sheet and plate applicable to Specifications B36/B36M, B96/B96M (Copper Alloy UNS No. C65500), B103/B103M, B122/B122M, B152/B152M, and B591.
- 5.7.2 The weight of each lot of five or more plates or sheets of the same type and the same specified dimensions when ordered to thickness, shall not vary from the theoretical by more than the amount prescribed in Table 18 for the product specification indicated. The weight of any individual plate or sheet may vary from the nominal by not more than one third in excess of the tolerances prescribed in Table 18 for the product specification indicated. The tolerances for lots of less than five plates or sheets shall be governed by the tolerances for individual plates or sheets.
- 5.7.3 For the purpose of calculation, the densities of the materials covered by these specifications are listed in Appendix X2.

TABLE 2 Thickness Tolerances (Applicable to Specifications B96/B96M, B122/B122M, B169/B169M, B194, B422/B422M, B534, B740, and B768)

				Thickness Tole	erances, Plus an	d Minus, ^A in.				
			Strip			Sheet				
Thickness, in.	8 in. and Under	Over 8 to 12	Over 12 to 14	Over 14 to 20	Over 20 to 24	Over 24 to 28	Over 28 to 36	Over 36 to 48	Over 48 to 60	
	in Width	in., incl, in	in., incl, in	in., incl, in	in., incl, in	in., incl, in	in., incl, in	in., incl, in	in., incl, in	
	III WIGHT	Width	Width	Width	Width	Width	Width	Width	Width	
0.004 and un-	0.0004	0.0008	0.0008						💸	
der									" bay	
Over 0.004 to	0.0006	0.0010	0.0010	0.0015					QQ	
0.006, incl									11,	
Over 0.006 to	0.0008	0.0013	0.0013	0.002						
0.009, incl								•	0,	
Over 0.009 to	0.0010	0.0015	0.0015	0.0025				🗴		
0.013, incl								رک	~	
Over 0.013 to	0.0013	0.002	0.002	0.0025				CO		
0.017, incl										
Over 0.017 to	0.0015	0.0025	0.0025	0.003				(C)		
0.021, incl							_			
Over 0.021 to	0.002	0.0025	0.0025	0.003	0.004	0.004	0.005	0.006	0.007	
0.026, incl							0			
Over 0.026 to	0.0025	0.003	0.003	0.0035	0.005	0.005	0.006	0.007	0.008	
0.037, incl										
Over 0.037 to	0.003	0.0035	0.0035	0.004	0.006	0.006	0.007	0.008	0.010	
0.050, incl							6			
Over 0.050 to	0.0035	0.004	0.004	0.0045	0.007	0.007	0.008	0.010	0.012	
0.073, incl						_ \				
Over 0.073 to	0.004	0.0045	0.0045	0.005	0.008	0.008	0.010	0.012	0.014	
0.130, incl						·				
Over 0.130 to	0.0045	0.005	0.005	0.006	0.010	0.010	0.012	0.014	0.016	
0.188, incl						().				
			Rolled Bar					ate		
Over 0.188 to	0.0045	0.005	0.005	0.006	0.010	0.010	0.012	0.014	0.016	
0.205, incl					0.012					
Over 0.205 to	0.005	0.006	0.006	0.007	0.012	0.012	0.014	0.016	0.018	
0.300, incl										
Over 0.300 to	0.006	0.007	0.007	0.008	0.015	0.015	0.017	0.019	0.023	
0.500, incl				C)					
Over 0.500 to	0.008	0.010	0.010	0.012	0.019	0.019	0.021	0.024	0.029	
0.750, incl				81						
Over 0.750 to	0.010	0.012	0.012	0.015	0.023	0.023	0.026	0.030	0.037	
1.00, incl										
Over 1.00 to	0.028	0.028	0.028	0.028	0.028	0.028	0.032	0.037	0.045	
1.50, incl				~						
Over 1.50 to	0.033	0.033	0.033	0.033	0.033	0.033	0.038	0.045	0.055	
2.00, incl										

A When tolerances are specified as all plus or all minus, double the values given.

TABLE 3 Special Thickness Tolerances

Thickness, in.	Tolerances Applicable to Copper Alloy UNS No. C72500, Specification B122/B122M Tolerances, Plus and Minus, ^A in., for Strip 8 in. and Under in Width	Tolerances Applicable to Specifications B194, B534, B740, and B768 Tolerances, Plus and Minus, ^A in., for Strip 4 in. and Under in Width
0.004 and under	0.0002	0.0002
Over 0.004 to 0,006, incl	0.0003	0.0003
Over 0.006 to 0.009, incl	0.0004	0.0005
Over 0.009 to 0.013, incl	0.0005	0.0006
Over 0.013 to 0.017, incl	0.0007	0.0007
Over 0.017 to 0.021, incl	0.0008	0.0008
Over 0.021 to 0.026, incl	0.0010	0.0010
Over 0.026 to 0.032, incl	0.0013	0.0010
Over 0.032 to 0.050, incl	0.0015	

A If tolerances are specified as all plus or all minus, double the values given.

TABLE 4 Width Tolerances for Slit Metal and Slit Metal with Rolled Edges

(Applicable to all specifications listed in 1.1)

Width, in.	Width Tolerances, ^A Plus and Minus, in.					
	For	For	For	For		
	Thicknesses	Thicknesses	Thicknesses	Thicknesses		
	0.004	Over 0.032	Over 0.125	Over 0.188		
	to 0.032 in.	to 0.125 in.	to 0.188 in.	to 0.500 in.		
2 and under	0.005	0.010	0.012	0.015		
Over 2 to 8, incl	0.008	0.013	0.015	0.015		
Over 8 to 24, incl	1/64	1/64	1/64	1/32		
Over 24 to 50, incl	1/32	1/32	1/32	3/64		

A If tolerances are specified as all plus or all minus, double the values given.

6. Workmanship, Finish, and Appearance

6.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are

TABLE 5 Width Tolerances for Square-Sheared Metal (Applicable to all specifications listed in 1.1)

Note 1—All lengths up to 120 in., incl.

	Width Tolerances, A Plus and Minus, in.				
Width, in.	1/16 in. and Under in Thickness	Over 1/16 to 1/8 in., incl, in Thickness	Over 1/8 in. in Thickness		
20 and under	1/32	3/64	1/16		
Over 20 to 36, incl	3/64	3/64	1/16		
Over 36 to 120, incl	1/16	1/16	1/16		

^A If tolerances are specified as all plus or all minus, double the values given.

TABLE 6 Width Tolerances for Sawed Metal (Applicable to all specifications listed in 1.1)

V FF -			,		
	Width Tolerances, ^A Plus and Minus, in.				
Width, in.	For Lengths Up	For Lengths Over 10 ft.			
	For Thicknesses I Up to 1½ in., incl		All Thicknesses		
Up to 12, incl	1/32	1/16	1/16		
Over 12 to 120, incl	1/16	1/16	1/16		

^A If tolerances are specified as all plus or all minus, double the values given.

TABLE 7 Length Tolerances for Straight Lengths (Applicable to all specifications listed in 1.1 except B694)

Note 1—The following length tolerances are all plus; if all minus tolerances are desired, use the same values; if tolerances are desired plus and minus, halve the values given.

,	
Length ft.	Length Tolerances in.
Specific lengths, mill lengths, multiple lengths, and specific lengths with ends 10 and under	1/4
Over 10 to 20, incl	1/2
Stock lengths and stock lengths with ends	1 ^A

As stock lengths are cut and placed in stock in advance of orders departure from the tolerance is not practicable.

acceptable. A superficial film of residual light lubricant is normally present and is acceptable unless otherwise specified.

7. Sampling

- 7.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:
- 7.1.1 Lot Size—An inspection lot shall be 10 000 lb or less material of the same mill form, alloy, temper, and nominal dimensions, subject to inspection at one time or shall be the product of one cast bar from a single melt charge, whose weight shall not exceed 25 000 lb and that has been continuously processed and subject to inspection at one time.
- 7.12 Portion Size—A portion shall be two representative samples taken from the product of one cast bar that has been continually processed to the finished temper and dimensions.
- 7.1.2.1 Chemical Analysis—A sample for chemical analysis shall be taken in accordance with Practice E255 for product in its final form. Unless otherwise required by the purchaser, at the time the order is placed, the manufacturer shall have the option of determining conformance to chemical composition

by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product if heat identity can be maintained throughout all operations. If the manufacturer determines the chemical composition during manufacture, he shall not be required to sample and analyze the finished product. The minimum weight of the composite sample in accordance with Practice E255 shall be as follows:

ASTM Designation Weight of Sample

B36/B36M, B96/B96M, B121/B121M, B122/B122M, B152/B152M, B169/B169M, B194, B422/B422M, B465, B534, B591, B592, B740, B747, B768, B888/B888M, and B936

7.1.2.2 Samples for All Other Tests—Samples for all other tests shall be taken from the sample portion in 7.1.2 and be of a convenient size to accommodate the test and comply with the requirements of the appropriate ASTM standards and test methods.

8. Number of Tests and Refest

- 8.1 Chemical Requirements:
- 8.1.1 When samples are taken at the time the castings are poured, at least one sample shall be analyzed for each group of castings poured simultaneously from the same source of molten metal.
- 8.1.2 When samples are taken from the semi-finished or finished product, at least one sample representative of the product of each cast bar from a single melt charge continuously processed with heat identity maintained shall be analyzed.
- 8.1.3 When samples are taken from the semi-finished or finished product and heat identity has not been maintained, a single sample representative of each 10 000 lb lot, or fraction thereof, shall be analyzed. When the product piece is greater than 10 000 lb, one sample to be representative of the product piece shall be analyzed.
- 8.2 Mechanical and Electrical Requirements and Grain Size—Unless otherwise provided in the product specification, test specimens shall be taken from each of the two of the sample pieces selected in accordance with 7.1.2. The required tests shall be made on each of the specimens. In the case of copper alloy Specifications B194, B534, and B740, one specimen shall be tested without further treatment, and the other specimen shall be tested after precipitation hardening. In the case of the requirements in Table 4, Mill Hardened Tempers, in Specifications B194 and B740, the two specimens need to be tested, because the product is in the precipitation hardened temper as supplied. The reported value shall be the arithmetic average of the readings. In the case of hardness, three readings shall be taken and averaged for each sample.

8.3 Retests:

- 8.3.1 If the chemical analysis of the specimens prepared from samples selected in accordance with 7.1.2 fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from the samples selected in accordance with 7.1.2.
- 8.3.2 If one of the two tests made to determine any of the mechanical or physical properties fails to meet a specified limit, this test shall be repeated on the remaining sample

min, g

TABLE 8 Schedule of Minimum Length and Maximum Weight of Ends for Mill Lengths, Specific Lengths with Ends, and Stock Lengths with Ends

(Applicable to all specifications listed in 1.1 except B694)

	0.050 in. and Under in Thickness			0.125 in., incl, ickness	Over 0.125 to 0.250 in., incl, in Thickness		
Nominal Length, ft	Minimum Length of Shortest Piece, ft	Maximum Permissible Weight of Ends, % of Lot Weight	Minimum Length of Shortest Piece, ft	Maximum Permissible Weight of Ends, % of Lot Weight	Minimum Length of Shortest Piece, ft	Maximum Permissible Weight of Ends, % of Lot Weight	
6 to 8, incl	4	20	4	25	3	30	
8 to 10, incl	6	25	5	30	4	35	
10 to 14, incl	7	30	6	35	5	40	

TABLE 9 Length Tolerances for Square-Sheared Metal in All Widths 120 in. and Under

(Applicable to all specifications listed in 1.1 except B694)

	Length Tolerance, A Plus and Minus, in.				
Length, in.	For Thick- nesses Up to 1/16 in., incl	For Thicknesses Over 1/16 to 1/8 in., incl	For Thick- nesses Over 1/8 in.		
20 and under	1/32	3/64	1/16		
Over 20 to 36, incl	3/64	3/64	1/16		
Over 36 to 120, incl	1/16	1/16	1/16		

^A If tolerances are specified as all plus or all minus, double the values given.

TABLE 10 Length Tolerances for Sawed Metal

(Applicable to all specifications listed in 1.1 except B694)

Note 1—The following tolerances are all plus; if all minus tolerances are desired, use the same values; if tolerances are desired plus and minus, halve the values given.

Width, in.	Length Tolerance, in.	
Up to 120, incl	1/4	-

TABLE 11 Straightness Tolerances for Slit Metal or Slit Metal Either Straightened or Edge-Rolled

(Applicable to all specifications listed in 1.1)

Maximum Edgewise (Curvature (Depth of Length	, , , , , , , , , , , , , , , , , , ,	in. Portion of the Total		
	Stra	Straightness Tolerance, in.			
Width, in.	As Slit	As Slit Only			
	Shipped in Rolls	Shipped Flat	Shipped Flat, in Rolls, or on Bucks		
Over 1/4 to 3/8, incl	. 2	11/2	1/2		
Over 3/8 to 1/2, incl	11/2	1	1/2		
Over 1/2 to 1, incl	() 1	3/4	1/2		
Over 1 to 2, incl	• 5/ ₈	5/8	3/8		
Over 2 to 4, incl	1/2	1/2	3/8		
Over 4	3/8	3/8	3/8		

pieces, selected in accordance with 7.1.2, and the results of these tests shall comply with the specified requirements.

8.3.3 If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.

8.3.4 If the percentage of elongation of any tension test specimen is less than that specified and any part of the fracture is outside the middle two thirds of the gage length or in a punched or scribed mark within the reduced section, a retest shall be allowed.

TABLE 12 Straightness Tolerances for Square Sheared Metal

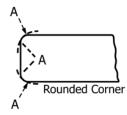
(Applicable to all specifications listed in 1.1)
(Not applicable to metal over 120 in in length)

Maximum Edgewise (Curvature (Depth of Arc) in a	ny 72-in. Portion of the		
	Total Length			
	Straightness Tolerances, in.			
Thickness, in. Up to to in., incl, in Over 10 in., in				
1/8 and under	1/16	1/32		
Over 1/8 to 3/16, incl	1/8	3/64		
Over ¾16	1/8	1/16		

TABLE 13 Straightness Tolerances for Sawed Metal

(Applicable to all specifications listed in 1.1) (Not applicable to metal over 144 in. in length)

	e (Depth of Arc) in any 72-in. Portion of the Total Length
Width, in.	Straightness Tolerances, in.
3 and under	1/16
Over 3	3/64


TABLE 14 Tolerances for Radius of Commercially Square Corners of Rolled or Drawn Edges with Square Corners (Applicable to all specifications listed in 1.1 except B694)

Thickness, in.	Permissible Radius of Corners, max, in.
0.032 to 0.064, incl	0.010
Over 0.064 to 0.188, incl	0.016
Over 0.188 to 1, incl	1/32

- 8.3.5 If a bend test specimen fails because of conditions of bending more severe than required by the specification, a retest shall be permitted, either on a duplicate specimen or on a remaining portion of the failed specimen.
- 8.3.6 After removal of defective specimens and correction of test methods, only one retest cycle is permitted. If after the retest the material fails to meet the requirements of this specification, it shall be rejected.

9. Specimen Preparation

- 9.1 Chemical Analysis—A composite sample of the semifinished or finished product shall be prepared in accordance with Practice E255, or as described in 7.1.2.1.
- 9.2 Specimens shall be prepared in accordance with the method prescribed in 10.3 for all other tests. Full cross-section specimens shall be used whenever possible. Samples shall be

Note 1—The arc of the rounded corner shall not necessarily be tangent at points "A," but the product shall be commercially free from sharp, rough, or projecting edges.

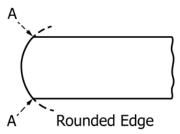

FIG. 1 Rounded Corners

TABLE 15 Tolerances for Radius on Corners of Rolled or Drawn Edges with Rounded Corners

(Applicable to all specifications listed in 1.1 except B694)

Thisleroon in	Radius of Corners, in.		
Thickness, in.	Min	Max	
Up to 0.125, incl ^A			
Over 0.125 to 0.188, incl	0.016	0.048	
Over 0.188 to 1, incl	0.031	0.094	
Over 1 to 2, incl	0.063	0.188	

A Not available.

Note 1—The arc of the rounded edge shall be substantially symmetrical with the axis of the product. The corners "A" will usually be sharp but shall not have rough or projecting edges.

FIG. 2 Rounded Edge

TABLE 16 Tolerances for Radius of Rolled or Drawn Rounded Edges

(Applicable to all specifications listed in 11 except B694)

Thickness in	Radius of Edges ^A	
Thickness, in	Min	Max
Up to 0.188, incl	3/4 t	13/4 t
Over 0.188	(1)8	1½ t

 $[\]overline{{}^{A}}$ The t refers to the measured thickness of the test specimen.

representative of the condition of the material, and particular specimen preparation techniques shall be stated in the specific product specification.

10. Test Methods

10.1 The test method used for routine chemical analysis for specification compliance and preparation of certifications and test reports, when required, shall be at the discretion of the reporting laboratory.

10.1.1 Commonly accepted techniques for routine chemical analysis of copper and copper alloys include, but are not

Full Rounded Edge

Note 1—The arc of the rounded edge shall not necessarily be tangent at points "A" but shall be substantially symmetrical with the axis of the product, and the product shall be commercially free from sharp, rough, or projecting edges.

FIG. 3 Full Rounded Edge

TABLE 17 Tolerances for Radius of Rolled or Drawn Full Rounded Edges

(Applicable to all specifications listed in 1.1 except B694)

Thickness, in.		Radius of Edg	es ^A	
	Min	27	Max	
All thicknesses	½ t		3/4 t	

^A The t refers to the thickness of the test specimen.

TABLE 18 Lot Weight Tolerances for Hot-Rolled Sheet and Plate
(Applicable to Specifications B36/B36M, B96/B96M (Copper Alloy
UNS Nos. C65500), B103/B103M, B122/B122M,
B152/B152M, and B591)

10	٠٠`ر		ght Toleran	,	
07		Percentage	of Theoret	ical Weight	
Thickness, in.	48 in.	Over 48	Over 60	Over 72	Over 90
	and Under	to 60 in.,	to 72 in.,	to 90 in.,	to 110 in.,
	in	incl,	incl,	incl,	incl,
Ch.	Width	in Width	in Width	in Width	in Width
1/8 and under	8	9.5	11	12.5	14
Over 1/8 to 3/16, incl	6.5	8	9.5	11	12.5
Over 3/16 to 1/4, incl	6	7.5	8.5	9	10
Over 1/4 to 5/16, incl	5.5	7	8	8.5	9
Over 5/16 to 3/8, incl	5	6	7	7.5	8
Over 3/8 to 7/16, incl	4.5	5	6	7	7.5
Over 7/16 to 1/2, incl	4	4.5	5.5	6	6.5
Over 1/2 to 5/8, incl	3.5	4.5	5	5.5	6
Over 5/8 to 3/4, incl	3	4	4.5	5	5.5
Over 3/4 to 1, incl	2.75	3.5	4	4.5	5
Over 1 to 11/2, incl	2.5	3	3.5	4	4.5
Over 11/2 to 2, incl	2.25	2.75	3.25	3.75	4.25

limited to, X-ray fluorescence spectroscopy, atomic absorption spectrophotometry, argon plasma spectroscopy, and emission spectroscopy.

- 10.2 In case of disagreement concerning chemical composition, an applicable test method for chemical analysis may be found in Test Methods E53, E54, E62, E75, E106, E118, E121, or E478.
- 10.2.1 The specific test method(s) to be used will be stated in the particular product specification.
- 10.2.2 In case of disagreement concerning sulfur content, the test method described in the Annex shall be used.
- 10.3 The following test methods shall be used for determining the mechanical and physical properties required in the specifications listed in Section 1:

Tension	E8/E8M
Grain size	E112
Rockwell hardness	E18
Electrical resistivity	B193

10.3.1 The testing procedure used for a particular property is dependent upon alloy, temper, and configuration of the product. The manufacturer shall have the option of selecting the most representative procedure unless a specific procedure is specified at the time the contract is placed.

11. Significance of Numerical Limits

11.1 For the purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, and for dimensional tolerances, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29:

Property Rounded Unit for Observed or Calculated Value

Chemical composition

Hardness nearest unit in the last right-hand significant Electrical resistivity digit used in expressing the limiting value

Electrical conductivity

Tensile strength nearest ksi Yield strength nearest ksi Elongation: nearest 1 %

Grain size:

Under 0.060 mm nearest multiple of 0.005 mm

0.060 mm and over nearest 0.01 mm

12. Inspection

- 12.1 The manufacturer or supplier shall inspect and make tests necessary to verify that furnished product conforms to specification requirements.
- 12.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector, representing the purchaser, that the product is being furnished in accordance with the specification shall be included in the agreement. All testing and the inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 12.3 When mutually agreed upon the manufacturer, or supplier, and the purchaser, shall conduct the final inspection simultaneously.

13. Rejection and Rehearing

- 13.1 Rejection:
- 13.1.1 Product that fails to conform to the specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.
- 13.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 13.1.3 In case of dissatisfaction with the results of the test, upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
 - 13.2 Rehearing:

13.2.1 As a result of product rejection, the manufacturer, or supplier, shall have the option to make claim for a retest to be conducted by the manufacturer, or supplier, and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

14. Certification

14.1 The purchaser shall be furnished certification that samples representing each lot have been either tested or inspected as directed in this specification and that requirements have been met.

14.2 DELETED

15. Test Report

15.1 A report of test results shall be furnished.

16. Product Identification

16.1 For ASME Boiler and Pressure Vessel Code applications, the name or trademark of the manufacturer and the manufacturer's lot identification number shall be legibly stamped or stenciled on each finishing plate and sheet in two places not less than 12 in. from the edge. If the plate and sheet are too small to locate the markings as such, the marking may be placed near the center of the plate and sheet. In the case of butt straps, the markings may be placed 12 in. from the end. The plate number and type shall be legibly stamped on each plate and on each test specimen.

17. Packaging and Package Marking

- 17.1 Packaging:
- 17.1.1 The product shall be separated by size, composition, and temper and prepared for shipment by common carrier, in such a manner as to afford protection from the normal hazards of transportation.
 - 17.2 Package Marking:
- 17.2.1 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, gross and net weight, and name of supplier.
- 17.2.2 When specified in the contract or purchase order, the product specification number shall be shown.

18. Keywords

18.1 general requirements, plate; general requirements, rolled bar; general requirements, sheet; general requirements, strip; general requirements, wrought copper and copper alloys

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S1.1.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements

unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C packed, Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

842.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

\$4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

ANNEX

(Mandatory Information)

A1. TEST METHOD FOR SULFUR BY COMBUSTION AND INFRARED DETECTOR

A1.1 Scope

A1.1.1 This test method covers the determination of sulfur in electrolytic cathode copper.

A1.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

A1.2 Summary of Test Method

A1.2.1 The sulfur is converted to sulfur dioxide (SO₂) by combustion in a stream of oxygen and the SO₂ is measured by infrared absorption.

A1.2.2 This test method is written for use with commercial analyzers equipped to carry out the above operations automatically.

A1.3 Interferences

A1.3.1 The elements ordinarily present do not interfere.

A1.4 Apparatus

A1.4.1 *Combustion and Analyzing Instrumentation*, capable of making the required measurements.

A1.5 Reagents and Materials

A1.5.1 Reagents:

A1.5.1.1 *Accelerator*—Use the accelerator recommended by the instrument manufacturer which, for copper, should be sulfur and tin-free.

A1.5.1.2 *Oxygen*—Ultra high purity, 99.95 % min. Other grades of oxygen may be used if sulfur-free, or the oxygen may be purified as described in Practices E50.

A1.5.2 Materials:

A1.5.2.1 *Crucibles*—Use crucibles recommended by the manufacturer, or equivalent.

A1.5.2.2 *Crucible Tongs*—Use tongs capable of handling recommended crucibles.

A1.6 Hazards

A1.6.1 For precautions to be observed in the use of certain reagents in this test method, refer to Practices E50.

A1.6.2 Use care when handling hot crucibles and operating the furnace to avoid burns and electrical shock.

A1.7 Preparation of Apparatus

A1.7.1 Assemble and test the apparatus according to the manufacturer's instructions.

A1.8 Sample Preparation

A1.8.1 The sample should be uniform in size but not finer than 40 mesh.

A1.9 Calibration

A1.9.1 Calibration Reference Materials—Select a minimum of two reference materials with sulfur content near the mid point and high limit.

A1.9.2 *Instrument Calibration*—Calibrate according to the manufacturer's instructions.

A1.10 Procedure

A1.10.1 Stabilize the furnace and analyzer according to the manufacturer's instruction.

A1.10.2 Transfer the weight of sample recommended by the manufacturer into a crucible and add the same amount of accelerator used in the calibration. Proceed as directed by the manufacturer's instructions.

A1.11 Calculation

A1.11.1 Since most commercially available instruments calculate percent concentrations directly, including corrections for blank and sample weight, calculations by the analyst are not required.

A1.11.2 If the analyzer does not compensate for blank and sample weight values, use the following equation:

Sulfur,
$$\%$$
 $(A \cap B) \times C$

where:

A = Digital voltmeter (DVM) reading for specimen,

B = DVM reading for blank,

C = weight compensator setting, and

D = specimen weight, g.

A1.12 Precision and Bias

A1.2.1 *Precision*—The precision of this test method is dependent upon sample preparation care and preciseness of calibration.

A1.12.2 *Bias*—The accuracy of this test method is dependent to a large extent upon the accuracy of the methods used to determine the sulfur concentration in the calibration standards as well as their homogeneity.

APPENDIXES

(Nonmandatory Information)

X1. PREFERRED THICKNESSES FOR UNCOATED WROUGHT COPPER AND COPPER ALLOY PLATE, SHEET, STRIP AND ROLLED BAR, UNDER 0.250 IN.

X1.1 It is recommended that wherever possible material purchased to these specifications be ordered in thicknesses listed as follows;

in.	in.	in.	in.
0.004	0.014	0.040	0.112
0.005	0.016	0.045	0.125
0.006	0.018	0.050	0.140
0.007	0.020	0.056	0.160
0.008	0.022	0.063	0.180
0.009	0.025	0.071	0.200
0.010	0.028	0.080	0.224
0.011	0.032	0.090	
0.012	0.036	0.100	

X2. STANDARD DENSITIES

X2.1 For purposes of calculating weights, cross sections, and so forth, the densities of the copper alloys covered by the

specifications listed in the Scope section shall be taken as follows:

ASTM Designation	Material	Copper Alloy UNS No.	Density, lb/in.3
B19	copper-zinc alloy	C26000	0.308
B36/B36M	copper-zinc alloy	C21000	0.000
200,200	copper zine andy	C22000	0.318
			0.516
		C22600	0.320 0.318 0.317 0.316 0.313
		C23000	0.316
		C24000	0.313
		C26000	0.308
		C26800	0.306
		C27200	0.305
		C28000	0.303
B96/B96M	copper-silicon alloy	C65100	0.316
		C65400	.309
		C65500	0.309 0.308 0.320 0.320 0.320 0.319 0.318 0.318 0.317
D100/D100M	aanaan kin allass	000000	0.000
B103/B103M	copper-tin alloy	C51000	0.320
		C51100	0.320
	copper-tin-iron-nickel alloy	C51180	0.320
	copper-tin alloy	C51900	0.319
	copper till alloy	051300	0.010
		C52100	0.318
	copper-tin-iron-nickel alloy	C52180	0.318
	copper-tin alloy	C52400	0.317
	copper-tin-lead alloy	C53400	0.322
		C54400	
	copper-tin-lead-zinc alloy		0.320
B121/B121M	copper-zinc-lead alloy	C33500	0.306
		C34000	0.306
		C34200	0.307
		C35 000	0.305
		635000	
		C3 5300	0.306
		C35600	0.307
B122/B122M	copper-nickel alloy	C70600	0.323
D ILL/ D ILLIVI	coppor monor andy	C70620	
		C70020	0.323
	· · · · · · · · · · · · · · · · · · ·	C71000	0.323
	6.	C71500	0.323
	A Comment of the Comm	C71520	0.323
	annou violal absorbism alloss	071020	
	copper-nickei-chromium alloy	C72200	0.323
	copper-nickel-tin alloy	C72500	0.321
	copper-nickel-zinc alloy	C73500	0.319
	· · · · · · · · · · · · · · · · · · ·	C74000	0.314
		C74500	
		C74500	0.313
	% \(\mathcal{D}\).	C75200	0.316
		C76200	0.310
	20	C77000	0.314
B130	coppor zina allay	C22000	
	copper-zinc alloy	C22000	0.318
B152/B152M	copper	C10100, C10200,	0.323
	-11-	040000 040400	
	$\mathcal{L}_{\mathcal{C}}^{\mathcal{C}}$	C10300, C10400,	
		C10300, C10400, C10500, C10700.	
	ie	C10300, C10400, C10500, C10700, C10800, C10910	
	a jie t	C10300, C10400, C10500, C10700, C10800, C10910,	
	*Oile	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200	
	copper	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11000,	0.322
	copper	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11000, C11300, C11400.	0.322
	copper	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11400, C11300, C11400,	0.322
	copperio	C10500, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11000, C11300, C11400, C11600, C14200,	0.322
	copper	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11000, C11300, C11400, C11600, C14200, C14530	
	copper-nickel-chromium alloy copper-nickel-tin alloy copper-nickel-zinc alloy copper-zinc alloy copper	C10300, C10400, C10500, C10700, C10800, C10910, C12000, C12200 C12300, C11000, C11300, C11400, C11600, C14200, C14530 C14420	0.322 0.321
B169/B169M	copper	C14420	0.321
B169/B169M	copper copper copper-aluminum-iron-tin alloy	C14420 C61300	0.321 0.285
	copper copper-aluminum-iron-tin alloy	C14420 C61300 C61400	0.321 0.285 0.285
	copper	C14420 C61300 C61400 C17000	0.321 0.285 0.285 0.297
	copper copper-aluminum-iron-tin alloy	C14420 C61300 C61400	0.321 0.285 0.285
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy	C14420 C61300 C61400 C17000 C17200	0.321 0.285 0.285 0.297 0.297
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy	C14420 C61300 C61400 C17000 C17200 C19002	0.321 0.285 0.285 0.297 0.297 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010	0.321 0.285 0.285 0.297 0.297 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy	C14420 C61300 C61400 C17000 C17200 C19002	0.321 0.285 0.285 0.297 0.297 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015	0.321 0.285 0.285 0.297 0.297 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322
	copper copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy copper-nickel-tin alloy copper-aluminum-silicon-cobalt alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy copper-nickel-tin alloy copper-aluminum-silicon-cobalt alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-beryllium alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy copper-aluminum-silicon-cobalt alloy copper-nickel-aluminum-magnesium alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800 C64725	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322 0.322 0.322
	copper copper-aluminum-iron-tin alloy copper-aluminum-iron-tin alloy copper-nickel-silicon-tin alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy copper-aluminum-silicon-cobalt alloy copper-nickel-aluminum-magnesium alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-magnesium alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800 C64725 C70250	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.320 0.318
	copper copper-aluminum-iron-tin alloy copper-aluminum-iron-tin alloy copper-nickel-silicon-tin alloy copper-nickel-silicon alloy copper-nickel-silicon-magnesium alloy copper-nickel-tin alloy copper-nickel-tin alloy copper-nickel-tin alloy copper-nickel-aluminum-magnesium alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800 C64725 C70250 C70260	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.323
B169/B169M B194 B422/B422M	copper copper-aluminum-iron-tin alloy copper-aluminum-iron-tin alloy copper-nickel-silicon-tin alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-tin alloy copper-nickel-tin alloy copper-aluminum-silicon-cobalt alloy copper-nickel-aluminum-magnesium alloy copper-nickel-silicon-magnesium alloy copper-nickel-silicon-magnesium alloy	C14420 C61300 C61400 C17000 C17200 C19002 C19010 C19015 C19020 C19025 C63800 C64725 C70250	0.321 0.285 0.285 0.297 0.297 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.320 0.318

ASTM Designation	Material	Copper Alloy UNS No.	Density, lb/in.3
B465	copper-iron alloy	C19200	0.320
	**	C19210	0.323
		C19400	0.322
		C19500	0.322
		C19700	0.319
		C19720	0.319
B534	copper-cobalt-beryllium alloy	C17500	0.316 0.317 0.316 0.319 0.320
	copper-nickel-beryllium alloy	C17510	0.317
		C71700	0.316
DE04	annos vina tin allava		0.010
B591	copper-zinc-tin alloys	C40500	0.319
	copper-zinc-tin-nickel alloy	C40810	0.020
		C40850	0.320
		C40860	0.320
	copper-zinc-tin alloys	C41100	0.318
	copper zine un anoys	C41300	0.318
		C41500	C 0.318
		C42200	7.318
		C42500	0.316
	copper-zinc-tin-nickel alloy	C42520	0.318
		C42020	0.010
	copper-zinc-tin alloys	C43000	0.316
		C43400	0.316
B592	copper-zinc-aluminum-cobalt alloy	C66300	0.317
	**	C68800	0.296
B694	copper	C11000	0.322
2007		01000	0.022
	copper-iron alloy	C19400	0.322
	copper-zinc alloy	C22000	0.318 0.318 0.316 0.316 0.316 0.317 0.296 0.322 0.322 0.318 0.316
		C23000	0.316
	copper-zinc-iron-cobalt alloy	C66400	0.318
	copper-zinc-iron alloy	C66410	0.318
		C66430	0.317
	copper-zinc-iron-tin alloy		
	copper-nickel alloy	C71000	0.323
B740	copper-nickel-tin alloys	672700	0.321
		C72900	0.323
		C72650	0.320
B747	coppor ziroopium allov	C15100	0.323
	copper-zirconium alloy	017110	
B768	copper-cobalt-beryllium alloy	C17410	0.318
	copper-nickel-beryllium alloy	C17450	0.323
		C17460	0.318
B888/B888M	copper-nickel-tin alloys copper-zirconium alloy copper-cobalt-beryllium alloy copper-nickel-beryllium alloy copper-tin-tellurium alloy copper-zirconium alloy copper-silver bearing alloy copper-beryllium alloy	C14530	0.323
_ 555, 2556W	copper-tin-tellululli alloy	C15100	0.323
	copper-zircomum andy	015100	
	copper-silver bearing alloy	C15500	0.322
	copper-beryllium alloy	C17000	0.304
		C17200	0.302
	copper-cobalt-beryllium alloy	C17410	0.318
	copper-nickel-beryllium alloy	C17450	0.318
	Soppor monor boryman duty		
		C17460	0.318
	copper-cobalt-beryllium alloy	C17500	0.319
	copper-nickel-beryllium alloy	C17510	0.319
	copper-nickel-tin alloy copper-nickel-tin alloy copper-nickel-silicon alloy copper-nickel-silicon magnesium alloy copper-nickel-silicon alloy copper-nickel-silicon alloy copper-nickel-silicon alloy copper-nickel-silicon alloy copper-zinc alloy copper-zinc-tin-nickel alloy copper-zinc-tin alloy copper-zinc-tin-iron-nickel alloy copper-tin-iron-nickel alloy copper-tin-iron-nickel alloy copper-tin-iron-nickel alloy copper-tin-iron-nickel alloy copper-tin-iron-nickel alloy copper-tin-iron-nickel alloy	C19002	0.322
	copper-nickel-silicon alloy	C19010	0.322
	copper richer cilicon mannesium aller		
	copper-nickel-silicon-magnesium alloy	C19015	0.322
	copper nickel-silicon alloy	C19025	0.322
	copper-iron alloy	C19210	0.322
	νO	C19400	0.322
		C19500	0.322
	X	C19300 C19700	
.*.	C)		0.319
	copper-zinc alloy	C23000	0.316
()	•	C26000	0.308
. ~	copper-zinc-tin-nickel alloy	C40810	0.320
		C40850	0.320
		C40860	0.320
	and a star the aller		
\sim \sim	copper-zinc-tin alloy	C42200	0.318
		C42500	0.317
	copper-zinc-tin-iron-nickel alloy	C42520	0.318
J.	er e	C42600	0.318
7	conner tip iron pickel allar		
)	copper-tin-iron-nickel alloy	C50580	0.321
		C50780	0.320
	copper-tin alloy	C51000	0.320
	copper-tin-iron-nickel alloy	C51080	0.320
	conner-tin allow		
	copper-tin alloy	C51100	0.320
	copper-tin-iron-nickel alloy	C51180	0.321
		C51980	0.319
	copper-tin alloy	C51980 C52100	
	copper-tin alloy	C52100	0.318
	copper-tin alloy copper-tin-iron-nickel alloy		

copper-aluminum-silicon-cobalt alloy

C63800

0.299

ASTM Designation	Material	Copper Alloy UNS No.	Density, lb/in.3	
	copper-nickel-zinc-tin-silicon alloy	C64725	0.320	
	copper-silicon-tin alloy	C65400	0.309	
	copper-zinc-aluminum-cobalt alloy	C68800	0.296	
	copper-nickel-silicon-magnesium alloy	C70250	0.318	
	copper-nickel-silicon alloy	C70260	0.320	_*
	copper-nickel-silicon-tin alloy	C70265	0.320	Q
	copper-nickel-silicon-silver-zirconium alloy	C70310	0.319	× \
	copper-nickel-zinc alloy	C75200	0.316	
		C76200	0.310	20
B936	copper-chromium-iron-titanium	C18080	0.322	

Sent Marketo C. Com. Click to view the full part of Asimilar Reports and the full part of the full part of Asimilar Reports and the full part of A

SPECIFICATION FOR GENERAL REQUIREMENTS FOR WROUGHT COPPER AND COPPER-ALLOY ROD, BAR, SHAPES, AND FORGINGS

SB-249/SB-249M

(23)

(Identical with ASTM Specification B249/B249M-20 except that certification and mill test report have been made mandatory.)

mandatory.)

citate view the properties of the pro

Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes and Forgings

1. Scope

- 1.1 This specification establishes the general requirements common to wrought copper and copper alloy rod, bar, shapes, and forgings which shall apply to Specifications B16/B16M, B21/B21M, B98/B98M, B124/B124M, B138/B138M, B139/ B139M, B140/B140M, B150/B150M, B151/B151M, B187/ B187M, B196/B196M, B283/B283M, B301/B301M, B371/ B371M, B411/B411M, B441, B453/B453M, B455, B570, B870, B927/B927M, B929, B967/B967M, B974/B974M, and B981/B981M to the extent referenced therein.
- 1.2 The chemical composition, physical and mechanical properties, and all other requirements not included in this specification are prescribed in the product specification.
- 1.3 Units-The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
 - 1.3.1 Within the text the SI values are given in brackets.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision of Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical SMENORMDOC.COM.C Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- tion II part B 2026 B16/B16M Specification for Free-Cutting Brass Rod, Bar and Shapes for Use in Screw Machines
- B21/B21M Specification for Naval Brass Rod, Bar, and Shapes
- B98/B98M Specification for Copper-Silicon Alloy Rod, Bar and Shapes
- B124/B124M Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes
- B138/B138M Specification for Manganese Bronze Rod, Bar, and Shapes
- B139/B139M Specification for Phosphor Bronze Rod, Bar, and Shapes
- B140/B140M Specification for Copper-Zinc-Lead (Red Brass of Hardware Bronze) Rod, Bar, and Shapes
- B150/B150M Specification for Aluminum Bronze Rod, Bar, and Shapes
- B151/B151M Specification for Copper-Nickel-Zinc Alloy (Nickel Silver) and Copper-Nickel Rod and Bar
 - B154 Test Method for Mercurous Nitrate Test for Copper Alloys
 - B187/B187M Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes
 - B193 Test Method for Resistivity of Electrical Conductor Materials
 - B194 Specification for Copper-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar
 - B196/B196M Specification for Copper-Beryllium Alloy Rod and Bar
 - B283/B283M Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)
 - B301/B301M Specification for Free-Cutting Copper Rod, Bar, Wire, and Shapes
 - B371/B371M Specification for Copper-Zinc-Silicon Alloy Rod

- B411/B411M Specification for Copper-Nickel-Silicon Alloy Rod and Bar
- B441 Specification for Copper-Cobalt-Beryllium, Copper-Nickel-Beryllium, and Copper-Nickel-Lead-Beryllium Rod and Bar (UNS Nos. C17500, C17510, and C17465)
- B453/B453M Specification for Copper-Zinc-Lead Alloy (Leaded-Brass) Rod, Bar, and Shapes
- B455 Specification for Copper-Zinc-Lead Alloy (Leaded-Brass) Extruded Shapes
- B570 Specification for Copper-Beryllium Alloy (UNS Nos. C17000 and C17200) Forgings and Extrusions
- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
- B870 Specification for Copper-Beryllium Alloy Forgings and Extrusions Alloys (UNS Nos. C17500 and C17510)
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- B927/B927M Specification for Brass Rod, Bar, and Shapes B929 Specification for Copper-Nickel-Tin Spinodal Alloy Rod and Bar
- B967/B967M Specification for Copper-Zinc-Tin-Bismuth Alloy Rod, Bar and Wire
- B974/B974M Specification for Free-Cutting Bismuth Brass Rod, Bar and Wire
- B981/B981M Specification for Low-Leaded Brass Rod, Bar, Wire, and Shapes
- D4855 Practice for Comparing Test Methods (Withdrawn 2008)
- E3 Guide for Preparation of Metallographic Specimens. E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)
- E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)
- E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E121 Test Methods for Chemical Analysis of Copper-Tellurium Alloys (Withdrawn 2010)
- E255 Practice for Sampling Copper and Copper Alloys for

- the Determination of Chemical Composition
- E290 Test Methods for Bend Testing of Material for Ductility
- E478 Test Methods for Chemical Analysis of Copper Alloys E581 Test Methods for Chemical Analysis of Manganese-Copper Alloys
- 2.2 ASME Standard:
- ASME Boiler and Pressure Vessel Code

3. Terminology

- 3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *lengths, mill, n*—straight lengths, including ends, that can be conveniently manufactured in the mill. Full length pieces are usually 10 ft or 12 ft [3000 mm or 3600 mm].
- 3.2.2 *lengths, stock, n*—straight lengths that are mill cut and stored in advance of orders. They are usually 10 ft or 12 ft [3000 mm or 3600 mm] and subject to established length tolerances.

4. Materials and Manufacture

- 4.1 Materials:
- 4.1.1 The material of manufacture shall be a form of the Copper or Copper Alloy UNS No. designation specified in the ordering information of such purity and soundness as to be suitable for processing into the products described in the product specification.
- 4.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
- Note 1—Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify specific casting analysis with a specific quantity of finished product.
- 4.2 *Manufacture*—The product shall be manufactured by such hot-working, cold-working, and annealing processes as to produce a uniform wrought structure in the finished product.
- 4.2.1 The product shall be hot- or cold-worked to the finished size and subsequently annealed or heat treated when required, and straightened to meet the properties specified.
- 4.2.2 *Edges*—The edge shall be drawn, extruded, or rolled; refer to Edge Contours in Section 6.

5. Chemical Composition

- 5.1 The material shall conform to the chemical composition requirements prescribed in the product specification.
- 5.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance given in the product specification.
- 5.2 The composition limits established for the Copper or Copper Alloy UNS No. designation specified in the product specification do not preclude the presence of other elements.

By agreement between the manufacturer or supplier and the purchaser, limits may be established and analysis required for unnamed elements.

5.3 When material composition has been determined during the course of manufacture, analysis of the finished product by the manufacturer is not required.

6. Dimensions, Mass and Permissible Variations

- 6.1 *General*—For the purpose of determining conformance with the dimensional requirements, any measured value outside the specified limiting values for any dimension may be cause for rejection.
- 6.1.1 The dimensions and tolerances for products referenced to this specification shall be as noted in the following paragraphs and tables, where the product specification is noted in the table heading.
- NOTE 2—Blank spaces in the tolerance tables indicate either that the material generally is not available or that no tolerances are established.
- 6.2 Diameter or Distance Between Parallel Surfaces—The diameter of round sections or the distance between parallel surfaces in the case of other sections, except shapes, shall not vary from that specified by more than the amounts specified in Tables 1-12, included, for the product specification indicated.

Table 1 and Table 2—List the tolerances for diameter or distance between parallel surfaces of cold-drawn rod in round, hexagonal, and octagonal cross sections. Applicable product specifications and alloys are shown in the table titles.

Table 3—Lists the diameter tolerances for piston finish rod applicable to product specifications shown in the table title.

Table 4 and Table 5—List the tolerances for diameter or distance between parallel surfaces of as-extruded rod and bar applicable to the specifications and alloys shown in the titles. These tolerances are applicable to round, hexagonal, and octagonal rod as well as square and rectangular bar.

Table 6—Lists the diameter tolerances for hot-rolled round rod applicable to the product specification shown in the table title.

TABLE 1 Tolerances for Diameter of Distance Between Parallel
Surfaces of Cod-Drawn Rod

(Applicable to Specifications B16/B16M, B21/B21M, B98/B98M (Copper Alloy UNS No. C65100), B124/B124M (Copper Alloy UNS Nos. C11000, C14500, C14700, C46400, C46750, C48200, C48500, C48640, C48645, C49250, C49255, C49260, C49265, C49300, C49340, C49345, C49350, and C49360), B140/B140M, B301/B301M, B453/B453M, B927/B927M, B967/B967M, and B974/B974M)

Diameter or Distance Between	Tolerances, Plus and Minus, ^A in. [mm]			
Parallel Surfaces, in. [mm]	Round	Hexagonal, Octagonal		
Up to 0.150 [3.8], incl	0.0013 [0.035]	0.0025 [0.06]		
Over 0.150 to 0.500 [3.8 to 12], incl	0.0015 [0.04]	0.003 [0.08]		
Over 0.500 to 1.00 [12 to 25], incl	0.002 [0.05]	0.004 [0.10]		
Over 1.00 to 2.00 [25 to 50], incl	0.0025 [0.06]	0.005 [0.13]		
Over 2.00 [50]	$0.15^{B} [0.15]^{B}$	$0.30^{B} [0.30]^{B}$		

 $[^]A$ When tolerances are specified as all plus or all minus, double the values given. B Percent of specified diameter or distance between parallel surfaces expressed to the nearest 0.001 in. [0.01 mm].

TABLE 2 Tolerances for Diameter or Distance Between Parallel Surfaces of Cold-Drawn Rod

(Applicable to Specifications B98/B98M (Copper Alloy UNS Nos. C65500 and C66100), B124/B124M (Copper Alloy UNS Nos. C27450, C27453, C28500, C36300, C36500, C37000, C37700, C61900, C62300, C63000, C63200, C64200, C64210, C65500, C65680, C67500, C67600, C69240, C69300, C69410, C69850, C70620, C71520, and C77400), B138/B138M, B139/B139M, B150/B150M, B151/B151M, B196/B196M, B371/B371M, B411/B411M, B441, and B981/B981M)

Diameter or Distance Between	Tolerances, Plus and Minus, ^A in. [mm]			
Parallel Surfaces, in. [mm]	Round	Hexagonal, Octagonal		
Up to 0.150 [3.8], incl Over 0.150 to 0.500 [3.8 to 12], incl Over 0.500 to 1.00 [12 to 25], incl Over 1.00 to 2.00 [25 to 50], incl Over 2.00 [50]	0.002 [0.050] 0.002 [0.050] 0.003 [0.08] 0.004 [0.10] 0.20 ^B [0.20] ^B	0.004 [0.10] 0.005 [0.13] 0.006 [0.15] 0.40 ^B [0.40] ^B		

^A When tolerances are specified as all plus or all minus, double the values given. ^B Percent of specified diameter or distance between parallel surfaces expressed to the nearest 0.001 in. [0.01 mm].

TABLE 3 Diameter Tolerances for Piston-Finish Rod (Applicable to Specifications B21/B21M, B138/B138M, B139/B139M, and B150/B150M)

Diameter, in [mm]	Tolerances, Plus and Minus, ^A in. [mm]
Over 0.500 to 1.00 [12 to 25], incl	0.0013 [0.35]
Over 1.00 to 2.00 [25 to 50], incl	0.0015 [0.04]
Over 2.00 [50]	$0.10^{B} [0.10]^{B}$

A When tolerances are specified as all plus or all minus, double the values given.
B Percent of specified diameter expressed to the nearest 0.0005 in. [0.01 mm].

TABLE 4 Tolerances for Diameter or Distance Between Parallel Surfaces of As-Extruded Rod and Bar

(Applicable to Specifications B21/B21M, B124/B124M (Copper Alloy UNS Nos. C27450, C27453, C28500, C36300, C36500, C37000, C37700, C46400, C46750, C48200, C48500, C48640, C48645, C49250, C49255, C49260, C49265, C49300, C49340, C49345, C49350, C49355, C49360, C61900, C62300, C63000, C63200, C64200, C64210, C67500, C67600, C69240, C69300, C69410, C69850, C70620, and C71520), B138/B138M (Copper Alloy UNS Nos. C67500 and C67600), B150/B150M, B967/B967M, and B981/B981M)

Discontinuo Diatono Batono	Tolerances, Plus and Minus, ^A in. [mm]
Diameter or Distance Between Parallel Surfaces, in. [mm]	Rod (Round, Hexagonal, and Octagonal) Bar (Rectangular and Square)
Up to 1.00 [25], incl	0.010 [0.25]
Over 1.00 to 2.00 [25 to 50], incl	0.015 [0.38]
Over 2.00 to 3.00 [50 to 75], incl	0.025 [0.65]
Over 3.00 to 3.50 [75 to 90], incl	0.035 [0.90]
Over 3.50 to 4.00 [90 to 100], incl	0.060 [1.5]

^A When tolerances are specified as all plus or all minus, double the values given.

Table 7, Table 8 and Table 9—List the thickness tolerances for rectangular and square bar applicable to the product specifications and alloys shown in the table titles.

Table 10 and Table 11—List the width tolerances for rectangular bar applicable to the product specifications and alloys shown in the table titles.

TABLE 5 Tolerances for Diameter or Distance Between Parallel Surfaces of As-Extruded Rod and Bar

(Applicable to Specifications B98/B98M, B124/B124M (Copper UNS Nos. C11000, C14500, C14700 and Copper Alloy UNS Nos. C65500, C65680, C77400, C87700, and C87710), B138/B138M (Copper UNS No. C67000), B196/B196M, B441 and B929)

Diameter or Dietores Debuger	Tolerances, Plus and Minus, ^A in. [mm]
Diameter or Distance Between Parallel Surfaces, in. [mm]	Rod (Round, Hexagonal, and
Faraller Surfaces, III. [IIIIII]	Octagonal) Bar (Rectangular and
	Square)
Up to 1.00 [25], incl	0.020 [0.50]
Over 1.00 to 2.00 [25 to 50], incl	0.030 [0.75]
Over 2.00 to 3.00 [50 to 75], incl	0.050 [1.3]
Over 3.00 to 3.50 [75 to 90], incl	0.070 [1.8]
Over 3.50 to 4.00 [90 to 100], incl	0.120 [3.0]

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 6 Diameter Tolerances for Hot-Rolled Round Rod (Applicable to Specifications B98/B98M, B124/B124M, B138/B138M, B150/B150M, B196/B196M, and B441)

Diameter, in. [mm]	Tolerances, Plus and Minus, ^A in. [mm]
0.250 [6.35] only	+0.020 [+0.50]
	-0.010 [-0.25]
Over 0.250 to 0.750 [6.35 to 20], incl	0.015 [0.38]
Over 0.750 to 1.25 [20 to 30], incl	0.020 [0.50]
Over 1.25 to 1.50 [30 to 38], incl	0.030 [0.75]
Over 1.50 to 3.00 [38 to 75], incl	1/16 [1.6]
Over 3.00 [75]	1/8 [3.2]

^A When tolerances are specified as all plus or all minus, double the values given.

Table 12—Lists the diameter or distance between parallel surfaces tolerances for hot-forged rod and bar applicable to the product specification shown in the title.

6.3 Length—Rod, bar, and shapes shall be furnished in stock lengths with ends, unless the order specifies stock lengths, specific lengths, or specific lengths with ends as specified in Table 13, Table 14, and Table 15 for the product specification indicated.

Table 13—Length tolerances for full-length pieces applicable to product specifications shown in the table title.

Table 14 and Table 15—Lists the schedule of lengths (specific and stock) with ends applicable to product specifications and alloys shown in the table titles.

6.4 Straightness:

6.4.1 Unless otherwise specified, drawn rod, bar, and shapes, other than shafting rod, piston-finish rod shall be furnished in straight lengths. The deviation from straightness shall not exceed the limitations specified in Table 16 for either general or automatic screw machine use for the product specifications and alloys shown in the table titles. To determine compliance with this tolerance, the lengths shall, in case of disagreement, be checked by the following method:

6.4.1.1 Place the lengths on a level table so that the arc or departure from straightness is horizontal. Measure the depth of arc to the nearest ½32 in. [1.0 mm], using a steel scale and a straightedge. Local departure from straightness should be measured with a 1 ft [300 mm] straightedge and a feeler gage.

6.4.2 Shafting rod, when so specified, shall comply with the tolerances of Table 17 for the product specifications shown in

the table title. To determine compliance with this paragraph, shafting shall, in case of disagreement, be checked by the following method:

6.4.2.1 Place the shaft upon two freely rotating supports, one fourth of the shaft length extending beyond each support. Measure the departure from straightness at each end and at the center by means of a dial gage mounted on a suitable movable block and set successively at the three points to be measured while rotating the shaft slowly and carefully to avoid vibration. The total range of the dial reading at a given point, divided by two, gives the departure from straightness at that point.

6.5 Edge Contours:

6.5.1 Finish—All rectangular and square bar shall have finished edges.

6.5.2 *Angles*—All regular polygonal sections shall have substantially exact angles. For hexagonal and octagonal rods cold-drawn to size, corner radii shall not exceed ½16 in. [1.5 mm] for sizes up to 2 in [50 mm], incl., and ¾32 in. [2.5 mm] for sizes over 2 in [50 mm].

6.5.2.1 When specified, hexagons and octagons shall be furnished with corners rounded to a radius of 11 % of the distance between parallel faces. The distance from corner to corner (see Note 3) shall be the basis for acceptance or rejection. The appropriate tolerances are listed in Table 18.

Note 3. The distance from corner to corner is determined by calculating the distance across parallel faces times 1.121 for hexagons and 1.064 for octagons.

6.5.3 Rectangular and Square Bar—Unless otherwise specified, square corners shall be furnished on rectangular and square bar. When so ordered, the edge contours described in 6.5.4 – 6.5.7 inclusive shall be furnished.

6.5.4 Square Corners—Unless otherwise specified, bar shall be finished with commercially square corners with a maximum permissible radius of ½2 in. [1.0 mm] for bars over ¾6 to 1 in. [5 to 25 mm], inclusive, in thickness, and ⅙6 in. [1.5 mm] for bars over 1 in. [25 mm] in thickness.

6.5.5 Rounded Corners—When specified, bar shall be finished with corners rounded as shown in Fig. 1 to a quarter circle with a radius of $\frac{1}{16}$ in. [1.5 mm] for bars over $\frac{3}{16}$ to 1 in. [25 mm], inclusive, in thickness, and $\frac{1}{8}$ in. [5 mm] for bars over 1 in. [25 mm] in thickness. The tolerance on the radius shall be ± 25 %.

6.5.6 Rounded Edge—When specified bar shall be finished with edges rounded as shown in Fig. 2, the radius of curvature being 1½ times the thickness of the bar for bars over ¾6 in. [5 mm] in thickness. The tolerance on the radius shall be one fourth the thickness of the bar.

6.5.7 Full Rounded Edge—When specified, bar shall be finished with substantially uniform round edges, the radius of curvature being approximately one half the thickness of the product, as shown in Fig. 3, but in no case to exceed one half the thickness of the product by more than 25 %.

7. Workmanship, Finish, and Appearance

7.1 *Workmanship*—The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable. The product shall be well cleaned and free from dirt.

TABLE 7 Thickness Tolerances for Rectangular and Square Bar

(Applicable to Specifications B124/B124M, (Copper Alloy UNS Nos. C11000, C14500, and C14700), B301/B301M, and B974/B974M)

	Thickness Tolerances, Plus and Minus, ^A in. [mm] for Widths Given in Inches					
Thickness, in. [mm]	½ [12] and Under	Over ½ to 1¼ [12 to 30] Incl	Over 11/4 to 2 [30 to 50] Incl	Over 2 to 4 [50 to 100] Incl	Over 4 to 8 [100 to 200] Incl	Over 8 to 12 [200 to 300] Incl
Over 0.188 to 0.500 [4.8 to 12], incl	0.003 [0.08]	0.003 [0.08]	0.0035 [0.09]	0.004 [0.10]	0.0045 [0.11]	0.0055 [0.13]
Over 0.500 to 1.00 [12 to 25], incl		0.004 [0.10]	0.004 [0.10]	0.0045 [0.11]	0.005 [0.13]	0.006 [0.15]
Over 1.00 to 2.00 [25 to 50], incl		0.0045 [0.11]	0.0045 [0.11]	0.005 [0.13]	0.006 [0.15]	
Over 2.00 to 4.00 [50 to 100], incl				0.30^{B}		

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 8 Thickness Tolerances for Rectangular and Square Bar

(Applicable to Specifications B16/B16M, B21/B21M, B98/B98M, (Copper Alloy UNS No. 65100), B124/B124M (Copper Alloy UNS No. C46750, C48200, and C48500), B140/B140M, B453/B453M, B927/B927M, and B967/B967M)

Thickness, in. [mm]	Thickness Tolerances, Plus and Minus, A in. for Widths Given in Inches					
THICKIESS, III. [IIIIII]	½ and Under	Over ½ to 1¼ Incl	Over 11/4 to 2 Incl	Over 2 to 4 Incl	Over 4 to 8 Incl	Over 8 to 12 Incl
Over 0.188 to 0.500 [4.8 to 12], incl	0.0035 [0.09]	0.004 [0.10]	0.0045 [0.11]	0.0045 [0.11]	0.006 [0.13]	0.008 [0.20]
Over 0.500 to 1.00 [12 to 25], incl		0.0045 [0.11]	0.005 [0.13]	0.005 [0.13]	0.007 [0.18]	0.009 [0.23]
Over 1.00 to 2.00 [25 to 50], incl		0.005 [0.13]	0.005 [0.13]	0.006 [0.15]	0.008 [0.20]	
Over 2.00 to 4.00 [50 to 100], incl				0.30 ^B	C/2	

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 9 Thickness Tolerances for Rectangular and Square Bar

(Applicable to Specifications B98/B98M (Copper Alloy UNS Nos. C65500 and C66100), B124/B124M (Copper Alloy UNS Nos. C27450, C27453, C28500, C36300, C36500, C37000, C37700, C48640, C48645, C65680, C61900, C62800, C63000, C63200, C64200, C64210, C65500, C67500, C67600, C69240, C69300, C69410, C69850, C70620, C75120, C77400, C87700, and C87710), B138/B138M, B139/B139M, B150/B150M, B151/B151M, B196/B196M, B411/B411M, B441, B929, and B981/B981M)

		Thickness Toler	ances, Plus and Minus	s, ^A in. [mm] for Width	s Given in Inches	
Thickness, in. [mm]	½ [12] and Under	Over ½ to 1¼ [12 to 30] Incl	Over 1 1/4 to 2 [30 to 50] Incl	Over 2 to 4 [50 to 100] Incl	Over 4 to 8 [100 to 200] Incl	Over 8 to 12 [200 to 300] Incl
Over 0.188 to 0.500 [4.8 to 12], incl	0.005 [0.13]	0.005 [0.13]	0.006 [0.15]	0.007 [0.18]	0.009 [0.23]	0.012 [0.30]
Over 0.500 to 1.00 [12 to 25], incl		0.006 [0.15]	0.007 [0.18]	0.008 [0.20]	0.010 [0.25]	0.013 [0.33]
Over 1.00 to 2.00 [25 to 50], incl		0.006 [0.15]	0.007 [0.18]	0.009 [0.23]	0.011 [0.28]	
Over 2.00 to 4.00 [50 to 100], incl				0.50^{B}		

A When tolerances are specified as all plus or all minus, double the values given.

TABLE 10 Width Tolerances for Rectangular Bar

(Applicable to Specifications B16/B16M, B21/B21M, B98/B98M (Copper Alloy UNS No. C65100), B124/B124M (Copper Alloy UNS Nos. C11000, C14500, C14700, C46400, C46750, C48200, and C48500), B140/B140M, B301/B301M, B453/B453M, B927/B927M, B967/B967M and B974/B974M)

	· ·
Width, in. [mm]	Tolerances, Plus and Minus, ^A in. [mm]
Over 0.188 to 0.500 [4.8 to 12], incl	0.0035 [0.09]
Over 0.500 to 1.25 [12 to 30], incl	0.005 [0.13]
Over 1.25 to 2.00 [30 to 50], incl	0.008 [0.20]
Over 2.00 to 4.00 [50 to 100], incl	0.012 [0.30] ^B
Over 4.00 to 12.00 [100 to 300],	0.30 ^B [0.30]
incl	

A When tolerances are specified as all plus or all minus, double the values given.

7.2 Finish—A superficial film of residual light lubricant normally is present and is permissible unless otherwise specified.

7.3 Appearance:

TABLE 11 Width Tolerances for Rectangular Bar

(Applicable to Specifications B98/B98M (Copper Alloy UNS Nos. C65500 and C66100), B124/B124M (Copper Alloy UNS Nos. C27450, C27453, C28500, C36300, C36500, C37000, C37700, C48640, C48645, C65680, C61900, C62300, C63000, C63200, C64200, C64210, C65500, C67500, C67600, C69240, C69300, C69410, C69850, C70620, C75120, C77400, C87700, and C87710), B138/ B138M, B139/B139M, B150/B150M, B151/B151M, B196/B196M, B411/B411M, B441, B929, and B981/B981M)

Width, in. [mm]	Tolerances, Plus and Minus, ^A in. [mm]
Over 0.188 to 0.500 [4.8 to 12], incl	0.005 [0.13]
Over 0.500 to 1.25 [12 to 30], incl	0.007 [0.18]
Over 1.25 to 2.00 [30 to 50], incl	0.010 [0.25]
Over 2.00 to 4.00 [50 to 100], incl	0.015 [0.38]
Over 4.00 to 12.00 [100 to 300], incl	$0.50^{B} [0.50]^{B}$

^A When tolerances are specified as all plus or all minus, double the values given.

7.3.1 The surface finish and appearance shall be of the normal quality for product ordered.

7.3.2 When intended application information is provided in the ordering information of the contract or purchase order, the surface shall be that normally produced for the application.

^B Percent of specified thickness expressed to the nearest 0.001 in. [0.01 mm].

^B Percent of specified thickness expressed to the nearest 0.001 in. [0.01 mm].

B Percent of specified thickness expressed to the nearest 0.001 in. [0, mm].

^B Percent of specified width expressed to the nearest 0.001 in. [0.01 mm].

^B Percent of specified width expressed to the nearest 0.001 in. [0.01 mm].

TABLE 12 Diameter Tolerances for Hot-Forged Rod and Bar (Applicable to Specification B138/B138M)

Diameter or Distance Between	Tolerances, All Plus, in. [mm]			
Parallel Surfaces, in. [mm]	As-Forged	Rough-Turned		
Over 3.50 [90]	0.125 [3.2]	0.050 [1.3]		

TABLE 13 Length Tolerances for Rod, Bar, and Shapes (Full-Length Pieces Specific and Stock Lengths With or Without Ends) (Applicable to Specifications B16/B16M, B21/B21M, B98/B98M, B138/B139/B139M, B140/B140M, B150/B150M, B151/B151M, B196/B196M, B301/B301M, B371/B371M, B411/B411M, B441, B453/B453M, B927/B927M, B929, B967/B967M, B974/B974M, and B981/B981M)

Note 1—The length tolerances in this table are all plus; if all minus tolerances are desired, use the same values; if tolerances are desired plus and minus, halve the values given.

Length Classification	Tolerances, All Plus, in. [mm] (Applicable Only to Full-Length Pieces)		
Specific lengths	³ / ₈ [10]		
Specific lengths with ends Stock lengths with or without ends	1 [25] 1 ^A [25] ^A		

^A As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

7.3.3 Superficial films of discoloration, or lubricants, or tarnish inhibitors are permissible unless otherwise specified.

8. Sampling

- 8.1 The lot size, portion size, and selection of sample pieces shall be as follows:
- 8.1.1 Lot Size—An inspection lot shall be 10000 lb [5000 kg], or less, of the same mill form, alloy, temper, and nominal dimensions, subject to inspection at one time. Alternatively, a lot shall be the product of one cast bar from a single melt charge, or one continuous casting run whose weight does not exceed 40 000 lb [20 000 kg] that has been continuously processed and subject to inspection at one time.
- 8.1.2 *Portion Size*—The portion shall be four or more pieces selected as to be representative of each lot. Should the lot consist of less than five pieces, representative samples shall be taken from each piece.
 - 8.2 Chemical Analysis.
- 8.2.1 The sample for chemical analysis shall be taken in accordance with Practice E255 for product in its final form from the pieces selected in 8.1.2 and combined into one composite sample. The minimum weight of the composite sample shall be 150 g.
- 8.2.2 Instead of sampling as directed in 8.2.1, the manufacturer shall have the option of sampling at the time castings are poured or from the semifinished product. When samples are taken during the course of manufacture, sampling of the finished product by the manufacturer is not required. The number of samples taken for the determination of composition shall be as follows:
- 8.2.2.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured from the same source of molten metal.

- 8.2.2.2 When samples are taken from semifinished product, a sample shall be taken to represent each 10 000 lb [5000 kg], or fraction thereof, except that not more than one sample shall be required per piece.
- 8.2.2.3 Only one sample need be taken from the semifinished product of one cast bar from a single melt charge continuously processed.
- 8.3 Samples for All Other Tests—Samples for all other ests shall be taken from the sample portions selected in 8.1.2 and be of a convenient size to accommodate the test and comply with the requirements of the appropriate product specification and test method.

9. Number of Tests and Retests

- 9.1 *Tests*:
- 9.1.1 Chemical Analysis—Chemical composition shall be determined as the per element mean of results from at least two replicate analyses of the sample(s) and the results of each replication shall meet the requirements of the product specification.
- 9.1.2 Tensile Strength, Grain Size, Electrical Resistivity— The test results for each individual test specimen shall be reported as the average of results obtained from specimens prepared from each of two pieces selected in 8.1.2 and each specimen must meet the requirements of the product specification. In the case of copper-beryllium alloy, two specimens shall be taken for each required test. One specimen from each piece shall be tested without further treatment, and the other specimen shall be tested after precipitation heat treatment.
- 9.1.2.1 *Rockwell Hardness*—The value of the hardness number of each specimen shall be established as the arithmetical average of at least three readings and each specimen must meet the requirements of the product specification.
- 9.1.2.2 Bend, Cuprous Oxide (Hydrogen Embrittlement Susceptibility), and Mercurous Nitrate Tests—All specimens tested must meet the product requirements to qualify for specification conformance.
- 9.1.3 Other Requirements—At least two specimens shall be subjected to test for each of the other requirements and each specimen shall conform to the test requirements.
 - 9.2 Retests:
- 9.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when test results obtained by the purchaser fail to conform with the product specification requirement(s).
- 9.2.2 Retesting shall be as directed in the product specification for the initial test except for the number of test specimens which shall be twice that normally required for the test. Test results for all specimens shall conform to the product specification requirement(s) in retest and failure to comply shall be cause for lot rejection.

10. Specimen Preparation

- 10.1 *Chemical Analysis*—Sample preparation shall be in accordance with Practice E255.
- 10.1.1 Analytical specimen preparation shall be the responsibility of the reporting laboratory.

TABLE 14 Schedule of Lengths (Specific and Stock) with Ends for Rod, Bar, and Shapes

(Applicable to Specifications B16/B16M, B21/B21M, B138/B138M (Copper Alloy UNS Nos. C67500 and C67600), B140/B140M, B301/B301M, B453/B453M, B927/B927M, and B974/B974M)

		·		
Diameter or Distance Between Parallel Surfaces for Round, Hexagonal, and Octagonal Rod, and Square Bar, in. [mm]	Rectangular Bar, Area, ^A in. ² [mm ²]	Nominal Length, ft [mm]	Shortest Permissible Length, 8 % of Nominal Length	Maximum Permissible Weight of Ends, % of Lot Weight
0.500 [12] and under	0.250 [160] and under	6 to 14 [2000 to 4250], incl	75	20
Over 0.500 to 1.00 [12 to 25], incl	over 0.250 to 1.00 [160 to 650], incl	6 to 14 [2000 to 4250], incl	70	30
Over 1.00 to 1.50 [25 to 38], incl	over 1.00 to 2.25 [650 to 1500], incl	6 to 12 [2000 to 3750], incl	60	40
Over 1.50 to 2.00 [38 to 50], incl	over 2.25 to 4.00 [1500 to 2500], incl	6 to 12 [2000 to 3750], incl	50	45
Over 2.00 to 3.00 [50 to 75], incl	over 4.00 to 9.00 [2500 to 5850], incl	6 to 10 [2000 to 3000], incl	40	50

^A Width times thickness, disregarding any rounded corners or edges.

TABLE 15 Schedule of Lengths (Specific and Stock) with Ends for Rod, Bar, and Shapes

(Applicable to Specifications B98/B98M, B138/B138M (Copper Alloy UNS No. C67000), B139/B139M, B150/B150M, B151/B 51M, B196/B196M, B371/B371M, B411/B411M, B441, B929, B967/B967M, and B981/B981M)

Diameter or Distance Between Parallel Surfaces for Round, Hexagonal, and Octagonal Rod, and Square Bar, in. [mm]	Rectangular Bar, Area, Ain. [mm²]	Nominal Length, ft [mm]	Shortest Permissible Length, ^B % of Nominal Length	Maximum Permissible Weight of Ends, % of Lot Weight
0.500 [12] and under Over 0.500 to 1.00 [12 to 25], incl	0.250 [160] and under over 0.250 to 1.00 [160 to 650], incl	6 to 12 [2000 to 4000], incl 6 to 12 [2000 to 4000], incl	65	30 40
Over 1.00 to 1.50 [25 to 38], incl Over 1.50 to 2.00 [38 to 50], incl	over 1.00 to 2.25 [650 to 1500], incl over 2.25 to 4.00 [1500 to 2500], incl	6 to 10 [2000 to 3000], incl 6 to 10 [2000 to 3000], incl	50 40	50 60

^A Width times thickness, disregarding any rounded corners or edges.

TABLE 16 Straightness Tolerances for Rod, Bar, and Shapes

Form and Size,	Length, ft [mm]	Maximum Curvature					
in. [mm]		(Depth of Arc), in. [mm]					
	For General Use						
		1M, B98/B98M, B138/B138M,					
		/B151M, B196/B196M, B301/					
,		B/B453M, B927/B927M, B929,					
Rod: drawn	7/B967M, B974/B974M, and						
Hod: drawn	up to 2 [600] incl 2 to 5 [600 to 1500]	1/32 [0.80] 1/32 in any 2 ft portion [0.80 in					
	11101 2 10 5 [600 10 1500]	any 600 mm portion A					
	incl 5 to 10 [1500 to 3000]						
	•	any 1500 mm portion] ^A					
	10 [3000] and over	½ in any 10 ft portion [12 in					
		any 3000 mm portion] ^A					
Bar and shapes	6 [2000] and over	½ in any 6 ft portion [12 in					
(rolled or drawn)		any 2000 mm portion] ^{A,B}					
	NN ROD—FOR AUTOMATIC SCRE						
	ecifications B16/B16M,B140/ 453M, B974/B974M, and B9						
Round only:		,					
Under 1/4 [6.35]	10 [3000] and over	½ in any 10 ft portion [12 in any 3000 mm portion] ^A					
1/4 [6.35] and over	10 [3000] and over	¹ / ₄ in any 10 ft portion [6.35 in any 3000 mm portion] ^A					
Local departure from	O'	1/64 in any 1 ft portion of					
straightness, 1/4		the total length [0.40 in any					
[6.35] and	- Cll	300 mm portion of the total					
over only	$O_{\ell_{\alpha}}$	length]					
Hexagonal and octagonal:							
Under 1/4 [6.35]	10 [3000] and over	½ in any 10 ft portion [12.7]					
		in any 3000 mm portion] ^A					
1/4 [6.35] and over	10 [3000] and over	% in any 10 ft portion [9.5 in					
		any 3000 mm portion] ^A					

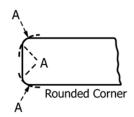
⁴Of total length.

Applicable to any longitudinal surface or edge.

10.2 Tensile Test—The test specimen shall conform to the requirements prescribed for the particular product in the Test Specimen Section of Test Methods E8/E8M (see Round

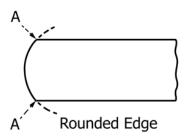
TABLE 17 Straightness Tolerances for Shafting
(Applicable to Specifications B21/B21M, B138/B138M, B139/B139M, and B150/B150M)

	and Brook Brooking	
Length of Shaft, ft [mm]	Maximum Permissible Departure from Straightness of Either Center or End Portions, in. [mm]	Minimum Diameter Applicable for Length Indicated, in. [mm]
Up to 6 [2000], incl	0.005 [0.13]	1/2 [12]
7 [1750]	0.007 [0.18]	1/2 [12]
8 [2400]	0.009 [0.23]	½ [12]
9 [2750]	0.012 [0.30]	½ [12]
10 [3050]	0.014 [0.36]	½ [12]
11 [3350]	0.017 [0.43]	1/2 [12]
12 [3650]	0.020 [0.50]	½ [12]
14 [4250]	0.028 [0.63]	5/8 [16]
16 [4875]	0.036 [0.91]	3/4 [20]
18 [5500]	0.045 [1.14]	1 [25]
20 [6100]	0.055 [1.4]	11/4 [30]
22 [6700]	0.068 [1.73]	1½ [40]
24 [7300]	0.078 [2.00]	1¾ [44]
26 [7900]	0.094 [2.38]	2 [50]


TABLE 18 Tolerances for Rounded Corner Hexagons and Octagons

Distance Between Parallel Faces, in. [mm]	Tolerances on Distance Across Corners (Plus and Minus), in. [mm]
Up to 11/16 [17.3], incl	0.008 [0.20]
Over 11/16 to 2 [17.3 to 50], incl	0.010 [0.25]
Over 2 [50]	0.5 %

Specimens; Specimens for Wire, Rod, and Bar; Specimens for Rectangular Bar; or Specimens for Shapes Structure or Other). Unless specified, tensile testing may be performed on unmachined samples by using the maximum gage length extensometers that will fit between the gripping devices. The testing facility must be able to demonstrate that there is no statistically significant difference between the unmachined test results and


 $^{^{\}it B}$ Expressed to the nearest $1\!\!/_{\! 2}$ ft [150 mm].

^B Expressed to the nearest ½ ft [150 mm].

Note 1—The arc shall not necessarily be tangent at Points A but the product shall be commercially free from sharp, rough, or projecting edges.

FIG. 1 Rounded Corners

Note 1—The arc shall be substantially symmetrical with the axis of the product. The corners, A, will usually be sharp but shall not have rough or projecting edges.

FIG. 2 Rounded Edge

Full Rounded Edge

Note 1—The arc shall not necessarily be tangent at Point A but shall be substantially symmetrical with the axis of the product, and the product shall be commercially free from sharp, rough, or projecting edges.

FIG. 3 Full Rounded Edge

the standard test method defined in Test Methods E8/E8M. Statistical significance testing must follow Practice D4855.

- 10.3 *Grain Size*—The test specimen shall be prepared in accordance with Guide E3.
- 10.4 Rockwell Hardness—The test specimen shall be of a size and shape to permit testing by the available test equipment and shall be taken to permit testing in a plane parallel or perpendicular to the direction of deformation given to the product.
- 10.4.1 The surface of the test specimen shall be sufficiently smooth and even to permit the accurate determination of hardness.
- 10.4.2 The specimen shall be free of scale and foreign matter and care shall be taken to avoid any change in condition, that is, heating or cold work.
- 10.5 *Electrical Resistivity*—Test specimens are to be full size where practical and shall be the full cross section of the material it represents.
- 10.5.1 When the test specimen is cut from material in bulk, care shall be taken that the properties are not appreciably altered in the preparation. Plastic deformation may work

harden a material and tend to raise the resistivity, while heating tends to anneal the material with a consequent reduction in resistivity.

- 10.5.2 When necessary, products are to be rolled or cold-drawn to a wire approximately 0.080 in. (12 gage AWG) (2.0 mm) and at least 160 in. [4000 mm] in length. The specimen shall be annealed at approximately 935 °F \pm 10 °F [500 °C \pm 5 °C] for 30 min in an inert atmosphere and coolea to ambient temperature in the inert atmosphere.
- 10.5.3 For heat-treatable material, diameter and heat treatment shall be agreed upon between the manufacturer and the purchaser.
- 10.6 Residual Stress Test—When specified in the ordering information, test specimens shall conform to the requirements of Test Methods B154 or B858, as applicable.
- 10.6.1 Residual stress test specimens shall be of the full size of the product and tested without bending, springing, polishing, or any other preparation, except as allowed by the test method.
- 10.7 Determination of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper—Test specimen shall conform to the appropriate requirements of the Test Specimen Section of Test Methods B577.
 - 10.8 Bend Test:
- 10.8.1 The test specimen shall be prepared in accordance with Test Methods E290.
- 10.82 When impractical to test full-size specimens but practical to test full-thickness specimens from material not exceeding 1½ in. [40 mm] in nominal thickness, the specimens shall be of the thickness of the material and the ratio of width to thickness shall be 2:1, provided the width is not less than 3¼ in. [20 mm].
- 10.8.3 When material exceeds ½ in. [10 mm] in thickness diameter, or distance across flats, the specimen may be machined when full-section or full-thickness specimen are not used. The diameter or thickness of the specimen shall be at least ½ in. [10 mm] and the ratio of width to thickness of rectangular specimens shall be 2:1. In rectangular specimens of reduced thickness, the outside or tension surface shall be an as fabricated surface.
- 10.9 Replacement Specimens—Should any test specimen show defective machining or develop flaws, it may be discarded and another specimen substituted.

11. Test Methods

- 11.1 The test method(s) used for quality control or production control, or both, for the determination of conformance with product property requirements are discretionary.
- 11.1.1 The test method(s) used to obtain data for the preparation of certification or test report, or both, shall be made available to the purchaser on request.
 - 11.2 Chemical Composition:
- 11.2.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer, or supplier and the purchaser. An applicable test method may be found in the following documents: Test Methods E53, E54, E62, E75, E76, E118, E121, E478, and E581.

- 11.2.1.1 The specific method to be used for each specified element may be prescribed in the product specification.
- 11.2.1.2 The test methods for the determination of composition for copper-beryllium alloys shall be as described in Annex A1 of Specification B194.
- 11.2.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

11.3 Other Tests:

11.3.1 The product in final form shall conform with physical, mechanical, and other requirements specified in the product specification when subjected to test in accordance with the appropriate test method in the following table:

Test	Test Methods			
Grain size	E112			
Electrical resistivity	B193			
Tensile	E8/E8M			
Rockwell hardness	E18			
Hydrogen embrittlement	B577			
Semi-guided bend	E290			

- 11.3.2 *Grain Size*—The intercept method shall be used to determine grain size in case of dispute.
- 11.3.3 *Electrical Resistivity*—The limit of measurement uncertainty for Test Method B193 shall be ± 0.30 % as a routine method and ± 0.15 % as an umpire method.
 - 11.3.4 Tensile:
- 11.3.4.1 The method to be used for determining yield strength shall be specified in the product specification.
- 11.3.4.2 Elongation shall be determined in accordance with the first two paragraphs of the subsection entitled "Elongation" of the Procedure section of Test Methods E8/E8M.
- 11.3.4.3 Whenever test results are obtained from both fullsize and machined specimens and they differ, the test results from the full-size specimens shall prevail.
- 11.3.4.4 Test results are not seriously affected by variations in speed of testing. A considerable range of testing speed is permitted; however, the rate of stressing to the yield strength should not exceed 100 ksi/min. Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. or gage length (or distance between grips for full-section specimens).
- 11.3.5 Rockwell Hardness—Special attention should be given to the Standardizing Machine section of Test Methods E18.
- 11.3.6 *Hydrogen Embrittlement*—In case of dispute, Procedure C, Closed Bend Test, of Test Methods B577 shall be used.
- 11.4 The product shall meet the performance requirements of the product specification when subjected to the following test as required:
 - 114.1 Residual Stress Tests:
- 11.4.1.1 Unless otherwise agreed upon by the manufacturer or supplier and the purchaser, the manufacturer shall have the option of using either the mercurous nitrate test or the ammonia vapor test.
- 11.4.1.2 *Mercurous Nitrate Test*—The material shall be subjected to test in accordance with Test Method B154.

- 11.4.1.3 *Ammonia Vapor Test*—The material shall be subjected to test in accordance with Test Method B858. If the pH value is not specified in the product specification, it shall be established per agreement between the supplier and purchaser.
- 11.4.2 Semiguided Bend Test—The mandrel radius and bend angle shall be specified in the product specification. When the test specimen has been machined, the retained original surface shall constitute the outer periphery of the bend that shall be made on a radius equal to that dimension of the machined radial to the bend.

12. Significance of Numerical Limits

12.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table and for dimensional tolerances, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Rounded Unit for Observed or Calculated Value Chemical composition nearest unit in the last right-hand Hardness Electrical resistivity significant digit used in expressing the Electrical conductivity limiting value Tensile strength nearest ksi [5 MPa] Yield strenath nearest 1 % Elongation: Grain size Under 0.060 mm nearest multiple of 0.005 mm 0.060 mm and over nearest 0.01 mm

13. Inspection

- 13.1 The manufacturer or supplier shall inspect and make tests necessary to verify that the furnished product conforms to the specification requirements.
- 13.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector representing the purchaser that the product is being furnished in accordance with the product specification shall be included in the agreement. All testing and inspection shall be conducted so as not to interfere unnecessarily with the operations of the works.
- 13.3 When mutually agreed upon, the manufacturer or supplier and the purchaser may conduct the final inspection simultaneously.

14. Rejection and Rehearing

- 14.1 Rejection:
- 14.1.1 Product that fails to conform to the product specification requirements when tested by the purchaser or purchaser's agent shall be subject to rejection.
- 14.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 14.1.3 In case of dissatisfaction with the results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.

14.2 Rehearing:

14.2.1 As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or, alternately, upon agreement by both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

15. Certification

15.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in the product specification and the requirements have been met.

15.2 DELETED

16. Mill Test Report

16.1 A report of test results shall be furnished.

17. Product Marking

17.1 Product identification marking shall be as required by the product specification.

18. Packaging and Package Marking

18.1 Packaging:

- 18.1.1 The product shall be separated by size, composition, and temper, and prepared for shipment by common carrier in such a manner as to afford protection from the normal hazards of transportation.
- 18.1.2 When specified in the purchase order or contract, that product is purchased for agencies of the U.S. Government, the requirements of Practice B900 may apply.
- 18.2 Package Marking—Each shipping unit shall be legibly marked with the purchase order number, Copper or Copper Alloy UNS No., designation, temper, size, shape, gross and net weight, and name of supplier or manufacturer. The specification number shall be shown when specified.

19. Keywords

19.1 bar, general requirements; bar, rod, shapes, general requirements; rod, general requirements; shape, general requirements

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S1.1.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging, and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy, Mill Products

S1.1.2 *Military Standard:*

MIL-STD 129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 *Responsibility for Inspection:*

\$2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities

for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

- S4.1 Preservation, Packaging, Packing:
- S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class, and shall be preserved and packaged, Level A or C, packed Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of Practice B900.
- S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

ad by the specifications listed in Section Later the property of the restrictions is specifications listed in Section Later the restrictions.

TABLE X1.1 Densities of Coppers and Copper Alloys

ASTM Designation	Material	Copper or Copper Alloy UNS No.	Density, lb/in. ³ [g /cm³]
B16/B16M	free-cutting brass	C36000	0.307 [8.50]
D01/D01M	may al larges	0.40000	0.005 [0.44]
B21/B21M	naval brass	C46200 C46400	0.305 [8.44] 0.304 [8.41]
		C48200	0.305 [8.42]
		C48500	0.305 [8.41]
	leaded brass	C48640	0.303 [8.40]
	100000 21000	C48645	0.307 [8.49]
B98/B98M	copper-silicon alloy	C65100	0.316 [8.75]
		C65500	0.308 [8.53]
		C65800	0.308 [8.53]
		C66100	0.308 [8.53]
B124/B124M	copper	C11000	0.323 [8.94]
	copper-tellurium	C14500	0.323 [8.94]
	copper-sulfur	C14700	0.323 [8.94]
	plumbing brass	C27450	0.304 [8.41]
	copper-zinc alloy	C27453	0.305 [8.44]
	copper-zinc brass	C28500	0.303 [8.40]
	copper-zinc-lead	C36300	0.304 [8.41]
	forging brass	C37700	0.323 [8.94] 0.323 [8.94] 0.323 [8.94] 0.304 [8.41] 0.305 [8.44] 0.303 [8.40] 0.304 [8.41] 0.305 [8.44]
	naval brass	0.0.00	0.00 . [0]
	tin brass	C46750	0.306 [8.48]
	medium leaded naval brass	C48200 C48500	0.305 [8.44]
	leaded naval brass leaded brass	C48640	0.305 [8.44] 0.303 [8.40]
			0.303 [8.49]
	low leaded bismuth brass bismuth brass low leaded bismuth brass low leaded bismuth brass bismuth brass aluminum-bronze aluminum-bronze, 9 %	049250	0.307 [8.44]
	Didition Diago	C49255	0.304 [8.41]
		C49260	0.303 [8.40]
	low leaded bismuth brass	C49265	0.303 [8.40]
	bismuth brass	C49300	0.304 [8.42]
	C	C49340	0.305 [8.45]
	low leaded bismuth brass	C49345	0.305 [8.45]
	bismuth brass	C49350	0.311 [8.45]
	. 0	C49355	0.300 [8.30]
		C49360	0.304 [8.41]
	aluminum-bronze	C61900	0.271 [7.5]
	· · · · · · · · · · · · · · · · · · ·		0.277 [7.66]
	aluminum-nickel bronze aluminum-silicon bronze	C63000 C64200	0.274 [7.58]
	aluminum-silicon bronze, 6.7 %	C64210	0.278 [7.69] 0.278 [7.69]
	high-silicon bronze (A)	C65500	0.308 [8.53]
	silicon bronze	C65680	0.302 [8.35]
	manganese bronze (A)	C67500	0.302 [8.36]
	copper-zinc-silicon-manganese	C69240	0.301 [8.33]
	nickel silver, 45-10	C77400	0.306 [8.47]
B138/B138M	manganese bronze	C67000	0.006 [7.00]
D130/D136W	Thanganese biolize	C67500	0.286 [7.92] 0.302 [8.36]
		00.000	0.002 [0.00]
B139/B139M	phosphor bronze	C51000	0.320 [8.86]
		C52100	0.318 [8.80]
O,		C52400	0.317 [8.77]
		C53400	0.322 [8.91]
all a		C54400	0.320 [8.86]
B140/B140M	leaded red brass	C31400	0.319 [8.83]
\mathcal{O}^{2}		C31600	0.320 [8.86]
-C)·-		C32000	0.317 [8.77]
B150/B150M	aluminum bronze	C61300	0.285 [7.89]
D100/D100W	aluminum bronze	C61400	0.285 [7.89]
	aluminum bronze	C61900	0.270 [7.5]
7.	aluminum bronze, 9%	C62300	0.276 [7.66]
	aluminum bronze	C62400	0.269 [7.45]
	aluminum-nickel bronze	C63000	0.274 [7.58]
	aluminum-nickel bronze	C63200	0.276 [7.64]
	aluminum-silicon bronze	C64200	0.278 [7.69]
	aluminum-silicon bronze, 6.7 %	C64210	0.278 [7.69]

TABLE X1.1 Continued

ASTM Designation	Material	Copper or Copper Alloy UNS No.	Density, lb/in. ³ [g /cm ³]	
B151/B151M	copper-nickel-zinc alloy (nickel silver) and copper-nickel alloy	C70600	0.323 [8.94]	
	, ше сърре шеле,	C71500	0.323 [8.94]	
		C72000	0.323 [8.94]	
		C74500	0.313 [8.86]	
		C75200	0.317 [8.77]	
		C75700	0.314 [8.69]	
		C76400	0.315 [8.72]	
		C77000	0.314 [8.69]	
		C79200	0.314 [8.69]	
		C79400	0.317 [8.77]	
B187/B187M	copper:		0.323 [8.94]	
	deoxidized and oxygen-free other classifications		0.321 [8.89]	
			07	
B196/B196M	copper-beryllium alloy	C17000	0.297 [8.22]	
		C17200	0.297 [8.22]	
		C17300	0.297 [8.22] 0.297 [8.22] 0.297 [8.22] 0.323 [8.94] 0.323 [8.94] 0.323 [8.94] 0.323 [8.94]	
B301/B301M	free-cutting copper	C14500	0.323 [8.94]	
	man animid and han	C14700	0.323 [8.94]	
		C14710	0.323 [8.94]	
		C14720	0.323 [8.94]	
		C18700	0.323 [8.94]	
B371/B371M	copper-zinc-silicon alloy	C69400	0.296 [8.94]	
201 1/201 1.11	coppor zino cincon anoy	C69410	0.296 [8.19]	
		C69700	0.300 [8.19]	
		C69850	0.297 [8.22]	
B411/B411M	copper-nickel-silicon alloy copper-cobalt-beryllium copper-nickel-beryllium copper-zinc-lead (leaded brass)	C64700	0.322 [8.91]	
B441	copper-cobalt-beryllium	C17500	0.316 [8.75]	
	copper-nickel-beryllium	C17510	0.316 [8.75]	
B453/B453M	copper-zinc-lead (leaded brass)	C33500	0.306 [8.47]	
		C34000	0.306 [8.47]	
		C34500	0.306 [8.47]	
		C35000	0.305 [8.44]	
	. 🗸 🔭	C35300	0.306 [8.47]	
		C35330	0.306 [8.47]	
	E)	C35600	0.307 [8.50]	
B455	copper-zinc-lead (leaded brass)	C38000	0.305 [8.44]	
		C38500	0.306 [8.47]	
B929	copper nickel-tin spinodal alloy	C72900	0.323 [8.94]	
B967/B967M	bismuth brass	C49250	0.301 [8.41]	
	×O	C49255	0.304 [8.41]	
	NE "	C49260	0.303 [8.40]	
•	low leaded bismuth brass	C49265	0.303 [8.40]	
	bismuth brass	C49300	0.304 [8.42]	
	•	C49340	0.305 [8.45]	
	low leaded bismuth brass	C49345	0.305 [8.45]	
. 1.	bismuth brass	C49350	0.305 [8.45]	
		C49355	0.300 [8.30]	
COM. CI		C49360	0.304 [8.41]	
()				

SPECIFICATION FOR GENERAL REQUIREMENTS FOR WROUGHT SEAMLESS COPPER AND COPPER-ALLOY TUBE

SB-251/SB-251M

(23)

(Identical with ASTM Specification B251/B251M-17 except that certification and test reports have been made mandatory.)

Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy Tube

1. Scope

- 1.1 This specification covers a group of general requirements common to several wrought product specifications. Unless otherwise specified in the purchase order, or in an individual specification, these general requirements shall apply to copper and copper-alloy tube supplied under Specifications B68/B68M, B75/B75M, B135/B135M, B466/B466M, B643 and B743.
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

B68/B68M Specification for Seamless Copper Tube, Bright Annealed

B75/B75M Specification for Seamless Copper Tube

B135/B135M Specification for Seamless Brass Tube

B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing

- B154 Test Method for Mercurous Nitrate Test for Copper Alloys
- B170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes
- B193 Test Method for Resistivity of Electrical Conductor Materials
- B428 Test Method for Angle of Twist in Rectangular and Square Copper and Copper Allov Tube
- B466/B466M Specification for Seamless Copper-Nickel Pipe and Tube
- B643 Specification for Copper-Beryllium Alloy Seamless Tube

B743 Specification for Seamless Copper Tube in Coils

B846 Terminology for Copper and Copper Alloys

E3 Guide for Preparation of Metallographic Specimens

- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- ©29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E112 Test Methods for Determining Average Grain Size
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Materials and Manufacture

4.1 The material shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in the applicable product specification listed in Section 1.

4.2 The material shall be produced by either hot or cold working operations, or both. It shall be finished, unless otherwise specified, by such cold working and annealing or heat treatment as necessary to meet the properties specified.

5. Dimensions and Permissible Variations

- 5.1 General:
- 5.1.1 The standard method of specifying wall thickness shall be in decimal fractions of an inch or millimeter.
- 5.1.2 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension shall be cause for rejection.
- 5.1.3 Tolerances on a given tube shall be specified with respect to any two, but not all three, of the following: outside diameter, inside diameter, wall thickness.
- 5.1.4 When round tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in Table 1 by more than 50 %.

NOTE 1—Blank spaces in the tolerance tables indicate either that the material is not generally available or that no tolerances have been established.

- 5.2 Wall Thickness Tolerances for Copper and Copper-Alloy Tube—Wall thickness tolerances applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B743 for round tubes only shall be in accordance with Table 1 or Table 2. Wall thickness tolerances for rectangular including square tube applicable to Specifications B75/B75M and B135/B135M shall be in accordance with Table 3 or Table 4.
- 5.3 Diameter or Distance between Parallel Surfaces, Tolerances for Copper and Copper-Alloy Tube—Diameter tolerances applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B743 for round tubes only shall be in accordance with Table 5 or Table 6. Tolerances on distance between parallel surfaces for rectangular including square tube applicable to Specifications B75/B75M and B135/B135M shall be in accordance with Table 7 and Table 8.

5.4 Roundness (Applicable to Specifications B75/B75M, B135/B135M, and B466/B466M)—For drawn unannealed tube in straight lengths, the roundness tolerances shall be as follows:

t/D	Roundness Tolerance as Percent of
(Ratio of Wall Thickness to	Outside Diameter (Expressed to the
Outside Diameter)	Nearest 0.001 in. [0.025 mm])
0.01 to 0.03, incl	1.5 [1.5]
Over 0.03 to 0.05, incl	1.0 [1.0]
Over 0.05 to 0.10, incl	0.8 or 0.002 in. [mm] whichever is greater
Over 0.10	0.7 or 0.002 in. [mm] whichever is greater

- 5.4.1 Compliance with the roundness tolerances shall be determined by taking measurements on the outside diameter only, irrespective of the manner in which the tube dimensions are specified. The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube. The major and minor diameters are the diameters of two concentric circles just enclosing the outside surface of the tube at the cross section.
- 5.4.2 No tolerances have been established for as-extruded tube, redraw tube, annualed tube, any tube furnished in coils or drawn tube whose wall thickness is under 0.016 in. [0.4 mm].
 - 5.5 Length Tolerances:
- 5.5.1 Stronght Lengths—Length tolerances, straight lengths, applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B466/B466M shall be in accordance with Table 9 or Table 10.
- 3.5.2 Schedule of Tube Lengths—Specific and stock lengths of tube with ends, applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B466/B466M, shall be in accordance with Table 11 or Table 12. Tube in straight lengths shall be furnished in stock lengths with ends, unless the order requires specific lengths or specific lengths with ends.
- 5.6 Squareness of Cut (Applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B466/B466M)—For tube in straight lengths, the departure from squareness of the end of any tube shall not exceed the following:

TABLE 1 Wall Thickness Tolerances for Copper and Copper-Alloy Tube—Inch-Pound Values
(Applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B743)

Note 1—Maximum Deviation at Any Point—The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

O,			Outs	de Diameter, in. ^A			
Wall Thickness, in.	1/32 to 1/8, incl	Over 1/8 to 5/8, incl	Over 5/8 to 1, incl	Over 1 to 2, incl	Over 2 to 4, incl	Over 4 to 7, incl	Over 7 to 10, incl
Up to 0.017, incl Over 0.017 to 0.024, incl	0.002 0.003	0.001 0.002	0.0015 0.002	0.002 0.0025			•••
Over 0.024 to 0.034, incl	0.003	0.0025	0.0025	0.0025	0.004		
Over 0.034 to 0.057, incl Over 0.057 to 0.082, incl	0.003	0.003 0.0035	0.0035 0.004	0.0035 0.004	0.005 0.006	0.007 0.008	 0.010
over 0.082 to 0.119, incl		0.004	0.005	0.005	0.007	0.009	0.011
Over 0.119 to 0.164, incl Over 0.164 to 0.219, incl		0.005 0.007	0.006 0.009	0.006 0.009	0.008 0.011	0.010 0.012	0.012 0.014
Over 0.219 to 0.283, incl Over 0.283 to 0.379, incl			0.011 0.014	0.012 6 ^B %	0.014 6 ^B %	0.015 7 ^B %	0.016 7 ^B %
Over 0.379				6 ^B %	6 ^B %	7 ^B %	7 ^B %

A When round tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in the table by more than 50 %.

^B Percent of specified wall expressed to the nearest 0.001 in

TABLE 2 Wall Thickness Tolerances for Copper and Copper-Alloy Tube—SI Values

(Applicable to Specifications B68/B68M, B75/B75M, and B135/B135M)

Note 1-Maximum Deviation at Any Point-The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

	Outside Diameter, mm ^A						
Wall Thickness, mm	0.80 to 3.0, incl	Over 3.0 to 16, incl	Over 16 to 25, incl	Over 25 to 50, incl	Over 50 to 100, incl	Over 100 to 180, incl	Over 180 to 250, incl
Up to 0.40, incl	0.05	0.03	0.04	0.05			
Over 0.40 to 0.60, incl	0.08	0.05	0.05	0.06			
Over 0.60 to 0.90, incl	0.08	0.06	0.06	0.08	0.10		1
Over 0.90 to 1.5, incl	0.08	0.08	0.09	0.09	0.12	0.20	🔨 🔌
Over 1.5 to 2.0, incl		0.09	0.10	0.10	0.15	0.20	0.25
Over 2.0 to 3.0, incl		0.10	0.12	0.12	0.20	0.20	0.25 0.28
Over 3.0 to 4.0, incl		0.12	0.15	0.15	0.20	0.25	0.30
Over 4.0 to 5.5, incl		0.20	0.20	0.20	0.25	0.30	0.35
Over 5.5 to 7.0, incl			0.25	0.25	0.30	0.35	0.40
Over 7.0 to 10, incl			0.30	5 ^B %	5 ^B %	6 ^B %	6 ^B %
Over 10				5 ^B %	5 ^B %	6 ^B %	6 ^B %

A When round tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in the table by more than 50 %. $^{\it B}$ Percent of specified wall expressed to the nearest 0.025 mm.

TABLE 3 Wall Thickness Tolerances for Copper and Copper-Alloy Rectangular and Square Tube-(Applicable to Specifications B75/B75M, B135/B135M, and B743)

Note 1-Maximum Deviation at Any Point-The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

			Distance Between	een Outside Paral	lel Surface, in. ^A		
Wall Thickness, in.	1/32 to 1/8, incl	Over 1/8 to 5/8, incl	Over 5/8 to 1, incl	Over 1 to 2, incl	Over 2 to 4, incl	Over 4 to 7, incl	Over 7 to 10, incl
Up to 0.017, incl	0.002	0.002	0.0025	0.003			
Over 0.017 to 0.024, incl	0.003	0.0025	0.003	0.0035			
Over 0.024 to 0.034, incl	0.0035	0.0035	0.0035	0.004	0.006		
Over 0.034 to 0.057, incl	0.004	0.004	0.0045	0.005	0.007	0.009	
Over 0.057 to 0.082, incl		0.005	0.006	0.007	0.008	0.010	0.012
Over 0.082 to 0.119, incl		0.007	0.008	0.009	0.010	0.012	0.014
Over 0.119 to 0.164, incl		0.009	0.010	0.011	0.012	0.014	0.016
Over 0.164 to 0.219, incl		0.011	0.012	0.013	0.015	0.017	0.019
Over 0.219 to 0.283, incl			0.015	0.016	0.018	0.020	0.022

A In the case of rectangular tube the major dimension determines the thickness tolerance applicable to all walls.

5.6.1 Round Tube:

Specified Outside Diameter, in. [mm]

> 0.010 in. [0.25 mm] Up to 5/8 [16], incl

Over 5/8 [16] 0.016 in./in. [mm/mm] of diameter

5.6.2 Rectangular and Square Tube:

Specified Distance Between Major Outside Parallel Surfaces, in. [mm]

Tolerance

Up to % [16], incl Over 5/8 [16]

0.016 in. [0.40 mm] 0.025 in./in. [mm/mm] of distance between outside parallel surfaces

5.7 Straightness Tolerances:

5.7.1 Round Tubes—For round tubes of any drawn temper, 1/4 to 31/2 in. [6 to 100 mm] in outside diameter, inclusive, but not redraw tube, extruded tube, or any annealed tube, the straightness tolerances applicable to Specifications B75/B75M,

B135/B135M, and B466/B466M shall be in accordance with Table 13 or Table 14.

- 5.7.2 Rectangular and Square Tubes-For rectangular and square tubes of any drawn temper, the straightness tolerance applicable to Specifications B75/B75M and B135/B135M shall be ½ in. [12 mm] maximum curvature (depth of arc) in any 6-ft [2000-mm] portion of the total length. (Not applicable to extruded tube, redraw tube, or any annealed tube.)
- 5.8 Corner Radius, Rectangular and Square Tubes—The permissible radii for commercially square corners applicable to Specifications B75/B75M and B135/B135M shall be in accordance with Table 15 or Table 16.
- 5.9 Twist Tolerances, Rectangular and Square Tubes—The maximum twist about the longitudinal axis of drawn temper rectangular and square tubes applicable to Specifications B75/

TABLE 4 Wall Thickness Tolerances for Copper and Copper-Alloy Rectangular and Square Tube—SI Values (Applicable to Specifications B75/B75M and B135/B135M)

Note 1—Maximum Deviation at Any Point—The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

			Distance Between	en Outside Paralle	el Surface, mm ^A		
Wall Thickness, mm	0.80 to 3.0, incl	3.0 to 16, incl	16 to 25, incl	25 to 50, incl	50 to 100, incl	100 to 180, incl	180 to 250, incl
Up to 0.40, incl	0.05	0.05	0.06	0.08			?
Over 0.40 to 0.60, incl	0.08	0.06	0.08	0.09			O °
Over 0.60 to 0.90, incl	0.09	0.09	0.09	0.10	0.15		
Over 0.90 to 1.5, incl	0.10	0.10	0.12	0.12	0.20	0.25	A
Over 1.5 to 2.0, incl		0.12	0.15	0.20	0.20	0.25	0.30
Over 2.0 to 3.0, incl		0.20	0.20	0.25	0.25	0.30	0.35
Over 3.0 to 4.0, incl		0.25	0.25	0.28	0.30	0.36	0.40
Over 4.0 to 5.5, incl	•••	0.28	0.30	0.33	0.38	0.45~	0.50
Over 5.5 to 7.0, incl			0.38	0.40	0.45	0.50	0.55

A In the case of rectangular tube, the major dimension determines the thickness tolerance applicable to all walls.

TABLE 5 Average Diameter Tolerances for Copper and Copper-Alloy Tube^A —Inch-Pound Values (Applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B743)

	<u> </u>	11a D7 10)
_	Specified Diameter, in.	Tolerance, Plus and Minus, in.
	Up to 1/8, incl	0.002
	Over 1/8 to 5/8, incl	0.002
	Over 5/8 to 1, incl	0.0025
	Over 1 to 2, incl	0.003
	Over 2 to 3, incl	0.004
	Over 3 to 4, incl	0.005
	Over 4 to 5, incl	0.006
	Over 5 to 6, incl	0.007
	Over 6 to 8, incl	0.008
	Over 8 to 10, incl	0.010

A Applicable to inside or outside diameter.

TABLE 6 Average Diameter Tolerances for Copper and Copper-Alloy Tube^A —SI Values (Applicable to Specifications B68/B68M, B75/B75M, and B135/B135M)

	D 100/D 100W)
Specified Diameter, mm	Tolerance, Plus and Minus, mm
Up to 3.0, incl	0.05
Over 3.0 to 16, incl	0.05
Over 16 to 25, incl	0.06
Over 25 to 50, incl	0.08
Over 50 to 75, incl	0.10
Over 75 to 100, incl	0.12
Over 100 to 125, incl	0.15
Over 125 to 150, incl	0.18
Over 150 to 200, incl	0.20
Over 200 to 250, incl	0.25

^A Applicable to inside or outside diameter.

B75M and B135/B135M shall not exceed 1°/ft [1°/300 mm] of length, measured to the nearest degree, and the total angle of twist shall not exceed 20° when measured in accordance with Test Method B428. The requirement is not applicable to tubes in the annealed temper or to tubes whose specified major dimension is less than 1/2 in. [12 mm].

Workmanship, Finish, and Appearance

6.1 The material shall be free of defects of a nature that interfere with normal commercial applications. It shall be well cleaned and free of dirt.

7. Sampling

- 7.1 Sampling—The lot, size, portion size, and selection of sample pieces shall be as follows:
- 7.1.1 Lot Size—For tube, the lot size shall be 10 000 lb [5000 kg] or fraction thereof.
- 7.1.2 Portion Size—Sample pieces shall be taken for test purposes from each lot according to the following schedule:

Number of Pieces	Number of Sample Pieces to
in Lot	be Taken ^A
, V	
1 to 50	1
51 to 200	2
201 to 1500	3
Over 1500	0.2 % of total number of pieces in the
	lot, but not to exceed 10 sample pieces
Over 1500	

^A Each sample piece shall be taken from a separate tube.

8. Number of Tests and Retests

- 8.1 *Chemical Analysis*—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 7.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 8.1.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 8.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.

TABLE 7 Tolerances on Distance Between Parallel Surfaces for Copper and Copper-Alloy Rectangular and Square Tube—Inch-Pound Values

(Applicable to Specifications B75/B75M, B135/B135M, and B743)

Note 1—The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

Tolerances, in.	
0.003	
0.004 0.005 0.006 0.007 0.008 0.009 0.010	Rectangle d c Square
	0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Nominal dimension a determines tolerance applicable to both a and c. Nominal dimension b determines tolerance applicable to both b and d.

TABLE 8 Tolerances on Distance Between Parallel Surfaces for Copper and Copper-Alloy Rectangular and Square Tube—SI Values (Applicable to Specifications B75/B75M and B135/B135M)

Note 1—The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

Dimension a or b (see sketches), mm	Tolerances, mm	
Up to 3.0, incl	0.08	
Over 3.0 to 16, incl	0.10	
Over 16 to 25, incl	0.12	Rectangle d c Square
Over 25 to 50, incl	0.15	
Over 50 to 100, incl	0.20	
Over 100 to 120, incl	0.25	
Over 150 to 200, incl	0.30	∂ ← a →
Over 200 to 250, incl	0.30	/, V

TABLE 9 Length Tolerances for Copper and Copper-Alloy Tube, Straight Lengths—Inch-Pound Values

(Applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B466/B466M)

Note 1—Tolerances are all plus; if all minus tolerances are desired, use the same values; if tolerances plus and minus are desired, halve the values given.

	Tolerances, in., Applicable Only to Full-Length Rieces				
Length	For Major Outside Dimensions Up to	For Major Outside Dimensions Over 1 to 4	For Major Outside Dimensions Over 4 in.		
	1 in., incl	in., incl			
Specific lengths:					
Up to 6 in., incl	/32	1/16			
Over 6 in. to 2 ft, incl	1/16	3/32	1/8		
Over 2 to 6 ft, incl	3/32	1/8	1/4		
Over 6 to 14 ft, incl	1/4	1/4	1/4		
Over 14 ft	1/2	1/2	1/2		
Specific lengths with ends	1	1	1		
Stock lengths with or without	1 ^A	1 ^A	1 ^A		
ends					

As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

TABLE 10 Length Tolerances for Copper and Copper-Alloy Tube, Straight Lengths—SI Values

(Applicable to Specifications B68/B68M, B75/B75M, B135/B135M, and B466/B466M)

Note 1—Tolerances are all plus; if all minus tolerances are desired, use the same values; if tolerances plus and minus are desired, halve the values given.

		Tolerances, mm, Applicable Only to Full-Length Pieces				
Length, mm	For Major Outside Dimensions Up to 25 mm, incl	For Major Outside Dimensions Over 25 to 100 mm, incl	For Major Outside Dimensions Over 100 mm			
Specific lengths:						
Up to 150, incl	0.80	1.5				
Over 150 to 600, incl	1.5	2.5	3.0			
Over 600 to 2000, incl	2.5	3.0	6.0			
Over 2000 to 4000, incl	6.0	6.0	6.0			
Over 4000	12	12	12			
Specific lengths with ends	25	25	25			
Stock lengths with or without ends	25 ^A	25 ^A	25 ^A			

^A As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

8.1.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb [5000 kg] or fraction thereof, except that not more than one sample shall be required per piece.

8.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.

TABLE 11 Schedule of Tube Lengths (Specific and Stock) with Ends for Copper and Copper-Alloy Tube—Inch-Pound Values (Applicable to Specifications B68/B68M, B75/B75M, B135/B135M and B466/B466M)

		·		
Major Outside Dimensions, in.	Specific Length, ft	Shortest Permissible Length, ^A % of Specific Length	Maximum Permissible Weight of Ends, % of Lot Weight	
Up to 1, incl	6 to 20, incl	70	20	
Over 1 to 2, incl	6 to 20, incl	60	25	
Over 2 to 3, incl	6 to 20, incl	55	30	
Over 3 to 4, incl	6 to 20, incl	50	40	

A Expressed to the nearest 1/2 ft.

TABLE 12 Schedule of Tube Lengths (Specific and Stock) with Ends for Copper and Copper-Alloy Tube—SI Values (Applicable to Specifications B68/B68M, B75/B75M, B135/B135M and B466/B466M)

Major Outside Dimensions, mm	Specific Length, mm	Shortest Permissible Length, ^A % of Specific Length	Maximum Permissible Weight of Ends, % of Lot Weight	
Up to 25, incl	2000 to 6000, incl	70	20	
Over 25 to 50, incl	2000 to 6000, incl	60	25	
Over 50 to 75, incl	2000 to 6000, incl	55	30	
Over 75 to 100, incl	2000 to 6000, incl	50	40	

^A Expressed to the nearest 150 mm.

TABLE 13 Straightness Tolerances for Copper and Copper-Alloy
Tube^A in Any Drawn Temper—Inch-Pound Values
(Applicable to Specifications B75/B75M, B135/B135M, B466/B466M
and B643)

Note 1—Applies to round tube in any drawn temper from ½ [6.35] to 3½ in. [88.9 mm], incl, in outside diameter.

Length, ft ^B	Maximum Curvature (Depth of Arc), in.
Over 3 to 6, incl	3/16
Over 6 to 8, incl	5/16
Over 8 to 10, incl	1/2

^A Not applicable to pipe, redraw tube, extruded tube or any annealed tube.
^B For lengths greater than 10 ft the maximum curvature shall not exceed ½ in. in any 10-ft portion of the total length.

TABLE 14 Straightness Tolerances for Copper and Copper-Alloy
Tube^A in Any Drawn Temper—SI Values
(Applicable to Specifications B75/B75M, B135/B135M, B466/B466M
and B643)

Note 1—Applies to round tube in any drawn temper from 6.0 to 100 mm, incl, in outside diameter.

Length mm ^B	Maximum Curvature (Depth of Arc), mm
Over 1000 to 2000, incl	5.0
Over 2000 to 2500, incl	8.0
Over 2500 to 3000, incl	12

A Not applicable to pipe, redraw tube, extruded tube or any annealed tube.

B For lengths greater than 3000 mm the maximum curvature shall not exceed 12 mm in any 3000-mm portion of the total length.

8.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

8.2 Other Tests—For other tests, unless otherwise provided in the product specification, test specimens shall be taken from two of the sample pieces selected in accordance with 7.1.2.

TABLE 15 Permissible Radii for Commercially Square Corners for Copper and Copper-Alloy Rectangular and Square Tube—
Inch-Pound Values

(Applicable to Specifications B75/B75M, B135/B135M, and B743)

Well Thiskness in	Maximum Radii, in.				
Wall Thickness, in.	Outside Corners	Inside Corners			
Up to 0.058, incl	3/64	1/32			
Over 0.058 to 0.120, incl	1/16	1/32			
Over 0.120 to 0.250, incl	3/32	1/32			
Over 0.250	none established	none established			

TABLE 16 Permissible Radii for Commercially Square Corners for Copper and Copper-Alloy Rectangular and Square Tube—
SI Values

(Applicable to Specifications B75/B75M and B135/B135M)

Mall Thislenges man	Maximum Radii, mm				
Wall Thickness, mm	Outside Corners	Inside Corners			
Up to 1.5, incl	1.2	0.80			
Over 1.5 to 3.0, incl	1.6	0.80			
Over 3.0 to 6.0, incl	2.4	0.80			
Over 6.0	none established	none established			

8.2.1 In the case of tube furnished in coils, a length sufficient for all necessary tests shall be cut from each coil selected for purpose of tests. The remaining portion of these coils shall be included in the shipment, and the permissible variations in length on such coils shall be waived.

8.3 Retests:

- 8.3.1 If any test specimen shows defective machining or develops flaws, it shall be discarded and another specimen substituted.
- 8.3.2 If the percentage elongation of any tension test specimen is less than that specified and any part of the fracture is outside the middle two thirds of the gage length or in a punched or scribed mark within the reduced section, a retest on an additional specimen either from the same sample piece or from a new sample piece shall be allowed.
- 8.3.3 If the results of the test on one of the specimens fail to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the test on both of these specimens shall meet the specified requirements. Failure of more than one specimen to meet the specified requirements for a particular property shall be cause for rejection of the entire lot.
- 8.3.4 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from additional pieces selected in accordance with 7.1.2. The results of this retest shall comply with the specified requirements.

9. Test Specimens

9.1 Tension test specimens shall be of the full section of the tube and shall conform to the requirements of Test specimens section of Test Methods E8/E8M, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M shall be used when a full-section specimen cannot be tested.

- 9.2 Whenever tension test results are obtained from both full size and from machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.
- 9.3 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the rate of stressing to the yield strength shall not exceed 100 ksi/min [700 MPa/min]. Above the yield strength the movement per minute of the testing machine head under load shall not exceed 0.5 in/in. [mm/mm] of gage length (or distance between grips for full-section specimens).
- 9.4 The surface of the test specimen for microscopical examination shall approximate a radial longitudinal section of round tube and a longitudinal section of rectangular and square tube perpendicular to, and bisecting, the major dimensional surface.

10. Test Methods

10.1 The properties enumerated in the specifications listed in Section 1 shall, in case of disagreement, be determined in accordance with the following applicable test methods:

Test	ASTM Designation
Chemical analysis Tension Rockwell hardness Grain size Expansion (pin test) Mercurous nitrate test Electrical resistivity	B170, ^A E53, E62, E478 E8/E8M E18 ^B E3, E112 B153 B154 B193

^A Reference to Specification B170 is to the suggested chemical methods in the annex thereof. When Committee E01 has tested and published methods for assaying the low-level impurities in copper, the Specification B170 annex will be eliminated.

11. Significance of Numerical Limits

11.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29:

Rounded Unit for Observed or Property Calculated Value Chemical composition nearest unit in the last right-hand place of figures Hardness Electrical resistivity of the specified limit Tensile stength nearest ksi [nearest 5 MPa] nearest ksi [nearest 5 MPa] Yield strenath Elongation nearest 1 % Grain size: Up to 0.055 mm, incl nearest multiple of 0.005 mm Over 0.055 to 0.160 mm, incl nearest 0.01 mm

12. Inspection

12.1 The manufacturer shall afford the inspector representing the purchaser, all reasonable facilities, without charge, to satisfy him that the material is being furnished in accordance with the specified requirements.

13. Rejection and Rehearing

13.1 Material that fails to conform to the requirements of this specification shall be subject to rejection. Rejection shall be reported to the manufacturer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the manufacturer or supplier shall have the option to make claim for a rehearing.

14. Certification

14.1 The manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements.

14.2 DELETED

15. Packaging and Package Marking

- 15.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.
- 15.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, gross and net weight and name of supplier. The specification number shall be shown, when specified.

16. Mill Test Report

16.1 The manufacturer shall furnish to the purchaser a test report showing results of tests required by the specification.

^B The value for the Rockwell Hardness number of each specimen shall be established by taking the arithmetical average of at least three readings.

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

B900, Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies.

S1.1.2 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.3 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use his own or any other suitable facilities for the performance of the inspection and test requirements.

unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and lests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C packed Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S4.1.2 Givil Agencies—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

\$4.2 Marking:

S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

APPENDIX

(Nonmandatory Information)

X1. STANDARD DENSITIES

X1.1 For reference purposes of calculating weights, cross sections, etc., the densities of the copper and copper alloys covered by the specifications listed in Section 1 shall be taken as in Table X1.1.

421

TABLE X1.1 Densities

		TABI	.E X1.1 Densit	es			
	ASTM Designation	Material	Copper or CopperAlloy UNS No.	Density, lb/in. ³	Density, [g/cm³]		
	B68/B68M B75/B75M B743 (B75/B75M only)	copper copper copper	C10100 C10200 C10300 C10800 C12000 C12200 C14200	0.323 0.323 0.323 0.323 0.323 0.323 0.323	[8.94] [8.94] [8.94] [8.94] [8.94] [8.94]		All Part B)
	B135/B135M	brass	C22000 C23000 C26000 C27000 C27200 C28000 C33000 C33200 C37000 C44300	0.318 0.316 0.308 0.306 0.305 0.303 0.307 0.308 0.304 0.308	[8.80] [8.75] [8.53] [8.47] [8.44] [8.39] [8.50] [8.53] [8.41] [8.53]	BRUCSecti	ion II part B)
	B466	copper nickel	C70400 C70600 C71000 C71500	0.323 0.323 0.323 0.323	[8 94]		
MENORANDOC. COM. CIRC	to lieu	thefull Pr	\$ 01				
			422				

NC Section II part B) 202 SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY STRIP, SHEET, AND PLATE SB-265 ASTM Specification B265-20a except that Note A in Table 7 has been

ASMENORANDOC. COM. Circk to view the full Policy of the Company of (Identical with ASTM Specification B265-20a except that Note A in Table 7 has been revised.)

Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate

1. Scope

- 1.1 This specification covers annealed titanium and titanium alloy strip, sheet, and plate as follows:
 - 1.1.1 Grade 1—UNS R50250. Unalloyed titanium,
 - 1.1.2 Grade 2—UNS R50400. Unalloyed titanium,
- 1.1.2.1 *Grade 2H*—UNS R50400. Unalloyed titanium (Grade 2 with 58 ksi (400 MPa) minimum UTS),
 - 1.1.3 Grade 3—UNS R50550. Unalloyed titanium,
 - 1.1.4 Grade 4—UNS R50700. Unalloyed titanium,
- 1.1.5 *Grade* 5—UNS R56400. Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 *Grade* 6—UNS R54520. Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7~ *Grade* 7—UNS R52400. Unalloyed titanium plus 0.12 to 0.25~% palladium,
- 1.1.7.1 *Grade 7H*—UNS R52400. Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi (400 MPa) minimum UTS),
- 1.1.8 *Grade 9*—UNS R56320. Titanium alloy (3.0 % aluminum, 2.5 % vanadium),
- 1.1.9 *Grade 11*—UNS R52250. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 *Grade 12*—UNS R53400. Titanium alloy (0.3% molybdenum, 0.8 % nickel),
- 1.1.11 *Grade 13*—UNS R53413. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.12 *Grade 14*—UNS R53414. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 *Grade 15*—UNS R53415. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 *Grade 16*—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade 16H—UNS R\$2402. Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi (400 MPa) minimum UTS),

- 1.1.15 *Grade 17*—UNS R52252. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 *Grade 18*—UNS R56322. Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.17 *Grade 19*—UNS R58640. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade* 20—UNS R58645. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chronium, 4 % zirconium, 4 % molybdenum) plus 0.04 % to 0.08 % palladium,
- 1.1.19 *Grade 21*—UNS R58210. Titanium alloy (15 % molybdenum, 3 % aluminum, 2.7 % niobium, 0.25 % silicon),
- 1.1.20 *Grade* 23—UNS R56407. Titanium alloy (6 % aluminum, 4 % vanadium with extra low interstitial elements, FLD.
- 1.1.21 *Grade* 24—UNS R56405. Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 % to 0.08 % palladium,
- 1.1.22 Grade 25—UNS R56403. Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 % to 0.8 % nickel and 0.04% to 0.08 % palladium,
- 1.1.23 *Grade* 26—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.23.1 *Grade 26H*—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi (400 MPa) minimum UTS),
- 1.1.24 *Grade* 27—UNS R52254. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.25 Grade 28—UNS R56323. Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.08 to 0.14 % ruthenium,
- 1.1.26 *Grade* 29—UNS R56404. Titanium alloy (6 % aluminum, 4 % vanadium with extra low interstitial elements, ELI) plus 0.08 to 0.14 % ruthenium,
- 1.1.27 *Grade 30*—UNS R53530. Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.28 *Grade 31*—UNS R53532. Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.29 *Grade* 32—UNS R55111. Titanium alloy (5 % aluminum, 1 % tin, 1 % zirconium, 1 % vanadium, 0.8 % molybdenum),
- 1.1.30 *Grade 33*—UNS R53442. Titanium alloy (0.4% nickel, 0.015% palladium, 0.025% ruthenium, 0.15% chromium),

- 1.1.31 *Grade 34*—UNS R53445. Titanium alloy (0.4% nickel, 0.015% palladium, 0.025% ruthenium, 0.15% chromium),
- 1.1.32 *Grade 35*—UNS R56340. Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.33 *Grade 36*—UNS R58450. Titanium alloy (45 % niobium),
- 1.1.34 *Grade 37*—UNS R52815. Titanium alloy (1.5 % aluminum).
- 1.1.35 *Grade* 38—UNS R54250. Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron),
- 1.1.36 *Grade 39*—UNS R53390. Titanium alloy (0.25 % iron, 0.4 % silicon), and
- 1.1.37 *Grade 40*—UNS R54407. Titanium alloy (3.9 % vanadium, 0.85 % aluminum, 0.25 % iron, 0.25 % silicon).
- Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

E8 Test Methods for Tension Testing of Metallic Materials [Metric] E0008_E0008M

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E290 Test Methods for Bend Testing of Material for Ductility

- E539 Test Method for Analysis of Titanium Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
- E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
- E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
- E2371 Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology)
- E2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals (Withdrawn 2017)

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 Any product 0.187 in. (4.75 mm) and under in thickness and less than 24 in. (610 mm) in width is classified as strip; products 0.187 in. (4.75 mm) and under in thickness and 24 in. (610 mm) or more in width are classified as sheet; any product over 0.187 in. (4.75 mm) in thickness and over 10 in. (254 mm) in width is classified as plate.

4. Ordering Information

- Orders for materials under this specification shall in-
 - 4.1.1 Grade number (Section 1),
 - 4.1.2 Product limitations (Section 3),
- 4.1.2.1 For sheet specify cold or hot rolled. If not specified cold tolerances are the default.
 - (a) Cold rolled sheet tolerances are in Table 1, Table 2, and

TABLE 1 Permissible Variations in Thickness of Titanium Sheet

Specified Thickness, in. (mm)	Permissible Variations in Thickness, Plus and minus,	Permissible Variations in Thickness Plus and minus, in. (mm) For hot rolled sheet			
$c_{\mathcal{O}}$	in. (mm) – For cold rolled sheet	Width to 84 in. (2134 mm), incl	Width Over 84 in. (2134 mm)		
0.146 to 0.1875 (3.71 to 4.76), excl	0.014 (0.36)	0.025 (0.64)	0.028 (0.71)		
0.131 to 0.145 (3.33 to 3.68)	0.012 (0.31)	0.022 (0.558)	0.028 (0.71)		
0.115 to 0.130 (2.92 to 3.30)	0.010 (0.25)	0.020 (0.508)	···		
0.099 to 0.114 (2.51 to 2.90)	0.009 (0.23)				
0.084 to 0.098 (2.13 to 2.49)	0.008 (0.20)				
0.073 to 0.083 (1.85 to 2.11)	0.007 (0.18)				
0.059 to 0.072 (1.50 to 1.83)	0.006 (0.15)				
0.041 to 0.058 (1.04 to 1.47)	0.005 (0.13)				
0.027 to 0.040 (0.69 to 1.02)	0.004 (0.10)				
0.017 to 0.026 (0.43 to 0.66)	0.003 (0.08)				
0.008 to 0.016 (0.20 to 0.41)	0.002 (0.05)				
0.006 to 0.007 (0.15 to 0.18)	0.0015 (0.04)				
0.005 (0.13)	0.001 (0.03)				

TABLE 2 Permissible Variations in Width and Length of Cold Rolled Titanium Sheet

Specified Width, in. (mm), for	Permissible Variations in
Thicknesses Under 3/16 in.	Width, in. (mm)
24 to 48 (610 to 1220), excl	+1/16 (+1.60), -0
48 (1220) and over	+ ¹ / ₈ (+3.20), -0
Thicknesses Under ¾6 in. 24 to 48 (610 to 1220), excl 48 (1220) and over Specified Length, ft (m) Up to 10 (3)	Permissible Variations
Specified Lerigin, it (iii)	in Length, in. (mm)
Up to 10 (3)	+1/4 (+6.35), -0
Over 10 to 20 (3 to 6)	+ ¹ / ₂ (+12.7), -0

Table 3.

- (b) Hot rolled sheet tolerances are in Table 1, Table 4, Table 5, and Table 6.
 - 4.1.3 Special mechanical properties (Table 7),
 - 4.1.4 Marking (Section 16),
 - 4.1.5 Finish (Section 8),
 - 4.1.6 Packaging (Section 16),
 - 4.1.7 Additional required reports (Section 15), and
 - 4.1.8 Disposition of rejected material (Section 14).

5. Chemical Composition

- 5.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the chemical composition requirements prescribed in Table 8.
- 5.1.1 The elements listed in Table 8 are intentional alloy additions or elements which are inherent to the manufacture of titanium sponge, ingot or mill product.
- 5.1.1.1 Elements other than those listed in Table 8 are deemed to be capable of occurring in the grades listed in Table 8 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 8 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
- 5.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.
- 5.2 When agreed upon by producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
- 5.3 *Product Analysis*—Product analysis tolerances do not broaden the specified heat analysis requirements but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material that is

TABLE 3 Permissible Variations in Weight of Cold Rolled
Titanium Sheet

The actual weight of any one item of an ordered thickness and size in any finish is limited in overweight by the following tolerance:

Any item of five sheets or less, or any item estimated to weigh 200 lb (91 kg) or less, may actually weigh as much as 10 % over the estimated weight.

Any item of more than five sheets and estimated to weigh more than 200 lb may actually weigh as much as 7½ % over the estimated weight.

There is no under tolerance in weight for titanium sheets, under tolerance being restricted by the permissible thickness variations.

Only random (or mill size) sheets may be ordered on a square foot basis, and the number of square feet shipped may exceed the number ordered by as much as $5\,\%$.

TABLE 4 Permissible Variations in Width and Length of Hot Rolled Titanium Sheet

Specified Length,	Specified Width,	Permissible Variations in. (mm)					
in. (mm)	in. (mm)	Width	Length				
Under 120 (3048)	Under 60 (1524)	+5/8 (15.88), +0	+3/4 (19.05), 0				
	60 to 84 (1524	+11/16 (17.46), +0	+7/8 (22.23), 0				
	to 2134), excl						
	84 to 108 (2134	+3/4 (19.05), +0	+1 (25.40), 0				
100 to 040 (2049	to 2743), excl	.5/ (15.00) .0	.1 (05 40 0				
120 to 240 (3048 to 6096), excl	Under 60 (1524)	+5/8 (15.88), +0	+1 (25.40, 0				
	60 to 84 (1524	+3/4 (19.05), +0	+1 (25.40), 0				
	to 2134), excl		:0)				
	84 to 108 (2134	+13/16 (20.64), +0	+11/8 (28.58), 0				
040 +- 000 (0000	to 2743), excl	E/ (4E 00) 0	41 (204 75) 0				
240 to 360 (6098 to 9144), excl	Under 60 (1524)	+5/8 (15.88), +0	1 ¹ / ₄ (81.75), 0				
10 9144), exci	60 to 84 (1524	+3/4 (19.05), +0	1 +1¼ (31.75), 0				
	to 2134), excl	174 (10.00), 10)1174 (01.70), 0				
	84 to 108 (2134	+13/16 (20.64), +0	+11/4 (31.75), 0				
	to 2743), excl	Co ^X					
360 to 480 (9144	Under 60 (1524)	+ ¹¹ / ₁₆ (17.46), +0	+1% (34.93), 0				
to 12192) and							
over	60 to 84 (1524	+3/4 (19.05), +0	+11/2 (38.10), 0				
	to 2134), excl	J. (13.30), 10	, 2 (33.10), 0				
	84 to 108 (2184)	+13/16 (20.64), +0	+11/2 (38.10), 0				
	to 2743), excl	, ,,,	. , , , , ,				

TABLE 5 Permissible Variations in Weight of Hot Rolled Titanium Sheet

The actual weight of any one item or an order's thickness and size in any finish is limited in overweight by as much as 20 %.

outside the limits specified in Table 8 for the applicable grade. Product analysis limits shall be as specified in Table 9.

5.4 At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from the ingot or the extremes of the product to be analyzed.

6. Mechanical Properties

- 6.1 Material supplied under this specification shall conform to the mechanical property requirements given in Table 7 for the grade specified.
- 6.2 Tension testing specimens are to be machined and tested in accordance with Test Methods E8. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in./min through the specified yield strength, and then increasing the rate so as to produce failure in approximately one additional minute.
- 6.3 For sheet and strip, the bend test specimen shall withstand being bent cold through an angle of 105° without fracture in the outside of the bent portion. The bend shall be made on a **radius** equal to that shown in Table 7 for the applicable grade. The bends are to be made in accordance with Test Method E290, using Method 1, Guided Bend Test described in paragraph 3.6, bent through 105°, and allowed to spring back naturally. The surface of the specimen must include the original material surface with no material removal or surface conditioning, except corners may be rounded to a maximum radius of 0.032 in. (0.8 mm). The width of the bend shall be at

Permissible Variations from a Flat Surface for Width or Length Given, in. (mm) 108 to 120 48 excl to 60 60 to 72 72 to 84 84 to 96 96 to 108 120 to 144 Specified 48 (1219) 144 (3658) (1219 to (1524 to (1829 to (2134 to (2438 to (2743 to (3048 to Thickness, in. (mm) or Under and Over 1524), excl 1829), excl 2134), excl 2438), excl 2743), excl 3048), excl 3658), excl 0.146 to 0.1875 3/4 (19.05) 11/16 (26.99) 11/4 (31.75) 1% (34.92) 15/8 (41.28) 15/8 (41.28) 17/8 (47.6) 2 (50.8) 21/4 (57.15) (3.71 to 4.76) 0.131 to 0.145 (3.33 3/4 (19.05) 11/16 (26.99) 11/4 (31.75) 1% (34.92) 1% (41.28) 15/8 (41.28) 17/8 (47.6) 2 (50.8) to 3.68) 0.115 to 0.130 (2.92 3/4 (19.05) 11/16 (26.99) 11/4 (31.75) 1% (34.92) 15/8 (41.28) 15/8 (41.28) 17/8 (47.6) 2 (50.8) to 3.30)

TABLE 6 Permissible Variations from a Flat Surface for Titanium Hot Rolled Sheet

Note 1—Variations in flatness apply to plates up to 15 ft (4.57 m) in length, or to any 15 ft of longer plates.

Note 2—If the longer dimension is under 36 in. (914 mm) the variation is not greater than 1/4 in. (6.35) mm.

Note 3—The shorter dimension specified is considered the width and the variation in flatness across the width does not exceed the tabular amount for that dimension.

Note 4—The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

least 5 times the thickness. The test report shall, at minimum, indicate acceptable or unacceptable results.

7. Permissible Variations in Dimensions

7.1 Dimensional tolerances on titanium and titanium alloy material covered by this specification shall be as specified in Tables 1-6 and Tables 10-16, as applicable.

8. Finish

8.1 Titanium and titanium alloy sheet, strip, and plate shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which it is intended. Annealed material may be furnished as descaled, as sandblasted, or as ground, or both sandblasted and ground. If shipped as descaled, sandblasted, or ground, the manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the material below the minimum permitted by the tolerance for the thickness ordered.

9. Sampling for Chemical Analysis

9.1 Samples for chemical analysis shall be representative of the material being tested. The utmost care must be used in sampling titanium for chemical analysis because of its great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, in cutting samples for analysis, the operation should be carried out insofar as possible in a dust-free atmosphere. Chips should be collected from clean metal and tools should be clean and sharp. Samples for analysis should be stored in suitable containers.

10. Methods of Chemical Analysis

10.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser. Alternate techniques are discussed in Guide E2626.

11. Retests

11.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this

specification, the lot may be received at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 14.

12. Referee Test and Analysis

2.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification.

13. Rounding-Off Procedure

13.1 For purposes of determining conformance with this specification, an observed or a calculated value shall be rounded off to the nearest "unit" in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

14. Rejection

14.1 Material not conforming to the specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of notice of rejection, other instructions for disposition.

15. Certification

15.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results of chemical analysis, tensile, and other tests meet the requirements of this specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

				TABLE 7 Ten	sile Requireme	nts^{A}			
	Tensile St	rength, min		Yield Strengtl	h, 0.2 % Offset		— Elongation in	Bend Test (Ra	dius of Mandrel) ^B
Grade				min	max	X	2 in. or 50 mm,	Under 0.070 in.	
ksi MPa	ksi	MPa	ksi	MPa	min, %	(1.8 mm) in Thickness	(1.8–4.75 mm) in Thickness		
1	35	240	20	138	45	310	24	1.5 <i>T</i>	2 <i>T</i>
2	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
2H ^{<i>C,D</i>}	58	400	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
3	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>
4	80	550	70	483	95	655	15	2.5 <i>T</i>	37
5	130	895	120	828			10 [€]	4.5 <i>T</i>	5 <i>T</i>
6	120	828	115	793			10 ^E	4 <i>T</i>	4.5 <i>T</i>
7	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
, 7Н ^{С,Д}	58	400	40	275	65	450	20	2 <i>T</i>	2.57
9	90	620	70	483			15 ^F	2.5 <i>T</i>	C3T
11	35	240	20	138	45	310	24	1.5 <i>T</i>	C 2T
12	70	483	50	345			18	2 <i>T</i>	2.5T
13	40	275	25	170	•••		24	1.5 <i>T</i>	2T
14	60	410	40	275			20	27.	2.5 <i>T</i>
15	70	483	55	380			18	27	2.5 <i>T</i>
16	50	345	40	275	65	450	20	~ X	2.5 <i>T</i>
16H ^{C,D}	58	400	40	275	65	450	20		2.5 <i>T</i>
17	35	240	20	138	45	310	24	1.5 <i>T</i>	2.51 2T
18	90		70						3T
18 19 ^{<i>G,H</i>}		620		483	•••		15 ^F	2.5T	3 <i>T</i>
20 ^{<i>G,H</i>}	115	793	110	759 750			15	3 <i>T</i>	
20 ^{G,77}	115	793	110	759	•••		15	3 <i>T</i>	3 <i>T</i>
21 ^{<i>G,H</i>}	115	793	110	759			15	3 <i>T</i>	3 <i>T</i>
23	120	828	110	759			10	4.5 <i>T</i>	5 <i>T</i>
24	130	895	120	828			10	4.5 <i>T</i>	5 <i>T</i>
25	130	895	120	828			10	4.5 <i>T</i>	5 <i>T</i>
26	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
26H ^{<i>C,D</i>}	58	400	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
27	35	240	20	138	45	310	24	1.5 <i>T</i>	2T
28	90	620	70	483		(2)	15	2.5 <i>T</i>	3 <i>T</i>
29	120	828	110	759	/	, V	10	4.5 <i>T</i>	5 <i>T</i>
30	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
31	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>
32	100	689	85	586			10 ^E	3.5 <i>T</i>	4.5 <i>T</i>
33	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>
34	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>
35	130	895	120	828	O'		5	8 <i>T</i>	8 <i>T</i>
36	65	450	60	410	95	655	10	4.5 <i>T</i>	5 <i>T</i>
37	50	345	31	215	65	450	20	2 <i>T</i>	2.5 <i>T</i>
38	130	895	115	794			10	4 <i>T</i>	4.5 <i>T</i>
39	75	515	60	410	90	620	20	2 <i>T</i>	2.5 <i>T</i>
40	95	655	75	517			15	2.5 <i>T</i>	37

16. Marking and Packaging

16.1 Marking:

16.1.1 *Identification*—Unless otherwise specified in the purchase order each plate, sheet, and strip shall be marked in the respective location indicated below, with the number of this specification, heat number, manufacturer's identification, and the nominal thickness in inches. The characters shall be not less than ¼ in. (6.35 mm) in height, shall be applied using a suitable marking fluid, and shall be capable of being removed with a hot alkaline cleaning solution without rubbing. The markings shall have no deleterious effect on the material or its

performance. The characters shall be sufficiently stable to withstand ordinary handling.

16.1.2 Plate, flat sheet, and flat strip over 6 in. (152 mm) in width shall be marked in lengthwise rows of characters recurring at intervals not greater than 3 in. (76 mm), the rows being spaced not more than 2 in. (51 mm) apart and alternately staggered. Heat numbers shall occur at least 3 times across the width of the sheet and at intervals not greater than 2 ft (0.610 m) along the length. As an option, when specified in the purchase order, each plate, sheet, or cut length strip may be marked in at least one location with the number of this

A Minimum and maximum limits apply to tests taken both longitudinal and transverse to the direction of rolling.

Bend to Radius of Mandrel, T equals the thickness of the bend test specimen. Bend tests are not applicable to material over 0.187 in. (4.75 mm) in thickness.

C Material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grade 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

^D The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

 $^{^{\}it E}$ For Grades 5, 6 and 32 the elongation on materials under 0.025 in. (0.635 mm) in thickness may be obtained only by negotiation.

F Elongation for continuous rolled and annealed (strip product from coil) for Grade 9 and Grade 18 shall be 12 % minimum in the longitudinal direction and 8 % minimum in the transverse direction.

^G Properties for material in the solution treated condition.

H Material is normally purchased in the solution treated condition. Therefore, properties for aged material shall be negotiated between manufacturer and purchaser.

Ś
Ξ
ഉ
둤
.≝
3
ŏ
æ
=
ဗ
Ē
둢
عّ
ပ
œ
ш
긆
9
_ ≥

								-	ABLE 8	тавте в спетісаї кеquirements	Reduiren	nents								
									Compositi	Composition, Weight Percent ^{A,B,C,D,E}	Percent ^{A,B,}	C,D,E								
	UNS Carbon.		Oxygen range l	Zitrogen.	Hydrogen.	Iron												ш	Other Other Elements, max.	Other lements, max.
Grade	Z	.		max.	max.	or max.	Aluminum	Vanadium	Palladium	Aluminum Vanadium Palladium Ruthenium	Nickel Mc	Nickel Molybdenum Chromium	Chromium	Cobalt	Cobalt Zirconium Niobium	Niobium	Tin	Silicon	each	total
,				0	100														7	
1 2/2H	R50250 0	80.0	0.18	0.03	0.015	0.20	: :	: :	: :	: :	: :	: :	: :	: :	: :	: :	: :	: :	. c	4.0
j ω			0.35	0.05	0.015	030	:	:	:	:	:	:	:	:	:	:	;	:	0.1	4.0
0 4			0.40	0.05	0.015	0.50	;	;	;	:	;	:	;	;	;	;	;	;	0.1	0.4
2			0.20	0.05	0.015	0.40	5.5-	3.5	:	:	:	;	:	;	:	:	:	;	0.1	0.4
9	R54520 0	0.08	0.20	0.03	0.015	09:0	0.73	g	:	;	:	;	;	:	:	;	2.0-	:	0.1	9.0
7/7H	R52400 0	0.08	0.25	0.03	0.015	0:30	01	:	0.12-	;	:	;	:	:	:	:	3.0	:	0.1	9.0
6	R56320 0	0.08	0.15	0.03	0.015	0.25	2.5-	200	0.25	;	;	:	;	;	:	;	;	;	0.1	6.0
=	R52250 0	0.08	0.18	0.03	0.015	0.20	υ . υ .		0.12-	:	:	:	:	;	:	:	;	:	0.1	0.4
12	R53400 0	0.08	0.25	0.03	0.015	0.30	:	;		;	-9:0	0.2-	;	;	:	:	;	:	0.1	0.4
13	R53413 0	0.08	0.10	0.03	0.015	0.20	;	:	8,	0.04-	0.4-		;	;	;	;	;	:	0.1	0.4
4	R53414 0	0.08	0.15	0.03	0.015	0.30	:	;	;	90.00	0.6 0.4-	:	;	:	:	:	;	;	0.1	0.4
15	R53415 0	0.08	0.25	0.05	0.015	0:30	:	:	:	0.00	0.6	:	:	;	:	:	:	:	0.1	0.4
16/16H	R52402	0.08	0.25	0.03	0.015	0:30	:	:	0.04-	90:0	9.6	:	:	;	:	:	;	:	0.1	4.0
17	R52252 0	0.08	0.18	0.03	0.015	0.20	:	;	0.04	:	NE	:	;	;	:	:	;	;	0.1	9.7
18	R56322 0	0.08	0.15	0.03	0.015	0.25	2.5-	2.0-	0.04	:	:	8	:	:	:	:	;	:	0.1	0.4
19	R58640 0	0.05	0.12	0.03	0.02	0:30	3.0	7.5-	3 :	;	:	3.5-	5.5-	;	3.5-	;	;	:	0.15	9.0
20	R58645 0	0.05	0.12	0.03	0.02	0.30	3.0-	7.5- 7.5-	0.04-	:	;	3.5-	0. 17. 18. 19. 19. 18.	;	3.5. 5.7.	:	;	;	0.15	0.4
21	R58210 0	0.05	0.17	0.03	0.015	0.40	2.5-		0.00	:	:	14.0-		:	Q i	2.2-	;	0.15-	0.1	0.4
23	R56407 0	0.08	0.13	0.03	0.0125	0.25	5.5	3.5	:	;	:	0.01		D	:		:	62.0	0.1	0.4
24	R56405 0	0.08	0.20	0.05	0.015	0.40	6.5 5.5-	3.5- 7.5-	0.04-	:	:	:	;	SNI		;	;	:	0.1	0.4
25	R56403 0	0.08	0.20	0.05	0.015	0.40	5.5-	3.5-	0.04-	;	0.3-	:	:	-	/2	:	:	:	0.1	0.4
26/26H	R52404	0.08	0.25	0.03	0.015	0.30	3 :	? ;	8 ;	0.08-	2 :	;	;	;	8		;	;	0.1	6.0
27	R52254 0	0.08	0.18	0.03	0.015	0.20	:	:	;	0.08	;	:	;	;	;	رد	;	;	0.1	9.0
28	R56323 0	0.08	0.15	0.03	0.015	0.25	2.5-	2.0-	:	0.08	:	:	:	;	:	S	;	:	0.1	0.4
59	R56404 0	0.08	0.13	0.03	0.0125	0.25	5.5 7.5-	3.5-	:	0.08	;	:	;	;	:) 	رناح	;	0.1	0.4
30	R53530 0	0.08	0.25	0.03	0.015	0:30	? ;	; ;	0.04-	<u>.</u>	:	:	:	0.20-	:	:	2/		0.1	9.0
31	R53532 0	0.08	0.35	0.05	0.015	0.30	:	;	0.04-	;	:	:	:	0.20-	:	:	:	16	0.1	9.0
																		0	4	

Continued	
α	
Ц	ı
_	J
α	1
4	ľ
	1

		Other	Elements, Elements,	total	0.4	0.4	0.4	9.0	9.0	0.4	0.4	0.4	0.4
		Other	lements,	each	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
				Silicon	0.06-	:	:	0.20-	:	:	;	0.30-	0.15-
				Ë	0.6-	:	;	:	:	:	;	;	;
				Niobium	:	:	;	:	42.0-47.0	:	;	:	:
				Cobalt Zirconium Niobium	0.6-	:	:	:	:	:	:	;	:
				Sobalt Z	:	:	:	;	:	:	;	:	:
					:	0.1-	0.1-	:	:	;	:	:	;
		D,E		or max. Aluminum Vanadium Palladium Ruthenium Nickel Molybdenum Chromium	0.6-	;	:	1.5-	:	:	;	;	Ó
	ntinued	Composition, Weight Percent ^{A,B,C,D,E}		Nickel Moly	:	0.35-	0.35-	:	:	:	4		; ;
	TABLE 8 Continued	n, Weight F		uthenium	:	0.02-	0.02-	:	Ö	P	9	:	;
	TAB	Compositio		PalladiumB	:	0.01-	0.01	O,	:	:	:	:	;
				Vanadium	-9.6- 44	2		1.1-	:	:	3.0	; ;	3.0-
			i	Aluminum	4.5- 5.5	:	:	4.0-	:	1.0-	3.5-	<u></u>	0.40-
	(2)		Iron	or max.	0.25	0.30	0.30	0.20-	0.03	0.30	1.2-	0.15-	0.10-
W .O			2002	max.	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
-C).			Oxygen	max.	0.03	0.03	0.05	0.05	0.03	0.03	0.03	0.03	0.05
MENORMDOC.COM. Ci			Oxygen	or max.	0.11	0.25	0.35	0.25	0.16	0.25	0.20-	0.15	0.10-
ZOK.			Olympia		0.08	0.08	0.08	0.08	0.04	0.08	0.08	0.08	0.08
ME			ONI	~	R55111 0.08	R53442	R53445	R56340	R58450	R52815	R54250	R53390	R54407
				Grade	32	33	34	35	36	37	38	39	40

At minimum, the analysis of samples from the top and bottom of the ingot shall be completed and reported for all elements (Except Hydrogen – See Footnote B) listed for the respective grade in this BA ta minimum, one final product hydrogen samples shall be tested and reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by negotiation with the manufacturer.

 $^{\mathcal{C}}$ Single values are maximum. The percentage of titanium is determined by difference.

SME BRYC Section II part B) 2026 Dother elements need not be reported unless the concentration level is grater than 1.7 each, or 0.4 % total. Other elements may not be added intentionally. Other elements may be present in titanium or titanium or titanium, alloys in small quantities and are inherent to the manufacturing process. In titanium these elements typically include aluminum, vanadium, tin copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

E The purchaser may, in the written purchase order, request analysis for specific elements not listed in this specification.

TABLE 9 Permissible Variations in Product Analysis

Element		Product Analysis	specification, heat number, manufacturer
	Product Analysis Limits, max or Range, %	Permissible Variation in Product Analysis	the nominal thickness in inches or millir 16.1.3 Flat strip 6 in. (152 mm) and un
	0.4 to 2.5	±0.20	marked near one end.
Aluminum	2.5 to 6.75	±0.40	16.1.4 Coiled sheet and strip shall
Carbon	0.10	+0.02	outside end of the coil.
Chromium Chromium	0.1 to 0.2 5.5 to 6.5	±0.02 ±0.30	outside that of the con.
Cobalt	0.2 to 0.8	±0.05	16.2 Packaging—Unless otherwise sp
Hydrogen	0.02	+0.002	chased under this specification may be p
Iron	0.80	+0.15	either by boxing, crating, single boarding
Iron Molybdenum	1.2 to 1.8 0.2 to 0.4	±0.20 ±0.03	no protection in accordance with the ma
Molybdenum	0.6 to 1.2	±0.15	practice.
Molybdenum	1.5 to 4.5	±0.20	practice.
Molybdenum Nickel	14.0 to 16.0 0.3 to 0.9	±0.50 ±0.05	17 V
Niobium	2.2 to 3.2	±0.05	17. Keywords
Niobium	>30	±0.50	17.1 plate; sheet; strip; titanium; titan
Nitrogen	0.05	+0.02	Co ^X
Oxygen Oxygen	0.30 0.31 to 0.40	+0.03 ±0.04	
Palladium	0.01 to 0.40	±0.002	
Palladium	0.04 to 0.08	±0.005	CW.
Palladium	0.12 to 0.25	±0.02	
Ruthenium Ruthenium	0.02 to 0.04 0.04 to 0.06	±0.005 ±0.005	
Ruthenium	0.08 to 0.14	±0.01	\sim
Silicon	0.06 to 0.50	±0.02	17.1 plate; sheet; strip; titanium; titan
Tin Vanadium	0.6 to 3.0 0.6 to 4.8	±0.15 ±0.15	'O.
Vanadium	7.5 to 8.5	±0.40	
Zirconium Residuals ^A (each)	0.6 to 1.4 0.15	±0.15 +0.02	O _X
	N	nium, molybdenum, niobium, trium, copper, silicon, cobalt,	
	on of the		
con	v. Clic		
INDOC.COM	A. Click to view		

specification, heat number, manufacturer's identification, and the nominal thickness in inches or millimetres as required.

- 16.1.3 Flat strip 6 in. (152 mm) and under in width shall be
- 16.1.4 Coiled sheet and strip shall be marked near the
- 16.2 Packaging—Unless otherwise specified, material chased under this specification may be packaged for shipment either by boxing, crating, single boarding, burlapping, or with no protection in accordance with the manufactures standard

17.1 plate; sheet; strip; titanium; titanium alloys

	·	Permissible Variation	ons from Specified W	Vidth, plus and minus, for V	Vidths Given, in. (mm)	
Specified Thickness, in.	Under 1/2 to	½ to 6 (12.70	Over 6 to 9	Over 9 to 12	Over 12 to 20	Over 20 to 24
(mm)	3/16 (12.70 to	to 152.40),	(152.40 to	(228.60 to	(304.80 to	(508.0 to
. ,	4.76), incl	incl	228.60), incl	304.80), incl	508.0), incl	609.6), excl
Under 3/16 to 0.161 (4.76		0.016 (0.41)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)
to 4.09), incl 0.160 to 0.100 (4.06 to	0.010 (0.25)	0.010 (0.25)	0.016 (0.41)	0.016 (0.41)	0.020 (0.51)	0.020 (0.51)
2.54), incl	0.0.10 (0.20)	0.0.10 (0.20)	0.0.0 (0.1.)	0.0.0	0.020 (0.01)	0.020 (0.0.)
0.099 to 0.069 (2.51 to	0.008 (0.20)	0.008 (0.20)	0.010 (0.25)	0.010 (0.25)	0.016 (0.41)	0.020 (0.51)
1.75), incl						, Q
0.068 (1.73) and under	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	0.010 (0.25)	0.016 (0.41)	0.020 (0.51)
	T/	ABLE 11 Permissibl	e Variations in Le	ength of Titanium Strip	0	section.
			Length, ft (m) Permissible Var Length, in. (C. 5
		Specified Length,	ft (m)	Length, in. (mm)	~	O
		Specified Length, (1.524), incl	ft (m)		- 0	
	Over	(1.524), incl 5 to 10 (1.524 to 3.048)), incl	Length, in. (mm) +3/6 (+9.52), -0 +1/2 (+12.70), -0	_ BR	
	Over	(1.524), incl), incl	Length, in. (mm) +3/8 (+9.52), -0	- LBRY	
	Over	(1.524), incl 5 to 10 (1.524 to 3.048)), incl	Length, in. (mm) +3/6 (+9.52), -0 +1/2 (+12.70), -0	- NEBRY	
	Over Over	(1.524), incl 5 to 10 (1.524 to 3.048) 10 to 20 (3.048 to 6.09)), incl 6), incl	Length, in. (mm) +3/6 (+9.52), -0 +1/2 (+12.70), -0	Sh	

^A These tolerances are applicable for a standard No. 3 edge.

TABLE 11 Permissible Variations in Length of Titanium Strip

Specified Length, ft (m)	Permissible Variations in Length, in. (mm)
To 5 (1.524), incl	+3/8 (+9.52), -0
Over 5 to 10 (1.524 to 3.048), incl	+½ (+12.70), -0
Over 10 to 20 (3.048 to 6.096), incl	+5/8 (+15.88), -0

	IADEL	Z I CIIIII33IBIC	, variations ii	1 THIORICOS	or mannam c	tilp 🗸		
		Permissible V	ariations from S	pecified Thickn	ess, plus and m	nus, for Widths (Given, in. (mm)	
Specified Thickness,	Under 1 to 3/16	Under 3 to 1	3 to 6 (76.2 to	Over 6 to 9	Over 9 to 12	Over 12 to 16	Over 16 to 20	Over 20 to 24
in. (mm)	(25.4 to 4.76)	(76.2 to 25.4),	152.4), incl	(152.4 to	(228.6 to	(304.8 to	(406.4 to	(508.0 to
	incl	incl	152.4), 11101	228.6), incl	304.8), incl	406.4), incl	508.0), incl	609.6), incl
Under 3/16 to 0.161 (4.76 to	0.002 (0.05)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)	0.004 (0.10)	0.005 (0.13)	0.006 (0.16)	0.006 (0.16)
4.09), incl					0			
0.160 to 0.100 (4.06 to 2.54), incl	0.002 (0.05)	0.002 (0.05)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)	0.004 (0.10)	0.005 (0.13)	0.005 (0.13)
0.099 to 0.069 (2.51 to 1.75), incl	0.002 (0.05)	0.002 (0.05)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)	0.004 (0.10)
0.068 to 0.050 (1.73 to 1.27), incl	0.002 (0.05)	0.002 (0.05)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)
0.049 to 0.040 (1.24 to 1.02), incl	0.002 (0.05)	0.002 (0.05)	0.0025 (0.06)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)
0.039 to 0.035 (0.99 to 0.89), incl	0.002 (0.05)	0.002 (0.05)	0.0025 (0.06)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)	0.003 (0.08)
0.034 to 0.029 (0.86 to 0.74), incl	0.0015 (0.04)	0.0015 (0.04)	0.002 (0.05)	0.0025 (0.06)	0.0025 (0.06)	0.0025 (0.06)	0.003 (0.08)	0.003 (0.08)
0.028 to 0.026 (0.71 to 0.66), incl	0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)	0.002 (0.05)	0.002 (0.05)	0.002 (0.05)	0.0025 (0.06)	0.003 (0.08)
0.025 to 0.020 (0.64 to 0.51), incl	0.001 (0.03)	0.001 (0.03)	0.0015 (0.04)	0.002 (0.05)	0.002 (0.05)	0.002 (0.05)	0.0025 (0.06)	0.0025 (0.06)
0.019 to 0.017 (0.48 to 0.43), incl	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)	0.002 (0.05)	0.002 (0.05)	0.002 (0.05)
0.016 to 0.013 (0.41 to 0.33), incl	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)	0.0015 (0.04)	0.002 (0.05)	0.002 (0.05)
0.012 (0.30)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)	0.0015 (0.04)
0.011 (0.28)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)	0.0015 (0.04)
0.010 ^B (0.25)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)	0.001 (0.03)		0.001 (0.03)	0.0015 (0.04)	0.0015 (0.04)

A Thickness measurements are taken % in. (9.5 mm) from the edge of the strip, except that on widths less than 1 in. (25.4 mm) the tolerances given are applicable for measurements at all locations

TABLE 13 Permissible Variations in Weight of Titanium Strip

ASMENORMOC. COM. Circh The actual shipping weight of any one item of an ordered thickness and width in any finish may exceed estimated weight by as much as 10 %.

measurements at all locations.

^B For thicknesses under 0.010 in. (0.25 mm), in widths to 16 in. (406 mm) a tolerance of ±10 % of the thickness shall apply. In widths over 16 to 23¹⁵/₁₆ in. (406 to 608 mm), incl, a tolerance of ±15 % of the thickness shall apply.

TABLE 14 Permissible Variations in Width and Length^A of Titanium Plate, Rectangular, Sheared

		Permiss	sible Variations	Over Specified	Dimension for Th	icknesses Give	en, in. (mm)
Specified Length, in. (mm)	Specified Width, in. (mm)	Unde	r % (9.52)	3/8 to 5/8 (9.5	52 to 15.88), excl	5/8 (15.8	8) and over
		Width	Length	Width	Length	Width	Length
Under 120 (3048)	Under 60 (1524)	3/8 (9.52)	1/2 (12.70)	7/16 (11.11)	5/8 (15.88)	1/2 (12.70)	3/4 (19.05)
	60 to 84 (1524 to 2134), excl	7/16 (11.11)	5/8 (15.88)	1/2 (12.70)	11/16 (17.46)	5/8 (15.88)	7/8 (22.22)
	84 to 108 (2134 to 2743), excl	1/2 (12.70)	3/4 (19.05)	5/8 (15.88)	7/8 (22.22)	3/4 (19.05)	1 (25.40)
	108 (2743) or over	5/8 (15.88)	7/8 (22.22)	3/4 (19.05)	1 (25.40)	7/8 (22.22)	11/8 (28.58)
120 to 240 (3048 to 6096), excl	Under 60 (1524)	3/8 (9.52)	3/4 (19.05)	1/2 (12.70)	7/8 (22.22)	5/8 (15.88)	1 (25.40)
	60 to 84 (1524 to 2134), excl	1/2 (12.70)	3/4 (19.05)	5/8 (15.88)	7/8 (22.22)	3/4 (19.05)	1 (25.40)
	84 to 108 (2134 to 2743), excl	%16 (14.29)	7/8 (22.22)	11/16 (17.46)	15/16 (23.81)	¹³ / ₁₆ (20.64)	11/8 (28.58)
	108 (2743) or over	5/8 (15.88)	1 (25.40)	3/4 (19.05)	11/8 (28.58)	7/8 (22.22)	114 (31.75)
240 to 360 (6096 to 9144), excl	Under 60 (1524)	3/8 (9.52)	1 (25.40)	1/2 (12.70)	11/8 (28.58)	5/8 (15.88)	11/4 (31.75)
	60 to 84 (1524 to 2134), excl	1/2 (12.70)	1 (25.40)	5/8 (15.88)	11/8 (28.58)	3/4 (19.05)	11/4 (31.75)
	84 to 108 (2134 to 2743), excl	9/16 (14.29)	1 (25.40)	11/16 (17.46)	11/8 (28.58)	7/8 (22.22)	1% (34.92)
	108 (2743) or over	11/16 (17.46)	11/8 (28.58)	7/8 (22.22)	11/4 (31.75)	1 (25.40)	1% (34.92)
360 to 480 (9144 to 12192), excl	Under 60 (1524)	7/16 (11.11)	11/8 (28.58)	1/2 (12.70)	11/4 (31.75)	5/8 (15.88)	1½ (38.10)
	60 to 84 (1524 to 2134), excl	1/2 (12.70)	11/4 (31.75)	5/8 (15.88)	1 % (34.92)	3 4 (1 9.05)	11/2 (38.10)
	84 to 108 (2134 to 2743), excl	%16 (14.29)	11/4 (31.75)	3/4 (19.05)	1% (34.92)	V ₈ (22.22)	1½ (38.10)
	108 (2743) or over	3/4 (19.05)	1% (34.92)	7/8 (22.22)	1½ (38.10)	1 (25.40)	15/8 (41.28)
480 to 600 (12192 to 15240), excl	Under 60 (1524)	7/16 (11.11)	11/4 (31.75)	1/2 (12.70)	11/2 (38.10)	5/8 (15.88)	15/8 (41.28)
	60 to 84 (1524 to 2134), excl	1/2 (12.70)	1% (34.92)	5/8 (15.88)	1½ (38.10)	3/4 (19.05)	15/8 (41.28)
	84 to 108 (2134 to 2743), excl	5/s (15.88)	1% (34.92)	3/4 (19.05)	11/2 (38.10)	7/8 (22.22)	15/8 (41.28)
	108 (2743) or over	3/4 (19.05)	1½ (38.10)	7/8 (22.22)	15% (41.28)	1 (25.40)	13/4 (44.45)
600 (15 240) or over	Under 60 (1524)	1/2 (12.70)	13/4 (44.45)	5/8 (15.88)	⁷ / ₈ (47.62)	3/4 (19.05)	17/8 (47.62)
	60 to 84 (1524 to 2134), excl	5/s (15.88)	13/4 (44.45)	3/4 (19.05)	17/8 (47.62)	7/8 (22.22)	17/8 (47.62)
	84 to 108 (2134 to 2743), excl	5/8 (15.88)	13/4 (44.45)	3/4 (19.05)	17/8 (47.62)	7/8 (22.22)	17/8 (47.62)
	108 (2743) or over	7/8 (22.22)	13/4 (44.45)	1 (25.40)	2 (50.80)	11/8 (28.58)	21/4 (57.15)

^A The tolerance under the specified width and length is ½ in. (6.35 mm).

TABLE 15 Permissible Variations from a Flat Surface for Titanium Plate, Annealed

					<u> </u>				
		F	Permissible Var	iations from a	lat Surface for	Width or Leng	th Given, in. (m	nm)	
Specified Thickness, in. (mm)	48 (1219) or Under	48, excl to 60 (1219 to 1524), excl	60 to 72 (1524 to 1829), excl	72 to 84 (1829 to 2134), excl	84 to 96 (2134 to 2438), excl	96 to 108 (2438 to 2743), excl	108 to 120 (2743 to 3048), excl	120 to 144 (3048 to 3658), excl	144 (3658) and Over
				٧ ک					
3/16 to 1/4 (4.76 to 6.35), excl	3/4 (19.05)	11/16 (26.99)	11/4 (31.75)	138 (34.92)	15/8 (41.28)	15/8 (41.28)	17/8 (47.62)	2 (50.8)	21/4 (57.15)
1/4 to 3/8 (6.35 to 9.54), excl	11/16 (17.46)	3/4 (19.05)	15/16 (23.81)	1/8 (28.58)	13/8 (34.92)	17/16 (36.51)	1%16 (39.69)	17/8 (47.62)	21/8 (53.98)
% to ½ (9.54 to 12.70), excl	1/2 (12.70)	9/16 (14.29)	11/16 (17.46)	3/4 (19.05)	15/16 (23.81)	11/8 (28.58)	11/4 (31.75)	17/16 (36.51)	13/4 (44.45)
½ to ¾ (12.70 to 19.05), excl	1/2 (12.70)	9/16 (14.29)	5/8 (15.88)	5/8 (15.88)	13/16 (20.64)	11/8 (28.58)	11/8 (28.58)	11/8 (28.58)	1% (34.92)
3/4 to 1 (19.05 to 25.40), excl	1/2 (12.70)	9/16 (14.29)	5/8 (15.88)	5/8 (15.88)	3/4 (19.05)	13/16 (20.64)	15/16 (23.81)	1 (25.40)	11/8 (28.58)
1 to 1½ (25.40 to 38.10), excl	1/2 (12.70)	9/16 (14.29)	% (14.29)	9/16 (14.29)	11/16 (17.46)	11/16 (17.46)	11/16 (17.46)	³ / ₄ (19.05)	1 (25.40)
Over 1½ to 4 (38.10 to 101.6), excl	3/16 (4.76)	5/16 (7.94)	3 (9.54)	7/16 (11.11)	1/2 (12.70)	9/16 (14.29)	5/8 (15.88)	3/4 (19.05)	⁷ / ₈ (22.22)
Over 4 to 6 (101.6 to 152.4), excl	1/4 (6.35)	³ / ₈ (9.54)	1/2 (12.70)	9/16 (14.29)	% (15.88)	3/4 (19.05)	⁷ / ₈ (22.22)	1 (25.40)	11/8 (28.58)

SINE NORMING COM.

Note 1—Variations in flatness apply to plates up to 15 ft (4.57 m) in length, or to any 15 ft of longer plates.

Note 2—If the longer dimension is under 36 m. (914 mm) the variation is not greater than ¼ in. (6.35 mm).

Note 3—The shorter dimension specified is considered the width and the variation in flatness across the width does not exceed the tabular amount for that dimension.

Note 4—The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

TABLE 16 Permissible Variations in Thickness for Titanium Plate

		Width,	in. (mm) ^A	
Specified Thickness, in. (mm)	To 84 (2134), incl	Over 84 (2134) to 120 (3048), incl	Over 120 (3048) to 144 (3658), incl	Over 144 (3658)
		Tolerances Over Spec	ified Thickness, in. (mm) ^B	
0.1875 (4.76) to 0.375 (9.52), excl	0.045 (1.14)	0.050 (1.27)	0.065 (1.65)	
0.375 (9.52) to 0.750 (19.05), excl	0.055 (1.40)	0.060 (1.52)	0.075 (1.90)	0.090 (2.29)
0.750 (19.05) to 1.000 (25.40), excl	0.060 (1.52)	0.065 (1.65)	0.085 (2.16)	0.100 (2.54)
1.000 (25.40) to 2.000 (50.80), excl	0.070 (1.78)	0.075 (1.90)	0.095 (2.41)	0.115 (2.92)
2.000 (50.80) to 3.000 (76.20), excl	0.125 (3.18)	0.150 (3.81)	0.175 (4.44)	0.200 (5.08)
3.000 (76.20) to 4.000 (101.6), excl	0.175 (4.44)	0.210 (5.33)	0.245 (6.22)	0.280 (7.11)
4.000 (101.6) to 6.000 (152.4), excl	0.250 (6.35)	0.300 (7.62)	0.350 (8.89)	0.400 (10.16)
6.000 (152.4) to 8.000 (203.2), excl	0.350 (8.89)	0.420 (10.67)	0.490 (12.45)	0.560 (14.22)
8.000 (203.2) to 10.000 (254.0), incl	0.450 (11.43)	0.540 (13.72)	0.630 (16.00)	

A Thickness is measured along the longitudinal edges of the plate at least % in. (9.52 mm), but not more than 3 in. (76.20 mm), from the edge.

SUPPLEMENTARY REQUIREMENTS

These requirements shall apply only when specified in the purchase order, in which event the specified tests shall be made by the manufacturer before shipment of the plates.

S1. Surface Requirement Bend Tests

- S1.1 The purpose of this test is to measure the cleanliness or ductility, or both, of the metal surface. Specimens shall be taken from sheet or plate material produced from the same ingot or bloom materials, processed the same way to the same nominal thickness, width and length, produced in one production run or campaign, finished in the same way, and otherwise representative of the material supplied.
- S1.2 Four guided- or free-bend tests of sheet of plate material limited to the grades listed in S1.4. Two bends shall be made in the L direction and two in the T direction. Each pair of these bends will place opposite surfaces of the sheet or plate material in tension.
- S1.3 The bends are to be made in accordance with Test Method E290, using Method 1, Guided Bend Test described in paragraph 3.6, bent through 180°, and allowed to spring back naturally. The bend specimen may be of less than full material thickness; however, the outer surface of the specimen must include the original material surface with no material removal or surface conditioning other than at the rounded corners, and must otherwise be representative of the product as supplied. The width of the bend test specimen shall be at least 5 times the thickness.
- \$1.4 The bend radius will be such to provide minimum elongation of the outer fibers of the bent specimen at 180° bend as follows:

	Applicable Grades	Minimum Elongation	Bend Radius
	1,11,13, 17, 27	24 %	1.6 × T
,	2, 2H, 7, 7H, 14, 16, 16H, 26, 26H, 30, 33, 37, 39	20 %	2.0 × T
	3, 12, 15, 31, 34	18 %	2.3 × T
	4, 9, 18, 19, 20, 28, 40	15 %	2.8 × T
	5, 6, 21, 23, 24, 25, 29, 32, 36, 38	10 %	4.5 × T
-	35	5 %	10 × T

- S1.5 Criteria for acceptance will be the absence of any cracking or surface separations not originating at the edge of specimen viewed with the unaided eye.
- S1.6 The results of the test shall be reported as required by paragraph 10 of Test Method E290.

S2. Alternate Yield Strength Maximum

S2.1 Maximum yield strength (0.2 % Offset) of Grade 1, 11, 17, or 27 shall be limited to 40 ksi (275 MPa).

S3. Special Flatness Requirements

- S3.1 These requirements apply only for material to be used for explosive cladding.
- S3.2 These requirements apply only to Grades 1, 11, 17, and 27 and only in thickness ranging from 0.078 to 0.78 in. (2.0 to 20 mm), inclusive.
- S3.3 The overall out-of-flatness shall be no greater than $50\,\%$ of that permitted in Table 15.

^B For circles, the over thickness tolerances in this table apply to the diameter of the circle corresponding to the width ranges shown. For plates of irregular shape, the over thickness tolerances apply to the greatest width corresponding to the width ranges shown. For plates up to 10 in. (254.0 mm) incl. in thickness, the tolerance under the specified thickness is 0.010 in. (0.25 mm).

Sentendendoc. Com. Clore one the fundor of a sent above. The land of a sent above.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B) 202 SPECIFICATION FOR COPPER-BASE ALLOY CENTRIFUGAL CASTINGS SB-271/SB-271M with ASTM Specification B271/B271M-15 except that certification and foundry test reports 1

ASMENORANDOC. COM. Circk to view the full Policy of the Author of the Au (Identical with ASTM Specification B271/B271M-15 except that certification and foundry test reports have been made mandatory.)

Specification for **Copper-Base Alloy Centrifugal Castings**

1. Scope

- 1.1 This specification establishes requirements for centrifugal castings of copper-base alloys having the nominal compositions shown in Table 1.
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

- 2.1 The following documents in the current issue of the Book of Standards form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings
 - B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys E10 Test Method for Brinell Hardness of Metallic Materials

2.3 ASME Code:

Boiler and Pressure Vessel Code

3. Terminology

In to complete the state of the control of the cont 3.1 Definitions of terms relating to copper alloys can be

4. Ordering Information

- 4.1 Orders for centrifugal castings under this specification should include the following information:
 - 4.1.1 Specification title, number, and year of issue,
 - 4.1.2 Quantity (length or number) of castings,
- 4.1.3 Copper Alloy UNS Number (Table 1) and temper (as-cast, heat-treated, and so forth),
- 4.1.4 Dimensions or drawing number and condition (ascast, machined, and so forth),
- ist, machined, and so forth),
 4.1.5 ASME Boiler and Pressure Vessel Code requirements
- 4.1.6 When castings are purchased for agencies of the U.S. Government, the Supplementary Requirements in Specification B824 may be specified.
- 4.2 The following are optional and should be specified in the purchase order when required:
- 4.2.1 Pressure test or soundness requirements (Specification B824
 - 4.22 Approval of weld repair (Section 8),
- 4.2.3 DELETED
 - 4.2.4 DELETED
 - 4.2.5 Witness inspection (Specification B824),
 - 4.2.6 Product marking (Specification B824), and
 - 4.2.7 Castings for seawater service (Section X1.2).

5. Materials and Manufacture

5.1 Castings in Copper Alloy UNS No. C95520 are used in the heat treated condition only.

6. Chemical Composition

- 6.1 The centrifugal castings shall conform to the chemical requirement shown in Table 2 for the Copper Alloy UNS Numbers specified in the purchase order.
- 6.2 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements agreed upon between the manufacturer or supplier and the purchaser. Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 2 are analyzed, their sum shall be as specified in Table 3.

TABLE 1 Nominal Compositions

Classification	Copper Alloy UNS No.	Commercial Designation	Copper	Tin	Lead	Zinc	Nickel	Iron	Alum- inum	Mang- anese	Silicon
Leaded red brass	C83600	85-5-5-5	85	5	5	5					
	C83800	83-4-6-7 or commercial red brass	83	4	6	7					
Leaded semi-red brass	C84400	81-3-7-9 or valve composition	81	3	7	9					
	C84800	76-21/2-61/2-15 or semi-red brass	76	21/2	61/2	15					
Leaded yellow brass	C85200	high copper yellow brass	72	1	3	24					
	C85400	commercial No. 1 yellow brass	67	1	3	29					0
Yellow brass	C85470 ^A		62.5	2.5		34.3			0.5		(A)
Leaded yellow brass	C85700	leaded naval brass	61	1	1	37					/ 7
High-strength yellow brass	C86200	high-strength manganese bronze	63			27		3	4	3	\'
	C86300	high-strength manganese bronze	61			27		3	6	3	
	C86400	leaded manganese bronze	58	1	1	38		1	1/2	1/2	
	C86500	No. 1 manganese bronze	58			39		1	1 (1	
	C86700	leaded manganese bronze	58	1	1	34		2	27	2	
Silicon bronze and silicon	C87300	silicon bronze	95							1	4
brass	C87400	silicon brass	82		1/2	14			· , 🚅		31/2
	C87500	silicon brass	82			14		\)		4
	C87600	silicon bronze	89			6		2			5
Tin bronze and leaded	C90300	88-8-0-4, or modified "G" bronze	88	8		4		X			
tin bronze	C90500	88-10-0-2, or "G" bronze	88	10		2		O`			
	C92200	88-6-2-4 or "M" bronze	88	6	2	4		•			
	C92300	87-8-1-4, or Navy PC	87	8	1	4					
High-lead tin bronze	C93200	83-7-7-3	83	7	7	3 /	~\mu				
	C93500	85-5-9-1	85	5	9	1	つ `				
	C93600	81-7-12	81	7	12	IV					
	C93700	80-10-10	80	10	10	~ ~					
	C93800	78-7-15	78	7	15	V 2					
	C94300	71-5-24	71	5	24						
Aluminum bronze	C95200	Grade A	88		_ C			3	9		
	C95300	Grade B	89		N			1	10		
	C95400	Grade C	85	🔿	<i>7</i> 0			4	11		
	C95410		84	\sim X			2	4	10		
	C95900		82.5	. 0				4.5	13		
Nickel aluminum bronze	C95500	Grade D	81	✓ *			4	4	11		
	C95520		78.5				5.5	5.0	11		
	C95800		81.3	7			4.5	4	9	1.2	
Leaded nickel bronze	C97300	12 % leaded nickel silver	57	2	9	20	12				
	C97600	20 % leaded nickel silver	64	4	4	8	20				
	C97800	25 % leaded nickel silver	66	5	2	2	25				

^A Phosphorus 0.13

7. Mechanical Properties

7.1 Mechanical properties shall be determined from test bar castings cast in accordance with Practice B208 and shall meet the requirements shown in Table 4.

8. Weld Repair

8.1 The castings shall not be weld repaired without customer approval.

9. ASME Requirements

- 9.1 Castings shall comply with the following:
- 9.1. Certification requirements of Specification B824.
- 9.1.2 Foundry test report requirements of Specification B824.

9.1.3 Castings shall be marked with the manufacturer's name, the Copper Alloy UNS No., and the casting quality factor. In addition, heat numbers or serial numbers that are traceable to heat numbers shall be marked on all pressure-containing castings individually weighing 50 lb [22.7 kg] or more. Pressure-containing castings weighing less than 50 lb [22.7 kg] shall be marked with either the heat number or a

serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as to not injure the usefulness of the casting.

10. General Requirements

- 10.1 The following sections of Specification B824 form a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
 - 10.1.1 Terminology,
 - 10.1.2 Other Requirements,
 - 10.1.3 Dimensions, Mass, and Permissible Variations,
 - 10.1.4 Workmanship, Finish, and Appearance,
 - 10.1.5 Sampling,
 - 10.1.6 Number of Tests and Retests,
 - 10.1.7 Specimen Preparation,
 - 10.1.8 Test Methods,
 - 10.1.9 Significance of Numerical Limits,
 - 10.1.10 Inspection,
 - 10.1.11 Rejection and Rehearing,
 - 10.1.12 Certification,
 - 10.1.13 Test Report,
 - 10.1.14 Packaging and Package Marking, and
 - 10.1.15 Supplementary Requirements.

S
Chemical Requirements
e
딞
.≌
⊒
ä
Œ
=
ၓ
Έ
ē
Ĕ
2
Щ
핆
A
F

Oy Copper This control Figure (seed of the control o	Copper TPL Lead Zinc Iron Nigled Incl Antimitum Manganese Antimory Sulfur Phosphorus Other 840–880 4,0-60 4,0-60 4,0-60 0.00 10° 0.005 0.00 0.00 0.00° 0.00 0.00°
840-860 40-60 40-60 40-60 639 10^4 6006 60	840-860 40-60 40-60 6.30 10^4 0.006 0.25 0.08 0.05* 730-420 2.3-35 5.0-40 70-40 0.30 10^4 0.005 0.25 0.08 0.02* 730-420 2.3-35 70-40 0.40 10^4 0.005 0.25 0.08 0.02* 0.005 0.00
82.0-820 3.3-45 6.0-80 0.330 1,0° 0.005 0.25 0.00 0.025 0.005	86.2-88.8 3.3.42 5.6-50 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.005 0.
750-770 20-30 GF-70 130-770 0.04 107 0.005 0.25 0.08 0.02** 750-740 0.55-15 1.5-40 0.007 1.0 0.05 0.00	750—770 Construction
650-770 0.7-740 <t< td=""><td>600-650 0.02-70 0.03 0.03 0.00</td></t<>	600-650 0.02-70 0.03 0.03 0.00
600-6450 0.04-40 0.09 Rem 0.20 0.01-01-0 0.02-025 0.02-	600-650 10-40 0.009 Rem 0.20 0.10-10 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-055 0.00-15 0.10-15 </td
600-660 020 020 020 020 020 020 020 020 020	6.00-660 0.20 0.20 - 220 - 280 2.0-4.0 10° - 30-45 3.0-4.9 2.5-5.0
600-680 0.200 <	600-660 0.20 0.20 2.0-4.0 10° 10° 10° 10° 10° 10° 10° 10° 10° 10
550-600 10 0.40 38.0-4.0 10-3.0 10-1.5 0.10-1.5 </td <td>55.0-600 1.0 0.40 36.0-450 1.0 0.40-2.5 1.0 0.10-15 </td>	55.0-600 1.0 0.40 36.0-450 1.0 0.40-2.5 1.0 0.10-15
950-000 15 0.29-113 0.029-113 0.028	95.0-600 15 0.59-13 30.0-380 1.0-30 1.0-30 0.10-33 </td
790 min 1.0 120-16.0 2.5 1.0 1.20-16.0 2.5 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 1.20-16.0 1.0 <td>79.0 min 1.0 12.0-16.0 2.0 1.0 1.0-16.0 1.0 1.0-16.0</td>	79.0 min 1.0 12.0-16.0 2.0 1.0 1.0-16.0 1.0 1.0-16.0
86.0—89.0 7.5—90 0.29 1.2—16.0 0.29 1.0—10.0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.20 0.00 0.20 0.00 </td <td>/8.0 min 0.09 1.2-16.00 </td>	/8.0 min 0.09 1.2-16.00
86.0-89.0 7.5-90 0.30 3.0-5.0 10.4 0.005 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	86.0-89.0 7.5-9.0 0.30 3.0-5.0 1.0-4 0.005 0.20 0.05 0.05 0.05 0.05 0.05 <
860-980 5-7-10 0.30 1.0-3.0 0.25 1.0-3.0 0.25 1.0-3.0 0.0	86.0-89.0 5.75-6.5 1.0-2.0 1.0-3.0 1.0
85.0-89.0 7.5-9.0 0.39-1.0 2.5-5.0 0.25 1.00 0.005 0.25 0.05 0.05 0.05 0.05 0	85.0–89.0 7.5–9.0 0.30–1.0 2.5–5.0 0.25 1.0 0.005 0.05 0.05 0.05 0.05 0.05
83.0-86.0 (1.0-13.0 (1.0-1	83.0-85.0 43-6.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
780–83.0 6.0–8.0 110–13.0 1.0 0.20 1.0 ⁴ 0.005 0.55 0.08 0.15 0.15 0.005 0.15 0.15 0.15 0.15	79.0–83.0 6.0–8.0 11.0–13.0 1.0 0.20 1.0 ⁴ 0.005 0.55 0.08 0.15 78.0–82.0 9.0–11.0 8.0–11.0 0.8 0.7 ⁷ 0.50 ⁴ 0.005 0.50 0.08 0.10 75.0–72.0 6.3–7.5 13.0–16.0 0.8 0.15 1.0 ⁴ 0.005 0.8 0.08 0.05 86.0 min 0.8–1.5 9.0–11.0 0.8 0.08 0.05 83.0 min 3.0–5.0 1.5 10.0–11.5 0.50
75.0–79.0 6.3–7.5 13.0–16.0 0.8 0.15 1.0 ⁴ 0.065 0.8 0.08 0.05 0.8 0.05 0.8 0.05 0.8 0.05 0.8 0.05 0.05 0.0	75.0–79.0 6.3–7.5 13.0–16.0 0.8 0.15 1.0 ⁴ 0.005 0.8 0.08 0.05 67.0–72.0 4.5–6.0 23.0–27.0 0.8 0.15 1.0 ⁴ 0.005 0.86 0.05 67.0–72.0 4.5–6.0 23.0–27.0 0.8 0.15 1.0 ⁴ 0.005 0.86 0.05 68.0 0.05 68.0 min 0.8 1.0 1.5 1.5 1.0 1.0 1.15 0.50 0.8 0.05 0.05 0.05 0.05 0.05
86.0 min	86.0 min
86.0 min	86.0 min 08-1.5 9.0-11.0
83.0 min 3.0–5.0 1.5–2.5 10.0–11.5 6.50	83.0 min 3.0–5.0 1.5–2.5 10.0–11.5 0.59 3.0–5.0 3.0–5.5 10.0–11.5 0.59 3.0–5.0 3.0–5.5 10.0–11.5 0.59 3.0–5.0 3.0–5.5 10.0–11.5 0.59
78.0 min 3.0–5.0 3.0–5.5 10.0–11.5 %3 Cr 0.05 79.0 min 3.5–4.5 4.0–5.5 4.2–6.0 10.5–11.5 1.5 Cr 0.05 79.0 min 3.0–5.0 0.50 12.0–13.5 1.5	78.0 min 3.0–5.0 3.0–5.5 10.0–11.5 4.5
79.0 min 0.03 3.5-4.5 ^p 4.0-5.0 ^p 8.5-9.5 0.8-1.5	79.0 min 0.03 3.5–4.5 ⁰ 4.0–5.0 ⁰ 8.5–9.5 0.8–1.5 3.0–5.0 0.50 12.0–13.5 1.5
rem 3.0–5.0 0.50 12.0–13.5 1.5	rem 3.0–5.0 0.50 12.0–13.5 1.5
53.0-58.0 $1.5-3.0$ $8.0-11.0$ $17.0-25.0$ 1.5 $11.0-14.0$ 0.005 0.50 0.56 0.08 0.05 $63.0-67.0$ $3.5-4.5$ $3.0-5.0$ $3.0-9.0$ 1.5 $19.0-21.5$ 0.005 1.0 0.25 0.08 0.05	
	53.0-58.0 $1.5-3.0$ $8.0-11.0$ $17.0-25.0$ 1.5 $11.0-14.0$ 0.005 0.50 0.05 0.05 0.05 0.05 0.05 0.05

TABLE 3 Sum of All Named Elements Analyzed

opper Alloy UNS No.	Copper Plus Named Elements % min	Copper Alloy UNS No.	Copper Plus Named Elements % min
C83600	99.3	C92200	99.3
C83800	99.3	C92300	99.3
C84400	99.3	C93200	99.2
C84800	99.3	C93500	99.4
C85200	99.1	C93600	99.3
C85400	98.9	C93700	99.0
C85470	99.5	C93800	98.9
C85700	98.7	C94300	99.0
C86200	99.0	C95200	99.0
C86300	99.0	C95300	99.0
C86400	99.0	C95400	99.5
C86500	99.0	C95410	99.5
C86700	99.0	C95500	99.5
C87300	99.5	C95520	99.5
C87400	99.2	C95800	99.5
C87500	99.5	C95900	99.5
C87600	99.5	C97300	99.0
C90300	99.4	C97600	99.7
C90500	99.7	C97800	99.6
	with Practice		be as agreed up

11. Sampling

- 11.1 Test bars shall be made in accordance with Practice B208.
- 11.2 At the manufacturer's option test bars may be removed from the casting instead of from a separately cast coupon.
- 11.3 Separately cast test bars representing castings in Copper Alloy UNS Nos. C95300HT, C95400HT, C95410HT, C95500HT, C95520HT, C95800 temper annealed, and C95900 annealed shall be heat treated with the castings.

12. Test Methods

- 12.1 Analytical chemical methods are given in Specification B824.
- 12.1.1 Test methods to be followed for the determination of an al or all or click to view elements resulting from contractual or purchase order agree-

12.2 Brinell hardness readings shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Method E10, with the exception that a 3000 kg load shall be used.

13. Product Marking

13.1 When specified in the purchase order the castings shall be marked with the alloy number.

14. Keywords

14.1 centrifugal castings; copper alloy castings; copper-base alloy castings

TABLE 4 Mechanical Requirements

Copper Alloy		trength, min	Yield Stre	ength, ^A min	Elongation in 2 in.	Brinell Hardness No.
UNS No.	ksi ^C	MPa ^D	ksi ^C	MPa ^D	or 50 mm, min, %	[3000-kG Load], min
C83600	30	207	14	97	20	
C83800	30	207	13	90	20	
C84400	29	200	13	90	18	
C84800	28	193	12	83	16	
C85200	35	241	12	83	25	
285400	30	207	11	76	20	
85470	50	345	21	150	15	
85700	40	276	14	97	15	
86200	90	621	45	310	18	^ `
86300	110	758	60	414	12	011
286400	60	414	20	138	15	
86500	65	448	25	172	20	-Civ
86700	80	552	32	221	15	Geotion
87300	45	310	18	124	20	_ ~
87400	50	345	21	145	18	C1
87500	60	414	24	165	16	<u> </u>
87600	60	414	30	207	16	4
87610	45	310	18	124	20	
90300	40	276	18	124	20	
90500	40	276	18	124	20	
92200	34	234	16	110	22	
92300	36	248	16	110	18	
93200	30	207	14	97	15	
93500	28	193	12	83	15	
93600	32	221	16	110	15	
93700	30	207	12	83	15	
93800	26	179	14	97_	12	
94300	24	165		C_{1}	10	
95200	65	450	25	170	20	110
95300	65	450	25	170	20	110
95300(HT)	80	550	40	275	12	160
95400	75	515	30	205	12	150
95400(HT)	90	620	45	310	6	190
95410	75	515	30	205	12	150
95410(HT)	90	620	45	310	6	190
95500	90	620	40	275	6	190
95500(HT)	110	760	60	415	5	200
95520(HT)	125	862	95E	655 ^E	3	262
95800 ^F	85	585	60 95 ^E 35	240	15	
95900						241 min
97300	30	207	15	97	8	
97600	40	276	17	117	10	
37800	50	345	22	152	10	

Jang and Jang and Click to view the A Yield strength shall be determined as the stress producing an elongation under load of 0.5 %, that is 0.01 in. [0.254 mm] in a gage length of 2 in. [50.8 mm].

APPENDIX

(Nonmandatory Information)

X1. HEAT TREATMENT

X1.1 Castings in Copper Alloys UNS Nos. C95300, C95400, C95410, and C95500 may be supplied in the heat treated condition to obtain the higher mechanical properties shown in Table 4. Suggested heat treatments for these alloys and Copper Alloys UNS No. C95520 are given in Table X1.1. Actual practice may vary by manufacturer.

X1.2 For better corrosion resistance in seawater applications, castings in Copper Alloys UNS No. C95800 shall be given a temper anneal heat treatment at 1250 ± 50°F [675 ± 10°C] for 6 h minimum. Cooling shall be by the fastest means possible that will not cause distortion or cracking which renders the castings unusable for the intended application.

X1.3 Castings in Copper Alloys UNS No. C95900 are normally supplied annealed between 1100°F [595°C] and 1300°F [705°C] for 4 h followed by air cooling.

 $^{^{\}it B}$ For information only.

^C ksi – 1000 psi. $^{\it D}$ See Appendix.

E Yield strength at 0.2 % offset.

F As cast or temper annealed.

Copper Alloy UNS No.	Solution Treatment (not less than 1 h followed by water quench)	Annealing Treatment (not less than 2 h followed by air cool)
C95300	1585-1635°F [860-890°C]	1150-1225°F [620-660°C]
C95400 C95410 C95500	1600–1675°F [870–910°C]	1150–1225°F [620–660°C]
C95520	(2 h followed by water quench) 1600–1700°F [870–925°C]	925–1000°F [495–540°C]

- Result Baylo Storm Lord to the line of a Sent Baylo, life factor of the line of the line

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER AND COPPER-ALLOY DIE FORGINGS (HOT-PRESSED) SB-283/SB-283M

(23)

ASMENORMEDOC. COM. Circle to view the full Polyment of the company (Identical with ASTM Specification B283/B283M-20 except that certification and test reports have been made mandatory; product must conform to mechanical properties in Table 2; and Footnote B added to Table 2.)

Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)

1. Scope

1.1 This specification establishes the requirements for copper and copper alloy die forgings produced by the hot pressing method. The following copper and copper alloys are included:

Copper or Copper Alloy UNS N	o. Name
C11000	copper
C14500	copper-tellurium
C14700	copper-sulfur
C27450	plumbing brass
C27451 C27453	plumbing brass
C27453 C28500	copper zinc alloy copper-zinc brass
C26500 C35330	leaded brass
C36300	copper-zinc-lead
C36500	leaded Muntz metal
C37000	free-cutting Muntz metal
C37700	forging brass
C46400	naval brass
C46500	naval brass, arsenical
C46750	tin brass
C48200	medium leaded naval brass
C48500	leaded naval brass
C48600	naval brass
C48640	DZR brass
C48645 C49250	DZR tin brass
C49250 C49255	copper-zinc-bismuth alloy copper-zinc-bismuth-nickel alloy
C49260	copper-zinc-bismuth alloy
C49265	copper-zinc-tin-bismuth, low leaded
C49300	copper-zinc-tin-bismuth alloy
C49340	copper-zinc-tin-bismuth alloy
C49345	copper-zinc-tin-bismuth, low leaded
C49350	copper-zinc-tin-bismuth alloy
C49355	bismuth brass
C61900	aluminum bronze
C62300	aluminum bronze, 9 %
C63000	aluminum-nickel bronze
C63200	aluminum-nickel bronze
C64210	aluminum-silicon bronze aluminum-silicon bronze, 6.7 %
C65500	high-silicon bronze (Δ)
C65680	bigh-silicon bronze
C67500	manganese bronze (A)
C67600	
C69300	copper-zinc-silicon
C69410	copper-zinc-silicon
	•
~O`	
Cit	
$\mathcal{O}_{\mathcal{O}_{i}}$	
VO.	
12	
C61900 C62300 C63200 C63200 C64200 C64210 C65500 C65680 C67500 C67600 C69300 C69410	
- WI	
S	
•	

rgings (Hot-Press	eed)
Copper or Copper Alloy UNS No. C69850 C70620 C71520 C77400	Name copper-zinc-silicon copper-nickel 90-10 copper-nickel 70-30 nickel silver, 45-10
C87700 C87710	silicon bronze silicon bronze Name
Copper Alloy EN 1412 Nos. CW612N	forging brass

CW617N

1.2 *Units*—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other and values from the two systems shall not be combined.

forging brass

Note 1—Nominal composition and relative forgeability ratings are given in Appendix X1. Copper-nickel alloys C70620 and C71520 are intended for welded applications with seawater exposure.

intended for welded applications with seawater exposure.

Note 2—Guidelines for design and development of forgings are included in Appendix X2.

Note 3—Wrought product intended for hot forging is described in Specification B124/B124M.

- 1.3 The following safety caveat pertains only to Section 10 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B124/B124M Specification for Copper and Copper Alloy

Forging Rod, Bar, and Shapes

B249/B249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes and Forgings

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Ma-

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)

E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)

E478 Test Methods for Chemical Analysis of Copper Alloys

2.2 Other Standards:

ASME Boiler and Pressure Vessel Code

EN 1412 Copper and Copper Alloys – European Numbering

ISO 7602 Determination of Tellurium Content (High Content)—Flame Atomic Absorption Spectrometric Method

JIS H 1068:2005 Method for Determination of Bismuth in Copper and Copper Alloys (Japanese Industrial Standards)

2.3 Military Standards:

MIL-STD-792 Identification Marking Requirements for Special Purpose Components

NAVSEA T9074-AS-GIB-010/271 Requirements for Nondestructive Testing Method

3. General Requirements

- 3.1 The following sections of Specification B249/B249M constitute a part of this specification:
 - 3.1.1 Terminology;
 - 3.1.2 Materials and Manufacture:
 - 3.1.3 Workmanship, Finish, and Appearance
 - 3.1.4 Sampling;
 - 3.1.5 Number of Tests and Retests;
 - 3.1.6 Specimen Preparation;
 - 3.1.7 Test Methods;
 - 3.1.8 Significance of Numerical Limits;
 - 3.1.9 Inspection;
 - 3.1.10 Rejection and Rehearing;
 - 3.1.11 Certification;
 - 3.1.12 Test Reports
 - 3.1.13 Packaging and Package Marking; and
- SMENORMIDOC. CON 3.1.14 Supplementary Requirements.

3.1.15 In addition, when a section with a title identical to one of those referenced in 3.1, above, appears in this specification, it contains additional requirements that supplement those appearing in Specification B249/B249M.

4. Terminology

- 4.1 Definitions:
- 4.1.1 For definitions of terms related to copper and copper loys, refer to Terminology P846 alloys, refer to Terminology B846.
 - 4.2 Definitions of Terms Specific to This Standards
- 4.2.1 hot pressed forging, n—a product made by pressing a heated blank or section of wrought or cast copper or copper alloy in a closed impression die.

5. Ordering Information

- 5.1 Include the following information when placing orders for products to this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
- 5.1.2 Copper or Copper Alloy UNS No. or EN 1412 No. designation (Scope);
- 5.1.3 Drawing showing the shape dimensions and tolerances (Dimensions and Permissible Variations);
 - 5.1.4 Temper (as specified herein);
- 5.1.5 Quantity: total weight or number of pieces for each form, temper, and copper or copper alloy;
- 5.1.6 When product is purchased for agencies of the U.S. Government (as specified herein); and
 - 5.1.7 DELETED
- 5.2 The following requirements are optional and shall be specified in the contract or purchase order.
 - 5.2.1 DELETED
 - 5.2.2 DELETED
- 5.2.3 Ultrasonic inspection report (Supplementary Requirements).

6. Materials and Manufacture

- 6.1 Materials:
- 6.1.1 The material of manufacture shall be a form of rods, billets, or blanks cut from cast or wrought material of one of the copper or copper alloys listed in the Scope of this specification and of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.1.2 In the event heat identification or traceability is required, the purchaser shall specify the details desired.

Note 4—Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify specific casting analysis with a specific quantity of finished material.

- 6.2 Manufacture:
- 6.2.1 The product shall be manufactured by hot pressing material between the upper and lower sections of a set of dies conforming to the configuration defined by the purchaser's submitted drawings.
- 6.2.2 Product of Copper Alloy UNS No. C63000 and C63200 shall be heat treated (as specified herein).

7. Chemical Composition

- 7.1 The material shall conform to the chemical composition requirements in Table 1 for the Copper or Copper Alloy UNS No. designation specified in the ordering information.
- 7.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.2.1 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %.
- 7.2.2 For alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of results of all other elements determined and 100 %.
- 7.3 When all the elements in Table 1 are determined for Copper Alloy C65680, the sum of results shall be 99.2 % min. When all elements in Table 1 are determined for Copper Alloy UNS Nos. C36500, C37000, C46400, C46500, C48200, C48500, C48600, the sum of results shall be 99.6 % min; for Copper Alloy UNS No. C28500, the sum of results shall be 99.1 % min; for EN 1412 Nos. CW612N and CW617N, the sum of the results shall be 99.8 % min; and for all other alloys, the sum of results shall be 99.5 % min.

8. Temper

- 8.1 The standard tempers for products described in this specification are as follows:
 - 8.1.1 As hot forged-air cooled M10,
 - 8.1.2 As forged-quenched M11,
 - 8.1.3 Hot forged and annealed O20.
- 8.2 UNS Alloy Nos. C63000 and C63200 shall be furnished as:
 - 8.2.1 Quench hardened and temper annealed, TQ50.
- 8.3 Alloys C70620 and C71520 shall be furnished in the following tempers:
 - 8.3.1 As hot forged-air cooled M10, unless
 - 8.3.2 Hot forged and annealed O20 is specified.
- 8.4 Other tempers shall be subjected to agreement between the manufacturer and the purchaser.

9. Mechanical Property Requirements

9.1 DELETED

ment between the manufacturer and the purchaser.

- 9.2 Product furnished to this specification shall conform to the tensile requirements prescribed in Table 2, when tested in accordance with Test Methods E8/E8M.
 - 9.2.1 DELETED

10. Heat Treatment

10.1 Product produced from Copper Alloy UNS No. C63200 shall be heat treated as follows:

- 10.1.1 Heat to 1550 °F [843 °C] minimum for 1 h minimum and quench in water or other suitable medium.
- 10.1.2 Temper Anneal at 1300 °F \pm 25 °F [704 °C \pm 14 °C] for 3 to 9 h as required to meet mechanical properties.
- 10.2 Heat treatment of other alloys, if needed, to be established by specific agreement between the supplier and purchaser.

11. Special Government Requirements

11.1 Product purchased for agencies of the U.S. Government shall conform to the additional requirements prescribed in the Supplementary Requirements section of this specification.

12. Dimensions, Mass, and Permissible Variations

12.1 The dimensions and tolerances for forgings shall be those agreed upon between the manufacturer and the purchaser, and such dimensions and tolerances shall be specified on the drawings which form a part of the contract or purchase order.

Note 5—Typical tolerances commonly used for forgings are shown in Table X2.1.

Note 6—Typical deviations for mismatch, flatness, ejector marks, flash projection, and die parting line are included in the Appendix X2.

13. Workmanship, Finish, and Appearance

- 13.1 The forging process gives to the forgings a surface condition related to the hot forging process itself. Ridges, indentations, folds, shocks from automatic hot forging, smooth flow lines due to brass rod slug positioning and material flow, that do not have deleterious effects in use, shall not be cause for rejection.
- V13.2 Customer-specific requirements for as-forged surface quality shall be by agreement between the purchaser and supplier.

14. Test Methods

- 14.1 Chemical Analysis:
- 14.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published methods, some of which may no longer be viable, which along with others not listed, may be used subject to agreement.

Element		ASTM Test Method
Aluminum	-	E478
Antimony		E62
Arsenic		E62
Bismuth		JIS H 1068:2005
Copper		E478
Iron	<1.3 %	E478, E75 for CuNi
	>1.3 %	E478, E75 for CuNi
Lead		E478 (AA)
Manganese		E62, E75 for CuNi
Nickel	<5 %	E478 (photometric)
	>5 %	E478 (gravimetric)
Phosphorus		E62
Silicon		E62 (perchloric acid)
Tin	<1.3 %	E478 ,
	>1.3 %	E478
Zinc	<2 %	E478 (AA)
	>2 %	E478 (titrimetric)
		ISO Test Method 7602
Tellurium	_	

Note— < = less than: > = greater than

ţ2
_
ခ
≥
စ္
≔
ᇹ
ĕ
Œ
_
ŭ
.2
Ξ
ē
ᇨ
O
_
111
=
丽
4
\vdash

	N					ABLE 1 Ch	TABLE 1 Chemical Requirements	irements						
Copper or	5						Compos	Composition, %						
UNS or EN 1412 No.	Copper	CLead	Τi	Iron	Nickel (incl Co)	Aluminum	Silicon	Manganese	Zinc	Sulfur	Tellurium	Phosphorus	Arsenic	Bismuth
C11000	99.90 ^A min	5	:	:	:	:	:	:	:	:	:	:	:	:
C14500 ^B	99.90^C min	W,		:	:	:	:	:	:	:	0.40-0.7	0.004-0.012 ^D	:	:
C14700 ^B	$99.90^{\it E}$ min	:	. C	:	:	:	:	:	:	0.20-0.50	:	0.002-0.005 ^D	:	:
C27450	60.0-65.0	0.25 max	jic	0.35 max	:	:	:	:	remainder	:	:	:	:	:
C27451	61.0–65.0	0.25 max		0:35 max	:	:	:	:	remainder	:	:	0.05-0.20	:	:
C27453	61.5–63.5	0.25 max	0.15 max	0.15 max	:	:	:	:	remainder	:	:	:	0.02-0.15	
C28500	57.0–59.0	0.25 max	:	0.35 max	:	:	:	:	remainder	:	:	:	:	:
C35330	59.5-64.0	1.5–3.5	:	:	11	:	:	:	remainder	:	:	:	0.02-0.25	:
C36300	61.0–63.0	0.25-0.7	:	0.15 max	0	:	:	:	remainder	:	:	0.04-0.15	:	:
C36500	58.0-61.0	0.25-0.7	0.25 max	0.15 max		<	:	:	remainder	:	:	:	:	:
C37000	59.0–62.0	0.8-1.5	:	0.15 max	:	² ♥	:	:	remainder	:	:	:	:	:
C37700	58.0-61.0	1.5–2.5	:	0.30 max	:	Ś	:	:	remainder	:	:	:	:	:
C46400	59.0–62.0	0.20 max	0.50-1.0	0.10 max	:	:	4 5	:	remainder	:	:	:	:	:
C46500	59.0–62.0	0.20 max	0.50-1.0	0.10 max	:	:	S	:	remainder	:	:	:	0.02-0.06	:
C46750 ^F	59.2–62.5	0.25 max	1.00-1.80	0.10 max	0.50 max	:	NE.	:	remainder	:	:	0.05-0.15	:	:
C48200	59.0–62.0	0.40-1.0	0.50-1.0	0.10 max	:	:		8	remainder	:	:	:	:	:
C48500	59.0–62.0	1.3–2.2	0.50-1.0	0.10 max	:	:	:	24	remainder	:	:	:	:	:
C48600	59.0–62.0	1.0–2.5	0.30-1.5	:	:	:	:	ن.	remainder	:	:	:	0.02-0.25	:
C48640	59.0–62.0	1.5–3.0	0.50-2.0	0.40 max	0.3 max ^{<i>G</i>}	:	:	:	remainder	:	:	0.05-0.25	:	:
C48645	0.09-03.0	1.0–2.5	0.10-1.5	0.30 max	0.10-1.0	:	:	:	remainder	:	:	0.02-0.25	:	:
C49250 ^H	58.0–61.0	0.09 max	0.30 max	0.50 max	:	:	:	:	remainder		:	:	:	1.8–2.4
C49255'	58.0-60.0	0.09 max	0.50 max	0.10 max	0.3 max ^G	:	0.10 max	:	remainder		:	0.10 max	:	1.7–2.9
C49260 ^H	58.0-63.0	0.09 max	0.50 max	0.50 max	:	:	0.10 max	:	remainder	B	:	0.05-0.15	:	0.50-1.8
C49265 ^H	58.0-62.0 ^A	0.09-0.25	0.50 max	0.30 max	:	:	0.10 max	:	remainder	:	رد	0.05-0.12	:	0.50-1.3
C49300 ^{-/}	58.0–62.0	0.09 max	1.0–1.8	0.10 max	0.3 max ^G	:	0.10 max	:	remainder	:	5	:	:	0.5–2.5
C49340 ^H	0.09-03.0	0.09 max	0.50-1.5	0.12 max	:	:	0.10 max	:	remainder	:	30	0.05-0.15	:	0.50-2.2
C49345 ^H	60.0-64.04	0.09-0.25	0.50-1.5	0.30 max	:	:	0.10 max	:	remainder	:	:	0.05-0.12	:	0.50-1.3
C49350 ^K	61.0-63.0	0.09 max	1.5–3.0	0.12 max	:	:	0.30 max	:	remainder	:	:	0.04-0.15	:	0.50-2.5
C49355 ^L	63.0-69.0	0.09 max	0.50-2.0	0.10 max	:	:	1.0-2.0	0.10 max	27.0–35.0	:	:	S _o		0.50-1.5
													X	

Continued
_
щ
품
4
F

Copper or							Compos	Composition, %						
Copper Alloy UNS or EN 1412 No.	Copper	Lead	Tin	lron	Nickel (incl Co)	Aluminum	Silicon	Manganese	Zinc	Sulfur	Tellurium	Phosphorus	Arsenic	Bismuth
C61900	remainder	0.02 max	0.6 max	3.0-4.5 ^M	:	8.5–10.00	:	:	0.8 max	:	:	:	:	:
C62300	remainder		0.6 max	2.0-4.0	1.0 max	8.5–10.0	0.25 max	0.50 max	:	:	:	÷	:	:
C63000	remainder	la,	0.20 max	2.0-4.0	4.0–5.5	9.0–11.0	0.25 max	1.5 max	0.30 max	:	:	:	:	:
C63200	remainder	0.02 max	Ċ	3.5-4.3 ^N	4.0-4.8	8.7–9.5	0.10 max	1.2–2.0	:	:	:	:	:	:
C64200	remainder	0.05 max	0.20 max	0.30 max	0.25 max	6.3-7.6	1.5–2.2	0.10 max	0.50 max	:	:	:	0.09 max	:
C64210	remainder	0.05 max	0.20 max	0.30 max	0.25 max	6.3-7.0	1.50–2.0	0.10 max	0.50 max	:	:	:	0.09 max	:
C65500	remainder	0.05 max	:	0.8 max	0.6 max	:	2.8-3.8	0.50-1.3	1.5 max	:	:	:	:	:
C65680	84.0 min	0.09 max	0.30 max	0.30 max	20.10 max ^G	0.30 max	2.5-4.5	0.01-0.09	7.0–11.0	:	:	0.05-0.15	:	:
C67500	57.0-60.0	0.20 max	0.50-1.5	0.8–2.0	il.	0.25 max	:	0.05-0.50	remainder	:	:	:	:	:
C67600	57.0-60.0	0.50-1.0	0.50-1.5	0.40-1.3	2	:	:	0.05-0.50	remainder	:	:	:	:	:
C69300	73.0–77.0	0.09 max	0.20 max	0.10 max	0.10 max		2.7–3.4	0.10 max	remainder	:	:	0.04-0.15	:	:
C69410	81.0 min	0.09 max	:	0.20 max	:	Ó	3.5-4.5	:	11.0–15.0	:	:	:	:	:
C69850	67.5–69.0	0.09 max	0.20 max	0.10 max	0.10 max ^G	, C	1.53–2.0	0.10 max	remainder	:	:	0.04-0.15	÷	:
C70620 ⁰	86.5 ⁴ min	0.02 max	:	1.0–1.8	9.0-11.0	; :	P	1.0 max	0.50 max	0.02 max	:	0.02 max	:	:
C71520 ⁰	65.0 ⁴ min	0.02 max	:	0.40-1.0	29.0–33.0	:	S	1.0 max	0.50 max	0.02 max	:	0.02 max	:	:
C77400	43.0-47.0	0.09 max	:	÷	9.0–11.0	:			remainder	:	:	:	÷	:
C87700 ^P	87.5 min	0.09 max	2.0 max	0.50 max	0.25 max	:	2.5–3.5	0.8 max	7.0–9.0	:	:	0.15 max	:	:
C87710 ^P	84.0 min	0.09 max	2.0 max	0.50 max	0.25 max	:	3.0–5.0	0.8 max	9.0–11.0	:	:	0.15 max	:	:
CW612N	59.0-60.0	1.6–2.5	0.3 max	0.3 max	0.3 max ^{<i>G</i>}	0.05 max	:	٠.\	remainder	:	:	:	:	:
CW617N	57.0–59.0	1.6–2.5	0.3 max	0.3 max	0.3 max ^{<i>G</i>}	0.05 max	:	:	remainder	:	:	:	:	:
4 Silver counting as copper.	s copper.								P					

ASME BRYC Section II Part B 202

^B Includes oxygen-free or deoxidized grades with deoxidizers (such as phosphorus, boron, lithium, or others) in amount agreed upon.

C This includes copper plus silver plus tellurium plus phosphorus.

D Other deoxidizers may be used as agreed upon, in which case phosphorus need not be present.

E This includes copper plus silver plus sulfur plus phosphorus.

Fincludes antimony 0.05–0.15.

B Not including Co.

H Includes cadmium 0.001 % max.

Includes cadmium 0.0075 % max, selenium 0.02–0.07.
Includes cadmium 0.0075 % max, antimony 0.50 % max, and selenium 0.20 % max.
Includes antimony 0.02–0.10 %.
Includes Boron 0.001 % max.
Includes Boron 0.005 % max.
Pantimony shall be 0.10 Max.

TABLE 2 Tensile Requirements ^B

Diameter or Section Thicknes	s, Temper Designation Standard Former	Tensile St	trength, min		ngth at 0.5 % nder Load, min	Elongation in 4 × Diameter of Thickness of Specimen, min,
in. [mm]	Standard Former -	ksi	[MPa] ^A	ksi	[MPa] ^A	- Thickness of Specimen, min,
	Copper Allo	y UNS No. C	C27450, C274	51		
All Sizes	M10 As Hot Forged-Air Cooled	50	[345]	18	[124]	25
		r Alloy UNS I	No. C27453			
All Sizes	M10 As Hot Forged-Air Cooled	49	[340]	29	[200]	30
		r Alloy UNS I	No. C28500			
All Sizes	M10 As Hot Forged-Air Cooled	58	[400]	24	[165]	20
	Copper Alloy UNS Nos. C35330 and 0	C37700 and E	EN 1412 Alloy	Nos. CW612N	and CW617N	
Up to 1½ [38.1], incl	M10 As Hot Forged-Air Cooled	50	[345]	18	[124]	25
Over 1½ [38.1]	M10 As Hot Forged-Air Cooled	46	[317]	15	[103]	30
		r Alloy UNS I	No. C36300			XIV.
All sizes	M10 As Hot Forged-Air Cooled	50	[345]	18	[124]	25
		r Alloy UNS I	No. C46400			
All sizes	M10 As Hot Forged-Air Cooled	52	[358]	22	[152]	25
	Coppe	r Alloy UNS I	No. C46500			(C)
All sizes	M10 As Hot Forged-Air Cooled	63	[435]	30	[207]	40
		r Alloy UNS I	No. C46750			2 ~
All sizes	M10 As Hot Forged-Air Cooled	45.7	[315]	22.0	[152]	15
	O20 Hot Forged and Annealed	45.7	[315]	22.0	[152]	15
C	Copper Alloy UNS Nos. C48200, C48500	, C48600, C4	19250, C4925	5, C49260, C49	265, and C4930	00
All sizes	M10 As Hot Forged-Air Cooled	52	[358]	22	[152]	25
		y UNS No. C	C48640, C486	45	8	
	M10 As Hot Forged-Air Cooled	45.7	[315]	18 , 🐧	[124]	15
	O20 Hot Forged and Annealed	45.7	[315]	18	[124]	15
	Copper Alloy UNS	Nos. C49340	0, C49345, an	d C49350		
All sizes	M10 As Hot Forged-Air Cooled	50	[345]	20	[140]	20
	Coppe	r Alloy UNS I	No. C49355			
All Sizes	M10 As Hot Forged-Air Cooled	50	[345]	20	[140]	15
All Sizes	O20 Hot Forged and Annealed	50	[345]	20	[140]	15
	Coppe	r Alloy UNS I	No. C64200			
Up to 1½ [38.1], incl	M10 As Hot Forged-Air Cooled	70	[483]	25	[172]	30
Over 1½ [38.1]	M10 As Hot Forged-Air Cooled	68	[469]	23	[156]	35
	Coppe	r Alloy UNS I	No. C65680			
All Sizes	M10 As Hot Forged-Air Cooled	43.5	[300]	14.5	[100]	8
All Sizes	O20 Hot Forged and Annealed	29.0	[200]	11.6	[80]	15
	Coppe	r Alloy UNS I	No. C69300			
All sizes	M10 As Hot Forged-Air Cooled	65	[450]	26	[180]	15
	Coppe	r Alloy UNS I	No. C69850			
All sizes	M10 As Hot Forged-Air Cooled	55	[379]	22	[151]	15
	Coppe	r Alloy UNS I	No. C70620		-	
Up to 6 [152], incl	M10 As Hot Forged-Air Cooled	45	[310]	18	[124]	30
Over 6 [152]	M10 As Hot Forged-Air Cooled	40	[276]	15	[103]	30
All sizes	O20 Hot Forged and Annealed	40	[276]	15	[103]	30
		r Alloy UNS I				
Up to 6 [152], incl	M10 As Hot Forged-Air Cooled	50	[345]	20	[138]	30
Over 6 [152]	M10 As Hot Forged-Air Cooled	45	[310]	18	[124]	30
All sizes	O20 Hot Forged and Annealed	45	[310]	18	[124]	30
	Copper Alloy UNS				r1	
All sizes	M10 as Hot Forged-Air Cooled	40	[310]	15	[103]	15
All Sizes	IVI IV as HOL Forged-Air Cooled	40	[310]	15	[103]	15

A See Appendix X5.

14.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.

15. Certification and Test Report

15.1 The manufacturer's certificate of compliance shall be furnished to the purchaser stating that samples representing each lot have been tested and inspected in accordance with this specification and the requirements have been met.

15.2 Test reports shall be furnished by the supplier.

16. Keywords

16.1 copper and copper alloy die forgings (hot pressed); die forgings (hot pressed); EN 1412 No. CW612N; EN 1412 No.

CW617N; UNS No. C11000; UNS No. C14500; UNS No. C14700; UNS No. C27450; UNS No. C27451; UNS No. C27453; UNS No. C28500; UNS No. C35330; UNS No. C36300; UNS No. C36500; UNS No. C37000; UNS No. C37700; UNS No. C46400; UNS No. C46500; UNS No. C46750; UNS No. C48200; UNS No. C48500; UNS No. C48600; UNS No. C48640; UNS No. C48645; UNS No. C49250; UNS No. C49255; UNS No. C49260; UNS No. C49265; UNS No. C49300; UNS No. C49340; UNS No. C49345; UNS No. C49350; UNS No. C49355; UNS No. C61900; UNS No. C62300; UNS No. C63000; UNS No. C63200; UNS No. C64200; UNS No. C64210; UNS No. C65500; UNS No. C65680; UNS No. C67500; UNS No. C67600; UNS No. C69300; UNS No. C69410; UNS No. C69850; UNS No. C70620; UNS No. C71520; UNS No. C77400; UNS No. C87700; UNS No. C87710

The tensile requirements shown where only the M10 temper is listed are also to be used for M11 and O20 tempers.

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order for agencies of the U.S. Government.

- S1. Supplementary Requirements S1, S2, and S4 of ASTM B249/B249M shall apply.
- S2. **Identification Marking**—Individual forgings shall be marked with the producer's name or trademark, this ASTM specification number, the UNS number or the EN 1412 number, and the heat number or serial number. The method and location of marking shall be in accordance with MIL-STD-792. If approved by the purchaser, the forgings may be bundled or boxed and each bundle or box provided with a metal or oil-proof tag showing the above information.
- S2.1 **Sampling**—The lot size, portion size, and selection of sample pieces shall be as follows:
- 1. Lot Size—For forgings weighing 250 lbs [114 kg] or less, a lot shall be 2000 lbs [909 kg] or less, and shall consist of forgings of the same design and alloy forged from the same material heat and heat treated at the same time. For forgings exceeding 250 lbs [114 kg], each individual forging shall constitute a lot.
- S2.2 *Portion Size*—For forgings less than 250 lbs [114 kg], two forgings per lot shall be selected for tensile testing. Tensile tests shall be performed on each forging over 250 lbs [114 kg].
- S2.3 *Chemical Analysis*—If heat identification is required, one sample for chemical analysis shall be taken for each heat at the time of pouring or from semifinished or finished product.
- S2.4 Tensile Testing—The tensile specimens shall be taken from integral forging prolongations or shall be removed from the forgings by trepanning. Alternatively, samples may be taken from separately forged test bars of the same heat as the forgings in the lot provided the wall thickness and amount of working for the test bar are equivalent to those for the forgings. The axis of the tensile specimen shall be located at any point midway between the center and the surface of solid forgings and at any point midway between the inner and outer surfaces of the wall of hollow forgings, and shall be parallel to the direction of greatest grain flow to the greatest extent possible.
- S2.5 **Liquid Penetrant Inspection**—When specified by the purchaser, each piece of each lot shall be inspected in accordance with NAVSEA T9074-AS-GIB-101/271.
- S2.6 **Ultrasonic Inspection**—When specified by the purchaser, each piece of each lot shall be inspected.
- 1. General Requirements—Ultrasonic testing shall be performed in accordance with NAVSEA T9074-AS-GIB-101/271. Acoustic compatibility between the production material and the calibration standard material shall be within 75 %. If the acoustic compatibility is within 25 %, no gain compensation is required for the examination. If the acoustic compatibility difference is between 25 and 75 %, a change in the gain or dB controls shall be accomplished to compensate for the differences in acoustic compatibility. This method cannot be used if the ultrasonic noise level exceeds 50 % of the rejection value.
 - S3. Calibration:

- S3.1 Shear Wave—The shear wave test shall be calibrated on two notches, one notch cut into the inside and one into the outside surface. The notches shall be cut axially and shall have a depth of 5 % of the material thickness or $\frac{1}{4}$ in. [6.4 mm], whichever is less. Notch length shall not exceed in. [25.4 mm]. Notches shall be made either in the piece to be examined or in a separate defect-free specimen of the same size (within $\pm \frac{1}{8}$ in. [3.2 mm]), shape, material, and condition, or acoustically similar material. The position and amplitude of the response from each notch shall be marked on the instrument screen or a transparent overlay, and these marks shall be used as the evaluation reference. Indications that appear between these points shall be evaluated on the basis of a straight line joining the two peak amplitudes.
- S3.2 Longitudinal Wave—The longitudinal wave test shall be calibrated on a flat-bottomed reference hole of a given diameter in accordance with Table S5.1 for specified material thickness drilled either into the piece to be tested or into a separate defect-free specimen of the same size (within $\pm \frac{1}{8}$ in. [3.2 mm]), shape, material, and condition or acoustically similar material. Holes are to be drilled to midsection and the bottom of the hole shall be parallel to the entrant surface. The ultrasonic test instrument shall be adjusted so that the response from the reference hole shall not be less than 25 % and not more than 75 % of screen height.
- S3.3 Recalibration—During quality conformance inspection, any realignment of the search unit that will cause a decrease in the calibrated sensitivity and resolution, or both, or any change in search unit, couplant, instrument settings, or scanning speed from that used for calibration shall require recalibration. Recalibration shall be performed at least once per 8-h shift.
 - S4. Procedure:
- S4.1 Ring and Hollow Round Products—Rings and other hollow cylindrical products shall be tested using the shear wave method by the contact or immersion technique. The shear wave entrant angle shall be such as to ensure reflection from the notch or notches used in calibration. For contact testing, the search unit shall be fitted with a wedge or shoe machined to fit the curvature of the piece being inspected. The product also shall be inspected with a longitudinal wave test from the external circumferential and end surfaces.
- S4.2 *Disk or Pancake Forgings*—Disk or pancake forgings shall be inspected with a longitudinal wave technique from both parallel surfaces.

TABLE S5.1 Ultrasonic Testing Reference Hole for Rod, Bar, Disk Pancake Forgings, and Forgings

Material Thickness, in. [mm]	Hole Diameter, in. [mm]
Up to and including 6 [152]	1/8 [3.2]
Over 6 [152] and including 16 [406]	1/4 [6.4]
Over 16 [406]	As agreed upon

- cosion shall be smaller th.

 Ince hole. In the event of disagre,

 A reflection loss, it shall be determined to the control of the control of

no dimension shall be smaller than the diameter of the reference hole. In the event of disagreement on the degree of back reflection loss, it shall be determined by the contact method using a 1- to 11/8-in. [25.4- to 28.6-mm] diameter

S5.3 Reference Notch Removal—If reference notches or flat-bottomed holes are made in the material to be tested, the shall be so located that their subsequent removal will not

TABLE X1.1 Nominal Compositions and Relative Forgeability Ratings

Copper or Copper Alloy							Nomi	inal Composit	ion, %						Relative
UNS or EN 1412 No.	Copper	Lead	Tin	Iron	Nickel	Aluminum	Silicon	Manganese	Zinc	Sulfur	Tellurium	Phosphorus	Arsenic	Bismuth	Forgeability Rating ^A
C11000	100														65
C14500	99.45										0.55				65
C14700	99.5									0.35					65
C27450	62.5	0.12							37.4						95
C27451	61.0-65.0	0.12							36.8			0.05-0.20			95
C27453	62.5												8.0		90
C28500	58.0	0.10		0.30					41.0						100
C35330	61.7	2.5							35.7				0.13		95
C36300	62	0.5							37.5			0.09			95
C36500	60	0.6							39.4						100
C37000	60	1							39					0	100
C37700	60	2							38					S	100
C46400	60		0.8						39.2						90
C46500	60.0	0.10	0.8	0.05					38.9				0.04	\cup	90
C46750	60.9		1.4						37			0.1			95
C48200	60	0.7	0.8						38.5						90
C48500	60	1.8	0.8						37.4				(5)		90
C48600	60.5	1.7	0.9						36.8				0.13		90
C48640	60	2	1.2						34.7			0.1			95
C48645	61.5	1.7	0.8						36			0.13			95
C48045 C49250	60.0								37.9			0,10		2.2	90
C49255	59				0.2				38.5			D 3		2.3	90
C49260	60.5								38.3		\	(1		1.1	90
		0.17									\Diamond	0.00			
C49265	60.0	0.17	1.0						39.0		- A.Y	0.08		0.9	90
C49300	60		1.6		1				37.3					1.2	95
C49340	61.5		1						36.2		• • • •			1.3	90
C49345	62.0	0.17							36.9	13		0.08		0.9	90
C49350	62		2.2						34.2	0				1.5	95
C49355	66.0		1.0				1.5		31.0	0				0.7	80
C61900	87.5			3.5		9			11/	V					75
C62300	88			3		9			\sim						75
C63000	81			3	5	10		1	Mr.						75
C63200	81			4	4.5	9		1.5 🧲	1/2						75
C64200	91					7	2	0							75
C64210	91.3					6.7	2	6 Y							75
C65500	96			В			3	90	В						40
C65680	87.4						3.5 🥖	0.05	9.0			0.1			80
C67500	58.5		1	1				0.10	39.4						80
C67600	58.5	0.75	1	1				0.10	39.6						80
C69300	75.0						3.0		21.9			0.10			95
C69410	83						4.0		13.0						90
C69850	68.2						1.75		29.9			0.10			90
C70620	86.5			1.4	10.0			1							75
C71520	65.0			0.7	31.0	So.		1							40
C77400	45				10	*KL			45						85
C87700	88.5 min					(C	3.0		8.0						80
C87710	86.0 min				2		4.0		10.0		• • • •				80
CW612N	60	2			:(0)				38		• • • •				100
CW617N	58	2			7,				40						100

A Relative forgeability rating takes into consideration such variable factors as pressure, die wear, and plasticity (hot). Since it is impracticable to reduce these variables to common units, calibration in terms of a percentage of the most generally used alloy, forging brass (100 %), is considered the most practical basis for such ratings. The values shown represent the general opinion and are intended for information to enable the designer to better understand the forging characteristics of these various alloys. Intricate parts are more likely to be available in alloys having a high rating.

B One or more of these elements may be present as specified in Table 2.

One or more of these elements may be present as specified in Table 2

X2. DIMENSIONAL TOLERANCES

X2.1 The data in Table X2.1 do not constitute a part of this specification. They are given merely to indicate to the purchaser the various forging types and some dimensional tolerances used on commercially designed hot-pressed forgings up to 2 lb [0.9 kg] in weight. For tolerances applicable to heavier forgings, the manufacturer should be consulted.

X2.2 Mismatch

X2.2.1 The mismatch (a in Fig. X2.1) shall be determined with respect to the largest nominal dimension (w max in Fig.

X2.1) in the forging direction (see Fig. X2.1) not associated with a particular dimension. Tolerances for dimensions within the die cavity are independently applied.

X2.3 Flatness

X2.3.1 Deviation from flatness may result from distortion, heat treatment, ejection from the mold, or trimming. This deviation is in addition to the tolerances caused by the forging process itself. (See Fig. X2.2.)

TABLE X2.1 Dimensional Tolerances

IABLE	X2.1 Dimensional	Tolerances		
	Tole	rances, Plus and Minus,	in. [mm] Except as India	ated ^A
_		Copper or Copper Alloy	UNS No. or EN 1412 No	0.
Forging types: Solid	C11000 C14500 C14700 C61900 C62300 C64200 C64210	C27450 C27451 C27453 C28500 C35330 C36300 C36500 C37700 C46400 C46500 C48600 C48600 C48640 C48645 C48200 C48640 C48645 C49265 C49265 C49265 C49360 C49340 C49345 C49355 C65680 C67500 C67600 C69300 C69410 C69850 CW612N CW617N	C77400 T	C63000 C63200 C65500 C70620 C71520 C87700 C87710
Solid, with symmetrical cavity Solid, with eccentric cavity	0.010 [0.25] 0.012 [0.30]	0.008 [0.20] 0.008 [0.20]	0.008 [0.20] 0.008 [0.20] 0.008 [0.20]	0.012 [0.30] 0.012 [0.30] 0.012 [0.30]
Solid, deep extrusion Hollow, deep extrusion	0.012 [0.30] 0.012 [0.30]	0.010 [0.25] 0.010 [0.25]	0.010 [0.25] 0.010 [0.25]	0.014 [0.36] 0.014 [0.36]
Thin section, short (up to 6 in. [152 mm] incl.)	0.012 [0.30]	0.010 [0.25]	0.010 [0.25]	0.014 [0.36]
Thin section, long (over 6 in. [152 mm] to 14 in. [356 mm] incl.)	0.015 [0.38]	0.015 [0.38]	0.015 [0.38]	0.020 [0.51]
Thin section, round	0.012 [0.30]	0.010 [0.25]	0.010 [0.25]	0.014 [0.36]
Draft angles outside and inside 1 to 5°	1/2 °	1/2 °	½°	1/2 °
Machining allowance (on one surface)	1/32 [0.79]	1/32 [0.79]	¹ / ₃₂ [0.79]	1/32 [0.79] 0.005 [0.13]
Flatness (maximum deviation per inch [per 25.4 mm]) Concentricity (total indicator reading)	0.005 [0.13] 0.030 [0.76]	0.005 [0.13] 0.020 [0.51]	0.005 [0.13] 0.030 [0.76]	0.005 [0.13] 0.030 [0.76]
Nominal web thickness:	5/32 [4.0]	0.020 [0.51] 1/8 [3.2]	0.030 [0.76] 1/8 [3.2]	3/16 [4.8]
Tolerance	¹ / ₆₄ [0.40]	¹ / ₆₄ [0.40]	¹ / ₆₄ [0.40]	¹ / ₆₄ [0.40]
Nominal fillet and radius:	3/32 [2.4]	1/16 [1.6]	1/16 [1.6]	1/8 [3.2]
Tolerance	1/64 [0.40]	1/64 [0.40]	1/64 [0.40]	1/64 [0.40]
Approximate flash thickness	1/16 [1.6]	3/64 [1.2]	3/64 [1.2]	5/64 [2.0]

 $^{^{\}it A}$ If tolerances all plus or all minus are desired, double the values given.

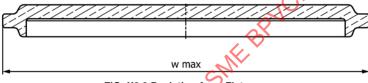
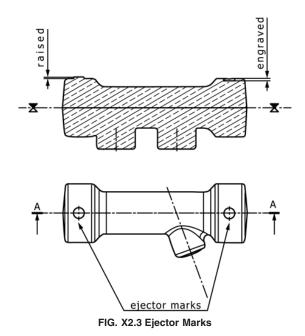


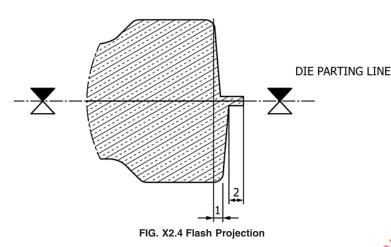
FIG. X2.2 Deviation from Flatness

X2.3.2 The flatness shall be determined with respect to the largest nominal dimension (w max in Fig. X2.2), in the forging direction, and applied independent of the tolerances for form or position.

X2.4 Ejector Marks


X2.4.1 Ejectors may be necessary in the forging process to eject the forging from the die cavity. Ejector marks may be raised or indented. When an ejector mark is either fully raised or fully indented, the full range of the tolerance applies. For example, if the tolerance is \$\times 0.0118\$ in. [0.3 mm], the ejector mark may be raised up or indented to 0.0236 in. [0.6 mm]. (See Fig. X2.3.)

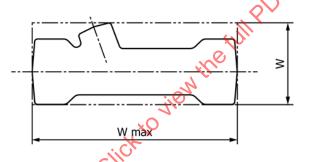
X2.5 Flash Projection


X2.5.1 The flash projection (2 in Fig. X2.4) is determined from the targest nominal dimension, (w max in Fig. X2.1), perpendicular to the forging direction.

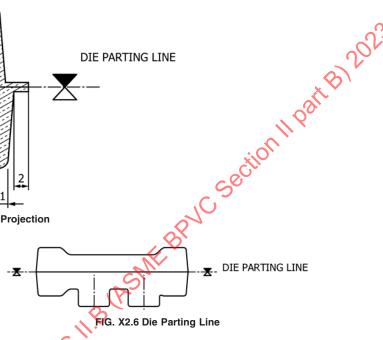
X2.5.2 The flash on the die parting line shall be removed by trimming. (See Fig. X2.4.)

X2.5.3 Other flashes generated from operations such as punching, piercing, or left by die-inserts, are permissible if removed during machining, or not detrimental to the finished part. Permissible flash should be indicated on the product drawing, but should not exceed 0.059 in. [1.5 mm].

X2.5.4 Flash projection applies independently from dimensional tolerances.



X2.6 Area


- X2.6.1 The area A shall be determined as follows:
- X2.6.1.1 For round parts, the area shall be equal to the area of the circumscribed circle.
- X2.6.1.2 For irregular shapes, the area shall be calculated by the area of the circumscribed rectangle (A = Wmax × W). (See Fig. X2.5.)

X2.7 Die Parting Line

- X2.7.1 The parting line is the line identifying the matching flats of the two half dies.
- X2.7.2 The flatness shall be determined in regards to the largest nominal dimension (w max), in the forging direction, and applied independently from all tolerances of formor position.

AREA A = Wmax × W
FIG. X2.5 Area

X2.73) The mismatch shall be determined in regards to the largest nominal dimension (w max), in the forging direction, not associated to a particular direction. (See Fig. X2.6.)

X2.8 Angular Tolerances

X2.8.1 Table X2.2 and Fig. X2.7 provide guidelines for angular tolerance.

X2.9 Polygonal Shapes Tolerances

X2.9.1 Refer to Table X2.3 for guidelines for polygonal shapes tolerances.

TABLE X2.2 Angular Tolerances

Nominal Dimension, \	N₁ (length) of Shorter Leg	Ref. Fig. X2.7
Over	Up to Including	Angular
in. [mm]	in. [mm]	Tolerance α°
	0.787 [20]	±2°
0.787 [20]	1.575 [40]	±1°
1.575 [40]	2.362 [60]	±1°
2.362 [60]	3.937 [100]	±0° 30'
3.937 [100]	7.874 [200]	±0° 30'
7.874 [200]	11.811 [300]	±0° 25'
	Over in. [mm] 0.787 [20] 1.575 [40] 2.362 [60] 3.937 [100]	in. [mm] in. [mm] 0.787 [20] 0.787 [20] 1.575 [40] 1.575 [40] 2.362 [60] 2.362 [60] 3.937 [100] 3.937 [100] 7.874 [200]

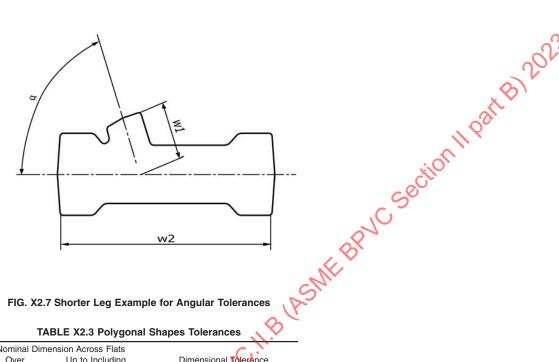


FIG. X2.7 Shorter Leg Example for Angular Tolerances

TABLE X2.3 Polygonal Shapes Tolerances

Nominal Dime	nsion Across Flats					
Over	Up to Including	Dimensional Tolerance				
in. [mm]	in. [mm]		in [m	m]		
	0.394 [10]	+	0	+	[0]	
•••	0.394 [10]	-	0.008	-	[0.2]	
0.394 [10]	0.984 [25]	+	(0	+	[0]	
0.554 [10]	0.304 [23]		0.012	-	[0.3]	
0.984 [25]	1.969 [50]	(A)	0	+	[0]	
0.504 [25]	1.505 [50]	0	0.016	-	[0.4]	
1.969 [50]	3.150 [80]	<u>ډ</u> ۲ +	0	+	[0]	
1.000 [00]	0.100 [00]	O_{\prime}	0.020	-	[0.5]	
3.150 [80]	3.937 [100]	+	0	+	[0]	
0.100 [00]	0.007 [100]	-	0.024	-	[0.6]	
3.937 [100]	4.724 [120]	+	0	+	[0]	
	217120]	-	0.028	-	[0.7]	

X3. TYPICAL MECHANICAL PROPERTIES

X3.1 Mechanical properties of any forging are influenced by shape and size. Unless otherwise specified in the purchase order or specifically guaranteed by the manufacturer, acceptance of forgings under this specification shall not depend on ASMENORMIOC. COM. the mechanical properties determined by tension or hardness

tests. (Frequently, the design of forgings will not permit adequate test sections.) Therefore, the data in Table X3.1 do not constitute a part of this specification, and are given for general information only. They are typical of forgings up to 2 lb [0.9 kg] in weight.

TABLE X3.1 Typical Mechanical Properties of Forgings as Hot Pressed, Temper M10, M11, or $\mathsf{TQ50}^A$

Copper or Copper Alloy		0.50	0.505 in. [128 mm] Diameter Test Section				
UNS No. or EN 1412 No.	Tens	sile Strength	(0.5 %	Yield Strength Extension Under Load)	Elongation in — 4 × Diameter, %	F Scale	B Scale
	ksi	[MPa] ^B	ksi	[MPa] ^B	4 × Diameter, 76		
C11000	33	[230]	11	[75]	40	37	20
C14500	34	[235]	12	[85]	35	40	, Q
C14700	34	[235]	12	[85]	35	40	
C27450	56	[386]	26	[180]	46		46
C27451	56	[386]	26	[180]	46		46
C27453	52	[360]	35	[240]	30		110
C28500	66	[455]	28	[190]	25		72
C35330	58	[400]	23	[160]	40	C	45
C36300	56	[386]	26	[180]	46		46
C36500	58	[400]	23	[160]	40	ر (. <u>)</u> .	45
C37000	58	[400]	23	[160]	40		45
C37700	58	[400]	23	[160]	40		45
C46400	64	[440]	26	[180]	40		55
C46500	63	[435]	30	[207]	40/		58
C46750	59.5	[410]	29.0	[200]	20		55
C48200	64	[440]	26	[180]	40		55
C48500	62	[425]	24	[165]	4 0		55
C48600	62	[425]	24	[165]	40		55
C48640	58	[400]	29	[200]	30		55
C48645	58	[400]	29	[200]	30		55
C49250	62	[425]	24	[165]	40		55
C49260	62	[425]	24	[165]	40		55
C49265	62	[425]	24	[165]	40		55
C49300	62	[425]	24	[165]	40		55
C49340	60	[415]	22	[150]	35		50
C49345	60	[415]	22	[150]	35		50
C49350	60	[415]	22	[150]	35		50
C49355	64	[443]	36	[250]	17		84
C61900	82	[565]	37	[255]	32		82
C62300	82	[565]	37	[255]	32		82
C63000	95	[655]	48	[330]	15		90
C63200	92	[635]	45	[150] [250] [255] [255] [255] [330] [310] [285] [285] [125]	18		88
C64200	83	[570]	41	[285]	35		77
C64210	83	[570]	41 18 36 34	[285]	35		77
C65500	52	[360]	18	[125]	70		62
C65680	61	[420]	36	[250]	10		63
C67500	72	[495]	34	[235]	33		69
C67600	72	[495]	34	[235]	33		69
C69300	80	[550]	41	[285]	28		78
C69410	55	[380]	20	[138]	40		75
C69850	65	[448]	30	[207]	22		55
C71520	55	[380]	20	[138]	45		35
C77400	83	[570]	36	[250]	25		73
C87700	55	[380]	20	[138]	40		75
C87710	57 50	[393]	26	[180]	19		72 45
CW612N	58	[400]	23	[160]	40		45
CW617N	58	[400]	23	[160]	40		45

^A For Copper Alloy UNS Nos. C63000 and C63200. ^B See Appendix X5. ASMENORMIDOC. COM. C

X4. GUIDELINES FOR FORGINGS DESIGN AND DEVELOPMENT

INTRODUCTION

The following guidelines are provided for the design and development of forgings, including die design.

X4.1 Draft Angles

X4.1.1 To allow an easy ejection of forgings (areas lying in the forging direction) from the die, draft angles are necessary. It is suggested to use as a best practice the following draft angles. See also Fig. X4.1.

according to particular needs or cases.

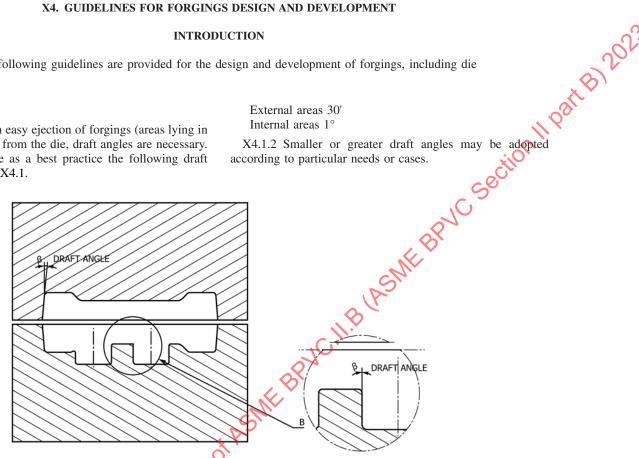


FIG. X4.1 Draft Angles in Example Forging Die

METRIC EQUIVALENTS

X5.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one The description of the descripti kilogram gives it an acceleration of one metre per second squared (N = $kg \cdot m/s^2$). The derived SI unit for pressure or stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

SPECIFICATION FOR ALUMINUM-ALLOY 6061-T6 STANDARD STRUCTURAL PROFILES

(23)

SB-308/SB-308M (Identical with ASTM Specification B308/B308M-20 except that certification and a test report have been made mandatory.) ASMENORANDOC. COM. Click to view the full PD

Specification for Aluminum-Alloy 6061-T6 Standard Structural Profiles

1. Scope

- 1.1 This specification covers extruded 6061-T6 aluminumalloy standard structural profiles.
- 1.2 The profiles are limited to I-beams, H-beams, channels, angles, tees, and zees.

Note 1—For other extruded profiles in other alloys and tempers refer to Specification B221.

- 1.3 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designation is that in Table 1 preceded by A9, or A96061 for alloy 6061 in accordance with Practice E527.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
 - B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
 - B557M Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)
 - B647 Test Method for Indentation Hardness of Aluminum Alloys by Means of a Webster Hardness Gage
 - B648 Test Method for Indentation Hardness of Aluminum Alloys by Means of a Barcol Impressor
 - B660 Practices for Packaging/Packing of Aluminum and Magnesium Products
 - B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products
- B807/B807M Practice for Extrusion Press Solution Heat
 Treatment for Aluminum Alloys
 - B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
 - B918 Practice for Heat Treatment of Wrought Aluminum
 - B985 Practice for Sampling Aluminum Ingots, Billets, Castings and Finished or Semi-Finished Wrought Aluminum Products for Compositional Analysis
 - D3951 Practice for Commercial Packaging
 - E18 Test Methods for Rockwell Hardness of Metallic Materials
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)
- E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spark Atomic Emission Spectrometry
- E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry
- E3061 Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based Method)
- 2.3 ANSI Standards:
- H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum
- H35.2 Dimensional Tolerances for Aluminum Mill Products
- H35.2(M) Dimensional Tolerances for Aluminum Mill Products (Metric)
- 2.4 Federal Standard:
- Fed. Std. No. 123 Marking for Shipment (Civil Agencies) 2.5 *AMS Specifications:*
- AMS 2772 Heat Treatment of Aluminum Alloy/Raw Materials
- 2.6 Military Specifications:
- MIL-STD-129 Marking for Shipment and Storage
- 2.7 CEN EN Standards:
- EN 14242 Aluminum and aluminum alloys, Chemical analysis inductively coupled plasma optical emission spectral analysis.

3. Terminology

- 3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *inspection lot*—an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot of lots, subjected to inspection at one time (see 14.1).
- 3.2.2 *heat-treat lot*—an identifiable quantity of material heat-treated in the same furnace at the same time (see 10.2.1 and 10.2.2).

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

- Note 2—For inch-pound orders specify B308; for metric orders specify B308M. Do not mix units.
 - 4.1.2 Quantity in pieces or pounds [kilograms],
 - 4.1.3 Alloy (Section 8),
 - 4.1.4 Temper (10.1 and Table 2),
- 4.1.5 Type of section (1.2), dimensions (including a drawing if necessary), and length,
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether solution heat treatment at the extrusion press is unacceptable (9.2),
- 4.2.2 Whether heat treatment in accordance with Practice B918 is required (9.3),
- 4.2.3 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 13),
 - 4.2.4 DELETED
- 4.2.5 Whether marking for identification is required (16.1), and
- 4.2.6 Whether Practices B660 applies and, if so, the applicable levels of preservation, packaging, and packing required (17.3). Table 2

5. Materials and Manufacture

5.1 The products covered by this specification shall be produced by hot extruding only.

TABLE 1 Chemical Composition Limits^{A,B,C,F}

Alloy 6061 Composition, % Silicon 0.40–0.8 Iron 0.7 Copper 0.15–0.40 Manganese 0.15 Magnesium 0.8–1.2 Chromium 0.04–0.35 Zinc 0.25 Titanium 0.15 Other elements ^D each 0.05 Total ^E 0.15				
Alloy 6061	Composition, %			
Silicon	0.40-0.8			
Iron	0.7			
Copper	0.15-0.40			
Manganese	0.15			
Magnesium	0.8-1.2			
Chromium	0.04-0.35			
Zinc	0.25			
Titanium	0.15			
Other elements ^D each	0.05			
Total ^{<i>E</i>}	0.15			
Aluminum	rem			

- ^A Where single units are shown, these indicate the maximum amounts permitted.
- $^{\mathcal{B}}$ Analysis shall be made for the elements for which limits are shown in this table. $^{\mathcal{C}}$ For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in
- accordance with the rounding-off method of Practice E29.
 ^D Others includes all unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.
- E Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.
- F In case there is a discrepancy in the values listed in Table 1 with those listed in the "International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys" (known as the "Teal Sheets"), the composition limits registered with the Aluminum Association and published in the "Teal Sheets" shall be considered the controlling composition. The "Teal Sheets" are available at http://www.aluminum.org/tealsheets.

TABLE 2 Tensile Property Limits^{A,B}

6061-T6	
Tensile strength, min, ksi [MPa]	38.0 [260]
Yield strength, min, ksi [MPa]	35.0 [240]
Elongation, C min, %	
in 2 in. [50 mm]	10 [10] ^D
in 4D [5D or 5.65 \sqrt{A}]	10 [9]

 $^{\it A}$ For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi [1 MPa], and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

^B The basis for mechanical property limits is given in Annex A1.

^C Elongations in 2 in. [50 mm] apply for profiles tested in full section and for sheet-type specimens machined from material up through 0.500 in. [12.5 mm] in thickness having parallel surfaces. Elongations in 4D [5D or 5.65 \sqrt{A}], where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round test specimens machined from thicknesses over 0.250 in. [6.30 mm].

 D For thicknesses less than 0.250 in. [up through 6.30 mm] the minimum elongation is 8 %.

6. Quality Assurance

6.1 Responsibility for Inspection and Tests-Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.

7. General Quality

- 7.1 Unless otherwise specified, the structural profiles shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between the producer and purchase(?)
- 7.2 Each profile shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer or the supplier may use a system of statistical quality control for such examination.

8. Chemical Composition

- 8.1 Limits—The material shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by taking samples in accordance with E716 when the ingots are poured, and analyzing those samples in accordance with E607, E1251, E3061, or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.
- 8.2 If it becomes necessary to analyze an extrusion for conformance to chemical composition limits, the methods of sampling and methods of analysis shall be as provided in the following:

- 8.2.1 Methods of Sampling—Samples for chemical analysis shall be taken in accordance with Practice B985.
- 8.2.2 Methods of Analysis—Analysis shall be performed in accordance with Test Methods E607, E1251, E3061, or EN 14242.
- 8.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

Note 3—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

9. Heat Treatment

- 9.1 Except as noted in 9.2, or otherwise specified in 9.3, producer or supplier heat treatment shall be in accordance with AMS 2772.
- 9.2 Unless otherwise specified material may be solution heat-treated and quenched at the extrusion press in accordance with Practice B807/B807M.
- 9.3 When specified, heat treatment shall be in accordance with Practice B918.

10. Tensile Properties

- 10.1 Linits—The structural profiles shall conform to the tensile requirements specified in Table 2.
- 10.11 The elongation requirements shall not be applicable to the following:
- 10.1.1.1 Material of such dimensions that a standard test specimen cannot be taken in accordance with Test Methods B557 or B557M and of such profile that it cannot be satisfactorily tested in full section.
- 10.1.1.2 Material less than 0.062 in. [up through 1.60 mm] in thickness.
 - 10.2 Number of Specimens:
- 10.2.1 For material having a nominal weight of less than 1 lb/linear ft [up through 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 lb [500 kg] or fraction thereof in the heat-treat lot.
- 10.2.2 For material having a nominal weight of 1 lb or more/linear ft [over 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 ft [300 m] or fraction thereof in the heat-treat lot.
- 10.2.3 Other procedures for selecting samples may be employed if agreed upon by the producer and the purchaser.
 - 10.3 Test Specimens:
- 10.3.1 Tension Specimens—Tension test specimens shall conform to Test Methods B557 or B557M.
 - 10.4 Test Method:
- 10.4.1 Tension Tests—The tension test shall be made in accordance with Test Methods B557 or B557M.

11. Quality Assurance Screening of Extrusion Press **Heat-Treated Shapes**

11.1 For 6061-T6 shapes that are manufactured by quenching at the extrusion press, the requirements of this section shall apply in addition to all other applicable requirements of this specification. Hardness tests shall be performed either on each extruded charge or on a sample selected in accordance with a sampling plan as specified on purchase orders. The minimum hardness control value shall be in accordance with Table 3 for the type of hardness tester used. The specific type of hardness tester used shall be the producer's choice. The test shall be conducted in accordance with the applicable hardness test standard, namely Test Method B647 for Webster hardness, Test Method B648 for Barcol hardness, or Test Methods E18 for Rockwell E hardness.

11.2 Individual extruded charges that fail to conform to the requirements of Table 3 may be accepted provided the two pieces in the lot having the two lowest hardness readings are tension-tested and found to conform to the requirements of Table 2.

12. Dimensional Tolerances

12.1 Unless otherwise specified, structural profiles ordered to this specification shall meet the requirements of ANSI H35.2/H35.2(M).

13. Source Inspection

- 13.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 13.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

TABLE 3 Hardness Screening Values^{A,B,C}

Th	Hardness Number, min							
in.	mm	Webster	Barcol	Rockwell E				
0.050 through 0.075	over 1.20 through 2.00	15	76	89				
0.076 through 0.499	over 2.00 through 12.50	15	76	90				
0.500 and over	over 12.50		76					

A See Section 11.

14. Rejection and Retest

- 14.1 If any material fails to conform to all of the applicable requirements of this specification, it shall be cause for rejection of the inspection lot.
- 14.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, retesting may be performed in accordance with Section 9 of Test Methods B557 and B557M.
- 14.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 14.4 If material is rejected by the purchaser the producer or supplier is responsible only for replacement of the material to the purchaser. As much as possible of the rejected material shall be returned to the producer of supplier.

15. Certification

15.1 The producer or supplier shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements. A report of the test results shall be furnished.

16. Identification Marking of Product

16.1 When marking for identification is required (see 4.2.5), all material shall be marked in accordance with Practice B666/B666M.

17 Packaging and Package Marking

- 17.1 The material shall be packaged to provide adequate protection during normal handling and transportation, and each package shall contain only one size, alloy, and temper of material unless otherwise agreed upon. The type of packaging and gross weight of containers shall, unless otherwise agreed upon, be at the producer's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 17.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 17.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 and Practice D3951 for civil agencies and MIL-STD-129 for military agencies.

18. Keywords

18.1 aluminum alloy; standard structural profiles

^B Alternate minimum hardness values and hardness testing devices may be used provided that agreement is reached between the purchaser and the supplier or producer.

^C The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accord with Section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)".
- A1.1.1 Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least 5 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy

Products". All tests are performed in accordance with the appropriate ASTM test methods.

A1.1.2 Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products". Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least 3 cast lots of standard production material with no more than 10 observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/ Orefinement and for which minimum and maximum limits are H35.1(M). The Aluminum Association⁵ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- 12.2.4 The composition is, in the judgment of the responthe subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- 22.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, etc.
(except that combined Si + Fe limits for 99.00 % minimum	
aluminum must be expressed as 0 XX or 1 XX)	

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between Titanium and Other Elements, Each or are specified in footnotes.
- Note A2.2—Aluminum is specified as minimum for unalloyed aluminum and as a remainder for aluminum alloys.

SB-315 GV. SB-315 GV. SB-315 GV. (Identical with ASTM Specification 8315-19 except that certification and test reports have been made mandatory, and section 9 has been revised to make nondestructive testing required for all tubes.)

Specification for Seamless Copper Alloy Pipe and Tube

1. Scope

- 1.1 This specification establishes the requirements for seamless, copper alloy pipe and tube in nominal pipe sizes, both regular and extra strong, and seamless tube in straight lengths for general engineering purposes. Pipe and tube are produced in the copper alloy UNS Numbers: C61300, C61400, C63020, C65100, and C65500.
- 1.2 *Units*—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following safety caveat pertains only to the test method(s) described in this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B36/B36M Specification for Brass Plate, Sheet, Strip, And Rolled Bar

B96/B96M Specification for Copper Silicon Alloy Plate,

- Sheet, Strip, and Rolled Bar for General Purposes and Pressure Vessels
- B121/B121M Specification for Leaded Brass Plate, Sheet, Strip, and Rolled Bar
- B122/B122M Specification for Copper-Nickel-Tin Alloy, Copper-Nickel-Zinc Alloy (Nickel Silver), and Copper-Nickel Alloy Plate, Sheet, Strip, and Rolled Bar
- B152/B152M Specification for Copper Sheet, Strip, Plate, and Rolled Bar
- B169/B169M Specification for Aluminum Bronze Sheet, Strip, and Rolled Bar
- B194 Specification for Copper-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar
- B422/B422M Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip
- B465 Specification for Copper-Iron Alloy Plate, Sheet, Strip, and Rolled Bar
- B534 Specification for Copper-Cobalt-Beryllium Alloy and Copper-Nickel-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar
- B591 Specification for Copper-Zinc-Tin and Copper-Zinc-Tin-Iron-Nickel Alloys Plate, Sheet, Strip, and Rolled Bar
- B592 Specification for Copper-Zinc-Aluminum-Cobalt Alloy, Copper-Zinc-Tin-Iron Alloy Plate, Sheet, Strip, and Rolled Bar
- B740 Specification for Copper-Nickel-Tin Spinodal Alloy Strip
- B747 Specification for Copper-Zirconium Alloy Sheet and Strip
- B768 Specification for Copper-Cobalt-Beryllium Alloy and Copper-Nickel-Beryllium Alloy Strip and Sheet
- B846 Terminology for Copper and Copper Alloys
- B888/B888M Specification for Copper Alloy Strip for Use in Manufacture of Electrical Connectors or Spring Contacts
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials

- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 ASME Standard:

ASME Boiler and Pressure Vessel Code

3. Terminology

- 3.1 For definitions of terms related to copper and copper alloys refer to Terminology B846.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 specially cleaned—sufficiently free of oxides as to exhibit the golden color associated with the alloy.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification, as applicable:
- 4.1.1 ASTM Designation and year of issue (for example B315 - XX),
 - 4.1.2 Copper [Alloy] UNS No. (Section 6, Table 1),
- 4.1.2.1 Whether the product of copper alloy C61300 is to be subsequently welded (see Table 1 and Footnote A),
 - 4.1.3 Temper (Section 7),
 - 4.1.4 Dimensions, Diameter, and Wall Thickness:
 - 4.1.4.1 Pipe size, regular (Table 3);
 - 4.1.4.2 Pipe size, extra-strong (Table 3);
 - 4.1.4.3 Tube diameter (Table 9);
 - 4.1.4.4 Tube wall thickness (Table 6, Table 7 or Table 8);
 - 4.1.4.5 Length (Table 10 or Table 11);

- 4.1.4.6 When copper alloy UNS No. C63020 is ordered under this specification, tube diameter, wall thickness, length, sizes, and tolerances shall be a part of the purchase order as agreed upon between the supplier and the purchaser.
 - 4.1.5 Quantity or total length of each size,
 - 4.1.6 Finish (11.2 and 11.3),
- 4.1.6.1 When product is to be subjected to welding or brazing, the purchase order or contract shall specify product to be "specially cleaned," and
 - 4.1.7 Intended application.
- 4.2 The following options are available but may not be included unless specified at the time of order placement when required:
 - 4.2.1 Heat identification or traceability details (5.1.2),
 - 4.2.2 DELETED
 - 4.2.3 DELETED
 - 4.2.4 DELETED
- 4.2.5 If the product specification number must be marked on the shipping unit (21.2)

5. Materials and Manufacture

- 5.1 Materials:
- 5.1.1 The material of manufacture shall be a cast billet, bar, tube, or so forth of Copper Alloy UNS No. C61300, C61400, C63020, C65100, or C65500 and of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 5.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.

Note 1—Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of finished material.

- 5.2 Manufacture:
- 5.2.1 The product shall be manufactured by hot working, cold working, and annealing processes as to produce a uniform wrought structure in the finished product.
- 5.2.2 The product shall be finished by such cold worked to the finished size, and subsequently annealed or heat treatment, when required, to meet the temper properties specified.

TABLE 1 Chemical Requirements

4.1.4.4 Tube wall thickne 4.1.4.5 Length (Table 10	or Table 11);		cold working, and a wrought structure i 5.2.2 The produ the finished size, as when required, to i	annealing processes in the finished prod ct shall be finished and subsequently and	by such cold worked to nealed or heat treatment,				
		TABLE 1 Chemic	al Requirements						
Copper Alloy -	C61300 ^A	C61400	C63020 ^B	C65100	C65500				
UNS No.		Composition, % Max (Unless Shown as a Range or Minimum)							
Copper	remainder	remainder	74.5 min	remainder	remainder				
Lead	0.01	0.01	0.03	0.05	0.05				
Iron) *	2.0-3.0	1.5-3.5	4.0-5.5	0.8	0.8				
Zinc	0.10	0.20	0.30	1.5	1.5				
Aluminum	6.0-7.5	6.0-8.0	10.0-11.0						
Manganese	0.20	1.0	1.5	0.7	0.50-1.3				
Silicon	0.10			0.8-2.0	2.8–3.8				
Tin	0.20-0.50		0.25						
Nickel (including cobalt)	0.15		4.2-6.0		0.6				
Phosphorus	0.015	0.015							

A When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zinc 0.05 % max,

and zirconium 0.05 % max. $^{\it B}$ Chromium shall be 0.05 max and cobalt 0.20 max.

- 5.2.3 Copper alloy UNS No. C63020 tube shall be quench hardened and tempered (TQ30) as follows:
- 5.2.3.1 Heat to 1550 to 1650 °F (843 to 899 °C) for 2 h minimum and quench in water. Then, temper at 900 to 1000 °F (482 to 538 °C) for 2 h minimum and air cool to room temperature.

6. Chemical Composition

- 6.1 The material shall conform to the chemical composition requirements in Table 1 for the Copper [Alloy] UNS No. Designation specified in the ordering information.
- 6.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified in Table 1.
- 6.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 6.2.1 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100%.
- 6.2.1.1 When all the elements listed for an alloy in Table 1 are determined, the sum of the determined elements for the alloy shall be as shown in the following table:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C61300	99.8
C61400	99.5
C63020	99.5
C65100	99.5
C65500	99.5

7. Temper

- 7.1 The standard tempers for products described in this specification are listed as follows and in Table 2:
- 7.1.1 Alloys C61300 and C61400 are supplied in tempers M30 (hot-extruded) and O61 (annealed).
- 7.1.2 Alloy C63020 is supplied in temper TQ30 (quench hardened and tempered).
- 7.1.3 Alloy C65100 is supplied in tempers O30 (extruded and annealed), O61 (annealed), and H50 (extruded and cold worked).
- 7.1.4 Alloy C65500 is supplied in tempers O30 (extruded and annealed) and O61 (annealed).

8. Mechanical Property Requirements

- 8.1 Tensile Strength Requirements:
- 8.1.1 Product furnished under this specification shall conform to the tensile, yield, and elongation requirements prescribed in Table 2, when tested in accordance with Test Methods E8/E8M.
- 8.1.1.1 Acceptance or rejection based on mechanical properties shall depend only upon tensile, yield, or elongation test results.
 - 8.2 Rockwell Hardness Requirement:
- 8.2.1 Product furnished from Alloy C63020 in TQ30 temper should have a minimum hardness of 26 on the Rockwell C scale when tested in accordance with Test Methods E18.
- 8.2.1.1 The approximate Rockwell hardness values given are for general information and assistance in testing and shall not be used as a basis for product rejection. The test is optional.

NOTE 2—The Rockwell hardness test offers a quick and convenient method of checking for general conformity to the specification requirements for temper, tensile strength and grain size.

9. Nondestructive Test

- 9.1 Nondestructive Testing:
- 9.1.1 The tubes shall be tested in the drawn tempers or as drawn before the final annealed temper unless otherwise agreed upon between the manufacturer and the purchaser.
- 9.1.11 Each pipe or tube shall be subjected to either the hydrostatic test, pneumatic test, or the eddy current test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order. Section 12, Sampling, does not apply.
 - 9.1.2 Electromagnetic (Eddy-Current Test):
- 9.1.2.1 Each tube up to and including $3\frac{1}{8}$ in. (79 mm) in outside diameter shall be subjected to test.
- 9.1.2.2 When tested in accordance with Practice E243, tubes which do not actuate the signaling device of the testing unit shall be considered as conforming to the requirements of the test.
- 9.1.2.3 Artificial Defects—Round bottom-notch standards with a profile as defined in Practice E243, rounded to the nearest 0.001 in. (0.025 mm) shall be 10 % of the specified wall thickness. Notch-depth tolerances shall be ± 0.0005 in. (0.013 mm). Alternatively, when a manufacturer uses speedinsensitive equipment that can select a maximum unbalance signal, a maximum unbalance signal of 0.3 % shall be used.
- 9.1.3 *Pressure Tests*—Each pipe or tube shall withstand the pressure test of either 9.1.3.1 or 9.1.3.2.

TABLE 2 Tensile Requirements

Copper Alloy UNS No.	C61300 and C61400	C63020	C6	55100	C65500
Temper Designation	M30 (Extruded) or O61 (Annealed	TQ30 (Quench-Hardened and Tempered)	O30 (Extruded and Annealed) or O61 (Annealed)	H50 (Extruded and Cold- Worked)	O30 (Extruded and Annealed) and O61 (Annealed)
Tensile Strength, min, ksi ^A (MPa) ^B	65 (450)	130 (895)	40 (275)	50 (345)	50 (345)
Yield Strength at 0.5 % extension under load, ksi ^A (MPa) ^B	28 (195) min	89 (615) ^C	10 (70) min	40 (275) min	15 to 29 (105 to 200)
Elongation in 2 in. or 50 mm, min %	30	6	35	7	35

^A ksi = 1000 psi.

^B See Appendix.

^C Yield strength at 0.2 % offset, min, ksi^A (MPa).^B

9.1.3.1 Hydrostatic Pressure Test—Each pipe or tube shall withstand an internal hydrostatic pressure sufficient to produce a fiber stress of 7000 psi (48 MPa) without leakage. The tube need not be subjected to a pressure gauge reading over 1000 psi (6.9 MPa) unless specifically stipulated in the contract or purchase order. At the option of the manufacturer, annealed pipe with wall thickness up to 0.083 in. (2.11 mm), inclusive, may be tested in the drawn condition, before annealing. Fiber stress shall be determined by the following equation for thin, hollow cylinders under tension:

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psi (MPa);

t = thickness of pipe or tube wall, in. (mm);

D = outside diameter of the pipe or tube, in. (mm); and

S = allowable fiber stress of the material, psi (MPa).

9.1.3.2 *Pneumatic Pressure Test*— Each pipe or tube shall withstand an internal air pressure of 60 psi (400 kPa), minimum for 5 s without leakage.

10. Dimensions, Mass, and Permissible Variations

10.1 General:

10.1.1 The standard method of specifying wall thickness shall be in decimal fractions of an inch.

10.1.2 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

10.1.3 Tolerances on a given tube may be specified with respect to any two, but not all three, of the following: outside diameter, inside diameter, wall thickness.

NOTE 3—Spaces that contain an ellipsis (...) in the tolerance tables indicate either that the product is not generally available or that no tolerances have been established.

10.2 *Dimensions*—Dimensions and theoretical weights of nominal pipe sizes shall be in accordance with Table 3.

10.3 Wall Thickness tolerances—Wall thickness tolerances for pipe shall be in accordance with Tables 4 and 5. Wall thickness tolerances for tube shall be in accordance with Tables 6-8.

TABLE 3 Dimensions and Weights of Copper Alloy Pipe, Standard Pipe Sizes

Nominal	or	Dimension,	in. (mm)		M			Theo	retical Weig	ht, lb/ft (l	kg/m)	
Standar	d				Cross-Sect			C	Copper Alloy	UNS No).	
Pipe Size in.	e, Outsid Diamet			all ness (of Bore, in	n. ² (cm ²)	C6130	00 and 400	C65	500	C65	5100
				/, U i	Regular							
1/8	0.405 (1	10.3) 0.269	(6.83) 0.068			(0.367)	0.246	(0.366)	0.266	(0.395)	0.273	(0.406)
1/4	0.540 (1	13.7) 0.364	(9.25) 0.088	(2.24)	0.104	(0.670)	0.427	(0.634)	0.462	(0.686	0.474	(0.704)
3/8	0.675 (1	17.1) 0.493	(12.5) 0.091	(2.31)	0.191	(1.23)	0.571	(0.849)	0.617	(0.917)	0.633	(0.941)
1/2	0.840 (2	21.3) 0.622	(15.8) 0.109	(2.77)	0.304	(1.96)	0.856	(1.27)	0.925	(1.37)	0.949	(1.41)
3/4	1.050 (2	26.7) 0.824	(20.9) 0.113	(2.87)	0.533	(3.44)	1.14	(1.69)	1.23	(1.83)	1.26	(1.88)
1	1.315 (3	33.4) 1.049	(26.6) 0.133	(3.38)	0.864	(3.57)	1.69	(2.51)	1.83	(2.72)	1.87	(2.79)
11/4	1.660 (4	12.2) 1.380	(35.1) 0.140	(3.56)	1.496	(9.66)	2.29	(3.40)	2.47	(3.68)	2.53	(3.77)
11/2	1.900 (4	18.3) 1.610	(40.9) 0.145	(3.68)	2.036	(13.1)	2.74	(4.07)	2.95	(4.40)	3.03	(4.51)
2	2.375 (6	60.3) 2.06 7 \	(52.5) 0.154	(3.91)	3.356	(21.7)	3.67	(5.45)	3.97	(5.91)	4.07	(6.06)
21/2	2.875 (7	73.0) 2.469	(62.7) 0.203	(5.16)	4.788	(30.9)	5.83	(8.66)	6.30	(9.37)	6.46	(9.61)
3	3.500 (8	3.068	(77.9) 0.216	(5.49)	7.393	(47.7)	7.62	(11.3)	8.24	(12.3)	8.45	(12.6)
31/2	4.000 (1	102)† 3.548	(90.1) 0.226	(5.74)	9.887	(63.8)	9.16	(13.6)	9.90	(14.7)	10.2	(15.1)
4	4.500 (1	114) 😠 4.026	(102) 0.237	(6.02)	12.730	(82.1)	10.9	(16.2)	11.7	(17.5)	12.0	(17.9)
5	5.562 (1	5.046	(128) 0.258	(6.55)	19.998	(129)	14.7	(21.8)	15.9	(23.6)	16.3	(24.3)
6	6.625 (1	6.065	(154) 0.280	(7.11)	28.890	(186)	19.1	(28.4)	20.6	(30.7)	21.2	(31.5)
8	8.625 (2	7.981	(203) 0.322	(8.18)	50.030	(323)	28.7	(42.7)	31.0	(46.2)	31.9	(47.4)
10	10.750 (2	273) 10.020	(255) 0.365	(9.27)	78.8	(508)	40.8	(90.1)	44.1	(65.6)	45.2	(67.3)
12	12.750 (3		(305) 0.375	(9.52)	113.0	(729)	49.9	(74.1)	53.9	(80.2)	55.3	(82.3)
	- N -	,	,	Ext	tra Strong			` ′		` ′		, ,
1/8	0.405 (1	10.3) 0.215	(5.46) 0.095	(2.41)	0.036	(0.232)	0.316	(0.470)	0.342	(0.508)	0.351	(0.522)
1/4	0.540 (1	13.7) 0.302	(7.67) 0.119	(3.02)	0.072	(0.464)	0.538	(0.799)	0.582	(0.865)	0.597	(0.887)
3/8	0.675 (1	17.1) 0.423	(10.7) 0.126	(3.20)	0.141	(0.909)	0.743	(1.10)	0.803	(1.19)	0.824	(1.22)
1/2	• 0.840 (2	21.3) 0.546	(13.9) 0.147	(3.73)	0.234	(1.51)	1.10	(1.63)	1.183	(1.76)	1.214	(1.80)
~ 4	1.050 (2	26.7) 0.742	(18.8) 0.154	(3.91)	0.432	(2.79)	1.48	(2.20)	1.60	(2.39)	1.65	(2.45)
	1.315 (3	33.4) 0.957	(24.3) 0.179	(4.55)	0.719	(4.64)	2.19	(3.25)	2.36	(3.52)	2.42	(3.61)
11/4	1.660 (4	12.2) 1.278	(32.5) 0.191	(4.85)	1.283	(8.28)	3.01	(4.47)	3.26	(4.85)	3.34	(4.97)
11/2	1.900 (4	18.3) 1.500	(38.1) 0.200	(5.08)	1.767	(11.4)	3.65	(5.42)	3.95	(5.88)	4.05	(6.03)
2	2.375 (6	60.3) 1.939	(49.3) 0.218	(5.54)	2.953	(19.1)	5.05	(7.50)	5.46	(8.12)	5.60	(8.34)
21/2	2.875 (7	73.0) 2.323	(59.0) 0.276	(7.01)	4.238	(27.3)	7.71	(11.4)	8.33	(12.4)	8.55	(12.7)
3	3.500 (8	38.9) 2.900	(73.7) 0.300	(7.62)	6.605	(42.6)	10.3	(15.3)	11.1	(16.6)	11.4	(17.0)
31/2	4.000 (1	102) 3.364	(85.5) 0.318	(8.08)	8.888	(57.3)	12.6	(18.7)	13.6	(20.2)	13.9	(20.8)
4	4.500 (1	114) 3.826	(97.2) 0.337	(8.56)	11.497	(74.)	15.1	(22.4)	16.3	(24.2)	16.7	(24.9)
5	5.562 (1	141) 4.812	(122) 0.375	(9.53)	18.186	(117)	20.9	(31.1)	22.6	(33.6)	23.2	(34.5)
6	6.625 (1	168) 5.761	(146) 0.432	(10.9)	26.067	(168)	28.7	(42.6)	31.1	(46.2)	31.9	(47.4)
8	8.625 (2	219) 7.625	(194) 0.500	(12.7)	45.664	(295)	43.6	(64.8)	47.2	(70.2)	48.4	(72.0)
10	10.750 (2	273) 9.750	(248) 0.500	(12.7)	74.7	(482)	55.1	(81.9)	59.5	(88.5)	61.1	(90.9)

TABLE 4 Dimensional Limits for Standard Pipe Sizes

Copper Alloy UNS No. C61300 and C61400

Nominal or	Outside				Regular			Extra Strong	
Standard Pipe Size	Diameter, in. (mm)	Min	Max	Wall Thickness, in. (mm)	Min	Max	Wall Thickness, in. (mm)	Min	Max
1/8	0.405 (10.3)	0.374 (9.50)	0.421 (10.7)	0.068 (1.73)	0.061 (1.55)	0.075 (1.91)	0.095 (2.41)	0.086 (2.18)	0.105 (2.67)
1/4	0.540 (13.7)	0.509 (12.9)	0.556 (14.1)	0.088 (2.24)	0.079 (2.01)	0.097 (2.46)	0.119 (3.02)	0.107 (2.72)	0.131 (3.33)
3/8	0.675 (17.1)	0.644 (16.4)	0.691 (17.6)	0.091 (2.31)	0.082 (2.08)	0.100 (2.54)	0.126 (3.20)	0.113 (2.87)	0.139 (3.53)
1/2	0.840 (21.3)	0.809 (20.5)	0.856 (21.7)	0.109 (2.77)	0.098 (2.49)	0.120 (3.05)	0.147 (3.73)	0.132 (3.35)	0.162 (4.11)
3/4	1.050 (26.7)	1.019 (25.9)	1.066 (27.1)	0.113 (2.87)	0.102 (2.59)	0.124 (3.15)	0.154 (3.91)	0.139 (3.53)	0.169 (4.29)
1	1.315 (33.4)	1.284 (32.6)	1.331 (33.8)	0.133 (3.38)	0.120 (3.05)	0.146 (3.71)	0.179 (4.55)	0.161 (4.09)	0.197 (5.00)
11/4	1.660 (42.2)	1.629 (41.4)	1.676 (42.6)	0.140 (3.56)	0.126 (3.20)	0.154 (3.91)	0.191 (4.85)	0.172 (4.37)	0.210 (5.33)
11/2	1.900 (48.3)	1.869 (47.5)	1.916 (48.7)	0.145 (3.68)	0.131 (3.33)	0.160 (4.06)	0.200 (5.08)	0.180 (4.57)	0.220 (5.59)
2	2.375 (60.3)	2.351 (59.7)	2.399 (60.9)	0.154 (3.91)	0.139 (3.53)	0.169 (4.29)	0.218 (5.54)	0.196 (4.98)	0.240 (6.10)
21/2	2.875 (73.0)	2.846 (72.3)	2.904 (73.8)	0.203 (5.16)	0.183 (4.65)	0.223 (5.66)	0.276 (7.01)	0.248 (6.30)	0.304 (7.72)
3	3.500 (88.9)	3.465 (88.0)	3.535 (89.8)	0.216 (5.49)	0.194 (4.93)	0.238 (6.05)	0.300 (7.62)	0.270 (6.86)	0.330 (8.38)
31/2	4.000 (102)	3.960 (101)	4.040 (103)	0.226 (5.74)	0.203 (5.16)	0.249 (6.32)	0.318 (8.08)	0.286 (7.26)	0.350 (8.89)
4	4.500 (114)	4.455 (113)	4.545 (115)	0.237 (6.02)	0.213 (5.41)	0.261 (6.63)	0.337 (8.56)	0.303 (7.70)	0.371 (9.42)
5	5.562 (141)	5.506 (140)	5.618 (143)	0.258 (6.55)	0.232 (5.89)	0.284 (7.21)	0.375 (9.53)	0.338 (8.59)	0.413 (10.5)
6	6.625 (168)	6.559 (167)	6.691 (170)	0.280 (7.11)	0.252 (6.40)	0.308 (7.82)	0.432 (11.0)	0.389 (9.88)	0.475 (12.1)
8	8.625 (219)	8.539 (217)	8.711 (221)	0.322 (8.18)	0.290 (7.37)	0.354 (8.99)	0.500 (12.7)	0.450 (11.4)	0.550 (14.0)
10	10.750 (273)	10.643 (270)	10.858 (276)	0.365 (9.27)	0.329 (8.36)	0.402 (10.2)	0.500 (12.7)	0.450 (11.4)	0.550 (14.0)
12	12.750 (324)	12.623 (321)	12.878 (327)	0.375 (9.53)	0.338 (8.59)	0.413 (10.5)			

TABLE 5 Dimensional Limits for Standard Pipe Sizes

Copper Alloy UNS No. C65100 and C65500

							/	=	
Nominal or	Outside				Regular	11.		Extra Strong	
Standard Pipe Size	Diameter, in. (mm)	Min	Max	Wall Thickness, in. (mm)	Min	Mak	Wall Thickness, in. (mm)	Min	Max
1/8	0.405 (10.3)	0.374 (9.50)	0.421 (10.7)	0.068 (1.73)	0.065 (1.65)	0.083 (2.11)	0.095 (2.41)	0.090 (2.29)	0.123 (3.12)
1/4	0.540 (13.7)	0.509 (12.9)	0.556 (14.1)	0.088 (2.24)	0.084 (2.13)	0.102 (2.59)	0.119 (3.02)	0.107 (2.72)	0.144 (3.66)
3/8	0.675 (17.1)	0.644 (16.4)	0.691 (17.6)	0.091 (2.31)	0.086 (2.18)	0.103 (2.62)	0.126 (3.20)	0.120 (3.05)	0.146 (3.71)
1/2	0.840 (21.3)	0.809 (20.5)	0.856 (21.7)	0.109 (2.77)	0.104 (2.64)	0.122 (3.10)	0.147 (3.73)	0.140 (3.56)	0.166 (4.22)
3/4	1.050 (26.7)	1.019 (25.9)	1.066 (27.1)	0.113 (2.87)	0.107 (2.72)	0.124 (3.15)	0.154 (3.91)	0.146 (3.71)	0.171 (4.34)
1	1.315 (33.4)	1.284 (32.6)	1.331 (33.8)	0.133 (3.38)	0.126 (3.20)	0.145 (3.68)	0.179 (4.55)	0.170 (4.32)	0.196 (4.98)
11/4	1.660 (42.2)	1.629 (41.4)	1.676 (42.6)	0.140 (3.56)	0.133 (3.38)	0.151 (3.84)	0.191 (4.85)	0.181 (4.60)	0.207 (5.26)
11/2	1.900 (48.3)	1.869 (47.5)	1.916 (48.7)	0.145 (3.68)	0.138 (3.51)	0.156 (3.96)	0.200 (5.08)	0.190 (4.83)	0.216 (5.49)
2	2.375 (60.3)	2.351 (59.7)	2.399 (60.9)	0.154 (3.91)	0.146 (3.71)	0.164 (4.17)	0.218 (5.54)	0.207 (5.26)	0.233 (5.92)
21/2	2.875 (73.0)	2.846 (72.3)	2.904 (73.8)	0.203 (5.16)	0.193 (4.90)	0.217 (5.51)	0.276 (7.01)	0.262 (6.65)	0.295 (7.49)
3	3.500 (88.9)	3.465 (88.0)	3.535 (89.8)	0.216 (5.49)	0.205 (5.21)	0.230 (5.84)	0.300 (7.62)	0.285 (7.24)	0.321 (8.15)
31/2	4.000 (102)	3.960 (101)	4.040 (103)	0.226 (5.74)	0.215 (5.46)	0.240 (6.10)	0.318 (8.08)	0.302 (7.67)	0.340 (8.64)
4	4.500 (114)	4.455 (113)	4.545 (115)	0.237 (6.02)	0.225 (5.72)	0.252 (6.40)	0.337 (8.56)	0.320 (8.13)	0.360 (9.14)
5	5.562 (141)	5.506 (140)	5.618 (143)	0.258 (6.55)	0.245 (6.22)	0.275 (6.99)	0.375 (9.53)	0.356 (9.04)	0.400 (10.2)
6	6.625 (168)	6.559 (167)	6.691 (170)	[▶] 0.280 (7.11)	0.266 (6.76)	0.298 (7.57)	0.432 (11.0)	0.410 (10.4)	0.461 (11.7)
8	8.625 (219)	8.539 (217)	8.711 (221)	0.322 (8.18)	0.299 (7.59)	0.349 (8.86)	0.500 (12.7)	0.465 (11.8)	0.554 (13.8)
10	10.750 (273)	10.643 (270)	10.858 (276)	0.365 (9.27)	0.336 (8.53)	0.400 (10.2)	0.500 (12.7)	0.460 (11.7)	0.548 (13.9)
12	12.750 (324)	12.623 (321)	12,878 (327)	0.375 (9.53)	0.345 (8.76)	0.410 (10.4)			

TABLE 6 Wall Thickness Tolerances for Copper Alloy UNS No. C61300 and C61400 Tube (Not Applicable to Pipe)

Note 1—Maximum deviation at any point—the following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

		Outside Diameter, in. (mm)	
Wall Thickness, in. (mm)	Over % to 1 (15.9 to 25.4) incl.	Over 1 to 2 (25.4 to 50.8) incl.	Over 2 to 4 (50.8 to 102) incl.
Over 0.024 (0.610) to 0.034 (0.864), incl.	0.003(0.076)	0.004(0.10)	0.004(0.10)
Over 0.034 (0.864) to 0.057 (1.45), incl.	0.0045(0.11)	0.005(0.13)	0.006(0.15)
Over 0.057 (1,45) to 0.082 (2.08), incl.	0.005(0.13)	0.006(0.15)	0.008(0.20)
Over 0.082 (2.08) to 0.119 (3.02), incl.	0.007(0.18)	0.008(0.20)	0.009(0.23)
Over 0.119 (3.02) to 0.164 (4.17), incl.	0.009(0.23)	0.010(0.25)	0.012(0.30)

10.4 *Diameter Tolerances*—Diameter tolerances for pipe and tube shall be as follows:

10.4.1 Diameter Tolerances for Pipe:

Nominal Pipe Size, in. (mm) $1\frac{1}{2}$ (38.1) and under Over $1\frac{1}{2}$

Diameter Tolerance, in. (mm) +0.016 -0.031 (+0.40 -0.79)

10.4.2 The dimensional limits of nominal pipe sizes are shown in Tables 4 and 5.

10.4.3 Diameter tolerances for tube shall be in accordance with Table 9.

TABLE 7 Wall Thickness Tolerances for Copper Alloy UNS No. C65500 Tube (Not Applicable to Pipe)

Note 1—Maximum deviation at any point—the following tolerances are plus and minus: if tolerances all plus or all minus are desired, double the values given.

			Outsi	ide Diameter, ^A in.	(mm)		
Wall Thickness, in. (mm)	1/32 to 1/8	Over 1/8 to 5/8	Over 5/8 to 1	Over 1 to 2	Over 2 to 4	Over 4 to 7	Over 7 to 10
	(0.792 to 3.18), incl.	(3.18 to 15.9), incl.	(15.9 to 25.4), incl.	(25.4 to 50.8), incl.	(50.8 to 102), incl.	(102 to 173), incl.	(173 to 251), incl.
	IIICI.	IIICI.	IIICI.	IIIOI.	IIICI.	II ICI.	IIIOI.
Up to 0.017 (0.432), incl.	0.0025 (0.064)	0.0015 (0.038)	0.002 (0.051)	0.0025 (0.064)			
Over 0.017 (0.432) to 0.024 (0.610), incl.	0.004 (0.10)	0.0025 (0.064)	0.0025 (0.064)	0.003 (0.076)			
Over 0.024 (0.610) to 0.034 (0.864), incl.	0.004 (0.10)	0.003 (0.076)	0.003 (0.076)	0.004 (0.10)	0.005 (0.13)		
Over 0.034 (0.864) to 0.057 (1.45), incl.	0.004 (0.10)	0.001 (0.10)	0.0045 (0.11)	0.0045 (0.11)	0.0065 (0.17)	0.009 (0.23)	20
Over 0.057 (1.45) to 0.082 (2.08), incl.		0.0045 (0.11)	0.005 (0.13)	0.005 (0.13)	0.0075 (0.19)	0.010 (0.25)	0.013 (0.33)
Over 0.082 (2.08) to 0.119 (3.02), incl.		0.005 (0.13)	0.0065 (0.17)	0.0065 (0.17)	0.009 (0.23)	0.011 (0.28)	
						C-0	
Over 0.119 (3.02) to 0.164 (4.17), incl.		0.007 (0.18)	0.007 (0.18)	0.0075 (0.19)	0.010 (0.25)	0.013 (0.33)	0.015 (0.38)
Over 0.164 (4.17) to 0.219 (5.56), incl.			0.009 (0.23)	0.010 (0.25)	0.012 (0.30)	0.015 (0.38)	0.018 (0.46)
Over 0.219 (5.56) to 0.283 (7.19), incl.			0.012 (0.30)	0.013 (0.33)	0.015 (0.38)	0.018 (0.46)	0.020 (0.51)
Over 0.283 (7.19) to 0.379 (9.62), incl.			0.014 (0.36)	6 ^B	6 ^B	8 ^B	8 ^B
Over 0.379 (9.62)				6 ^B	6 ^B	8 ^B	8 ^B

A When tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in this table by more than 50 %.

TABLE 8 Wall Thickness Tolerances for Copper Alloy UNS No. C65100 Tube (Not Applicable to Pipe)

Note 1—Maximum deviation at any point—the following tolerances are plus and minus if tolerances all plus or all minus are desired, double the values given.

			Outsi	de Diameter, ^A in	. (mm)		
Wall Thickness, in. (mm)	1/32 (0.792)	Over 1/8 (3.18)	Over 5/8 (15.9)	Over 1 (25.4) to	Over 2 (50.8) to	Over 4 (102) to	Over 7 (213) to
wan modicos, in. (min)	to 11/8 (3.18),	to % (15.9),	to 1 (25.4),	2 (50.8),	4 (102),	7 (213),	10 (254),
	incl.	incl.	incl.	incl.	incl.	incl.	incl.
Up to 0.017 (0.432), incl.	0.002 (0.051)	0.001 (0.025)	0.0015 (0.038)	0.002 (0.051)			
Over 0.017 (0.432) to 0.024 (0.610), incl.	0.003 (0.076)	0.002 (0.051)	0.002 (0.051)	0.0025 (0.064)			
Over 0.024 (0.610) to 0.034 (0.864), incl.	0.003 (0.076)	0.0025 (0.064)	0.0025 (0.064)	0.003 (0.076)	0.004 (0.10)		
Over 0.034 (0.864) to 0.057 (1.45), incl.	0.003 (0.076)	0.003 (0.076)	0.0035 (0.089)	0.0035 (0.089)	0.005 (0.13)	0.007 (0.18)	
Over 0.057 (1.45) to 0.082 (2.08), incl.		0.0035 (0.089)	0.004 (0.10)	0.004 (0.10)	0.006 (0.15)	0.008 (0.20)	0.010 (0.26)
Over 0.082 (2.08) to 0.119 (3.02), incl.		0.004 (0.10)	0.005 (0.13)	0.005 (0.13)	0.007 (0.18)	0.009 (0.23)	0.011 (0.28)
Over 0.119 (3.02) to 0.164 (4.17), incl.		0.005 (0.13)	0.006 (0.15)	0.006 (0.15)	0.008 (0.20)	0.010 (0.25)	0.012 (0.30)
Over 0.164 (4.17) to 0.219 (5.56), incl.		0.007 (0.18)	0.0075 (0.19)	0.008 (0.20)	0.010 (0.25)	0.012 (0.30)	0.014 (0.36)
Over 0.219 (5.56) to 0.283 (7.19), incl.			0.009 (0.23)	0.010 (0.25)	0.012 (0.30)	0.014 (0.36)	0.016 (0.44)
Over 0.283 (7.19) to 0.379 (9.62), incl.	🔨		0.012 (0.30)	5 ^B	5 ^B	6 ^B	6 ^B
Over 0.379 (9.62), incl.				5 ^B	5 ^B	6 ^B	6 ^B

A When tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in this table by more than 50 %.

10.5 Length Tolerances:

10.5.1 Length tolerance shall be in accordance with Table 10.

10.5.2 Schedule of Tube Lengths—Specific and stock lengths with ends shall be in accordance with Table 11.

10.6 Squareness of Cut—For pipe and tube in straight lengths, the departure from squareness of the end of any pipe or tube shall not exceed the following:

10.6.1 Pipe:

Outside Diameter Tolerance

Up to % in. (15.9 mm), incl. 0.010 in. (0.25 mm)

Over 5% in. (15.9 mm) 0.016 in./in. (0.016 mm/mm) of diameter

10.6.2 *Tube:*

Outside Diameter Tolerance

Up to 5/8 in. (15.9 mm), incl.

0.010 in. (0.25 mm)

Over % in. (15.9 mm) 0.016 in./in. (0.016 mm/mm) of diameter

TABLE 9 Average Diameter Tolerances for Tube (Not Applicable to Pipe)

(Not Applicable to Fipe)			
Copper Alloy UNS No.	To	olerance, ±in. (m	m) ^A
Specified Diameter, in. (mm)	C61300 and C61400	C65100	C65500
Up to 1/8 (3.18), incl.		$0.002 (0.051)^B$	0.003 (0.076) ^B
Up to 1/8 (3.18), incl.		$0.002 (0.051)^{C}$	0.025 (0.064) ^C
Over 1/8 (3.18) to 5/8 (15.9), incl.	0.004 (0.10)	0.002 (0.051)	0.0025 (0.064)
Over 5/8 (15.9) to 1 (25.4), incl.	0.005 (0.13)	0.0025 (0.064)	0.003 (0.076)
Over 1 (25.4) to 2 (50.8), incl.	0.006 (0.15)	0.003 (0.076)	0.004 (0.10)
Over 2 (50.8) to 3 (76.2), incl.	0.007 (0.18)	0.004 (0.10)	0.005 (0.13)
Over 3 (76.2) to 4 (102), incl.		0.005 (0.13)	0.006 (0.15)
Over 4 (102) to 5 (127), incl.		0.006 (0.15)	0.008 (0.20)
Over 5 (127) to 6 (152), incl.		0.007 (0.18)	0.009 (0.23)
Over 6 (152) to 8 (203), incl.		0.008 (0.20)	0.010 (0.25)
Over 8 (203) to 10 (254), incl.		0.010 (0.25)	0.013 (0.33)

 $[\]overline{\ }^{A}$ Tolerance applies to inside or outside diameters, except as noted.

^B Percent of the specified wall thickness expressed to the nearest 0.001 in. (0.025 mm).

^B Percent of the specified wall thickness expressed to the nearest 0.001 in. (0.025 mm).

^B On inside diameter.

^C On outside diameter.

TABLE 10 Length Tolerances

Note 1—Tolerances are all plus—If all minus tolerances are desired, use the same value. If tolerances plus and minus are desired, halve the values given.

	Tolerances, in. (mm), Applicable only to Full Length Pieces			
		Outside Diam-		
Length	Outside Diam-	eters over 1 in.	Outside Diam-	
	eters up to 1 in.	(25.4 mm) to 4	eters over 4 in.	
		in. (102 mm),		
	,,	incl.	,	
Specific lengths:				
Up to 6 in. (152 mm), incl.	1/32 (0.79)	1/16 (1.6)		
Over 6 in. (152 mm) to 2 ft	1/16 (1.6)	3/32 (2.4)	1/8 (3.2)	
(610 mm), incl.				
Over 2 ft (610 mm) to 6 ft	3/32 (2.4)	1/8 (3.2)	1/4 (6.4)	
(1.83 m), incl.				
Over 6 ft (1.83 m) to 14 ft	1/4 (6.4)	1/4 (6.4)	1/4 (6.4)	
(4.27 m), incl.				
Over 14 ft (4.27 m)	1/2 (13)	1/2 (13)	1/2 (13)	
Specific lengths with ends	1 (25)	1 (25)	1 (25)	
Stock lengths with or without	1 ^A (25)	1 ^A (25)	1 ^A (25)	
ends				

 $^{^{}A}$ As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

TABLE 11 Schedule of Tube Lengths (Specific and Stock)
with Ends

Outside Dimensions, in. (mm)	Specific Length, ft (m)	Shortest Permissible Length, ^A % of Specific Length	Maximum Permissible Weight of Ends, % of Lot Weight
Up to 1 (25.4), incl.	6 (1.83) to 20 (6.10), incl.	70	20
Over 1 (25.4) to 2	6 (1.83) to 20 (6.10), incl.	60	25
(50.8), incl.			
Over 2 (50.8) to 3	6 (1.83) to 20 (6.10), incl.	55	30
(76.2), incl.			
Over 3 (76.2) to 4	6 (1.83) to 20 (6.10), incl.	50	40
(102), incl.			\circ

^A Expressed to nearest ½ ft.

10.7 The nominal density of material used in the manufacture of products for this specification are shown in Table X2.1.

11. Workmanship, Finish, and Appearance

- 11.1 The product shall be free from defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
- 11.2 Copper alloy UNS Nos. 65100 and 65500 may be supplied in the following finishes:
- 11.2.1 Specially Cleaned—Intended for brazing and welded operations.
- 11.2.2 Plain-pickled, or with dull iridescent film, on both the inside and outside surfaces.
- Note 4—Plain-pickled material normally has a brick red color with cuprous and silicon oxides still adherent.
- 11.3 Copper alloy UNS Nos. C61300 and C61400 shall be supplied with the normal as-extruded or annealed tarnish unless otherwise specified on the purchase order.

12. Sampling

- 12.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:
- 12.1.1 *Lot Size*—For tube, the lot size shall be 10 000 lb (4550 kg) or fraction thereof. For pipe, the lot size shall be as follows:

Nominal Pipe Size, in (mm)	Lot Weight, lb (kg)
Up to 4 (101.6), incl. Over 4 (101.6)	10 000 (4550) or fraction thereof 40 000 (18 100) or fraction thereof
Over 4 (101.6)	40 000 (16 100) or fraction theteor

12.1.2 *Portion Size*—Sample pieces shall be taken for test purposes from each lot according to the following schedule. (Each sample shall be from a separate tube or pipe.)

Number of Pieces in Lot	Number of Sample Pieces to Be Taken
4 1- 50	
1 to 50	(), 1
51 to 200	/, ~ 2
201 to 1500	3
Over 1500	02% of total number of pieces in the lot

12.1.3 Chemical Analysis A sample for chemical analysis shall be taken in accordance with Practice E255 for product in its final form. Unless otherwise required by the purchaser at the time the order is placed, the manufacturer shall have the option of determining conformance to chemical composition by analyzing samples taken at the time the castings are poured or samples taken from the semifinised product if heat identity can be maintained throughout all operations. If the manufacturer determines the chemical composition during manufacture, he shall not be required to sample and analyze the finished product. The minimum weight of the composite sample in accordance with Practice E255 shall be 150 g.

12.1.4 DELETED

12.1.5 Samples for All Other Tests—Samples for all other tests shall be taken from the sample portion in 12.1.3 and be of a convenient size to accommodate the test and comply with the requirements of the appropriate ASTM standards and test methods.

13. Number of Test and Retests

13.1 *Tests:*

- 13.1.1 *Chemical Analysis*—Chemical composition shall be determined in accordance with the element mean of the results from at least two replicate analyses of the samples.
- 13.1.2 *Mechanical Tests*—For the mechanical tests, a specimen shall be taken from each of the pieces selected in accordance with 12.1. The required mechanical test shall be made on each of the specimens selected.
- 13.1.2.1 If the percentage elongation of any tension test specimen is less than that specified and if any part of the fracture is outside the middle two thirds of the gage length or in a punched or scribed mark within the reduced section, a retest shall be allowed.

13.1.3 DELETED

13.2 Retests:

- 13.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.
- 13.2.2 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 13.2.3 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

14. Specimen Preparation

- 14.1 *Chemical Analysis*—Preparation of the analytical test specimen is the responsibility of the reporting laboratory.
 - 14.2 Tensile Test:
- 14.2.1 The test specimen shall be of the full section of the tube and shall conform to the requirements of the section titled Specimens for Pipe and Tube in Test Methods E8/E8M.
- 14.2.2 When the limitations of the testing equipment preclude the use of such a specimen, test specimens conforming to Type 1, Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M may be used when a full-section specimen cannot be tested.
 - 14.3 Rockwell Hardness:
- 14.3.1 The test specimen shall be of the size and shape to permit testing with the available test equipment.
- 14.3.2 The surface of the specimen shall be sufficiently flat and smooth to permit the accurate determination of hardness.
- 14.3.3 The test specimen shall be sufficiently free of scale and foreign material to permit the accurate determination of hardness.
- 14.3.4 Care shall be taken to avoid changing the material's condition through either cold working or heating, or both.

15. Test Methods

- 15.1 Chemical Analysis:
- analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table lists published chemical test methods, some of which may no longer be viable and which, along with others not listed, may be used, subject to agreement.

Test Test Method F478 Copper E478 (AA) Lead Iron E54 Zinc E478 (AA) Aluminum E478 (Titrimetric) Manganese E62 E478 (Photometric) Nickel (including cobalt) E478 Phosphorus

15.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and purchaser.

15.2 Other Tests:

15.2.1 The product, when specified, shall conform to specified requirements when subjected to the test in accordance with the following table:

Test	Test Method
Electromagnetic (eddy current)	E243
Rockwell hardness	E18 and 14.3
Yield test	E8/E8M
Tension test	E8/E8M
Elongation	E8/E8M

15.2.2 Tension Tests:

15.2.21 When tension test results are obtained from both full-size and from machined test specimens and they differ, the results obtained from full-size test specimens shall prevail.

15.2.2.2 Tension test results on material covered by this specification are not seriously affected by variations in the speed of testing. A considerable range of testing speeds is permissible; however, the rate of stressing to obtain the yield strength should not exceed 100 ksi (690 MPa)/min. Above the yield strength, the movement per minute of the testing machine head under load should not exceed 0.5 in./in. (12 mm/mm) of gauge length (or distance between grips for full-section specimens).

16. Significance of Numerical Limits

16.1 For the purpose of determining compliance with the specified limits of the properties listed in the following table and for dimensional tolerances, an observed or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property	Rounded Unit for Observed or Calculated Value
Chemical composition	Nearest unit in the last right-hand significant digit used in expressing the limiting value
Tensile Strength Yield Strength Elongation	nearest ksi (nearest 5 MPa) nearest 1 %

17. Inspection

17.1 The manufacturer or supplier shall inspect and make tests necessary to verify that the furnished product conforms to the specification requirements.

- 17.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as a part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector, representing the purchaser, that the product is being furnished in accordance with the specification shall be included in the agreement. All testing and inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 17.3 When mutually agreed upon, the manufacturer or supplier and the purchaser shall conduct the final inspection simultaneously.

18. Rejection and Rehearing

- 18.1 Rejection:
- 18.1.1 Product that fails to conform to the specification requirements, when tested by the purchaser or purchaser's agent, shall be subject to rejection.
- 18.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 18.1.3 In case of dissatisfaction with the results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
- 18.2 Rehearing—As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

19. Certification

19.1 The purchaser shall be furnished certification that nave been met.

20.1 A report of test results required by this specification pall be furnished.

Packaging and Package Marking

21.1 Packaging samples representing each lot have been tested or inspected as directed in this specification and the requirements have been met.

20. Test Report

shall be furnished.

21. Packaging and Package Marking

- 21.1.1 The product shall be separated by size composition, and temper, and prepared for shipment by common carrier, in such a manner to afford protection from the normal hazards of transportation.
 - 21.2 Package Marking:
- 21.2.1 Each shipping unit shall be legibly marked with the metal or alloy designation, temper, size, shape, gross and net weight, and name of supplier. Upon agreement between the purchaser and supplier the purchase order number shall be indicated on each shipping unit or on the shipping documents.
- 21.2.2 When specified in the contract or purchase order, the product specification number shall be shown.

22. Keywords

22.1 seamless copper alloy pipe; seamless copper alloy tube UNS Alloy No. C61300; UNS Alloy No. C61400; UNS Alloy No. C63020; UNS Alloy No. C65100; UNS Alloy No. . C65500

APPENDIXES

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties is shown in accordance with the International System of Units (SI). The derived SI unit for force is the Newton (N), which is defined as the force that when applied to a body having a mass of one kilogram gives if an acceleration of one metre per second squared (N = \lg) m/s²). The derived SI unit for pressure or

stress is the Newton per square metre (N/m²), which has been named the Pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

	ASME BPVC.II.B-2023		SB-315
X2.1 The densities of the tion are given in Table X2.1 A click to view the control of the tion are given in Table X2.1 A click to view the control of the tion are given in Table X2.1 A click to view the clic	X2. DENSITY OF O	COPPER ALLOYS	
X2.1 The densities of the tion are given in Table X2.1	e alloys covered by this specifica-		3005
	TABLE X2.1	Densities	B
	Copper Alloy UNS Number	Density, lb/in. ³ (g/cm ³)	- Oak
	C61300 C61400 C63020	0.285 (7.89) 0.285 (7.89) 0.269 (7.45)	
	C65100 C65500	0.316 (8.78) 0.308 (8.53)	tiol.
		Se	9
		BX	
		CINE	
		RS	
		B	
	BR		
	-NE		
	(ASI		
	C OX.		
	\$OX		
	Illes		
	2		
and the second			
ali e			
Citie			
N:			
c _O ,			
C.			
OPIC CONTRACTOR OF THE PROPERTY OF THE PROPERT			
NEW CONTRACTOR OF THE PARTY OF			
Shr			
	477		

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SB-333 (Identical with ASTO Specification B33-03(2018).) (Identical with ASTO Specification B33-03(2018).) SPECIFICATION FOR NICKEL-MOLYBDENUMALLOY

Specification for Nickel-Molybdenum Alloy Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers plate, sheet, and strip of nickel-molybdenum alloys (UNS N10001, N10665, N10675, N10629, and N10624) as shown in Table 1, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Sheet and Strip—Hot or cold rolled, solution annealed, and descaled unless solution anneal is performed in an atmosphere yielding a bright finish.
- 1.2.2 Plate—Hot or cold rolled, solution annealed, and descaled.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip E112 Test Methods for Determining Average Grain Size E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Sclero-

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

scope Hardness, and Leeb Hardness

- 3.1.1 *cold-rolled plate*, n—material $\frac{3}{16}$ to $\frac{3}{8}$ in. (4.76 to 9.52 mm), inclusive, in thickness.
- 3.1.2 hot-rolled plate, n—material $\frac{3}{16}$ in. (4.76 mm) and over in thickness.
- 3.1.3 plate, n—material $\frac{3}{16}$ in. (4.76 mm) and over in thickness.
- 3.1.4 sheet and strip, n—material under $\frac{3}{16}$ in. (4.76 mm) in thickness.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - 5.1.1 Alloy—Table 1,
- 5.1.2 *Dimensions*—Thickness (in decimals of an inch), width, and length (inch or fractions of an inch),
- 5.1.3 *Optional Requirement*—Plate; how the plate is to be cut (Specification B906, Table A2.3)

TABLE 1 Chemical Requirements

	IADLI	L i Oneillic	ai riequire	iliciito	
		Composition	on Limits, %		
Element	Alloy	Alloy	Alloy	Alloy	Alloy
	N10001	N10665	N10675	N10629	N10624
Nickel	remainder ^A	remainder ^A	65.0 min	remainder ^A	Bal
Molybdenum	26.0-30.0	26.0-30.0	27.0-32.0	26.0-30.0	21.0-25.0
Iron	4.0-6.0	2.0 max	1.0-3.0	1.0-6.0	5.0-8.0
Chromium	1.0 max	1.0 max	1.0-3.0	0.5-1.5	6.0-10.0
Carbon, max	0.05	0.02	0.01	0.01	0.01
Silicon, max	1.0	0.10	0.10	0.05	0.10
Cobalt, max	2.5	1.00	3.0	2.5	1.0
Manganese, max	1.0	1.0	3.0	1.5	1.0
Phosphorus, max	0.04	0.04	0.030	0.04	0.025
Sulfur, max	0.03	0.03	0.010	0.01	0.01
Vanadium	0.2-0.4		0.20 max		
Nickel plus Molybdenum	 1		94.0–98.0		
Aluminum			0.50 max	0.1-0.5	0.5
Columbium			0.20		
(Nb), max					
Copper, max			0.20	0.5	0.5
Tantalum, max			0.20		
Titanium, max			0.20		
Tungsten, max			3.0		
Zirconium, max			0.10		
Magnesium, max					

^A See Specification B906.

- 5.1.4 Certification—State if certification or a report of test results is required (Specification B906, Section 21),
- 5.1.5 Purchase Inspection—State which tests or inspections are to be witnessed (Specification B906, Section 18), and
- 5.1.6 Samples for Product (Check) Analysis—State whether samples should be furnished (Specification B906, Section

6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1.
- 6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 and Specification B906.

7. Mechanical Properties and Other Requirements

- 7.1 Tensile Properties—The material shall conform to the room temperature tensile properties prescribed in Table 2.
- 7.2 Hardness—The hardness values given in Table 2 are informative only.
- 73 Grain Size for Sheet and Strip—Sheet and strip shall conform to the grain sizes as illustrated in Plate 1 of Test Methods E112. The requirements shall be as indicated in Table

8. Dimensions, Mass, and Permissible Variations

8.1 Weight—For calculations of mass or weight, the following densities shall be used:

		Density
Alloy	lb/in. ³	(g/cm ³)
N10001	0.334	(9.24)
N10665	0.333	(9.22)
N10675	0.333	(9.22)
N10629	0.333	(9.22)
N10624	0.322	(8.9)

- 8.2 *Thickness:* 8.2.1 *Sheet and Strip*—The thickness shall be measured with the micrometer spindle 3/8 in. (9.525 mm) or more from any edge for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. (25.4 mm) in width.
 - 8.3 Length:
- 8.3.1 Sheet and Strip—Sheet and strip may be ordered to cut lengths, in which case a variation of ½ in. (3.175 mm) over the specified length shall be permitted, with a 0 minus tolerance.
 - 8.4 Straightness:
- 8.4.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. (1.27 mm) multiplied by the length in feet or 0.04 mm multiplied by the length in centimetres
- 8.4.2 Straightness for coiled strip is subject to agreement between the manufacturer and the purchaser.
- 85 Squareness (Sheet)—For sheets of all thicknesses and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be 90 \pm 0.15 degrees ($\frac{1}{16}$ in. in 24 in. or 2.6
- 8.6 Flatness—Plate, sheet, and strip shall be commercially flat.
 - 8.7 Edges:
- 8.7.1 Plates shall have sheared, abrasive cut, or plasmatorch-cut edges as specified.
 - 8.7.2 Sheet and strip shall have sheared or slit edges.

9. Product Marking

- 9.1 Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 9.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

10. Keywords

10.1 plate; sheet; strip; UNS N10001; UNS N10629; UNS N10665; UNS N10675; UNS N10624

TABLE 2 Mechanical Property Requirements

Alloy	Thickness, in. (mm)	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. (50.8 mm) or 4 <i>D</i> ^A min, %	Rockwell Hardness, ^B max
		Sheet and Strip			
N10001	Under 3/16 (4.76)	115 000 (795)	50 000 (345)	45	100 HRB
N10665	Under 3/16 (4.76)	110 000 (760)	51 000 (350)	40	100 HRB
N10675	Under 3/16 (4.76)	110 000 (760)	51 000 (350)	40	100 HRB
N10629	Under 3/16 (4.76)	110 000 (760)	51 000 (350)	40	100 HRB
N10624	Under 3/16 (4.76)	104 000 (720)	46 000 (320)	40	100 HRB
		Plate			
N10001	3/16 to 21/2 in. (4.76 to 63.5 mm), incl	100 000 (690)	45 000 (310)	40	100 HRB
N10665	3/16 to 21/2 in. (4.76 to 63.5 mm), incl	110 000 (760)	51 000 (350)	40	100 HBB
N10675	3/16 to 21/2 in. (4.76 to 63.5 mm), incl	110 000 (760)	51 000 (350)	40	100 HRB
N10629	3/16 to 21/2 in. (4.76 to 63.5 mm), incl	110 000 (760)	51 000 (350)	40	Goo HRB
N10624	3/16 to 21/2 in. (4.76 to 63.5 mm), incl	104 000 (720)	46 000 (320)	40	100 HRB

 $^{^{\}it A}\,{\it D}$ refers to the diameter of the tension specimen.

TABLE 3 Grain Size for Annealed Sheet

Thickness, in. (mm)	ASTM Micrograin Size Number,	Average Grain Diameter, max	
111. (11111)	max	mm (in.)	
0.125 (3.175) and under	3.0	0.127 (0.0050)	
Over 0.125 (3.175)	1.5	0.214 (0.0084)	

(Nonmandatory Information)

X1. HEAT TREATMENT

and the ma and the man the full click to view X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance, and the manufac-

Direction of the diameter of the tension specimen.

B Hardness values are shown for information purposes only and are not to be used as a basis for rejection or acceptance. For approximate hardness conversions, see Hardness Conversion Tables F140. Hardness Conversion Tables E140.

SPECIFICATION FOR NICKEL-MOLYBDENUM ALLOY ROD SB-335 SB-335 (Identical with ASTM Specification B335-03(20(8)) except that certification and a test report have been used.

ASMENORMIOC. COM. Click to View the full PDF (Identical with ASTM Specification B335-03(2018) except that certification and a test report have been made mandatory.)

Specification for Nickel-Molybdenum Alloy Rod

1. Scope

- 1.1 This specification covers rod of nickel-molybdenum alloys (UNS N10001, N10665, N10675, N10629, and N10624) as shown in Table 1, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Rods 5/16 to 3/4 in. (7.94 to 19.05 mm) excl in diameter, hot or cold finished, solution annealed and pickled or mechanically descaled.
- 1.2.2 Rods $\frac{3}{4}$ to $3\frac{1}{2}$ in. (19.05 to 88.9 mm) incl in diameter, hot or cold finished, solution annealed, ground or turned.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 rod, n—a product of round solid section furnished in straight lengths.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - 4.1.1 *Alloy*—Table 1.
- 4.1.2 *Dimensions*—Nominal diameter and length. The shortest usable multiple length shall be specified (Table 2).
- 4.1.3 *Certification*—State if certification or a report of test results is required (Section 16).
- 4.1.4 Purchaser Inspection—State which tests or inspections are to be witnessed (Section 13).
- 4.1.5 Samples for Product (Check) Analysis—State whether samples should be furnished (9.2.2).

5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 1.

TABLE 1 Chemical Requirements

			ai moquiro		
		Composition	on Limits, %		
Element	Alloy	Alloy	Alloy	Alloy	Alloy
	N10001	N10665	N10675	N10629	N10624
Nickel	remainder ^A	remainder ^A	65.0 min	remainder ^A	Bal
Molybdenum	26.0-30.0	26.0-30.0	27.0-32.0	26.0-30.0	21.0-25.0
Iron	4.0-6.0	2.0 max	1.0-3.0	1.0-6.0	5.0-8.0
Chromium	1.0 max	1.0 max	1.0-3.0	0.5-1.5	6.0-10.0
Carbon, max	0.05	0.02	0.01	0.01	0.01
Silicon, max	1.0	0.10	0.10	0.05	0.10
Cobalt, max	2.5	1.00	3.0	2.5	1.0
Manganese, max	1.0	1.0	3.0	1.5	1.0
Phosphorus, max	0.04	0.04	0.030	0.04	0.025
Sulfur, max	0.03	0.03	0.010	0.01	0.01
Vanadium	0.2 - 0.4		0.20 max		
Nickel plus Molybdenum	 1		94.0–98.0		
Aluminum			0.50 max	0.1-0.5	0.5
Columbium (Nb), max			0.20		
Copper, max			0.20	0.5	0.5
Tantalum, max			0.20		
Titanium, max			0.20		
Tungsten, max			3.0		
Zirconium, max			0.10		
Magnesium, max					

^A See 12.1.

5.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in B880.

6. Mechanical Properties and Other Requirements

6.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 3.

7. Dimensions and Permissible Variations

- 7.1 *Diameter*—The permissible variations from the specified diameter shall be as prescribed in Table 2.
- 7.2 Out of Roundness—The permissible variation in roundness shall be as prescribed in Table 2.
- 7.3 Machining Allowances—When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations.
- 7.3.1 As-finished (Annealed and Descaled)—For diameters of 5/16 to 1/16 in. (7.94 to 17.46 mm) incl., an allowance of 1/16 in. (1.59 mm) on the diameter should be made for finish machining.
 - 7.4 Length:
- 7.4.1 Unless multiple, nominal, or cut lengths are specified, random mill lengths shall be furnished.
- 7.4.2 The permissible variations in length of multiple, nominal, or cut length rod shall be as prescribed in Table 4. Where rods are ordered in multiple lengths, a ¹/₄-in. (6.35-mm) length addition shall be allowed for each uncut multiple length.
 - 7.5 Ends:

- 7.5.1 Rods ordered to random or nominal lengths shall be furnished with either cropped or sawed ends.
- 7.5.2 Rods ordered to cut lengths shall be furnished with square saw-cut or machined ends.
- 7.6 Weight—For calculations of mass or weight, the following densities shall be used:

	D	ensity
Alloy	lb/in ³	g/cm ³
N10001	0.334	9.24
N10665	0.333	9.22
N10675	0.333	9,22
N10629	0.333	9.22
N10624	0.322	8.9

7.7 Straightness—The maximum curvature (depth of chord) shall not exceed 0.050 in. multiplied by the length of the chord in feet (0.04 mm multiplied by the length in centimetres).

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, and free of injurious imperfections.

9. Sampling

- 9.1 Lots for Chemical Analysis and Mechanical Testing:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot of bar for mechanical testing shall be defined as the material from one heat in the same condition and specified diameter.
 - §2 Sampling for Chemical Analysis:
- 2.1 A representative sample shall be obtained from each theat during pouring or subsequent processing.
- 9.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
 - 9.3 Sampling for Mechanical Testing:
- 9.3.1 A representative sample shall be taken from each lot of finished material.

10. Number of Tests and Retests

- 10.1 Chemical Analysis—One test per heat.
- 10.2 Tension Tests—One test per lot.
- 10.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material after final heat-treatment and tested in the direction of fabrication.
- 11.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8/E8M.
- 11.3 In the event of disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8/E8M.

12. Test Methods

12.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be

TABLE 2 Permissible Variations in Diameter and Out-of-Roundness of Finished Rods

Specified Diameter,		Permissible Variations, in. (mm)			
in. (mm)	Diame	Diameter			
III. (IIIIII)	Plus	Minus	max		
	Hot-Finished, Annealed, and Descaled R	lods			
5/16 to 7/16 (7.94–11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)		
Over 7/16 to 5/8 (11.11-15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)		
Over 5% to 3/4 (15.87-19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)		
	Hot-Finished, Annealed, and Ground or Turne	ed Rods			
³ / ₄ to 3½ (19.05–88.9), incl	0.010 (0.25)	0	0.008 (0.20)		

TABLE 3 Mechanical Properties

Alloy	Thickness, in. (mm)	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. (50 mm) or $4D^A$, min %	Rockwell Hardness,
N10001	5/16 to 11/2 (7.94 to 38.1) incl	115 000 (795)	46 000 (315)	35	Ci
	Over 11/2 to 31/2 (38.1 to 88.9) incl	100 000 (690)	46 000 (315)	30	
N10665	5/16 to 31/2 (7.94 to 88.9) incl	110 000 (760)	51 000 (350)	40	7
N10675	5/16 to 31/2 (7.94 to 88.9) incl	110 000 (760)	51 000 (350)	40	
N10629	5/16 to 31/2 (7.94 to 88.9) incl	110 000 (760)	51 000 (350)	40	100 HRB
N10624	5/16 to 31/2 in. (7.94 to 88.9 mm), incl	104 000 (720)	46 000 (320)	40	100 HRB

A D refers to the diameter of the tension specimen.

TABLE 4 Permissible Variations in Length of Rods

Random mill lengths Multiple lengths	2 to 12 ft (610 to 3660 mm) long with not more than 25 weight % under 4 ft (1.22 m). Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of ¼ in. (6.35 mm) shall be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed.
Cut lengths	A specified length to which all rods shall be cut with a permissible variation of + $\frac{1}{8}$ in. (3.17 mm) – 0.

determined, in case of disagreement, in accordance with the following ASTM methods:

- 12.1.1 *Chemical Analysis*—Test Methods E1473. For elements not covered by Test Methods E1473, the referee method shall be as agreed upon between the manufacturer and the purchaser. The nickel composition shall be determined arithmetically by difference.
 - 12.1.2 Tension Test—Test Methods E8/E8M.
 - 12.1.3 Method of Sampling—Practice E55.
 - 12.1.4 Determining Significant Places—Practice E29.
- 12.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

Requirements composition and tolerance

Calculated Value
Nearest unit in the last right-hand
place of figures of the specified
limit

Rounded Unit for Observed or

Tensile strength and yield strength Elongation

limit nearest 1000 psi (7 MPa) nearest 1 %

13. Inspection

13.1 Inspection of the material shall be made as agreed upon by the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

- 16.1 Each piece of material ½ in. (12.7 mm) and over in diameter shall be marked with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 16.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

17. Keywords

17.1 rod; N10001; N10624; N10629; N10665; N10675

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR SEAMLESS AND WELDED TITANIUM AND TITANIUM ALLOY TUBES FOR CONDENSERS AND HEAT EXCHANGERS

SB-338

(Identical with ASTM Specification B338-17, Foreditions prior to 08a, certification and test reports are mandatory, and product marking shall also show ASME designation.)

Reput Marking Shall also show ASME designation.)

Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers

1. Scope

- 1.1 This specification covers the requirements for 28 grades of titanium and titanium alloy tubing intended for surface condensers, evaporators, and heat exchangers, as follows:
 - 1.1.1 Grade 1—UNS R50250. Unalloyed titanium,
 - 1.1.2 Grade 2—UNS R50400. Unalloyed titanium,
- 1.1.2.1 *Grade* 2*H*—UNS R50400. Unalloyed titanium (Grade 2 with 58 ksi (400 MPa) minimum UTS),
 - 1.1.3 Grade 3—UNS R50550. Unalloyed titanium,
- 1.1.4~ *Grade* 7—UNS R52400. Unalloyed titanium plus 0.12 to 0.25~% palladium,
- 1.1.4.1 *Grade 7H*—UNS R52400. Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi (400 MPa) minimum UTS),
- 1.1.5 *Grade* 9—UNS R56320. Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.6 *Grade 11*—UNS R52250. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7 *Grade 12*—UNS R53400. Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.8 Grade 13—UNS R53413. Titanium alloy (0.5% nickel, 0.05 % ruthenium),
- 1.1.9 *Grade 14*—UNS R53414. Titanium allow (0.5 % nickel, 0.05 % ruthenium),
- 1.1.10 *Grade 15*—UNS R53415. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.11 *Grade 16*—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.11.1 Grade 16H—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi (400 MPa) minimum UTS),

- 1.1.12 *Grade 17*—UNS R52252. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.13 *Grade 18*—UNS R56322. Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.14 *Grade* 26—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.14.1 *Grade* 26H—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium Grade 26 with 58 ksi (400 MPa) minimum UTS),
- 1.1.15 *Grade* 27—UNS R52254. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.16 *Grade* 28 UNS R56323. Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.08 to 0.14 % ruthenium,
- 1.1.17 Grade 30—UNS R53530. Titanium alloy (0.3 % cobalt, 0.05% palladium),
- 1.1.18 *Grade 31*—UNS R53532. Titanium alloy (0.3 % cobalt 0.05 % palladium),
- 1.19 Grade 33—UNS R53442. Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.20 *Grade 34*—UNS R53445. Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.21 *Grade* 35—UNS R56340. Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.22 *Grade 36*—UNS R58450. Titanium alloy (45 % niobium),
- 1.1.23 *Grade 37*—UNS R52815. Titanium alloy (1.5 % aluminum),
- 1.1.24 *Grade 38*—UNS R54250. Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron), and
- 1.1.25 *Grade 39*—UNS R53390. Titanium alloy (0.25 % iron, 0.4 % silicon).
- Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical

conversions to SI units that are provided for information only and are not considered standard.

1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- A370 Test Methods and Definitions for Mechanical Testing of Steel Products
- E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing
- E426 Practice for Electromagnetic (Eddy Current) Examination of Seamless and Welded Tubular Products, Titanium, Austenitic Stainless Steel and Similar Alloys
- E499 Test Methods for Leaks Using the Mass Spectrometer Leak Detector in the Detector Probe Mode
- E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
- E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
- E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
- E2371 Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology)
- E2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals (Withdrawn 2017)

3. Terminology

- 3.1 Lot Definitions:
- 3.1.1 *castings*, *n*—a lot shall consist of all castings produced from the same pour.
 - 3.1.2 *ingot*, *n*—no definition required.
- 3.1.3 rounds, flats, tubes, and wrought powder metallurgical products (single definition, common to nuclear and non-nuclear standards), n—a lot shall consist of a material of the same size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to

- the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.
- 3.1.4 *sponge*, *n*—a lot shall consist of a single blend produced at one time.
- 3.1.5 *weld fittings, n*—definition is to be mutually agreed upon between manufacturer and the purchaser.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information, as required:
 - 4.1.1 Quantity,
 - 4.1.2 Grade number (Section 1).
 - 4.1.3 Diameter and wall thickness (Note 2) (Section 12),
 - 4.1.4 Length (Section 12),
 - 4.1.5 Method of manufacture and finish (Sections 5 and 13),
- 4.1.6 Restrictive chemistry if desired (Section 6 and Table 1).
 - 4.1.7 Product analysis if desired (Section 7 and Table 2),
- 4.1.8 Special mechanical properties, if desired (Section 8 and Table 3).
 - 4.1.9 Nondestructive tests (Section 11),
 - 4.1.10 Packaging (Section 23),
 - 4.1.11 Inspection (Section 17), and
 - 4.1.12 Certification (Section 21).
- NOTE 2—Tube is available to specified outside diameter and wall thickness. Average OD and wall are the standard. Maximum or minimum OD or wall should be stated.
- 4.2 Optional supplementary requirements are provided and, when one or more of these are desired, each shall be so stated in the order.

5. Materials and Manufacture

- 5.1 Seamless tube shall be made from hollow billet by any cold reducing or cold drawing process that will yield a product meeting the requirements of this specification. Seamless tube is produced with a continuous periphery in all stages of manufacturing operations.
- 5.2 Welded tube shall be made from annealed, flat-rolled product by an automatic arc-welding process or other method of welding that will yield a product meeting the tensile requirements found in Table 3 of this specification. Welded tubing shall be heat treated by at least a stress relief after forming and welding. Use of filler material is not permitted.
- 5.3 Welded/cold worked tube (WCS) shall be made from welded tube manufactured as specified in 5.2. The welded tube shall be sufficiently cold worked to final size in order to transform the cast weld microstructure into a typical equiaxed microstructure in the weld upon subsequent heat treatment. The product shall meet the requirements for seamless tube of this specification.
- 5.4 Grades 9, 18 and 28, which, at the option of the purchaser, can be furnished in either the annealed or the cold worked and stress relieved condition, defined as at a minimum temperature of 600°F (316°C) for not less than 30 min.

irements
Requi
Chemical
BLE 1
Δ

	3																		
	い	7					Ö	mposition, V	Composition, Weight Percent ^{A,B,C,D,E}	nt ^{A,B,C,D,E}									į
		Oxyger	_		Iron												Elen	Other Other Elements,	Orner ments,
	UNS Carbon,	ا, range		Nitrogen, Hydrogen,	range		:	:	:				:		:		- :	max.	max.
Grade	Number max.		max.	max.	or max.	Aluminum	Vanadium	Palladium	Aluminum Vanadium Palladium Ruthenium	Nickel M	Nickel Molybdenum Chromium	Chromium	Cobalt	Cobalt Zirconium Niobium	Niobium	Tin	Silicon	each	total
,			Ç	1	0													,	
- 0	H50250 0.08	0.18		0.015	0.20	:	:	:	:	:	:	:	:	:	:	:	:		4.0
L 2/2 6			0.00	0.013	0.00	: :	: :			: :			: :	: :	: :	: :	: ;		4. 2
,			55	5	S	: 1	: 1	: 1	:	: 1	:	:	: 1	: 1	: 1	:	: 1	<u>.</u>	t
I	I	I	I		I	I	I	I	I	I	I	I	I	I	I	I	1	I	I
I	I	I	I	از	I	I	I	I	I	I	I	I	I	I	I		I		I
1/7H	R52400 0.08	0.25	0.03	0.015	0:30	;	:	0.12-	;	;	:	;	;	;	;	;	;	0.1	0.4
					×	C	c	0.25											
6	R56320 0.08	0.15	0.03	0.015	0.25	3.5	3.0	:	:	:	:	:	:	:	:	:	:	0.1	0.4
Ξ	R52250 0.08	0.18	0.03	0.015	0.20		;	0.12-	:	;	;	;	:	:	:	:	;	0.1	0.4
12	R53400 0.08	0.25	0.03	0.015	0:30	N	:	:	;	-9.0	0.2-	;	:	:	;	;	:	0.1	0.4
13	B53413 0.08	0.10	0.03	0.015	0.20	T,	:	;	0.04-	0.4-	:	:	;	:	;	:	;	0.1	0.4
) () L) (<i>\\</i>		0.06	0.6									
4	H53414 0.08	0.15	0.03	0.015	0.30	:	31	:	90.0	9.0	:	:	:	:	:	:	:	- -	4.0
15	R53415 0.08	0.25	0.05	0.015	0:30	:	X	:	0.04-	0.4-	;	;	:	:	:	:	:	0.1	0.4
16/16H	16/16H R52402 0.08	0.25	0.03	0.015	0:30	:	:	0.08	:	:	;	:	:	:	:	:	;	0.1	0.4
17	R52252 0.08	0.18	0.03	0.015	0.20	;	;	0.0	1	;	;	:	:	;	:	;	;	0.1	0.4
18	R56322 0.08	0.15	0.03	0.015	0.25	2.5-	2.0-	0.04-	Ø.	:	;	;	:	:	:	:	:	0.1	0.4
I	I	I	I	I	I	}	;	<u> </u>	2	I	I	I	I	I	I	1	1	I	I
I			I	I	I	I	I	I	\\\ 	 - -	I	I	I		1				
I	I	I	I	I	I	I	I	I		ķ	I		Ι	I	I		I	l	I
1			I	1				1	1	5	1	I						1	1
	I I										ا ا ا،						ll	ll	
26/26H	26/26H R52404 0.08	0.25	0.03	0.015	0.30	:	;	:	0.08-	:		:	:	;	:	:	:	0.1	0.4
27	R52254 0.08	0.18	0.03	0.015	0.20	:	:	:	0.08-	;	I.P.	;	:	;	;	:	;	0.1	0.4
28	R56323 0.08	0.15	0.03	0.015	0.25	2.5-	2.0-	:	0.08-	;	:	, P	:	:	;	;	;	0.1	9.0
1 1												3					1 1	1 1	1 1
3			i.		0			0.04-					0.20						
TE.	H53532 0.08	0.35	0.05	0.015	0.30	:	:	0.08	:	:	:	:	080	:	:	:	:	0.1	0.4
l	l	I		I	I	I	I	8	8	6	Ι	۱ ;	5	l	l			l	I
33	R53442 0.08	0.25	0.03	0.015	0.30	:	:	0.02	0.02-	0.35- 0.55	;	0.2 - 2.0	7	; (:	:	:	0.1	0.4
34	R53445 0.08	0.35	0.05	0.015	0:30	;	;	0.01-	0.02- 0.04	0.35-	;	0.1-	:	7	:	;	:	0.1	0.4
35	R56340 0.08	0.25	0.05	0.015	0.20-	4.0- 5.0	1.1-	:	:	:	1.5-	:	:	. e	:	-	0.20-	0.1	0.4
36	R58450 0.04	0.16	0.03	0.015	0.03	:	;	;	:	:	:	;	;	'ر :	42.0- 17.0-	:	:	0.1	0.4
37	R52815 0.08	0.25	0.03	0.015	0:30	1.0-	:	:	;	:	:	:	:	:	SC,		:	0.1	0.4
																7			

7	
70114	
2	
Contin	=
Š	\bar{z}
_	
ù	
	ב
	Į
•	

	Composition, Weight Percent ^{A.B.C.D.E} Other	Elements, Elements, Max. max. Max. Molybdenum Chromium Cobalt Zirconium Niobium Tin Silicon each total	0.1 0.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ASMENORMIDOC. COM. Click to view the		Iron Nitrogen, Hydrogen, range max. max. or max. Aluminum Vana	0.03 0.015 1.2- 3.5- 2.0-		
ASMENORMOO"		Oxygen UNS Carbon, range Number max. or max.	R54250 0.08 0.30 0.30	R53390 0.08 0.15	
		Grade	38	39	

At minimum, the analysis of samples from the top and bottom of the ingot shall be completed and reported for all perments listed for the respective grade in this table.

B Final product hydrogen shall be reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by regotiation with the manufacturer. $^{\mathcal{C}}$ Single values are maximum. The percentage of titanium is determined by difference.

The state of the s Define elements need not be reported unless the concentration level is greater than 0.1 % each, or 0.4 % total. Other elements may not be added intentionally. Other elements may be present in titanium or titanium or titanium alloys in small quantities and are inherent to the manufacturing process. In titanium these elements typically include aluminum, variatium, tin, chromium, molybdenum, nickel, boron, manganese, and tungsten.

E The purchaser may, in the written purchase order, request analysis for specific elements not listed in this specification.

SB-338 ASME BPVC.II.B-2023

TABLE 2 Permissible Variations in Product Analysis

		•
		%
Element	Maximum or	Permissible Variation
	Specified Range	in Product Analysis
Aluminum	0.5 to 2.5	±0.20
Aluminum	2.5 to 3.5	±0.40
Carbon	0.10	+0.02
Chromium	0.1 to 0.2	±0.02
Cobalt	0.2 to 0.8	±0.05
Hydrogen	0.015	+0.002
Iron	0.80	+0.15
Iron	1.2 to 1.8	±0.20
Molybdenum	0.2 to 0.4	±0.03
Molybdenum	1.5 to 4.5	±0.20
Nickel	0.3 to 0.9	±0.05
Niobium	>30	±0.50
Nitrogen	0.05	+0.02
Oxygen	0.30	+0.03
Oxygen	0.31 to 0.40	±0.04
Palladium	0.01 to 0.02	±0.002
Palladium	0.04 to 0.25	±0.02
Ruthenium	0.02 to 0.04	±0.005
Ruthenium	0.04 to 0.06	±0.005
Ruthenium	0.08 to 0.14	±0.01
Silicon	0.06 to 0.50	±0.02
Vanadium	2.0 to 3.0	±0.15
Residuals ^A (each)	0.1	+0.02

^A A residual is an element present in a metal or an alloy in small quantities inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

6. Chemical Requirements

- 6.1 The titanium shall conform to the chemical requirements prescribed in Table 1.
- 6.1.1 The elements listed in Table 1 are intentional allow additions or elements that are inherent to the manufacture of titanium sponge, ingot, or mill product.
- 6.1.2 Elements intentionally added to the met must be identified, analyzed, and reported in the chemical analysis.
- 6.2 When agreed upon by the producer and the purchaser and requested by the purchaser in the written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.

7. Product Analysis

- 7.1 When requested by the purchaser and stated in the purchase order, product analysis for any elements listed in Table 1 shall be made on the completed product.
- 7.1.1 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table 1 by, and only by way of, unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
- 7.2 Product analysis tolerances, listed in Table 2, do not broaden the specified heat analysis requirements, but cover variations between different laboratories in the measurement of chemical content. The manufacturer shall not ship the finished product that is outside the limits specified in Table 1 for the applicable grade.

8. Tensile Requirements

8.1 The room temperature tensile properties of the tube in the condition normally supplied shall conform to the requirements prescribed in Table 3. Mechanical properties for conditions other than those given in this table may be established by agreement between the manufacturer and the purchaser. (See Test Methods E8.)

9. Flattening Test

9.1 Tubing shall withstand, without cracking, flattening under a load applied gradually at room temperature until the distance between the load platens is not more than H in. H is calculated as follows:

$$H, \text{ in. (mm)} = \frac{(1+e)t}{e+t/t} \tag{1}$$

where:

H =the minimum flattened height, in. (mm),

t =the nominal wall thickness, in. (mm), and

D =the nominal tube diameter, in. (mm).

For Grades 1, 2, 2H, 7, 7H, 11, 13, 14, 16, 16H, 17, 26, 26H, 27, 30, 33, and 39:

$$g = 0.07$$
 in. for all diameters (2)

For Grade 3, 31, and 34

$$e = 0.04$$
 through 1 in. diameter (3)

$$e = 0.06$$
 over 1 in. diameter (4)

For Grades 9, 12, 15, 18, 28, 35, 36, 37, and 38:

e shall be negotiated between the producer and the purchaser.

- 9.1.1 For welded tubing, the weld shall be positioned on the 90 or 270° centerline during loading so as to be subjected to a maximum stress.
- 9.1.2 When low D-to-t ratio tubular products are tested, because the strain imposed due to geometry is unreasonably high on the inside surface at the six and twelve o'clock locations, cracks at these locations shall not be cause for rejection if the D-to-t ratio is less than ten (10).
- 9.2 The results from all calculations are to be rounded to two decimal places. Examination for cracking shall be by the unaided eye.
- 9.3 Welded tube shall be subjected to a reverse flattening test in accordance with Annex 2 of Test Methods and Definitions A370. A section of the tube, approximately 4 in. (102 mm) long, that is slit longitudinally 90° either side of the weld, shall be opened and flattened with the weld at the point of maximum bend. No cracking is permitted.

10. Flaring Test

10.1 For tube $3\frac{1}{2}$ in. (88 mm) in outside diameter and smaller, and 0.134 in. (3.4 mm) in wall thickness and thinner, a section of tube approximately 4 in. (102 mm) in length shall withstand being flared with a tool having a 60° included angle until the tube at the mouth of the flare has been expanded in accordance with Table 4. The flared end shall show no cracking or rupture visible to the unaided eye. Flaring tests on larger

TABLE 3 Tensile Requirements

	Tensile St	rength, min		Yield Strength	, 0.2 % Offset		Elongation – in
Grade			r	nin	m	ıax	2 in. or 50
	ksi	MPa	ksi	MPa	ksi	MPa	mm, min, %
1 ^A	35	240	20	138	45	310	24
2^A	50	345	40	275	65	450	20
2H ^{A,B,C}	58	400	40	275	65	450	20
3 ^A	65	450	55	380	80	550	18 🏑
7 ^A	50	345	40	275	65	450	20
7H ^{A,B,C}	58	400	40	275	65	450	20 20
9^D	125	860	105	725			
9 ^A	90	620	70	483			15 ^E
11 ^A	35	240	20	138	45	310	24
12 ^A	70	483	50	345		(18 ^E
13 ^A	40	275	25	170		6	24
14 ^A	60	410	40	275			20
15 ^A	70	483	55	380		10	18
16 ^A	50	345	40	275	65	450	20
16H ^{A,B,C}	58	400	40	275	65	450	20
17 ^A	35	240	20	138	45	310	24
18 ^D	125	860	105	725			10
18 ^A	90	620	70	483	1		15 ^E
26	50	345	40	275	65	450	20
26H ^{<i>A,B,C</i>}	58	400	40	275	65	450	20
27	35	240	20	138	45	310	24
28	90	620	70	483			15
30	50	345	40	275	65	450	20
31	65	450	55	380	80	550	18
33	50	345	40	275	65	450	20
34	65	450	55	380	80	550	18
35	130	895	120	828			5
36	65	450	60	410	95	655	10
37	50	345	31	215	65	450	20
38	130	895	115	794			10
39	75	515	60	410	90	620	20

^A Properties for material in the annealed condition.

TABLE 4 Flaring Requirements

	- Idam 19 110 quan o 1110 77
Grade	Expansion of Inside Diameter, min, %
1	22
2, 2H	20
3	17
7, 7H	20
9 ^A	20
11	22
12	17
13	22
14	20
15	17
16, 16H	20
17	22
18 ^A	20
26, 26H	20
27	22
28	20
30	20
31	17
33	20
34	17
35	10
37	20
38	15
39	20

Annealed.

diameter tube or tubing outside the range of Table 4 shall be as agreed upon between the manufacturer and the purchaser.

11. Nondestructive Tests

- 11.1 Welded Tubes shall be nondestructively tested using the following procedures:
 - 11.1.1 Eddy Current Test, see 11.3.
 - 11.1.2 Ultrasonic Test, see 11.4.1.1.
- 11.1.3 Hydrostatic Test, see 11.6, or pneumatic test, see 11.7.
- 11.2 Seamless and Welded/Cold Worked Tubes shall be nondestructively tested using the following procedures:
 - 11.2.1 Ultrasonic Test, see 11.4.1.2.
- 11.2.2 Eddy Current Test, see 11.3, or hydrostatic test, see 11.6, or pneumatic test, see 11.7.
 - 11.3 Eddy Current Test:
- 11.3.1 Perform the nondestructive test in accordance with Practice E426. The entire volume of the tube shall be tested.
- 11.3.1.1 *Drilled Hole*—The calibration tube shall contain three or more holes, equally spaced circumferentially around the tube and longitudinally separated by a sufficient distance to allow distinct identification of the signal from each hole. The

^B Material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grade 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

^C The H grades were added in response to a user association request based its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

^D Properties for cold-worked and stress-relieved material.

Elongation for welded tubing manufactured from continuously 📵 lolled and annealed strip from coils for Grades 9, 12, and 18 will be 12 %.

holes shall be drilled radially and completely through the tube wall, with care being taken to avoid distortion of the tube while drilling. The holes shall not be larger than 0.031 in (0.787 mm) in diameter. As an alternative, the producer may choose to drill one hole and run the calibration standard through the test coil three times, rotating the tube approximately 120° each time. More passes with smaller angular increments may be used, provided testing of the full 360° of the coil is obtained. For welded tubing, one of the multiple holes or the single hole may be drilled in the weld. As an option, the single hole may be drilled in the skelp.

- 11.4 Ultrasonic Testing:
- 11.4.1 Perform the nondestructive test in accordance with Practice E213.
- 11.4.1.1 Welded Tubing—A longitudinal notch 0.031 in. (0.787 mm) or less in width and 0.5 in. (12.7 mm) or less in length shall be machined on a radial parallel to the tube axis on the outside and inside of the tube. The notch depth shall not exceed 10 % of the nominal wall of the tube or 0.004 in. (0.102 mm), whichever is greater. The length of the notch shall be compatible with the testing method, and the notches shall be located 180 degrees from the weld. The entire volume of the tube shall be tested.
- 11.4.1.2 Seamless and Welded/Cold Worked Tubing—Longitudinal and transverse notches not exceeding 0.010 in. (0.25 mm) in width and 10 % of the nominal tube wall or 0.004 in. (0.102 mm), whichever is greater, in depth shall be machined on the inner and outer surfaces of the tube. The length of the notches shall not exceed 0.125 in. (3.18 mm).
- 11.5 Any tubes showing an indication in excess of that obtained from the calibration standard shall be set aside and be subject to rework, retest, or rejection. A tube thus set aside may be examined further for confirmation of the presence of a defect and may be resubmitted for inspection if no defect is found. Any tube may also be resubmitted for inspection if reworked so as to remove the defect within the specified diameter, and wall thickness tolerances are established from Table 5 (rework by weld repair is not permitted).

11.6 Hydrostatic Test:

TABLE 5 Permissible Variations in Outside Dimensions Based on Individual Measurements

Outside Diameter, in. (mm)	Diameter Tolerance, in. (mm) ^{A,B,C}	Permissible Variations ^D in Wall Thickness, <i>t</i> , %
Under 1 (25.4), exc	±0.004 (±0.102)	±10
1 to 11/2 (25.4 to 38.1), excl	±0.005 (±0.127)	±10
1½ to 2 (38.1 to 50.8), excl	±0.006 (±0.152)	±10
2 to 21/2 (50.8 to 63.5), excl	±0.007 (±0.178)	±10
2½ to 3½ (63.5 to 88.9), excl	±0.010 (±0.254)	±10

^A These permissible variations in outside diameter apply only to tubes as finished at the mill before subsequent swaging, expanding, bending, polishing, or other tabricating operations.

11.6.1 Each tube so tested shall withstand, without showing bulges, leaks, or other defects, an internal hydrostatic pressure that will produce in the tube wall a stress of $50\,\%$ of the minimum specified yield strength at room temperature. This pressure shall be determined by the equation:

$$P = \frac{SEt}{R_o - 0.4t} \tag{5}$$

where:

P

= minimum hydrostatic test pressure, psi (or MPa),

S = allowable fiber stress of one half the minimum yield strength, psi (or MPa),

= wall thickness, in. (or mm),

 R_{α} = outside tube radius, in. (or mm),

E = 0.85 welded tube, and

E = 1.0 seamless and welded/cold worked tube.

11.6.2 The maximum hydrostatic test pressure shall not exceed 2500 psi (17.2 MPa) for sizes 3 in. (76 mm) and under, or 2800 psi (19.3 MPa) for sizes over 3 in. Hydrostatic pressure shall be maintained for not less than 5 s. When requested by the purchaser and so stated in the order, tube in sizes 14 in. (356 mm) in diameter and smaller shall be tested to one and one half times the specified working pressure, provided the fiber stress corresponding to those test pressures does not exceed one half the minimum specified yield strength of the material as determined by the equation given in 11.3. When one and one half times the working pressure exceeds 2800 psi (19.3 MPa), the hydrostatic test pressure shall be a matter of agreement between the manufacturer and purchaser.

V11.7 Pneumatic Test—Each tube so tested shall withstand an internal air pressure of 100 psi (0.69 MPa), minimum, for 5 s, minimum, without showing evidence of leakage. The test method used shall permit easy detection of any leakage by using the pressure differential method or by placing the tube under water. Any evidence of leakage shall be cause for rejection of that tube.

12. Permissible Variation in Dimensions

- 12.1 Variations in dimensions from those specified shall not exceed the amounts prescribed in Table 5.
- 12.2 *Length*—When tube is ordered cut to length, the length shall not be less than that specified, but a variation of $\frac{1}{8}$ in. (3.2 mm) will be permitted on tube up to 24 ft (7.3 m) inclusive. For lengths over 24 ft (7.3 m), an additional over tolerance of $\frac{1}{8}$ in. (3.2 mm) for each 10 ft (3.05 m) or fraction thereof shall be permissible up to $\frac{1}{2}$ in. (13 mm) maximum.
- 12.3 *Straightness*—The tube shall be free of bends or kinks, and the maximum uniform bow shall not exceed the values given in Table 6.

TABLE 6 Straightness

Length, ft (m)	Maximum Curvature Depth of Arc
Over 3 to 6 (0.91 to 1.83), incl	½ in. (3.2 mm)
Over 6 to 8 (1.83 to 2.44), incl	3/16 in. (4.8 mm)
Over 8 to 10 (2.44 to 3.05), incl	1/4 in. (6.4 mm)
Over 10 (3.05)	1/4 in. /any 10 ft (2.1 mm/m)

When minimum diameter tubes are ordered, tolerances are all on the plus side and shall be double the values shown.

^C When maximum diameter tubes are ordered, tolerances are all on the minus side and shall be double the values shown

and shall be double the values shown. D When minimum wall tubes are ordered, tolerances are all plus and shall be double the values shown.

12.4 Squareness of Cut—The angle of cut of the end of any tube may depart from square by not more than 0.016 in./in. of diameter.

12.5 Outside Diameter:

- 12.5.1 Welded Tubes—The outside diameter of welded tubes shall not vary from that specified by more than the amounts given in Table 5 as measured by "go" and "no go" ring gages. The dimensions of the ring gage shall be as described in 12.5.1.1. For tube diameters not listed in Table 5, the dimensional tolerances shall be as agreed upon by the purchaser and the manufacturer or supplier.
- 12.5.1.1 The inside diameter dimension of the "go" ring gage shall be equal to the nominal tube diameter plus the plus tolerance plus 0.002 in. The length of the "go" ring gage shall be the larger of 1 in. (25.4 mm) or the tube diameter.
- 12.5.1.2 The inside diameter dimension of the "no go" ring gage shall be equal to the nominal tube diameter minus the minus tolerance. The length of the "no go" ring gage shall be the larger of 1 in. or the nominal tube diameter.
- 12.5.2 Seamless and Welded/Cold Worked Tubes—The outside diameter of seamless and welded/cold worked tubes shall not vary from that specified by more than the amounts given in Table 5 as measured by any method agreed upon between the purchaser and the manufacturer or supplier. For tube diameters not listed in Table 5, the dimensional tolerances shall be as agreed upon by the purchaser and the manufacturer or supplier.

13. Finish

13.1 The finished tube shall be clean and free of foreign material, shall have smooth ends free of burrs, and shall be free of injurious external and internal imperfections. Minor defects may be removed, provided the dimensional tolerances of Section 12 are not exceeded.

14. Number of Tests

- 14.1 One sample shall be selected from lots of 5000 ft (1600 m) or less. For lots greater than 5000 ft (1600 m), one sample shall be selected from the first 5000 ft (1600 m), and one additional sample shall be selected from each additional 5000 ft (1600 m) or less in the lot. Samples are to be selected at random, and in no case shall more than one sample be taken from a single tube length. The size of the lot may be either the manufactured lot or the purchased lot at the manufacturer's option.
- 14.1.1 Chemical composition of the lot shall be the ingot manufacturer's analysis, except for hydrogen, which shall be determined on each sample from the lot. For welded tube only, hydrogen determination shall be one (1) tube analysis per strip coil.
 - 14.1.2 One tension test shall be made on each sample.
- 14.1.3 One flattening test in accordance with 9.1 shall be made on each sample.
- 14.1.4 One reverse flattening test in accordance with 9.3 shall be made on each sample.
- 14.1.5 One flaring test in accordance with 10.1 shall be made on each sample.

- 14.2 If any test specimen shows defective machining or develops flaws due to preparation, the specimen may be discarded and another substituted.
- 14.3 If the percent of elongation of any tension test specimen is less than that specified in 8.1, and any part of the fracture is more than ³/₄ in. (19 mm) from the center of the gage length as indicated by scratches marked on the specimen before testing, the specimen may be discarded and another substituted.
- 14.4 Each length of finished tube shall be examined by the nondestructive test specified in 11.1.

15. Retests

15.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 20.

16. Test Specimens and Methods of Testing

- 16.1 The test specimens and the tests required by this specification shall conform to those described in Test Methods and Definitions A370.
- 16.2 All routine mechanical tests shall be made at room temperature.
- 16.3 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods referenced in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser. Alternate techniques are discussed in Guide E2626.

17. Inspection

- 17.1 All tests and inspection required by this specification shall be made at the place of manufacture prior to shipment and at the manufacturer's expense unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works. When specified in the order, the manufacturer shall notify the purchaser in time so that the purchaser may have his inspector present to witness any part of the tests that may be desired.
- 17.2 When agreed upon in writing between the manufacturer and the purchaser, a certification that the material conforms to the requirements of this specification shall be the basis for acceptance of the material. Otherwise, the manufacturer shall report to the purchaser or his representative the results of the chemical analyses and mechanical tests made in accordance with this specification.

18. Rounding-Off Procedure

18.1 For purposes of determining conformance with the specifications contained herein, an observed or calculated

value shall be rounded off to the nearest "unit" in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

19. Referee Test and Analysis

19.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification.

20. Rejection

20.1 Material not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives within 3 weeks of notice of rejection other instructions for disposition.

21. Certification

21.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results

of chemical analysis, tensile, and other tests meet the requirements of this specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

22. Product Marking

22.1 Each length of tube $\frac{1}{2}$ in. (13 mm) in outside diameter and larger, manufactured in accordance with this specification, shall be legibly marked, either by stenciling, stamping, or rolling, with the manufacturer's private identifying mark, the ASTM designation, the tube class, the grade, and heat number. On smaller than $\frac{1}{2}$ in. outside diameter tubing that is bundled, the same information may be legibly stamped on a metal tag securely attached to each bundle.

NOTE 3—Average outside diameter and wall thickness are the standard for this specification. If maximum or minimum or wall are ordered, the tubes should be marked accordingly.

23. Packaging and Package Marking

23.1 The tube shall be packaged in accordance with the manufacturer's standard practice, unless otherwise agreed upon between the manufacturer and the purchaser and so stated in the purchase order.

24. Keywords

24.1 seamless tubing; titanium; titanium alloy; tubing; welded/cod worked tubing; welded tubing

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements become part of the specification when specified in the purchase order or contract.

S1. Traverse Ultrasonic Test (Welded Tubing)

S1.1 A transverse notch 0.031 in. (0.787 mm) or less in width and 0.5 in. (12.7 mm) or less in length shall be machined on a radial perpendicular to the tube axis on the outside and inside of the tube in addition to the longitudinal notch. The notch depth shall not exceed 10 % of the nominal wall of the tube or 0.004 in. (0.102 mm), whichever is greater. Perform the nondestructive test in accordance with Practice E213.

S2. Helium Leak Test (Welded Tubing)

S2.1 The tubing shall be tested by the helium leak test according to Practice E499 in substitution of the pneumatic test required in 11.7. The maximum allowable leak rate shall be 9.87×10^{-4} std cm³/s (1 x 10-3 mbar l/s) quantified with a calibrated leak.

NC Section II part B) 202 SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY SB-348/SB-348M **BARS AND BILLETS**

ASMENORANDOC. COM. Circk to view the full policy of the po (Identical with ASTM Specification B348/B348M-19 except that Note A of Table 2 has been revised.)

Specification for Titanium and Titanium Alloy Bars and Billets

1. Scope

- 1.1 This specification covers annealed titanium and titanium alloy bars and billets as follows:
 - 1.1.1 Grade 1—UNS R50250. Unalloyed titanium,
 - 1.1.2 Grade 2—UNS R50400. Unalloyed titanium,
- 1.1.2.1 *Grade 2H*—UNS R50400. Unalloyed titanium (Grade 2 with 58 ksi [400 MPa] minimum UTS),
 - 1.1.3 Grade 3—UNS R50550. Unalloyed titanium,
 - 1.1.4 Grade 4—UNS R50700. Unalloyed titanium,
- 1.1.5 *Grade* 5—UNS R56400. Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 *Grade* 6—UNS R54520. Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7~ *Grade* 7—UNS R52400. Unalloyed titanium plus 0.12 to 0.25~% palladium,
- 1.1.7.1 *Grade 7H*—UNS R52400. Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi [400 MPa] minimum UTS),
- 1.1.8 *Grade* 9—UNS R56320. Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.9 *Grade 11*—UNS R52250. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 *Grade 12*—UNS R53400. Titanium alloy (0.3% molybdenum, 0.8 % nickel),
- 1.1.11 *Grade 13*—UNS R53413. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.12 *Grade 14*—UNS R53414. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 *Grade 15*—UNS R53415. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 *Grade 16*—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade 16H—UNS R\$2402. Unalloyed titanium plus 0.04 to 0.08 % palladiumin (Grade 16 with 58 ksi [400 MPa] minimum UTS),

- 1.1.15 *Grade 17*—UNS R52252. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 *Grade 18*—UNS R56322. Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % balladium,
- 1.1.17 *Grade 19*—UNS R58640. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade* 20—UNS R58645. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chronium, 4 % zirconium, 4 % molybdenum) plus 0.04 %–0.08 % palladium,
- 1.1.19 *Grade 21*—UNS R58210. Titanium alloy (15 % molybdenum, 3 % aluminum, 2.7 % niobium, 0.25 % silicon),
- 1.1.20 *Grade* 23—CNS R56407. Titanium alloy (6 % aluminum, 4 % vanadium with extra low interstitial elements, ELD.
- 1.1.21 *Grade* 24—UNS R56405. Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 % to 0.08 % palladium,
- 1.1.22 Grade 25—UNS R56403. Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 % to 0.8 % nickel and 0.04 % to 0.08 % palladium,
- V1.1.23 *Grade* 26—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.23.1 *Grade 26H*—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi [400 MPa] minimum UTS),
- 1.1.24 *Grade* 27—UNS R52254. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.25 *Grade* 28—UNS R56323. Titanium alloy (3 % aluminum, 2.5 % vanadium plus 0.08-0.14 % ruthenium),
- 1.1.26 *Grade* 29—UNS R56404. Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitial, ELI plus 0.08 to 0.14 % ruthenium),
- 1.1.27 *Grade 30*—UNS R53530. Titanium alloy (0.3%) cobalt, 0.05% palladium),
- 1.1.28 *Grade 31*—UNS R53532. Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.29 *Grade 32*—UNS R55111. Titanium alloy (5 % aluminum, 1 % tin, 1 % zirconium, 1 % vanadium, 0.8 % molybdenum),
- 1.1.30 *Grade* 33—UNS R53442. Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),

- 1.1.31 Grade 34—UNS R53445. Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 %
- 1.1.32 Grade 35—UNS R56340. Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.33 Grade 36—UNS R58450. Titanium alloy (45 % niobium),
- 1.1.34 Grade 37—UNS R52815. Titanium alloy (1.5 % aluminum), and
- 1.1.35 Grade 38—UNS R54250. Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).
- Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.
- 1.2 The values state in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

E8/E8M Test Methods for Tension Testing of Metallic Ma-

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E539 Test Method for Analysis of Titanium Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry

E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion

- E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Allows by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
- E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
- E2371 Test Method for Analysis of Titanium and Titanium Emission Spectron
 Lest Methodology)
 Refractory Metals (Withdrawn 2017) Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-

E2626 Guide for Spectrometric Analysis of Reactive and

E2994 Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (Performance-Based Method)

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 bar, n—a hot rolled, forged, extruded or cold worked semi-finished solid section product whose cross sectional area is equal to or less than 16 in.² [10 323 mm²]; rectangular bar must be less than or equal to 10 in. [254 mm] in width and greater than 0.1875 in. [4.8 mm] in thickness.
- 3.1.1.1 Discussion—Extruded bar has been approved for use on unalloyed titanium grades 1, 2, 3 and 4 only. Other grades may be produced via the extrusion process with agreement between the producer and the purchaser.
- 3.1.2 billet, n—a solid semi-finished section hot worked or forged from an ingot, with a cross sectional area greater than 16 in.² [10 323 mm²] whose width is less than five times its thickness.
- 3.1.3 heat analysis chemical determination based on analysis of ingot or alternate (see Table 1 footnote A, and 9.2); check analysis limits do not apply for Heat Analysis/Producer Ingot Analysis
- 3.1.4 product analysis—an analysis based on semi-finished or final product; the purchaser may apply check analysis limits to determine compliance with the specification; check analysis timits are not for producer's use at producer ingot acceptance.
- 3.1.5 check analysis limits—Table 3, Permissible Variations in Product Analysis: Percentages above and below those listed in Table 1, when tested on product, by or for the purchaser, or acceptable to purchaser to show compliance with a given specification.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information as applicable:
 - 4.1.1 Grade number (Section 1),
 - 4.1.2 Product classification (Section 3),
 - 4.1.3 Chemistry (Table 1),
- 4.1.4 Condition required for Grades 9, 18, 20, 21, 23, 28, and 29.
 - 4.1.5 Mechanical properties (Table 2),
 - 4.1.6 Marking (Section 16),
 - 4.1.7 Finish (Section 8),
 - 4.1.8 Packaging (Section 16),
 - 4.1.9 Required reports (Section 15), and
 - 4.1.10 Disposition of rejected material (Section 14).

5. Chemical Composition

- 5.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the requirements as to chemical composition prescribed in Table 1.
- 5.1.1 The elements listed in Table 1 are intentional alloy additions or elements which are inherent to the manufacture of titanium sponge, ingot or mill product.
- 5.1.1.1 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table

Ormania Meriogen Hydrogen and a composition, weight Percent Molybelorum Chromium mass.		- 1 °	2						Ţ	ABLE 1 C	TABLE 1 Chemical Requirements	equireme	nts								
Organia (Inclusion) Inclusion (Inclusion) <			17	_<						Compositio	ın, Weight Pe	ercent ^{A,B,C,D}	j, E							3	1 3
OFFIGE ORGANIZATION All minutum Variadium Palladium Huthenium Mickel Molypodenum Chromium Collision All minutum Variadium Palladium Huthenium Mickel Molypodenum Chromium Collision OFFIGE OFFIGE <th< th=""><th>UNS Carl</th><th>표</th><th></th><th>Oxygen range</th><th>Nitrogen,</th><th>Hydrogen,</th><th>Iron range</th><th></th><th>:</th><th>:</th><th>:</th><th></th><th></th><th></th><th></th><th>·</th><th>:</th><th>i</th><th></th><th>Elements, Elements, max. max.</th><th>Elements, max.</th></th<>	UNS Carl	표		Oxygen range	Nitrogen,	Hydrogen,	Iron range		:	:	:					·	:	i		Elements, Elements, max. max.	Elements, max.
0.18 0.003 0.015 0.20	Number max.	۱ä		or mak.	max.	max.	or max.	Aluminum	Vanadium	Palladium	Ruthenium		ybdenum	Chromium		Cobalt Zirconium Niobium	Niobium	Ē	Silicon	each	total
0.25 0.007 0.015 0.030		0.0	8	0.18	003	0.015	0.20	:	;	;	;	:	;	;	;	;	;	:	;	0.1	0.4
0.35 0.05 0.015 0.030		0.0	8	0.25	0.03	0.015	0.30	:	:	:	:	:	:	:	:	:	:	:	:	0.1	0.4
0.40 0.05 0.015 0.015 0.05 0.015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	ω	0.35	0.05	0.015	0.30	:	:	:	:	:	:	:	:	:	:	;	;	0.1	0.4
0.25 0.005 0.015 0.005 0.015 0.00 0.05 0.015 0.005 0.005 0.015 0.005 0.0		0.0	ω .	0.40	0.05	0.015	0.50	:	: ;	:	:	:	:	:	:	:	:	:	;	0.1	0.4
0.26 0.03 0.015 0.05 4.0	R56400 0.0	0.	8	0.20	0.05	11	0.40	5.5-		:	:	:	:	:	:	:	:	:	:	0.1	4.0
0.25 0.03 0.015 0.02 0.12 .	R54520 0.0	0.0	80	0.20	0.03	\sim	0.50	6.0 -0.8	? ;	;	:	:	:	:	:	:	:	3.0	:	0.1	0.4
0.15 0.03 0.015 0.25 0.25 2.0	R52400 0.0	0.0	8	0.25	0.03	0.015	08.0	; ;	;	0.12-	;	:	:	;	;	;	;	:	;	0.1	0.4
0.18 0.03 0.015 0.25 11 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06	R56320 0.0	0.	80	0.15	0.03	0.015	0.25	2.5-	2.0-	;	;	:	:	;	;	;	;	:	;	0.1	0.4
0.25 0.03 0.015 0.30 0.016 0.02 0.04 <	R52250 0.	0	90	0.18	0.03	0.015	0.20	71	; ; .N	0.12-	:	;	:	:	;	:	;	;	;	0.1	0.4
0.10 0.03 0.015 0.20 0.04 0.4 0.15 0.03 0.015 0.30 0.06 0.6 <	R53400 0.	0	80	0.25	0.03	0.015	0.30	;	O	;	;	-9.0	0.2-	;	:	:	:	;	;	0.1	0.4
0.15 0.03 0.015 0.30 0.04 0.4 -	R53413 0.	0	80	0.10	0.03	0.015	0.20	:	الن		0.04-	0.4 0.6	t :	:	;	;	:	:	;	0.1	0.4
0.25 0.05 0.015 0.30	R53414 0.	0	80	0.15	0.03	0.015	0:30	:	1	Q ^X	0.04-	0.4-	;	;	;	;	:	:	:	0.1	0.4
0.18 0.03 0.015 0.20 0.044 0.06 0.06 0.06 0.06 0.06 0.016 0.03 0.015 0.20 0.048 0.048 0.018 0.015 0.20 0.25 2.5- 2.0- 0.044 0.049 0.08 0.015 0.025 2.5- 2.0- 0.044 0.08 0.015 0.02 0.30 3.0- 7.5- 0.04 0.08 0.015 0.02 0.30 3.0- 7.5- 0.04 0.08 0.015 0.015 0.02 0.030 0.015 0.02 0.030 0.015 0.02 0.030 0.015 0.02 0.030 0.015 0.02 0.03 0.015 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	R53415 0.	0	80	0.25	0.05	0.015	0.30	:	;	5 ^k	0.06	0.4-	:	:	;	;	;	;	;	0.1	0.4
0.18 0.03 0.015 0.20 0.08 0.04 0.08 0.08 0.004 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.005 0.015 0.25 0.25 0.25 0.25 0.008 0.008 0.015 0.005 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.014 0.008 0.015 0.008 0.015 0.008 0.014 0.008 0.0	16/16H R52402 0	0	80.	0.25	0.03	0.015	0:30	:	:	0.04-	90:0	9.0	:	:	;	:	;	;	;	0.1	0.4
0.15 0.03 0.015 0.25 2.5 2.0 0.04 177. 0.17 0.03 0.02 0.30 3.0 7.5 175. 0.18 0.03 0.015 0.25 2.5 2.0 0.04 177. 0.19 0.03 0.015 0.40 2.5 175. 0.10 0.03 0.015 0.40 2.5 175. 0.11 0.03 0.015 0.40 2.5 175. 0.12 0.03 0.015 0.40 2.5 175. 0.13 0.03 0.015 0.40 2.5 175. 0.14 0.15 0.03 0.015 0.40 2.5 175. 0.15 0.03 0.015 0.40 2.5 175. 0.16 0.03 0.015 0.40 2.5 175. 0.17 0.03 0.015 0.40 2.5 175. 0.18 0.03 0.015 0.40 2.5 175. 0.19 0.19 0.10 0.10 0.10 0.10 0.10 0.10	R52252 0	0	80.	0.18	0.03	0.015	0.20	:	;	0.08	P.	;	:	;	;	;	;	:	;	0.1	9.0
0.12 0.03 0.02 0.30 3.0- 7.5- 0.04- 0.0 3.5- 5.5- 0.04 0.13 0.03 0.015 0.40 2.5- 0.04 0.14 0.03 0.015 0.40 2.5- 0.04 0.20 0.05 0.015 0.40 2.5- 3.5- 0.04 0.20 0.05 0.015 0.40 2.5- 3.5- 0.04 0.18 0.03 0.015 0.20 2.5 2.5- 3.5- 0.04 0.19 0.03 0.015 0.20 2.5 2.5- 3.5- 0.04 0.19 0.03 0.015 0.20 2.5- 0.03 0.04 0.19 0.03 0.015 0.20 2.5- 0.03 0.04 0.19 0.03 0.015 0.20 2.5- 3.5- 0.04 0.19 0.03 0.015 0.25 2.5- 2.0- 0.04 0.19 0.03 0.015 0.25 2.5- 2.0- 0.04 0.19 0.03 0.015 0.25 2.5- 3.5- 0.04 0.19 0.03 0.015 0.25 2.5- 3.5- 0.04 0.19 0.03 0.015 0.25 2.5- 3.5- 0.04 0.19 0.03 0.015 0.25 2.5- 3.5- 0.04 0.19 0.03 0.015 0.20 0.05 0.04 0.19 0.03 0.015 0.20 0.05 0.04 0.19 0.03 0.015 0.20 0.00 0.04 0.19 0.03 0.015 0.20 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.0	R56322 0	0	80.	0.15	0.03	0.015	0.25	2.5-	2.0-	0.04		*	:	:	;	;	:	:	;	0.1	0.4
0.12 0.03 0.02 0.30 3.0 7.5 0.04 3.5 5.5 0.08	R58640 0	0	.05	0.12	0.03	0.05	0.30	0.6. 0.0.	7.5-	8 :	;	8	3.5-	5.5-	;	3.5-	;	;	;	0.15	0.4
0.17 0.03 0.015 0.40 2.5 16.0 0.20 0.05 0.015 0.25 5.5- 3.5 16.0 0.20 0.05 0.015 0.40 5.5- 3.5- 0.04	R58645 C	0	.05	0.12	0.03	0.02	0.30	3.0-	7.5-	0.04-	;	3	5 to 4	5.7.6	:	3.5	;	:	:	0.15	0.4
0.13 0.03 0.0125 0.25 5.5- 3.5	R58210 0	0	.05	0.17	0.03	0.015	0.40	3.5	} ;	:	;	:	16.0	} :	;	} ;	2.2-	:	0.15-	0.1	0.4
0.20 0.05 0.015 0.40 5.5- 3.5- 0.04 ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	R56407 (0	90.0	0.13	0.03	0.0125	0.25	5.5-	3.5-	:	;	:		: ا	;	;	:	:	:	0.1	9.4
0.20 0.05 0.015 0.40 5.5- 3.5- 0.04 0.3 0.08 0.25 0.03 0.015 0.20 1- 0.08 0.08 0.18 0.03 0.015 0.20 1- 0.08 0.08 1- 0.08-	R56405 (0	90.0	0.20	0.05	0.015	0.40	5.5-	3.5-	0.04-	:	;	:	P	;	:	;	;	;	0.1	0.4
0.25 0.03 0.015 0.30 0.08 0.14 0.18 0.03 0.015 0.20 0.08 0.14 0.14 0.15 0.03 0.015 0.25 2.5- 2.0 0.08 0.14 0.13 0.03 0.0125 0.25 5.5- 3.5 0.08 0.14 0.14 0.25 0.015 0.30 0.04 0.14 0.08 0.015 0.30 0.015 0.30 0.015 0.30 0.015 0.30 0.015 0.30 0.015 0.008 0	R56403 (0	90.0	0.20	0.05	0.015	0.40	5.5-	3.5-	0.04-	;	0.3-	;			;	;	:	;	0.1	0.4
0.18 0.03 0.015 0.20 0.08 0.08 0.08 0.08 0.08 0.08	26/26H R52404 (0	90.0	0.25	0.03	0.015	0.30	;	: :	:	0.08-	:	;	:		;	;	:	;	0.1	9.4
0.15 0.03 0.015 0.25 2.5- 2.0 0.08 0.08- 0.14 0.13 0.03 0.0125 0.25 5.5- 3.5 0.08 0.08- 0.14 0.25 0.03 0.015 0.30 0.04 0.08 0.35 0.05 0.015 0.30 0.04 0.08 0.36 0.05 0.015 0.30 0.04 0.08	R52254 (0	90.0	0.18	0.03	0.015	0.20	;	;	:	0.08-	;	:	;	5	0	:	:	;	0.1	0.4
0.13 0.03 0.0125 0.25 5.5- 3.5 0.08 0.08 0.05 0.015 0.30 0.04 0.08 0.05 0.015 0.30 0.015 0.008 0.0	R56323 0	0	80.	0.15	0.03	0.015	0.25	2.5-	2.0-	:	0.08-	;	:	:	:	7C	:	;	:	0.1	0.4
0.25 0.03 0.015 0.30 0.04 0.08 0.08 0.05 0.015 0.30 0.04 0.08	R56404 0	0	90.	0.13	0.03	0.0125	0.25	. 5. 5. 5. 5. 7.	3.5	:	0.08-	;	:	:	:	9		:	:	0.1	0.4
0.35 0.05 0.015 0.30 0.04 0.08	R53530 C	0	90.0	0.25	0.03	0.015	0.30	? :	? ;	0.04-	;	;	:	;	0.20-	;	jČ ^N	;	;	0.1	0.4
	R53532 (0	80.0	0.35	0.05	0.015	0.30	;	:	0.04-	;	:	:	;	0.20-	;	O,		;	0.1	0.4

7
ŭ
~
7
:5
7
\sim
З
\circ
_
_
111
_
\equiv
ш
TAB
ᆮ

	M. Click to vi				Ø				Jercent ^{A,B,C,I}	D,E								
					7/1		Composition, Weight Percent A.B.C.D.E	on, Weight P	: 5									
					4	į											Other	Other
	Oxygen			Iron	•	X										Ш	Elements, Elements,	ements,
UNS Carbon, Number max.	range or max.	Nitrogen, max.	Nitrogen, Hydrogen, max.	range or max. /	Aluminum	Vanadium	Palladium	range or max. Aluminum Vanadium Palladium Buthenium		lybdenum	Nickel Molybdenum Chromium		Cobalt Zirconium Niobium	Niobium	Ë	Silicon	max. each	max. total
R55111 0.08	0.11	0.03	0.015	0.25	4.5-	-9:0	:	:		-9.0	:		-9:0	:	-9.0	-90.0	0.1.	0.4
R53442 0.08	0.25	0.03	0.015	0:30	5.5	4: :	8 0	0.02-	0.35-	1.2	0.1-	:	4.1	:	4: -	0.14	0.1	0.4
0.08	0.35	0.05	0.015	0:30	:	:	0.02	0.04	0.55	:	0.2	:	:	:	;	:	0.1	4.0
0.08	0.25	0.05	0.015	0.20-	4.0-	÷-	0.02	9	0.55	7	0.2	:	:	:	:	0.20-	0.1	0.4
8			2	08.0	5.0	2.1		P		2.5						0.40	-	5
R58450 0.04	0.16	0.03	0.015	0.03	:	:	:	⊘ `	1	:	:	:	:	42.0-	:	:	0.1	0.4
0.08	0.25	0.03	0.015	0.30	1.0-	;	;	;	K	;	;	:	;	? ;	;	:	0.1	0.4
0.08	0.20-	0.03	0.015	1.2-	3.5-	2.0-	:	;	S,		;	:	;	:	:	:	0.1	9.4

At minimum, the analysis of samples from the top and bottom of the ingot or of the product from the top and bottom of the ingotshall be completed and reported for all elements listed for the respective grade in this table.

Brinal product hydrogen shall be reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by negotiation with the manufacturer. ^C Single values are maximum. The percentage of titanium is determined by difference.

ow winds ME BRYC Section II Part B 202 alloys in small quantities and are inherent to the manufacturing process. In titanium these elements typically include aluminum, vanadium, tinf. offonium, molybdenum, nickel, boron, manganese, and tungsten.

E The purchaser may, in the written purchase order, request analysis for specific elements not listed in this specification. Dother elements need not be reported unless the concentration level is greater than 0.1 % each, or 0.4 % total. Other elements may not be reported unless the concentration level is greater than 0.1 % each, or 0.4 % total.

TABLE 2 Tensile Requirements^A

Grade	Tensile Strength, min		Yield Strength (0.2 % (Yield Strength (0.2 % Offset) min or range		Reduction of Area,	
Grade	ksi	MPa	ksi	MPa	or 2 inch min, %	min %	
1	35	240	20	138	24	30	
2	50	345	40	275	20	30	
2H ^{B,C}	58	400	40	275	20	30	
3	65	450	55	380	18	30	
4	80	550	70	483	15	25	
5	130	895	120	828	10	25	
6	120	828	115	795	10	25	
7	50	345	40	275	20	30	
7H ^{B,C}	58	400	40	275	20	30	
9	90	620	70	483	15	25	
9^D	90	620	70	483	12	30 25 25 25 30	
11	35	240	20	138	24	30	
12	70	483	50	345	18	25	
13	40	275	25	170	24	30	
14	60	410	40	275	20	30	
15	70	483	55	380	18	25	
16	50	345	40	275	20	30	
16H ^{B,C}	58	400	40	275	20 20 24	30	
17	35	240	20	138	24	30	
18	90	620	70	483	15	25	
18 ^D	90	620	70	483		20	
19 ^E	115	793	110	759	15 10 5	25	
19 ^F	135	930	130 to 159	897 to 1096	10	20	
19 ^{<i>G</i>}	165	1138	160 to 185	1104 to 1276		20	
20 ^E	115	793	110	759	15	25	
20 ^F	135	930	130 to 159	897 to 1096	10	20	
20 ^{<i>G</i>}	165	1138	160 to 185	1104 to 1276	5	20	
21 ^E	115	793	110	759	15	35	
21 ^F	140	966	130 to 159	897 to 1096	10	30	
21 ^{<i>G</i>}	170	1172	160 to 185	1104 to 1276	8	20	
23_	120	828	110	759	10	25	
23 ^D	120	828	110	759	7.5^{H} , 6.0^{I}	15	
24	130	895	120	828	10	25	
25	130	895	120	828	10	25	
26	50	345	40 40 20 70	275	20	30	
26H ^{B,C}	58	400	40	275	20	30	
27	35	240	20	138	24	30	
28	90	620	70	483	15	25	
28 ^D	90	620		483	12	20	
29	120	828	110	759	10	25	
29 ^D	120	828	110	759	7.5^{H} , 6.0^{I}	15	
30	50	345	40	275	20	30	
31	65	450	55	380	18	30	
32	100	689	85	586	10	25	
33	50	345	40	275	20	30	
34	65	450	55	380	18	30	
35	130	895	120	828	5	20	
36	65	450	60 to 95	410 to 655	10		
37	50	345	31	215	20	30	
38	130	895	115	794	10	25	

A These properties apply to longitudinal sections up to 3 in. [76 mm] in thickness with a maximum of 10 in.² [64.5 cm²].

1 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification. 5.1.2 Elements intentionally added to the melt must be identified, analyzed and reported in the chemical analysis.

^B Material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grade 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

^C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

^D Properties for material in transformed-beta condition.

E Properties for solution treated condition.

F Properties for solution treated and aged condition–Moderate strength (determined by aging temperature).

^G Properties for solution treated and aged condition–High strength (determined by aging temperature).

^H For product section or wall thickness values <1.0 in.

For product section or wall thickness values \geq 1.0 in.

TABLE 3 Permissible Variations in Product Analysis

	Product Analysis	Permissible Variation
Element	Limits, max or	in Product
	Range, %	Analysis
Aluminum	0.5 to 2.5	±0.20
Aluminum	2.5 to 6.75	±0.40
Carbon	0.10	+0.02
Chromium	0.1 to 0.2	±0.02
Chromium	5.5 to 6.5	±0.30
Cobalt	0.2 to 0.8	±0.05
Hydrogen	0.02	+0.002
Iron	0.80	+0.15
Iron	1.2 to 1.8	±0.20
Molybdenum	0.2 to 0.4	±0.03
Molybdenum	0.6 to 1.2	±0.15
Molybdenum	1.5 to 4.5	±0.20
Molybdenum	14.0 to 16.0	±0.50
Nickel	0.3 to 0.9	±0.05
Niobium	2.2 to 3.2	±0.15
Niobium	>30	±0.50
Nitrogen	0.05	+0.02
Oxygen	0.30	+0.03
Oxygen	0.31 to 0.40	±0.04
Palladium	0.01 to 0.02	±0.002
Palladium	0.04 to 0.08	±0.005
Palladium	0.12 to 0.25	±0.02
Ruthenium	0.02 to 0.04	±0.005
Ruthenium	0.04 to 0.06	±0.005
Ruthenium	0.08 to 0.14	±0.01
Silicon	0.06 to 0.40	±0.02
Tin	0.62.0 to 3.0	±0.15
Vanadium	0.6 to 4.5	±0.15
Vanadium	7.5 to 8.5	±0.40
Zirconium	0.6 to 1.4	±0.15
Residuals ^A (each)	0.15	+0.02

^A A residual is an element present in a metal or alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

- 5.2 When agreed upon by the producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
- 5.3 Product Analysis—Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The ingot manufacturer shall not ship material

which is outside the limits specified in Table 1 for the applicable grade. Product analysis limits shall be as specified in Table 3.

6. Mechanical Properties

- 6.1 Material supplied under this specification shall conform to the mechanical property requirements given in Table 2, as applicable.
- 6.2 Tension testing specimens are to be machined and tested in accordance with Test Methods E8/E8M. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in./min through the specified yield strength, and then increasing the rate so as to produce failure in approximately one additional minute.

7. Dimensions, Weight, and Permissible Variations

- 7.1 Size—Tolerances on titanium and titanium alloy material covered by this specification shall be as specified in Tables 4-11, as applicable.
- 7.2 Weight—Quantity extras are applicable to individual items of a grade, thickness, width, and length ordered at one time for shipment at one time to one destination. Different lengths of the same size and grade may be combined for quantity extra. The shipping weight of any item of an ordered size in any finish may exceed the theoretical weight by as much as 10%

8. Workmanship, Finish, and Appearance

8.1 Titanium and titanium alloy bar and billet shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which it is intended. Annealed material may be furnished as descaled, sandblasted, ground, or rough turned. The manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the material below the minimum permitted by the tolerance for the thickness ordered.

9. Sampling

9.1 Samples for chemical analyses shall be representative of the material being tested. The utmost care must be used in

 TABLE 4 Permissible Variations in Size for Titanium Bars—Hot-Worked Rounds and Squares

Specified Size, in. [mm]	Size Variations, in. [mm]	Out-of-Round ^A or Out-of-Square, ^B in. [mm]
1/4 to 5/16 [6.35 to 7,94], incl	±0.005 [0.13]	0.008 [0.20]
Over 5/16 to 7/16 77.94 to 11.11], incl	±0.006 [0.15]	0.009 [0.23]
Over 7/16 to % [11.11 to 15.88], incl	±0.007 [0.18]	0.010 [0.25]
Over 5/8 to 1/8 [15.88 to 22.22], incl	±0.008 [0.20]	0.012 [0.30]
Over % to 1 [22.22 to 25.40], incl	±0.009 [0.23]	0.013 [0.33]
Over 1 to 11/8 [25.40 to 28.58], incl	±0.010 [0.25]	0.015 [0.38]
Over 11/8 to 11/4 [28.58 to 31.75], incl	±0.011 [0.28]	0.016 [0.41]
Over 11/4 to 13/8 [31.75 to 34.92], incl	±0.012 [0.30]	0.018 [0.46]
Over 1% to 1½ [34.92 to 38.10], incl	±0.014 [0.36]	0.021 [0.53]
Over 1½ to 2 [38.10 to 50.80], incl	±1/64 [0.40]	0.023 [0.58]
Over 2 to 21/2 [50.80 to 63.50], incl	+1/32, -0 [0.79]	0.023 [0.58]
Over 21/2 to 31/2 [63.50 to 88.90], incl	+3/64, -0 [1.19]	0.035 [0.89]
Over 3½ to 4½ [88.90 to 114.30], incl	+1/16, -0 [1.59]	0.046 [1.17]

A Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same cross section.

^B Out-of-square section is the difference in the two dimensions at the same cross section of a square bar, each dimension being the distance between opposite faces.

TABLE 5 Permissible Variations in Size for Titanium Bars—Hot-Worked Hexagons and Octagons

Specified Sizes Between Opposite Sides, in. [mm]	Size Variation, in. [mm]	Maximum Difference, 3 Measurements, in. [mm]	
1/4 to 1/2 [6.35 to 12.70], incl	±0.007 [0.18]	0.011 [0.28]	
Over ½ to 1 [12.70 to 25.40], incl	±0.010 [0.25]	0.015 [0.38]	
Over 1 to 1½ [25.40 to 38.10], incl	±0.021 [0.53]	0.025 [0.64]	
Over 1½ to 2 [38.10 to 50.80], incl	±1/32 [0.79]	1/32 [0.79]	
Over 2 to 21/2 [50.80 to 63.50], incl	±3/64 [1.19]	3/64 [1.19]	
Over 21/2 to 31/2 [63.50 to 88.90], incl	±1/16 [1.59]	1/16 [1.59]	

TABLE 6 Permissible Variations in Size for Titanium Bars—Hot-Worked Flats

	Thickness Variation from Specified Thickness, in. [mm]			
Specified Widths, in. [mm]	1/8 to 1/2 in. [3.18 to 12.70 mm], incl	Over ½ to 1 in. [12.70 to 25.40 mm], incl	Over 1 to 2 in. [25.40 to 50.80 mm], incl	Width Variation in [mm]
To 1 [25.40], incl	±0.008 [0.20]	±0.010 [0.25]		+1/64, -1/64 [+0.40, -0.40]
Over 1 to 2 [25.40 to 50.80], incl	±0.012 [0.30]	±0.015 [0.38]	±1/32 [0.79]	+1/32, -1/32 [+0.79, -0.79]
Over 2 to 4 [50.80 to 101.60], incl	±0.015 [0.38]	±0.020 [0.51]	±1/32 [0.79]	+1/16, -1/32 [+1.59, -0.79]
Over 4 to 6 [101.60 to 152.40], incl	±0.015 [0.38]	±0.020 [0.51]	±1/32 [0.79]	+3/32 16 [+2.38, -1.59]
Over 6 to 8 [152.40 to 203.20], incl	±0.016 [0.41]	±0.025 [0.64]	±1/32 [0.79]	+½, -5/32 [+3.18, -3.97]
Over 8 to 10 [203.20 to 254.0], incl	±0.021 [0.53]	±0.031 [0.79]	±1/32 [0.79]	+5/32, -3/16 [+3.97,-4.76]

TABLE 7 Permissible Variations in Size for Titanium Bars—Cold-Finished Rounds

Specified Size, in. [mm]	Size Variation, ^A in. [mm]
Over ½ to 1 [12.70 to 25.40], excl	±0.002 [0.05]
1 to 11/2 [25.40 to 38.10], excl	±0.0025 [0.06]
1½ to 4 [38.10 to 101.60], incl	±0.003 [0.08]

A When it is necessary to heat treat or heat treat and pickle after cold finishing, because of special hardness or mechanical property requirements, tolerances are commonly double those shown in this table.

TABLE 8 Permissible Variations in Size for Titanium Bars—Cold-Finished Hexagons, Octagons, and Squares

Specified Size, in. [mm]	Size Variation, ^A in. [mm]
Over ½ to 1 [12.70 to 25.40], incl	+ 0, - 0.004 [-0.10]
Over 1 to 2 [25.40 to 50.80], incl	+ 0, - 0.006 [-0.16]
Over 2 to 3 [50.80 to 76.20], incl	+ 0, - 0.008 [-0.20]
Over 3 [76.20]	+ 0, - 0.010 [-0.25]

^A When it is necessary to heat treat or heat treat and pickle after cold finishing, because of special hardness or mechanical property requirements, tolerances are commonly double those shown in this table.

sampling titanium for chemical analysis because of its great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, in cutting samples for analysis, the operation should be carried out insofar as possible in a dust-free atmosphere. Chips should be collected from clean metal and tools should be clean and sharp. Samples for analysis should be stored in suitable containers.

9.2 At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from top and bottom ingot locations, or from product representative of the top and bottom of the ingot or from the opposite extremes of the product to be analyzed.

10. Methods of Chemical Analysis

10.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the

material or by agreement between the producer and the purchaser. Alternate techniques are discussed in Guide E2626.

11. Retests

11.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 14.

12. Referee Test and Analysis

12.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard test methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification. Check analysis limits apply.

13. Rounding-Off Procedure

13.1 For purposes of determining conformance with the specifications contained herein, an observed or a calculated value shall be rounded off to the nearest "unit" in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

14. Rejection

14.1 Material not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of notice of rejection, other instructions for disposition.

TABLE 9 Permissible Variations in Size for Titanium Bars—Cold-Finished Flats

Circ Middle or Thickness in Ironal	Width Variations ^A from Spec	Thiskness Variation Air Insul	
Size Width or Thickness, in. [mm]	1/4 in. [6.35 mm] and under	Over 1/4 in. [6.35 mm]	 Thickness Variation,^A in. [mm]
Over % to 1 [9.54 to 25.40], incl	±0.004 [0.10]	±0.002 [0.05]	±0.002 [0.05]
Over 1 to 2 [25.40 to 50.80], incl	±0.006 [0.15]	±0.003 [0.08]	±0.003 [0.08]
Over 2 to 3 [50.80 to 76.20], incl	±0.008 [0.20]	±0.004 [0.10]	±0.004 [0.10]
Over 3 to 4½ [76.20 to 114.30], incl	±0.010 [0.25]	±0.005 [0.13]	±0.005 [0.13]

A When it is necessary to heat treat or heat treat and pickle after cold finishing, because of special hardness or mechanical property requirements, tolerances are common double those shown in this table.

TABLE 10 Permissible Variations in Length for Titanium Bars—Hot Worked and Cold Finished

Charified Circa all Change in [mm]	Lengt	Length Variations, in. [mm]		
Specified Sizes, all Shapes, in. [mm]	To 12 ft [3.66 m], incl	Over 12 to 25 ft [3.66 to 7.62 m], incl		
To 2 [50.80], incl	+½, -0 [+12.70]	+3/4, -0 [+19.05]		
Over 2 to 4 [50.80 to 101.60], incl	+3/4, -0 [+19.05]	+1, -0 [+25.40]		
Over 4 to 6 [101.60 to 152.40], incl	+1, -0 [+25.40]	+11/4, -0 [+31.75]		
Over 6 to 9 [152.40 to 228.60], incl	+11/4, -0 [+31.75]	+1½, -0 [+38.10]		
Over 9 to 12 [228.60 to 304.80], incl	+1½, -0 [+38.10]	+2, -0 [+50.80]		
	Machine Cut After Machine Straightening	.		
To 3 [76.20], incl	+1/8, -0 [+3.18]	+3/6, -0 [+4.76]		
Over 3 to 6 [76.20 to 152.40], incl	+ 3/16, -0 [+4.76]	+74, -0 [+6.35]		
Over 6 to 9 [152.40 to 228.60], incl	+1/4, -0 [+6.35]	1 5/16, -0 [+7.94]		
Over 9 to 12 [228.60 to 304.80], incl	+1/2, -0 [+12.70]	+½, -0 [+12.70]		

TABLE 11 Camber for Hot-Worked and Cold-Finished Titanium Bars for Machining

Note 1—Camber is the greatest deviation of a side from a straight line. Measurement is taken on the concave side of the bar with a straightedge. Unless otherwise specified, hot-worked and gold-finished bars for machining purposes are furnished machine straightened to the tolerances specified in this table.

	Tolerance
Hot worked	1/2 in. [3.18 mm] in any 5 ft [1524 mm], but may not exceed
	1/8 × No. of ft in length
	5
Cold finished	1/16 in. [1,59 mm] in any 5 ft [1524 mm], but may not exceed
	1/16 × No. of ft in length
	5

15. Certification

15.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results of chemical analysis, tensile, and other tests meet the requirements of this specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification. The report shall include the manufacturing method (hot rolled, forged, extruded or cold worked).

16. Packaging and Package Marking

16.1 Marking—Unless otherwise specified, individual pieces or bundles shall have attached a metal tag stamped with

the purchase order number, the specification number, the nominal size and manufacturer's heat number, or shall be boxed and the box marked with the same information. In addition to the above identification, bars 1 in. [25.4 mm] and over in diameter or distance between parallel sides shall be stamped with the heat number within 2 in. [50.8 mm] of one end

16.2 Packaging—Unless otherwise specified, material purchased under this specification may be packaged for shipment either by boxing, crating, single boarding, burlapping, or with no protection in accordance with the manufacturer's standard practice.

17. Keywords

17.1 bar; billet; titanium; titanium alloy

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER AND COPPER ALLOY SEAMLESS CONDENSER AND HEAT EXCHANGER TUBES WITH INTEGRAL FINS

SB-359/SB-359M

(Identical with ASTM Specification B359/B359M-18 except that certification and mill test reports have been made mandatory.)

Specification for Copper and Copper-Alloy Seamless Condenser and Heat Exchanger Tubes With Integral Fins

1. Scope

- 1.1 This specification establishes the requirements for seamless copper and copper alloy tubing on which the external or internal surface, or both, has been modified by a cold-forming process to produce an integral enhanced surface for improved heat transfer.
- 1.2 The tubes are typically used in surface condensers, evaporators, and heat exchangers.
- 1.3 The product shall be produced of the following coppers or copper alloys, as specified in the ordering information.

Copper or Copper Alloy UNS No.	Type of Metal
C10100 C10200 C10300 C10800 C12000 C12200 C14200 C15630 C19200 C23000 C44300 C44400 C44550 C60800 C68700 C70600 C70620	Oxygen-free electronic Oxygen-free without residual deoxidants Oxygen-free, extra low phosphorus Oxygen-free, low phosphorus DLP Phosphorized, low residual phosphorus (See Note 1) DHP, Phosphorized, high residual phosphorus (See Note 1) DPA Phosphorized arsenical (See Note 1) Nickel Phosphorus Phosphorized, 1 % iron Red Brass Admiralty Metal Types B, C, and D Aluminum Bronze Aluminum Brass Type B 95-5 Copper-Nickel 90-10 Copper-Nickel 90-10 Copper-Nickel (Modified for Welding)
ASMENORMOCS	DHP, Phosphorized, high residual phosphorus (See Note 1) DPA Phosphorized arsenical (See Note 1) Nickel Phosphorus Phosphorized, 1 % iron Red Brass Admiralty Metal Types B, C, and D Aluminum Bronze Aluminum Brass Type B 95-5 Copper-Nickel 90-10 Copper-Nickel (Modified for Welding)

ess Con ins	denser and Heat
Copper or Copper Alloy UNS No.	Type of Metal
C71000 C71500 C71520 C72200	80-20 Copper-Nickel Type A 70-30 Copper-Nickel 70-30 Copper-Nickel (Modified for Welding) Copper-Nickel

Note 1—Designations listed in Classification B224.

- 1.4 *Units*—The values stated in either in-pound units or SI units are to be regarded separately as the standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems could result in nonconformance with the specification.
- 1.5 Product produced in accordance with the Supplementary Requirements section for military applications shall be produced only to the inch-pound system of this specification.
- The following safety hazard caveat pertains only to the test methods described in this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Sections 1, 12 and 18.
- 1.7 (Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.)

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B154 Test Method for Mercurous Nitrate Test for Copper Alloys
- B170 Specification for Oxygen-Free Electrolytic Copper— Refinery Shapes
- B224 Classification of Coppers
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- D4727/D4727M Specification for Corrugated and Solid Fiberboard Sheet Stock (Container Grade) and Cut Shapes
- E3 Guide for Preparation of Metallographic Specimens
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E2575 Standard Test Method for Determination of Oxygen in Copper and Copper Alloys (Withdrawn 2017)
- 2.2 ASME Standard:
- ASME Boiler and Pressure Vessel Code

3. General Requirements

- 3.1 Product described by this specification shall typically be furnished with unenhanced ends, but may be furnished with enhanced ends or stripped ends from which the O.D. enhancement has been removed by machining.
- 3.1.1 The enhanced sections of the tube in the as-fabricated temper are in the cold-worked condition produced by the enhancing operation.
- 3.1.2 The unenhanced sections of the tube shall be in the annealed or light drawn temper, and shall be suitable for rolling-in operations.

4. Terminology


- 4.1 For the definitions of terms related to copper and copper alloys, refer to Terminology B846.
 - 4.2 Definitions of Terms Specific to This Standard:
- 4.2.1 tube condenser, n—see tube, heat exchanger in Terminology B846.

5. Ordering Information

- 5.1 Include the following information when placing orders under this specification:
 - 5.1.1 ASTM designation and year of issue,
- 5.1.2 Copper or Copper Alloy UNS No. designation (see 1.3 and Section 7),
 - 5.1.3 Temper (see Section 8),
- 5.1.4 Dimensions: diameter, wall thickness, length and location of unenhanced surfaces and total tube length. Configuration of enhanced surfaces shall be as agreed upon between the manufacturer and the purchaser. (See Figs. 1 and 2).
- 5.1.5 Whether the product is to be subsequently welded for UNS Alloy C72200, UNS Alloys C70620 and C71520 are welding grades of C70600 and C71500,
 - 5.1.6 Quantity, and
 - 5.1.7 If product is for the U.S. government.
- 5.2 The following options are available and shall be specified at the time of placing the order, when required:
 - 5.2.1 When heat identification or traceability is required,
 - 5.2.2 DELETED
 - 5.2.3 Flattening test (see 11.2),
 - 5.2.4 DELETED
 - 5.2.5 DELETED
 - 5.2.6 Stress relief annealing (see 9.4), when required.
- 5.3 In addition, when material is purchased for agencies of the U.S. government, it shall conform to the requirements specified in the Supplementary Requirements section, when specified in the contract or purchase order.

6. Materials and Manufacture

- 6.1 Materials:
- 6.1.1 The material of manufacture shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification for the applicable alloy and temper.

- Outside Diameter of **Unenhanced Section**
- Outside Diameter over the **Enhanced Section**
- Root diameter of the Enhanced
- Inside Diameter of the Enhanced Section
- Wall Thickness of the Unenhanced Section
- Wall Thickness of the **Enhanced Section**
- **Transition Taper**

C Section II Part B 202 ance Note 1—The outside diameter over the enhanced section will not normally exceed the outside diameter of the unanhanced section.

FIG. 1 Enhanced Tube Nomenclature

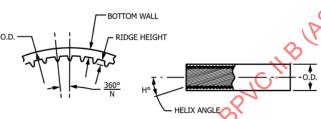


FIG. 2 Inside Enhanced Tube Nomenclature (Internal Groove Tube)

6.2 Manufacture:

- 6.2.1 The seamless copper and copper alloy tubing shall have the internal or external surface, or both, modified by cold forming process to produce an integral enhanced surface for improved heat transfer.
 - 6.2.2 The cut ends of the tubes shall be deburred.
- 6.2.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished
- 6.2.4 When heat identification is required, the purchaser shall specify the details desired in the purchase order or contract.

7. Chemical Composition

- 7.1 The tubes shall conform to the chemical requirements specified in Table 1 for copper or copper alloy specified in the ordering information.
- 7.2 These specification limits do not preclude the presence of unnamed elements. By agreement between the manufacturer, or supplier and purchaser, analysis may be required and limits established for elements not specified.
- 72.1 For alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of the results for all specified elements and 100 % for the particular alloy.

7.2.2 For alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of the results of specified elements analyzed and 100 %.

8. Temper

- 8.1 Tempers, as defined in Classification B601 and this document, are as follows:
- 8.1.1 The tube, after enhancing, shall be supplied, as specified, in the annealed (O61), heavy anneal (O62), or as-fabricated temper.
- 8.1.1.1 The enhanced sections of tubes in the as-fabricated temper are in the cold-worked condition produced by the fabricating operation.
- 8.1.1.2 The unenhanced sections of tubes in the asfabricated temper are either in the temper of the tube prior to enhancing (annealed (O61), heavy anneal (O62), or light drawn (H55)) or when cold working of the unenhanced portions is performed as a part of the enhancing operations they shall be in the light drawn (H55) temper. In either case, the unenhanced surfaces shall be suitable for rolling-in operations.
- 8.1.1.3 Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700, furnished in the as-fabricated temper, shall be stress-relief annealed after enhancing and be capable of meeting the requirements of the stress-corrosion

TABLE 1 Chemical Composition

							Compositio	n %					
Copper or Copper Alloy UNS No.	Copper	Tin	Alumi- num	Nickel, incl Cobalt	Lead, max	Iron	· ·	Manganese	Arsenic	Antimony	Phosphorus	Chromium	Other Named Ele- ments
C10100	99.99 min ^{A,B}	0.0002		0.0010	0.0005	0.0010	0.0001	0.00005	0.0005	0.0004 max	0.0003 max		Te 0.0002
		max		max		max	max	max	max				
C10200	99.95 min ^{C,D,E}												0
C10300	99.95 min ^{C,F,G}										0.001-0.005		0
C10800	99.95 min ^{C,F,G}										0.005-0.012		
C12000	99.90 min ^C										0.004-0.012		
C12200	99.9 min ^C										0.015-0.040		11.
C14200	99.4 min ^C								0.15-0.50		0.015-0.040		
C15630	remainder ^{C, H}			0.60-0.90'							0.015-0.040		
C19200	98.5 min ^J					0.8 - 1.2	0.20 max				0.01-0.04		
C23000	84.0–86.0 ^{<i>J</i>}				0.05	0.05 max	remainde	r				9	
C44300	70.0–73.0 ^K	0.9-1.2			0.07	0.06 max	remainde	r	0.02-0.06)	
C44400	70.0–73.0 ^K	0.9-1.2			0.07	0.06 max	remainde	r		0.02-0.10			
C44500	70.0–73.0 ^K	0.9-1.2			0.07	0.06 max	remainde	r			0.02-0.10		
C60800	remainder ^{C,H}		5.0-6.5		0.10	0.10 max			0.02-0.35		0		
C68700	76.0–79.0 ^{C,H}		1.8-2.5		0.07	0.06 max	remainde	r	0.02-0.06	/	V		
C70400	remainder ^{C,H}			4.8-6.2	0.05	1.3-1.7	1.0 max	0.30-0.8		N/			
C70600	remainder ^{C,H}			9.0-11.0	0.05	1.0-1.8	1.0 max	1.0 max		all.			
C70620	86.5 min ^{C,H}			9.0–11.0	0.02	1.0–1.8	0.5 max	1.0 max		S	0.02 max		0.05 C max 0.02 S max
C71000	remainder ^{C,H,L}			19.0-23.0	0.05	1.0 max	1.0 max	1.0 max	\	. Y			
C71500	remainder ^{C,H}			29.0-33.0	0.05	0.40-1.0	1.0 max		.0				
C71520	65.0 min ^{<i>G,H</i>}			29.0–33.0	0.02			1.0 max	11:50		0.02 max		0.05 C max 0.02 S max
C72200	remainder ^{C,J,L}			15.0–18.0	0.05	0.50-1.0	1.0 max	1.0 max	ر		• • •	0.30-0.70	0.03 Si 0.03 Ti

A This value is exclusive of silver and shall be determined by difference of "impurity total" from 100 % "Impurity total" is defined as the sum of sulfur, silver, lead, tin, bismuth, arsenic, antimony, iron, nickel, zinc, phosphorus, selenium, tellurium, manganese, cadmium, and oxygen present in the sample.

susceptibility requirement in Section 12. Stress-relief annealing of alloys not listed in this paragraph is not required unless specified by customer.

9. Grain Size of Annealed Temper

- 9.1 Samples of annealed-temper (O61, O62) tubes selected for test shall be subjected to microscopical examination at a magnification of 75 diameters and shall show uniform and complete recrystallization.
- 9.2 Average grain size shall be within limits agreed upon between the manufacturer and purchaser.
- 9.3 The requirements of this section do not apply to product shipped in the as-fabricated temper.
- 9.4 Some annealed tubes, when subjected to aggressive environments, may be subject to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is recommended that

tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700 be subjected to a stress relieving thermal treatment subsequent to straightening. When required, this must be specified on the purchase order or contract. Tolerance for roundness and length, and the condition for straightness, for tube so ordered, shall be to the requirements agreed upon between the manufacturer and purchaser.

10. Mechanical Property Requirements

- 10.1 Tensile Property Requirements:
- 10.1.1 Prior to the enhancing operation, the tube shall conform to the requirements for tensile properties prescribed in Table 2.
- 10.1.2 Alternatively, for those enhancing operations that include cold working of the unenhanced portions of the tube integral to the process, the unenhanced portions shall conform to the H55 as prescribed in Table 2 for the UNS alloys identified.

B Other impurity maximums for C10100 shall be: bismuth and cadmium 0.0001 each, oxygen 0.0005, selenium 0.0003, silver 0.0025, and sulfur 0.0015.

^C Copper (including silver).

^D Oxygen in C10200 shall be 0.0010 max.

^E Cu is determined by the difference in the impurity total and 100 %.

F Copper plus sum of named elements shall be 99.95 % min.

^G Includes P.

HCu + Sum of Named Elements, 99.5 % min.

¹ Not including Co.

^JCu + Sum of Named Elements, 99.8 % min.

^KCu + Sum of Named Elements, 99.6 % min.

Let When the product is for subsequent welding applications, and so specified in the contract or purchase order, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

TABLE 2 Tensile Requirements

Copper or Copper Alloy UNS No.	Temper Designation		Tensile Strength, min	Yield Strength, ^A min
_	Standard	Former	ksi ^B [MPa]	ksi ^B [MPa]
C10100, C10200, C10300, C10800, C12000, C12200, C14200	O61	annealed	30 [205]	9 [62] ^C
C10100, C10200, C10300, C10800, C12000, C12200, C14200	O62	heavy anneal	30 [205]	6.5 [45] ^C
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H55	light-drawn	36 [250]	30 [205]
C15630	O61	annealed	30 [205]	8 [55]
C19200	O61	annealed	38 [260]	12 [85]
C23000	O61	annealed	40 [275]	12 [85]
C44300, C44400, C44500	O61	annealed	45 [310]	15 [105]
C60800	O61	annealed	50 [345]	19 [130]
C68700	O61	annealed	50 [345]	18 [125]
C70400	O61	annealed	38 [260]	12 [85]
C70600	O61	annealed	40 [275]	15[105]
C70620	O61	annealed	40 [275]	
C71000	O61	annealed	45 [310]	16 [110]
C71500	O61	annealed	52 [360]	18 [125]
C71520	O61	annealed	52 [360]	18 [125]
C72200	O61	annealed	45 [310]	16 [110]

^A At 0.5 % extension under load.

11. Performance Requirements

- 11.1 Expansion Test—The unenhanced sections of all tubes selected for test shall conform to the requirements prescribed in Table 3 when tested in accordance with Test Method B153. The expanded tube shall show no cracking or rupture visible to the unaided eye.
 - 11.2 Flattening Test:
- 11.2.1 When specified in the contract or purchase order, the flattening test described in the Test Method B968/B968M shall be performed.
- 11.2.1.1 During inspection, the flattened areas of the test-specimen shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

12. Other Requirements

- 12.1 Mercurous Nitrate Test or Ammonia Vapor Test:
- 12.1.1 The mercurous nitrate or amaionia vapor test is required only for Copper Alloys UNS Vos. C23000, C44300, C44400, C44500, C60800, and C68700. (Warning—Mercury

is a definite health hazard and therefore equipment for the detection and removal of mercury vapor produced in volitization is recommended. The use of rubber gloves in testing is advisable.)

- 12.1.2 The test specimens, cut 6 in. [150 mm] in length from the enhanced section shall withstand, without cracking, an immersion in the standard mercurous nitrate solution in Test Method B154 or immersion in the ammonia vapor solution as defined in Test Method B858.
- 12.1.3 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, the manufacturer shall have the option of using either the mercurous nitrate test or the ammonia vapor test. If agreement cannot be reached, the mercurous nitrate test standard shall be utilized.
- 12.1.4 If the ammonia vapor test is selected, the appropriate risk level pH value for the test solution shall be agreed upon by the manufacturer and purchaser, or alternately, if the purchaser defers to the manufacturer's expertise for the selection of the test pH value, the minimum value selected shall be 9.8.

TABLE 3 Expansion Requirements

Temper Designation Standard Former		Copper or Copper Alloy UNS No.	Expansion of Tube Outside Diameter in Percent of Original Outside Diameter
061	annealed	C10100, C10200, C10300, C10800, C12000, C12200, C14200	30
O62	heavy anneal	C10100, C10200, C10300, C10800, C12000, C12200, C14200	30
H55 *	light-drawn	C10100, C10200, C10300, C10800, C12000, C12200, C14200	20
O 61	annealed	C15630	40
061	annealed	C19200	30
O61	annealed	C23000	20
O61	annealed	C44300, C44400, C44500	20
O61	annealed	C60800	20
O61	annealed	C68700	20
O61	annealed	C70400	30
O61	annealed	C70600, C70620	30
O61	annealed	C71000	30
O61	annealed	C71500, C71520	30
O61	annealed	C72200	30

^B ksi = 1000 psi.

 $^{^{\}it C}$ Light straightening operation is permitted.

12.2 Non-Destructive Testing:

- 12.2.1 Each tube shall be subjected to a non-destructive test. Tubes shall normally be tested in the as-fabricated temper but, at the option of the manufacturer, may be tested in the annealed temper. Unless otherwise specified, the manufacturer shall have the option of testing the tubes by one of the following test methods:
 - 12.2.1.1 Non-Destructive Examination for Defects:
- (1) The tubes shall be passed through an eddy-current testing unit adjusted per the requirements of 18.3.3 to provide information on the suitability of the tube for the intended application.
- (2) Tubes causing irrelevant signals because of moisture, soil, and like effects may be reconditioned and retested. Such tubes shall be considered to conform, should they not cause output signals beyond the acceptable limits.
- (3) Tubes causing irrelevant signals because of visible and identifiable handling marks may be retested by the hydrostatic test prescribed in 12.2.1.2 or the pneumatic test prescribed in 12.2.1.3.
- (4) Unless otherwise agreed, tubes meeting the requirements of either test shall be considered to conform if the tube dimensions are within the prescribed limits.
- 12.2.1.2 *Hydrostatic Test*—Each tube, without showing evidence of leakage, shall withstand an internal hydrostatic pressure sufficient to subject the material in the unenhanced region of the tube to a fiber stress of 7000 psi [48 MPa], as determined by the following equation for thin hollow cylinders under tension:

$$P = \frac{2St}{(D - 0.8t)}$$

where:

P = hydrostatic pressure, psig, [MPa],

t = thickness of tube wall, in., [mm],

D = outside diameter of tube, in., [mm], and

S = allowable fiber stress of the material psi [MPa].

The tube need not be tested at a hydrostatic pressure over 1000 psi [6.9 MPa] unless so specified.

12.2.1.3 *Pneumatic Test*—Each tube, after enhancing, shall withstand a minimum internal air pressure of 250 psig [1.7 MPa] for 5 s and any evidence of leakage shall be cause for rejection. The test method used shall permit easy visual detection of any leakage, such as having the tube under water, or by the pressure differential method.

13. Dimensions, Mass, and Permissible Variations

13.1 Tube Diameter:

13.1.1 The outside diameter of the unenhanced sections shall not vary by more than the amount shown in Table 4 for

TABLE 4 Diameter Tolerances

Specified Diameter,	Tolerance,
in. [mm]	in. [mm]
0.500 [12.0] and under	±0.002 [0.050]
Over 0.500-0.740 [12.0-18.0], incl	±0.0025 [0.063]
Over 0.740-1.000 [18.0-25.0], incl	±0.003 [0.076]
Over 1.000	As agreed upon

the appropriate dimensional system, as measured by "go" and "no go" ring gages. The diameter over the enhanced sections shall not exceed the diameter of the plain sections involved, as determined by a "go" ring gage, unless otherwise specified.

13.2 Wall Thickness—No tube shall be less than the minimum thickness specified in the plain sections or in the enhanced sections.

13.3 Length:

- 13.3.1 The length of the tubes shall not be less than that specified when measured at a temperature of 68 °F [20 °C], but may exceed the specified value by the amounts shown in Table 5, for the appropriate dimensional system.
- 13.3.2 The length of the unenhanced end(s), as measured from the tube end to the first fin disk impression, shall not be less than that specified, but may exceed the specified value by ½ in. [13 mm].
- 13.4 Squareness of Cut—The departure from squareness of the end of any tube shall not exceed the tolerance stated in Table 6, for the appropriate dimensional system.

14. Workmanship, Finish, and Appearance

- 14.1 Roundness; straightness, uniformity of wall thickness, and condition of inner and outer surfaces of the tube shall be such as to make it suitable for the intended application. Unless otherwise specified on the purchase order, the cut ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.
- 14.2 Annealed-temper (O61, O62) or stress-relieved tubes shall be clean and smooth, but may have a superficial, dull iridescent film on both the inside and outside surface. Tubes in the as-fabricated temper may have a superficial film of finning lubricant on the surfaces.

15. Sampling

- 15.1 The lot size, portion size, and selection of sample pieces shall be as follows:
- 15.1.1 Lot Size—600 tubes or 10 000 lb [4550 kg] or fraction of either, whichever constitutes the greater weight.
- 15.1.2 *Portion Size*—Sections from two individual lengths of finished product.
- 15.1.2.1 Samples taken for purposes of test shall be selected in a manner that will correctly represent the material furnished and avoid needless destruction of finished material when samples representative of the material are available from other sources.
 - 15.2 Chemical Composition:
- 15.2.1 Samples for determining composition shall be taken in accordance with Practice E255. The minimum weight of the composite sample shall be 150 g.

TABLE 5 Length Tolerances

Specified Length, ft [mm]	Tolerance, all Plus, in. [mm]
Up to 20 [6000], incl	1/8 [3.2]
Over 20-30 [6000-10 000], incl	5/32 [4.0]
Over 30-60 [10 000-18 000], incl	1/4 [6.4]

TABLE 6 Squareness of Cut

Specified Outside Diameter, in. [mm]	Tolerance, in. [mm]
Up to 5/8 [16.0], incl	0.010 [0.25]
Over 5/8 [16.0]	0.016 in./in. [0.016 mm/mm] of
	diameter

- 15.2.2 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of sampling at the time castings are poured or sampling the semi-finished product. When samples are taken during the course of manufacture, sampling of the finished product is not required and the minimum number of samples to be taken shall be as follows:
- 15.2.2.1 When samples are taken at the time castings are poured, one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 15.2.2.2 When samples are taken from the semi-finished product, one sample shall be taken to represent each 10 000 lb [4550 kg] or fraction thereof, except that not more than one sample shall be required per piece.

16. Number of Tests and Retest

- 16.1 Tests:
- 16.1.1 *Chemical Analysis*—Chemical composition shall be determined as the arithmetic mean of at least two replicate determinations of each specified element.
- 16.1.2 *Grain Size*—For annealed temper only, two tubes shall be selected from each lot and each tube shall be tested to verify the requirements of Section 9.
 - 16.1.3 Tensile Property Requirements:
- 16.1.3.1 Two tubes shall be selected from each lot prior to enhancement for those enhancing operations that provide no cold working to the unenhanced portions of the tube.
- 16.1.3.2 For product that is cold worked in the unenhanced portions of the tube integral to the manufacturing process, two samples shall be taken from the unenhanced portions of two tubes from each lot of finished product.
- 16.1.3.3 Each tube sampled, by the designated method above, shall be tested to verify the requirements of Section 10.
 - 16.1.4 Expansion Test:
- 16.1.4.1 Two tubes shall be selected from each lot prior to enhancement for those enhancing operations that provide no cold working to the unenhanced portions of the tube.
- 16.1.4.2 For product that is cold worked in the unenhanced portions of the tube integral to the manufacturing process, two samples shall be taken from the unenhanced portions of two tubes from each lot of finished product.
- 16.1.4.3 Each tube sampled, by the designated method above, shall be tested to verify the requirements in 11.1.
- 16.5 Flattening Test—One tube shall be selected from each lot prior to enhancement and each tube shall be tested to verify the requirements of 11.2.
- Two tubes shall be selected from each lot after enhancement and stress relief anneal. Each tube shall be tested to verify the requirements of 12.1.2.
 - 16.2 Retest:

- 16.2.1 One retest shall be permitted for each requirement under the same conditions stated for the original test.
- 16.2.2 Should the result of a retest fail to conform with the requirements of the product specification, the material shall be rejected.

17. Specimen Preparation

- 17.1 Chemical Analysis:
- 17.1.1 Sample preparation shall be in accordance with Practice E255.
- 17.1.2 Preparation of the analytical test specimen shall be the responsibility of the reporting laboratory.
 - 17.2 Grain Size:
- 17.2.1 Specimens for the microscopic examination shall be prepared in accordance with Guide E3
- 17.2.2 The surface of the specimen shall approximate a radial longitudinal section of the tube.
 - 17.3 Expansion Test Specimen.
- 17.3.1 Test Specimens shall conform to the requirements of the Specimen Preparation Section of Test Method B153.
 - 17.4 Flattening Test (B968/B968M):
- 17.4.1 A test specimen shall be cut to a length that will allow the tube to be flattened at three (3) places along the length, with each flattened area to be at least 2 in. [50 mm] in length. When the temper is other than annealed, the sample may be annealed prior to testing.
 - Mercurous Nitrate or Ammonia Vapor Test:
- 17.5.1 Specimens for the mercurous nitrate test shall be 6 in. [150 mm] in length and shall be taken from the enhanced and unenhanced portion of each sample.
 - 17.6 Tension Tests:
- 17.6.1 Tension test specimens shall be of the full section of the tube and shall conform to the requirements of the Test Specimen section of Test Methods E8/E8M, unless the limitations of the testing machine precludes the use of such specimen, in which case test specimens conforming to specimen No. 1 of Fig. 13 in Test Methods E8/E8M shall be used.
- 17.6.2 Whenever test results are obtained from full-sized and machined specimens and they differ, the results from the full-sized specimen shall prevail for determining conformance to the specification.
- 17.6.3 Although a considerable range of testing speed is permissible, the range of stressing to the yield strength should not exceed 100 ksi/min [690 MPa/min]. Above the yield strength the movement per minute of the testing machine head under load shall not exceed 0.5 in./in. [0.5 mm/mm] of the gage length, or distance between grips for a full section specimen.

18. Test Methods

- 18.1 Chemical Composition:
- 18.1.1 The methods used for routine determination of specification compliance shall be at the discretion of the reporting laboratory.
- 18.1.2 In case of disagreement concerning chemical composition of Copper Alloy UNS No. C10100, refer to the Test Method Section of Specification B170.

- 18.2 Chemical composition for all other alloys, in case of disagreement, shall be determined as follows:
- 18.2.1 Test methods for the determination of elements resulting from contractual or purchase order agreements shall be as agreed upon between the manufacturer or supplier and purchaser. (Refer to Table 1, Footnote D).

Element	Range	Test Method
Copper	99.75 to 99.99	E53, Electrolytic
Copper	70.0 to 99.75	E478, Electrolytic
Tin	0.9 to 1.2	E478, Photometric
Aluminum	1.8 to 6.5	E478
Nickel, inc. Cobalt	4.8 to 33.0	E478, Gravimetric
Lead	0.05 to 0.10	E478, Atomic Absorption
Iron	0.04 to 1.8	E478
Zinc	14.0 to 30.0	E478, Titrimetric
Zinc	to 1.0	E478, Atomic Absorption
Manganese	to 1.0	E62
Arsenic	0.02 to 0.5	E62
Antimony	0.02 to 0.1	E62
Phosphorus	0.001 to 0.04	E62
Chromium	0.30 to 0.70	E118
Oxygen	0.0005 to 0.0010	E2575

18.3 The material shall conform to the physical requirements and mechanical properties enumerated in this specification when tested in accordance with the following methods:

Test	ASTM Designation
Grain Size	E112
Expansion (pin test)	B153
Mercurous Nitrate	B154
Tension	E8/E8M
Eddy-Current Test	E243
Ammonia Vapor Test	B858
Flattening Test	B968/B968M

- 18.3.1 *Grain Size*—The intercept method shall be used to determine grain size in case of dispute.
- 18.3.2 *Test Method B154*—(Warning—This test method involves the use of a mercury compound that is classified as a health hazard in use and disposal.)
- 18.3.3 Eddy-Current—Testing shall follow the procedures of Practice E243, except that the sensitivity settings of the test equipment shall be adjusted using the hole sizes specified in Table 7 of this specification. The manufacturer may use a smaller drilled hole standard if desired. The holes for sensitivity adjustment shall be drilled radially through an unenhanced portion of the standard tube or through a length of prime surface tube of the same size, temper, and composition. By mutual agreement between the manufacturer or supplier and purchaser, discontinuities of other contours may be used on the calibration standard.
- 18.3.3.1 Tubes that do not actuate the signaling device on the eddy current tester shall be considered as conforming to the requirements of this test.

19. Significance of Numerical Limits

19.1) For purposes of determining compliance with the specified limits of the properties listed in the following table,

TABLE 7 Diameter of Drilled Holes

Nominal Diameter Over Enhanced	Diameter of
or Unenhanced Section,	Drilled Holes,
in. [mm]	in. [mm]
1/4 -5/8 [6.0-16.0], incl	0.042 [1.07]-No. 58 drill
Over 5% -1 [16.0-25.0], incl	0.046 [1.17]-No. 56 drill

an observed or calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

	C
Property	Rounded Unit for Observed or Calculated Value
Chemical Composition Tensile and Yield Strength Grain Size:	Nearest unit in the last right hand place of figures Nearest ksi [Nearest 5 MPa]
Up to 0.055 mm, incl., Over 0.055 mm Expansion	Nearest multiple of 0.005 mm to the nearest 0.010 mm Nearest 1 %

20. Inspection

- 20.1 The manufacturer shall inspect and make the necessary tests to verify that the tubes furnished conform to the requirements of this specification.
- 20.2 Should the purchaser additionally elect to perform his own inspection, the manufacturer shall, without charge, afford the inspector all reasonable facilities to determine that the tubes being furnished conform to the requirements of this specification.
- 20.2.1 Except for chemical analysis, all tests and inspections shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere with the operation of the facility.
- 20.3 When automated finishing and inspection equipment is available at a facility, purchaser and manufacturer may, by mutuahagreement, accomplish the final inspection simultaneously.

21. Rejection and Rehearing

- 21.1 Rejection:
- 21.1.1 Material that fails to conform to the requirements of this specification when inspected or tested by the purchaser, or purchasers agent, may be rejected.
- 21.1.2 Rejection shall be reported to the manufacturer, or supplier, promptly and in writing.
- 21.1.3 In case of dissatisfaction with results of the test upon which rejection is based, the manufacturer, or supplier, may make claim for a rehearing.
- 21.2 Rehearing—As a result of product rejection, the manufacturer, or supplier, may make claim for a retest to be conducted by the manufacturer, or supplier, and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification. Alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

22. Certification

22.1 A manufacturer's certificate of compliance shall be furnished to the purchaser stating that samples representing each lot have been tested and inspected in accordance with this specification and the requirements have been met.

22.2 DELETED

23. Mill Test Report

23.1 The manufacturer or supplier shall furnish to the purchaser a manufacturer's test report showing the results of the required tests.

24. Packaging and Package Marking

- 24.1 The material shall be separated by alloy, size, and temper. It shall be packaged in such a manner as to ensure acceptance by common carrier for transportation and to afford adequate protection from normal hazards of transportation.
- 24.2 Each shipping unit shall be legibly marked with the name of supplier, purchase order number, metal or alloy designation, temper, size, total length or piece count, or both.

24.3 The specification number shall be shown when specified.

25. Keywords

25.1 condenser; copper; copper alloys; heat exchanger; integral fins; seamless; tube; UNS No. C10100; UNS No. C10200; UNS No. C10300; UNS No. C10800; UNS No. C12000; UNS No. C12200; UNS No. C14200; UNS No. C15630; UNS No. C19200; UNS No. C23000; UNS No. C44300; UNS No. C44400; UNS No. C44500; UNS No. C60800; UNS No. C68700; UNS No. C70600; UNS No. C70620; UNS No. C710000; UNS No. C71520; UNS No. C72200

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

- S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.
 - S1.1.1 ASTM Standards:

B900 Practice for Packaging of Copper and Copper-Alloy Mill-Products for U. S. Government Agencies

D4727/D4727M Specification for Corrugated and Solid Fiberboard Sheet Stock (Container Grade) and Cut Shapes

S1.1.2 Military Standards:

MIL-STD-271 Nondestructive Testing Requirements for Metals

MIL-STD-2035 Nondestructive Testing Acceptance Criteria S1.1.3 *Military Specifications:*

MIL-L-19140 Lumber and Plywood, Fire Retardant Treated

S2. Standard Government Tube Dimensions

- S2.1 Number of Fins—Tube shall have 19 + 1, -0 fins per inch as averaged over any 12 in. length.
- S2.2 Fin Height—The fin height shall be 0.050 in., minimum.
- S2.3 Dimensions Table S2.1 lists standard tube diameters and wall thickness.
- S2.4 Root Diameter Tolerances—A tolerance of +0.007 in. and -0.003 in. on the root diameter shall be permitted.
- S2. *Straightness Tolerance*—The straightness tolerances of Table S2.2 shall apply to as-finned tube only.
- \$2.6 The tolerances for outside diameter of the unenhanced ends, specified in Table 4, shall be all negative.

S3. Sampling

- S3.1 Lot Definition—For sampling purposes, a lot shall consist of lengths of tubes of the same composition, temper, size, heat treated at the same time in the same furnace, offered for delivery at the same time and identifiable by mill records as originating from one or more heats (melts), as necessary, which conform to the chemical requirements. The total weight of the lot shall not exceed 10 000 pounds.
- S3.2 Visual and Dimensional Examination—From each lot, a representative sample of tubes shall be selected in accordance with Table S3.1 for inspection to the requirements of Section 13 Dimensions and Permissible Variations and Section 14 Workmanship, Finish and Appearance of this specification and Section 2 of this supplement.
- S3.3 Destructive Tests—From each lot a representative sample for flattening, flaring and grain size tests as specified in this specification shall be selected in accordance with Table S3.2
- S3.4 Chemical Analysis—Samples shall be taken at the time the metal is cast. One sample shall be taken for each group of castings poured from the same source of molten metal. Analysis of all metal compromising the lot shall be performed.

S4. Nondestructive Testing

- S4.1 *Eddy Current and Pressure Tests*—Both eddy current and pressure tests are required.
- S4.2 *Eddy Current Procedure*—An eddy current test shall be performed which meets the requirements specified in this specification and MIL-STD-271.
- S4.2.1 Liquid Penetrant Inspection—Liquid penetrant inspection in accordance with MIL-STD-271 shall be performed on the outside surface and the end surfaces of the smooth ends of the tubes to inspect the area of the tubes missed by the eddy current test due to "end effect." Alternatively, the area of the

TABLE S2.1 Dimensions of Integrally Finned Condenser Tubes

Nominal		Unenhand	ced Section	Enhanced Section		
Outside Diameter,	Wall Thickness,	Specified Outside	Wall Thickness,	Specified Root	Wall Thickness,	
in.	in.	Diameter, in.	min., in.	Diameter, in.	min., in.	
1/2	0.032	0.500	0.049	0.375	0.032	
1/2	0.042	0.500	0.058	0.375	0.042	
1/2	0.049	0.500	0.065	0.375	0.049	
5/8	0.028	0.625	0.042	0.500	0.028	
5/8	0.035	0.625	0.049	0.500	0.035	
5/8	0.049	0.625	0.065	0.500	0.049	
5/8	0.058	0.625	0.072	0.500	0.058	
5/8	0.065	0.625	0.083	0.500	0.065	
3/4	0.028	0.750	0.049	0.625	0.028	
3/4	0.035	0.750	0.052	0.625	0.035	
3/4	0.042	0.750	0.058	0.625	0.042	
3/4	0.049	0.750	0.065	0.625	0.049	
3/4	0.058	0.750	0.075	0.625	0.058	
3/4	0.065	0.750	0.083	0.625	0.065	
3/4	0.072	0.750	0.086	0.625	0.072	
3/4	0.083	0.750	0.095	0.625	0.083	
3/4	0.095	0.750	0.109	0.625	0.095	
7/8	0.035	0.875	0.052	0.750	0.035	
7/8	0.042	0.875	0.058	0.750	0.042	
7/8	0.049	0.875	0.065	0.750	0.049	
7/8	0.058	0.875	0.075	0.750	0.058	
7/8	0.065	0.875	0.083	0.750	0.065	
7/8	0.072	0.875	0.086	0.750	0.072	
7/8	0.083	0.875	0.095	0.750	0.083	
1	0.042	1.000	0.058	0.875	0.042	
1	0.049	1.000	0.065	0.875	0.049	
1	0.058	1.000	0.075	0.875	0.058	
1	0.065	1.000	0.083	0.875	0.065	
1	0.072	1.000	0.086	0.875	0.072	
1	0.083	1.000	0.095	0.875	0.083	

TABLE S2.2 Permissible Variations in Straightness of Tube

Length, ft	Maximum Curvature (depth of arc), in.
Over 3 to 6 inclusive	3/16
Over 6 to 8 inclusive	5/16
Over 8 to 10 inclusive	1/2
Over 10	½ in. in any 10 ft portion
	of the total length

TABLE S3.1 Sampling for Visual and Dimensional Examinations

Lot Size	Sample Size
2–13	All
14–150	13
151–280	20
281–500	29
501–1200	34
1201–3200	42

tube ends missed may be cropped off and discarded. Liquid penetrant acceptance criteria shall be in accordance with MIL-STD-2035.

S5. Cleaning

S5.1 Cleanness—Contaminants, such as sulfur or sulfurbearing compounds or carbon or carbon compounds from lubricants used in forming, machining, or other processing and marking materials used for in-process identification, shall be removed from the material prior to any heat treatment. Tubing shall be acid or abrasive cleaned. Traces of acid or abrasive shall be removed following cleaning.

TABLE S3.2 Sampling for Destructive Tests

	Lot Size	Sample Size
	1–25	2
	26–50	3
	51–90	4
	91–150	5
	151–280	6
	281–500	7
	501-1200	8
	1201–3200	9
_		

S6. Preparation for Delivery

S6.1 *Military Agencies*—Material shall be separated by size, and composition and shall be preserved and packaged level A or C, packed level A, B, or C, as specified in the purchase order or contract in accordance with the requirements of Practice B900. In addition when specified in the contract or purchase order the following shall apply:

S6.1.1 Fire Retardant Requirements:

S6.1.1.1 *Lumber and Plywood*—All lumber and plywood including laminated veneer materials used in shipping container and pallet construction, members, blocking, bracing, and reinforcing shall be fire retardant treated materials conforming to MIL-L-19140 as follows:

Level A and B	Type II—weather resistant
	Category I—general use
Level C	Type I—non weather resistant
	Category I—general use

enter and of the sent and of a sent and of a

SPECIFICATION FOR SEAMLESS AND WELDED UNALLOYED TITANIUM AND TITANIUM ALLOY WELDING FITTINGS

SB-363

(Identical with ASTM Specification B363-14 except that certification and a test report have been made mandatory, and Supplementary Requirement S5 is mandatory.)

Supplementary Requirement S5 is mandatory.)

Control of the supplementary Requirement S5 is mandatory.)

Standard Specification for Seamless and Welded Unalloyed Titanium and Titanium Alloy Welding Fittings

1. Scope

- 1.1 This specification covers fittings intended for general corrosion-resisting and elevated-temperature services, factory made from unalloyed titanium and titanium alloys. The term welding fittings applies to butt-welding parts such as 45° and 90° elbows, 180° returns, caps, tees, reducers, lap-joint stub ends, and other types.
- 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- B265 Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate
- B338 Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers
- B348 Specification for Titanium and Titanium Alloy Bars and Billets
- B367 Specification for Titanium and Titanium Alloy Castings
- B381 Specification for Titanium and Titanium Alloy Forgings
- B600 Guide for Descaling and Cleaning Titanium and Titanium Alloy Surfaces
- B861 Specification for Titanium and Titanium Alloy Seamless Pipe

- B862 Specification for Titanium and Titanium Allow Welded Pipe
- 2.2 ANSI Standards:
- ASME/ANSI B16.5 Pipe Flanges and Flanged Fittings ASME/ANSI B16.9 Wrought Steel Buit-Welding Fittings ASME/ANSI B16.11 Forged Fittings Socket Welding and Threaded

ASME/ANSI B36.19 Stainless Steel Pipe

- 2.3 Manufacturers' Standardization Society of the Valve and Fittings Industry Standards?
 - MSS SP-25 Standard Marking System for Valves, Fittings, Flanges and Unions
 - MSS SP-43 Standard Practice for Light Weight Stainless Steel Butt-Welding Fittings
 - MSS SP-97 Standard Integrally Reinforced Forged Branch Outlet Fittings — Socket Welding, Threaded, and Butt-Welding Ends
 - MSS SP-119 Standard Factory-Made Wrought Belled End Socket-Welding Fittings
- 2.4 ASME Standard:
 - ASME Boiler and Pressure Vessel Code Sections VIII Division 1 Pressure Vessels and Section IX

3. Ordering Information

- 3.1 Orders for material to this specification shall include the following information as required:
 - 3.1.1 Quantity,
 - 3.1.2 Grade number,
 - 3.1.3 Pipe size and schedule,
 - 3.1.4 Method of manufacture and finish,

- 3.1.5 Restrictive chemistry, if desired,
- 3.1.6 Nondestructive tests,
- 3.1.7 Packaging,
- 3.1.8 Inspection and required reports,
- 3.1.9 Appropriate fittings specifications for dimensions only, and
 - 3.1.10 Class, as required.

4. Material

4.1 The titanium for welding fittings may consist of billets, bars, plates, castings, seamless or welded pipe or tube that conforms to all the requirements for manufacturing process, testing, chemical composition, and mechanical properties prescribed in Specifications B861 and B862 for the particular grades referred to in Table 1.

5. Manufacture

- 5.1 Forging, forming, or shaping operations may be performed by hammering, pressing, piercing, extruding, upsetting, rolling, bending, fusion welding, or by a combination of two or more of these operations. The forming procedure shall be so applied that it will not produce injurious defects in the fittings.
- 5.2 Fittings containing welded seams or other joints made by fusion welding shall comply with the following provision:
- 5.2.1 Welded by welders, welding operators, and welding procedures qualified under the provisions of Section IX of the ASME Boiler and Pressure Vessel Code.
 - 5.2.2 Supplementary requirement S5 is mandatory.

TABLE 2 Permissible Variations in Product Analysis

Element	Product Analysis Limits, max or Range, %	Permissible Variation in Product Analysis		
Aluminum	0.5 to 2.5	±0.20		
Aluminum	2.5 to 6.75	±0.40		
Carbon	0.10	+0.02		
Chromium	0.1 to 0.2	±0.02		
Chromium	5.5 to 6.5	±0.30		
Hydrogen	0.02	+0.002		
Iron	0.80	+0.15		
Iron	1.2 to 1.8	±0.20		
Molybdenum	0.2 to 0.4	±0.03		
Molybdenum	1.5 to 4.5	±0.20		
Molybdenum	14.0 to 16.0	±0.50		
Nickel	0.3 to 0.9	±0.05		
Niobium	2.2 to 3.2	±0.13		
Niobium	>30	±0.50		
Nitrogen	0.05	+0.02		
Oxygen	0.30	+0.03		
Oxygen	0.31 to 0.40	±0.04		
Palladium	0.01 to 0.02	±0.002		
Palladium	0.04 to 0.08	±0.005		
Palladium	0.12 to 0.25	±0.02		
Ruthenium	0.02 to 0.04	±0.005		
Ruthenium	0.04 to 0.06	±0.005		
Ruthenium	0.08 to 0.14	±0.01		
Silicon	0.06 to 0.40	±0.02		
Vanadium	2.0 to 4.5	±0.15		
Vanadium	7.5 to 8.5	±0.40		
Zirconium	3.5 to 4.5	±0.20		
Residuals ^A (each)	0.15	+0.02		

A A residual is an element present in a metal or alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, ziroonjum, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

TABLE 1 Permissible Raw Materials

O al a 4		Poduct and ASTM Designation				
Grade ^A	Pipe	Tube	Plate	Bar and Billet	Casting	Forging
WPT1	B861/B862 Grade 1	B338 Grade 1	B265 Grade 1	B348 Grade 1	B367 Grade C1	B381 Grade F-1
NPT2	B861/B862 Grade 2	B338 Grade 2	B265 Grade 2	B348 Grade 2	B367 Grade C2	B381 Grade F-2
NPT2H	B861/B862 Grade 2H	B338 Grade 2H	B265 Grade 2H	B348 Grade 2H		B381 Grade F-2H
VPT3	B861/B862 Grade 3	B338 Grade 3	B265 Grade 3	B348 Grade 3	B367 Grade C3	B381 Grade F-3
VPT7	B861/B862 Grade 7	B338 Grade 7	B265 Grade 7	B348 Grade 7	B367 Grade C7	B381 Grade F-7
VPT7H	B861/B862 Grade 7H	B338 Grade 7H	B265 Grade 7H	B348 Grade 7H		B381 Grade F-7H
VPT9	B861/B862 Grade 9	B338 Grade 9	B265 Grade 9	B348 Grade 9		B381 Grade F-9
VPT11	B861/B862 Grade 11	B338 Grade 11	B265 Grade 11	B348 Grade 11	B367 Grade C11	B381 Grade F-11
VPT12	B861/B862 Grade 12	B338 Grade 12	B265 Grade 12	B348 Grade 12		B381 Grade F-12
VPT13	B861/B862 Grade 13	B338 Grade 13	B265 Grade 13	B348 Grade 13		B381 Grade F-13
VPT14	B861/B862 Grade 14	B338 Grade 14	B265 Grade 14	B348 Grade 14		B381 Grade F-14
VPT15	B861/B862 Grade 15	B338 Grade 15	B265 Grade 15	B348 Grade 15		B381 Grade F-15
/PT16	B861/B862 Grade 16	B338 Grade 16	B265 Grade 16	B348 Grade 16		B381 Grade F-16
VPT16H	B861/B862 Grade 16H	B338 Grade 16H	B265 Grade 16H	B348 Grade 16H		B381 Grade F-16H
VPT17	B861/B862 Grade 17	B338 Grade 17	B265 Grade 17	B348 Grade 17		B381 Grade F-17
VPT18	B861/B862 Grade 18	B338 Grade 18	B265 Grade 18	B348 Grade 18		B381 Grade F-18
VPT19	B861/B862 Grade 19		B265 Grade 19	B348 Grade 19		B381 Grade F-19
VPT20	B861/B862 Grade 20		B265 Grade 20	B348 Grade 20		B381 Grade F-20
VPT21	B861/B862 Grade 21		B265 Grade 21	B348 Grade 21		B381 Grade F-21
VPT23	B861/B862 Grade 23		B265 Grade 23	B348 Grade 23		B381 Grade F-23
/PT24 🔪 🔪	→B861/B862 Grade 24		B265 Grade 24	B348 Grade 24		B381 Grade F-24
VPT25_() *	B861/B862 Grade 25		B265 Grade 25	B348 Grade 25		B381 Grade F-25
VPT26	B861/B862 Grade 26	B338 Grade 26	B265 Grade 26	B348 Grade 26		B381 Grade F-26
VPT26H	B861/B862 Grade 26H	B338 Grade 26H	B265 Grade 26H	B348 Grade 26H		B381 Grade F-26F
VPT27	B861/B862 Grade 27	B338 Grade 27	B265 Grade 27	B348 Grade 27		B381 Grade F-27
VPT28	B861/B862 Grade 28	B338 Grade 28	B265 Grade 28	B348 Grade 28		B381 Grade F-28
VPT33	B861/B862 Grade 33	B338 Grade 33	B265 Grade 33	B348 Grade 33		B381 Grade F-33
VPT34	B861/B862 Grade 34	B338 Grade 34	B265 Grade 34	B348 Grade 34		B381 Grade F-34
VPT35	B861/B862 Grade 35	B338 Grade 35	B265 Grade 35	B348 Grade 35		B381 Grade F-35
VPT36	B861/B862 Grade 36	B338 Grade 36	B265 Grade 36	B348 Grade 36		B381 Grade F-36
VPT37	B861/B862 Grade 37	B338 Grade 37	B265 Grade 37	B348 Grade 37		B381 Grade F-37
VPT38	B861/B862 Grade 38	B338 Grade 38	B265 Grade 38	B348 Grade 38	•••	B381 Grade F-38

^A When fittings are of welded construction, the symbol shown shall be supplemented by the letter "W."

Note 1—Annealing of the unalloyed and alloyed grades of titanium covered by this specification is for the purpose of assuring uniform properties.

6. Chemical Composition

- 6.1 The titanium shall conform to the requirements as to chemical composition prescribed in the specifications referred to in Table 1.
- 6.2 The chemical analysis of the components of the fittings need not be reported unless required by agreement between the manufacturer and the purchaser and so specified on the order.

7. Product Analysis

- 7.1 Product analysis may be made by the purchaser from one or more fittings in each lot.
- Note 2—Definition of the term "lot" shall be as agreed upon between the manufacturer and the purchaser.
- 7.2 Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between different laboratories in the measurement of chemical content. The manufacturer shall not ship material that is outside the limits specified for the applicable grade. Product analysis tolerances shall be as specified in Table 2.

8. Tensile Properties

- 8.1 The titanium shall conform to the requirements as to tensile properties prescribed in the specifications referred to in Table 1.
- 8.2 Tensile tests of the finished fittings need not be reported unless required by agreement between the manufacturer and the purchaser and so stated in the order.

9. Workmanship, Finish, and Appearance

- 9.1 For fittings covered by ASME/ANSI B16.5, ASME/ANSI B16.9 or ASME/ANSI B16.11, MSS SP-43, MSS SP-97, or MSS SP-119 or for fittings to be used with pipe ordered to ASME/ANSI B36.19, or as attachments such as caps, plugs, etc., the sizes, shapes, and dimensions of the fittings shall be as specified in those standards.
- 9.2 The fittings shall have a workmanlike finish and shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which the fittings are intended. Minor defects may be removed by grinding, providing the wall thickness is not decreased to less than the minimum thickness, and further provided that the ground-out area shall be faired out.

10. Hydrostatic Tests

10.1 All fittings shall be capable of withstanding without failure, leakage, or impairment of their serviceability, a test pressure prescribed in the specifications for the pipe or tubing

with which the fitting is recommended to be used (see Table 1). For sizes outside the capability for hydrostatic testing, consideration should be given to radiographic inspection in accordance with Section S2 under Supplementary Requirements.

10.2 Hydrostatic tests need not be performed or reported, unless required by agreement between the manufacturer and the purchaser and so stated on the order.

11. Inspection and Certification

- 11.1 Inspection by the purchaser prior to shipment shall be specified in the purchase order.
- 11.2 The manufacturer shall afford the inspector, without charge, all reasonable facilities to satisfy him that the fittings are being furnished in accordance with this specification. Any tests (except product analysis) and inspection agreed upon and so stated in the purchase order shall be made at the place of manufacture, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 11.3 Certification—The manufacturer shall furnish the purchaser a certificate that the finished fittings conform to the requirements of this specification. The certification shall include a report of the test results.

Note 3—It is recognized that a sensitive surface inspection of the welds or base metal, or both, is advisable for some services. See Supplementary Requirements.

12. Rejection

12.1 Material not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within 3 weeks of notice of rejection, other instructions for disposition.

13. Product Marking

13.1 The manufacturer's name or trademark, the schedule number, material, and size shall be stamped (Note 4), stenciled, electroetched, or otherwise suitably marked on each fitting. In addition, each fitting shall be marked with the identification symbol and suffix for the respective specification listed in Table 1. On wall thicknesses thinner than Schedule 40S, no stamps or other indented markings shall be used. When the size does not permit complete marking, identification marks may be omitted in the sequence shown in MSS SP-25.

Note 4—When steel stamps are used, they should be applied prior to heat treatment and care should be taken so that the marking is not deep enough to cause cracks or to reduce the wall thickness of the fitting below the minimum allowed.

14. Keywords

14.1 fittings; seamless fittings; titanium; titanium alloy; welded fittings

SUPPLEMENTARY REQUIREMENTS

Supplementary requirements shall not be considered unless specified in the order, in which event the test shall be made by the manufacturer at the purchaser's expense.

S1. Surface Inspection

S1. Liquid penetrant inspection may be performed on all outside-diameter surfaces of the fittings and inside-diameter surfaces where practicable. An acceptance standard may be agreed upon between the manufacturer and the purchaser prior to the acceptance of the order.

S2. Radiographic Inspections of Welds

S2.1 Radiographic inspection may be performed on all weldments of the fittings in accordance with paragraph UW-51, Section VIII of the ASME Boiler and Pressure Vessel Code.

S3. Stress Relief Heat Treatment

- S3.1 The stress-relieving treatment shall consist of holding the fitting at a minimum temperature of 1100° F for not less than $\frac{1}{2}$ h/in. of thickness.
- S3.2 Minimum time at temperature is 15 min. All parts stress relieved shall be subsequently cleaned and free of oxide scale contamination (see Guide B600).

S4. Certification of Material Incorporated in the Manufacture of the Fittings

S4.1 All material incorporated within the fitting shall be documented and shall be in accordance with the applicable documents in Table 1.

S5. Certification of Fittings for use in ASME BPV Construction, Section VIII

S5.1 All fittings welded with filler metal intended for applications under the rules of Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code shall conform to the following: Manufacturer of such products are limited to manufacturers holding the appropriate ASME Certificate of Authorization and Code Certification Mark. In addition to conforming to this specification, the manufacturer shall meet all applicable requirements of Section VIII, Division 1 of the Code. The materials used to fabricate the fitting shall conform to ASME SB Specifications. The product shall be subject to all applicable requirements of Section VIII, Division 1 of the Code, including welding, heat treatment, nondestructive examination, authorized inspections at point of manufacture, and application of the Code Certification Mark.

The applicable ASME Partial Data Report Form signed by an Authorized Inspector and a certified mill test report shall be furnished for each lot of fittings. The term "lot" applies to all fittings of the same mill heat of material, size, and wall thickness, which are heat treated, if applicable, in one furnace charge. Each fitting shall be marked in such a manner to identify each such piece with the "lot" and the certified mill test report.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR FACTORY-MADE WROUGHT NICKEL AND NICKEL ALLOY FITTINGS SB-2-

SB-366/SB-366M (Identical with ASTM Specification B366/B366M-17 except that listed heat treatments are mandatory in para. 5.3; area sing story in the full click to view the full and complete fu changes have been made to the heat treatment temperature of alloys UNS N06025 and UNS N06210 in Table 3; and in section 7, fittings made from forging stock are required to be tested and meet specification mechanical properties.)

Specification for Factory-Made Wrought Nickel and Nickel Alloy Fittings

1. Scope

- 1.1 This specification covers wrought welding fittings for pressure piping, factory-made from nickel and nickel alloys. Threaded fittings as covered in ASME B16.11 are also covered by this specification. The term welding applies to butt-welding or socket-welding parts such as 45° and 90° elbows, 180° bends, caps, tees, reducers, lap-joint stub ends, and other types, as covered by ASME B16.9, ASME B16.11, MSS SP-43, MSS SP-95, and MSS SP-97.
- 1.1.1 Several grades of nickel and nickel alloys are included in this specification. Grades are designated with a prefix, WP or CR, based on the applicable ASME or MSS dimensional and rating standards.
- 1.1.2 Class WP fittings are those manufactured to the requirements of ASME B16.9, B16.11.
- 1.1.3 For each of the WP nickel and nickel alloy grades, several classes of fittings are covered to indicate whether seamless or welded construction was utilized. Class designations are also utilized to indicate the nondestructive test method and extent of nondestructive examination (NDE). Table 1 is general summary of the fitting classes applicable to all WP grades of nickel and nickel alloys covered by this specification. There are no classes for the CR grades. Specific requirements are covered elsewhere.
- 1.2 This specification does not apply to cast welding fittings.
- 1.3 Optional supplementary requirements are provided for fittings where a greater degree of examination is desired. These supplementary requirements call for additional tests. When desired, one or more of these may be specified in the order.
- 1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.
- 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the Warld Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B127 Specification for Nickel-Copper Alloy (UNS N04400) Plate, Sheet, and Strip
- B160 Specification for Nickel Rod and Bar
- B161 Specification for Nickel Seamless Pipe and Tube
- B162 Specification for Nickel Plate, Sheet, and Strip
- B163 Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes
- B164 Specification for Nickel-Copper Alloy Rod, Bar, and Wire
- B165 Specification for Nickel-Copper Alloy (UNS N04400) Seamless Pipe and Tube
- B166 Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Rod, Bar, and Wire
- B167 Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Seamless Pipe and Tube

TABLE 1 Fitting Classes for WP Grades

Nondestructive Examination
None
Radiography or Ultrasonic
Radiography
Ultrasonic

- B168 Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Plate, Sheet, and Strip
- B333 Specification for Nickel-Molybdenum Alloy Plate, Sheet, and Strip
- B335 Specification for Nickel-Molybdenum Alloy Rod
- B407 Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube
- B408 Specification for Nickel-Iron-Chromium Alloy Rod and Bar
- B409 Specification for Nickel-Iron-Chromium Alloy Plate, Sheet, and Strip
- B423 Specification for Nickel-Iron-Chromium-Molybdenum-Copper Alloy (UNS N08825, N08221, and N06845) Seamless Pipe and Tube
- B424 Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS N06845) Plate, Sheet, and Strip
- B425 Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS N06845) Rod and Bar
- B434 Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, UNS N10242) Plate, Sheet, and Strip
- B435 Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and Strip
- B443 Specification for Nickel-Chromium-Molybdenum-Columbium Alloy(UNS N06625) and Nickel-Chromium-Molybdenum-SiliconAlloy (UNS N06219) Plate, Sheet, and Strip
- B444 Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube
- B446 Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar
- B462 Specification for Forged or Rolled UNS N06030, UNS N06022, UNS N06035, UNS N06200, UNS N06059, UNS N10362, UNS N06686, UNS N08020, UNS N08367, UNS N10276, UNS N10665, UNS N10675, UNS N10629, UNS N08031, UNS N06045, UNS N06025, UNS R20033 Alloy Pipe Flanges, Forged Fittings
- B463 Specification for UNS N08020 Alloy Plate, Sheet, and Strip

- B464/B464M Specification for Welded UNS N08020 Alloy Pipe
- B468 Specification for Welded UNS N08020 Alloy Tubes
 B472 Specification for Nickel Alloy Billets and Bars for Reforging
- B473 Specification for UNS N08020, UNS N08024, and UNS N08026 Nickel Alloy Bar and Wire
- B511 Specification for Nickel-Iron-Chromium-Silicon Alloy Bars and Shapes
- B512 Specification for Nickel-Chromium-Silicon Alloy (UNS N08330) Billets and Bars
- B514 Specification for Welded Nickel-Iron-Chromium Alloy Pipe
- B515 Specification for Welded UNS N08120, UNS N08800, UNS N08810, and UNS N08811 Alloy Tubes
- B516 Specification for Welded Nickel-Chromium-Iron Alloy (UNS N06600, UNS N06601, UNS N06603, UNS N06025, UNS N06045, UNS N06690, and UNS N06693) Tubes
- B517 Specification for Welded Nickel-Chromium-Iron-Alloy (UNS N06600, UNS N06603, UNS N06025, and UNS N06045) Pipe
- B535 Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Seamless Pipe and Tube
- B536 Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Plate, Sheet, and Strip B564 Specification for Nickel Alloy Forgings
- B572 Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Rod
- B573 Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, N10242) Rod
- B574 Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod
- B575 Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip
- B581 Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Rod
- B582 Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Plate, Sheet, and Strip
- B619/B619M Specification for Welded Nickel and Nickel-Cobalt Alloy Pipe
- B622 Specification for Seamless Nickel and Nickel-Cobalt Alloy Pipe and Tube
- B625 Specification for UNS N08925, UNS N08031, UNS N08932, UNS N08926, UNS N08354, UNS N08830, and UNS R20033 Plate, Sheet, and Strip
- B626 Specification for Welded Nickel and Nickel-Cobalt Alloy Tube
- B649 Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08354, and

- UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire
- B673 Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Pipe
- B674 Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Tube
- B675 Specification for UNS N08367 Welded Pipe
- B676 Specification for UNS N08367 Welded Tube
- B677 Specification for UNS N08925, UNS N08354, and UNS N08926 Seamless Pipe and Tube
- B688 Specification for Chromium-Nickel-Molybdenum-Iron (UNS N08366 and UNS N08367) Plate, Sheet, and Strip
- B690 Specification for Iron-Nickel-Chromium-Molybdenum Alloys (UNS N08366 and UNS N08367) Seamless Pipe and Tube
- B691 Specification for Iron-Nickel-Chromium-Molybdenum Alloys (UNS N08366 and UNS N08367) Rod, Bar, and Wire
- B704 Specification for Welded UNS N06625, UNS N06219 and UNS N08825 Alloy Tubes
- B705 Specification for Nickel-Alloy (UNS N06625, N06219 and N08825) Welded Pipe
- B710 Specification for Nickel-Iron-Chromium-Silicon Alloy Welded Pipe
- B729 Specification for Seamless UNS N08020, UNS N08026, and UNS N08024 Nickel-Alloy Pipe and Tube
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- B899 Terminology Relating to Non-ferrous Metals and Alloys
- E165 Practice for Liquid Penetrant Examination for General Industry
- E1916 Guide for Identification of Mixed Lots of Metals
- 2.2 ASME Standards:
- B16.9 Wrought Steel Butt Welding Fitting
- B16.11 Forged Steel Fittings, Socket-Welding and Threaded
- 2.3 Manufacturers Standardization Society of the Valve and Fittings Industry Standards:
 - MSS SP-25 Standard Marking Systems for Valves, Fittings, Flanges, and Unions
 - MSS SP-43 Standard Practice for Light Weight Stainless Steel Butt Welding Fittings
 - MSS SP-95 Sewage (D) Nipples and Bull Plugs
 - MSS SP-97 Forged Carbon Steel Branch Outlet Fittings-Socket Welding, Threaded and Butt Welding Ends
 - Boiler and Pressure Vessel Code, Section VIII, Division 1 Pressure Vessels and Section IX, Welding Qualifica-

- 2.4 AWS Standards:
- A5.11 Specification for Nickel and Nickel Alloy Covered Welding Electrodes
- A5.14 Specification for Nickel and Nickel-Alloy Bare Welding Rods and Electrodes
- 2.5 *ASNT*:
- SNT-TC-1A Recommended Practice for Nondestructive Testing Personnel Qualification and Certification

3. Terminology

3.1 Terms defined in Terminology B899 shall apply unless otherwise defined in this standard.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 4.1.1 Quantity, number of fittings of each kind,
- 4.1.2 Description of Fitting and Nominal Dimensions (standard or special),
 - 4.1.3 Alloy Composition,
 - 4.1.4 Condition (temper) if applicable.
- 4.1.5 If neither grade of N06625 is specified, Grade 1 will be supplied.
- 4.1.6 For each Grade of WP fittings ordered, a Class should also be indicated.
- 4.1.6.1 Grade **CR** fittings shall not be substituted for fittings ordered to Grade **WP**, but Grade **WP** may be substituted for Grade **CR**.
- 4.1.6.2 For all Classes of WP fittings, unless S, W, WX, or WU is specified by the purchaser, any class may be furnished at the option of the supplier.
- 4.1.7 *Purchaser Inspection*—State which tests or inspections are to be witnessed (Section 10),
- 4.1.8 Samples for Product (Check Analysis)—State whether samples should be furnished (6.3),
 - 4.1.9 Test reports (Section 12), and
 - 4.1.10 Supplementary requirements, if any.

5. Materials and Manufacture

- 5.1 *Material*—The material for wrought welding fittings may consist of forgings, rods, bars, plates, sheets, and seamless or welded pipe that conform to all the requirements of the ASTM specifications for the particular product and alloy referred to in Table 2.
 - 5.2 Manufacture:
- 5.2.1 Forging or shaping operations may be performed by hammering, pressing, piercing, extruding, upsetting, rolling, bending, or fusion welding, or by a combination of two or more of these operations. The forming procedure shall be so applied that it will not produce injurious defects in the fittings.

TABLE 2 Permissible Raw Materials

	Marking ^A			Produc	t and ASTM Designat	
Corrosion-	ASME Pressure		UNS		Plate,	Bar Forging
Resistant	Fittings	Alloy	Designation	Pipe or Tube	Sheet,	and Forging
Fittings					or Strip	Stock
CRN	WPN	Ni	N02200	B161	B162	B160, B564
CRNL	WPNL	Ni, Low C	N02201	B161	B162	B160
CRNC ^C	WPNC ^C	Ni-Cu	N04400	B165	B127	B164, B564
CR HX	WPHX	Ni-Cr-Mo-Fe	N06002	B619/B619M, B622, B626	B435	B572 (
CR HG	WPHG	Ni-Cr-Fe-Mo-Cu	N06007	B619/B619M, B622, B626	B582	B581 .
CR HC 22	WPHC22	Low C-Ni-Mo-Cr	N06022	B619/B619M, B622, B626	B575	B574, B564, B462, B472
CRV602	WPV602	Ni-Cr-Fe	N06025	B163, B167	B168	B166, B462, B472
CR HG 30	WPHG30	Ni-Cr-Fe-Mo-Cu	N06030	B619/B619M, B622, B626	B582	B581, B462, B472
CRHG35	WPHG35	Ni-Cr-Mo	N06035	B619/B619M, B622, B626	B575	B574, B564, B462, B472
CR MC	WPHMC	Ni-Cr-Mo	N06044	B619/B619M, B622, B626	B575	B574, B564
CRV45TM	WPV45TM	Ni-Cr-Fe	N06044	B163, B167	B168	B166, B462, B472
CR2120		Ni-Cr-Mo low C			B575	B564, B574
	WP2120		N06058	B619/B619M, B622, B626		
CR5923	WP5923	Low C-Ni-Cr-Mo	N06059	B619/B619M, B622, B626	B575	B564, B574, B462, B472
CR HC 2000	WPHC2000	Low C-Ni-Cr-Mo-Cu	N06200	B619/B619M, B622, B626	B575	B564, B574, B462, B472
CRM21	WPM21	Low C-Ni-Cr-Mo-Ta	N06210	B619/B619M, B622, B626	B575	B564, B574
CRH230	WPH230	Ni-Cr-W-Mo	N06230	B619/B619M, B622, B626	- 1 - 3	B572, B564
CRHBC1	WPHBC1	Low C-Ni-Mo-Cr	N10362	B619/B619M, B622. B626	B575	B574, B564, B462,
				(4)	•	B472
CR HC 4	WPHC4	Low C-Ni-Mo-Cr	N06455	B619/B619M, B622, B626	B575	B574
CRNCI	WPNCI	Ni-Cr-Fe	N06600	B167, B516, B517	B168	B166, B564
CR603GT	WP603GT	Ni-Cr-Fe-Al	N06603	B163, B167, B516, B517	B168	B166, B564
CRNCMC	WPNCMC	Ni-Cr-Mo-Cb	N06625	B444, B704, B705	B443	B446, B564
CRIN686	WPIN686	Low C-Ni-Cr-Mo	N06686	B163, B619/B619M, B622, B626	B575	B564, B574, B462, B472
CR626Si	WP626Si	Ni-Cr-Mo-Si	N06219	B444, B704, B705	B443	B446, B564
CR HG3	WPHG3	Ni-Cr-Fe-Mo-Cu	N06985	B619/B619M, B622, B626	B582	B581
CR20CB	WP20CB	Cr-Ni-Fe-Mo-Cu-Cb stabilized	N08020	B464/B464M, B468, B729	B463	B472, B473, B462
CR3127	WP3127	Low C-Ni-Fe-Cr- Mo-Cu	N08031	B619/B619M, B622, B626	B625	B564, B649, B462, B472
CRH120	WPH120	Ni-Cr-Fe	N08120 🕻	B407, B514, B515	B409	B408, B564
CR330	WP330	Ni-Fe-Cr-Si	N08330	B535, B710	B536	B511, B512
CR6XN	WP6XN	Fe-Ni-Cr-Mo-N	N08367	B675, B676, B690	B688	B472, B564, B691,
CHOXIN	WEONIN	re-ini-Ci-ivio-in	1400307	B075, B070, B090	D000	B462
CDNIC	WIDNIIC	Ni Fa Ca	200000	D407 DE14 DE1E	D400	
CRNIC	WPNIC	Ni-Fe-Cr	N08800	B407, B514, B515	B409	B408, B564
CRNIC10	WPNIC10	Ni-Fe-Cr	N08810	B407, B514, B515	B409	B408, B564
CRNIC11	WPNIC11	Ni-Fe-Cr	N08811	B407	B409	B408, B564
CRNICMC	WPNICMC	Ni-Fe-Cr-Mo-Cu	N08825	B423, B704, B705	B424	B425, B564
CR1925	WP1925	Low C-Ni-Fe-Cr- Mo-Cu	N08925	B673, B674, B677	B625	B649
CR1925N	WP1925N	Low C-Ni-Fe-Cr-Mo- Cu-N	N08926	B673, B674, B677	B625	B649
CR HB	WPHB	Ni-Mo	N10001	B619/B619M, B622, B626	B333	B335
CR HN	WPHN	Ni-Mo-Cr-Fe	N10003		B434	B573
OR H242	WPH242	Ni-Mo-Cr-Fe	N10242	B619/B619M, B622, B626	B434	B573, B564
CR HC 276	WPHC276	Low C-Ni-Mo-Cr	N10276	B619/B619M, B622, B626	B575	B574, B564, B462,
CDD10	WDD40	Law C Ni Mar On E	N10004	D040/D040M D000 D000	DOOO	B472
CRB10	WPB10	Low C-Ni-Mo-Cr-Fe	N10624	B619/B619M, B622, B626	B333	B335, B564
CRVB4	WPVB4	Ni-Mo	N10629	B619/B619M, B622, B626	B333	B335, B564, B462,
CR HB2	WPHB-2	Ni-Mo	N10665	B619/B619M, B622, B626	B333	B472 B335, B564, B462,
•						B472
CR HB3	WPHB-3	Ni-Mo	N10675	B619/B619M, B622, B626	B333	B335, B564, B462, B472
CRH160	WPH160	Ni-Co-Cr-Si	N12160	B619/B619M, B622, B626	B435	B564, B572
CR3038	WP3033	Low C-Cr-Ni-Fe-N	R20033	B619/B619M, B622, B626	B625	B564, B649, B472,
3	*** 0000	_0,, 0, 0, 1411014	. 120000	DOTO, DOTOW, DOZZ, DOZO	2020	B462

When WP fittings are of welded construction or made from welded pipe, the symbol shall be supplemented with W or WX as applicable. If ultrasonic examination in accordance with 5.2.4.2 or 5.2.5.1 is used, the symbol shall be supplemented by WU or WXU as applicable.

Begin See 2.1 and 5.1.

Yeld strength shall be 25 000 psi (172 MPa) min, for all hot-formed, annealed fittings made from WPNC material.

- 5.2.2 Grade WP fittings ordered as Class S shall be of seamless construction and shall meet all requirements of ASME B16.9 or B16.11.
- 5.2.3 All classes of fittings shall have the welders, welding operators, and welding procedures qualified under the provisions of Section IX of the ASME Boiler and Pressure Vessel Code.
- 5.2.4 Grade WP fittings ordered as Class W shall meet the requirements of ASME B16.9 and shall have all pipe welds made by the starting material manufacturer or the fitting manufacturer with the addition of filler radiographically examined throughout the entire length in accordance with Paragraph UW-51 of Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, except as exempt by 5.2.4.1, and 5.2.4.2.
- 5.2.4.1 The weld in the starting pipe, made to one of the pipe or tube product specifications listed in Table 2, shall not require radiography, provided that no filler metal is used in making the weld.
- 5.2.4.2 Instead of the radiographic examination, and at the option of the manufacturer, welds made by the fitting manufacturer may be ultrasonically examined in accordance with the Code requirements stated in 5.2.6.
- 5.2.5 Grade WP fittings ordered as Class WX shall meet the requirements of ASME B16.9 and shall have all welds, whether made by the fitting manufacturer or the starting material manufacturer, radiographically examined throughout their entire length in accordance with Paragraph UW-51 of Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, except as exempt by 5.2.5.1. The radiography for this class of fittings may be done either prior to or after forming at the option of the manufacturer.
- 5.2.5.1 Instead of the radiographic examination, and at the option of the manufacturer, welds, whether made by the fitting manufacturer or the starting material manufacturer, may be ultrasonically examined in accordance with the Code requirements stated in 5.2.6.
- 5.2.6 Grade WP fittings ordered as Class WU shall meet the requirements of ASME B16.9 and shall have all welds, whether made by the fitting manufacturer of the starting material manufacturer, ultrasonically examined throughout their entire length in accordance with Appendix 12 of Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code. The ultrasonic examination of welds for this class may be performed either prior to or after forming at the option of the manufacturer.
- 5.2.7 Personnel performing NDE examinations shall be qualified in accordance with SNT-TC-1A.
- 5.2.8 Fittings dovered in MSS SP-43, MSS SP-95, or MSS SP-97 and ordered as **CR***** shall meet the requirements of MSS SP-43, MSS SP-95, or MSS SP-97, respectively, and do not require non-destructive examination.
- 5.29 All joints welded with filler metal shall be finished in accordance with the requirements of Paragraph UW-35 (a) of Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code.
- 5.2.10 Radiographic examination of the weld buildup on cold-formed stub ends shall not be required provided that all the following steps are adhered to:

- 5.2.10.1 The weld procedure and welders or welding operators meet the requirements of 5.2.3.
- 5.2.10.2 All weld surfaces are liquid penetrant examined in accordance with Appendix 8 of Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code.
- 5.2.10.3 Repair of areas in the weld is permitted, but 5.2.10.1 and 5.2.10.2 must be repeated.
- 5.2.10.4 Fittings shall be marked with the symbol WBU following the alloy designation (for example: WPN-WBU)
- 5.2.11 Stubends may be produced with the entire lap added as weld metal to a straight pipe section provided the welding satisfies the requirements of 5.2.3 for qualifications and 5.3 for heat treatment.
- 5.2.11.1 Grade **WP****Class W** Radiographic examination of the welds, made with the addition of filler metal, is required. See 5.2.4.
- 5.2.11.2 Grade **WP****Class WX** Radiographic examination of all welds, made with or without the addition of filler metal is required. See 5.2.5.
- metal is required. See 5.2.5.

 5.2.11.3 Grade **WP****Class WU** Ultrasonic examination of all welds, made with or without the addition of filler metal, is required. See 5.2.6.
- 5.2.11.4 Grade CR Nondestructive examination is not required. See 5.2.8.
- 5.2.12 Stubends may be produced with the entire lap added by the welding of a ring, made from plate or flat bar of the same allow grade and composition, to the outside of a straight section of pipe, provided the weld is a double welded full penetration joint and satisfies the requirements of 5.2.3 for qualifications and 5.3 for heat treatment.
- 5.2.12.1 Grade **WP****Class W** Radiographic examination of all welds, made with the addition of filler metal, is required. See 5.2.4.
- 5.2.12.2 Grade **WP****Class WX** Radiographic examination of all welds, made with or without the addition of filler metal, is required. See 5.2.5.
- 5.2.12.3 Grade **WP****Class WU** Ultrasonic examination of all welds, made with or without the addition of filler metal, is required. See 5.2.6.
- 5.2.12.4 Grade **CR** Nondestructive examination is not required. See 5.2.8.
- 5.3 *Heat Treatment*—All fittings shall be furnished heat treated. See Table 3 for heat treatments. All forming or welding shall be done and completed prior to any final heat treatment.

6. Chemical Composition

- 6.1 The material shall conform to the requirements as to chemical composition for the respective material prescribed in Table 2.
- 6.2 Records of chemical analysis made in accordance with the applicable specification listed in Table 2 shall be certification that the material of the fitting meets the requirements of this specification.

TABLE 3 Heat Treatment

Corrosion- Resistant Fittings	ASME Pressure Fittings	Alloy	UNS Designation	Heat Treatment ^{A,B} DEG °F [°C]	Quench
CRN	WPN	Ni	N02200	1650-1700 [900-928]	Rapid Air/Water
CRNL	WPNL	Ni, Low C	N02201	1650-1700 [900-928]	Rapid Air/Water
CRNC ^C	WPNC ^C	Ni-Cu	N04400	1650-1700 [900-928]	Rapid Air/Water
CR HX	WPHX	Ni-Cr-Mo-Fe	N06002	2150 [1177] ^D	Rapid Air/Water
CR HG	WPHG	Ni-Cr-Fe-Mo-Cu	N06007	2100-2150 [1150-1177]	Rapid Air/Water
CR HC 22	WPHC22	Low C-Ni-Mo-Cr	N06022	2050 [1121] ^D	Rapid Air/Water
CRV602	WPV602	Ni-Cr-Fe	N06025	2160-2280 [1180-1250]	Rapid Air/Water
CR HG 30	WPHG30	Ni-Cr-Fe-Mo-Cu	N06030	2150 [1177] ^D	Rapid Air/Water
CRHG35	WPHG35	Ni-Cr-Mo	N06035	2050 [1121]	Rapid Air/Water
CR MC	WPHMC	Ni-Cr-Mo	N06044	2100-2230 [1150-1220]	Rapid Air/Water
CRV45TM	WPV45TM	Ni-Cr-Fe	N06045	2150 [1177]	Rapid Air/Water
CR5923	WP5923	Low C-Ni-Cr-Mo	N06059	2050 [1121]	Rapid Air/Water
CR HC 2000	WPHC2000	Low C-Ni-Cr-Mo-Cu	N06200	2075-2125 [1135-1163]	Rapid Air/Water
CRM21	WPM21	Low C-Ni-Cr-Mo-Ta	N06210	2150 [1177]	Rapid Air/Water
CRH230	WPH230	Ni-Cr-W-Mo	N06230	2150-2250 [1177-1232]	Rapid Air/Water
CRHBC1	WPHBC1	Low C-Ni-Mo-Cr	N10362	2100 2200 [1177 1202] 2100 ^B [1147]	Rapid Air/Water
CR HC 4	WPHC4	Low C-Ni-Mo-Cr	N06455	1950 [1065] ^D	Rapid Air/Water
CRNCI	WPNCI	Ni-Cr-Fe	N06600	1800-1850 [983-1010]	Rapid Air/Water
CR603GT	WP603GT	Ni-Cr-Fe-Al	N06603	2175 [1189]	Rapid Air/Water
CRNCMC	WPNCMC	Ni-Cr-Mo-Cb	N06625 Gr 1	1600 [871]	Rapid Air/Water
CRNCMC	WPNCMC	Ni-Cr-Mo-Cb	N06625 Gr 2	2000 [1093] ^D	Rapid Air/Water
CRIN686	WPIN686	Low C-Cr-Ni-Mo	N06686	2150 [1177]	Rapid Air/Water
CR626Si	WP626Si	Ni-Cr-Mo-Si	N06219	2050 [1121]	Rapid Air/Water
CR HG3	WPHG3	Ni-Cr-Fe-Mo-Cu	N06219 N06985	2100-2150 [1147-1177]	Rapid Air/Water
CR20CB	WP20CB	Cr-Ni-Fe-Mo-Cu-Cb stabilized	N08020	1700-1850 [927-1010]	Rapid Air/Water
CR3127	WP3127	Low C-Ni-Fe-Cr-Mo-Cu	N08020 N08031	2175 [1189]	Rapid Air/Water
CRS127 CRH120	WP3127 WPH120	Ni-Cr-Fe	N08120	2175 [1169] 2175-2225 [1189-1220]	Rapid Air/Water
CR330	WP330	Ni-Fe-Cr-Si	N08330	1900 [1038]	Rapid Air/Water
CR6XN	WP6XN	Fe-Ni-Cr-Mo-N	4		•
		Ni-Fe-Cr	N08367	2025 [1107]	Rapid Air/Water
CRNIC	WPNIC		N08800 N08810	1800-1900 [983-1038] ^F	Rapid Air/Water
CRNIC10	WPNIC10	Ni-Fe-Cr Ni-Fe-Cr	N08811 N08811	2100-2150 [1147-1177] ^F	Rapid Air/Water
CRNIC11	WPNIC11			2100-2150 [1147-1177] ^F	Rapid Air/Water
CRNICMC	WPNICMC	Ni-Fe-Cr-Mo-Cu	N08825	1700-1800 [930-983] ^F	Rapid Air/Water
CR1925	WP1925	Low C-Ni-Fe-Cr-Mo-Cu	N08925	1800-1900 [983-1038]	Rapid Air/Water
CR2120	WP2120	Low C-Ni-Cr-Mo	N06058	2075 [1135]	Rapid Air/Water
CR1925N	WP1925N	Low C-Ni-Fe-Cr-Mo-Cu-N	N08926	2150 [1177]	Rapid Air/Water
CRHB	WPHB	Ni-Mo	N10001	1950 [1065] ^D	Rapid Air/Water
CRHN	WPHN	Ni-Mo-Cr-Fe	N10003	2150 [1177] ^D	Rapid Air/Water
CR H242	WPH242	Ni-Mo-Cr-Fe	N10242	1925-2025 [1050-1105]	Rapid Air/Water
CR HC 276	WPHC276	Low C-Ni-Mo-Cr	N10276	2050 [1121] ^D	Rapid Air/Water
CRB10	WPB10	Low C-Ni-Mo-Cr-Fe	N10624	2050 [1121]	Rapid Air/Water
CRVB4	WPVB4	Ni-Mo	N10629	1975 [1080]	Rapid Air/Water
CR HB2	WPHB2	Ni-Mo	N10665	1950 [1065] ^D	Rapid Air/Water
CR HB3	WPHB3	Ni-Mo	N10675	1950 [1065] ^D	Rapid Air/Water
CRH160	WPH160	Ni-Co-Cr-Si	N12160	2025 [1107] ^D	Rapid Air/Water
CR3033	WP3033	Low C-Cr-Ni-Fe-N	R20033	2050 [1121]	Rapid Air/Water
CRH556	WPH556	Ni-Fe-Cr-Co	R30556	2150 [1177] ^D	Rapid Air/Water

A DELETED

6.3 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements for product (check) analysis prescribed for the respective product in Table 2 and Specification B880 for check analysis.

64 In fittings of welded construction, the alloy content of the deposited weld metal shall conform to that required of the base metal or for equivalent weld metal as given in the AWS Filler Metal Specification A5.11 and A5.14.

7. Mechanical Properties and Other Requirements

- 7.1 Tensile Requirements:
- 7.1.1 (All Table 2 alloys except for UNS N06625 Grade 1 or Grade 2).
- 7.1.1.1 Material used in the manufacture of the fittings shall conform to the requirements for tensile properties as prescribed for the respective product in Table 2.

^B Set temperature, ±25°F [15°C].

^C Yield strength shall be 25 000 psi [172 MPa] min, for all hot-formed, annealed fittings made from WPNC material.

^D Minimum temperature.

E DELETED

F Heat treatment is highly dependent mintended service temperature - consult material manufacturer for specific heat treatments within the indicated range for end use temperature.

- 7.1.1.2 Finished fittings shall conform to the properties for the respective material and temper as prescribed in the specifications referred to in Table 2. The properties of fittings made from forging stock of materials in Table 2 shall conform to either the properties of forgings in the respective forging specifications, or to other wrought product specifications listed in Table 2 of the respective material when forging specifications are not listed.
- 7.1.1.3 Tension tests of the finished fittings made from forging stock are required. For all other finished fittings, tension tests of the finished fittings are not required unless otherwise agreed upon between the manufacturer and the purchaser.
- 7.1.2 *Tensile Requirements* (For fittings made to meet the mechanical properties of UNS N06625 Grade 1):
- 7.1.2.1 At the option of the manufacturer, the material used in the manufacture of UNS N06625 Grade 1 fittings shall conform to the mechanical property requirements of either UNS N06625 Grade 1 or Grade 2 as prescribed for the respective product in Table 2.
- 7.1.2.2 Tension tests are required in accordance with 7.1.2.3.
- 7.1.2.3 Tension tests are required per lot (Note S2.3) per furnace charge. Tension specimens may be obtained from a fitting or a representative test piece (Note S2.2). Tension specimens representing fittings of welded construction, made with the addition of filler metal, are to include the weld and be prepared so that the weld is at the specimen's midlength location.
- 7.1.2.4 All finished fittings, including those made from forging stock, shall conform to the minimum UNS N06625 Grade 1 mechanical properties as prescribed for the respective starting raw material product listed in Table 2 except that fittings of welded construction are exempt from the tensile ductility requirement (elongation) and the yield strength requirements.
- 7.1.3 *Tensile Requirements* (For fittings made to meet the mechanical properties of UNS N06625 Grade 2).
- 7.1.3.1 At the option of the manufacturer, the material used in the manufacture of UNS N06625 Grade 2 fittings shall conform to the mechanical property requirements of either UNS N06625 Grade 1 or Grade 2 as prescribed for the respective product in Table 2.
- 7.1.3.2 Tension tests are not required provided the grade of starting raw material is designated as UNS N06625 Grade 2 in the raw material manufacturer's MTR description and the final heat treat temperature of the fittings is in compliance with the recommended solution annealing heat treat procedure for the grade. Tension tests are required if the grade of starting raw material is designated as UNS N06625 Grade 1 in the raw material manufacturer's MTR description.
- 7.133 Tension tests, if required, are to be performed per lot (Note S2.3) provided that all heat treatments are performed in furnaces controlled within a $\pm 25^{\circ}$ F [15°C] range of set point

and are equipped with calibrated recording pyrometers so that all other subsequent heat treatments can be conducted within the same $\pm 25^{\circ}F$ [15°C] temperature range as the furnace charge that contained the test specimen. Tension specimens may be obtained from a fitting or a representative test piece. In this paragraph only, a representative test piece is defined as a test specimen from the same heat of fitting raw material having approximately the same amount of working. In addition, the test piece representing fittings manufactured from bars, plate or forgings shall have a cross section equal to the greatest cross section of the fitting, a test piece representing fittings manufactured from pipe shall have an outside diameter and wall thickness equal to those of the fitting and a test piece for fittings of welded construction, made with the addition of filler metal, shall be prepared to the same welding procedures and from the same heat of material as the fittings it represents. Tension specimens representing fittings of welded construction, made with the addition of filler metal, are to include the weld and be prepared so that the weld is at the specimen's midlength location.

7.1.3.4 All finished fittings, including those made from forging stock, shall conform to the minimum UNS N06625 Grade 2 mechanical properties as prescribed for the representative starting raw material product listed in Table 2 except that fittings of welded construction are exempt from the tensile ductility requirement (elongation) and the yield strength requirements.

- 7.2 Hydrostatic Tests:
- 7.2.1 Hydrostatic testing of wrought fittings is not required by this specification.
- 7.2.2 All fittings shall be capable of withstanding without failure, leakage, or impairment of their serviceability, a test pressure prescribed in the specifications for the pipe with which the fitting is recommended to be used.

8. Dimensions

8.1 Fittings or components produced in accordance with this specification shall have sizes, shapes, and dimensions in accordance with those specified in ASME B16.9, ASME B16.11, MSS SP-43, MSS SP-95, MSS SP-97.

9. Workmanship, Finish, and Appearance

- 9.1 The fittings shall be free of injurious defects and have a workmanlike finish. Minor defects may be removed by grinding, provided the wall thickness is not decreased to less than the allowable specification minimum and provided the grinding is smooth and leaves no shoulders.
 - 9.2 The fittings shall be cleaned free of scale.

10. Inspection

10.1 Inspection of the material by the purchaser at the place of manufacture shall be made as agreed upon between the purchaser and the manufacturer as part of the purchase contract.

TABLE 4 PIOUUCI Markii	ing Examples for Grades and Classes
Grade and Class Marking	Description
CRN	Single grade: no classes in CR grades
CRN/NL	Multiple grades, meet chemical and mechanical properties of each
WPN-S	Single grade: seamless
WPN-W	Single grade: welded: RT or UT pipe welds with filler metal and all fitting manufacturer's welds
WPN-WX	Single grade: welded: RT all welds with or without filler metal
WPN-WU	Single grade: welded: UT all welds with or without filler metal
WPN/NL-S	Multiple grades: meet chemical and mechanical properties of each: seamless

TABLE 4 Product Marking Examples for Grades and Classes

11. Rejection and Rehearing

11.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

12. Certifications

- 12.1 Test reports are required for all fittings covered by this specification. Each test report shall include the following information:
- 12.1.1 The year-date of the specification and class to which the fitting was furnished,
- 12.1.2 Heat numbers or serial number traceable to heat numbers,
 - 12.1.3 Chemical analyses for all starting materials,
- 12.1.4 Mechanical properties for all starting materials, or actual mechanical properties if tension testing was required,
- 12.1.5 For construction with filler metal added, weld metal chemical analyses or AWS classification,
- 12.1.6 For welded stub ends, the construction method per 5.2.11 or 5.2.12 shall be stated,
 - 12.1.7 Heat treatment per Table 3,
 - 12.1.8 Results of all nondestructive examinations,

- 12.1.9 Results of all tests required by Supplementary Requirements and the order, and
- 12.1.10 Statement that the fitting was manufactured, sampled, tested and inspected in accordance with the specification and was found to meet the requirements.

13. Product Marking

13.1 The manufacturer's name or trademark, material, grade, if applicable, the size and schedule number, the designation as shown in Table 2, under "Marking," either column 1 for Grade CR fittings or column 2 for Grade WP fittings, shall be stamped, stenciled, or otherwise permanently marked on each fitting. Grade WP fitting marking also must include the suffix in accordance with 5.2. On wall thicknesses thinner than 0.083 in. [2.1 mm], no steel stamps or other indented markings shall be used. When the size does not permit complete marking, identification marks may be omitted in the sequence shown in MSS SP-25. See Table 4 for marking example of grades and classes.

Note 1—When steel stamps are used, the marking shall not be deep enough to cause cracks or to reduce the wall thickness of the fittings below the minimum allowed by the applicable specification.

14. Keywords

14.1 nickel alloy fittings

SUPPLEMENTARY REQUIREMENTS

These requirements shall not be considered unless specified in the order, in which event the supplementary requirements specified shall be made at the place of manufacture, unless otherwise arreed upon.

S1. Product Analysis (Note S2.1)

\$1.1 A product analysis shall be made from each heat of base metal and, if of welded construction, from each lot (Note \$2.3) number of welding material of the fittings offered for delivery. The analysis shall conform to the requirements specified in Section 6.

S2. Tension Test (Note S2.1)

S2.1 One tension test shall be made on one fitting or representative test piece (Note S2.2) per lot (Note S2.3) of fittings. If the fittings are of welded construction, made with the addition of filler metal, the tension specimen shall include the weld and be prepared so that the weld is at the midlength

location of the specimen. However, in no case shall the tensile properties of the finished fittings be less than the requirements of the pipe specifications listed in Table 2, except that weld specimens are exempt from the tensile ductility requirements.

Note S2.1—If the results of any of the tests specified in Sections S1 or S2 do not conform to requirements, retests may be made at the manufacturer's expense on additional fittings or representative test pieces of double the original number from the same heat or lot as defined in Section S1 or S2. If either of the additional test pieces fails, the lot shall be

Note S2.2—Representative Test Piece: Where the test specimen for the tension test cannot be taken from a fitting due to size limitations, a representative test shall be obtained. The test piece shall be from the same heat and heat treated in the same batch or charge as the fittings it represents, and shall have approximately the same amount of working. In addition, test pieces representing fittings manufactured from bars, plate, or forgings shall have a cross section equal to the greatest cross section of the fitting, and test pieces representing fittings manufactured from pipe shall have an outside diameter and wall thickness equal to those of the fitting. The test piece for fittings of welded construction, made with the addition of filler metal, shall be prepared to the same weld procedures and from the same heats of material as the fittings it represents.

Note S2.3—A lot shall consist of all fittings of the same type, size, and wall thickness, manufactured from one heat of material, and, if welding is performed, using the same size and AWS classification welding product.

SMENORMOC.COM. Click to view the full role of Assult. Bery C.

S4. Hydrostatic Test

S4.1 A hydrostatic test shall be applied as agreed upon between the manufacturer and purchaser.

S5. Bar Stock Fittings

S5.1 Fittings machined from solid bar stock are not permit-

S6. Positive Material Identification Examination

- S6.1 Product shall receive Positive Material Identification to ensure that the purchaser is receiving product of the correct material grade prior to shipment of the product. This examination is a method to assure that no material grade mix-up has happened during manufacturing and marking of the product.
- S6.2 Product shall receive a Positive Material Identification examination by Guide E1916.
- S6.3 The quantity examined shall be 100 % of the product.
- S6.4 All product that is not of the correct material grade shall be rejected.
- S6.5 The method of product marking after examination shall be agreed upon between the manufacturer and purchaser.

NC Section II Part B) 202 SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY SB-367 BRYC.II.B. (ASMILL BRASMILL BRYC.II.B.) **CASTINGS**

(Identical with ASTM Specification B367-13(2017) except Supplementary Requirements S5 for hot isostatic pressing dati accorda repair, ma accorda (HIP) and S6 (Tension Test) are mandatory per new para. 6; and welders, welding operators, and welding procedures per revised para. 11.1 shall be in accordance with Section IX; revision of para. 11.2 requiring that filler metals, if used during repair, must conform to SFA-5.16/SFA-5.16M requirements.)

Specification for Titanium and Titanium Alloy Castings

1. Scope

- 1.1 This specification covers titanium and titanium alloy castings intended for general corrosion resistant and industrial applications. as follows:
 - 1.1.1 Grade C-2—UNS R52550. Unalloyed titanium,
 - 1.1.2 Grade C-3—UNS R52550. Unalloyed titanium,
- 1.1.3 *Grade C-5*—UNS R56400. Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.4 *Grade C-7*—UNS R52700. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.5 Grade C-8—UNS R52700. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.6 *Grade C-9*—UNS R56320. Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.7 *Grade C-12*—UNS R53400. Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.8 *Grade C-16*—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.9~Grade~C-17—UNS R52252. Unalloyed titanium plus 0.04~to~0.08~% palladium, and
- 1.1.10 *Grade C-38*—UNS R54250. Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).
- 1.2 This specification is intended for use of purchasers and/or producers of reactive metal castings for defining the requirements and assuring the properties of castings for unique corrosion-resistant applications, that is, not for commodity items which must meet all potential purchasers' requirements.
- 1.2.1 Users are advised to use the specification as a basis for obtaining castings which will meet minimum acceptance requirements established and revised by consensus of the members of the committee.
- 1.2.2 User requirements considered more stringent may be met by the addition to the purchase order of one or more supplementary requirements, which may include, but are not limited to, those listed in Sections S1 through S8.

- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision of Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards.
- A802/A802M Practice for Steel Castings, Surface Acceptance Standards, Visual Examination
- E8 Test Methods for Tension Testing of Metallic Materials E10 Test Method for Brinell Hardness of Metallic Materials E18 Test Methods for Rockwell Hardness of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E94 Guide for Radiographic Examination Using Industrial Radiographic Film
- E142 Method for Controlling Quality of Radiographic Testing (Withdrawn 2000)
- E165 Practice for Liquid Penetrant Examination for General Industry
- E446 Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- E539 Test Method for Analysis of Titanium Alloys by X-Ray Fluorescence Spectrometry
- E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
- E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method

- E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
- E2371 Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology)
- E2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals (Withdrawn 2017)

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *lot*, *n*—shall consist of all castings of the same design produced from the same pour.
- 3.1.2 *pour*, *n*—shall consist of all material melted and cast at one time.

4. Ordering Information

- 4.1 Orders for castings to this specification shall include the following as required, to describe the requirements adequately:
- 4.1.1 Description of the castings by pattern number or drawing. Dimensional tolerances shall be included on the casting drawing,
 - 4.1.2 Quantity,
 - 4.1.3 Grade designation (see Table 1),
 - 4.1.4 Options in the specification, and
- 4.1.5 Supplementary requirements desired, including the standards of acceptance.

5. Materials and Manufacture

5.1 Materials for this specification shall be melted by conventional processes used for reactive metals. Typical methods include the consumable electrode and induction-slag, plasma arc, induction-skull, and electron beam melting processes

6. Mechanical Requirements

6.1 Mechanical Testing—Supplementary Requirement S6 is mandatory.

7. Chemical Composition

- 7.1 Pour Analysis—An analysis of each pour shall be made by the producer from a sample such as a casting or test bar that is representative of the pour. The chemical composition determined shall conform to the requirements specified for the relevant grade in Table 1.
- 7.1.1 The elements listed in Table 1 are intentional alloy additions or elements which are inherent to the manufacture of titanium sponge, ingot or mill product.
- 7.1.1 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table 1 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore product analysis for elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
- 7.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.
- 7.2 When agreed upon by the producer and the purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.

- 7.3 Product Analysis—Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The producer shall not ship material which is outside the limits specified in Table 1 for the applicable grade. Product analysis limits shall be as specified in Table 2.
- 7.4 Sampling—Samples for chemical analysis may be made by the purchaser on a representative casting from any lot. Due to the possibility of oxygen or other interstitial contamination, samples for oxygen, carbon, hydrogen, and nitrogen analysis shall be taken no closer than ½ in. (6.3 mm) to a cast surface except that castings too thin for this shall be analyzed on representative material. The chemical composition determined shall conform to the analysis in Table 1 within the check analysis variations shown in Table 2 or shall be subject to rejection by the purchaser.

8. Heat Treatment

- 8.1 Unless otherwise specified in the contract, all castings will be supplied in the as-cast condition except when post-weld heat treatment is required.
- 8.2 If post-weld heat treatment is required, it shall consist of a stress relief performed at $1075 \pm 25^{\circ}F$ ($580 \pm 14^{\circ}C$) for Grades C-2, C-3, C-7, C-8, C-12, C-16 and C-17, and $1200 \pm 25^{\circ}F$ ($650 \pm 14^{\circ}C$) for Grades C-5, C-6, C-9, C-18, and C-38. Time at temperature shall be a minimum of $\frac{1}{2}$ h plus an additional $\frac{1}{2}$ h at temperature per inch of thickness for section sizes greater than 1 in. (25 mm). After heat treatment, the castings should be cooled in air or in the furnace to ambient temperature unless otherwise agreed upon between the purchaser and producer.

9. Methods of Chemical Analysis

9.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser. Alternate techniques are discussed in Guide E2626.

10. Workmanship, Finish, and Appearance

- 10.1 All castings shall be made in a workman-like manner and shall conform to the dimensions in drawings furnished by the purchaser before manufacturing is started. If the pattern is supplied by the purchaser, the dimensions of the casting shall be as predicted by the pattern.
- 10.2 The surface of the casting shall be free of adhering mold material, scale, cracks, and hot tears as determined by visual examination. Other surface discontinuities shall meet the visual acceptance standards specified in the order. Practice A802/A802M or other visual standards may be used to define acceptable surface discontinuities and finish. Unacceptable surface discontinuities shall be removed and their removal verified by visual examination of the resultant cavities.

Requirements
Chemical
_
Щ
TABL
F

		11						Composition	Composition, Weight Percent ^{A,B,C,D,E}	ent ^{A,B,C,I}	D,E								
																		Other	Other
_	VS Carbon,	Oxygen	Oxygen Oxygen Oxygen, Hydrogen, range Nitrogen,	Hydrogen,	Iron range												Ш	lements, E max.	Elements, max.
⊱	Grade Number max. or max.	or max.	max.	max.	or max.	Aluminum	Vanadium	Palladium	Palladium Ruthenium	Nickel	Nickel Molybdenum Chromium	Chromium	Cobalt 2	Zirconium	Cobalt Zirconium Niobium	Ξ	Silicon	each	total
	I	I	Ç	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
Ŋ	R52550 0.10	0.40	0.05	0.015	0.20	;	;	:	;	;	:	;	:	:	:	;	:	0.1	9.4
		I) ا	1	I		I	I			I	I	I	I	I		I	I	I
C.A.	R52550 0.10	0.40	0.05	0.015	0.25	:	:	:	:	;	:	:	:	:	:	:	;	0.1	0.4
		I	l	٠,	I		I	I			I	I	I	I	I	l	I	Ι	I
	R56400 0.10	0.25	0.02	0.015	0.40	5.5-	3.5 7. r	:	:	:	:	:	;	:	:	:	:	0.1	0.4
	R54520 0.10	0.20	0.05	0.015	0.30	6.0.	? :	:	:	;	;	:	:	;	:	2.0-	;	0.1	0.4
	R52700 0.10	0.40	0.05	0.015	0.20		;	0.12-	:	:	:	;	;	;	;	;	;	0.1	0.4
	R52700 0.10	0.40	0.05	0.015	0.25	jie	;	0.12-	:	:	:	;	;	;	:	:	;	;	;
	R56320 0.10	0.20	0.05	0.015	0.25	3.5	2.0-	:	:	;	;	:	:	;	:	;	;	:	:
		I	Ι	I	I	1	16	I			1		I		I	I		I	I
10	R53400 0.10	0.25	0.05	0.015	0.30	;	511	;	;	-9.0 0.9	0.2- 0.4	;	:	:	:	;	:	0.1	9.4
	l	I		I	I			١	1	I		I	I	I	I	I	I	I	
		I		I	I	I	1	Q Q	1	I	I	I	I	I	I	I	I	I	1
		I	I	I	I	I	I	Ţ	I	I	I	I	I	I	I	I	I		
2	R52402 0.10	0.18	0.03	0.015	0.30	;	;	0.08	:	:	;	;	:	:	:	;	:	0.1	9.4
	I	I	I	I	I	I	I	1	 - &(I	I	I	I	I	I	I	I	I	I
LC	R52252 0.10	0.20	0.03	0.015	0.25	;	:	0.04-	P	:	:	:	:	;	:	:	:	0.1	0.4
10	R58465 0.08	0.20	0.03	0.015	0.25	2.5- 3.5	2.0- 3.0	0.04-	Me	:	:	;	;	;	:	:	;	0.1	0.4
	I	I	Ι	I	I			I	\ 	١	I	I	I	I	I	I	I	I	I
	l	I		I	I		I		1	R		I	I	I	I	I	I	I	I
		I		I	I					2			I	I	I	I		I	
		I	I	I	I	I				l		I	I	I	I		l	I	I
	I	I	I	I	I	I	I	I	l	1	t	I	I	I	I		I	I	I
		ı	ı	ı	ı	ı	I	ı	I	ı	\ \i		ı	ı	ı	ı		ı	ı
		I	I	I	I			I		I	<u>ه</u>	١	I	I	I	I	I	I	I
	1	I	I	I	I	I	I	I	I	I	1	h	I	I	I	I	I	I	I
	1	I	I	I	I			I		I	1	(I	I	I	I	I	I	I
	I	I	Ι	I	I		I	Ι	1	I	I	0	I	I	I	I	I	I	I
	I	I	Ι	I	I	1	I	I	I	I	I	1		I	I	I		I	I
	I	I	l	I			I	I			I	1	ľ	I				I	I
		I	I	I	I	1			I	I		l	P	l	Ι	I		I	1
	1	L	L	I	L	1 ;	L			I			3		l			L	L
10	R54250 0.08	0.20-	0.03	0.015	1.2 	3.5- 5.5	3.0	;	;	:	:	;	-	1	:	:	:	0.1	9.4
														<u>ا</u>					

At minimum, one pour analysis shall be completed and reported for all elements listed for the respective grade in this table.

B if the casting is subjected to thermal or chemical processing following the pour, final product hydrogen shall be reported in lieu of pour hydrogen. Lower hydrogen may be abtained by negotiation with the manufacturer.

Single values are maximum. The percentage of titanium is determined by difference.

Colorer elements need not be reported unless the concentration level is greater than 0.1 % each, or 0.4 % total. Other elements may not be added intentionally. Other elements may be present in titanium or titanium palloys in symil quantities are inherent to the manufacturing process. In titaniem there is a present in a pallodium, and are inherent to the manufacturing process. In titaniem, present in an anganese, and tungsten.

EThe purchaser may, in the written purchase order, request analysis for specific elements not listed in this specification.

TABLE 2 Check Analysis Tolerances

	Maximum or Range,	Permissible Variation in
Element	Weight %	Check Analysis
Nitrogen	0.05	+0.02
Carbon	0.10	+0.02
Hydrogen	0.015	+0.003
Iron	1.2-1.8	±0.20
Iron	0.50	+0.15
	0.40	+0.08
	0.25	+0.05
	0.20	+0.04
Oxygen	0.25	+0.05
	0.20	+0.04
Aluminum	2.5-6.75	±0.40
Vanadium	2.0-4.5	±0.15
Tin	2.0-3.0	±0.15
Palladium	0.04-0.25	±0.02
Molybdenum	0.2-0.4	±0.04
Nickel	0.3-0.9	±0.05
Other (each)	0.10	+0.02

11. Repair by Welding

11.1 All welding, including repairs, shall be made using welders, welding operators, and welding procedures qualified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code and certified to the quality requirements established by the producer. The procedures developed shall be consistent with standard practices recommended for reactive metal alloys. The producer shall maintain documentation on procedure and welder qualifications. Procedure modifications or special arrangements shall be as agreed upon between the producer and purchaser.

11.2 The composition of the deposited weld metal shall be within the chemical requirements for each grade established in Table 1. Filler metals, if used for weld repair, must conform to those metal compositions as shown in ASME SFA-5.16/SFA-5.16M (Specifications for Titanium and Titanium-Alloy Welding Electrodes and Rods).

11.2.1 Unalloyed titanium Grades C-2 and C-3, and lowalloy Grades C-12, C-7, C-8, C-16, and C-17 cashings shall be stress-relieved if the repair is considered capable of adding stresses that will interfere with the purpose for which the castings are intended. The decision for stress relieving shall be made by the producer, unless otherwise agreed upon. The stress-relief cycle shall be in accordance with 8.2 followed by air or furnace cooling to room temperature, or as agreed upon between the purchaser and the producer.

11.2.2 Grade C-5 (Ti-6Al-4V), Grade C-6 (Ti-5Al-2.5Sn), Grade C-9, Grade C-18, and C-38 castings shall be stress-relieved after weld repair, if the weld defect or excavation is through a wall or exceeds 1 in.³ (16.4 cm³) of deposited metal. All welds on Grade C-12 (Ti-.3Mo-.8Ni) castings shall be stress-relieved after weld repair. The stress-relief cycle shall be in accordance with 8.2.

11.23 Hot isostatic pressing (HIP) may be substituted for required thermal treatment provided all requirements for that reatment are met, and temperatures detrimental to the material properties are not reached.

12. Referee Test and Analysis

12.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification.

13. Inspection

13.1 The producer shall afford the purchaser's inspector all reasonable facilities necessary to satisfy him that the material is being produced and furnished in accordance with this specification. Foundry inspection by the purchaser shall not interfere unnecessarily with the producer's operations.

13.2 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the producer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 14.

13.3 For purposes of determining conformance with the specifications contained herein, an observed or a calculated value shall be rounded off to the nearest unit in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

14. Rejection

14.0 Any rejection based on test reports shall be reported to the producer within 60 days from the receipt of the test reports

14.2 Material that shows unacceptable discontinuities as determined by the acceptance standards specified on the order, subsequent to acceptance at the producer's works, may be rejected, and the producer shall be notified within 60 days, or as otherwise agreed upon.

14.3 In the event of disagreement between the producer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question. The referee's testing shall be used in determining the conformance of the material to this specification.

15. Certification

15.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results of chemical analysis, tensile, and other tests meet the requirements of this specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

16. Product Marking

16.1 Unless otherwise specified, the following shall apply. 16.1.1 Castings shall be marked for material identification with the ASTM designation number (Specification B367) and grade symbol, that is, C-2, C-3, C-5, C-6, C-7, C-8, C-9, C-12, C-16, C-17, C-18, or C-38 if size permits. Marking shall be in such position as not to impair the function of the casting.

- 16.1.2 The producer's name or identification mark and the pattern number shall be cast or stamped using low stress stamps on all castings. Small size castings may be such that marking must be limited consistent with the available area.
- 16.1.3 The marking of lot numbers on individual castings shall be agreed upon by the producer and the purchaser.
- 16.1.4 Marking shall be in such a position as not to injure section II Part B 202 the usefulness of the casting.

17. Keywords

17.1 castings; corrosion resistant; titanium; titanium alloys

SUPPLEMENTARY REQUIREMENTS

Supplementary requirements shall be applied only when specified by the purchaser. Details of the supplementary requirements shall be agreed upon by the producer and purchaser. The specified tests shall be performed by the producer prior to shipment of the castings.

S1. Radiographic Examination

S1.1 When specified in the purchase order, castings shall be examined for internal discontinuities by means of X rays or gamma rays. Inspection procedure shall be in accordance with the Guide E94 and Test Method E142. Types and degrees of discontinuities considered shall be judged by the Reference Radiographs E446. Extent of examination and the basis for acceptance shall be agreed upon by the producer and the purchaser. A specification that may be used as a basis for such agreement is described as follows.

S1.2 Extent of Examination:

- S1.2.1 Category I—The castings shall be 100 % inspected radiographically and film sent or made available for purchaser examination.
- S1.2.2 Category II—Critical areas of all castings shall be radiographically inspected to ensure that casting quality is sufficient to meet customer needs. The film record need not be maintained.
- S1.2.3 Category III—Sample castings shall be radiographed in accordance with an agreed upon schedule. When discontinuities exceed the acceptance limits, all castings in the lot shall be examined according to Category II.

S1.3 Basis for Acceptance:

S1.3.1 The maximum severity level for each specific type of discontinuity shall be agreed upon the purchaser and producer. A specification which may be used as a basis for such agreement, using Reference Radiographs E446 is described as follows:

Category A	gas porosity	severity level 2
Category B	sand and stag inclusions	severity level 2
Category C	shrinkage CA	severity level 2
Category C	shrinkage CB	severity level 2
Category C	shrinkage CC	severity level 2
Category C	shrinkage CD	severity level 2
Category D	crack	none permitted
Category E	hot tear	none permitted
Category F	insert	none permitted

S2. Liquid Penetrant Examination

\$2.1 The castings shall be examined for surface discontinuities by means of liquid penetrant examination. The examination shall be in accordance with Test Method E165. Areas to be inspected, methods and types of liquid penetrants to be used, developing procedure, and basis for acceptance shall be agreed upon between the producer and the purchaser.

S3. Examination of Weld Preparation

- S3.1 Cavities prepared for welding due to surface discontinuities, such as cracks, open porosity, etc. shall be examined by means of liquid penetrant examination in order to verify removal of such discontinuities.
- S3.2 Weld repairs that are made to eliminate discontinuities that are detected by radiography shall be re-radiographed to verify that unacceptable discontinuities have been removed.

S5. Hot Isostatic Pressing (HIP)

- S5.1 Hot isostatic pressing (HIP) shall be used to improve as-cast quality when required. Temperature, time at temperature, and atmosphere shall be as agreed upon between the producer and the purchaser.
- \$5.2 Castings for which HIP is not required may be hot isostatic pressed by the producer in accordance with the requirements of 7.2.
- S5.3 HIP may be substituted for required thermal treatment provided all requirements for that treatment are met and temperatures detrimental to the material properties are not reached.

S6. Tension Test

S6.1 Tensile properties shall be determined on material representing each pour. Properties shall be determined in the as-cast condition unless otherwise specified in the purchase order. The results shall conform to the requirements specified in Table S6-1.

TABLE S6-1 Tensile Requirements

Grade	Tensile Strength, min, ksi (MPa)	Yield Strength 0.2 % Offset, min, ksi (MPa)	Elongation in 1-in. Gage Length, min, %
C-2	50 (345)	40 (275)	15
C-3	65 (450)	55 (380)	12
C-5	130 (895)	120 (825)	6
C-6	115 (795)	105 (725)	8
C-7	50 (345)	40 (275)	15
C-8	65 (450)	55 (380)	12
C-9	90 (620)	70 (483)	10
C-12	70 (483)	50 (345)	8
C-16	50 (345)	40 (275)	15
C-17	35 (240)	25 (170)	20
C-18	90 (620)	70 (483)	10
C-38	130 (895)	115 (794)	8

TABLE S8-1 Hardness Requirements

	•	
Grade	Brinell Hardness, max ^A	Rockwell Hardness, max ^A
C-2	210	B96
C-3	235	C24
C-5	365	C39
C-6	335	C36
C-7	210	B96
C-8	235	C24
C-9	365	C39
C-12	235	C24
C-16	210	B96
C-17	235	C24
C-18	365	C39
C-38	365	C39

A Average of three tests.

S6.2 Test bars may be obtained from special test blocks cast for that purpose or cut from castings processed with a lot.

S6.3 Tensile tests shall be made in accordance with the ASMENORMOC. COM. Circle to view the full rathe of Rome Brushing and Committee and Comm requirements of Test Methods E8. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in./min

S6.4 If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted from the same pour.

S7. Prior Approval of Major Weld Repairs

S7.1 Major weld repairs as defined and agreed upon between the producer and the purchaser shall be subject to the prior approval of the purchaser.

S8. Hardness Test

S8.1 Hardness shall be determined on material representing each lot. Hardness shall be determined in the as-cast condition unless otherwise specified in the purchase order. The results shall conform to the requirements specified in Table S8-1.

S8.2 Hardness shall be determined on a sample cast for that purpose, or on a casting randomly selected from a lot. If a casting is used for a hardness sample, indentations shall be made in a surface that will not be subsequently machined. Hardness values reported shall be representative of the base metal of the castings and not of any surface contamination due to mold-metal interactions.

S8.3 Hardness tests shall be made in accordance with the requirements of Test Methods E10 or E18.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER-NICKEL ALLOY CASTINGS SB-369 SB-369 Entical with ASTM Specification B369-09(2016) except that certification and a test report beautiful.

ASMENORMIOC. COM. Click to View the full POF (Identical with ASTM Specification B369-09(2016) except that certification and a test report have been made mandatory.)

Specification for **Copper-Nickel Alloy Castings**

1. Scope

1.1 This specification establishes the requirements for copper-nickel alloy castings with nominal compositions shown in Table 1. These are as follows:

Copper Alloy UNS No.

Previous Designation

C96200 C96400

Alloy A Alloy B

- 1.2 Castings of these alloys are used primarily for corrosion-resistance applications such as in construction and for pressure vessels, particularly in marine pumps, valves, and fittings.
- 1.3 These alloys are considered weldable, but they may be ordered with a weld test to ensure weldability. When extensive welding is to be performed on the casting, weldability tests should be specified in the ordering information (5.2.6) to ensure proper welding characteristics.
- 1.4 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 The following hazard statement applies only to Section 8, Weldability Test, of this specification. This standard does not purport to address all of the safety concerns, if any associated with its use. It is the responsibility of the user of this standard SWENORMOC. Conf. Circk to view to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to

2. Referenced Documents

2.1 ASTM Standards:

tion II Part B 202 B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings

B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ASME Code:

ASME Boiler and Pressure Vessel Code

2.3 AWS Standard

AWS A5.6 Specification for Copper and Copper-Alloy Arc-Welding Electrodes

3. General Requirements

- 3.1 The following sections of Specification B824 form a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
 - 3.1.1 Terminology (Section 3),
 - 3.1.2 Other Requirements (Section 7),
- 3.1.3 Dimensions, Mass, and Permissible Variations (Section 8),
 - 3.1.4 Workmanship, Finish, and Appearance (Section 9),
 - 3.1.5 Sampling (Section 10),
 - 3.1.6 Number of Tests and Retests (Section 11),
 - 3.1.7 Specimen Preparation (Section 12),
 - 3.1.8 Test Methods (Section 13),
 - 3.1.9 Significance of Numerical Limits (Section 14),

TABLE 1 Nominal Compositions

Copper Alloy UNS No. —			Compo	sition, %		
Copper Alloy UNS No. —	Copper	Nickel	Iron	Silicon	Manganese	Niobium
C96200	87.5	10.0	1.5	0.1	0.9	
C96400	67.0	30.0	0.7	0.5	0.8	1.0

- 3.1.10 Inspection (Section 15),
- 3.1.11 Rejection and Rehearing (Section 16),
- 3.1.12 Certification (Section 17),
- 3.1.13 Test Report (Section 18),
- 3.1.14 Product Marking (Section 19), and
- 3.1.15 Packaging and Package Marking (Section 20).

4. Terminology

4.1 For definitions of terms relating to copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Orders for castings under this specification should include the following information:
 - 5.1.1 Specification title, number, and year of issue;
 - 5.1.2 Quantity of castings;
 - 5.1.3 Copper Alloy UNS Number (Table 2);
- 5.1.4 Pattern or drawing number and condition (as-cast, machined, and so forth);
- 5.1.5 ASME Boiler and Pressure Vessel Code Requirements (Section 12); and
- 5.1.6 When material is purchased for agencies of the U.S. Government, the Supplementary Requirements of this specification may be specified.
- 5.2 The following are optional and should be specified in the purchase order when required:
- 5.2.1 Pressure test or soundness requirements (Specification B824):
 - 5.2.2 Witness inspection (Specification B824);
 - 5.2.3 DELETED
 - 5.2.4 DELETED
 - 5.2.5 Product marking (Specification B824);
 - 5.2.6 Weldability test (1.3, Section 8, and Table 2); and
- 5.2.7 Approval of weld procedure and records of repairs (Section 9).

TABLE 2 Chemical Requirements

cOM,		oy UNS No. 6200		by UNS No. 3400
_ 0 _	Min, %	Max, %	Min, %	Max, %
Copper	bala	ance	bala	ance
Lead		0.01		0.01
Iron	1.0	1.8	0.25	1.5
Nickel, incl cobalt	9.0	11.0	28.0	32.0
Manganese		1.5		1.5
Silicon		0.50		0.50
Niobium		1.0 ^A	0.50	1.5
Phosphorus		0.02		0.02
Sulfur		0.02		0.02
Carbon		0.10		0.15

^A When product or casting is intended for subsequent welding applications, and so specified by the purchaser, the niobium content shall be 0.40 % max.

6. Chemical Composition

- 6.1 The castings shall conform to the chemical requirements shown in Table 2 for the copper alloy UNS numbers specified in the purchase order.
- 6.2 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements agreed upon between the manufacturer or supplier and the purchaser. Copper may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all the elements in the table are analyzed, their sum shall be 99.5 % minimum.

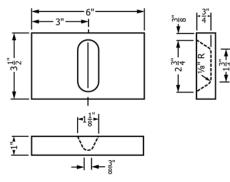
7. Mechanical Properties

7.1 Mechanical properties shall be determined from separately cast test bar castings, and shall meet the requirements shown in Table 3.

8. Weldability Test

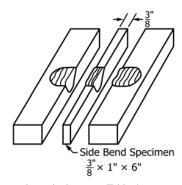
- When specified in the purchase order at least one test as as shown in Fig. 1 shall be prepared for each lot of welding grade castings (5.2.6).
- 8.2 The block shall be molded, gated, and risered in such a manner to produce a sound casting without defects that might interfere with welding or the interpretation of the results of the test
- 8.3 The groove in the test block shall be completely filled with weld deposit metal, using the manual metallic-arc process with ½-in. (12.7-mm) or ½32-in. (3.97-mm) diameter coppernickel (70-30) coated electrodes conforming to classification AWS ECuNi of AWS Specification A5.6. The interpass temperature need not be controlled, unless it is to be controlled in fabrication.
- 8.4 One 3/8-in. (9.52-mm) minimum thick bend coupon (see Fig. 2), shall be removed longitudinally from the center of the welded block by machining, sawing, abrasive cutting, or other suitable means. Cut surfaces and edges should be sanded smooth if necessary. The side bend specimen then shall be bent 180° in a guided bend jig around a mandrel 1½ in. (38.1 mm) in diameter with the weld located at the center of the bend.

TABLE 3 Mechanical Requirements


	Copper Alloy UNS No. C96200	Copper Alloy UNS No. C96400
Tensile strength, min, ksi ^A (MPa)	45 (310)	60 (415)
Yield strength, min, ksi (MPa)	25 (170)	32 (220)
Elongation in 2 in. (50.8 mm), %	20	20

^A ksi = 1000 psi.

^B Yield strength shall be determined as the stress producing an elongation under load of 0.5 %, that is 0.01 in. (0.254 mm) in a gage length of 2 in. (50.8 mm).


TABLE 4 Metric Conversion Values for Figs. 1 and 2

			-
in.	(mm)	in.	(mm)
1/8	(3.18)	13/4	(44.4)
3/8	(9.52)	23/4	(69.8)
3/4	(19.0)	3	(76.2)
1	(25.4)	31/2	(88.9)
11/8	(28.6)	6	(152)

Note 1—For metric equivalents see Table 4.

FIG. 1 Cast Block for Weldability Test

Note 1—For metric equivalents see Table 4. FIG. 2 Weldability Test Block

8.5 Cracks or other open defects exceeding ½ in. (3.2 mm) measured in any direction in the fusion zone or heat-affected zone on the convex surface of the specimen after bending shall be cause for rejection. Cracks originating at weld-bead undercuts, at weld-slag inclusions, or at casting defects shall not be cause for rejection.

9. Casting Repair

9.1 Alloys included in this specification are generally weldable. Weld repairs may be made at the manufacturer's discretion provided each excavation does not exceed 20 % of the casting section or wall thickness or 4 % of the casting surface area.

- 9.2 Excavations that exceed those described in 9.1 may be made at the manufacturer's discretion except that when specified in the purchase order (5.2.7) the weld procedure shall be approved by the purchaser and the following record shall be maintained:
- 9.2.1 A sketch or drawing showing the dimensions, depth, and location of excavations;
 - 9.2.2 Post weld heat treatment, when applicable;
 - 9.2.3 Weld repair inspection results;
 - 9.2.4 Casting identification number;
 - 9.2.5 Weld procedure identification number;
 - 9.2.6 Welder identification; and
 - 9.2.7 Name of inspector.
- 9.3 The castings shall not be impregnated without approval of the purchaser.

10. Sampling

10.1 Test bar castings for tension testing of the copper alloy UNS numbers in this specification shall be cast to the form and dimensions shown in Fig. 1 or Fig. 2 of Practice B208.

11. Test Methods

- 11.1 Analytical chemical methods are given in Specification B824.
- 11.1.1 Test methods to be followed for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

12. ASME Requirements

- 12.1 Castings shall comply with the following:
- 12.1.1 Certification requirements of Specification B824.
- 12.1.2 Foundry test report requirements of Specification B824.
- 12.1.3 Castings shall be marked with the manufacturer's name, the copper alloy UNS number, and the casting quality factor. In addition, heat numbers or serial numbers that are traceable to heat numbers shall be marked on all pressure-containing castings individually weighing 50 lb (22.7 kg) or more. Pressure-containing castings weighing less than 50 lb (22.7 kg) shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as to not injure the usefulness of the casting.

13. Keywords

13.1 copper-alloy castings; copper-nickel castings; UNS No. C96200; UNS No. C96400

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S1.1.12 Federal Standards:⁶

Fed. Std. No. 102 Preservation, Packaging, and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.3 Military Standards:

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-248 Welded and Brazing Procedure in Performance Qualification

MIL-STD-278 Welding and Casting Standard

S2. Soundness

S2.1 Castings shall meet the soundness requirements of MIL-STD-278 for the category, sub-category, and criticality level specified in the purchase order.

S3. Pressure Test

S3.1 Castings shall meet the pressure test requirements of MIL-STD-278.

S4. Weld Repair

S4.1 All repair welding shall be in accordance with MIL-STD-278 using welders and welding procedures qualified in accordance with MIL-STD-248.

S5. Quality Assurance

S5.1 Responsibility for Inspection:

S5.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

S6. Product Marking

S6.1 The castings shall be permanently marked in accordance with MID-STD-792 and include specification and alloy number, pattern or drawing number, lot number, and manufacturer's pame or trademark.

S7. Preparation for Delivery

\$7.1 Preservation, Packaging, and Packing:

\$7.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.

S7.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S7.2 Marking:

S7.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S7.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY FORGINGS SB-381 (Identical with ASTM Specification B381-13(2019) except that Note A of Table 1 has been revised.)

click to view the full Policy of the Annual Control of the Annual (Identical with ASTM Specification B381-13(2019) except that Note A of Table 1 has been revised.)

Specification for Titanium and Titanium Alloy Forgings

1. Scope

- 1.1 This specification covers 39 grades of annealed titanium and titanium alloy forgings as follows:
 - 1.1.1 Grade F-1—UNS R50250. Unalloyed titanium,
 - 1.1.2 Grade F-2—UNS R50400. Unalloyed titanium,
- 1.1.2.1 *Grade F-2H*—UNS R50400. Unalloyed titanium (Grade 2 with 58 ksi (400 MPa) minimum UTS),
 - 1.1.3 Grade F-3—UNS R50550. Unalloyed titanium,
 - 1.1.4 Grade F-4—UNS R50700. Unalloyed titanium,
- 1.1.5 *Grade F-5*—UNS R56400. Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 *Grade F-6*—UNS R54520. Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7 Grade F-7—UNS R52400. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7.1 *Grade F-7H*—UNS R52400. Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi (400 MPa) minimum UTS),
- 1.1.8 *Grade F-9*—UNS R56320. Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.9 *Grade F-11*—UNS R52250. Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 *Grade F-12*—UNS R53400. Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.11 *Grade F-13*—UNS R53413. Titanium alloy (0.5% nickel, 0.05 % ruthenium),
- 1.1.12 *Grade F-14*—UNS R53414. Titanium allow (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 *Grade F-15*—UNS R53415. Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 *Grade F-16*—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade F-16H—UNS R52402. Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi (400 MPa) minimum UTS),

- 1.1.15 *Grade F-17*—UNS R52252. Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 *Grade F-18*—UNS R56322. Titanium allow 3 % aluminum, 2.5 % vanadium) plus 0.04 % to 0.08 % palladium,
- 1.1.17 *Grade F-19*—UNS R58640. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade F-20*—UNS R58645. Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum) plus 0.04 to 0.08 % palladium,
- 1.1.19 *Grade F-21*—UNS R58210. Titanium alloy (3 % aluminum, 2.7 % niobium, 15 % molybdenum, 0.25 % silicon),
- 1.1.20 *Grade F-23* UNS R56407. Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitials, ELI),
- 1.1.21 *Grade F* 24—UNS R56405. Titanium alloy (6 % aluminum, 4% vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.22 *Grade F-25*—UNS R56403. Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 to 0.8 % nickel and 0.04 to 0.08 % palladium,
- 1.1.23 *Grade F-26*—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.23.1 *Grade F-26H*—UNS R52404. Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi (400 MPa) minimum UTS),
- 1.1.24 *Grade F-27*—UNS R52254. Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.25 *Grade F-28*—UNS R56323. Titanium alloy (3 % aluminum, 2.5 % vanadium plus 0.08 to 0.14 % ruthenium),
- 1.1.26 *Grade F-29*—UNS R56404. Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitial, ELI plus 0.08 to 0.14 % ruthenium),
- 1.1.27 *Grade F-30*—UNS R53530. Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.28 *Grade F-31*—UNS R53532. Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.29 *Grade F-32*—UNS R55111. Titanium alloy (5 % aluminum, 1 % vanadium, 1 % tin, 1 % zirconium, 0.8 % molybdenum),
- 1.1.30 *Grade F-33*—UNS R53442. Titanium alloy (0.4% nickel, 0.015% palladium, 0.025% ruthenium, 0.15% chromium),

- 1.1.31 Grade F-34—UNS R53445. Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 %
- 1.1.32 Grade F-35—UNS R56340. Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.33 Grade F-36—UNS R58450. Titanium alloy (45 % niobium),
- 1.1.34 Grade F-37—UNS R52815. Titanium alloy (1.5 % aluminum), and
- 1.1.35 Grade F-38—UNS R54250. Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).
- Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B348 Specification for Titanium and Titanium Alloy Bars and Billets
- E8 Test Methods for Tension Testing of Metallic Materials [Metric] E0008_E0008M
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E539 Test Method for Analysis of Titanium Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry
- E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
- E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Allows by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
- E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
- E2371 Test Method for Analysis of Titanium and Titanium Emission Spectron
 Lest Methodology)
 Refractory Metals (Withdrawn 2017) Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-
 - E2626 Guide for Spectrometric Analysis of Reactive and

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 bar, n—a hot rolled, forged or cold worked semifinished solid section product whose cross sectional area is less than 16 in.² (10 323 mm²).
- 3.1.2 billet, n—a solid semifinished section, hot rolled or forged from an ingot, with a cross sectional area greater than in.² (10 323 mm²).
- 3.1.3 forging, n—any product of work on metal formed to a desired shape by impact or pressure in hammers, forging machines, upsetters presses or related forming equipment.

4. Ordering Information

- 4.1 Orders for forgings under this specification shall include the following information, as applicable:
 - 4.1.1 Grade number (Section 1)
 - 4.1.2 Tensile properties (Table 1),
 - 4.1.3 Dimensions and tolerances (Section 10),
 - 4.1.4 Sampling, mechanical properties (Section 8),
 - 4.1.5 Methods for chemical analysis (Section 6),
 - 4.1.6 Marking (Section 17),
 - 4.1.7 Packaging (Section 17),
 - 4.1.8 Certification (Section 16),
 - 4.1.9 Disposition of rejected material (Section 14), and
 - 4.1.10 Supplementary requirements (S1).

Materials and Manufacture

5.1 Material conforming to the latest revision of Specification B348 shall be used when producing forgings to this specification.

6. Chemical Composition

- 6.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the requirements as to chemical composition prescribed in Table 2.
- 6.1.1 The elements listed in Table 2 are intentional alloy additions or elements which are inherent to the manufacturer of titanium sponge, ingot or mill product.
- 6.1.1.1 Elements other than those listed in Table 2 are deemed to be capable of occurring in the grades listed in Table 2 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 2 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
- 6.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.
- 6.2 When agreed upon by the producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
- 6.3 Product Analysis—Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material which is outside the limits specified in Table 2 for the applicable grade. Product analysis limits shall be as specified in Table 3.

TARLE 1 Tancila Requirements

Grade	Tensile	Strength, min	Yield Strength (0.2 %	6 Offset), min or Range	Elongation in 4D,	Reduction of Area,
Ciade	ksi	(MPa)	ksi	(MPa)	min, %	min, %
F-1	35	(240)	20	(138)	24	30
F-2	50	(345)	40	(275)	20	30
F-2H ^{<i>B,C</i>}	58	(400)	40	(275)	20	30
F-3	65	(450)	55	(380)	18	30
F-4	80	(550)	70	(483)	15	25
F-5	130	(895)	120	(828)	10	25
F-6	120	(828)	115	(795)	10	25
F-7	50	(345)	40	(275)	20	30
F-7H ^{<i>B,C</i>}	58	(400)	40	(275)	20	30
F-9	120	(828)	110	(759)	10	25
F-9 ^D	90	(620)	70	(483)	15	25
F-11	35	(240)	20	(138)	24	30
F-12	70	(483)	50	(345)	18	25 25 30 25
F-13	40	(275)	25	(170)	24	30
F-14	60	(410)	40	(275)	20	30
F-15	70	(483)	55	(380)	18	25
F-16	50	(345)	40	(275)	20	30
F-16H ^{B,C}	58	(400)	40	(275)	20	30
F-17	35	(240)	20	(138)	20 20 20 24	30
F-18	90	(620)	70	(483)	35/	25
F-18 ^D	90	(620)	70	(483)	12	20
F-19 ^E	115	(793)	110	(759)	15	25
F-19 ^F	135	(930)	130 to 159	(897) to (1096)	10	20
F-19 ^G	165	(1138)	160 to 185	(1104) to (1276)	5	20
F-20 ^E	115	(793)	110	(759)	15	25
F-20 ^F	135	(930)	130 to 159	(897) to (1096)	10	20
F-20 ^G	165	(1138)	160 to 185	(1104) to (1276)	5	20
F-21 ^E	115		110	(759)	15	35
F-21	140	(793) (966)	130 to 159	(897) to (1096)	10	30
F-21 ^G			160 to 185	(1104) to (1276)	8	20
	170	(1172)				
F-23 F-23 ^D	120	(828)	110 110	(759)	10 7.5 ^H , 6.0 [/]	25 25
F-23	120	(828)		(759)		
F-24 F-25	130	(895)	120	(828)	10	25
	130	(895)	120	(828)	10	25
F-26 F-26H ^{B,C}	50	(345)	40 40	(275)	20	30
	58	(400)	40	(275)	20	30
F-27	35	(240)	20 70 70	(138)	24	30
F-28	90	(620)		(483)	15	25
F-28 ^D	90	(620)	/0	(483)	12	20
F-29	120	(828)	110	(759)	10	25
F-29 ^D	120	(828)	110	(759)	7.5 ^H , 6.0 ^I	15
F-30	50	(345)	40	(275)	20	30
F-31	65	(450)	55	(380)	18	30
F-32	100	(689)	85	(586)	10	25
F-33	50	(345)	40	(275)	20	30
F-34	65	(450)	55	(380)	18	30
F-35	130	(895)	120	(828)	5	20
F-36	65	(450)	60 to 95	(410 to 655)	10	
F-37	50	(345)	31	(215)	20	30
F-38	130	(895)	115	(794)	10	25

A These properties apply to forgings having a Closs section no greater than 3 in.2 (1935 mm²).

6.4 Sampling—Samples for chemical analysis shall be representative of material being tested. Except for hydrogen and unless otherwise specified, chemical analysis of ingot or billet shall be reported. Samples for hydrogen determination shall be

obtained from the forgings on a test basis and a frequency as agreed upon between the forger and the purchaser. The utmost care must be used in sampling titanium for chemical analysis because of its great affinity for elements such as oxygen,

^B Material is identical to the corresponding numeric grade (that is, Grade F-2H = Grade F-2) except for the higher guaranteed minimum UTS, and may be dual certified with its corresponding numeric grade. Grade F-2H, F-7H, F-16H, and F-26H are intended primarily for pressure vessel use.

C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports where over 99 %

met the 58 ksi minimum UTS.

^D Properties for material in transformed-beta condition.

^E Properties for material in the solution treated condition.

F Properties for solution freated and aged condition-Moderate strength (determined by aging temperature).

^G Properties for solution treated and aged condition-High Strength (determined by aging temperature).

H For product section or wall thickness values <1.0 in.
For product section or wall thickness values ≥1.0 in.

S
Ξ
Φ
Ε
Ģ
·≡
긁
ĕ
Œ
_
8
ĕ
Ĕ
ခု
\bar{a}
~
щ
둤
۳
~
•

								I ADEL 7	ADLE 2 CHEIIICAI nequirements	ambau n									
		5						Compos	Composition, Weight Percent ^{A,B,C,D,E}	t Percent ^A ,	B,C,D,E								
))	_(i	Other	Other
	UNS Carbon,	Oxygen		Nitrogen, Hydrogen,	Iron range												Ĭ	Elements,Elements, max. max.	lements, max.
Grade	Grade Number max.	- 1	max	max.	or max.	Aluminum	Vanadium	Palladium	Aluminum Vanadium Palladium Ruthenium	Nickel	Molybdenu	Molybdenum Chromium	Cobalt	Zirconium Niobium	Niobium	Ξ	Silicon	each	total
1	B50250 0.08	0 18)	0015	0.50	;	;	;	;	;	:	;	;	;	;	;	:	0 1	0 4
F-2/	R50400 0.08	0.25	0.03	0.015	0.30	:	:	;	;	;	:	:	:	:	;	;	;	0.1	0.4
F 24	B50550	0.35	0.05	0.015	0.30	;	;	;	;	;	:	:	:	;	:	;	:	0	0.4
Т-		0.40	0.05	0.015	0.50	:	:	:	:	:	:	;	:	:	:	:	;	0.1	0.4
F-5	R56400	0.20	0.05	0.015	0,40	5.5-	3.5-	;	:	:	:	:	:	:	:	;	;	0.1	0.4
F-6	R54520 0.08	0.20	0.03	0.015	0.50	0.4	t . 	:	:	:	:	:	;	;	;	2.0-	:	0.1	0.4
F-7/	R52400 0.08	0.25	0.03	0.015	0:30	ROY	:	0.12-	:	:	:	:	:	:	;	0.0	:	0.1	0.4
F-9 F-9	R56320 0.08	0.15	0.03	0.015	0.25	2.5-	-0.5	cz.o	:	:	:	:	;	;	:	;	:	0.1	9.0
픞	R52250 0.08	0.18	0.03	0.015	0.20	G	€ \$0 \$1	0.12-	:	:	:	:	;	;	:	:	:	0.1	9.0
F-12	R53400 0.08	0.25	0.03	0.015	0:30	:	, J.	CZ : <	:	-9.0	0.2-	:	;	;	;	:	:	0.1	9.0
F-13	R53413 0.08	0.10	0.03	0.015	0.20	:	:	5 _C	0.04-	0.4 9.4	 4	:	;	;	;	;	:	0.1	9.0
F-14	R53414 0.08	0.15	0.03	0.015	0:30	:	:	X	0.04-	0.4	:	:	;	;	:	:	:	0.1	9.0
F-15	R53415 0.08	0.25	0.05	0.015	0.30	:	;	:	9.4	0.6	;	:	;	:	;	;	;	0.1	9.0
F-16/	R52402 0.08	0.25	0.03	0.015	0.30	:	:	0.04-	0.00	9.0	:	:	;	;	:	;	:	0.1	4.0
г-16п F-17	R52252 0.08	0.18	0.03	0.015	0.20	:	:	0.0	:	NE.	:	;	:	;	;	;	:	0.1	0.4
F-18	R56322 0.08	0.15	0.03	0.015	0.25	2.5-	2.0-	0.04	:	*	2	;	:	;	;	:	:	0.1	0.4
F-19	R58640 0.05	0.12	0.03	0.05	0.30	3.0-	7.5-	:	:	:	8. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	5.5-	:	3.5-	;	;	;	0.15	9.0
F-20	R58645 0.05	0.12	0.03	0.05	0:30	3.0-	7.5-	0.04-	:	:	3.5 7.7 7.0	5.5-	:	3.5-	;	;	:	0.15	0.4
F-21	R58210 0.05	0.17	0.03	0.015	0.40	2.5-	} ;	} :	:	:	14.0-	3	:	2 :	2.2-	;	0.15-	0.1	0.4
F-23	R56407 0.08	0.13	0.03	0.0125	0.25	5.5-	3.5-	:	:	:	;	D'S	; ;	;	<u> </u>	;	;	0.1	0.4
F-24	R56405 0.08	0.20	0.05	0.015	0.40	5.5-	3.5-	0.04-	:	:	;),,	N	:	;	;	;	0.1	9.0
F-25	R56403 0.08	0.20	0.05	0.015	0.40	5.5-	3.5-	0.04-	:	0.3-	:	;	8	:	;	:	:	0.1	9.0
F-26/ F-16H	R52404 0.08	0.25	0.03	0.015	0.30	:	:	:	0.08-	:	;	:	:	7	;	:	:	0.1	0.4
F-27	R52254 0.08	0.18	0.03	0.015	0.20	:	:	:	0.08-	:	:	:	;	ر ص	:	;	;	0.1	0.4
F-28	R56323 0.08	0.15	0.03	0.015	0.25	2.5	2.0-	:	0.08-	:	:	:	:))	:	;	:	0.1	0.4
F-29	R56404 0.08	0.13	0.03	0.0125	0.25	. 7. a	3.5. 5.7. a	:	0.08-	:	;	:	:	;	,jC	;	:	0.1	9.0
F-30	R53530 0.08	0.25	0.03	0.015	0:30	? :	? ;	0.04-	<u>†</u> ;	:	:	:	0.20-	;			:	0.1	0.4
F-31	R53532 0.08	0.35	0.05	0.015	0.30	:	:	0.08	:	:	:	:	0.20-	:	;	<i>S</i>	:	0.1	0.4
																	k		

Continued
TABLE 2

	Other	lements,	max.	total	0.4		0.4	0.4		0.4	0.4	0.4	0.4
	Other	Elements,Elements,	max.	each	0.1		0.1	0.1		0.1	0.1	0.1	0.1
		ä		Silicon	-90.0	0.14	:	:		0.20-	:	;	:
				Tin	-9:0		:	;		:	:	:	:
				Niobium	:		:	:		:	42.0-	:	;
				Zirconium Niobium	-9:0	1.4	:	:		:	;	;	:
				Cobalt	:		:	;		;	:	:	;
				Chromium	:		0.1-	0.2 0.1-	0.2	:	:	;	:
	,C,D,E			Molybdenum Chromium	-9:0	1.2	:	;		1.5- 2.5	;	:	
Continued	. Percent ^{A,B}			Nickel	:		0.35-	0.55 0.35-	0.55	:	C	M	'
TABLE 2 C	Composition, Weight Percent ^{A,B,C,D,E}			Ruthenium	:		0.02-	0.04	0.04	ó	P	;	:
7	Composi			or max. Aluminum Vanadum Palladium Ruthenium	; &	S	0.01-	0.02	0.02	:	;	;	:
			12	Vapadum	⊘ -9:0	4.1	:	;		1.1- 2.1	;	;	2.0- 3.0
	4	O		Aluminum	4.5	5.5	:	:		4.0- 5.0	;	1.0-	3.5-
Click		Iron	range	or max.	0.25		0.30	0.30		0.20-	0.03	0.30	1.2-
con.			Nitrogen, Hydrogen, range	max.	0.015		0.015	0.015	!	0.015	0.015	0.015	0.015
			Nitrogen,	max.	0.03		0.03	0.05		0.05	0.03	0.03	0.03
CML)		Oxygen	range	or max.	0.11		0.25	0.35		0.25	0.16	0.25	0.20-
ASMENORMOC.COM. Circk to				Grade Number max.	R55111 0.08		R53442 0.08	R53445 0.08		H56340 0.08	R58450 0.04	15 0.08	R54250 0.08
Sh.			ONS	Numb :	R5511		R534	R534		H563	R584	R52815	R542
`				Grade	F-32		F-33	F-34		F-35	F-36	F-37	F-38

At minimum, the analysis of samples from the top and bottom of the ingot shall be completed and reported for all elements listed for the respective grade in this table.

^B Final product hydrogen shall be reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by negotlation with the manufacturer. ^C Single values are maximum. The percentage of titanium is determined by difference.

ASME BRYC Section II Part B 202 Deter elements need not be reported unless the concentration level is greater than 0.1% each, or 0.4% total. Other elements may find be added intentionally. Other elements may be present in titanium or titanium alloys in small quantities and are inherent to the manufacturing process. In titanium these elements typically include aluminum, vanadium, tip, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

E The purchaser may, in the written purchase order, request analysis for specific residual elements not listed in this specification.

TABLE 3 Permissible Variations in Product Analysis

	Product Analysis	Permissible
Element	Limits,	Variation in Product
	max or Range, %	Analysis
Aluminum	0.5 to 2.5	±0.20
Aluminum	2.5 to 6.75	±0.40
Carbon	0.10	+0.02
Chromium	0.1 to 0.2	±0.02
Chromium	5.5 to 6.5	±0.30
Cobalt	0.2 to 0.8	±0.05
Hydrogen	0.02	+0.002
Iron	0.80	+0.15
Iron	1.2 to 1.8	±0.20
Molybdenum	0.2 to 0.4	±0.03
Molybdenum	0.6 to 1.2	±0.15
Molybdenum	1.5 to 4.5	±0.20
Molybdenum	14.0 to 16.0	±0.50
Nickel	0.3 to 0.9	±0.05
Niobium	2.2 to 3.2	±0.15
Niobium	>30	±0.50
Nitrogen	0.05	+0.02
Oxygen	0.30	+0.03
Oxygen	0.31 to 0.40	±0.04
Palladium	0.01 to 0.02	±0.002
Palladium	0.04 to 0.08	±0.005
Palladium	0.12 to 0.25	±0.02
Ruthenium	0.02 to 0.04	±0.005
Ruthenium	0.04 to 0.06	±0.005
Ruthenium	0.08 to 0.14	±0.01
Silicon	0.06 to 0.40	±0.02
Tin	0.6 to 3.0	±0.15
Vanadium	0.6 to 4.5	±0.15
Vanadium	7.5 to 8.5	±0.40
Zirconium	0.6 to 1.4	±0.15
Zirconium	3.5 to 4.5	±0.20
Residuals ^A (each)	0.15	+0.02

^A A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

nitrogen, and hydrogen. Therefore, the cutting and handling of samples should include practices that will prevent contamination. Samples shall be collected from clean metal.

6.5 At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from opposite extremes of the product to be analyzed.

7. Methods of Chemical Analysis

7.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser. Alternate echniques are discussed in Guide E2626.

8. Mechanical Properties

- 8.1 Forgings supplied under this specification shall conform the requirements as to mechanical properties specified in Table 1, as applicable.
- 8.2 Specimens for tension tests shall be machined and tested in accordance with Test Methods E8. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in.·min through the specified yield strength. After the specified yield strength has been reached, the crosshead speed shall be

increased to a rate sufficient to produce fracture in approximately one additional minute.

8.3 Sampling—Tension test specimens shall be machined from material as agreed upon by the manufacturer and the purchaser.

9. Nondestructive Tests

9.1 Nondestructive test requirements such as ultrasonic test, X ray, or surface inspection shall be specified by the purchaser, if required. The standard for acceptance or rejection shall be agreed upon between the forger and the purchaser.

10. Dimensions and Permissible Variation

10.1 Dimensions and tolerances of ritanium and titanium alloy forgings covered by this specification shall be as shown on the applicable forging drawing or otherwise agreed upon by the manufacturer and the purchaser.

11. Workmanship, Finish, and Appearance

11.1 Titanium alloy forgings shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which they are intended. Annealed forgings may be furnished as descaled, sandblasted, or ground. The manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the forging below the minimum permitted by the tolerance for the forging at the applicable location.

12. Retests

12.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 14.

13. Rounding-Off Procedure

13.1 For purposes of determining conformance with this specification, an observed or a calculated value shall be rounded off to the nearest "unit" in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

14. Rejection

14.1 Forgings not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected forgings may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of notice of rejection, other instructions for disposition.

15. Referee Test and Analysis

15.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the

requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification.

16. Certification

16.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results of chemical analysis, tensile, and other tests meet the requirements of the specification for the grade specified. The report

shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

17. Packaging and Package Marking

- Twise specified, forgings purper manufacturer's standard practice.

 17.2 Marking—Forgings shall be marked for identification agreed upon by the manufacturer and the purchaser.

 Keywords

 18.1 forgings; titan: chased under this specification shall be packaged in accordance with the manufacturer's standard practice.
- BRVC Section as agreed upon by the manufacturer and the purchaser.

18. Keywords

SUPPLEMENTARY REQUIREMENTS

SUPPLEMENTARY REQUIREMENTS COVERING GRADE F3 TITANIUM FORGINGS

The following supplementary requirements are primarily intended for U.S. military applications and shall apply only when specified by the purchaser in the inquiry, contract or order.

S1. U.S. Military Requirements

- S1.1 Referenced Documents section follows.
- S1.2 Unless otherwise specified in the contract or purchase order, the seller is responsible for the performance of all inspection and test requirements in this specification, and the seller may use his or other suitable facilities for the performance of the inspection and testing.
 - S1.3 Grade F-3 composition shall be modified as follows:

0.0125 max Hydrogen 0.20 max Iron 0.26 max Oxygen

- S1.4 Two tensile specimens shall be taken from each lot of forgings up to and 125 pounds, and two tensile specimens shall be taken from each forging greater than 125 pounds for verification of compliance with Grade F3 mechanical properties of Table 3. A lot shall constitute all forgings from the same heat, of the same design and size and heat treated in the same heat treat furnace load. The test specimens shall be taken from integral prolongations or extra forgings may be provided by the forger. Forgings under 3½ in. (90 mm) in cross section may use separately forged test bars provided the wall thickness and amount of working are equivalent to the forgings being supplied. Extra forgings may be provided for samples when forgings are over 3½ in. (90 mm) in cross section provided samples cannot be taken from prolongations or by trepanning. Samples shall be taken from the section of forging having the largest cross section. The longitudinal axis of the tensile specimens shall be parallel to the major direction of metal flow in the forging.
 - S1.5 Repair welding is not permitted.
- S1.6 Each forging shall be ultrasonically inspected in accordance with MIL-STD-2154 throughout 100 % of their volume. Inspection shall be performed after heat treating when the forging is machined to the configuration for ultrasonic

- inspection as shown on the forging sketch or drawing. Inspection shall be performed prior to drilling holes, cutting keyways, tapers, grooves, or machining section to final contour. Forgings shall be scanned using a straight beam technique such that all major planes are covered. Disc type forgings shall be scanned using a straight beam from at least one flat face and radially from the circumference when possible. Cylindrical, ring, and hollow forgings shall be scanned from the entire external surface using the straight beam technique, and in the axial direction to the maximum extent possible. Acceptance criteria shall be to class A of MIL-STD-2154.
- S1.7 All surfaces of each forging shall be liquid penetrant inspected in accordance with NAVSEA T9074-AS-GIB-010/ 271. Acceptance criteria shall be in accordance with NAVSEA S9074-AR-GIB-010/278 as specified in the order.
- S1.8 Forgings shall be free of foreign material and contaminants such as sulfur, lead, marking paints or machining or forming lubricants. Forgings shall be cleaned prior to any heat treatment operations. Forgings shall be free of any oxygen rich layer, such as alpha case.
- S1.9 The first forging of each type and design submitted for inspection shall be the first article sample. Mechanical properties for first article inspections shall be determined throughout the forging as specified in the order (which should also include specific instructions regarding arrangements for examinations, approval of test results, and disposition of the first article samples), and the number and location of the test specimens and the acceptance criteria shall be as specified or as agreed upon between the contracting activity and the manufacturer. In addition, A full cross-section shall be macroetched in accordance with ASTM E340 and examined at 10x magnification for uniformity, soundness, grain size and grain flow. The macro etch cross section shall evidence uniformity of quality, soundness and freedom from cracks and porosity. A

fully wrought structure shall be evident and variation in grain size shall be such that it will not interfere with ultrasonic examination.

The manufacturer shall maintain a record of production practices used for the first article forging. In the event of change in the production practice in the same or subsequent order, the manufacturer shall notify the contracting activity and obtain approval of the changes. The manufacturer may be required to perform specific first article tests and examinations to verify that the change will not or has not degraded forging

S2. Referenced Documents

S2.1 ASTM Standard:

E340 Test Method for Macroetching Metals and Alloys

S2.2 Military Standards:

T9074-AS-GIB-010/271 Requirements for Nondestructive Testing Methods

S9074-AR-GIB-010/278 Requirements for Fabrication Weldingand Inspection, and Casting Inspection and Repair for

MIL-STD-2154 Inspection, Ultrasonic, Wrought Metals,

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR U-BEND SEAMLESS COPPER AND CONDENSER TUBES

SB-395/SB-395M

(Identical with ASTM Specification B395/B395M-16 except for editorial corrections to Table 7. Certification and test report have been made mandatory.)

Specification for U-Bend Seamless Copper and Copper Alloy Heat Exchanger and Condenser Tubes

1. Scope

- 1.1 This specification establishes the requirements for condenser, evaporator, and heat exchanger U-bend tubes that are manufactured from seamless copper and copper alloy tube.
- 1.2 *Units*—The values stated in either SI units or inchpound units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 This specification is applicable to product 2 in. [50 mm] or less, inclusive, in diameter.
- 1.4 The product shall be produced from one of the following coppers or copper alloys, as specified in the ordering information:

Copp Coppe UNS	r Alloy	Previously Used Designation	Type of Metal
C10 C10 C10 C12 C12 C12 C14 C19 C23 C44 C44 C60 C68 C70 C70	300 800 800 200 200 200 200 200 300 300 400 5500 800 400	DLP ^A DHP ^A DPA ^A Type B Type C Type D Type B	oxygen-free without residual deoxidants oxygen-free, extra low phosphorus oxygen-free, low phosphorus phosphorized, low residual phosphorus phosphorized, arsenical phosphorized, arsenical phosphorized, a senical phosphorized, a senical phosphorized, and admiralty metal admiralty metal admiralty metal aluminum bronze aluminum brass 95-5 copper-nickel so-10 copper-nickel

opper All	oy Heat I	Exchanger
Copper or Copper Alloy UNS No.	Previously Used Designation	Type of MetaCtion
C70620		90-10 copper-nickel) (modified for welding)
C71000		80-20 copper-nickel
C71500		70-30 copper-nickel
C71520		70-30 copper-nickel- (modified for welding)
C72200		copper-nickel

^A Designations listed in Classification B224.

- 1.5 The following safety hazard caveat pertains only to the test methods described in this specification.
- 1.5.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.)

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
 - B154 Test Method for Mercurous Nitrate Test for Copper Alloys

- **B224 Classification of Coppers**
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Allovs
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E3 Guide for Preparation of Metallographic Specimens
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys E2575 Test Method for Determination of Oxygen in Copper and Copper Alloys
- 2.3 Other Standards:
- ASME Boiler and Pressure Vessel Code

3. Terminology

- 3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *dual-gage tube*, *n*—a tube which has more than one wall-gage thickness contained within the length of the tube.
- 3.2.2 squareness of cut, n—the maximum deviation of one side of a cross section of tube from the opposite side, when measured against the projected perpendicularity of the plane of the projected center of the tube at the ends.
- 3.2.3 *u-bend tube*, a tube bent 180° in a single plane into a U-shape.

4. Ordering Information

- 4.1 Include the following specified choices when placing orders for product under this specification, as applicable:
- 4.1.1 ASTM designation and year of issue,
- 4.1.2 Copper or copper alloy UNS No. designation (Section

- 4.1.3 Temper (Section 7),
- 4.1.4 *Dimensions*—X-diameter and wall thickness of the tube (see 12.1 and 12.2),
- 4.1.5 Schedule of bending radii (must include the number of pieces of each radii) (see 12.2.5),
 - 4.1.6 Length of U-bend tube legs (see 12.2.8),
- 4.1.7 If the product is to be subsequently welded (see Table 1), and
 - 4.1.8 Intended application, and
 - 4.1.9 If the product is to be for U.S. Government.
- 4.2 The following options are available but may not be included unless specified at the time of placing of the order when required:
 - 4.2.1 Heat identification or traceability details (see 5.1.2).
 - 4.2.2 DELETED
- 4.2.3 Relief anneal of U-bent portion of copper-nickel U-bend tubes (see 7.6),
- 4.2.4 Dual-gage, a schedule of tubes required in dual-gage and length of heavy gage section must be furnished with this option (see 5.2.2 and 12.2.3),
 - 4.2.5 Flattening Test (Section 10.2).
 - 4.2.6 Expansion Test (Section 10.1).
 - 4.2.7 DELETED
 - 4.2.8 DELETED
- 4.3 It product is purchased for agencies of the U.S. Government, it shall be in accordance with the requirements specified in the Supplementary Requirements section, when specified in the contract or purchase order.
 - 4.4 DELETED

5. Materials and Manufacture

- 5.1 Materials:
- 5.1.1 The material of manufacture shall be of the copper alloys defined in 1.4 and of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification for the applicable alloy and temper.
- 5.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
- Note 1—Due to the discontinuous nature of the processing of casting into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of material.
 - 5.2 Manufacture:
- 5.2.1 The product shall be manufactured by such hot working, cold working and annealing processes as to produce a uniform wrought structure in the finished product.
- 5.2.2 Tubes required to be U-bent to a small radius shall, if specified, be furnished as dual-gage tubes.
- 5.2.2.1 These tubes shall be made prior to U-bending with the wall thickness of the central section of the tube length, increased the equivalent of one Stubs' or Birmingham Wire Gage (BWG) thicker than the wall thickness specified for the straight leg portion of the U-bend tube.
- 5.2.2.2 Unless otherwise specified, dual-gage tubes shall be made to constant inside diameter; that is, the increased wall

ts
e
Ε
.≌
₫
ě
Œ
ल्ल
Ē
ē
등
_
ш
뭂
AB
F

thickness shall be obtained by increasing the outside diameter of the finished tube in the central heavy gage section.

5.2.3 The bent portion of the U-bend tube shall be substantially uniform in curvature.

6. Chemical Composition

- 6.1 The material shall conform to the chemical composition requirements specified in Table 1 for the copper or copper alloy UNS No. designation specified in the ordering information.
- 6.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified in Table 1.
- 6.2 These composition limits do not preclude the presence of unnamed elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 6.3 Copper Alloy UNS No. C19200—Copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.4 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.5 For copper alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed and 100 %.

7. Temper

- 7.1 Tempers, as defined in Classification B601, are as follows:
- 7.2 Prior to U-bending, tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, C68700, C70400, C70600, C70620, C71000, C71500, C71520, and C72200 shall be in the annealed temper (O61), unless otherwise specified in the purchase order.
- 7.3 Prior to bending, U-bend tubes of Copper Alloy UNS Nos. C10200, C10300, C10800, C12000, C12200, and C14200 shall be in light drawn temper (H55). Tubes of Copper Alloy UNS Nos. C70400, C70600, C70620, and C72200 shall, if specified, be made in the light-drawn temper (H55).
- 7.4 Prior to bending, Ubend tubes of Copper Alloy UNS No. C19200 shall be in the annealed (O61) or light drawn temper (H55) as specified.
- 7.5 Prior to bending, U-bend tubes of Copper Alloy UNS No. C71500 or C71520 shall be made in the drawn, stress-relieved temper (HR50), when specified.
- 7.6 The U-bend portion of tubes furnished in Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700 shall be relief annealed (HR) after bending. If specified, the U-bend portion of tubes furnished in Copper Alloy UNS Nos. C70400, C70600, C70620, C71000, C71500, C71520, and C72200 shall be relief annealed (HR) after bending.
- Note 2—Some tubes, when subjected to aggressive environments, may be subject to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is

suggested that tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800, and C68700 be subjected to a stress relieving (HR) thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall be to the requirements agreed upon by the manufacturer and purchaser.

8. Grain Size for Annealed Tempers

- 8.1 Grain size shall be the standard requirement for all product in annealed tempers.
- 8.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of a test specimen taken from each of two sample portions and each specimen shall be within the limits of 0.010 to 0.045 mm when determined in accordance with Test Methods E112.
- 8.3 The requirements of this section do not apply to product of the light-drawn temper (H55) drawn, stress-relieved temper (HR50), or to the U-bent portion of the product.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 Product shall have tensile properties as prescribed in Table 2 for product specified in inch-pound units or Table 3 for product specified in SI units. When tested in accordance with Test Methods E8/E8M.

10. Performance Requirements

- 10.1 Expansion Test:
- 10.1.1 When specified in the contract or purchaser order, tube specimens selected for test shall withstand the expansion shown in Table 4 when expanded in accordance with Test Method B153.
- 10.1.2 The expanded tube shall show no cracking or other defects visible to the unaided eye.
 - 10.2 Flattening Test:
- 10.2.1 When specified in the contract or purchase order, the flattening test in accordance with Test Method B968/B968M shall be performed.
- 10.2.2 During inspection, the flattened areas of the test specimen shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
 - 10.3 Residual Stress Test:
- 10.3.1 Product manufactured from Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, C60800 and C68700 shall be tested for residual stress according to the requirements of Test Method B154 or Test Method B858 and show no signs of cracking.

Warning—Mercury is a definite health hazard. With the Mercurous Nitrate Test, equipment for the detection and removal of mercury vapor produced in volatilization, and the use of protective gloves is recommended.

- 10.3.2 When the Ammonia Vapor Test is used, the test pH value appropriate for the intended application shall be 10 unless otherwise specified by the purchaser.
- 10.3.3 Residual stress test specimens shall be from both the U-bend and straight leg length and tested without bending,

TABLE 2 Tensile Requirements (Inch-Pound)

Note 1—For SI values, see Table 3.

0 41 4140 44		Temper Designation		Yield	Elongation in
Copper or Copper Alloy UNS No.	Temper Code	Temper Name	Strength, min, ksi ^B	Strength, ^A min, ksi ^B	2 in., min, %
C10200, C10300, C10800, C12000, C12200,	H55	light drawn	36	30	
C14200		_			
C19200	H55	light drawn	40	35	
C19200	O61	annealed	38	12	
C23000	O61	annealed	40	12	
C44300, C44400, C44500	O61	annealed	45	15	
C60800	O61	annealed	50	19	(
C68700	O61	annealed	50	18	.:.O`
C70400	O61	annealed	38	12	
C70400	H55	light drawn	40	30	~ CO
C70600, C70620	O61	annealed	40	15 🤇	
C70600, C70620	H55	light drawn	45	35_	<i>_</i>
C71000	O61	annealed	45	16	
C71500, C71520	O61	annealed	52	18	
For wall thicknesses up to 0.048 in., incl	HR50	drawn, stress-relieved	72	50	12
For wall thicknesses over 0.048 in.	HR50	drawn, stress-relieved	72	50	15
C72200	O61	annealed	45	16	
C72200	H55	light drawn	50	45	

TABLE 3 Tensile Requirements (SI)

Note 1—For Inch-Pound values, see Table 2.

Conner or Conner Alloy LING No.		Temper Designation	Tensile	Yield	Elongation in
Copper or Copper Alloy UNS No.	Temper Code	Temper Name	Strength, min, MPa	Strength, ^A min, MPa	50.8 mm, min, %
C10200, C10300, C10800, C12000,	H55	light drawn	250	205	
C12200, C14200			, V		
C19200	H55	light drawn	275	240	
C19200	O61	annealed 🔷	260	85	
C23000	O61	annealed 🦳	275	85	
C44300, C44400, C44500	O61	annealed	310	105	
C60800	O61	annealed 🕻 🏌	345	130	
C68700	O61	annealed	345	125	
C70400	O61	annealed	260	85	
C70400	H55	light drawn	275	205	
C70600, C70620	O61	annealed	275	105	
C70600, C70620	H55	light drawn	310	240	
C71000	O61	annealed	310	110	
C71500, C71520:	O61 🥋	annealed	360	125	
For wall thicknesses up to 1.2 mm, incl	HR50	drawn, stress-relieved	495	345	12
For wall thicknesses over 1.2 mm	HR50	drawn, stress-relieved	495	345	15
C72200	O61	annealed	310	110	
C72200	H55	light drawn	345	310	

springing, polishing, or any other preparation, except as allowed by the test method.

Note 3—A residual stress test provides information about the adequacy of the stress relief of the material. Stress relief annealing is a method of thermal stress relief. There is no standard test method to evaluate the effectiveness of a relief anneal (HR) of the U-bend section of coppernickel or copper-nickel iron tubes with respect to stress-corrosion cracking susceptibility.

11. Other Requirements

- 11.1 Nondestructive Examination for Defects:
- 11.1 Each tube, prior to bending, shall be subjected to the eddy-current test.
- 11.1.2 Tubes may be tested in the final drawn, annealed, or heat-treated temper or in the drawn temper prior to the final anneal or heat treatment at the option of the manufacturer.

- 11.1.3 Testing shall follow the procedures of Practice E243.
- 11.1.4 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, the manufacturer shall have the option of calibrating the test equipment using either notch-depth or drilled-hole standards. If agreement cannot be reached, notch-depth standard shall be utilized.
- 11.1.5 The depth of the round-bottom transverse notches and the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Table 5 and Table 7 for the material specified in the inch-pound system and Table 6 and Table 8 for material specified in the SI system.
- 11.1.6 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered as conforming to the requirements of this test.

TABLE 4 Expansion Requirements

	7.1522 1 Expansion requirements						
Temp	er Designation	Copper or Copper	Expansion of Tube Outside Diameter in				
Code	Name	Alloy UNS No.	Percent Of Original Outside Diameter				
O61	annealed	C19200	30				
		C23000	20				
		C44300, C44400, C44500	20				
		C60800	20				
		C68700	20				
		C70400	30				
		C70600, C70620	30				
		C71000	30				
		C71500, C71520	30				
		C72200	30				
H55	light-drawn	C10200, C10300, C10800,					
	9	C12000, C12200	20				
		C14200	20				
		C19200	20				
		C70400	20				
		C70600, C70620	20				
		C72200	20				
HR50	drawn, stress relieved	C71500, C71520	20				

TABLE 5 Notch Depth

	Tube Outside Diameter, in.			
Tube Wall Thickness, in.	Over 1/4 to	Over 3/4 to	Over 11/4 to	
	3/4, incl	11/4, incl	2, incl	
Over 0.017-0.032	0.005	0.006	0.007	
Incl, 0.032-0.049	0.006	0.006	0.0075	
Incl, 0.049-0.083	0.007	0.0075	0.008	
Incl, 0.083-0.109	0.0075	0.0085	0.0095	
Incl, 0.109-0.120	0.009	0.009	0.011	

TABLE 6 Notch Depth (SI)

	Tube Outside Diameter, mm			
Tube Wall Thickness, mm	Over 6 to 19,	Over 19 to 32,	yer 32 to 50,	
	incl	incl	incl	
Over 0.43-0.81	0.13	0.15	0.18	
Incl, 0.81 to 1.3	0.15	0.15	0.19	
Incl, 1.3 to 2.1	0.18	0.79	0.20	
Incl, 2.1 to 2.8	0.19	0.22	0.24	
Incl, 2.8 to 3.0	0.23	0.23	0.28	
		10.1		

TABLE 7 Diameter of Drilled Holes

Tube Outside Diameter, in.	Diameter of Drilled Holes, in.	Drill No.
1 /4 to 3/4, incl	0.025	72
Over ¾-1, incl	0.031	68
Over 1–11/4 incl	0.036	64
Over 11/4 11/2, incl	0.042	58
Over 11/2 +1 3/4, incl	0.046	56
Over 1¾ –2, incl	0.052	55

M.1.7 Tubes causing irrelevant signals because of moisture, soil, and minor mechanical damage may be reconditioned and retested.

11.1.8 Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals beyond the acceptable limits.

11.1.9 Tubes causing irrelevant signals because of visible and identifiable handling marks shall be considered in confor-

TABLE 8 Diameter of Drilled Holes (SI)

Tube Outside Diameter, mm	Diameter of Drilled Holes, mm	Drill No.
6.0-19.0, incl	0.635	72
Over 19.0-25.0, incl	0.785	68
Over 25.0-32.0, incl	0.915	64
Over 32.0-38.0, incl	1.07	58
Over 38.0-45.0, incl	1.17	56
Over 45.0-50.0, incl	1.32	55

mance if the tube dimensions are within the prescribed limits and if the tubes conform to the leak test requirements of 11.2.2 or 11.2.3, unless otherwise agreed to by the manufacturer and purchaser.

11.2 Each U-bend tube shall be tested to the requirements of either 11.2.2 or 11.2.3.

11.2.1 Unless otherwise specified, the manufacturer shall have the option of the leak test to be used.

11.2.2 *Hydrostatic Test*—Each tube shall withstand an internal hydrostatic-pressure sufficient to subject the material to a fiber stress of 7000 psi [48 MPa] without evidence of leakage. The tube need not be tested at a hydrostatic pressure of over a gage pressure of 1000 psi [6.9 MPa], unless so specified. The stress shall be determined by the following equation for thin hollow cylinders under tension:

$$P = 2St/(D - 0.8t) (1)$$

where

P = hydrostatic pressure, psi [MPa],

= thickness of tube wall, in. [mm],

D = outside diameter of the tube, in. [mm], and

S = allowable stress of the material, psi [MPa].

11.2.3 *Pneumatic Test*—Each tube shall be subjected to an internal air gage pressure of 60 psi [400 kPa], minimum. The product shall maintain pressure and show no evidence of leakage for 5 s. The test method used shall permit visual detection of any leakage, such as by having the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

12. Dimensions, Mass, and Permissible Variations

12.1 *Tube Diameter*—The outside diameter of the straight leg portion of the tube, exclusive of the central heavy gage portion, shall not vary from that specified by more than the amounts shown in Table 9 for product specified in the inch-pound system or Table 10 for product specified in the SI system as measured by "go" and "no-go" ring gages.

12.2 Thickness:

12.2.1 Tubes Ordered to Minimum Wall—Prior to bending, the wall thickness of the single-gage tubes at the thinnest point shall not be less than the thickness specified. The maximum plus deviation from the specified wall at any point shall not exceed twice the value shown in Table 11 for product specified in the inch-pound system or Table 12 for product specified in the SI system.

12.2.2 Tubes Ordered to Nominal Wall:

TABLE 9 Diameter Tolerances

		Wall Thic	kness, in.	
Outside Diameter, in.	0.032	0.035	0.042	0.049 and Over
	Diameter Tolerance, Plus and Minus, in.			
Up to 0.500 incl	0.0025	0.0025	0.0025	0.0025
Over 0.500-0.740, incl	0.004	0.004	0.0035	0.003
Over 0.740-1.000, incl	0.006	0.005	0.0045	0.004
Over 1.000-1.250, incl	0.009	0.008	0.006	0.0045
Over 1.250-1.375, incl			0.008	0.005
Over 1.375-2.000, incl				0.006

TABLE 10 Diameter Tolerances (SI)

		` '		(),-
		Wall Thick	kness, mm	S
Outside Diameter, mm	0.813	0.889	1.07	1.24 and Over
	Diameter Tolerance, Plus and Minus, mm			<u>.77</u>
Up to 12.0, incl	0.064	0.064	0.064	0.064
Over 12.0–18.0, incl	0.010	0.10	0.089	0.076
Over 18.0–25.0, incl	0.15	0.13	0.11	0.10
Over 25.0-35.0, incl			0.20	0.13
Over 35.0-50.0, incl				0.15

TABLE 11 Wall Thickness Tolerances

	Oı	Outside Diameter, in.			
Wall Thickness, in.	Over 1/8 to 5/8, incl	Over 5% to 1, incl	Over 1 to 2, incl		
	Wall Th	ickness Tolerance and Minus in.	s, Plus		
0.032, incl to 0.035	0.003	0.003	0.004		
0.035, incl to 0.058	0.004	0.0045	0.0045		
0.058, incl to 0.083	0.0045	0.005	0.005		
0.083, incl to 0.120	0.005	0.0065	0.0065		
0.120, incl to 0.134	0.007	0.007	0.0075		

TABLE 12 Wall Thickness Tolerances (SI)

	Outside Diameter, mm			
	Over 3.0 to	Over 16.0 to	Over 25.0 to	
Wall Thickness, mm	16.0,	25.0,	50.0,	
	incl	incl	incl	
	Wall Thickness Tolerances, Plus			
		and Minus mm		
0.813, incl to 0.889	0.076	0.076	0.10	
0.889, incl to 1.47	0.10	0.11	0.11	
1.47, incl to 2.11	0.11	0.13	0.13	
2.11, incl to 3.05	0.13	0.17	0.17	
3.05, incl to 3.40	0.18	0.18	0.19	

12.2.2.1 Prior to bending the maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Table 11 for product specified in the inch-pound system or Table 12 for product specified in the SI system.

12.2.2.2 When tubes are required in dual-gage, the wall thickness of the heavy gage portion, prior to bending, shall conform to the applicable tolerances in Table 11 or Table 12 for the specified heavier gage (Note 4).

Note 4—The wall thickness of the heavy-gage section of the dual-gage tube shall be determined by adding one half the difference between the outside diameter at the heavy gage and the outside diameter of the

standard gage to the minimum measured wall thickness determined at either end of the tube:

12.2.3 Wall Thickness of Tube in U-Bend Section—The wall thickness of the tube at the apex of the U-bent section shall be not less than the value determined by the following equation:

$$t_f = t(2R)/(2R+D) \tag{2}$$

vhere:

= thickness after bending, in. [mm],

t = specified thickness of minimum wall or specified nominal wall minus the permissible wall thickness tolerance, in. [mm],

R = centerline bend radius, in. [mm], and

D = nominal outside diameter of the tube, in. [mm]

Proof of conformance to this requirement shall be obtained by bending a tube specimen representative of the material offered to the scheduled radius of bend cutting the tube at the apex of the bend, measuring the tube wall at the cross section of this apex section, and comparing the measured value with the calculated value of $t_{\rm f}$.

12.2.4 Length of Central Heavy-Gage Section of Tube—The nominal length of the heavy-gage section of the dual-gage tube prior to bending shall be as specified but in no case shall the length of the heavy-gage section be specified less than 4 in. [100 mm] nor less than the length of the bend measured along the centerline bend radius between the points of tangency. The tolerance on the length of the heavy gage section shall be plus 3 in. [76 mm], minus 0 in. [0 mm]. The transition from the larger tube diameter of the heavy-gage section to the diameter of the tube in the standard-gage section shall be gradual and take place in a distance of not less than ½ in. [3.2 mm] nor more than 1 in. [25 mm] measured parallel to the tube axis.

12.2.5 Centering of U-Bend in Heavy-Gage Section of Tube—U-bends in the dual-gage tube shall be centered substantially within the heavy-gage section of the tube. The heavy-gage section of the tube shall extend to or beyond the

point of tangency, that is, the dimension a in Fig. 1 may be equal to or greater than 0 in. [0 mm]. The difference (b-a) between the lengths of the heavy-gage section which extend beyond the point of tangency into the U-bend tube legs shall not exceed 1 in. [25 mm].

12.2.6 *Bending Radius*—The leg spacing, measured between the points of tangency of the bend to the legs shall not vary from the value (2R - specified tube outside diameter) by more than $\frac{1}{16}$ in. [1.6 mm] where R is the specified centerline bend radius (Note 5).

Note 5—The higher tensile properties recognized by the ASME Code for Copper Alloy UNS No. C71500 or C71520 in the drawn, stress-relieved temper (HR50) and Copper UNS Nos. C10200, C10300, C10800, C12000, C12200, C14200, and Copper Alloy No. C70400 in the light-drawn temper (H55) are obtained with some sacrifice of ductility Similarly, though the ASME Code does not recognize Copper Alloy UNS No. C70600 or C70620 in the light-drawn temper (H55), tubes in this temper are frequently required.

Note 6—The radius of the bend of tubes of C71500 or C71520, in the drawn stress-relieved temper (HR50), shall not be less than 2.2 times the tube outside diameter for tubes with 0.049-in. [1.24 mm] wall, and not less than two times the tube outside diameter for tubes with 0.058 in. [1.47 mm] wall.

12.2.7 Diameter of Tube in U-Bent Section—Neither the major, nor the minor outside diameter of the tube at any one cross section included within the points of tangency of the bend shall deviate from the nominal diameter prior to bending by more than 10 %.

12.2.8 Length of U-Bend Tube Legs—The length L in Fig. 1 of the tube legs as measured from the point of tangency of the bend and the tube leg to the end of the tube leg shall not be less than that specified when measured at a temperature of 68°F [20°C], but may exceed the specified values by the amounts shown in Table 13 for product specified in the inch pound system or Table 14 for product specified in the SI system.

12.2.8.1 The difference in length of the tube legs shall not be greater than ½ in. [3.2 mm], unless otherwise specified.

12.2.9 Squareness of Cut—The departure from squareness of the end of any tube shall not exceed the values given in Table 15 for product specified in the inch-pound system or Table 16 for product specified in the SI system. See Fig. 2.

TABLE 13 Tube Leg Tolerances

Specified Length, (L) ft	Tolerance all Plus, in.
Up to 20, incl	1/8
Over 20-30, incl	5/22
Over 30-60, incl	1/4
Over 60	3/8

TABLE 14 Tube Leg Tolerances (SI)

_	
Specified Length, (L) mm	Tolerance all Plus, mm
Up to 6000, incl	3.2
Over 6000-9000, incl	4.0
Over 9000-18 000, incl	6.4
Over 18 000	9.5

TABLE 15 Squareness Tolerances

Specified Outside Diameter, in.	Tolerance	
Up to 5/8, incl Over 5/8	0.010 in. 0.016 in./in.	

TABLE 16 Squareness Tolerances (SI)

Specified Outside	
Diameter, mm	Tolerance
Up to 16.0, incl	0.25 mm
Over 16.0 () *	0.016 mm/mm

13. Workmanship, Finish, and Appearance

- 13.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
- 13.2 Annealed-temper (O61) tubes shall be clean and smooth, but may have a superficial, dull iridescent film on both the inside and outside surface. Drawn-temper tubes shall be clean and smooth, but may have a superficial film of drawing lubricant on the surfaces. A light oxide scale on the outside and inside surfaces of U-bend tubes shall be allowed for tubes which have been relief annealed.

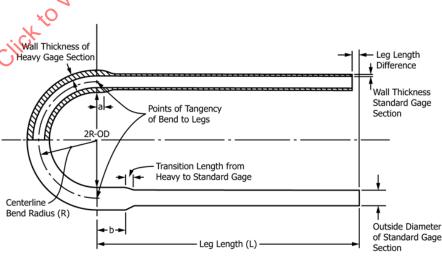


FIG. 1 Centering of U-Bend in Heavy Gage Section of Tube

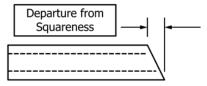


FIG. 2 Squareness of Cut

14. Sampling

- 14.1 The lot size, portion size, and selection of pieces shall be as follows:
- 14.1.1 Lot Size—For purposes of testing, a lot shall consist of 600 tubes or fraction thereof, for tubes whose lengths prior to U-bending are up to and including 45 ft [13 800 mm] or 300 tubes or fraction thereof for tubes whose lengths prior to U-bending are over 45 ft [13 800 mm]. As tubes intended for U-bending are of different lengths depending on the bending radius, a lot of tubes for sampling purposes may include tubes of different lengths. If any order includes tubes whose lengths prior to bending are both under and over 45 ft [13 800 mm], those tubes shall be divided into separate lots as noted above.
- 14.1.2 *Portion Size*—Pieces from two tubes selected from each lot prior to bending.
 - 14.2 Chemical Analysis:
- 14.2.1 Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, and so forth, shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 14.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 0.33 lb [150 g].
- 14.2.1.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product.
- analyze the finished product.

 14.2.1.2 The number of samples taken for determination of chemical composition shall be as follows:
- (a) When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- (b) When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb [4550 kg] or fraction thereof, except that not more than one sample shall be required per piece.
- (c) Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- (d) In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

15. Number of Tests and Retests

- 15.1 Test:
- 15.1.1 *Chemical Analysis*—One composite sample shall be subjected to the test as defined in 14.2.
- 15.1.2 *Grain Size*—Two tubes shall be selected from each lot prior to bending and each tube shall be tested to verify the requirements in Section 8.
- 15.1.3 *Tensile Property Requirements*—Two tubes shall be selected from each lot prior to bending and each tube shall be tested to verify the requirements in Section 9.
- 15.1.4 Expansion Test—Two tubes shall be selected from each lot prior to bending and each tube shall be tested to verify the requirements in Section 10.
- 15.1.5 Flattening Test—Two tubes shall be selected from each lot prior to bending and each tube shall be tested to verify the requirement in 10.2.
- 15.1.6 *Mercurous Nitrate Test or Ammonia Vapor Test*—The two sample lengths selected for test specimens in 14.1 shall be tested to verify the requirements of 10.3.1.
 - 15.2 Retest:
- 15.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of tests obtained by the purchaser fail to conform to the requirements of the product specification.
- 15.2.2 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 1523 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

16. Specimen Preparation

- 16.1 Chemical Analysis:
- 16.1.1 Sample preparation shall be in accordance with Practice E255.
- 16.1.2 Analytical specimen preparation shall be the responsibility of the reporting laboratory.
- 16.2 *Grain Size*—The test specimen shall be prepared in accordance with Guide E3 and shall approximate a longitudinal section of the tube.
 - 16.3 Tension Test:
- 16.3.1 Tension test specimens shall be of the full section of tube and shall conform to the requirements of the Test Specimen section of Test Methods E8/E8M, as applicable unless the limitations of the testing machine precludes the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E8/E8M shall be used when a full section specimen cannot be tested.
- 16.3.2 Tension test results on product covered by this specification are not seriously affected by variations in speed of testing. The rate of stressing to the yield strength shall not exceed 100 ksi/min [690 MPa/mm]. Above the yield strength, the movement per minute of the testing machine head under load should not exceed 0.5 in./in. [0.5 mm/mm], as appropriate of gage length (or distance between grips for full section specimens).

- 16.4 Expansion Test Specimen—Test specimens shall conform to the requirements of the Specimen Preparation section of Test Method B153.
 - 16.5 Mercurous Nitrate Test or Ammonia Vapor Test:
- 16.5.1 A sufficient length of tube taken from each of the two sample lengths selected for test specimens (see 14.1) shall be U-bent to the smallest radius in the contract or purchase order and shall be subjected to the same relief-annealed (HR) treatment to be used for this size in producing the order.
- 16.5.2 The test specimens shall be cut 6 in. [150 mm] in length from both the U-bend and straight-leg length.
- 16.5.3 The straight-leg specimens shall include the finished-tube ends.
- 16.6 Flattening Test—A test specimen shall conform to the appropriate requirements of the Test Specimen section of Test Method B968/B968M.

17. Test Methods

- 17.1 Chemical Composition:
- 17.1.1 Chemical compositions for all other alloys, in case of disagreement, shall be determined as follows:

Element	Range	Test Method
Copper	99.75 to 99.99	E53, Electrolytic
Copper	70.0 to 99.75	E478, Electrolytic
Tin	0.9 to 1.2	E478, Photometric
Aluminum	1.8 to 6.5	E478
Nickel, incl Cobalt	4.8 to 33.0	E478, Gravimetric
Lead	0.05 to 0.10	E478, Atomic Absorption,
Iron	0.04 to 1.8	E478
Zinc	14.0 to 30.0	E478, Titrimetric
Zinc	to 1.0	E478, Atomic Absorption
Manganese	to 1.0	E62
Arsenic	0.02 to 0.5	E62
Antimony	0.02 to 0.1	E62
Phosphorus	0.001 to 0.04	E62
Chromium	0.30 to 0.70	E118
Oxygen	+0.0010	E2575

17.2 Other Tests:

17.2.1 The product furnished shall conform to all other requirements when subjected to testing in accordance with the following table:

Ammonia Vapor Test		B858
Eddy Current		E243
Expansion (Pin Test)	×	B153
Grain Size	V.	E112
Mercurous Nitrate	· · · · · · · ·	B154
Tension		E8/E8M
Flattening		B968/B968M

- 17.2.1.1 *Grain Size*—In case of dispute, the intercept method of Test Methods E112 shall be followed.
- 17.2.1.2 *Tension Test*—Whenever tension test results are obtained from both full size and from machined test specimens and they differ, the results obtained from full-size specimens shall prevail.

18. Significance of Numerical Limits

18.1 For purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property	Rounded Unit for Observed or Calculated Value
.,,	
Chemical composition	nearest unit in the last
	right-hand significant
	digit used in expressing
	the limiting value
Tensile strength	nearest ksi [nearest 5 MPa]
Elongation	nearest 1 %
Expansion	nearest 1 %
Grain size	nearest multiple of 0.005 mm

19. Inspection

- 19.1 The manufacturer, or supplier, shall inspect and make necessary tests to verify that the furnished product conforms to the specification requirements.
- 19.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer, or supplier, and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector, representing the purchaser, that the product is being furnished in accordance with the specification shall be included in the agreement. All testing and inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 19.3 When mutually agreed upon, the manufacturer, or supplier, and the purchaser shall conduct the final inspection simultaneously.

20. Rejection and Rehearing

20.1 Rejection:

- 20.1.1 Product that fails to conform to the requirements of this specification when inspected or tested by the purchaser, or purchaser's agent, shall be subject to rejection.
- 20.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 20.1.3 In case of dissatisfaction with results of the test upon which rejection is based, the manufacturer, or supplier, shall have the option to make claim for rehearing.

20.2 Rehearing:

20.2.1 As a result of product rejection, the manufacturer, or supplier, shall have the option to make claim for a retest to be conducted by the manufacturer, or supplier, and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or alternately, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

21. Certification

21.1 The purchaser shall be furnished certification that samples representing each lot have been either tested or inspected as directed in this specification and requirements have been met.

21.2 DELETED

22. Mill Test Report

22.1 A report of test results shall be furnished.

23. Packaging and Package Marking

- 23.1 Packaging:
- 23.1.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and in such a manner to afford protection from the normal hazards of transportation.
 - 23.2 Package Marking:

23.2.1 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, total length of piece count, or both, and name of supplier. The specification number shall be shown, when specified.

24. Keywords

24.1 condenser tube; copper; copper alloy; dual-gage; evaporator; heat exchanger; U-bend tube; C10200; C10300; C10800; C12000; C12200; C14200; C19200; C23000; C44300; C44400; C44500; C60800; C68700; C70400; C70600; C70620; C71000; C71500; C71520; C72200

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage S1.1.3 *ASTM Standard*:

B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies

S2. Quality Assurance

- S2.1 Responsibility for Inspection:
- S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements

unless disapproved of by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

S4. Preparation for Delivery

- S4.1 Preservation, Packaging, Packing:
- S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.
- S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.
 - S4.2 *Marking*:
- S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.
- S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

SPECIFICATION FOR NICKEL-IRON-CHROMIUM ALLOY SEAMLESS PIPE AND TUBE SB-407 SB-407 (Identical with ASTM Specification B407-08a(2019) except that paras. 4.1.6. 7.4 and Section V3 have been seemed by

ASMENORUMO C. COM. Circk to View the full Path (Identical with ASTM Specification B407-08a(2019) except that paras. 4.1.6, 7.4 and Section X3 have been removed.)

Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube

1. Scope

- 1.1 This specification covers UNS N08120, UNS N08800, UNS N08801, UNS N08810, UNS N08811, UNS N08890, and UNS N06811 in the form of cold-worked and hot-finished annealed seamless pipe and tube. Alloys UNS N08800 and UNS N06811 are normally employed in service temperatures up to and including 1100 °F (593 °C). Alloys UNS N08120, UNS N08810, UNS N08811, and UNS N08890 are normally employed in service temperatures above 1100 °F (593 °C) where resistance to creep and rupture is required, and they are annealed to develop controlled grain size for optimum properties in this temperature range.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following safety hazards caveat pertains only to the test method portion, Section 7, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Suia Jrganiza Jrganiz Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical

- B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube
- E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness

3. General Requirements

3.1 Material furnished under this specification shall conform to the applicable requirements of Specification B829 unless otherwise specified herein.

4. Ordering Information

- 4.1 Orders for material to this specification should include information with respect to the following:
 - 4.1.1 Alloy (Table 1).
 - 4.1.2 Condition temper (Table 2 and Appendix X2).
 - 4.1.3 Finish (Table X1.1).
 - 4.1.4 Dimensions:
- 4.1 At Tube—May be specified in two dimensions only (length excepted) as follows: outside diameter and average or minimum wall, inside diameter and average wall, or outside diameter and inside diameter.

Note 1—Tube produced to outside diameter and minimum wall may be furnished upon agreement between the manufacturer and the purchaser.

- 4.1.4.2 *Pipe*—Standard pipe size and schedule.
- 4.1.5 Fabrication Details-Not mandatory but helpful to the manufacturer:
 - 4.1.5.1 Cold bending or coiling.
 - 4.1.5.2 Hot forming.
 - 4.1.5.3 Welding or Brazing—Process to be employed.
- 4.1.5.4 Pressure Requirements—Test pressure if other than required by 7.3.
- 4.1.5.5 *Machining*—Indicate finished size and length in which to be machined and whether to be chucked to outside diameter or inside diameter.
- 4.1.5.6 Ends-Plain ends cut and deburred will be furnished. If threaded ends or ends beveled for welding are desired, give details.
 - 4.1.6 *Certification*—DELETED
- 4.1.7 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (6.2).

TABLE 1 Chemical Requirements

		IABLE I Ollelli	icai riequirements		
		Composit	tion Limits, %		
Element	UNS N08120	UNS N08800, UNS N08810, and UNS N08811	UNS N08801	UNS N08890	UNS N06811
Nickel	35.0 min	30.0 min	30.0 min	40.0 min	38.0 min
	39.0 max	35.0 max	34.0 max	45.0 max	46.0 max
Chromium	23.0 min	19.0 min	19.0 min	23.5 min	27.0 min
	27.0 max	23.0 max	22.0 max	28.5 max	31.0 max
Iron	remainder	39.5 min ^A	39.5 min ^A	remainder	31.0 max remainder 2.0
Manganese, max	1.5	1.5	1.5	1.5	2.0
Carbon	0.02 min	В	0.10 max	0.06 min	0.03 max
	0.10 max			0.14 max	
Copper, max	0.5	0.75	0.5	0.75	×10
Silicon	1.0	1.0	1.0	1.0 min	0.60 max
		•••		2.0 max	6-0
Sulfur, max	0.03	0.015	0.015	0.015	0.010
Aluminum ^C	0.40 max	0.15 min		0.05 min	(()
		0.60 max		0.60 max	
Titanium ^C	0.20 max	0.15 min	0.75 min	0.15 min) ~
		0.60 max	1.50 max	0.60 max	
Columbium	0.4 min			/ 🗸	***
	0.9 max	•••			
Molybdenum	2.50 max			1.0 min	0.50 min
-				2.0 max	1.50 max
Niobium		•••		0.2 min	
		•••		1.0 max	
Tantalum				0.10 min	***
		•••		0.60 max	
Phosphorus	0.040 max				0.030 max
Tungsten	2.50 max	***	() *	
Cobalt, max	3.0				
Nitrogen	0.15 min	***	07		0.10 min
ŭ	0.30 max	***	0		0.20 max
Boron	0.010 max			•••	

A Iron shall be determined arithmetically by difference.

^C Alloy UNS N08811: AI + Ti, 0.85–1.20.

TABLE 2 Mechanical Properties⁴ of Pipe and Tube

Alloy	Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength, (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min,%
UNS N08120	hot-finished annealed or cold-worked annealed	90 000 (621)	40 000 (276)	30
UNS N08800	cold-worked annealed	75 000 (520)	30 000 (205)	30
UNS N08800	hot-finished annealed or hot-finished	65 000 (450)	25 000 (170)	30
UNS N08810 and UNS N08811	hot-finished annealed or cold-worked annealed	65 000 (450)	25 000 (170)	30
UNS N08801	hot-finished annealed or cold-worked annealed	65 000 (450)	25 000 (170)	30
UNS N08890	hot-finished annealed or cold-worked annealed	75 000 (520)	30 000 (205)	35
UNS N06811	hot-finished annealed or cold-worked annealed	85 000 (585)	35 000 (240)	30

A DELETED.

- 4.1.8 *Purchaser Inspection*—If the purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.
- 4.1.9 Smalt-Diameter and Light-Wall Tube—(Converter Sizes)
- 4.1.10 *Optional Requirement*—Hydrostatic or Nondestructive Electric Test (see 7.3).

5. Materials and Manufacture

5.1~Heat~Treatment—The final heat treatment of UNS N08120 shall be 2150 °F (1177 °C) minimum, UNS N08810, 2050 °F (1121 °C) minimum, UNS N08811, UNS N08890, 2100 °F (1149 °C) minimum, and UNS N06811, 1920 °F (1050 °C) minimum.

6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1.
- 6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B829.

7. Mechanical Properties and Other Requirements

- 7.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 2.
- 7.2 *Grain Size*—Annealed UNS alloys N08120, N08810, N08811, and UNS N08890 shall conform to an average grain size of ASTM No. 5 or coarser.

^B Alloy UNS N08800: 0.10 max. Alloy UNS N08810: 0.05-0.10. Alloy UNS N08811; 0.06-0.10.

7.3 Hydrostatic Test or Nondestructive Electric Test—Each pipe or tube shall be subjected to either the hydrostatic test or the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

7.4 DELETED

8. Dimensions and Permissible Variations

- 8.1 Diameter and Wall Thickness:
- 8.1.1 The permissible variations in the outside and inside diameter and wall thickness of pipe and tube shall not exceed those prescribed in Table 3.
- 8.1.2 Permissible variations given in Table 3 are applicable only to two dimensions. Thus, if outside diameter and wall are specified, the inside diameter may not conform to the permissible variations shown. Similarly, if outside diameter and inside diameter are specified, the wall may not conform to the permissible variations shown.
- 8.2 Length—When pipe or tube is ordered cut to length, the length shall not be less than that specified, but a variation of $+\frac{1}{8}$ in. (3.2 mm) will be permitted for cold-worked material and $+\frac{3}{16}$ in. (4.8 mm) for hot-finished tube, except that for lengths over 30 ft (9.1 m), a variation of $+\frac{1}{4}$ in. (6.4 mm) will be permitted. For small-diameter and light-wall tube, material shall conform to the applicable requirements.
- 8.3 Straightness—Cold-drawn material shall be reasonably straight and free of bends and kinks. For small-diameter and light-wall tube, material shall conform to the applicable requirements. The camber (depth of chord) of hot finished tube 5 in. (127 mm) in outside diameter and under shall not exceed 0.01 in./ft (0.8 mm/m). For sizes over 5 in. in outside diameter, the camber shall not exceed 0.015 in./ft (1.4 mm/m).

9. Number of Tests

- 9.1 Chemical Analysis—One test per lot.
- 9.2 Mechanical Properties One test per lot.

TABLE 3 Permissible Variations in Outside and Inside Diameter and Wall Thickness (Average Wall)

Specified Outside Diameter or Calculated	Permissible Variations				
Nominal Outside Diameter (When Ordered to Inside Diameter and	Outside Diameter	Wall Thic	Wall Thickness,%		
Average Wall)	+	0	+	_	
	Cold-Finished ^{A,B,C,D}	Pipe and Tube			
	Inches				
0.500 to 5/8, excl	0.005	0.005	15.0	15.0	
5/8 to 11/2, incl	0.0075	0.0075	10.0	10.0	
Over 11/2 to 31/2, incl	0.010	0.010	10.0	10.0	
Over 31/2 to 41/2, incl	0.015	0.015	10.0	10.0	
Over 41/2 to 6, incl	0.020	0.020	12.5	12.5	
Over 6 to 65/8, incl	0.025	0.025	12.5	12.5	
	Millimet	res			
12.7 to 15.8, excl	0.127	0.127	15.0	15.0	
15.8 to 38.1, incl	0.190	0.190	10.0	10.0	
Over 38.1 to 88.9, incl	0.254	0.254	10.0	10.0	
Over 88.9 to 114.3, incl	0.381	0.381	10.0	10.0	
Over 114.3 to 152.4, incl	0.508	0.508	12.5	12.5	
Over 152.4 to 168.3, incl	0.635	0.635	12.5	12.5	
·	Hot-Finished T	ube ^{E,F,G,H}			
_	Inches	S			
2½ to 5½, excl	0.031	0.031	12.5	12.5	
51/2 to 91/4, incl	0.047	0.047	12.5	12.5	
. 0	Millimet	res			
63.5 to 139.7, excl	0.787	0.787	12.5	12.5	
139.7 to 234.9, incl	1.19	1.19	12.5	12.5	

A The permissible variations in this table apply to individual measurements, including out-of-roundness (ovality), except for the following conditions.

¹⁾ Thin-Wall Pipe and Tube—For thin-wall pipe and tube having a nominal wall thickness of 3 % or less of the nominal outside diameter, in all conditions (temper), the mean outside diameter or mean inside diameter shall conform to the permissible variations of this table, and individual measurements (including ovality) shall conform to the plus and minus values of this table, with the values increased by 0.5 % of the nominal outside diameter.

²⁾ Annealed Pipe and Tube Over 4½ in. (114.3 mm) in Nominal Outside Diameter—For annealed pipe and tubing over 4½ in. (114.3 mm) in nominal outside diameter with a nominal wall thickness greater than 3 % of the nominal outside diameter, the mean outside diameter or mean inside diameter shall conform to the permissible variations of this table, and individual measurements shall not exceed twice the permissible variations of this table.

^B For pipe and tube, in all tempers, with an inside diameter of less than ½ in. (12.70 mm) which cannot be successfully drawn over a mandrel, the inside diameter shall be governed by the outside diameter and the wall thickness variations.

^C For pipe and tube in all tempers with an inside diameter less than 50 % of the outside diameter, which cannot be successfully drawn over a mandrel, the inside diameter may vary over or under by an amount equal to 10 % of the nominal wall thickness and the wall thickness may vary ±15 %.

DEccentricity—The variation in wall thickness in any one cross section of any one cold-finished pipe or tube shall not exceed ±10 % of the actual (measured) average wall of that section (defined as the average of the thickest and the thinnest wall in that section).

Fror tube 5 in. (127.0 mm) and under in outside diameter the tolerance on the outside diameter applies for individual measurements and includes ovality. For tubes over 5 in. (127.0 mm) in outside diameter the mean outside diameter shall conform to the permissible variations of this table and individual measurements shall not exceed twice the permissible variations of this table.

F The diameter tolerances for tube with machined outside and inside diameters shall be +0.031 in. (0.787 mm), -0 for the outside diameter and +0, -0.062 in. (1.57 mm) for the inside diameter.

 $^{^{}G}$ If tube is specified as minimum wall, the tolerance shall be +28.5 %, -0.

He wall thickness tolerance includes eccentricity tolerance up to $\pm 12.5\%$.

- 9.3 Grain Size—One test per lot.
- 9.4 Hydrostatic or Nondestructive Electric Test—Each piece per lot.

10. Keywords

 9.3 Grain Size—One te 9.4 Hydrostatic or None per lot. 10. Keywords 10.1 seamless pipe; se N08800; UNS N08801; 1 	destructive Electric Tele	N08120; UNS			Dection II part B
N08890; UNS N06811	21,5 1,00010, 21,5				, 0 ₀ ,
		APPENDIX	XES		cijo
		(Nonmandatory In	nformation)		
W4 COTT	EDITIES OF SOLD D	-			ne.
AI. SCH	EDULES OF COLD-D	KAWN, SEAMLESS	NICKEL-IRON-CHRO	OMIUM ALLOY PIP	TL.
X1.1 The schedules of chromium alloy pipe as available. Other schedules facturer should be consuminformation only.	given in Table X1.1 as may be furnished, a	are regularly and the manu-	, B ⁽¹	OMIUM ALLON PIP	
		TABLE X1.1 Pipe S	Schedules ^A		
Nominal Pipe	Outside _		Nominal Wall T		
Size	Diameter	Schedule No. 5	Schedule No. 10	Schedule No. 40	Schedule No. 80
1/4	0.540		0.065	0.088	
3/8	0.675		0.065	0.091	0.126
1/2	0.840	0.065	0.083	0.109	0.147
³ ⁄ ₄ 1	1.050 1.315	0.065 0.065	0.083 0.109	0.113 0.133	0.154 0.179
11/4	1.660	0.065	0.109	0.140	0.173
11/2	1.900	0.065	0.109	0.145	0.200
2	2.375	0.065	0.109	0.154	0.218
21/2	2.875	0.083	0.120	0.203	0.276
3	3.500	0.083	0.120	0.216	0.300
3½	4.000	0.083	0.120	0.226	0.318
4 5	4.500 5.563	0.083	0.120	0.237 0.258	0.337
6	6.625			0.280	
	*//2	Millimetres	S		
6.35	13.72		1.65	2.24	
9.52	17.14		1.65	2.31	3.20
12.70	21 34	1.65	2.11	2.77	3.73
19.05 25.4	26.67 33.40	1.65 1.65	2.11 2.77	2.87 3.38	3.91 4.55
31.8	42.16	1.65	2.77	3.56	4.85
38.1	48.26	1.65	2.77	3.68	5.08
50.8	60.32	1.65	2.77	3.91	5.54
63.5	73.02	2.11	3.05	5.16	7.04
76.2	88.90	2.11	3.05	5.49	7.62
88.9	101.60	2.11	3.05	5.74	8.08
101.6	114.30	2.11	3.05	6.02	8.56
127.0 52 ₁ 4	141.30	•••	•••	6.55	•••
12/14	168.28		•••	7.11	

^A The pipe schedules shown above conform with standards adopted by the American National Standards Institute.

X2. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X2.1 This appendix lists the conditions and finishes in which pipe and tube (other than converter sizes) are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X2.2 Cold-Finished Tube and Pipe:

X2.2.1 Cold-Finished, Annealed, with Ground Outside Diameter—The inside diameter may have a bright finish when material is annealed in a protective atmosphere; otherwise, the inside diameter is supplied descaled as necessary. Available in sizes ½ to 4 in. (12.7 to 102 mm), inclusive, in outside diameter in both normal and heavy-wall tube, and pipe sizes, all schedules, of corresponding outside diameter dimensions.

Herers machined as may be soption.

John Color of Assault Berry, 1988.

Separate of Assault Berry, 1988.

Se X2.2.2 Cold-Finished, Annealed, and Pickled (Not

heavy-wall tube, and pipe sizes, all schedules, of corresponding outside diameter dimensions.

X2.3 Hot-Finished Tube:

X2.3.1 Hot-Finished, or Hot-Finished Annealed (Not Pickled) Tube-Has an oxide surface resulting from the hotfinishing operation. Intended generally for machined parts where the oxide surface will be removed.

X2.3.2 Hot-Finished, or Hot-Finished Annealed (Pickled) Tube—Has the oxide surface removed on both outside and inside diameters by pickling. Surface may be spot ground for removal of minor surface imperfections at the manufacturer's option.

X2.3.3 Hot-Finished, or Hot-Finished Annealed (Machined Outside and Inside Diameters) Tube—The outside and inside diameter surfaces are machined to specified dimensions. Minor surface imperfections may be spot ground for removal, at the

SPECIFICATION FOR NICKEL-IRON-CHROMIUM ALLOY ROD AND BAR SB-408 (Identical with ASTM Specification B408-06(2011) except that certification and a test repeat here.)

ASMENORMED C. COM. Circk to View the Full POS (Identical with ASTM Specification B408-06(2011) except that certification and a test report have been made mandatory.)

Standard Specification for Nickel-Iron-Chromium Alloy Rod and Bar

1. Scope

- 1.1 This specification covers UNS N08120, UNS N08800, UNS N08810, UNS N08811, and UNS N08890 in the form of hot-worked and cold-worked rod and bar. Alloy UNS N08800 is normally employed in service temperatures up to and including 1100°F (593°C). Alloys UNS N08120, UNS N08810, UNS N08811, and UNS N08890 are normally employed in service temperatures above 1100°F (593°C) where resistance to creep and rupture is required, and they are annealed to develop controlled grain size for optimum properties in this temperature range.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and SMENORMOC. Com. Click to view Cobalt Allovs

E8 Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to
Determine Conformance with Specifications
E112 Test Methods for Determining Average Grante E1473 Test Methods for Chemical
Cobalt, and High-Tan.

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 bar, n—material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and ½ in. (3.2 mm) and over in thickness in straight lengths.
- 3.1.1.1 Discussion—Hot-worked rectangular bar in widths 10 in. (254 mm) and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B408, provided the mechanical property requirements of Specification B408 are met.
- 3.1.2 rod n—material of round solid section furnished in straight lengths.

4. Ordering Information

- 4.1 Orders for material to this specification should include information with respect to the following:
 - 4.1.1 ASTM designation, and year of issue.
 - 4.1.2 Alloy designation or UNS number.
- 4.1.3 Section—Rod (round) or bar (square, hexagonal, or rectangular).
- 4.1.4 Dimensions—Dimensions including length (Section 8, Tables 1-4 incl).
 - 4.1.5 *Condition* (Table 5 and Appendix X1).
 - 4.1.6 Finish (Appendix X1).
 - 4.1.7 Quantity (feet or number of pieces).
- 4.1.8 Certification—Certification and a report of test results (Section 16).
- 4.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished.
- 4.1.10 Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

5. Materials and Manufacture

5.1 Heat Treatment—The final heat treatment of UNS N08120 shall be 2150°F (1177°C) minimum, UNS N08810,

TABLE 1 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Cold-Worked Rod and Bar

Specified Dimension, in.	Permissible Variations from Specified Dimension, in. (mm)		
(11111)	+	-	
Rounds:			
1/16 (1.6) to 3/16 (4.8), excl	0	0.002 (0.05)	
3/16 (4.8) to 1/2 (12.7), excl	0	0.003 (0.08)	
½ (12.7) to 15/16 (23.8), incl	0.001 (0.03)	0.002 (0.05)	
Over 15/16 (23.8) to 115/16 (49.2), incl	0.0015 (0.04)	0.003 (0.08)	
Over 115/16 (49.2) to 21/2 (63.5), incl	0.002 (0.05)	0.004 (0.10)	
Hexagons, squares, rectangles:			
1/2 (12.7) and less	0	0.004 (0.10)	
Over ½ (12.7) to % (22.2), incl	0	0.005 (0.13)	
Over 7/8 (22.2) to 11/4 (31.8), incl	0	0.007 (0.18)	
Over 11/4 (31.8) to 2 (50.8), incl	0	0.009 (0.23)	

A Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 2 Permissible Variations in Diameter or Distance

Specified Dimension, in.	Permissible Variations from Specified Dimensions, in. (mm)		
(11111)	+	-	
Rod and bar, hot-worked:			
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)	
Over 1 (25.4) to 2 (50.8), incl	0.031 (0.79)	0.016 (0.41)	
Over 2 (50.8) to 4 (101.6), incl	0.047 (1.19)	0.031 (0.79)	
Over 4 (101.6)	0.125 (3.18)	0.063 (1.60)	
Rod, rough turned or ground:			
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)	
1 (25.4) and over	0.031 (0.79)	0	
Forging quality rod: ^B			
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)	
1 (25.4) and over	0.031 (0.79)	0	

^A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles. ^B Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3 % of the diameter of the rod.

2050°F (1121°C) minimum, UNS N08811, and UNS N08890, 2100°F (1149°C) minimum.

6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 6.
- 6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B880.

7. Mechanical Properties and Other Requirements

- 7.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 5.
- 7.2 *Grain Size*—Annealed UNS Alloys N08120, N08810, N08811, and N08890 shall conform to an average grain size of ASTM No. 5 or coarser.

8. Dimensions and Permissible Variations

8.1 Diameter, Thickness, or Width—The permissible variations from the specified dimensions as measured on the diameter or between parallel surfaces of cold-worked rod and

bar shall be as prescribed in Table 1, and of hot-worked rod and bar as prescribed in Table 2.

- 8.2 *Out-of-Round*—Hot-worked rods and cold-worked rods (except "forging quality") all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Table 1 and Table 2, except for hot-worked rods ½ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 2.
- 8.3 *Corners*—Cold-worked bars will have practically exact angles and sharp corners.
- 8.4 Machining Allowances for Hot-Worked Materials—When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 3 are recommended for normal machining operations.
- 8.5 Length—The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 4.
- 8.5.1 Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.
 - 8.6 Straightness:
- 8.6.1 The permissible variations in straightness of coldworked rod and bar as determined by the departure from straightness shall be as prescribed in Table 7.
- 8.6.2 The permissible variations in straightness of hotworked rod and bar as determined by the departure from straightness shall be as specified in Table 8.

9. Workmanship, Finish, and Appearance

9.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

10. Sampling

- 10.1 *Lot:*
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot for mechanical properties and grain size testing shall consist of all material from the same heat, nominal diameter or thickness, and condition.
- 10.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same size and condition except that a single piece weighing over 500 lb shall be considered as one lot.
 - 10.2 Test Material Selection:
- 10.2.1 *Chemical Analysis*—Representative samples from each lot shall be taken during pouring or subsequent processing.
- 10.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 10.2.2 Mechanical Properties and Grain Size—Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

TABLE 3 Normal Machining Allowances for Hot-worked Material

		Normal Machining Allowance, in. (mm)			
Finished-Machined Dimensions for Finishes as Indicated Below, in. (mm) ^A	On Diameter,	Distance Between Parallel Surfaces, for Hexagonal and	For Rec	tangular Bar	
	for Rods	Square Bar	On Thickness	On Width	
Hot-worked: ^B					
Up to 7/8 (22.2), incl	1/8 (3.2)	1/8 (3.2)	1/8 (3.2)	3/16 (4.8)	
Over 7/8 to 17/8 (22.2 to 47.6), incl	1/8 (3.2)	3/16 (4.8)	1/8 (3.2)	3/16 (4.8)	
Over 17/8 to 27/8 (47.6 to 73.0), incl	3/16 (4.8)	1/4 (6.4)		3/16 (4.8)	
Over 27/8 to 313/16 (73.0 to 96.8), incl	1/4 (6.4)			3/16 (4.8)	
Over 313/16 (96.8)	1/4 (6.4)			3/8 (9.5)	
Hot-worked rods:				^ `	
Rough-turned or Rough Ground: ^C					
15/16 to 4 (23.8 to 101.6), incl in diameter	1/16 (1.6)			x/O	
Over 4 to 12 (101.6 to 304.8), incl in diameter	1/8 (3.2)			~ C/V	

A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagonal and square bar, and separately to width and thickness of rectangular bar.

B The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lengths of 2 ft (0.61 m) or less. Hot-worked material to be machined in longer lengths should be specified showing the finished cross-sectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

TABLE 4 Permissible Variations in Length of Rods and Bars

Random mill lengths:	
Hot-worked	6 to 24 ft (1.83 to 7.31 m) long with not more than 25 weight % between 6 and 9 ft (1.83 and 2.74 m) ⁴
Cold-worked	6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m).
Multiple lengths	furnished in multiples of a specified unit length, within the length lipits indicated above. For each multiple,
	an allowance of ¼ in. (6.4 mm) will be made for cutting, unless otherwise specified. At the manufacturer's
	option, individual specified unit lengths may be furnished.
Nominal lengths	specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed ^B
Cut lengths	a specified length to which all rods and bars will be out with a permissible variation of plus 1/8 in. (3.2 mm),
	minus 0 for sizes 8 in. (203 mm) and less in diameter or distance between parallel surfaces. For larger sizes,
	the permissible variation shall be $+ \frac{1}{4}$ in. (6.4 mm), $- 0$.

A For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth forged products, all sections, short lengths down to 2 ft (610 mm) may be furnished.

B For cold-worked rods and bars under ½ in. (12.7 mm) in diameter or distance between parallel surfaces ordered to nominal or stock lengths with a 2-ft (610-mm) range, at least 93 % of such material shall be within the range specified; the balance may be in shorter lengths but in no case shall lengths less than 4 ft (1220 mm) be furnished.

TABLE 5 Mechanical Properties of Rods and Bars

Alloy	Condition	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % offset) min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min, %
UNS N08120	Cold-worked and hot-worked, annealed	90 000 (621)	40 000 (276)	30
UNS N08800	Hot worked, as-hot-worked	80 000 (550)	35 000 (240)	25 ^A
	Cold-worked and hot-worked, annealed	75 000 (515)	30 000 (205)	30
UNS N08810 and UNS N08811	Cold-worked and hot-worked, annealed	65 000 (450)	25 000 (170)	30
UNS N08890	Cold-worked and hot-worked, annealed	75 000 (520)	30 000 (205)	35
UNS N08800, UNS N08810 and UNS N08811	Forging quality	В` ′	В`	В

A For hot-worked as-hot-worked rectangular par 5/16 in. (7.94 mm) and under in thickness the elongation shall be 20 % min.

11. Number of Tests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Tension—One test per lot.
- 11.3 Grain Size—One test per lot.

12. Specimen Preparation

12.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.

212.1.1 All rod and bar shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E8 for

rectangular bar up to $\frac{1}{2}$ in. (12.7 mm), inclusive, in thicknesses which are too wide to be pulled full size.

13. Test Method

13.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Chemical Analysis	E1473
Tension	E8
Rounding Procedure	E29
Grain Size	E112

^C Applicable to 3 ft (0.91 m) max length.

^B Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required.

TABLE 6 Chemical Requirements[†]

Nickel 35.0 min 30.0 min	Element			Composition Limits	, %	
Chromium 39.0 max 35.0 max 35.0 max 35.0 max 45.0 max Chromium 23.0 min 19.0 min 19.0 min 19.0 min 23.5 min 27.0 max 23.0 max 23.0 max 23.0 max 23.0 max 28.5 max Iron remainder 39.5 min ⁴ 39.5 min ⁴ 39.5 min ⁴ remainder Manganese, max 1.5 1.	Element	Alloy N08120	Alloy N08800	Alloy N08810	Alloy N08811	Alloy N08890
Chromium 23.0 min 27.0 max 23.0 max 28.5 max 19.0 min 23.0 max 23.0 max 23.0 max 23.0 max 28.5 max Iron remainder 39.5 min ⁴ 39.5 min ⁴ 39.5 min ⁴ remainder Manganese, max 1.5 1.5	Nickel	35.0 min	30.0 min	30.0 min	30.0 min	40.0 min
Proceedings		39.0 max	35.0 max	35.0 max	35.0 max	45.0 max
Iron remainder 39.5 min ^A 39.5 min ^A 39.5 min ^A remainder Manganese, max 1.5 1.15 <td< td=""><td>Chromium</td><td>23.0 min</td><td>19.0 min</td><td>19.0 min</td><td>19.0 min</td><td>23.5 min</td></td<>	Chromium	23.0 min	19.0 min	19.0 min	19.0 min	23.5 min
Manganese, max 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.06 min 0.014 min 0.075 0.75		27.0 max	23.0 max	23.0 max	23.0 max	28.5 max
Carbon 0.02 min 0.10 max 0.10 max 0.05 to 0.10 0.06 to 0.10 0.06 min 0.14 max Copper, max 0.50 0.75 0.75 0.75 0.75 0.75 Silicon 1.0 1.0 1.0 1.0 1.0 min 1.0 min Sulfur, max 0.03 0.015 0.015 0.015 0.015 0.015 Aluminum ^B 0.40 max 0.15 min 0.15 min 0.15 min 0.15 min 0.60 max Titanium ^B 0.20 max 0.15 min 0.60 max 0.00 max	Iron	remainder	39.5 min ^A	39.5 min ^A	39.5 min ^A	remainder
Copper, max	Manganese, max	1.5	1.5	1.5	1.5	1.5
Copper, max 0.50 0.75 0.75 0.75 0.75 Silicon 1.0 1.0 1.0 1.0 1.0 min Sulfur, max 0.03 0.015 0.015 0.015 0.015 Aluminum ^β 0.40 max 0.15 min 0.15 min 0.15 min 0.05 mih Titanium ^β 0.20 max 0.15 min 0.15 min 0.15 min 0.15 min Titanium ^β 0.20 max 0.15 min 0.15 min 0.15 min 0.15 min Columbium 0.4 min <	Carbon	0.02 min	0.10 max	0.05 to 0.10	0.06 to 0.10	0.06 min
Copper, max 0.50 0.75 0.75 0.75 0.75 0.75 Silicon 1.0 1.0 1.0 1.0 1.0 1.0 min Sulfur, max 0.03 0.015 0.015 0.015 0.015 0.015 Aluminum ^B 0.40 max 0.15 min 0.15 min 0.15 min 0.60 max 0.60 max Titanium ^B 0.20 max 0.15 min 0.15 min 0.15 min 0.15 min 0.15 min Columbium 0.4 min		0.10 max				0.14 max
Silicon 1.0 1.0 1.0 1.0 min 1.0 min 2.0 max Sulfur, max 0.03 0.015 0.015 0.015 0.015 0.015 Aluminum ^B 0.40 max 0.15 min 0.15 min 0.15 min 0.60 max 0.60 max Titanium ^B 0.20 max 0.15 min 0.15 min 0.15 min 0.15 min 0.15 min Columbium 0.20 max 0.60 max 0.60 max 0.60 max 0.60 max Columbium 0.4 min Molybdenum 2.50 max Nibbium <	Copper, max	0.50				0.75
Sulfur, max 0.03 0.015 0.00						
Sulfur, max 0.03 0.015 0.00 0.						
Aluminum ^B 0.40 max 0.15 min 0.15 min 0.60 max 0.60 max Titanium ^B 0.20 max 0.15 min 0.15 min 0.15 min 0.15 min Columbium 0.4 min Columbium 0.4 min Molybdenum 2.50 max 1.0 min Niobium 2.0 max Niobium 0.2 min Tantalum 0.10 min 0.60 max Phosphorus 0.040 max Tungsten 2.50 max 0.60 max Phosphorus 0.040 max <	Sulfur, max					
Titanium ^B 0.20 max 0.50 max 0.60 max 0.60 max 0.15 min 0.60 max 0.20 min 0.20 min 0.20 min 0.20 min 0.20 min 0.20 min 0.10 min 0.60 max 0.60						
Titanium ^B 0.20 max 0.15 min 0.60 max 0.70 max				0.60 max		
Columbium	Titanium ^B		0.15 min	0.15 min	0.15 min	0.15 min
Columbium 0.4 min						
Molybdenum 2.50 max 1.0 min 2.0 max 2.0 max 2.0 max 0.2 min 1.0 min 0.2 min 1.0 max 1.0 max 1.0 max 1.0 max 0.10 min 0.60 max 0.60 max	Columbium					7
Molybdenum 2.50 max 1.0 min 2.0 max Niobium 0.2 min 0.2 min 1.0 max Tantalum 0.10 min 0.10 min 0.60 max Phosphorus 0.040 max		0.9 max				
Niobium	Molybdenum					
Niobium 1.0 max Tantalum 0.10 min Phosphorus 0.040 max Tungsten 2.50 max Cobalt, max 3.0 Nitrogen 0.15 min 0.30 max	,					2.0 max
Tantalum	Niobium					0.2 min
Tantalum 0.10 min 0.60 max Phosphorus 0.040 max Tungsten 2.50 max Cobalt, max 3.0					6	1.0 max
Phosphorus 0.040 max	Tantalum					0.10 min
Phosphorus 0.040 max <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.60 max</td>						0.60 max
Tungsten 2.50 max	Phosphorus				02	
Cobalt, max 3.0		2.50 max			X Y	
Nitrogen 0.15 min	•				//	
0.30 max	,				1.	
				_ \		
Boron 0.010 max	Boron	0.010 max				

^A Iron shall be determined arithmetically by difference.

TABLE 7 Permissible Variations in Straightness of Cold-Worked Rods and Bars

Specified Diameter or Distance	Depth of Chord, Permissible Variations in
Between Parallel Surfaces, in.	Lengths Indicated, in.
(mm) ^A	(mm)
Rounds:	
1/2 (12.7) to 21/2 (63.5), incl	0.030 (0.76) per ft (305 mm) of length
Hexagons, squares, rectangles:	
½ (12.7) to 2 (50.8), incl	0.030 (0.76) per ft (305 mm) of length

A Material under 1/2 in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

TABLE 8 Permissible Variations in Straightness of Hot-Worked Rods and Bars^A

Finish	Permissible Variations, in./ft.(mm/m) ^B
Rods and bars, hot-worked	0.050 (4.2) ^C
Rounds: hot-worked, rough ground, or rough turned	0.050 (4.2) ^C

13.2 In the event of disagreement, the referee method for the determination of average grain size shall be the planimetric

13.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in the

following table, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

^B Alloy UNS N08811: Al + Ti, 0.85–1.20.

[†] Editorially corrected.

A Not applicable to forging quality.

B Material under ½ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

C The maximum curvature (depth of chord) shall not exceed the values indicated

multiplied by the length in feet.

Test

Chemical composition, hardness, and tolerances (when expressed in decimals)

Tensile strength and yield strength Elongation

Rounded Unit for Observed Or Calculated Value

nearest unit in the last right-and place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit. nearest 1000 psi (6.9 MPa)

nearest 1 %

14. Inspection

14.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material, tested by the purchaser, that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

17. Product Marking

17.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or ONS Number, heat number, condition (temper), this specification number, date of issue, the size, gross, tare and net weight, consignor and consignee address; contract or order number, or such other information as may be defined in the contract or order.

18. Keywords

18.1 bar; rod; UNS N08120, UNS N08800; UNS N08801; UNS N08810; UNS N08811; UNS N08890

APPENDIX

(Nonmandatory Information)

X1. PROCURABLE CONDITIONS AND FINISHES

- X1.1 The various conditions and finishes in which rod and bar are procurable are as follows:
- X1.1.1 *Hot-Worked*—With a tightly adherent, dark wide surface.
- X1.1.2 Hot-Worked, Rough Ground—Similar to X1.1.1 except rough ground.
- X1.1.3 Hot-Worked, Rough-Turned—Similar to X1.1.1 except rough turned with a broad nosed tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (0.91 m) or less.
- X1.1.4 Hot-Worked, Forging Quality—Rough turned and spot ground, as necessary, for sizes 1 in. (25.4 mm) in diameter and over; rough ground and spot ground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot malleability

- Note X1.1—For sizes 2½ in. (63.5 mm) in diameter and less, cold-worked rod may be used also for forging by virtue of the fact such rod have been overhauled for removal of mechanical surface defects prior to cold-working. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot malleability range.
- X1.1.5 Hot-Worked, Annealed—Soft, with a tightly adherent dark oxide.
- X1.1.6 Hot-Worked, Annealed and Pickled—Same as X1.1.5 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked material and often employed where welding is involved where removal of mill oxide is desired.
- Note X1.2—Annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is difficult.
- X1.1.7 *Cold-Worked, As Worked*—Hot-worked, overhauled, cold worked, and straightened with a smooth, bright finish.
- X1.1.8 *Cold-Worked, Annealed and Pickled*—Hotworked, overhauled, cold-worked, annealed, descaled, and straightened. Annealed for softness and with a dull matte finish.

JC Section II part B) 202

ASMENORMED C. COM. Click to View the Full POS (Identical with ASTM Specification B409-06(2011) except that certification and a test report have been made mandatory.)

Standard Specification for Nickel-Iron-Chromium Alloy Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers UNS N08120, UNS N08890, UNS N08800, UNS N08810, and UNS N08811 in the form of rolled plate, sheet, and strip. Alloy UNS N08800 is normally employed in service temperatures up to and including 1100°F (593°C). Alloys UNS N08120, UNS N08810, UNS N08811, and UNS N08890 are normally employed in service temperatures above 1100°F (593°C) where resistance to creep and rupture is required, and they are annealed to develop controlled grain size for optimum properties in this temperature range.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B408 Specification for Nickel-Iron-Chromium Alloy Rod and Bar

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip E140 Hardness Conversion Tables for Metals Relationship

Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness

F155 Method of Test for Temper of Strip and Sheet Metals for Electronic Devices (Spring-Back Method) (Withdrawn 1982)

3. Terminology

3.1 Definitions of Terms Specific to This Standard—The terms given in Table 1 shall apply

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include but are not limited to the following:
 - 5.1.1 Alloy (Table 2),
- 5.1.2 *Condition (Temper)*—Table 3 and Table 4, Appendix X1, and Specification B906.
 - 5.1.3 Finish—Appendix X1 and Specification B906.
 - 5.1.4 Dimensions—Thickness, width, and length.
 - 5.1.5 Optional Requirements:
- 5.1.5.1 *Sheet and Strip*—Whether to be furnished in coil, in cut straight lengths, or in random straight lengths.
- 5.1.5.2 *Strip*—Whether to be furnished with commercial slit edge, square edge, or round edge.
- 5.1.5.3 *Plate*—Whether to be furnished specially flattened (see 9.7.2); also how plate is to be cut (Specification B906, Table A3.4 and Table A3.7.
- 5.1.6 Fabrication Details—Not mandatory but helpful to the manufacturer:
 - 5.1.6.1 Welding or Brazing—Process to be employed.
 - 5.1.6.2 *Plate*—Whether material is to be hot-formed.
 - 5.1.7 DELETED

TABLE 1 Product Description

Product	Thickness, in. (mm)	Width, in. (mm)	
Hot-rolled plate ^A	3/16 and over (B906, Table A3.1 and Table A3.2)	(B906, Table A3.4) ^B	
Hot-rolled sheet ^A	0.018 to 0.250 (0.46 to 6.4), incl (B906, Table A3.3)	(B906, Table A3.6)	
Cold-rolled sheet ^C	0.018 to 0.250 (0.46 to 6.4), incl (B906, Table A3.3)	(B906, Table A3.6)	
Cold-rolled strip ^C	0.005 to 0.250 (0.13 to 6.4), incl (B906, Table A3.3)	(B906, Table A3.6)	

A Material 3/16 to 1/4 in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition

TABLE 2 Chemical Requirements

TABLE 2 Chemical Requirements					
	Composition Limits, %				
Element	Alloy N08120	Alloy N08890	Alloys N08800, N08810, and N08811		
Nickel	35.0 min	40.0 min	30.0 min		
	39.0 max	45.0 max	35.0 max		
Chromium	23.0 min	23.5 min	19.0 min		
	27.0 max	28.5 max	23.0 max		
Iron	remainder ^A	remainder	39.5 min ^A		
Manganese, max	1.5	1.5	1.5		
Carbon	0.02 min	0.06 min	В		
	0.10 max	0.14 max			
Copper, max	0.50	0.75	0.75		
Silicon, max	1.0	1.0 min	1.0		
		2.0 max			
Sulfur, max	0.03	0.015	0.015		
Aluminum ^C	0.40 max	0.05 min	0.15 min		
		0.60 max	0.60 max		
Titanium ^C	0.20 max	0.15 min	0.15 min		
		0.60 max	0.60 max		
Columbium	0.4 min				
	0.9 max				
Molybdenum	2.50 max	1.0 min	🧏		
		2.0 max	, O		
Niobium		0.2 min			
		1.0 max			
Tantalum		0.10 min	\circ		
		0.60 max	1		
Phosphorus	0.040 max				
Tungsten	2.50 max	X	y		
Cobalt, max	3.0	01			
Nitrogen	0.15 min	'W			
	0.30 max				
Boron	0.010 max				

A Iron shall be determined arithmetically by difference.

- 5.1.8 Samples for Product (Check) Analysis—Whether samples for product (check) analysis should be furnished (see 7.2).
- 5.1.9 Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Specification B906).

6. Materials and Manufacture

6.1 Heat Treatment—The final heat treatment of UNS N08120 shall be 2150°F (1177°C) minimum, UNS N08810, 2050°F (1121°C) minimum, UNS N08811 and UNS N08890, 2100°F (1149°C) minimum.

7. Chemical Composition

- 7.1 The material shall conform to the composition limits specified in Table 2.
- 7.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B906.

8. Mechanical and Other Requirements

- 8.1 Mechanical Properties—The material shall conform to the mechanical properties specified in Table 3.
- 8.2 Grain Size—Annealed Alloys UNS N08120, UNS N08810, UNS N08811, and UNS N08890 shall conform to an average grain size of ASTM No. 5 or coarser.
- 8,3 Deep-Drawing and Spinning Quality Sheet and Strip— (Alby UNS N08800) Shall conform to the grain size and hardness requirements as provided in Table 4.
- 8.3.1 The mechanical properties of Table 3 do not apply to deep drawing and spinning quality sheet and strip.
- 8.4 Annealing Temperature—Alloy UNS N08120 shall be annealed at 2150°F (1177°C) minimum, and UNS N08810, 2050°F (1121°C) minimum.

9. Dimensions and Permissible Variations

- 9.1 Thickness and Weight:
- 9.1.1 Plate—For plate up to 2 in. (50.8 mm), incl, in thickness, the permissible variation under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Table A3.1 in Specification B906.
- 9.1.1.1 For use with Table A3.1 in Specification B906, plate shall be assumed to weigh 0.287 lb/in.³ (7.944 g/cm³).
- 9.1.2 Plate—For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Table A3.2 in Specification B906.
- 9.1.3 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Table A3.3 in Specification B906. The thickness of sheet and strip shall be measured with the micrometer spindle 3/8 in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on strip under 1 in. in width.
 - 9.2 Width or Diameter:
- 9.2.1 Plate—The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Table A3.4 and Table A3.5 in Specification B906.

^B Hot-rolled plate, in widths 10 in. (254 mm) and under, may be furnished as hot-finished rectangles with sheared or cut edges in accordance with Specification B408 provided the mechanical property requirements of this specification are met.

Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered

^B Alloy UNS N08800: 0.10 max. Alloy UNS N08810: 0.05-0.10.

Alloy UNS N08811: 0.06-0.1Q. ^C Alloy UNS N08811: AI + Ti, 0.85 1.20.

TABLE 3 Mechanical Properties for Plate, Sheet, and Strip

(All thicknesses and sizes unless otherwise indicated)

Alloy	Condition	Tensile Strength, min, psi (MPa)	Yield Strength ^A (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min, %
		Hot-Rolled Plate		
UNS N08120	Annealed	90 000 (621)	40 000 (276)	30
UNS N08800	Annealed	75 000 (520)	30 000 (205)	30
UNS N08800	As-rolled ^{BC}	80 000 (550)	35 000 (240)	25
UNS N08810	Annealed	65 000 (450)	25 000 (170)	30
UNS N08811	Annealed	65 000 (450)	25 000 (170)	30
UNS N08890	Annealed	75 000 (520)	30 000 (205)	35
		Hot-Rolled Sheet		
UNS N08120	Annealed	90 000 (621)	40 000 (276)	30
UNS N08800	Annealed	75 000 (520)	30 000 (205)	30
UNS N08810 ^D	Annealed	65 000 (450)	25 000 (170)	30/1
UNS N08811 ^D	Annealed	65 000 (450)	25 000 (170)	30
UNS N08890	Annealed	75 000 (520)	30 000 (205)	30
		Cold-Rolled Sheet	,	10
UNS N08120	Annealed	90 000 (621)	40 000 (276)	30
UNS N08800	Annealed	75 000 (520)	30 000 (205)	30
UNS N08810 ^D	Annealed	65 000 (450)	25 000 (170)	30
UNS N08811 ^D	Annealed	65 000 (450)	25 000 (170)	30
UNS N08890	Annealed	75 000 (520)	30 000 (205)	35
		Cold-Rolled Strip	S	
UNS N08120	Annealed	90 000 (621)	40 000 (276)	30
UNS N08800	Annealed	75 000 (520)	30 000 (205)	30 [€]
UNS N08810 ^D	Annealed	65 000 (450)	25 000 (170)	30
UNS N08811 ^D	Annealed	65 000 (450)	25 000 (170)	30
UNS N08890	Annealed	75 000 (520)	30 000 (205)	35

^A Yield strength requirements do not apply to material under 0.020 in. (0.51 mm) in thickness.

TABLE 4 Grain Size and Hardness for Alloy UNS N08800 Cold-Rolled, Deep-Drawing, and Spinning Quality Sheet and Strip

Calculated Diameter of Average Grain Section, max, in. (mm)	Corresponding ASTM Micro- Grain Size No.	Rockwell B ^{AB} Hardness, max
Sheet (56 in. (1.42 m) Wide and Under)		
0.0030 (0.075)	4.5	86
0.0043 (0.110)	3.5	86
Strip (12 in. (305 mm) Wide and Under) ^C		
0.0009 (0.022)	8 ^E	88 ^E
0.0030 (0.075)	4.5	86
	Grain Section, max, in. (mm) Sheet (56 in. (1.42 m) Wide and Under) 0.0030 (0.075) 0.0043 (0.110) Strip (12 in. (305 mm) Wide and Under) ^C 0.0009 (0.022)	Calculated Diameter of Average Grain Section, max, in. (mm) Sheet (56 In. (1.42 m) Wide and Under) 0.0030 (0.075) 4.5 0.0043 (0.110) 3.5 Strip (12 in. (305 mm) Wide and Under) 0.0009 (0.022) 8 ^E

^A For Rockwell or equivalent hardness conversions see Hardness Conversion Tables E140.

9.2.2 Sheet and Strip—The permissible variations in width for sheet and strip shall be as prescribed in Table A3.6 in Specification B906.

9.3 Length:

9.3.1 Sheet and strip of all sizes may be ordered to cut lengths, in which case a variation of ½ in. (3.18 mm) over the specified length shall be permitted.

- 9.3.2 Permissible variations in length of rectangular plate shall be as prescribed in Table A3.7 in Specification B906.
 - 9.4 Straightness:

- 9.4.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres).
- 9.4.2 Straightness for coiled strip material is subject to agreement between the manufacturer and the purchaser.
 - 9.5 Edges:
- 9.5.1 When finished edges of strip are specified in the contract or order, the following descriptions shall apply:
- 9.5.1.1 Square-edge strip shall be supplied with finished edges, with sharp, square corners, without bevel or rounding.

^B As-rolled plate may be given a stress-relieving heat treatment subsequent to final rolling.

C As-rolled plate specified "suitable for hot forming" shall be furnished from heats of known good hot-malleability characteristics (see X1.1.1.2). The purchaser must specify Alloy UNS N08800 or UNS N08810. There are no applicable tensile or hardness requirements for such material.

^D Available only in thicknesses 0.115 in. (2.92 mm) and over.

^E Not applicable for thickness under 0.010 in. (0.25 mm).

^B Caution should be observed in using the Rockwell test on thin material, as the results may be affected by specimen thickness. For thicknesses under 0.050 in. (1.3 mm), the use of the Rockwell superficial or the Vickers hardness test is suggested.

^C Sheet requirements (above) apply to strip thicknesses over 0.125 in. (3.2 mm), and for all thicknesses of strip over 12 in. (305 mm) in width.

^D For ductility evaluations for strip under 0.005 in. (0.13 mm) in thickness, the spring-back test such as described in Test Method F155, is often used and the manufacturer should be consulted

should be consulted.

E Accurate grain size and hardness determinations are difficult to make on strip under 0.005 in. (0.13 mm) in thickness and are not recommended.

TABLE 5 Permissible Variations From Flatness of Rectangular, Circular, and Sketch Plates

Note 1—Permissible variations apply to plates up to 12 ft (366 cm) in length, or to any 12 ft (366 cm) of longer plates.

Note 2—If the longer dimension is under 36 in. (914 mm), the permissible variation is not greater than 1/4 in. (6.35 mm).

Note 3—The shorter dimension specified is considered the width, and the permissible variation in flatness across the width does not exceed the tabular amount of that dimension.

Note 4—The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

		Pe	rmissible Var	iations from a	Flat Surface fo	r Thickness and	l Widths Given,	in. (mm)	~0
Specified Thickness	To 48 (1220), excl	48 to 60 (1220 to 1520), excl	60 to 72 (1520 to 1830), excl	72 to 84 (1830 to 2130), excl	84 to 96 (2130 to 2440), excl	96 to 108 (2440 to 2740), excl	108 to 120 (2740 to 3050), excl	120 to 144 (3050 to 3660),	144 (3660) and Over
				Inches				5	
3/16 to 1/4, excl	3/4	11/16	11/4	13/8	15/8	15/8		<u> </u>	
1/4 to 3/8, excl	11/16	3/4	15/16	11/8	13/8	17/16	19/16	17/8	
3/8 to 1/2, excl	1/2	9/16	11/16	3/4	15/16	11/8	11/4	17/16	13/4
½ to ¾, excl	1/2	9/16	5/8	5/8	13/16	1 ½	11/8	11/8	13/8
3/4 to 1, excl	1/2	9/16	5/8	5/8	3/4	13/16	15/16	1	11/8
1 to 2, excl	1/2	9/16	9/16	9/16	11/16	11/16	11/16	3/4	1
2 to 4, incl	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8
				Millimetres		C			
4.76 to 6.35, excl	19.05	27.0	31.7	34.9	41.3	41.3			
6.35 to 9.52, excl	17.46	19.05	23.81	28.6	35.0	36.5	39.7	47.6	
9.52 to 12.70, excl	12.70	14.29	17.46	19.05	23.8	28.6	31.7	35.0	44.4
12.70 to 19.05, excl	12.70	14.29	15.88	15.88	20.64	28.6	28.6	28.6	34.9
19.05 to 25.4, excl	12.70	14.29	15.88	15.88	19.05	20.64	23.81	25.4	28.6
25.4 to 50.8, excl	12.70	14.29	14.29	14.29	17.46	17.46	17.46	19.05	25.4
50.8 to 101.6, incl	6.35	7.94	9.52	11.11	12.70	14.29	15.88	19.05	22.22

9.5.1.2 Round-edge strip shall be supplied with finished edges, semicircular in form, the diameter of the circle forming the edge being equal to the strip thickness.

9.5.1.3 When no description of any required form of strip edge is given, it shall be understood that edges such as those resulting from slitting or shearing will be acceptable.

9.5.1.4 Sheet shall have sheared or slit edges.

9.5.1.5 Plate shall have sheared or cut (machined abrasive-cut, powder-cut, or inert arc-cut) edges, as specified.

9.6 Squareness (Sheet):

9.6.1 For sheets of all thicknesses the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ (½ in. in 24 in.) (1.59 mm in 610 mm).

9.7 Flatness:

9.7.1 There shall be no flatness requirements for "deep-drawing quality" and "spinning quality" sheet and strip (see X1.1.3).

9.7.2 Standard flamess tolerances for plate shall conform to the requirements of Table 5. "Specially-flattened" plate when so specified shall have permissible variations in flatness as agreed upon between the manufacturer and the purchaser.

10. Test Methods

10.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the methods in Specification B906.

10.2 The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the

intercept method described in Specification B906. In case of dispute, the "referee" method for determining average grain size shall be the planimetric method.

10.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in Specification B409, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding methods in Specification B906.

Test Rounded Unit for Observed or Calculated Value

Elongation nearest 1 %

Grain size:
0.0024 in. (0.060 mm) or nearest multiple of 0.0002 in. (0.005 mm)

less than 0.0024 in. (0.060 nearest multiple of 0.0001 in. (0.002 mm)

11. Certification and Test Report

11.1 A certification and test report shall be supplied per Specification B906, paragraph 21.

12. Product Marking

12.1 Each bundle or shipping container shall be marked with the name of the material; condition (temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

13. Keywords

13.1 plate; sheet; strip; UNS N08120; UNS N08800; UNS N08801; UNS N08810; UNS N08811; UNS N08890

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS (TEMPERS) AND FINISHES

- X1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change and the manufacturer should be consulted for the latest information available.
 - X1.1.1 Plate, Hot Rolled:
- X1.1.1.1 Annealed—Soft with an oxide surface, and suitable for heavy cold forming. Available with a descaled surface, when so specified.
- X1.1.1.2 As-Rolled—With an oxide surface. Available with a descaled surface, when so specified. Suitable for flat work, mild forming, or tube sheets. When intended for tube sheets, eep .xcept . lightly let lightly let of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Bryc . Citch to view the full part of Ashr. Citch to view the full part of Ashr. Bryc . Citch to view the fu specify that plates are to be specially flattened. When intended for hot forming, this should be indicated on the purchase order

- X1.1.2 Plate, Cold Rolled:
- X1.1.2.1 Annealed—Soft with an oxide surface; available with a descaled surface when so specified.
- X1.1.3 Sheet, Hot-Rolled, Annealed, and Pickled—Soft with a pickled matte finish. Properties similar to X1.1.4.1 but with broader thickness tolerances. Not suggested for applications where the finish of a cold-rolled sheet is considered essential, or for deep drawing, or spinning.
 - X1.1.4 Sheet and Strip, Cold-Rolled:
- X1.1.4.1 Annealed—Soft with a descaled or bright annealed
- X1.1.4.2 Deep-Drawing or Spinning Quality—Similar to X1.1.4.1, except furnished to controlled hardness and grain size and lightly leveled.

SPECIFICATION FOR NICKEL-IRON-CHROMIUM-MOLYBDENUM-COPPER ALLOY (UNS NO8825 AND N08221) SEAMLESS PIPE AND TUBE

SB-423

(Identical with ASTM Specification B423-05(2009) except that certification is mandatory, 4.1.8 has been changed to reference 9.1, and an editorial correction to X1.1.)

SPECIFICATION FOR NICKEL-IRON-CHROMIUMtion II part B) 20' MOLYBDENUM-COPPER ALLOY (UNS N08825 AND N08221) SEAMLESS PIPE AND TUBE

SB-423

[Identical with ASTM Specification B 423-05(2009) except that certification is mandatory, 4.1.8 has been changed to reference 9.1, and an editorial correction to X1.1.]

1. Scope

- **1.1** This specification covers nickel-iron-chromiummolybdenum-copper alloys (UNS N08825 and N08221) in the form of cold-worked and hot-finished seamless pipe and tube intended for general corrosive service. The general requirements for pipe and tube are covered in Specification B 829.
- **1.2** The following precautionary caveat pertains only to the test methods portion, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. **Referenced Documents**

2.1 ASTM Standards:

B 829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

General Requirement

3.1 Material furnished under this specification shall conform to the applicable requirements of Specification B 829 unless otherwise provided herein.

Ordering Information

1.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

- **4.1.1** Alloy name or UNS number,
- 4.1.2 ASTM designation,
- **4.1.3** Condition (see Appendix X2),
- **4.1.4** Finish (see Appendix X2),
- **4.1.5** *Dimensions*:
- **4.15.1** *Tube*—Specify outside diameter and nominal or minimum wall,
- **4.1.5.2** *Pipe*—Specify standard pipe size and schedule,
 - **4.1.5.3** *Length*—Cut to length or random,
- **4.1.6** Quantity—Feet (or metres) or number of pieces,
- **4.1.7** Hydrostatic Test or Nondestructive Electric *Test*—Specify type of test (see 6.2).
- **4.1.8** Hydrostatic Pressure Requirements—Specify test pressure if other than required by 9.1.
 - **4.1.9** *Certification*—Certification is required,
- **4.1.10** Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 5.2),
- **4.1.11** Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed, and
- **4.1.12** Small-Diameter and Light-Wall Tube (Converter Sizes)—See Appendix X1.

Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification B 829.

TABLE 1
CHEMICAL REQUIREMENTS

Element	UNS N08825	UNS N08221	
Nickel	38.0–46.0	39.0–46.0	
Chromium	19.5–23.5	20.0–22.0	
Iron	22.0 min	22.0 min	
Manganese	1.0 max	1.0 max	
Carbon	0.05 max	0.025 max	
Copper	1.5-3.0	1.5-3.0	
Silicon	0.5 max	0.5 max	
Sulfur	0.03 max	0.03 max	
Aluminum	0.2 max	0.2 max	
Titanium	0.6-1.2	0.6-1.0	
Molybdenum	2.5–3.5	5.0-6.5	

5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations of Specification B 829.

6. Mechanical Properties and Other Requirements

- **6.1** Tension Test— The material shall conform to the tensile properties specified in Table 2. The sampling and specimen preparation are as covered in Specification B 829.
- **6.1.1** Tensile properties for material specified as small-diameter and light-wall tube (converter sizes) shall be as prescribed in Table X1.1.
- **6.2** Hydrostatic or Nondestructive Electric Test—Each pipe or tube shall be subjected to either the hydrostatic test or the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

7. Dimensions and Permissible Variations

7.1 Diameter and Wall Thickness—The permissible variations in the outside diameter and wall thickness shall conform to the permissible variations prescribed in Tables 3, 4, and 5 of Specification B 829.

7.2 Permissible variations for material specified as small-diameter and light-wall tube (converter size) shall conform to the permissible variations prescribed in Table X1.2.

8. Number of Tests

- **8.1** Chemical Analysis—One test per lot.
- 8.2 Tension—One test per lot.
- **8.3** Hydrostatic or Nondestructive Electric Test—Each piece in each lot.

9. Test Methods

9.1 Hydrostatic Test—Each pipe or tube with an outside diameter $\frac{1}{8}$ in. (3 mm) and larger and with wall thickness of 0.015 in. (0.38 mm) and over shall be tested in accordance with Specification B 829. The allowable fiber stress, for material in the condition furnished, is as follows:

UNS N08825	hot finished, annealed:	16 600 psi (114 MPa)
UNS N08825	cold-worked, annealed:	21 200 psi (146 MPa)
UNS N08221	cold finished, annealed:	19 700 psi (138 MPa)

- **9.1.1** When so agreed upon between the manufacturer and purchaser, pipe or tube may be tested to $1\frac{1}{2}$ times the allowable fiber stress given in 9.1.
- **9.1.2** If any pipe or tube shows leaks during hydrostatic testing, it shall be rejected.
- **9.2** *Nondestructive Electric Test*—Each pipe or tube shall be examined with a nondestructive electric test in accordance with Specification B 829.

10. Keywords

10.1 N08221; N08825; seamless pipe; seamless tube

TABLE 2						
MECHANICAL PROPERTIES OF PIPE AND TO	JBE					

Alloy	Condition and Size	Tensile Strength, min, ksi (MPa)	Yield Strength 0.2% Offset, min, ksi (MPa)	Elongation in 2 in. or 50 mm (4D), min, %
UNS N08825	hot-finished annealed	75 (517)	25 (172)	30
UNS N08825	cold-worked annealed	85 (586)	35 (241)	30
UNS N08825	hot-forming quality (hot-finished or cold-drawn annealed)	(A)	(A)	(A)
UNS N08221	cold-finished, annealed	79 (545)	34 (234)	30

NOTE:

(A) Hot-forming quality is furnished to chemical requirements and surface inspection only. No mechanical properties are required.

APPENDIXES

(Nonmandatory Information)

X1. CONVERTER SIZES

X1.1 Small-diameter and light-wall tube in outside diameters $1\frac{1}{4}$ in. (31.8 mm) and under may be furnished in the conditions listed in Table X1.1 when so specified. The material is furnished in a limited range of sizes and the manufacturer should be consulted as to the various outside diameters and wall thicknesses that may be furnished. Material will have a bright finish. Such material shall conform to the applicable requirements in Table X1.1 and Table X1.2.

X2. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X2.1 Scope

X2.1.1 This appendix lists the conditions and finishes in which pipe and tube (other than converter sizes) are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X2.2 Cold-Worked Tube and Pipe

X2.2.1 Cold-Worked, Annealed, with Ground Outside Diameter—The inside diameter may have a bright finish when material is annealed in a protective atmosphere; otherwise, the inside diameter is supplied descaled as necessary. It is available in sizes ½ to 4 in. (12.7 to 102 mm),

inclusive, in outside diameter in both normal and heavy wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

X2.2.2 Cold-Worked, Annealed, and Pickled (Not Ground)—Outside and inside diameter with have dull, matte (pickled) surfaces. It is available in sizes ½ to 6% in. (12.7 to 168 mm), inclusive, in outside diameter in both normal and heavy-wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

X2.3 Hot-Worked Tube

X2.3.1 Hot-Worked-Annealed (Not Pickled) Tube— Has an oxide surface resulting from the hot-working operation. Intended generally for machined parts where the oxide surface will be removed.

X2.32 Hot-Worked-Annealed (Pickled) Tube—Has the oxide surface removed on both outside and inside diameters by pickling. Surface may be spot ground for removal of minor surface imperfections at the manufacturer's option.

X2.3.3 Hot-Worked-Annealed (Machined Outside and Inside Diameters) Tubes—The outside and inside diameter surfaces are machined to specified dimensions. Minor surface imperfections may be spot ground for removal, at the manufacturer's option.

TABLE X1.1

MECHANICAL PROPERTIES (A) OF SMALL-DIAMETER AND LIGHT-WALL TUBING (CONVERTER SIZES)

Condition	. Tensile Strength, ksi (MPa)	Yield Strength (0.2% offset) min, ksi (MPa)	Elongation in 2 in. or 50 mm, min, %
Annealed (B, C)	85–115 (586–793)	35 (241)	30
Half-hard (D)	105 (724) min	75 (517)	15
Full-hard (E)	125 (862) min	100 (689)	5

NOTES:

- (A) Not applicable to outside diameters under $\frac{1}{8}$ in. (3.2 mm) and wall thickness under 0.015 in. (0.381 mm).
- (B) This condition is sometimes designated as "No. 1 Temper."
- (C) The minimum tensile strength value applies only to tubing in straight lengths.
- (D) This condition is sometimes designated as "No. 2 Temper."
- (E) This condition is sometimes designated as "No. 3 Temper."

TABLE X1.2
PERMISSIBLE VARIATIONS FOR SMALL-DIAMETER AND LIGHT-WALL TUBE (CONVERTER SIZES)

Specified Outside Diameter,	Outside Diameter, in. (mm)		Inside Diameter, in. (mm)		Wall Thickness, %	
in. (mm)	+	_	+	_	+	_
Under $\frac{3}{32}$ (2.4)	0.002 (0.05)	0	0	0.002 (0.05)	10	10
$\frac{3}{32}$ to $\frac{3}{16}$ (2.4 to 4.8), excl	0.003 (0.08)	0	0	0.003 (0.08)	10	10
$\frac{3}{16}$ to $\frac{1}{2}$ (4.8 to 12.7), excl	0.004 (0.10)	0	0	0.004 (0.10)	10	10
$\frac{1}{2}$ to $1\frac{1}{4}$ (12.7 to 31.8), incl	0.005 (0.13)	0	0	0.005 (0.13)	10	10

NOTES:

- (A) Ovality, Normal Wall Tube—As-Drawn (No. 2 and 3) Tempers—Ovality will be held within the outside diameter tolerances shown in the table. Annealed (No. 1) Temper—Ovality will be held within 2% of the theoretical average outside diameter.
- (B) Ovality, Light Wall Tube—As-Drawn (No. 2 and 3) Tempers—Up to but not including $1\frac{1}{4}$ in. (31.8 mm) in outside diameter, ovality will be held within 2% of the theoretical average outside diameter.
 - Annealed (No. 1) Temper—Ovality will be held within 3% of the theoretical average outside diameter.
- (C) Wall Tolerances, Light Wall Tube—The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerance shall be ± 0.0005 in. (0.013 mm).
- (D) Random Lengths:

Where nominal random lengths on tubing $\frac{1}{8}$ in. (3.2 mm) and larger in outside diameter are specified, a length tolerance of \pm 3 $\frac{1}{2}$ ft (1.06 m) applies to the nominal length. This is a total spread of 7 ft (2.10 m).

Random lengths in sizes $\frac{1}{8}$ in. (3.2 mm) and larger in outside diameter shall be subject to a length range of 5 to 24 ft (1.50 to

7.30 m). Long random lengths are subject to a range of 15 to 22 ft (4.57 to 6.70 m).

Random lengths in sizes up to, but not including, $\frac{1}{8}$ in. (3.2 mm) in outside diameter and fragile light-wall tubes over this outside diameter are subject to the length range of 1 to 15 ft (0.30 to 4.57 m).

- (E) Cut Lengths—Tolerances on cut lengths shall be in accordance with Table X1.2
- (F) Straightness—Round tubing is subject to a straightness tolerance of one part to 600 [equivalent to a depth of arc of 0.030 in. (0.76 mm) in any 3 ft (0.91 m) on length].
- (G) When specified, the tolerance spreads of this table may be applied as desired. However, when not specified, the tolerances in this table will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

TABLE X1.3
TOLERANCES ON CUT LENGTHS OF LIGHT-WALL TUBE

	Permissible Varia	ations, in. (mm)	
Length, ft (m)	Tube Size, in. (mm)	Over	Under
Under 1 (0.30)	up to 1.250 (31.8), incl	¹ / ₃₂ (0.8)	0 (0)
1 to 4 (0.30 to 1.22), incl	up to 1.250 (31.8), incl	½ ₁₆ (1.6)	0 (0)
Over 4 to 10 (1.22 to 3.0), incl	up to 1.250 (31.8), incl	³ / ₃₂ (2.4)	0 (0)
Over 10 (3.0)	up to 1.250 (31.8), incl	³ / ₁₆ (4.8)	0 (0)

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR Ni-Fe-Cr-Mo-Cu ALLOY (UNS N08825, UNS N08221, AND UNS N06845) PLATE, SHEET, AND STRIP

SB-424

(Identical with ASTM Specification B424-11 except that certification has been made mandatory and a report of test results shall be furnished.)

The state of the

Standard Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS N06845) Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers rolled nickel-iron-chromiummolybdenum-copper alloy (UNS N08825, UNS N08221, and UNS N06845) plate, sheet, and strip.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B425 Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825, UNS N08221, and UNS N06845) Rod and Bar B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip

3. Terminology

chis St. Click to view 3.1 Descriptions of Terms Specific to The Standard— Descriptions of Terms Specific to This Standard—The terms

4. General Requirements

HIOTH Part B 202 4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906.

5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 5.1.1 ASTM designation and year of issue.
 - 5.1.2 Alloy name or UNS number.
 - 5.1.3 Condition—Table 3 and Appendix X1.
 - 5.1.4 Finish—Appendix X1.
 - 5.1.5 *Dimensions*—Thickness, width, and length.
 - 5.1.6 Quantity.
 - 5.1. Optional Requirements:
- 5.17.1 Sheet and Strip—Whether to be furnished in coil, in out straight lengths, or in random straight lengths.
- 5.1.7.2 Strip—Whether to be furnished with commercial slit edge, square edge, or round edge.
- 5.1.7.3 Plate—Whether to be furnished specially flattened (see 8.7); also how plate is to be cut (Table 4).
 - 5.1.8 DELETED
- 5.1.9 Samples for Product (Check) Analysis—Whether samples for product (check) analysis should be furnished (see Specification B906, section on Sampling).
- 5.1.10 Purchaser Inspection—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state, indicating which tests or inspections are to be witnessed (Specification B906, section on Inspection).

6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 2.
- 6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis per Specification B906.

TABLE 1 Product Description

Product	Thickness, in. (mm)
Hot-rolled plate ^A	3/16 (4.76) and over
Cold-rolled plate ^A	3/16 to 3/8 (4.8 to 9.5), incl
Hot-rolled sheet ^A	0.018 to 0.250 (0.46 to 6.4), incl
Cold-rolled sheet ^B	0.018 to 0.250 (0.46 to 6.4), incl
Cold-rolled strip ^B	0.005 to 0.250 (0.13 to 6.4), incl

 $^{^{}A}$ Material $^{3}\!\!/_{6}$ to $^{1}\!\!/_{6}$ in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition ordered.

7. Mechanical Properties

7.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 3.

8. Dimensions and Permissible Variations

- 8.1 Thickness and Weight:
- 8.1.1 *Plate*—For plate up to 2 in. (50.8 mm), inclusive, in thickness, the permissible variation under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Specification B906, Permissible Variations in Thickness and Overweight of Rectangular Plates Table.
- 8.1.1.1 For use with Specification B906, Permissible Variations in Thickness and Overweight of Rectangular Plates Table, plate shall be assumed to weigh 0.294 lb/in.³ (8.138 g/cm³).
- 8.1.2 *Plate*—For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Specification B906, Permissible Variations in Thickness for Rectangular Plates Over 2 in. (51 mm) in Thickness Table.
- 8.1.3 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Specification B906, Permissible Variations in Thickness of Sheet and Strip Table. The thickness of strip and sheet shall be measured with the micrometer spindle 3/8 in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on the strip under 1 in. (25.4 mm) in width.
 - 8.2 Width or Diameter:
- 8.2.1 Plate—The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Specification B906, Permissible Variations in Width of Sheared Plasma Torch-Cut, and Abrasive-Cut Rectangular Plate Table and Permissible Variations in Diameter for Circular Plates Table.
- 8.2.2 *Sheet and Strip*—The permissible variations in width for sheet and strip shall be as prescribed in Specification B906, Permissible Variations in Width of Sheet and Strip Table.
 - 8.3 Length:
 - 8.3.1 Sheet and strip of all sizes may be ordered to cut

- lengths, in which case a variation of ½ in. (3.2 mm) over the specified length shall be permitted.
- 8.3.2 Permissible variations in length of rectangular plate shall be as prescribed in Specification B906, Permissible Variations in Length of Sheared, Plasma, Torch-Cut, and Abrasive-Cut Rectangular Plate Table.
 - 8.4 Straightness:
- 8.4.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. (1.27 mm) multiplied by the length in feet (0.04 mm multiplied by the ength in centimetres).
- 8.4.2 Straightness for coiled material is subject to agreement between the manufacturer and the purchaser.
 - 8.5 Edges:
- 8.5.1 When finished edges of strip are specified in the contract or order, the following descriptions shall apply:
- 8.5.1.1 Square-edge strip shall be supplied with finished edges, with sharp, square corners, without bevel or rounding.
- 8.5.1.2 Round-edge strip shall be supplied with finished edges, semicircular in form, the diameter of the circle forming the edge being equal to the strip thickness.
- 8.5.1.3 When no description of any required form of strip edge is given, it shall be understood that edges such as those resulting from slitting or shearing will be acceptable.
 - 8.5.24 Sheet shall have sheared or slit edges.
- 85.1.5 Plate shall have sheared or cut (machined, abrasive cut, powder cut, or inert arc cut) edges, as specified.
- 8.6 Squareness (Sheet)—For sheets of all thicknesses, the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ (½16 in. in 24 in.) (1.6 mm in 610 mm).
- 8.7 Flatness—Standard flatness tolerances for plate shall conform to the requirements of Table 4. "Specifically-flattened" plate, when so specified, shall have permissible variations in flatness as agreed upon between the manufacturer and the purchaser.

9. Product Marking

9.1 Each bundle or shipping container shall be marked with the name of the material or UNS number; condition; this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

10. Certification

10.1 A certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. A report of the results shall be furnished.

11. Keywords

11.1 N08825; N08221; N06845; plate; sheet; strip

^B Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered.

TABLE 2 Chemical Requirements^A

Element	UNS N08825	UNS N08221	UNS N06845	_
Nickel	38.0 to 46.0	39.0 to 46.0	44.0 to 50.0	
Chromium	19.5 to 23.5	20.0 to 22.0	20.0 to 25.0	
Iron	22.0 min ^B	Balance ^B	Remainder ^B	
Manganese	1.0	1.0	0.5	
Carbon	0.05	0.025	0.05	
Copper	1.5 to 3.0	1.5 to 3.0	2.0 to 4.0	
Silicon	0.5	0.5	0.5	
Sulfur	0.03	0.03	0.010	
Aluminum	0.2	0.2		
Titanium	0.6 to 1.2	0.6 to 1.0		
Molybdenum	2.5 to 3.5	5.0 to 6.5	5.0 to 7.0	
Tungsten	***		2.0 to 5.0	ιίO,

A Maximum unless range or minimum is given. Where ellipses (...) appear in this table, there is no requirement and analysis for the element need not be determined or reported.

^B Element shall be determined arithmetically by difference.

TABLE 3 Mechanical Properties for Plate, Sheet, and Strip

Tungsten A Maximum unloss range or min	imum is given. Where ellipses (\ appear in this table, there is n	2.0 to 5.0 to requirement and analysis for the ele	
reported.	imum is given. where ellipses () appear in this table, there is n	to requirement and analysis for the ele	ement need not be
^B Element shall be determined a	rithmetically by difference.			20
				70
				NO
	TABLE 3 Mech	anical Properties for Plat	e, Sheet, and Strip	
	(All Thicknes	sses and Sizes Unless Othe	erwise Indicated)	V
Alloy	Condition	Tensile Strength,	Yield Strength ^A (0.2 % Offset),	Elongation in 2 in
		min, ksi (MPa)	min, ksi (MPa)	(or 4 <i>D</i>), m
Hot-Rolled Plate:	annaalad	95 (596)	25 (241)	20
UNS N08825 UNS N08221	annealed annealed	85 (586) 79 (544)	35 (241) 34 (235)	30 30
UNS N06845	annealed	100 (690)	40 (276)	30
Cold-Rolled Plate:	aillealeu	100 (090)	40 (270)	30
UNS N08825	annealed	85 (586)	35 (241)	30
UNS N08221	annealed	79 (544)	34 (235)	30
UNS N06845	annealed	100 (690)	40 (276)	30
Hot-Rolled Sheet:	ameaica	100 (030)	40 (270)	00
UNS N08825	annealed	85 (586)	35 (241)	30
UNS N08221	annealed	79 (544)	34 (235)	30
UNS N06845	annealed	100 (690)	40 (276)	30
Cold-Rolled Sheet:	amoulou	.50 (050)	10 (210)	30
UNS N08825	annealed	85 (586)	35 (241)	30
UNS N08221	annealed	79 (544)	34 (235)	30
UNS N06845	annealed	100 (690)	40 (276)	30
Cold-Rolled Strip:	amoaroa	.55(355)	(2.0)	00
UNS N08825	annealed	85 (586) ^B	35 (241)	30 ^B
UNS N08221	annealed	85 (586) ^B 79 (544) ^B 100 (690) ^B	34 (235)	30 ^B 30
LINS N06845	annealed	100 (690) ^B	40 (276)	30
	o not apply to material under 0.02 ider 0.010 in. (0.25 mm).			
	iles			
	*0			
	Click			
ON				
℃.				
SEW.				
Ö,				
ORMO				

A Yield strength requirements do not apply to material under 0.020 in 0.51 mm) in thickness. B Not applicable for thickness under 0.010 in. (0.25 mm).

TABLE 4 Permissible Variations From Flatness of Rectangular, Circular, and Sketch Plates

Note 1—Permissible variations apply to plates up to 12 ft (3.66 m) in length, or to any 12 ft (3.66 m) of longer plates. If the longer dimension is under 36 in. (914 mm), the permissible variation is not greater than ½ in. (6.4 mm).

Note 2—The shorter dimension specified is considered the width, and the permissible variation in flatness across the width does not exceed the tabular amount of that dimension.^A

Note 3—The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

		Pe	ermissible Variat	ions from a Flat	Surface for Thi	ckness and Wid	ths Given, in. (m	m)	-9
Specified Thickness	To 48 (1220), excl	48 to 60 (1220 to 1520), excl	60 to 72 (1520 to 1830), excl	72 to 84 (1830 to 2130), excl	84 to 96 (2130 to 2440), excl	96 to 108 (2440 to 2740), excl	108 to 120 (2740 to 3050), excl	120 to 144 (3050 to 3660), excl	144 (3660), and over
-				Inches	3			c'i	
3/16 to 1/4, excl	3/4	1 ½16	11/4	1%	15/8	15/8		0	
1/4 to 3/8, excl	11/16	3/4	15/16	11/8	13/8	17/16	1%16	17/8	
3/8 to 1/2, excl	1/2	9/16	11/16	3/4	15/16	11/8	11/4	1 7/16	13/4
1/2 to 3/4, excl	1/2	9/16	5/8	5/8	13/16	11/8	11/8	11/8	13/8
3/4 to 1, excl	1/2	9/16	5/8	5/8	3/4	13/16	15/16	J 1	11/8
1 to 2, excl	1/2	9/16	9/16	9/16	11/16	11/16	11/16	3/4	1
2 to 4, incl	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8
				Millimetr	es				
4.8 to 6.4, excl	19.05	27.0	31.7	34.9	41.3	41.3			
6.4 to 9.5, excl	17.5	19.0	23.8	28.6	35.0	36.5	39.7	47.6	
9.5 to 12.7, excl	12.7	14.3	17.5	19.0	23.8	28.6	31.7	35.0	44.4
12.7 to 19.0, excl	12.7	14.3	15.9	15.9	20.6	28.6	28.6	28.6	34.9
19.0 to 25.4, excl	12.7	14.3	15.9	15.9	19.0	20.6	23.8	25.4	28.6
25.4 to 50.8, excl	12.7	14.3	14.3	14.2	17.5	17.5	17.5	19.0	25.4
50.8 to 101.6, incl	6.4	7.9	9.5	11.1	12.7	14.3	15.9	19.0	22.2

^A Editorially corrected.

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X1.2 Plate

- X1.2.1 Hot-rolled, annealed, and descaled.
- X1.2.2 Cold-rolled, and descaled.

X1.3 Sheet

- X1.3.1 Hot-rolled, annealed, and descaled.
- X1.3.2 Cold-rolled, annealed, and descaled or bright annealed.

X1.4 Strip

X1.4.1 Cold-rolled, annealed, descaled, or bright annealed.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR Ni-Fe-Cr-Mo-Cu ALLOY (UNS N08825 AND UNS N08221) ROD AND BAR SB-425 SB-425 (Identical with ASTM Specification B425-99(2009) except that certification has been made mandatory.)

SPECIFICATION FOR Ni-Fe-Cr-Mo-Cu ALLOY (UNS N08825 AND UNS N08221) ROD AND BAR

SB-425

[Identical with ASTM Specification B 425-99(2009) except that certification has been made mandatory.]

1. Scope

- 1.1 This specification covers nickel-iron-chromium-molybdenum-copper alloy (UNS N08825 and UNS N08221) in the form of hot-finished and cold-drawn rounds, squares, hexagons, and rectangles.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 The following precautionary caveat pertains only to the test methods portion, Section 12, of this specification: This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- **2.1** ASTM Standards:
- B 424 Specification for Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825 and UNS N08821) Plate, Sheet, and Strip
- B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High Temperature Alloys

3. Terminology

- **3.1** *Definitions of Terms Specific to This Standard:*
- 3.1.1 bar material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and $\frac{1}{8}$ in. (3.2 mm) and over in thickness in straight lengths.

- 3.1.1.1 Discussion Hot-worked rectangular bar in widths 10 in. (254 mm) and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B 424, provided the mechanical property requirements of this specification are met.
- **3.1.2** *rod* Material of round solid section furnished in straight lengths.

4. Ordering Information

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.1** ASTM designation and date of issue,
 - **4.1.2** UNS number,
- **4.1.3** *Section* Rod (round) or bar (square, hexagonal, or rectangular),
 - **4.1.4** *Dimensions*, including length,
 - **4.1.5** Condition (see Appendix X1),
 - **4.1.6** Finish (see Appendix X1),
- **4.1.7** *Quantity* Feet (or meters) or number of pieces,
- **4.1.8** *Certification* Certification is required (Section 15),
- **4.1.9** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished (see 5.2), and
- **4.1.10** Purchaser Inspection If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state, indicating which test or inspections are to be witnessed (Section 13).

5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 1.

TABLE 1
CHEMICAL REQUIREMENTS

Element	UNS N08825	UNS N08221
Nickel	38.0–46.0	39.0–46.0
Chromium	19.5–23.5	20.0–22.0
$Iron^A$	22.0 min	balance
Manganese	1.0 max	1.0 max
Carbon	0.05 max	0.025 max
Copper	1.5-3.0	1.5-3.0
Silicon	0.5 max	0.5 max
Sulfur	0.03 max	0.03 max
Aluminum	0.2 max	0.2 max
Titanium	0.6-1.2	0.6-1.0
Molybdenum	2.5–3.5	5.0-6.5

^A Element shall be determined arithmetically by difference.

5.2 If a product (check) analysis is performed by the purchaser, it shall be done per B 880, and the material shall conform to the product (check) analysis variations defined in Table 1 of B 880.

6. Mechanical Properties and Other Requirements

6.1 *Mechanical Properties* — The material shall conform to the mechanical properties specified in Table 2.

7. Dimensions and Permissible Variations

- **7.1** Diameter, Thickness, or Width The permissible variations from the specified dimensions as measured on the diameter or between parallel surfaces of cold-worked rod and bar shall be as prescribed in Table 3, and of hotworked rod and bar as prescribed in Table 4.
- **7.2** Out-of-Round Hot-worked rods and cold-worked rods (except "forging quality") all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Table 3 and Table 4, except for hot-worked rods ½ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 4.

- **7.3** *Corners* Cold-worked bars will have practically exact angles and sharp corners.
- **7.4** Machining Allowances for Hot-Worked Materials When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 5 are recommended for normal machining operations.
- **7.5** Length The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 6.
- **7.5.1** Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.

7.6 *Straightness:*

- **7.6.1** The permissible variations in straightness of cold-worked rod and bar as determined by the departure from straightness shall be as prescribed in Table 7.
- **7.6.2** The permissible variations in straightness of hot-worked rod and bar as determined by the departure from straightness shall be as specified in Table 8.

8 Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

- **9.1** *Lot Definition:*
- **9.1.1** A lot for chemical analysis shall consist of one heat.
- **9.1.2** A lot for mechanical properties testing shall consist of all material from the same heat, nominal diameter or thickness, and condition.
- **9.1.2.1** Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg)

TABLE 2
MECHANICAL PROPERTIES (ROD AND BAR)

Alloy	Condition	Tensile Strength min, ksi (MPa)	0.2 % offset, min, ksi (MPa)	in. or 50 mm or 4 ^D , min, %
UNS N08825	Annealed: Hot-finished,cold-drawn	85 (586)	35 (241)	30 ^A
UNS N08221	Forging Quality:	В	В	В
	All sizes annealed	79 (544)	34 (235)	30

^A Not applicable to diameters or cross sections under $\frac{3}{32}$ in. (2.4 mm).

 $^{^{\}it B}$ Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required.

TABLE 3
PERMISSIBLE VARIATIONS IN DIAMETER OR DISTANCE BETWEEN PARALLEL SURFACES
OF COLD-WORKED ROD AND BAR

Specified Dimension, in.	Permissible Variations From Specified Dimension, in. (mm)		
(mm) ^A	Plus	Minus	
Rounds:			
$\frac{1}{16}$ (1.6) to $\frac{3}{16}$ (4.8), excl	0	0.002 (0.05)	
$\frac{3}{16}$ (4.8) to $\frac{1}{2}$ (12.7), excl	0	0.003 (0.08)	
$\frac{1}{2}$ (12.7) to $\frac{15}{16}$ (23.8), incl	0.001 (0.03)	0.002 (0.05)	
Over $^{15}/_{16}$ (23.8) to $1^{15}/_{16}$ (49.2), incl	0.0015 (0.04)	0.003 (0.08)	
Over $1^{15}/_{16}$ (49.2) to $2^{1}/_{2}$ (63.5), incl	0.002 (0.05)	0.004 (0.10)	
Hexagons, squares, rectangles:		\O	
$\frac{1}{2}$ (12.7) and less	0	0.004 (0.10)	
Over $\frac{1}{2}$ (12.7) to $\frac{7}{8}$ (22.2), incl	0	0.005 (0.13)	
Over $\frac{7}{8}$ (22.2) to $1\frac{1}{4}$ (31.8), incl	0	0.007 (0.18)	
Over $1\frac{1}{4}$ (31.8) to 2 (50.8), incl	0	0.009 (0.23)	

^A Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 4
PERMISSIBLE VARIATIONS IN DIAMETER OR
DISTANCE BETWEEN PARALLEL SURFACES OF HOTWORKED ROD AND BAR

		ariations From
Specified Dimension, in.	Specified Diffie	nsion, in. (mm)
(mm) ^A	Plus	Minus
Rod and bar, hot-worked:		4
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)
over 1 (25.4) to 2 (50.8), incl	0.031 (0.79)	0.016 (0.41)
over 2 (50.8) to 4 (101.6), incl	0.047 (1.19)	0.031 (0.79)
over 4 (101.6)	0.125 (3.18)	0.063 (1.60)
Rod, rough-turned or ground:		2) `
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)
1 (25.4) and over	0.031 (0.79)	0
Forging quality rod: ^B	.01	
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)
1 (25.4) and over	0.031 (0.79)	0

^A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

of material in the same size and condition. A single piece weighing over 500 lb shall be considered as one lot.

9.2 Test Material Selection:

- **9.2.1** Chemical Analysis Representative samples from each lot shall be taken during pouring or subsequent processing.
- **9.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.

9.2.2 *Mechanical Properties* — Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

Number of Tests

- **10.1** Chemical Analysis One test per lot.
- **10.2** Tension One test per lot.

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.
- 11.1.1 All rod and bar shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E 8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E 8 for rectangular bar up to $\frac{1}{2}$ in. (12.7 mm), inclusive, in thicknesses which are too wide to be pulled full size.

12. Test Methods

12.1 The chemical composition and mechanical and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM standards.

Test	ASTM Designation
Chemical analysis	E 1473
Tension	E 8
Rounding procedure	E 29

^B Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3% of the diameter of the rod.

	TABLE 5		
NORMAL MACHINING	ALLOWANCES FOR	HOT-WORKED	MATERIAL

	Normal Machining Allowance, in. (mm)				
Finished-Machined Dimensions for Finishes As Indicated Below, in. (mm) ^A	On Diameter, for Rods	Distance Between Parallel Surfaces, for Hexagonal and Square Bars	For Rectang	gular Bar On Width	
Hot-worked: ^B				" 6	
Up to $\frac{7}{8}$ (22.2), incl	$\frac{1}{8}$ (3.2)	$\frac{1}{8}$ (3.2)	$\frac{1}{8}$ (3.2)	$\frac{3}{16}$ (4.8)	
Over $\frac{7}{8}$ to $1\frac{7}{8}$ (22.2 to 47.6), incl	$\frac{1}{8}$ (3.2)	$\frac{3}{16}$ (4.8)	¹ / ₈ (3.2)	³ ₁₆ (4.8)	
Over $1^{\frac{7}{7}}$ 8 to $2^{\frac{7}{8}}$ 8 (47.6 to 73.0), incl	$\frac{3}{16}$ (4.8)	¹ / ₄ (6.4)	٠	$\frac{3}{16}$ (4.8)	
Over $2^{7/8}$ to $3^{13/16}$ (73.0 to 96.8), incl	$\frac{1}{4}$ (6.4)		~ &	$\frac{3}{16}$ (4.8)	
Over $3^{13}/_{16}$ (96.8)	¹ / ₄ (6.4)		ري	³ / ₈ (9.5)	
Hot-worked rods, rough-turned or rough ground: $^{\mathcal{C}}$					
¹⁵ / ₁₆ to 4 (23.8 to 101.6), incl in diameter	¹ / ₁₆ (1.6)		2 X · · ·		
Over 4 to 12 (101.6 to 304.8), incl in diameter	¹ / ₈ (3.2)		, V		

A Dimensions apply to diameter of rods, to distance between parallel surfaces of hexagonal and square bar, and separately to width and thickness of rectangular bar.

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed or calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E 29:

Rounded unit for observed or calculated value Test nearest unit in the last righthand place of Chemical composition figures of the specified limit. If two and tolerances (when choices are possible, as when the digits expressed in decimals) dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit. Tensile strength and nearest 1000 psi (6.9 MPa) yield strength Elongation nearest 1%

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be

rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that the material has been manufactured, tested, and inspected in accordance with this specification and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS number; heat number; condition (temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

^B The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lengths of 2 ft (0.61 m) or less. Hot-worked material to be machined in longer lengths should be specified showing the finished cross-sectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

^C Applicable to 3 ft (0.91 m) max length.

TABLE 6 PERMISSIBLE VARIATIONS IN LENGTH OF RODS AND **BARS**

PERMISSIBLE VAR	TABLE 6 RIATIONS IN LENGTH OF RODS AND BARS	S
Random mill lengths:		
Hot-worked	6 to 24 ft (1.83 to 7.31 m) long with not more than 25 weight % between 6 and 9 ft (1.83 and 2.74 m) ^A	art B)
Cold-worked	6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m).	
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of $\frac{1}{4}$ in. (6.4 mm) will be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.	ABPVC Section II Part B) 20
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed. ^B	SME
Cut lengths	A specified length to which all rods and bars will be cut with a permissible variation of plus $\frac{1}{8}$ in. (3.2 mm) minus 0 for sizes 8 in. (203 mm) and less in diameter or distance between parallel surfaces. For larger sizes, the permissible variation shall be $+\frac{1}{4}$ in. (6.4 mm), -0	

⁴ For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth forged products, all sections, short lengths down to 2 ft

TABLE 7 PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF COLD-WORKED RODS AND BARS

Specified Diameter or

Distance Between Parallel Surfaces, in (mm) ^A	Permissible Variations in Lengths Indicated, in. (mm)
Rounds:	Depth of chord:
$\sqrt{}_{2}$ (12.7) to $2\frac{1}{2}$ (63.5), incl	0.030 (0.76) per ft (305 mm) of length
Hexagons, squares, rectangles:	
$\frac{1}{2}$ (12.7) to 2 (50.8), incl	0.030 (0.76) per ft (305 mm) of length

 $^{^{}A}$ Material under $^{1}\!\!/_{2}$ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

⁽⁶¹⁰ mm) may be furnished. B For cold-worked rods and bars under $^{1}\!\!/_{2}$ in. (12.7 mm) in diameter or distance between parallel surfaces ordered to nominal or stock lengths with a 2-ft (610-mm) range, at least 93% of such material shall be within the range specified; the balance may be in shorter lengths but in no case shall lengths less than 4 ft (1220 mm) be furnished.

	ASME BPVC.II.B-2023		SB-425
	TABLE 8 PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF H	OT-WORKED RODS AND BARS ^A	
	Finish	Permissible Variations, in./ft (mm/m) ^B	20
	Rods and bars, hot-worked Rounds—hot-worked, rough ground or rough turned	0.050 (4.2) ^C 0.050 (4.2) ^C	(KB)
	A Not applicable to forging quality. B Material under $^1\!\!/_2$ in. (12.7 mm) shall be reasonably straight at C The maximum curvature (depth of chord) shall not exceed the valength in feet.	nd free of sharp bends and kinks. Values indicated multiplied by the	iou II bar
	TABLE 8 PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF H Finish Rods and bars, hot-worked Rounds—hot-worked, rough ground or rough turned A Not applicable to forging quality. B Material under 1/2 in. (12.7 mm) shall be reasonably straight at 1 the maximum curvature (depth of chord) shall not exceed the vilength in feet. B Aganta A	(ASME BRVC 3	
	BR	JC.II.B.C	
	OF ASME		
	*UII POF		
	view the 18		
	Clickto		
	ON.		
amboc.			
CHENOR			
	609		
	007		

APPENDIX

(Nonmandatory Information)

X1. PROCURABLE CONDITIONS AND **FINISHES**

- X1.1 The various conditions and finishes in which rod and bar are procurable are as follows:
- **X1.1.1** *Hot-Worked, Annealed* Soft, with a tightly adherent dark oxide.
- **X1.1.2** Hot-worked, Annealed, and Pickled Same as X1.1.1 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked, annealed material and often employed where welding is involved where removal of mill oxide is desired.
- NOTE X1.1 Annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is
- X1.1.3 Hot-Worked, Annealed, and Rough-Ground — Similar to X1.1.1 except rough-ground.
- sed fines state of the state of

tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (0.91 m) or less.

X1.1.5 Hot-Worked, Forging Quality — Roughturned and spot-ground as necessary, for sizes 1 in. (25.4 mm) in diameter and over; rough-ground and spotground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot malleability.

NOTE X1.2 — For sizes 2½ in. (63.5 mm) in diameter and less, coldworked rod may be used also for forging by virtue of the fact such rod have been overhauled for removal of mechanical surface defects prior to cold-working. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot malleability range.

X1.1.6 Cold-Worked, Annealed, and Pickled — Hotworked, overhauled, cold-worked, annealed, descaled, and straightened. Annealed for softness and with a dull matte finish.

SPECIFICATION FOR NICKEL-MOLYBDENUM-CHROMIUM-IRON ALLOYS (UNS N10003, UNS N10242) PLATE, SHEET, AND STRIP

SB-434

(Identical with ASTM Specification B434-09(2011) except that certification and test reports have been made mandatory.)

mandatory.)

citate view the with a state of the mandatory.

citate view the mandatory.

Standard Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, UNS N10242) Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers nickel-molybdenumchromium-iron alloys (UNS N10003 and UNS N10242) plate, sheet, and strip for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Sheet and Strip-Hot or cold rolled, annealed, and descaled unless annealing is performed in an atmosphere vielding a bright finish.
 - 1.2.2 *Plate*—Hot rolled, annealed, and descaled.
- 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip

3. Terminology

to This .

Click to view.

Click to view. 3.1 Definitions of Terms Specific to This Standard:

- 3.1.1 plate, n—material 3/16 in. (4.76 mm) and over in
- 3.1.2 sheet and strip, n—material under ³/₁₆ in. (4.76 mm) in thickness.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include but are not limited to the following:
- 5.1.1 *Dimensions*—Thickness (in decimals of an inch), width, and length (inch or fraction of an inch),
 - 5.1.2 DELETED
- 5.1.3 Purchase Inspection—State which tests or inspections are to be witnessed, and
- 5.1.4 Samples for Product (Check) Analysis—State whether samples shall be furnished.

6. Chemical Composition

- 6.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.
- 6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in Specification B906.

7. Mechanical Properties and Other Requirements

- 7.1 Tensile Properties—The material shall conform to the room temperature tensile properties prescribed in Table 2.
- 7.2 Grain Size for Sheet and Strip—Sheet and strip shall conform to the grain size requirements given in Table 3.

TABLE 1 Chemical Requirements

Flament	Composition, %		
Element	UNS N10242	UNS N10003	
Chromium	7.0-9.0	6.0-8.0	
Iron, max	2.0	5.0	
Carbon	0.03 max	0.04-0.08	
Silicon, max	0.80	1.00	
Cobalt, max	1.00	0.20	
Manganese, max	0.80	1.00	
Tungsten, max		0.50	
Vanadium, max		0.50	
Molybdenum	24.0-26.0	15.0-18.0	
Phosphorus, max	0.030	0.015	
Sulfur, max	0.015	0.020	
Aluminum plus titanium, max		0.50	
Copper, max	0.50	0.35	
Boron, max	0.006	0.010	
Nickel	remainder	remainder	
Aluminum, max	0.50		

TABLE 2 Mechanical Properties for Plate and Sheet

UNS	Tensile Strength,	Yield Strength (0.2	Elongation in 2 in.
	min,	% Offset), min, ksi	(50.8 mm) or 4D ^A
	ksi (MPa)	(MPa)	min, %
N10003	100 (690)	40 (280)	40
N10242	105 (725)	45 (310)	40

^A D refers to the diameter of the tension specimen.

TABLE 3 Grain Size for Annealed Sheets

Thickness, in. (mm)	ASTM Micrograin Size Number, max	Average Grain Diameter, max, in (mm)
0.125 (3.175) and under	3.0	0.0050 (0.127)
Over 0.125 (3.175)	1.5	0.0084 (0.214)

8. Dimensions and Permissible Variations

8.1 Weight—For calculation of mass or weight, the following densities shall be used:

Alloy	lb/in ³	g/cm ³
N10003	0.317	8.78
N10242	0.327	9.05

- 8.2 Thickness:
- 8.2.1 *Plate*—The permissible variations in thickness of plate shall be as prescribed in Table A2.1 in Specification B906.
- 8.2.2 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Table A2.2 in Specification B906. The thickness shall be measured with the micrometer spindle 3/8 in. (9.525 mm) or more from any edge

for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. in width.

- 8.3 *Width*:
- 8.3.1 *Plate*—The permissible variations in width of rectangular plates shall be as prescribed in Table A2.3 in Specification B906.
- 8.3.2 Sheet and Strip—The permissible variations in width for sheet and strip shall be as prescribed in Table A2.4 in Specification B906.
 - 8.4 Length:
- 8.4.1 *Plate*—Permissible variations in the length of rectangular plate shall be as prescribed in Table A2.3 in Specification B906.
- 8.4.2 Sheet and Strip—Sheet and strip may be ordered to cut lengths, in which case a variation of 1/8 in. (3.175 mm) over the specified length shall be permitted, with a 0 minus tolerance.
 - 8.5 Straightness:
- 8.5.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed the product of 0.05 in. multiplied by the length in feet (0.04 mm) multiplied by the length in centimetres.
- 8.5.2 Straightness for coiled strip is subject to agreement between the manufacturer and the purchaser.
- 8.6 Squareness (Sheet)—For sheets of all thicknesses and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be 90 ± 0.15 deg ($\frac{1}{16}$ in. in 24 in. or 2.6 mm/m).
- 8.7 Platness—Plate, sheet, and strip shall be commercially flat.
 - 8.8 Edges:
 - 8.8.1 Plate shall have sheared or abrasive cut edges.
 - 8.8.2 Sheet and strip shall have sheared or slit edges.

9. Product Marking

- 9.1 Each plate, sheet, or strip shall be marked on one face with the specification number, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 9.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

10. Keywords

10.1 plate; sheet; strip; UNS N10003; UNS N10242

alts.

Apple Bayer Section Inputs 1200 of ASME BAYE. ILE I ASME BAYE Section Inputs 1200 of ASME BAYE. ILE I ASME BAYE. ASME BAYE. ILE I ASME BAYE. ASME BAYE. ILE I BAYE.

SPECIFICATION FOR UNS N06002, UNS N06230, UNS N12160, AND UNS R30556 PLATE, SHEET, AND STRIP

ASMENORMOC. COM. Circk to view the full Poly (Identical with ASTM Specification B435-06(2016) except that certification and test reports have been made mandatory.)

Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers alloys UNS N06002, UNS N06230, UNS N12160, and UNS R30556 in the form of rolled plate, sheet, and strip for heat-resisting and general corrosive service.
- 1.2 The following products are covered under this specifi-
- 1.2.1 Sheet and Strip—Hot- or cold-rolled, annealed, and descaled unless solution annealing is performed in an atmosphere yielding a bright finish.
 - 1.2.2 Plate—Hot-rolled, solution-annealed, and descaled.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

SMENORMBOC. Com. Circk to view B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

Terminology
1.1 Definitions of Term
1.1.1 plate

3. Terminology

- 3.1.1 plate, n—material $\frac{3}{16}$ in. (4.76 mm) and over in
- 3.1.2 sheet and strip, n—material under 3/16 in. (4.76 mm) in thickness.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

5. Ordering Information

- 5.1 M is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - 5.1.1 *Alloy*,
- 5.1.2 Dimensions—Thickness (in decimals of an inch), width, and length (inch or fraction of an inch),
- 5.1.3 Certification—Certification and test reports are required,
- 5.1.4 Optional Requirement—Plate; state how plate is to be cut (Specification B906, Table titled Permissible Variations in width and Length of Sheared, Torch-Cut, or Abrasive-Cut Rectangular Plate),
- 5.1.5 Purchase Inspection—State which tests or inspections are to be witnessed (Specification B906, section on Inspection),
- 5.1.6 Samples for Product (Check) Analysis—State whether samples should be furnished (Specification B906, section on Sampling).

6. Chemical Composition

6.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.

TABLE 1 Chemical Requirements

Element	Composition Limits, %			
пени	UNS N06002	UNS N06230	UNS R30556	UNS N12160
Nickel	remainder	remainder	19.0–22.5	remainder
Iron	17.0–20.0	3.0 max	remainder	3.5 max
Chromium	20.5-23.0	20.0-24.0	21.0-23.0	26.0-30.0
Cobalt	0.5-2.5	5.0 max	16.0-21.0	27.0-33.0
Molybdenum	8.0-10.0	1.0-3.00	2.5-4.0	1.0 max
Tungsten	0.2-1.0	13.0-15.0	2.0-3.5	1.0 max
Carbon	0.05-0.15	0.05-0.15	0.05-0.15	0.15 max
Silicon	1.00 max	0.25-0.75	0.20-0.80	2.4-3.0
Manganese	1.00 max	0.30-1.00	0.50-2.00	1.5 max
Phosphorus	0.04 max	0.030 max	0.04 max	0.030 max
Sulfur	0.03 max	0.015 max	0.015 max	0.015 max
Columbium (N6)	***	***	0.30 max	1.0 max
Tantalum	•••	***	0.30-1.25	<u> </u>
Aluminum		0.50 max	0.10-0.50	
Zirconium	***	***	0.001-0.10	·C1
Lanthanum		0.005-0.050	0.005-0.10	
Nitrogen			0.10-0.30	
Boron	•••	0.015 max	0.02 max	
Titanium			, 💙	0.20-0.80

TABLE 2 Mechanical Property Requirements

UNS	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 % Offset), min, ksi (MPa)	Elongation in 2 in. (50.8 mm) or 4 <i>D</i> , ^A min, %
N06002	95 (655)	35 (240)	35
N06230 ^B	110 (760)	45 (310)	40
R30556 ^C	100 (690)	45 (310)	40
N12160 ^D	90 (620)	35 (240)	40

^A D refers to the diameter of the tension specimen.

TABLE 3 Grain Size for Annealed Sheet

Thickness, in. (mm)	ASTM Micrograin Size Number, max	Average Grain, Diameter, max, in. (mm)
0.125 (3.175) and under	3.0	0.0050 (0.127)
Over 0.125 (3.175)	1.5	0.0084 (0.214)

6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 and Specification B906.

7. Mechanical Properties and Other Requirements

- 7.1 *Tensile Properties*—The material shall conform to the room temperature tensile properties prescribed in Table 2.
 - 7.2 Grain Size for Sheet and Strip:
- 7.2.1 Annealed alloys UNS N06002, UNS N06230, and UNS R30556 sheet and strip shall conform to the grain size requirements given in Table 3.
- 7.2.2 Annealed alloy UNS N12160 shall conform to an average grain size of ASTM No. 5 or coarser.

8. Dimensions, Mass, and Permissible Variations

8.1 Weight—For calculations of mass or weight, the following densities shall be used:

Alloy			Density	
	_ (/	lb/in.3		(g/cm ³)
N06002	0 \ \	0.297		(8.23)
N06230	$\mathcal{N}_{\mathcal{N}}$	0.324		(8.97)
R30556	11.	0.297		(8.23)
N12160) *	0.292		(8.08)

- 8.2 Thickness:
- 8.21 Sheet and Strip—The thickness shall be measured with the micrometer spindle ³/₈ in. (9.525 mm) or more from any edge for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. in width.
 - 8.3 Length:
- 8.3.1 Sheet and Strip—Sheet and strip may be ordered to cut lengths, in which case a variation of $\frac{1}{8}$ in. (3.175 mm) over the specified length shall be permitted, with a 0 minus tolerance.
 - 8.4 Straightness:
- 8.4.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed the product of 0.05 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres).
- 8.4.2 Straightness for coiled strip is subject to agreement between the manufacturer and the purchaser.
- 8.5 Squareness (Sheet)—For sheets of all thicknesses and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ ($\frac{1}{16}$ in. in 24 in. or 2.6 mm/m).
- 8.6 *Flatness*—Plate, sheet, and strip shall be commercially flat.
 - 8.7 Edges:
- 8.7.1 Plates shall have sheared, abrasive-cut or plasmatorch-cut edges as specified.
 - 8.7.2 Sheet and strip shall have sheared or slit edges.

9. Product Marking

9.1 Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.

^B Solution annealed at a temperature between 2200 and 2275°F (1204 and 1246°C) followed by a water quench or rapidly cooled by other means.

^C Solution annealed at 2100°F (1150°C) minimum.

^D Solution annealed at 1950°F (1065°C) minimum.

Sentagendoc Com. Clore when the full pot of sent above. He had been closed to the sent above.

SPECIFICATION FOR NICKEL-CHROMIUM-SB-443 SB-443 (Identical with ASTM Specification 943-00(2014) except that certification has been made mandatory.) Citize to resemble the second of the se **MOLYBDENUM-COLUMBIUM ALLOY (UNS NO6625)**

SPECIFICATION FOR NICKEL-CHROMIUM-SB-443 [Identical with ASTM Specification B 443-00(2014) except that certification has been made mandatory.] E 1473 Test Methods for Cobalt, and Tobal Cob **MOLYBDENUM-COLUMBIUM ALLOY (UNS N06625)** AND NICKEL-CHROMIUM-MOLYBDENUM-SILICON ALLOY (UNS N06219) PLATE, SHEET, AND STRIP

Scope

- 1.1 This specification covers rolled nickel-chromiummolybdenum-columbium alloy (UNS N06625) and nickelchromium-molybdenum-silicon alloy (UNS N06219) plate, sheet, and strip.
- **1.1.1** Alloy UNS N06625 products are furnished in two grades of different heat-treated conditions:
- **1.1.1.1** *Grade 1 (Annealed)* Material is normally employed in service temperatures up to 1100°F (593°C).
- **1.1.1.2** *Grade 2 (Solution Annealed)* Material is normally employed in service temperatures above 1100°F (593°C) when resistance to creep and rupture is required.
- NOTE 1 Hot-working or reannealing may change properties significantly, depending on working history and temperatures.
- **1.1.2** Alloy UNS N06219 is supplied in solution annealed condition only.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

Referenced Documents

- **2.1** ASTM Standards:
- B 446 Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625) Rod and Bar
- B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 354 Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

The terms given in Table 1 shall apply.

4. Ordering Information

41 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory

TABLE 1 PRODUCT DESCRIPTION

Product	Thickness, in. (mm)	Width, in. (mm)
Hot-rolled plate ^A	³ / ₁₆ (4.8) and over (Tables 4 and 5)	(Table 7) ^A
Cold-rolled plate ^B	³ / ₁₆ to ³ / ₈ (4.8 to 9.5), incl (Table 4)	(Table 7)
Hot-rolled sheet ^B	0.018 to 0.250 (0.46 to 6.4), incl (Table 6)	(Table 9)
Cold-rolled sheet $^{\mathcal{C}}$	0.018 to 0.250 (0.46 to 6.4), incl (Table 6)	(Table 9)
Cold-rolled strip $^{\mathcal{C}}$	0.005 to 0.250 (0.13 to 6.4), incl (Table 6)	(Table 9)

 $^{^{}A}$ Hot-rolled plate, in widths 10 in. (254 mm) and under, may be furnished as hot-finished rectangles with sheared or cut edges in accordance with Specification B 446 provided the mechanical property requirements of this specification are met.

 $^{^{}B}$ Material 3 / $_{16}$ to 1 / $_{4}$ in. (4.8 to 6.4 mm), incl, in thickness may be furnished as sheet or plate provided the material meets the specification requirements for the condition ordered.

 $^{^{\}it C}$ Material under 48 in. (1219 mm) in width may be furnished as sheet or strip provided the material meets the specification requirements for the condition ordered.

TABLE 2 CHEMICAL REQUIREMENTS

	Composition Limits, %		
Element	N06625	N06219	
Carbon	0.10 max	0.05 max	
Manganese	0.50 max	0.50 max	
Silicon	0.50 max	0.70-1.10	
Phosphorus	0.015 max	0.020 max	
Sulfur	0.015 max	0.010 max	
Chromium	20.0 min	18.0-22.0	
	23.0 max		
Columbium + tantalum	3.15 min		
	4.15 max		
Cobalt (if determined)	1.0 max	1.0 max	
Molybdenum	8.0 min	7.0-9.0	
	10.0 max		
Iron	5.0 max	2.0-4.0	
Aluminum	0.40 max	0.50 max	
Titanium	0.40 max	0.50 max	
Copper		0.50 max	
Nickel ^A	58.0 min	Bal.	

⁴ Element shall be determined arithmetically by difference.

performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

- **4.1.1** ASTM designation,
- **4.1.2** Alloy name or UNS number,
- **4.1.3** *Condition* See 1.1.1, 1.1.2 and Appendix X
- **4.1.3.1** If neither grade of N06625 is specified, Grade 1 will be supplied,
 - **4.1.4** *Finish* Appendix X1,
 - **4.1.5** Dimensions Thickness, width, and length,
 - **4.1.6** *Quantity*,
 - 4.1.7 Optional Requirements
- **4.1.7.1** *Sheet and Strip* Whether to be furnished in coil, in cut straight lengths, or in random straight lengths,
- **4.1.7.2** *Plate* How plate is to be cut (see 7.2.1 and 7.3.2),
- **4.1.8** *Certification* Certification is required (Section 15),
- **4.1.9** Samples for Product (Check) Analysis—Whether samples for product (check) analysis should be furnished (see 5.2), and
- **4.1.10** Purchaser Inspection If the purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state, indicating which tests or inspections are to be witnessed (Section 13).

5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 2.

5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations as prescribed by B 880.

6. Mechanical Properties and Other Requirements

6.1 *Mechanical Properties* — The material shall conform to the heat treatment and room temperature tensile properties prescribed in Table 3.

7. Dimensions and Permissible Variations

7.1 Thickness and Weight:

- **7.1.1** *Plate* For plate up to 2 in. (50.8 mm), inclusive, in thickness, the permissible variations under the specified thickness and permissible excess in overweight shall not exceed the amounts prescribed in Table 4.
- **7.1.1.1** For use with Table 4, plate shall be assumed to weigh 0.305 lb/in.³ (8.442 g/cm³).
- **7.1.2** *Plate* For plate over 2 in. (50.8 mm) in thickness, the permissible variations over the specified thickness shall not exceed the amounts prescribed in Table 5.
- 7.1.3 Sheet and Strip The permissible variations in thickness of sheet and strip shall be as prescribed in Table 6. The thickness of strip and sheet shall be measured with the micrometer spindle $\frac{3}{8}$ in. (9.5 mm) or more from either edge for material 1 in. (25.4 mm) or over in width and at any place on the strip under 1 in. (25.4 mm) in width.

7.2 Width or Diameter:

- **7.2.1** *Plate* The permissible variations in width of rectangular plates and diameter of circular plates shall be as prescribed in Table 7 and Table 8.
- **7.2.2** *Sheet and Strip* The permissible variations in width for sheet and strip shall be as prescribed in Table 9.

7.3 *Length:*

- **7.3.1** Sheet and strip of all sizes may be ordered to cut lengths, in which case a variation of $\frac{1}{8}$ in. (3.2 mm) over the specified length shall be permitted.
- **7.3.2** Permissible variations in length of rectangular plate shall be as prescribed in Table 10.

7.4 *Straightness:*

- **7.4.1** The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. (1.27 mm) multiplied by the length in feet (0.04 mm multiplied by the length in centimeters).
- **7.4.2** Straightness for coiled material is subject to agreement between the manufacturer and the purchaser.

TABLE 3 ROOM TEMPERATURE TENSILE PROPERTIES AND HEAT TREATMENT

(All Thicknesses and Sizes Unless Otherwise Indicated)

Product	Tensile Strength, min, ksi (MPa)	Yield Strength ^A (0.2% Offset), min, ksi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i>), min, % ^B
Grade 1			1
UNS N06625 (Annealed) $^{\mathcal{C}}$			20
Cold-rolled sheet and strip	120 (827)	60 (414)	2 30
Hot-rolled sheet and hot-rolled plate up to 2.75 in. (70 mm), incl	110 (758)	55 (379)	30
Cold-rolled plate up to 0.375 in. (9.5 mm), incl	110 (758)	55 (379)	3 0
Grade 2 UNS N06625 (Solution Anneald	ed) ^D	aR _V O	
Cold-rolled sheet and strip, hot-rolled sheet, cold-rolled plate, and hot-rolled plate	100 (690)	40 (276)	30
All UNS N06219 (Solution Annea	led)	SM	
All plate, sheet, and strip	96 (660)	39 (270)	30

⁴ Yield strength requirements do not apply to material under 0.020 in. (0.508 mm) in thickness

7.5 *Edges*:

- **7.5.1** Sheet and strip shall have sheared or slit edges.
- **7.5.2** Plate shall have sheared or cut (machined, abrasive cut, powder cut, or inert arc cut) edges, as specified.
- **7.6** Squareness (Sheet) For sheets of all thicknesses, the angle between adjacent sides shall be $90 \pm 0.15^{\circ}$ ($\frac{1}{16}$ in. in 24 in.) (1.6 mm in 610 mm).
- 7.7 Flatness Standard flatness tolerances for plate shall conform to the requirements of Table 11.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and temper, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

- **9.1** Lot Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- **9.1.2** A lot for mechanical testing shall consist of all material from the same heat, nominal thickness, and condition.
- **9.1.2.1** Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg)

of material in the same thickness and condition, except for plates weighing over 500 lb (227 kg), in which case only one specimen shall be taken.

9.2 Test Material Selection:

- **9.2.1** *Chemical Analysis* Representative samples from each lot shall be taken during pouring or subsequent processing.
- **9.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.
- **9.2.2** *Mechanical Properties* Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- **10.1** *Chemical Analysis* One test per lot.
- **10.2** *Mechanical Properties* One test per lot.

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material in the final condition (temper) and tested transverse to the direction of rolling when width will permit.
- **11.2** Tension test specimens shall be any of the standard or subsize specimens shown in Test Methods E 8.

^B Elongation requirements do not apply to material under 0.010 in. (0.254 mm) in thickness.

 $^{^{\}it C}$ Annealed at 1600°F (871°C) minimum.

^D Solution annealed at 2000°F (1093°C) minimum, with or without subsequent stabilization anneal at 1800°F (982°C) minimum to increase resistance to sensitization.

PERMISSIBLE VARIATIONS IN THICKNESS AND OVERWEIGHT OF RECTANGULAR PLATES TABLE 4 ASMENORMOC. Chick to Vigan.

		Permi	Permissible Excess in Average Weight, 8.6 per Square Foot of Plates for Widths Given in Inches (Millimeters)	Average Weigh	t, B,C per Square	Foot of Plates	for Widths Given	n in Inches (Mill	imeters)		
		48 to 60	60 to 72	72 to 84	Expressed in Percent of Nominal Weights 84 to 96 to 108 108	1t of Nominal W 96 to 108	l 108 to 120	120 to 132	132 to 144	144 to 160	
Specified Thickness, in. (mm)	Under 48 (1220)	(1220 to 1520), excl	(1520 to 1830), excl	(1830 to 2130), excl	(2130 to 2440), excl	(2440 to 2740), excl	2740 to 3050), excl	(3050 to 3350), excl	(3350 to 3660), excl	(3660 to 4070), excl	
$^{3}/_{16}$ to $^{5}/_{16}$ (4.8 to 7.9), excl	0.6	10.5	12.0	13.5	15.0	16.5	18.0	:	•	:	ASM
$^{5}/_{16}$ to $^{3}/_{8}$ (7.9 to 9.5), excl	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0	:	:	IE I
$^{3}/_{8}$ to $^{7}/_{16}$ (9.5 to 11.1), excl	7.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0	19.5	BPV
$^{7}/_{16}$ to $^{1}/_{2}$ (11.1 to 12.7), excl	6.0	7.0	7.5	0.6	10.5	12.0	13.5	15.0	16.5	18.0	VC.
$^{1/_{2}}$ to $^{5/_{8}}$ (12.7 to 15.9), excl	5.0	6.0	7.0	7.5	0.6	10.5	12.0	13.5	15.0	16.5	II.I
$^{5}/_{8}$ to $^{3}/_{4}$ (15.9 to 19.1), excl	4.5	5.5	6.0	7.0	5.5	0.6	10.5	12.0	13.5	15.0	3-2
$^{3}/_{4}$ to 1 (19.1 to 25.4), excl	4.0	4.5	5.5	6.0	7.00	7.5	9.0	10.5	12.0	13.5	02
1 to 2 (25.4 to 50.8), incl	4.0	4.0	4.5	5.5	0.9	7.0	7.5	0.6	10.5	12.0	3
The term "lot" applied to this table means all of the plates of each group width and each group thickness. The permissible overweight for lots of circular and sketch plates shall be 25% greater than the amounts given in this table. The weight of individual plates shall not exceed the nominal weight by more than 1½ times the amount given in the table and Footnote B. The weight of individual plates shall not exceed the nominal weight by more than 1½ times the amount given in the table and Footnote B.	Is table means or lots of circul es shall not exc	all of the plates ar and sketch pleed the nominal eed the nominal	of each group wic	ith and each gr 6 greater than Ihan 1⅓ times 1	In and each group thickness. greater than the amounts given in this table, nan 1^{λ}_4 times the amount given in the table are	in the table and in the table.		C Section			
								n II Part	II Part		SB-443
									3)	_ ^	

TABLE 5
PERMISSIBLE VARIATIONS IN THICKNESS FOR RECTANGULAR PLATES OVER 2 in. (51 mm) IN THICKNESS

	Permissible	Variations, in. (n	ım), Over Specific	ed Thickness for	Widths Given, in.	(mm)
Specified Thickness, in. (mm)	To 36 (915), excl	36 to 60 (915 to 1520), excl	60 to 84 (1520 to 2130), excl	84 to 120 (2130 to 3050), excl	120 to 132 (3050 to 3350), excl	132 (3350 and over)
Over 2 to 2 ³ / ₄ (51 to 69.8), incl	¹ / ₁₆ (1.6)	³ / ₃₂ (2.4)	⁷ / ₆₄ (2.8)	¹ / ₈ (3.2)	¹ / ₈ (3.2)	⁹ / ₆₄ (3.6)

NOTE 1 - Permissible variation under specified thickness, 0.01 in. (0.3 mm).

TABLE 6
PERMISSIBLE VARIATIONS IN THICKNESS OF SHEET AND STRIP
[Permissible Variations, Plus and Minus, in Thickness, in. (mm), for Widths Given in in. (mm)]

		She	eet ^A	
	Hot-F	Rolled	Cold-	Rolled
Specified Thickness, in. (mm), incl	48 (1220) and Under	0ver 48 to 60 (1220 to 1520), incl	48 (1220) and Under	Over 48 to 60 (1220 to 1520), incl
0.018 to 0.025 (0.5 to 0.6)	0.003 (0.08)	0.004 (0.10)	0.002 (0.05)	0.003 (0.08)
Over 0.025 to 0.034 (0.6 to 0.9)	0.004 (0.10)	0.005 (0.13)	0.003 (0.08)	0.004 (0.10)
Over 0.034 to 0.043 (0.9 to 1.1)	0.005 (0.13)	0.006 (0.15)	0.004 (0.10)	0.005 (0.13)
Over 0.043 to 0.056 (1.1 to 1.4)	0.005 (0.13)	0.006 (0.150)	0.004 (0.10)	0.005 (0.13)
Over 0.056 to 0.070 (1.4 to 1.8)	0.006 (0.15)	0.007 (0.18)	0.005 (0.13)	0.006 (0.15)
Over 0.070 to 0.078 (1.8 to 1.9)	0.007 (0.18)	0.008 (0.20)	0.006 (0.15)	0.007 (0.18)
Over 0.078 to 0.093 (1.9 to 2.4)	0.008 (0.20)	0.009 (0.23)	0.007 (0.18)	0.008 (0.20)
Over 0.093 to 0.109 (2.4 to 2.8)	0.009 (0.23)	0.010 (0.25)	0.007 (0.18)	0.009 (0.23)
Over 0.109 to 0.125 (2.8 to 3.2)	0.010 (0.25)	0.012 (0.31)	0.008 (0.20)	0.010 (0.25)
Over 0.125 to 0.140 (3.2 to 3.6)	0.012 (0.31)	0.014 (0.36)	0.008 (0.20)	0.010 (0.25)
Over 0.140 to 0.171 (3.6 to 4.3)	0.014 (0.36)	0.016 (0.41)	0.009 (0.23)	0.012 (0.31)
Over 0.171 to 0.187 (4.3 to 4.8)	0.015 (0.38)	0.017 (0.43)	0.010 (0.25)	0.013 (0.33)
Over 0.187 to 0.218 (4.8 to 5.5)	0.017 (0.43)	0.019 (0.48)	0.011 (0.28)	0.015 (0.38)
Over 0.218 to 0.234 (5.5 to 5.9)	0.018 (0.46)	0.020 (0.51)	0.012 (0.31)	0.016 (0.41)
Over 0.234 to 0.250 (5.9 to 6.4)	0.020 (0.51)	0.022 (0.56)	0.013 (0.33)	0.018 (0.46)
	the co	old-Rolled ^{A, B}		
Specified Thickness in (n	Widths 1	2 in. (305 mm) and under,	plus and	
Specified Thickness, in. (m	imizinci		minus	
Up to 0.050 (1.27), inck			0.0015 (0.038)	
Over 0.050 to 0.093 (1.27	to 2.39)		0.0025 (0.063)	
Over 0.093 to 0.125 (2.39	to 3.18)		0.004 (0.11)	

⁴ Measured ³/₈ in. (9.5 mm) or more from either edge except for strip under 1 in. (25.4 mm) in width which is measured at any place.

^B Standard sheet tolerances apply for thicknesses over 0.125 in. (3.2 mm) and for all thicknesses of strip over 12 in. (305 mm) wide.

TABLE 7 PERMISSIBLE VARIATIONS IN WIDTH A OF SHEARED, PLASMA TORCH-CUT, AND ABRASIVE-CUT RECTANGULAR PLATE $^{\mathcal{B},\mathcal{C}}$

			Permiss	sible Variat	ions in Wid	ths for Wid	ths Given, i	n. (mm)		
		30 (760), ncl	0ver 30 (760 to) to 72 1830),	0ver 72 (1830 t	2 to 108 o 2740),	0ver 10	08 to 144 to 3660), ncl	(3660	44 to 160 to 4070), incl
Specified Thickness	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus
				Inches					. (10
Sheared: D									C'S	
$^{3}/_{16}$ to $^{5}/_{16}$, excl	³ / ₁₆	¹ / ₈	1/4	¹ / ₈	³ / ₈	¹ / ₈	1/2	1/8	CO.	
$^{5}/_{16}$ to $^{1}/_{2}$, excl	1/4	¹ / _o	³ / ₈	¹ / ₈	³ / _o	¹ / ₈	1/2	1/8 ~	9 _{5/8}	¹ / ₈
$^{1}/_{2}$ to $^{3}/_{4}$, incl	³ / ₈	1/8	³ / ₈	¹ / ₈	1/2	1/8	⁵ / ₈	1/01	3/4	1/8
³ / ₄ to 1, incl	1/2	1/8	1/2	1/8	⁵ / ₈	¹ / ₈	³ / ₄	100	⁷ / ₈	1/8
1 to 1 ¹ / ₄ , incl	⁵ / ₈	1/8	⁵ / ₈	1/8	³ / ₄	¹ / ₈	⁷ / ₈	V°.	1	¹ / ₈
Abrasive-cut: E, F	, 0	, 0	*0	, 0	. 4			· · · ·	_	, 0
$^{3}/_{16}$ to $1^{1}/_{4}$, incl	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	1/0	¹ / ₈	¹ / ₈	¹ / ₈
Over $1^{1}/_{4}$ to $2^{3}/_{4}$, incl	³ / ₁₆	1/8	³ / ₁₆	1/8	³ / ₁₆	1/8	3/2	1/8	³ / ₁₆	1/8
Plasma torch-cut: G	, 10	18	,10	'8	, 10	'8	3.	78	, 10	'8
³ / ₁₆ to 2, excl	¹ / ₂	0	¹ / ₂	0	¹ / ₂	0	1/2	0	1/2	0
2 to 2 ³ / ₄ , incl	⁵ / ₈	0	⁵ / ₈	0	⁵ / ₈	o 🗞	⁵ / ₈	0	⁵ / ₈	0
				Millimete	ers	Cilli				
Sheared: D					$\hat{\Delta}$	7				
4.8 to 7.9, excl	4.8	3.2	6.4	3.2	9.5	3.2	12.7	3.2		
7.9 to 12.7, excl	6.4	3.2	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2
12.7 to 19.1, excl	9.5	3.2	9.5	3.2	12.7	3.2	15.9	3.2	19.1	3.2
19.1 to 25.4, excl	12.7	3.2	12.7	3.2	15.8	3.2	19.1	3.2	22.2	3.2
25.4 to 31.8, incl	15.9	3.2	15.9	3.2	19.1	3.2	22.2	3.2	25.4	3.2
Abrasive-cut: E,F				6 1						
4.8 to 31.8, incl	3.2	3.2	3.2 🧪	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Over 31.8 to 69.8, incl	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2
Plasma torch-cut: ^G										
4.8 to 50.8, excl	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0
50.8 to 69.8, incl	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0

^A Permissible variations in width for powder-or inert arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

^B Permissible variations in machined, powder-, or inert arc-cut circular plate shall be as agreed upon between the manufacturer and the pur-

 $^{^{\}mathcal{C}}$ Permissible variations in plasma torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

^D The minimum sheared width is 24 in. (610 mm).

 $^{^{\}it E}$ The minimum abrasive-cut width is 2 in. (50.8 mm) and increases to 4 in. (101.6 mm) for thicker plates.

^F These tolerances are applicable to lengths of 240 in. (6100 mm), max. For lengths over 240 in. an additional $\frac{1}{16}$ in. (1.6 mm) is permit-

ted, both plus and minus:

Geographical ted, both plus and minus and minus side, or divided between the plus and minus side if so specified by the purchaser.

TABLE 8 PERMISSIBLE VARIATIONS IN DIAMETER FOR CIRCULAR PLATES

	Sheared Plate
	Permissible Variations Over Specified Diameter for Thickness Given, in. (mm) ⁴
Specified Diameter, in. (mm)	To ³ / ₈ (9.5), incl
20 to 32 (508 to 813), excl	¹ / ₄ (6.4)
32 to 84 (813 to 2130), excl	⁵ / ₁₆ (7.9)
84 to 108 (2130 to 2740), excl	³ / ₈ (9.5)
108 to 140 (2740 to 3580), incl	⁷ / ₁₆ (11.1)

Plasma Torch-Cut Plate B

Permissible	Variations in	Specified	Diameter	for	Thickness	Given.	in.	(mm) ^C
1 011111331810	• an lactoris in	Opcomea	Diameter		111101111033	G	4	

	Thickness,	³ / ₁₆ to 2 (4.8	8 to 50.8), excl	2 to 2 ³ / ₄ (50.8	to 69.8), incl
Specified Diameter, in. (mm)	max, in. (mm)	Plus	Minus	Plas	Minus
19 to 20 (483 to 508), excl	2 ³ / ₄ (69.8)	¹ / ₂ (12.7)	0	⁵ / ₈ (15.9)	0
20 to 22 (508 to 559), excl	$2^{3}/_{4}$ (69.8)	$^{1}/_{2}$ (12.7)	0	9 (15.9)	0
22 to 24 (559 to 610), excl	$2^{1}/_{2}$ (63.5)	$^{1}/_{2}$ (12.7)	0	⁵ / ₈ (15.9)	0
24 to 28 (610 to 711), excl	$2^{1}/_{4}$ (57.3)	¹ / ₂ (12.7)	0 🔷	⁵ / ₈ (15.9)	0
28 to 32 (711 to 812), excl	2 (50.8)	¹ / ₂ (12.7)	0	⁵ / ₈ (15.9)	0
32 to 34 (812 to 864), excl	$1^{3}/_{4}$ (44.5)	¹ / ₂ (12.7)	0		
34 to 38 (864 to 965), excl	$1^{1}/_{2}$ (38.1)	¹ / ₂ (12.7)			
38 to 40 (965 to 1020), excl	$1^{1}/_{4}$ (31.8)	¹ / ₂ (12.7)	00		
40 to 140 (1020 to 3560), incl	$2^{3}/_{4}$ (69.8)	¹ / ₂ (12.7)	0	⁵ / ₈ (15.9)	0

^A No permissible variations under.

De as agine minus side in minu ^B Permissible variations in plasma torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

^C The tolerance spread shown may also be obtained all on the minus side or divided between the plus and minus sides if so specified by the

	TABI	_E 9				
PERMISSIBLE VA	RIATIONS IN	WIDTH	0F	SHEET	AND	STRIP

		Permissible Varia fied Width,	•
Specified Thickness, in. (mm)	Specified Width, in. (mm)	Plus	Minus
	Sheet		4
Up to 0.250 (6.35)	All	0.125 (3.18)	0 , 0
	Strip		
Under 0.075 (1.9)	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.007 (0.18) 0.062 (1.6)	0.007 (0.18)
0.075 to 0.100 (1.9 to 2.5), incl	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.009 (0.23) 0.062 (1.6)	0.009 (0.23)
Over 0.100 to 0.125 (2.5 to 3.2), incl	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.012 (0.30) 0.062 (1.6)	0.012 (0.30)
Over 0.125 to 0.160 (3.2 to 4.1), incl	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.016 (0.41) 0.062 (1.6)	0.016 (0.41) 0
Over 0.160 to 0.187 (4.1 to 4.7), incl	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.020 (0.51) 0.062 (1.6)	0.020 (0.51) 0
Over 0.187 to 0.250 (4.7 to 6.4), incl	Up to 12 (305), incl Over 12 to 48 (305 to 1219), incl	0.062 (1.6) 0.062 (1.6)	0.062 (1.6) 0.062 (1.6)

- 11.3 In the event of disagreement, referee specimens shall be as follows:
- 11.3.1 Full thickness of the material, machined to the form and dimensions shown for the sheet-type specimen in Test Methods E 8 for material under $\frac{1}{2}$ in. (12.7 mm) in thickness.
- 11.3.2 The largest possible round specimen shown in Test Methods E 8 for material $\frac{1}{2}$ in (12.7 mm) and over.

12. Test Methods

12.1 The chemical composition and mechanical and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM standards:

Test	ASTM Designation
Chemical analysis	E 1473
Tension	E 8
Rounding procedure	E 29

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed or calculated value shall be rounded in accordance with the rounding method of Practice E 29.

Test	Calculated Value
Chemical composition and tolerances (when expressed	Nearest unit in the last right-hand- place of figures of the speci-
in decimals)	fied limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an
	even digit.
Tensile strength and yield strength	Nearest 1000 psi (6.9 MPa)
Elongation	Nearest 1%

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

TABLE 10 PERMISSIBLE VARIATIONS IN LENGTH^A OF SHEARED, PLASMA TORCH-CUT,^B AND ABRASIVE-CUT RECTANGULAR PLATE^c

	Permissible Variation in Length for Lengths Given, in. (mm)															
	(15	to 60 520), ncl	to (15 24	er 60 96 20 to 40), ncl	to (24 30	er 96 120 40 to 950), ncl	to (30 60	r 120 240 50 to 96), ncl	to (60 91	r 240 360 96 to 44), ncl	to (91 11	r 360 450 44 to 430), ncl	to (11 13	r 450 540 430 to 716), ncl		r 540 716)
Specified Thickness	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus
						Ir	nches								Ç	
Sheared: D															2	
$^{3}/_{16}$ to $^{5}/_{16}$, excl	$^{3}/_{16}$	¹ / ₈	¹ / ₄	¹ / ₈	$^{3}/_{8}$	¹ / ₈	$^{1}/_{2}$	¹ / ₈	⁵ / ₈	¹ / ₈	$^{3}/_{4}$	¹ / ₈	⁷ / ₈	1 _{V8}		
$^{5}/_{16}$ to $^{1}/_{2}$, excl	³ / ₈	1/8	1/ ₂	¹ / ₈	1/2	¹ / ₈	1/2	¹ / ₈	⁵ / ₈	¹ / ₈	$^{3}/_{4}$	1/8	⁷ / ₈	1/8	1	¹ / ₈
¹ / ₂ to ³ / ₄ , excl	1/2	1/8	1/2	1/8	⁵ / ₈	1/8	⁵ / ₈	¹ / ₈	1/8	¹ / ₈	⁷ / ₈	1/8	11/2	¹ / ₈	$1^{3}/_{8}$	1/8
$^{3}/_{4}$ to 1, excl	⁵ / ₈	1/8	⁵ / ₈	1/8	⁵ / ₈	1/8	3/4	1/8	⁷ / ₈	1/8	1 ¹ / ₈	1/8	1 ³ / ₈	1/0	$1^{5}/_{8}$	1/8
1 to $1^1/_4$, incl	3/4	1/8	3/4	1/8	3/4	1/8	⁷ / ₈	1/8	$1^{1}/_{8}$	1/8	$1^{3}/_{8}$	1/8	1 ⁵ / ₈	1/8		
Abrasive-cut: ^E		Ü	•	Ü		Ü	Ü	Ü				Ch		Ü		
³ / ₁₆ to 1 ¹ / ₄ , incl	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈	1/8	1/8				
Over $1^{1}/_{4}$ to $2^{3}/_{4}$, incl	$^{3}/_{16}$	1/8	$^{3}/_{16}$	1/8	$^{3}/_{16}$	1/8	$^{3}/_{16}$	1/8	$^{3}/_{16}$	1/8	3/16	¹ / ₈				
Plasma torch-cut: F										-	%					
$^{3}/_{16}$ to 2, excl	¹ / ₂	0	¹ / ₂	0	$^{1}/_{2}$	0	¹ / ₂	0	¹ / ₂	0	1/2	0	¹ / ₂	0	$^{1}/_{2}$	0
2 to 2 ³ / ₄	⁵ / ₈	0	⁵ / ₈	0	⁵ / ₈	0	⁵ / ₈	0	⁵ / ₈	<u>√0·</u>	⁵ / ₈	0	⁵ / ₈	0	⁵ / ₈	0
						Mill	imeter	S	2	7						
Sheared: D								1	Ø.							
4.8 to 7.94, excl	4.8	3.2	6.4	3.2	9.5	3.2	12.7	3.2	15.9	3.2	19.0	3.2	22.2	3.2		
7.94 to 12.7, excl	9.5	3.2	12.7	3.2	12.7	3.2	12.7	3.2	15.9	3.2	19.0	3.2	22.2	3.2	25.4	3.2
12.7 to 19.0, excl	12.7	3.2	12.7	3.2	15.9	3.2	15.9	3.2	19.0	3.2	22.2	3.2	28.6	3.2	34.9	3.2
19.0 to 25.4, excl	15.9	3.2	15.9	3.2	15.9	3.2	19.0	3.2	22.2	3.2	28.6	3.2	34.9	3.2	41.2	3.2
25.4 to 31.8, incl	19.0	3.2	19.0	3.2	19.0	3,2	22.2	3.2	28.6	3.2	34.9	3.2	41.2	3.2		
Abrasive-cut: ^E						\sim										
4.8 to 31.8, incl	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2				
Over 31.8 to 69.9, incl	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8	3.2				
Plasma torch-cut: ^F					11/13											
4.8 to 50.8, excl	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0	12.7	0
50.8 to 69.8, incl	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0	15.9	0

A Permissible variations in length for powder or inert arc-cut plate shall be as agreed upon between the manufacturer and the purchaser.

^B The tolerance spread shown for plasma torch cutting may be obtained all on the minus side, or divided between the plus and minus sides if so specified by the purchaser.

^C Permissible variations in machined powder-, or inert arc-cut circular plate shall be as agreed upon between the manufacturer and the pur-

^D The minimum sheared length is 24 in. (610 mm). E Abrasive cut applicable to a maximum length of 144 to 400 in. (3658 to 10 160 mm), depending on the thickness and width ordered.

F The tolerance spread shown for plasma torch-cut sketch plates shall be as agreed upon between the manufacturer and the purchaser.

TABLE 11
PERMISSIBLE VARIATIONS FROM FLATNESS OF RECTANGULAR, CIRCULAR, AND SKETCH PLATES

Specified Thickness										
Specified Thickness		Permissible Variations from a Flat Surface for Thickness and Widths Given, in. (mm)								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Specified Thickness	(1220),	(1220 to	(1520 to	(1830 to	(2130 to	(2440 to	(2740 to	(3050 to	144 (3660) and over
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·			<u> </u>	•	, , , , , , , , , , , , , , , , , , ,	,	,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/16 to 1/4, excl	11/2	2 ¹ / _°	21/2	23/4	31/4	3 ¹ / ₄			114
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									$3^{3}/_{4}$	0
$ \frac{1}{2} \text{ to } \frac{3}{4}, \text{ excl} \qquad 1 \qquad 1^{1/8} \qquad 1^{1/4} \qquad 1^{1/4} \qquad 1^{1/4} \qquad 1^{5/8} \qquad 2^{1/4} \qquad 2^{1/4} \qquad 2^{1/4} \qquad 2^{3/4} \qquad 2^{$										3 ¹ / ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1							2 ¹ / ₄	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. = "	1							2	
Millimeters 4.8 to 6.4, excl 38.1 54.0 63.5 69.8 82.6 82.6 6.4 to 9.5, excl 34.9 38.1 47.6 57.2 69.8 73.0 79.4 95.2 9.5 to 12.7, excl 25.4 28.6 34.9 38.1 47.6 57.2 63.5 73.0 88.9 12.7 to 19.0, excl 25.4 28.6 31.8 31.8 41.3 57.2 57.2 57.2 69.8 19.0 to 25.4, excl 25.4 28.6 31.8 31.8 38.1 47.6 50.8 57.2 25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 34.9 38.1 50.8	1 to 2, excl	1	1 ¹ / ₈	1 ¹ / ₈	1 ¹ / ₈	$1^{3}/_{8}$	$1^{3}/_{8}$	$1^{3}/_{8}$	$-1\frac{1}{2}$	
4.8 to 6.4, excl 38.1 54.0 63.5 69.8 82.6 82.6	2 to 2 ³ / ₄ , incl	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	11/8	11/4	11/2	$1^{3}/_{4}$
6.4 to 9.5, excl 34.9 38.1 47.6 57.2 69.8 73.0 79.4 95.2 9.5 to 12.7, excl 25.4 28.6 34.9 38.1 47.6 57.2 63.5 73.0 88.9 12.7 to 19.0, excl 25.4 28.6 31.8 31.8 41.3 57.2 57.2 57.2 69.8 19.0 to 25.4, excl 25.4 28.6 31.8 31.8 38.1 40.3 47.6 50.8 57.2 25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 38.1 50.8					Millimet	ers		8		
9.5 to 12.7, excl 25.4 28.6 34.9 38.1 47.6 57.2 63.5 73.0 88.9 12.7 to 19.0, excl 25.4 28.6 31.8 31.8 41.3 57.2 57.2 57.2 69.8 19.0 to 25.4, excl 25.4 28.6 31.8 31.8 38.1 47.6 50.8 57.2 25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 38.1 50.8	4.8 to 6.4, excl	38.1	54.0	63.5	69.8	82.6	82.6			
12.7 to 19.0, excl 25.4 28.6 31.8 31.8 41.3 57.2 57.2 57.2 69.8 19.0 to 25.4, excl 25.4 28.6 31.8 31.8 38.1 40.3 47.6 50.8 57.2 25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 34.9 38.1 50.8	6.4 to 9.5, excl	34.9	38.1	47.6	57.2	69.8	73.0	79.4	95.2	
19.0 to 25.4, excl 25.4 28.6 31.8 31.8 38.1 41.3 47.6 50.8 57.2 25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 38.1 50.8	9.5 to 12.7, excl	25.4	28.6	34.9	38.1	47.6	57.2	63.5	73.0	88.9
25.4 to 50.8, excl 25.4 28.6 28.6 28.6 34.9 34.9 34.9 38.1 50.8	12.7 to 19.0, excl	25.4	28.6	31.8	31.8	41.3	57.2	57.2	57.2	69.8
	19.0 to 25.4, excl	25.4	28.6	31.8	31.8	38.1	41.3	47.6	50.8	57.2
50.8 to 70.0, incl 12.7 15.9 19.0 22.2 25.4 28.6 31.8 38.1 44.4	25.4 to 50.8, excl	25.4	28.6	28.6	28.6	34.9	34.9	34.9	38.1	50.8
	50.8 to 70.0, incl	12.7	15.9	19.0	22.2	25.4	28.6	31.8	38.1	44.4

NOTE 1 — Permissible variations apply toplates up to 12 ft (3.66 m) in length, or to any 12 ft (3.66 m) of longer plates.

NOTE 2 — If the longer dimension is under 36 in. (914 mm), the permissible variation is notgreater than $\frac{1}{2}$ in. (12.7) mm.

NOTE 3 — The shorter dimension specified is considered with width, and the permissible variation in flatness across the width does not exceed the tabular amount of that dimension.

NOTE 4 — The maximum deviation from a flat surface does not customarily exceed the tabular tolerance for the longer dimension specified.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that the material was manufactured, tested, and inspected in accordance with this specification, and that test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 Each bundle or shipping container shall be marked with the name of the material or UNS number; condition

(temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

17. Keywords

17.1 UNS N06219; UNS N06625; plate; sheet; strip

APPENDIX

(Nonmandatory Information)

X1. CONDITIONS AND FINISHES NORMALLY **SUPPLIED**

X1.1 Scope

X1.1.1 This appendix lists the conditions and finishes in which plate, sheet, and strip are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X1.2 Plate

alled, an right anneal right an X1.2.1 Hot-rolled, annealed or solution annealed,

X1.2.2 Cold-rolled, annealed or solution annealed, and descaled.

X1.3 Sheet

- X1.3.1 Hot-rolled, annealed or solution annealed, and descaled.
- X1.3.2 Cold-rolled, annealed or solution annealed, and descaled or bright annealed.

X1.4 Strip

X1.4.1 Cold-rolled, annealed or solution annealed, and descaled or bright annealed.

SPECIFICATION FOR NICKEL-CHROMIUM-MOLYBDENUM-COLUMBIUM ALLOYS (UNS N06625 AND UNS N06852) AND NICKEL-CHROMIUM-MOLYBDENUM-SILICON ALLOY (UNS N06219) PIPE AND TUBE

SB-444

(Identical with ASTM Specification, 8444-06 (2011) except that certification and test report have been made mandatory per SB-829.)

per SB-829.)

Citat to view the second second

Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube

1. Scope

- 1.1 This specification covers nickel-chromium-molybdenum-columbium alloys (UNS N06625 and UNS N06852) and nickel-chromium-molybdenum-silicon alloy (UNS N06219) in the form of cold-worked seamless pipe and tube. The general requirements for pipe and tube are covered by Specification B829.
- 1.1.1 UNS N06625 products are furnished in two grades of different heat-treated conditions:
- 1.1.1.1 *Grade 1 (annealed)*—Material is normally employed in service temperatures up to 1100°F (593°C).
- 1.1.1.2 *Grade 2 (solution annealed)*—Material is normally employed in service temperatures above 1100°F (593°C) when resistance to creep and rupture is required.

Note 1—Hot-working or reannealing may change properties significantly, depending on working history and temperatures.

- 1.1.2 Alloys UNS N06219 and UNS N06852 are supplied in the solution annealed condition only.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following precautionary caveat pertains only to the test methods portion, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the

manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

3. General Requirement

3.1 Material furnished under this specification shall conform to the applicable requirements of Specification B829 unless otherwise provided herein.

4. Ordering Information

- 4.1 Orders for material to this specification shall include information with respect to the following:
- 4.1.1 Alloy name or UNS number,
 - 4.1.2 ASTM designation,
- 4.1.3 Condition (temper) (see 1.1.1, 1.1.2, Section 6, and Appendix X1 and Appendix X2),
- 4.1.3.1 If neither grade of N06625 is specified, Grade 1 will be supplied.
 - 4.1.4 Finish (See Appendix X2),
 - 4.1.5 Dimensions:
- 4.1.5.1 *Tube*—Specify outside diameter and nominal or minimum wall,
 - 4.1.5.2 Pipe—Specify standard pipe size and schedule,
 - 4.1.5.3 Length—Cut to length or random,
 - 4.1.6 Quantity—Feet (or metres) or number of pieces,
- 4.1.7 Hydrostatic Test or Nondestructive Electric Test—Specify type of test (see 6.2),
- 4.1.8 *Hydrostatic Pressure Requirements*—Specify test pressure if other than required by 9.1.1,
 - 4.1.9 DELETED

- 4.1.10 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 5.2),
- 4.1.11 *Purchaser Inspection*—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed, and
- 4.1.12 Small-Diameter and Light-Wall Tube (Converter Sizes)—See Appendix X1 and Table 1.

5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 2. One test is required for each lot as defined in Specification B829.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Table 2 of Specification B829.

6. Mechanical Properties and Other Requirements

- 6.1 *Tension Test*—The material shall conform to the tensile properties specified in Table 1. The sampling and specimen preparation are as covered in Specification B829.
- 6.2 Hydrostatic or Nondestructive Electric Test—Each pipe or tube shall be subjected to either the hydrostatic test or to the nondestructive electric test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

7. Dimensions and Permissible Variations

7.1 Permissible variations for material specified as small-diameter and light-wall tube (converter size) shall conform to the permissible variations prescribed in Table X1.1 and Table X1.2.

TABLE 1 Room Temperature Tensile Properties and Heat Treatment Including Small Diameter and Light-Wall Tubing

(Converter Sizes)								
		Yield	Elongation					
	Tensile	Strength	in					
Condition	Strength,	(0.2 %	2 in. or 50.8					
Condition	min, ksi	offset),	mm (or 4					
	(MPa) ^C	min, ksi	D),					
	7	(MPa) ^C	min, %					
Alloy N06625								
Grade 1 (annealed) ^D	120 (827)	60 (414)	30					
Grade 2 (solution annealed) ^E	100 (690)	40 (276)	30					
Alloy N06219								
All (solution annealed)	96 (660)	39 (270)	30					
Alloy N06852								
All (solution annealed)	85 (586)	35 (241)	30					

^A Not applicable to outside diameters under ⅓ in. (3.2 mm) and to wall thicknesses under 0.015 in. (0.38 mm).

TABLE 2 Chemical Requirements

Element		Composition L	imits, %
Element	N06852	N06625	N06219
Carbon	0.05 max	0.10 max	0.05 max
Manganese	0.50 max	0.50 max	0.50 max
Silicon	0.50 max	0.50 max	0.70-1.10
Phosphorus	0.015 max	0.015 max	0.020 max
Sulfur	0.015 max	0.015 max	0.010 max
Chromium	20.0-23.0	20.0 min	18.0-22.0
		23.0 max	
Columbium + tantalum		3.15 min	11 4
		4.15 max	
Columbium	0.51-1.00		6
Cobalt (if determined)		1.0 max	1.0 max
Molybdenum	8.0-10.0	8.0 min	7.0-9.0
		10.0 max	~ (2)
Iron	15.0-20.0	5.0 max	2.0-4.0
Aluminum	0.40 max	0.40 max	0.50 max
Titanium	0.40 max	0.40 max	0.50 max
Copper			0.50 max
Nickel ^A	Bal.	58.0 min	Bal.

^A Element shall be determined arithmetically by difference.

8. Number of Tests

- 8.1 Chemical Analysis—One test per lot.
- 8.2 Tension—One test per lot.
- 8.3 Hydrostatic or Nondestructive Electric Test—Each piece in each lot.

9. Test Methods

9.1 Hydrostatic Test—Each pipe or tube with an outside diameter ½ in. (3 mm) and larger and with wall thickness of 0.015 in. (0.38 mm) and over shall be tested in accordance with Specification B829. The allowable fiber stress for material in the condition furnished, is as follows:

UNS N06625:

Grade 1—30 000 psi (207 MPa)

Grade 2-25 000 psi (172 MPa)

UNS N06219:

All-24 000 psi (165 MPa)

UNS N06852:

All-21 000 psi (145 MPa)

- 9.1.1 When so agreed upon by the manufacturer and purchaser, pipe or tube may be tested to $1\frac{1}{2}$ times the allowable fiber stress given above.
- 9.1.2 If any pipe or tube shows leak during hydrostatic testing, it shall be rejected.
- 9.2 *Nondestructive Electric Test*—Each pipe or tube shall be examined with a nondestructive electric test as per prescribed in Specification B829.

10. Keywords

10.1 seamless pipe; seamless tube; N06219; N06625

^B Hot forming quality pipe and tubing is furnished to chemical requirements and surface inspection only. No tensile properties are required.

surface inspection only. No tensile properties are required.

C The minimum strength values apply only to tubing in straight lengths.

^D Annealed at 1600°F (871°C) minimum.

Solution annealed at 2000°F (1093°C) minimum, with or without subsequent stabilization anneal at 1800°F (982°C) minimum to increase resistance to sensitization.

APPENDIXES

(Nonmandatory Information)

X1. CONVERTER SIZES

X1.1 Small-diameter and light-wall tube in outside diameters 1¼ in. (31.8 mm) and under may be furnished in a limited range of sizes and the manufacturer should be consulted as to

the various outside diameters and wall thicknesses that may be furnished. Material will have a bright finish. Such material shall conform to the requirements in Tables X1.1 and X1.2.

TABLE X1.1 Permissible Variations for Small-Diameter and Light-Wall Tube (Converter Sizes)^{A,B,C,D,E,F,G}

	Outside I	Diameter	Inside	Diameter	Wall Thickr	Wall Thickness		
Specified Outside Diameter, in. (mm)	Plus	Minus, in. (mm)	Plus	Minus	Plus	Minus		
Under 3/32 (2.4)	0.002 (0.05)	0	0	0.002 (0.05)	10	10		
3/32 to 3/16 (2.4 to 4.8), excl	0.003 (0.08)	0	0	0.003 (0.08)	10	10		
3/16 to 1/2 (4.8 to 12.7), excl	0.004 (0.10)	0	0	0.004 (0.10)	10	10		
½ to 1¼ (12.7 to 31.8), incl	0.005 (0.13)	0	0	0.005 (0.13)	10	10		

^A Ovality, Normal-Wall Tube—Ovality will be held within 2 % of the theoretical average outside diameter.

TABLE X1.2 Tolerances on Cut Lengths of Light-Wall Tube

Length, ft (m)	Tube Size, in. (mm)	Permissible Variations, in. (mm)		
Lengin, it (iii)	Tube Size, III. (IIIII)	Over	Under	
Under 1 (0.30)	up to 1.250 (31.8), incl	1/32 (0.8)	0 (0)	
1 to 4 (0.30 to 1.22), incl	up to 1.250 (31.8), incl	1/16 (1.6)	0 (0)	
Over 4 to 10 (1.22 to 3.0), incl	up to 1.250 (31.8), incl	3/32 (2.4)	0 (0)	
Over 10 (3.0)	up to 1.250 (31.8), incl	3/16 (4.8)	0 (0)	

2. CONDITIONS AND FINISHES NORMALLY SUPPLIED

X2.1 Scope

X2.1.1 This appendix lists the conditions and finishes in which pipe and tube other than converter sizes) are normally supplied. These are subject to change, and the manufacturer should be consulted for the latest information available.

X2.2 Cold-Worked Tube and Pipe

X2.2.1 Cold–Drawn, Annealed or Solution Annealed with Ground Outside Diameter—The inside diameter may have a bright finish when material is annealed or solution annealed in a protective atmosphere; otherwise, the inside diameter is

supplied descaled as necessary. It is available in sizes ½ to 4 in. (12.7 to 102 mm), incl, in outside diameter in both normal and heavy-wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

X2.2.2 Cold–Drawn, Annealed or Solution Annealed and Pickled (Not Ground)—Outside and inside diameter will have dull, matte (pickled) surfaces. Available in sizes ½ to 65% in. (12.7 to 168 mm), incl, in outside diameter in both normal and heavy-wall tube, and pipe sizes, all schedules, of corresponding outside-diameter dimensions.

^B Ovality, Light-Wall Tube—Ovality will be held within 3 % of the theoretical average outside diameter.

Wall Tolerances, Light-Wall Tube—The plus and minus wall tolerance shown in the table shall apply down to and including 0.005 in. (0.13 mm) in wall thickness. For wall thicknesses less than 0.005 in. (0.13 mm), the tolerance shall be ±0.0005 in. (0.013 mm).

D Random Lengths:

Where nominal random lengths on tubing $\frac{1}{6}$ in. (3.2 mm) and larger in outside diameter are specified, a length tolerance of $\pm 3\frac{1}{2}$ ft (1.07 m) applies to the nominal length. This is a total spread of 7 ft (2.13 m).

Random lengths in sizes ½ in. (3.2 mm) and larger in outside diameter shall be subject to a length range of 5 to 24 ft (1.52 to 7.32 m). Long random lengths are subject to a range from 15 to 22 ft (4.57 to 6.71 m).

Random lengths in sizes up to, but not including ½ in. (3.2 mm) in outside diameter, and fragile light-wall tubes over this outside diameter are subject to the length range from 1 to 15 ft (0.30 to 4.57 m).

E Cut Lengths—Tolerances on cut lengths shall be in accordance with Table X1.1.

F Straightness—Round tubing is subject to a straightness tolerance of 1 part in 600 [equivalent to a depth of arc of 0.030 in. (0.76 mm) in any 3 ft (0.91 m) of length].

^G When specified, the tolerance spreads of this table may be applied as desired. However, when not specified, the tolerances in this table will apply. It should be noted that inside diameter tolerances are based upon the outside diameter range.

SPECIFICATION FOR NICKEL-CHROMIUMMOLYBDENUM-COLUMBIUM ALLOY (UNS N06625),
NICKEL-CHROMIUM-MOLYBDENUM-SILICON ALLOY
(UNS N06219), AND NICKEL-CHROMIUMMOLYBDENUM-TUNGSTEN ALLOY (UNS N06650) ROD
AND BAR

SB-446

(Identical with ASTM Specification B446-19 except for the deletion of para. 9.1.2.1.)

Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

1. Scope

- 1.1 This specification covers nickel-chromium-molybdenum-columbium (UNS N06625), nickel-chromium-molybdenum-silicon alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) in the form of hot-worked rod and bar and cold-worked rod in the conditions shown in Table 1.
- 1.1.1 UNS N06625 products are furnished in two grades of different heat-treated conditions:
- 1.1.1.1 *Grade 1 (Annealed)*—Material is normally employed in service temperatures up to 1100°F (593°C).
- 1.1.1.2 *Grade 2 (Solution Annealed)*—Material is normally employed in service temperatures above 1100°F (593°C) when resistance to creep and rupture is required.
- Note 1—Hot-working or reannealing may change properties significantly, depending on working history and temperatures.
- 1.1.2 Alloys UNS N06219 and UNS N06650 are supplied in solution annealed condition only.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 The following precautionary caveat pertains only to the test methods portion, Section 12, of this specification: cThis standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familial with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to

establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B443 Specification for Nickel-Chromium-Molybdenum-Columbium Alloy(UNS N06625) and Nickel-Chromium-Molybdenum-SiliconAlloy (UNS N06219) Plate, Sheet, and Strip
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *bar*, n—material of rectangular (flats) or square solid section up to and including 10 in. (254 mm) in width and $\frac{1}{8}$ in. (3.2 mm) and over in thickness in straight lengths.
- 3.1.1.1 *Discussion*—Hot-worked rectangular bar in widths 10 in. (254 mm) and under may be furnished as hot-rolled plate

TABLE 1 Conditions for Hot-Worked Rod and Bar and Cold-Worked Rod^A

worked hod								
Diameter or Distance	Tensile	Yield	Elongation					
Between Parallel Surfaces.	Strength	Strength	in 2 in. or					
	min, ksi	(0.2 % offset),	50 mm or					
in. (mm)	(MPa)	min, ksi (MPa)	4D, min, %					
UNS N06625 Grade 1 (Annealed) ^B								
Up to 4 (102), incl	120 (827)	60 (414)	30					
Over 4 (102) to 10 (254), incl	110 (758)	50 (345)	25					
	25 Grade 2 (Sc	olution Annealed) ^C						
All sizes	100 (690)	40 (276)	30					
UNS N06219 All (Solution Annealed)								
All sizes	96 (660)	39 (270)	50					
UNS NO	06650 All (Solu	ition Annealed)						
All sizes	116 (800)	58 (400)	45					

^A Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required. Forging stock is typically supplied in the hot worked condition, (see X1.1.5).

TABLE 2 Chemical Requirements

Element		Composition Limits, %				
	N06625	N06219	N06650			
Carbon	0.10 max	0.05 max	0.03 max			
Manganese	0.50 max	0.50 max	0.50 max			
Silicon	0.50 max	0.70-1.10	0.50 max			
Phosphorus	0.015 max	0.020 max	0.020 max			
Sulfur	0.015 max	0.010 max	0.010 max			
Chromium	20.0 min	18.0-22.0	19.0-21.0			
	23.0 max					
Columbium + tantalum	3.15 min		0.05-0.50			
	4.15 max		6.			
Cobalt (if determined)	1.0 max	1.0 max	1.0 max			
Molybdenum	8.0 min	7.0-9.0	9.5-12.5			
•	10.0 max		💉			
Iron	5.0 max	2.0-4.0	12.0-16.0			
Aluminum	0.40 max	0.50 max	0.05-0.50			
Titanium	0.40 max	0.50 max	11			
Copper		0.50 max 📞	0.30 max			
Nickel ^A	58.0 min	Bal.	Bal.			
Tungsten			0.50-2.50			
Nitrogen		*K	0.05-0.20			

^A Element shall be determined arithmetically by difference.

TABLE 3 Permissible Variations in Diameter of Cold-Worked Rod

Specified Dimension,	Permissible Variations from Specified Dimension, in. (mm)			
in. (mm)	Plus	Minus		
1/16 (1.6) to 3/16 (4.8), excl	0	0.002 (0.05)		
3/16 (4.8) to 1/2 (12.7), excl	0	0.003 (0.08)		
½ (12.7) to 15/16 (23.8), incl	0.001 (0.03)	0.002 (0.05)		
Over 15/16 (23,8) to 115/16 (49.2), incl	0.0015 (0.04)	0.003 (0.08)		
Over 115/16 (49.2) to 21/2 (63.5), incl	0.002 (0.05)	0.004 (0.10)		

with sheared or cut edges in accordance with Specification B443, provided the mechanical property requirements of this specification are met.

3.1.2 *rod*, *n*—material of round solid section furnished in straight lengths.

TABLE 4 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Hot-Worked Rod and Bar

Specified Dimension, in. (mm) ^A	Permissible Variations from Specified Dimensions, in. (mm)					
	Plus	Minus				
Rod and bar, hot-worked:						
1 (25.4) and under	0.016 (0.41)	0.016 (0.41)				
Over 1 (25.4) to 2 (50.8), incl	0.031 (0.79)	0.016 (0.41)				
Over 2 (50.8) to 4	0.047 (1.19)	0.031 (0.79)				
(101.6), incl						
Over 4 (101.6)	0.125 (3.18)	0.063 (1.60)				
Rod, rough-turned or		.01.				
ground:		*IO				
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)				
1 (25.4) and over	0.031 (0.79)	0				
Forging quantity rod: ^B		7				
Under 1 (25.4)	0.005 (0.13)	0.005 (0.13)				
1 (25.4) and over	0.031 (0.79)	0				

A Dimensions apply to diameter of rods, to distance between parallel surfaces of squares, and separately to width and thickness of rectangles.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 41.1 ASTM designation,
- 4.1.2 UNS number,
- 4.1.3 Section—Rod (round) or bar (square or rectangular),
- 4.1.4 Dimensions, including length,
- 4.1.5 Condition (see 1.1.1, 1.1.2, and appendix),
- 4.1.5.1 If neither grade of N06625 is specified, Grade 1 will be supplied,
 - 4.1.6 Finish (Section 8),
 - 4.1.7 Quantity—Feet (or metres) or number of pieces,
- 4.1.8 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 5.2), and
- 4.1.9 Product Marking (see Section 16)—State product marking requirements.
- 4.1.10 Purchaser Inspection (see Section 13)—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state, indicating which test or inspections are to be witnessed.

5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 2.
- 5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Specification B880.

6. Mechanical Properties and Other Requirements

6.1 *Mechanical Properties*—The material shall conform to the heat treatment and room temperature tensile properties prescribed in Table 1.

^B Annealed 1600°F (871°C) minimum.

^C Solution annealed at 2000°F (1093°C) minimum, with or without subsequent stabilization anneal at 1800°F (982°C) minimum to increase resistance to sensitization

^B Spot grinding is permitted to remove minor surface imperfections. The depth of these spot ground areas shall not exceed 3 % of the diameter of the rod.

7. Dimensions and Permissible Variations

- 7.1 *Diameter, Thickness, or Width*—The permissible variations from the specified dimensions of cold-worked rod shall be as prescribed in Table 3, and of hot-worked rod and bar as prescribed in Table 4.
- 7.2 Out-of-Round—Hot-worked rods and cold-worked rods (except "forging quality") all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Tables 3 and 4, except for hot-worked rods ½ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 4.
- 7.3 Machining Allowances for Hot-Worked Materials—When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 5 are recommended for normal machining operations.
- 7.4 *Length*—The permissible variations in length of coldworked and hot-worked rod and bar shall be as prescribed in Table 6.
- 7.4.1 Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.
 - 7.5 Straightness:
- 7.5.1 The permissible variations in straightness of coldworked rod as determined by the departure from straightness shall be as prescribed in Table 7.
- 7.5.2 The permissible variations in straightness of hotworked rod and bar as determined by the departure from straightness shall be as specified in Table 8.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

- 9.1 Lot—Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.

- 9.1.2 A lot for mechanical properties testing shall consist of all material from the same heat, nominal diameter or thickness, and condition.
 - 9.1.2.1 DELETED
 - 9.2 Test Material Selection:
- 9.2.1 *Chemical Analysis*—Representative samples from each lot shall be taken during pouring or subsequent processing.
- 9.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 9.2.2 Mechanical Properties—Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- 10.1 Chemical Analysis—One test per lot.
- 10.2 Tension—One test per lot

11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.
- 11.1.1 All food and bar shall be tested in full cross section size when possible. When a full cross section size test cannot be performed, the largest possible round specimen shown in Test Methods E8/E8M shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E8/E8M for rectangular bar up to ½ in. (12.7 mm), inclusive, in thicknesses that are too wide to be pulled full size.

12. Test Methods

12.1 The chemical composition and mechanical and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM standards:

TABLE 5 Normal Machining Allowances for Hot-Worked Material

	Normal Machining Allowance, in. (mm)					
Finished-Machined Dimensions for Finishes As	On Diameter,	Distance Between	For Rectangular Bar			
Indicated below, in. (mm) ^A	For Rods	Parallel Surfaces - of Square Bars	On Thickness	On Width		
Hot-worked: ^B						
Up to 7/8 (22.2), incl	1/8 (3.2)	1/8 (3.2)	1/8 (3.2)	3/16 (4.8)		
Over 7/8 to 17/8 (22.2 to 47.6), incl	1/8 (3.2)	3/16 (4.8)	1/8 (3.2)	3/16 (4.8)		
Over 17/8 to 27/8 (47.6 to 73.0), incl	3/16 (4.8)	1/4 (6.4)		3/16 (4.8)		
Over 278 to 313/16 (73.0 to 96.8), incl	1/4 (6.4)			3/16 (4.8)		
Over 313/6 (96.8)	1/4 (6.4)			3/8 (9.5)		
Hot-worked rods, rough-turned or rough ground: ^C						
15/16 to 4 (23.8 to 101.6), incl in diameter	1/16 (1.6)					
Over 4 to 12 (101.6 to 304.8), incl in diameter	1/8 (3.2)					

A Dimensions apply to diameter of rods, to distance between parallel surfaces of square bar, and separately to width and thickness of rectangular bar.

B The allowances for hot-worked material in Table 5 are recommended for rods machined in lengths of 3 ft (0.91 m) or less and for bars machined in lengths of 2 ft (0.61 m) or less. Hot-worked material to be machined in longer lengths should be specified showing the finished cross-sectional dimension and the length in which the material will be machined in order that the manufacturer may supply material with sufficient oversize, including allowance for out-of-straightness.

C Applicable to 3 ft (0.91 m) max length.

TABLE 6 Permissible Variations in Length of Rods and Bars

Random mill lengths:

Hot-worked²

6 to 24 ft (1.83 to 7.31 m) long with not more than 25 weight % between 6 and 9 ft (1.83 and 2.74 m).^B Cold-worked

6 to 20 ft (1.83 to 6.1 m) long with not more than 25 weight % between 6 and 10 ft (1.83 and 3.05 m). Multiple lengths

Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of 1/4 in. (6.4 mm) will be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.

Specified nominal lengths having a range of not less than 2 ft. (610 mm) with no short lengths allowed. A Cut lengths

A specified length to which all rods and bars will be cut with a permissible variation of plus ½ in. (3.2 mm), minus 0 for sizes 8 in. (203 mm) and less in diameter or distance between parallel surfaces. For larger sizes, the permissible variation shall be +½ in. (6.4 mm), -0.

TABLE 7 Permissible Variations in Straightness of Cold-Worked Rods

Specified Diameter, in. (mm) ^A	Permissible Variations, in. (mm)
	Depth of Chord:
½ (12.7) to 2½ (63.5), incl	0.030 (0.76) per ft (305 mm) of length

 $^{^{}A}$ Material under 1/2 in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

TABLE 8 Permissible Variations in Straightness of Hot-Worked Rods and Bars^A

Finish	Permissible Variations, in./ft (mm/m) ^B
Rods and bars, hot-worked	0.050 (4.2) ^C
Rounds—hot-worked, rough ground or	0.050 (4.2) ^C
rough turned	

A Not applicable to forging quality.

Test ASTM Designation

Chemical analysis E1473

Tension E8/E8/M

Rounding procedure E29

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed of calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

Test

Chemical composition and tolerances (when expressed in decimals)

Tensile strength and yield strength

Rounded Unit for Observed or Calculated Value

Nearest unit in the last right-hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit. Nearest 1000 psi (6.9 MPa)

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that the material was manufactured, tested, and inspected in accordance with this specification and that test results on representative samples meet specification requirements. A report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS number; heat number; condition (temper); this specification number; the size; gross, tare and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

17. Keywords

17.1 bar; rod; UNS N06625; UNS N06219; UNS N06650

A For cold-worked rod under ½ in. (12.7 mm) in diameter ordered to nominal or stock lengths with a 2-ft (610-mm) range, at least 93 % of such material shall be within the range specified; the balance may be in shorter lengths but in no case shall lengths less than 4 ft (1220 mm) be furnished.

^B For hot-worked sections weighing over 25 lb/ft (37 kg/m) and for smooth forged products, all sections, short lengths down to 2 ft (610 mm) may be furnished.

^B Material under ½ in. (12.7 mm) shall be reasonably straight and free of sharp bends and kinks.

^C The maximum curvature (depth of chord) shall not exceed the values indicated multiplied by the length in feet.

APPENDIX

(Nonmandatory Information)

X1. PROCURABLE CONDITIONS AND FINISHES

- X1.1 The various conditions and finishes in which rod and bar are procurable are as follows:
- X1.1.1 Hot Finished, Annealed, or Solution-Annealed—Soft, with a tightly adherent dark oxide.
- X1.1.2 Hot Finished, Annealed or Solution Annealed, and Pickled—Same as X1.1.1 except descaled for removal of mill oxide. Provides for better surface inspection than does hotworked, annealed material and often employed where welding is involved where removal of mill oxide is desired.
- Note X1.1—Annealing or solution annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is difficult.
- X1.1.3 *Hot-Worked, Annealed, and Rough Ground*—Similar to X1.1.1 except rough ground.
- anealed annealed circumstantine funditions of a superior o X1.1.4 Hot-Worked, Annealed, and Rough-Turned—Similar

- to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (0.91 m) or less.
- X1.1.5 Hot-Worked, Forging Quality—Rough turned and spot ground, as necessary, for sizes 1 in. (25.4 mm) in diameter and over; rough ground and spot ground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot malleability.
- Note X1.2—For sizes 2½ in. (63.5 mm) in diameter and less, cold-worked rod may be used also for forging by virtue of the fact such rod have been overhauled for removal of mechanical surface defects prior to cold-working. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot malleability range.
- X1.1.6 Cold-Drawn, Annealed, or Solution-Annealed, and Pickled—Hot finished, overhauled, cold-drawn, annealed or solution-annealed, descaled, and straightened.

SPECIFICATION FOR FORGED OR ROLLED NICKEL ALLOY PIPE FLANGES, FORGED FITTINGS, AND VALVES AND PARTS FOR CORROSIVE HIGH-TEMPERATURE SERVICE

SB-462

(23)

(Identical with ASTM Specification B462 18 except that certification and a test report have been made mandatory.)

Specification for Section II Part B 202 Forged or Rolled Nickel Alloy Pipe Flanges, Forged Fittings, and Valves and Parts for Corrosive High-Temperature **Service**

1. Scope

1.1 This specification covers forged or rolled UNS N06030, UNS N06035, UNS N06022, UNS N06200, UNS N06059, UNS N10362, UNS N06686, UNS N08020, UNS N08367, UNS N10276, UNS N10665, UNS N10675, UNS N10629, UNS N08031, UNS N06045, UNS N06025, UNS N06699, and UNS R20033 pipe flanges, forged fittings, and valves and parts intended for corrosive high-temperature ser-

- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recom-SMENORMOC.COM. Click mendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- B166 Specification for Nickel-Chromium-Aluminum Alloy, Nickel-Chromium-Iron Alloys, Nickel-Chromium-Cobalt-Molybdenum Alloy, Nickel-Iron-Chromium-Tungsten Alloy, and Nickel-Chromium-Molybdenum-Copper Alloy Rod, Bar, and Wire
- B335 Specification for Nickel-Molybdenum Alloy Rod B408 Specification for Nickel-Iron-Chromium Alloy Rod
- B472 Specification for Nickel Alloy Billets and Bars for Reforging
- B473 Specification for UNS N08020, UNS N08024, and UNS N08026 Nickel Alloy Bar and Wire
- B374 Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Chromium-Molybdenum-Tungsten Alloy Rod
- **B581** Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Rod
- B649 Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08034, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire
- Iron-Nickel-Chromium-**B691** Specification for Molybdenum Alloys (UNS N08367) Rod, Bar, and Wire B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

TABLE 1 Chemical Requirements

			IAI	SLE I Chemic	cai nequireiii	ents			
Element			UNS N08020		UNS NO	8367		UNS R20033	
Carbon, max	x	0.07 0.030			0.015				
Manganese,			2.00		2.00			2.0	
Phosphorus			0.045		0.040			0.02	
Sulfur, max	,		0.035		0.030			0.01	
Silicon, max	,		1.00		1.00			0.50	ion II Pa
Nickel	•		32.00–38.00		23.50 to	25.50		30.0–33.0	
Chromium			19.00–21.00		20.00 to			31.0–35.0	200
Molybdenum	0		2.00–3.00		6.00 to 7			0.50-2.0	1 4
	11		3.00-4.00		0.75 ma			0.30-2.0	
Copper	(NIII-)					X			-0
Columbium			$8 \times \text{carbon}-1.00$		•••				:.O`
+ tantalur	11				0.18 to (0.05		0.35-0.60	
Nitrogen			Domesia de «A		Remain)
Iron			Remainder ^A					Remainder	
Element		10 1100000	LINIO NIGORO		Composit		11010100	- () III A	10075
		IS N06030	UNS N06022		S N06200	UNS N10276	UNS1066	~	10675
Carbon, max	0.0		0.015	0.01		0.010	0.02	0.01	
Manganese, max			0.50	0.50		1.0	1.0	3.0	
Phosphorous, ma			0.02	0.02		0.04	0.04	0.030	
Sulphur, max	0.0)2	0.02	0.01	0	0.03	0.03	0.010	
Silicon. max	3.0		0.08	0.08		0.08	0.10	0.10	
Nickel	Re	emainder ^A	Remainder ^A	Rem	nainder ^A	Remainder ^A	Remaind	er ^a Remair	ıder ^A
Chromium	28	.0-31.5	20.0-22.5	22.0	-24.0	14.5-16.5	1.0 max	1.0-3.0	
Molybdenum	4.0	0-6.0	12.5-14.5	15.0)-17.0	15.0-17.0	26.0-30.0	27.0-32	2.0
Copper	1.0)-2.4		0.3-	1.9	On `		0.20	
Columbium (Nb)		30-1.50							
+ tantalum						///			
Nitrogen						C_{M}			
Iron		.0-17.0	2.0-6.0		max _	4.0-7.0	2.0 max	1.0-3.0	
Cobalt, max	5.0		2.5	2.0	iliux	2.5	1.0	3.0	
Tungsten		5-4.0	2.5-3.5		\sim X	3.0-4.5		3.0 ma	,
Vanadium, max		5-4.0	0.35	•••	, V	0.35		0.20	`
,	•••			•••					
Titanium, max	•••						•••	0.2	
Zirconium, max	•••					•••	•••	0.10	
Columbium (Nb)					り .			0.20 m	
Tantalum				,\				0.20 m	
Nickel				χ '				94.0-98	5.0
+ Molybdenum				, O.					
Aluminum, max				0.50)			0.50	
				∞	Composition,	%			
Element	UNS N06699	UNS N06059	UNS N10362	UNS N06686	UNS N08031	UNS N06045	UNS† N06025	UNS† N10629	UNS† N06035
Carbon, max	0.005-0.10	0.010	0.010	0.010	0.015	0.05-0.12	0.15-0.25	0.01	0.050
	0.50	0.5	0.60	0.75	2.0	1.0	0.15	1.5	0.50
Phosphorous,	0.02	0.015	0.025	0.04	0.020	0.02	0.02	0.040	0.030
	0.02	0.015	0.025	0.04	0.020	0.02	0.02	0.040	0.030
max	0.01	0.010	0.010	0.00	0.010	0.010	0.010	0.010	0.015
Sulphur, max	0.01	0.010	0.010	0.02	0.010	0.010	0.010	0.010	0.015
Silicon, max	0.50	0.10	0.08	0.08	0.3	2.5-3.0	0.5	0.05	0.60
Nickel,	Remainder ^A	Remainder ^A	Remainder ^A	Remainder ^A	30.0-32.0	45.0 min	Remainder ^A	Remainder ^A	Remainder ^A
Chromium	26.0-30.0	22.0-24.0	13.8-15.6	19.0-23.0	26.0-28.0	26.0-29.0	24.0-26.0	0.5-1.5	32.25-34.25
Molybdenum		15.0-16.5	21.5-23.0	15.0-17.0	6.0-7.0			26.0-30.0	7.60-9.00
Copper	0.50 max	0.50 max			1.0-1.4	0.3 max	0.1 max	0.5	0.30 max
Yttrium	((⊶					0.05-0.12		
Nitrogen	0.05 max				0.15-0.25				
Iron	2.5 max	1.5 max	1.25 max	5.0 max	Remainder ^A	21.0-25.0	8.0-11.0	1.0-6.0	2.00 max
Cobalt, max		0.3						2.5	1.00
Tungsten	14.0			3.0-4.4					0.60 max
Vanadium, max		•••							0.20
Titanium, max	0.60			0.02-0.25			0.1-0.2		
Zirconium, max	0.10		•••				0.01-0.10		
Columbium)(Nb)	0.50 max		•••						
Tantalum			•••	•••	•••	•••			
Cerium						0.03-0.09			
Aluminum, max	1.9-3.0	0.1-0.4	0.50				1.8-2.4	 0.1-1.5	0.40
Roron	0.008 may	0.1-0.4	0.50			•••	1.0-2.4	0.1-1.0	0.40

^{0.008} max ^A Shall be determined arithmetically by difference.

Boron

E8/E8M Test Methods for Tension Testing of Metallic Materials

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

[†] Editorially corrected.

- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys
- E1916 Guide for Identification of Mixed Lots of Metals
- 2.2 ANSI Standard:
- B16.5 Steel Pipe Flanges and Flanged Fittings (for applicable alloy UNS N08020)
- 2.3 Manufacturers' Standardization Society of the Valve and Fittings Industry Standard:
 - SP-25 Standard Marking System for Valves, Fittings, Flanges, and Unions

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 forgings, n—the term forgings as used in this specification shall be understood to cover one or all of the products mentioned in 1.1, either forged or rolled.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 4.1.1 Quantity (weight or number of pieces),
 - 4.1.2 Name of material or UNS number,
 - 4.1.3 Forging sketch when required (5.2.4),
 - 4.1.4 Forging sectioning, if required (5.2.3),
 - 4.1.5 ASTM designation and year of issue,
 - 4.1.6 Inspection (14.1),
 - 4.1.7 Supplementary requirements, if any, and
 - 4.1.8 If possible, the intended end use.

Note 1—A typical ordering description is as follows: 200 forgings, UNS N08020, in accordance with the attached drawing and Specification B462.

5. Materials and Manufacture

- 5.1 Discard—A sufficient discard shall be made from each ingot to secure freedom from injurious piping and undue segregation. The material shall have a homogeneous structure in 7.

 .ce:
 Citck to as shown by the macroetch test in 7.3.

- 5.2.1 Material for forging shall consist of a billet, bar, or forging produced in accordance with Specifications B166, B335, B408, B462, B472, B473, B574, B581, B649, or B691.
- 5.2.2 The material shall be forged by hammering, pressing, rolling, extruding, or upsetting; it shall be brought as nearly as practicable to the finished shape and size by hot working; and shall be so processed as to cause metal flow during the hot-working operation in the direction most favorable for resisting the stresses encountered in service.
- 5.2.3 When specified in the order, a sample forging may be sectioned and etched to show flow lines and the condition as regards internal imperfections. In such cases, the question of acceptable and unacceptable character of metal flow shall be a subject for agreement between the manufacturer and the purchaser.
- 5.2.4 When specified in the order, the manufacturer shall submit for approval of the purchaser a sketch showing the shape of the rough forging before machining.
 - 5.3 *Heat Treatment:*
- 5.3.1 The product of UNS N08020 alloy shall be furnished in the stabilized-annealed condition. The product of UNS N06022, UNS N06035 UNS N06030, UNS N06200, UNS N10362, UNS N10276, UNS N10665, UNS N10675, UNS N06699, and UNS R20033 alloys shall be furnished in the solution annealed condition.
- Note 2-The recommended annealing temperatures all followed by water quenching or rapidly cooling by other means are: UNS N06030-2125 to 2175°F (1163 to 1191°C), UNS N06022-2025 to 2075°F (1107 to 1135°C), UNS N06035-2025-2075°F (1107-1135°C), UNS N06200-2075 to 2125°F (1135 to 1163°C), UNS N06059-2025 to 2125°F (107 to 1163°C), UNS N10362-2075 to 2125°F (1135 to 1163°C), UNS N06686-2125 to 2225°F (1163 to 1218°C), UNS N08020-1700 to 1850°F (927 to 1010°C), UNS N10276-2025 to 2075°F (1107 to 1135°C), UNS N10665-1925 to 2000°F (1052 to 1093°C), UNS N10675-1925 to 2000°F (1052 to 1093°C), UNS N10629-1925 to 2000°F (1052 to 1093°C), UNS N08031–2050 to 2160°F (1121 to 1182°C) UNS N06045–2125 to 2190°F (1163 to 1199°C), UNS N06025-2175 to 2240°F (1191 to 1227°C), UNS N06699-1975 to 2065°F (1080 to 1130°C), and UNS R20033-2010 to 2150°F (1100 to 1180°C).
- 5.3.2 Alloy N08367 shall be furnished in the solution annealed condition.
- 5.3.2.1 The recommended heat treatment shall consist of heating to a minimum temperature of 2025°F (1105°C) and quenching in water, or rapidly cooling, by other means.
 - 5.3.3 Heat treatment may be performed before machining.

6. Chemical Composition

6.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.

6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in Specification B880.

7. Mechanical Properties and Other Requirements

- 7.1 *Mechanical Properties*—The material shall conform to the requirements as to mechanical properties prescribed in Table 2 at room temperature.
- 7.2 Hydrostatic Tests—After machining, valve bodies, fittings, and other pressure-containing parts shall be tested to the hydrostatic shell-test pressures prescribed in ANSI B16.5 for the applicable alloy steel rating for which the forging is designed and shall show no leaks. Forgings ordered under these specifications for working pressures other than those listed in the American National Standard ratings shall be tested to such pressures as may be agreed upon between the manufacturer and the purchaser.
- 7.2.1 No hydrostatic test is required for welding neck or other flanges.
- 7.2.2 The forging manufacturer is not required to perform pressure tests on rough forgings that are to be finally machined by others. The fabricator of finished forged parts is not required to pressure-test forgings that are designed to be pressure containing only after assembly by welding into a larger structure. However, the manufacturer of such forgings is responsible as required in accordance with 15.1 for the satisfactory performance of the forgings under the final test required in 7.2.
- 7.3 Macroetch Tests—Etching of tests shall show sound and reasonably uniform material, free of injurious laminations, cracks, segregations, and similar objectionable defects. If, on successive tests, 10 % of any heat fails to pass the requirements of the macroetch test, all forgings from that heat shall be rejected.

8. Dimensions and Permissible Variations

8.1 The forgings shall conform to the sizes and shapes specified by the purchaser.

9. Workmanship, Finish, and Appearance

9.1 The forgings shall be uniform in quality and condition, and shall be free of injurious defects.

10. Sampling

- 10.1 Lot—Definition:
- 10.1.1 A lot for chemical analysis shall consist of one hear.
- 10.1.2 A lot for mechanical properties shall consist of each heat in each heat-treatment charge.
 - 10.2 Test Material Selection:
- 10.2.1 *Chemical Analysis*—Representative samples shall be taken during pouring or subsequent processing.
- 10.2.1.1 *Check analysis*, shall be wholly the responsibility of the purchaser.
- 10.2.2 *Mechanical Properties*—Samples of the material to provide test specimens shall be taken from such locations in each lot as to be representative of that lot.

11. Number of Tests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Mechanical Properties—One test per lot.

12. Specimen Preparation

- 12.1 The tension test specimens taken from the forgings, billets, or bars shall be machined to the form and dimensions of the standard 2-in. (50.8-mm) gage length tension test specimen shown in the figure titled Standard 0.500 in. Round Tension Test Specimen with 2 in. Gage Length and Examples of Small-Size Specimens Proportional to the Standard Specimen of Test Methods E8/E8M, except as specified in 12.2.
- 12.2 In the case of small sections that will not permit taking the standard test specimen specified in 12.1, the tension test specimen shall be as large as feasible and its dimensions shall be proportional to those shown in the figure titled Standard 0.500 in. Round Tension Test Specimen with 2 in. Gage Length and Examples of Small-Size Specimens Proportional to the

TABLE 2 Mechanical Property Requirements

	10			. opony modano			
Alleri	45.	Tensile Strength, min		Yield Stre	ength, min	Elongation in	Deduction of Asse
Alloy		ksi	MPa	ksi	MPa	— 2 in. or 50 mm, min, %	Reduction of Area, min, %
UNS N08020	, 0	80	551	35	241	30.0	50.0
UNS N08367		95	655	45	310	30.0	50.0
UNS R20033	ω	109	750	55	380	40.0	
UNS N06030_)`	85	586	35	241	30	
UNS N06022		100	690	45	310	45	
UNS N06035		85	586	35	241	30	
UNS N06200		100	690	45	310	45	
UNS N10276		100	690	41	283	40	
UNS N10665		110	760	51	350	40	
UNS N10675		110	760	51	350	40	
UNS N06059		100	690	45	310	45	
UNS N10362		105	725	45	310	40	
UNS N06686		100	690	45	310	45	
UNS N08031		94	650	40	276	40.0	
UNS N06045		90	620	35	241	35	
UNS N06025		98	680	39	270	30	
UNS N10629		110	760	51	350	40	
UNS N06699		89	610	35	240	40	

Standard Specimen of Test Methods E8/E8M. The gage length for measuring elongation shall be four times the diameter of the specimen.

12.3 For the purpose of tests, the necessary extra forgings or test bars shall be provided. The test specimen, if cut from a flange, shall be cut tangentially from the flange portion approximately midway between the inner and outer surfaces and approximately midway between the front and back faces. When it is impractical to provide forgings for test purposes, test bars may be made from the billet or bar, provided they are given approximately the same reduction and heat treatment as the forgings.

13. Tests Methods

13.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall, in case of disagreement, be determined in accordance with the following methods:

Test	ASTM Designations
Chemical analysis	E1473 ^A
Tension	E8/E8M

A Iron shall be determined arithmetically by difference.

14. Inspection

14.1 If specified, source inspection of the material by the purchaser at the manufacturer's plant shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 A producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. A report of the test results shall be furnished.

17. Product Marking

17.1 Identification marks consisting of the manufacturer's symbol or name, designation of service rating, the specification, the grade of material, and the size shall be stamped legibly on each forging in accordance with MSS SP-25 and in such position as not to injure the usefulness of the forging.

18. Keywords

18.1 forgings; UNS N06030; UNS N06022; UNS N06035; UNS N06200; UNS N06059; UNS N10362; UNS N06686; UNS N08020; UNS N08367; UNS N10276; UNS N10665; UNS N10675; UNS N10629; UNS N08031; UNS N06045; UNS N06025; UNS N06699; UNS R20033

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order.

S1. Corrosion Tests for UNS N08020

- S1.1 One intergranular corrosion test per heat shall be performed by the manufacturer on a sensitized specimen and tested in accordance with Practices A262. When this supplementary requirement is specified, the specific practice (Practice B or Practice E) shall also be specified. If Practice B is specified, the specimen must pass with a rate of less than 0.002 inches per month (iptn).
- S1.1.1 In addition to the stabilize anneal, the specimen shall be sensitized for 1 h at 1250°F (677°C) before being subjected to corrosion testing.

S2. Positive Material Identification Examination

S2.1. Product shall receive Positive Material Identification to ensure that the purchaser is receiving product of the correct material grade prior to shipment of the product. This exami-

nation is a method to assure that no material grade mix-up has happened during manufacturing and marking of the product.

- S2.2 Product shall receive a Positive Material Identification examination by Guide E1916.
- S2.3 The quantity examined shall be 100 % of the product.
- S2.4 All product that is not of the correct material grade shall be rejected.
- S2.5 The method of product marking after examination shall be agreed upon between the manufacturer and purchaser.

SB-463 HAVELLE AND Specification B463-10(2016).) (Identical with ASTA Specification B463-10(2016).) SPECIFICATION FOR UNS N08020 ALLOY PLATE, SHEET, AND STRIP

Specification for UNS N08020 Alloy Plate, Sheet, and Strip

1. Scope

- 1.1 This specification covers UNS N08020 alloy plate, sheet, and strip.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard
- SMENORMOC. Click to view 3.1.1 The terms plate, sheet, and strip assused in this

- 3.1.2 cold rolled plate, n—material $\frac{3}{16}$ to $\frac{3}{8}$ in. (4.76 to 9.52) mm), inclusive in thickness and over 10 in. (254.0 mm) in width.
- 3.1.3 hot rolled plate, n—material ³/₁₆ in. (4.76 mm) and over in thickness and over 10 in. (254.0 mm) in width.
- 3.1.4 plate, n-material 3/16 in. (4.73 mm) and over in thickness and over 10 in. (254.0 mm) in width.
- 3.1.5 sheet, n—material under (4.75 mm) in thickness and 24 in. (609.6 mm) and over in width. Material under 3/16 in. (4.75 mm) in thickness and in all widths with No. 4 finish.
- 3.1.6 strip, n—material under 3/16 in. (4.75 mm) in thickness and under 24 in. (609.6 mm) in width.

4. General Requirements

4.1 Material furnished under this specification shall conform to the requirements of Specification B906 unless otherwise provided herein. In the case of conflict, the requirements of this specification shall take precedence.

Materials and Manufacture

5.1 Heat Treatment—UNS N08020 Alloy shall be furnished in the stabilize-annealed condition.

Note 1—The recommended annealing temperatures are 1800 to 1850°F (982 to 1010°C) for UNS N08020.

6. Chemical Composition

6.1 The material shall conform to the composition limits specified in Table 1.

7. Mechanical Properties

7.1 Mechanical Properties—The material shall conform to the mechanical property requirements specified in Table 2.

8. Dimensions and Permissible Variations

8.1 The tolerances and permissible variations provided in Annex A1 of Specification B906 shall apply.

9. Keywords

9.1 N08020; plate; sheet; strip

TABLE 1 Chemical Requirements

	TABLE 1 Ch	emical Re	quirements						
Element			UNS N08	3020	-				
Carbon, r	max		0.07		-				
Mangane			2.00						
Phosphor			0.045						
Sulfur, ma			0.035						. 🛇 😘
Silicon, m			1.00						Part b'
Nickel			32.00–38	.00					
Chromiun	n		19.00–21						50 0
Molybden	ium		2.00-3.00						<i>Y</i>
Copper			3.00-4.00)				~ \	•
	m (Nb) + tantalum		8 × carbo						
Nitrogen	()						, v		
Iron			remainde	r ^A			_G		
y difference.	ABLE 2 Mechani	cal Prope	rty Requirem	ents	ć	10°	20	HONI	
			.,		- OX				
	Strength, nin	Yield Stre	ength, ^A min	Elongation ^B in 2 in. – (50.8 mm),					
ksi	MPa	ksi	MPa	min,%	11.				
80	551	35	241	30.0	<u>-</u>				
	Hardne	ss Number,	max ^C	- 12					

A By difference.

TABLE 2 Mechanical Property Requirements

			· ·	
Tensile S m	0 ,	Yield Str	ength, ^A min	Elongation ^B in 2 in. (50.8 mm),
ksi	MPa	ksi	MPa	min,%
80	551	35	241	30.0
	Hard	ness Number,	max ^C	100
	Brinell		Rockwell B	
	217		95	⟨ S)

^A Yield strength shall be determined by the offset method at 0.2 % limiting permanent set in accordance with Test Methods B906. An alternative method of determining yield strength may be based on a total extension under load of 0.5 %. B Elongation for thickness, less than 0.015 in. (0.38 mm) shall be 20 % minimum, in 1 in. (25.4 mm).

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order.

S1. Corrosion Tests

S1.1 One intergranular corrosion test per lot shall be performed by the manufacturer on Asensitized specimen and tested in accordance with Practices A262. When this supplementary requirement is specified, the specific practice (Practice B or Practice E) shall also be specified. If Practice B is specified, the specimen must pass with a rate of less than 0.002 inches per month. A lot for intergranular corrosion testing shall ASMENORMOC. as. be the same as for mechanical testing.

- S1.1.1 In addition to the anneal recommended in Note 1, the specimen shall be sensitized for 1 h at 1250°F (677°C) before being subjected to corrosion testing.
- S1.1.2 If any corrosion test specimen fails the test, the material represented by such specimens may be reheat-treated and resubmitted for test.

^C Either Brinell or Rockwell B hardness is permissible

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR WELDED UNS N08020, N08024, AND N08026 ALLOY PIPE SB-464 (Identical with ASTM Specification B464-05(2009) Except that certification and reporting have been made mandatum.

ASMENORINDOC. COM. Click to view the full path. (Identical with ASTM Specification B464-05(2009) except that certification and reporting have been made mandatory.)

SPECIFICATION FOR WELDED UNS N08020, N08024, SPVC Section II part B 200 red AND N08026 ALLOY PIPE

SB-464

[Identical with ASTM Specification B 464-05(2009) except that certification has been made mandatory.]

Scope

- 1.1 This specification covers welded UNS N08020, N08024, and N08026 alloy pipe for general corrosionresisting and low- or high-temperature service.
- 1.2 The pipe covered is nominal pipe sizes up to and including NPS 6, with the nominal wall thicknesses given as Schedules 5S, 10S, and 40S and nominal pipe sizes up to and including NPS 2, also including Schedule 80S. Table 2 of Specification B 775 is based on Table A1 of ANSI B36.19 and gives the nominal dimensions of these sizes. Table 3 of Specification B 775 lists the dimensional requirements of these sizes. Pipe having other dimensions may be furnished provided such pipe complies with all other requirements of this specification.
- 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- **1.4** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

Referenced Documents

- **2.1** ASTM Standards:
- A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- B 775 Specification for General Requirements for Nickel and Nickel-Alloy Welded Pipe
- B 899 Terminology Relating to Non-ferrous Metals and Alloys
 - 2.2 ANSI Standard:
- B36.19 Stainless Steel Pipe

Terminology

- **3.1** *Definitions:*
- **3.1.1** Definitions for terms defined in Terminology B 899 shall apply unless otherwise defined by the requirements of this document.

General Requirement 4.

4.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B 775 unless otherwise provided herein.

Ordering Information

- **5.1** It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **5.1.1** Quantity (feet or number of lengths),
 - **5.1.2** UNS number,
 - **5.1.3** Size (nominal pipe size and schedule),
 - **5.1.4** Length (random or specific),
 - **5.1.5** ASTM designation,
 - **5.1.6** *Product Analysis* State if required,
 - **5.1.7** DELETED
- **5.1.8** Purchaser Inspection State which tests or inspections are to be witnessed, if any, and
 - **5.1.9** Supplementary requirements, if any.

Materials and Manufacture

6.1 The pipe shall be made from flat-rolled stock by an automatic welding process with no addition of filler metal.

6.2 Heat Treatment — Pipe of UNS N08020 alloy shall be furnished in the stabilized-annealed condition. Pipe of UNS N08024 alloy shall be furnished in the annealed condition. Pipe of UNS N08026 alloy shall be furnished in the solution-annealed condition.

NOTE 1 — The recommended annealing temperatures are 1800 to 1850°F (982 to 1010°C) for UNS N08020, 1925 to 1975°F (1052 to 1079°C) for UNS N08024, and 2050 to 2200°F (1121 to 1204°C) for UNS N08026.

7. Chemical Composition

- **7.1** The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification B 775.
- **7.2** If a product analysis is performed, it shall meet the chemistry limits prescribed in Table 1, subject to the analysis tolerances specified in Specification B 775.

8. Mechanical Properties and Other Requirements

- **8.1** *Mechanical Properties* The material shall conform to the mechanical property requirements specified in Table 2. One test is required for each lot as defined in Specification B 775.
- **8.2** Flattening Test A flattening test shall be made on each end of one pipe per lot. Superficial ruptures resulting from surface imperfections shall not be cause for rejection.
- **8.3** Nondestructive Test Requirements Each pipe shall be subjected to either a pressure test or a nondestructive electric test at the manufacturer's option. The purchaser may specify which test is to be used.
- **8.4** Transverse Guided Bend Test At the option of the pipe manufacturer, the transverse guided bend test may be substituted in lieu of the flattening test. Two bend specimens shall be taken transversely from pipe or the test specimens may be taken from a test plate of the same material and heat as pipe, which is attached to the end of

TABLE 1
CHEMICAL REQUIREMENTS

	Composition, %						
Element	UNS N08020	UNS N08024	UNS N08026				
Carbon, max	0.07	0.03	0.03				
Manganese, max	2.00	1.00	1.00				
Phosphorus, max	0.045	0.035	0.03				
Sulfur, max	0.035	0.035	0.03				
Silicon, max	1.00	0.50	0.50				
Nickel	32.00-38.00	35.00–40.00	33.00-37.20				
Chromium	19.00-21.00	22.50-25.00	22.00–26.00				
Molybdenum	2.00-3.00	3.50-5.00	5.00-6.70				
Copper	3.00-4.00	0.50 - 1.50	2.00-4.00				
Columbium (Nb) + tantalum	8× carbon-1.00	0.15-0.35					
Nitrogen		? `	0.10-0.16				
Iron ^A	Remainder	Remainder	Remainder				

 $^{^{\}mathcal{A}}$ By difference.

TABLE 2
MECHANICAL PROPERTY REQUIREMENTS

Tensile Strength, min, ksi (MPa)	Yield Strength, min, ksi (MPa)	Elongation in 2 in. (50.8 mm), min, %
80 (551)	35 (241)	30.0

the cylinder and welded as a prolongation of the pipe longitudinal seam. One test is required for each lot as defined in Specification B 775.

9. Lengths

9.1 Lengths may be ordered as either random lengths (normally 15 to 24 ft (4.6 to 8.3 m) with some agreed upon allowance for shorts) or specific cut lengths.

10. Keywords

10.1 welded pipe; N08020; N08024; N08026

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order:

al testing.

1.1.1 In addition to t.
a.1, the specimen shall be s.
a77°C) before being subjected

S.1.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a77°C) before being subjected

S.1.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a1 testing.

A. The specimen shall be s.
a2.1.4 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a1.1.1 In addition to t.
a2.1.4 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a77°C) before being subjected st.
a1.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a1.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a2.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be s.
a2.1.2 If any corrosion test the material represented by such sp. treated and resubmitted for tests.

The specimen shall be said to the specimen shall be such specimen shall be said to the specimen shall be

intergranular corrosion testing shall be the same as for mechanical testing.

S1.1.1 In addition to the anneal recorrect Note 1, the specimen shall be sensitive forms of the specimen shall be sensitive forms.

S1.1.2

S1.1.2 If any corrosion test specimen fails the test, the material represented by such specimens may be reheat-

JC Section II Part B 202 SPECIFICATION FOR SEAMLESS COPPER-NICKEL PIPE AND TUBE SB-466/SB-466M

ASIMILING RIMING COM. (Identical with ASTM Specification B466/B466M-18 except for the deletion of paras. 5.2.1, 9.5, and 9.5.1, and revision to para. 11.2 to make tensile testing and nondestructive testing mandatory for all sizes. Certification and test reports have

Specification for Seamless Copper-Nickel Pipe and Tube

1. Scope

- 1.1 This specification establishes the requirements for seamless copper-nickel pipe and tube in straight lengths, suitable for general engineering purposes. The alloys involved are copper alloys UNS Nos. C70400, C70600, C70620, C71000, C71500, C71520, and C72200.
- 1.1.1 Copper alloys UNS Nos. C70620 and C71520 are intended for product that will be subsequently welded.
- 1.2 *Units*—Values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
- 1.3 The following safety hazard caveat pertains only to the test methods described in this specification:
- 1.3.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B251/B251M Specification for General Requirements for Wrought Seamless Copper and Copper-Alloy Tube
- B846 Terminology for Copper and Copper Alloys
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E8/E8M Test Methods for Tension Testing of Metallic Materials

- E18 Test Methods for Rockwell Hardness of Metallie Materials
- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)
- E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 *Other Standard:*
- ASME Boiler and Pressure Vessel Code

3. General Requirements

- 3.1 The following sections of Specification B251/B251M reconstitute a part of this specification:
 - 3.1.1 Terminology,
 - 3.1.2 Materials and Manufacture,
 - 3.1.3 Dimensions, Mass, and Permissible Variations,
 - 3.1.4 Workmanship, Finish, and Appearance,
 - 3.1.5 Sampling,
 - 3.1.6 Number of Tests and Retests,
 - 3.1.7 Test Specimens,
 - 3.1.8 Test Methods,
 - 3.1.9 Significance of Numerical Limits,
 - 3.1.10 Inspection,
 - 3.1.11 Rejection and Rehearing,
 - 3.1.12 Certification,
 - 3.1.13 Packing and Package Marking, and
 - 3.1.14 Mill Test Report.

3.2 In addition, when a section with a title identical to that referenced in 3.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B251/B251M.

4. Terminology

4.1 *Definitions*—For definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue,
 - 5.1.2 Copper Alloy UNS No. (Scope section),
 - 5.1.3 Temper (Temper section),
- 5.1.4 Dimensions; diameter or distance between parallel surfaces, wall thickness, or size (see also Table X1.1).
- 5.1.5 Total length, total weight, or number of pieces of each, and
 - 5.1.6 Intended application.
- 5.2 The following options are available but may not be included unless specified at the time of placing of the order when required.
 - 5.2.1 DELETED
- 5.2.2 Hydrostatic Test (Nondestructive Test Requirements section),
- 5.2.2.1 If the product needs to be subjected to a pressure gage reading over 1000 psi [7 MPa].
- 5.2.3 Pneumatic Test (Nondestructive Test Requirements section),
- 5.2.4 Heat identification or traceability requirements both,
 - 5.2.5 DELETED
 - 5.2.6 DELETED
 - 5.2.7 DELETED
- 5.2.8 When the product in alloys C71000 or C72200 is to be subsequently welded (Table 1, Footnote A), and
- 5.2.9 When product is purchased for an agency of the U.S. Government (Purchases for U.S. Government section).

6. Materials and Manufacture

- 6.1 *Materials*—The material of manufacture shall be cast billets of copper alloys UNS Nos. C70400, C70600, C70620, C71000, C71500, C71520, and C72200 of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.2 Manufacture—The product shall be manufactured by such hot extrusion or piercing and subsequent cold working and annealing as to produce a uniform, seamless wrought structure in the finished product.

7. Chemical Composition

- 7.1 The material shall conform to the chemical composition requirements in Table 1 for the copper alloy UNS No. designation specified in the ordering information.
- 7.2 These composition limits to not preclude the presence of other elements. By agreements between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.2.1 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %.
- 7.2.2 When all elements in Table 1 are determined, the sum of results shall be as shown below:

Copper Alloy UNS No.	Copper Plus Name Elements, % min		
	,		
C70400	99.5		
C70600 & C70620	99.5		
C71000	99.5		
C71500 & C71520	99.5		
C72200	99.8		

8. Temper

- 8.1 The standard tempers for products described in this specification are given in Table 2.
 - 8.1.1 Annealed Temper—O60 (soft anneal).
- 8.1.2 *Drawn Tempers*—H55 (light drawn), H80 (hard drawn), or HE80 (hard drawn and end annealed).

Note 1—The H55 (light drawn) temper is used only when product of

TABLE 1	Chemical	Requirements
---------	----------	--------------

Copper Alloy	. •				Compo	sition, %				
UNS Nos.	Copper incl Silver	Nickel incl Cobalt	Lead, max	Iron	Zinc, max	Manganese	Sulfur, max	Phosphorus, max	Chromium	Other Named Elements
C70400	remainder	4.8 to 6.2	0.05	1.3 to 1.7	1.0	0.30 to 0.8	0.02	0.02		
C70600 (remainder	9.0 to 11.0	0.05	1.0 to 1.8	1.0	1.0 max				
C70620	86.5 min	9.0 to 11.0	0.02	1.0 to 1.8	0.50	1.0 max	0.02	0.02		Carbon 0.05
O71000	remainder	19.0 to 23.0	0.05 ^A	0.5 to 1.0	1.0 ^A	1.0 max	0.02	0.02		max A
C71500	remainder	29.0 to 33.0	0.05	0.40 to 1.0	1.0	1.0 max				
C71520	65.0 min	29.0 to 33.0	0.02	0.40 to 1.0	0.50	1.0 max	0.02	0.02		Carbon 0.05 max
C72200	remainder	15.0 to 18.0	0.05 ^A	0.50 to 1.0	1.0 ^A	1.0 max	0.02	0.02	0.30 to 0.7	A,B

A When the product is for subsequent welding applications, and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, and carbon 0.05 % max. B Silicon 0.03 max, titanium 0.03 max.

Rockwell^E Tensile Strength. Yield Strength,^A min Hardness 30 T Copper Alloy Temper Code Temper Name min UNS Nos. MPa MPa ksi ksi 060 C70400 Soft anneal 37 255 12 85 45 max C70600 & C70620 38 260 13 90 45 max C71000 45 310 16 110 48 max C71500 & C71520 52 360 18 125 51 max C72200 40 275 14 95 45 max H55 Light drawn C70400 40 275 30 205 41 to 65 C70600 & C70620 45 310 35 240 45 to 70 C72200 48 330 42 290 55 to 70 H80 C70400 45 310 35 240 Hard drawn 60 min C70600 & C70620 50 345 40 275 63 min 380 67 min C71000 55 43 295 C71500 & C71520 70 485 45 310 70 min C72200 380 44 305 67 min

TABLE 2 Mechanical Requirements

some stiffness yet capable of being bent is needed. The H80 (hard drawn) temper is used only when there is a need for material as strong as commercially feasible.

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements—Product furnished under this specification shall conform to the tensile and yield strength requirements prescribed in Table 2 when tested in accordance with Test Methods E8/E8M.
- 9.2 Rockwell Hardness Requirements—Product furnished under this specification shall conform to the Rockwell hardness requirements prescribed in Table 2 when tested in accordance with Test Methods E18.
- 9.3 The mechanical property requirements for tubes of all alloys in the H80 temper are only applicable to the following sizes:

Outside Diameter, in. [mm]

Up to 1 [25] incl
Over 1-2 [25-50] incl
Over 2-4 [50-100] incl

Outside Diameter, in. [mm]

Wall Thickness, in. [mm]

0.020-0.120 [0.5-3.0] incl
0.035-0.180 [0.9-4.5] incl
0.060-0.250 [1.5-6.5] incl

- 9.3.1 For other sizes in the H80 (hard drawn) temper, the mechanical property requirements shall be established by agreement between the manufacturer and the purchaser.
- 9.4 The mechanical property requirements for tubes of the HE80 (hard drawn and end annealed) temper shall be established by agreement between the manufacturer or supplier and the purchaser.
 - 9.5 DELETED 9.5 DELETED

10. Performance Requirements

- 10.1 Expansion Test Requirements:
- 10.1.1 Tube furnished in the O60 (soft anneal) temper and the HE80 (hard drawn and end annealed) shall withstand an expansion to 30 % of the outside diameter when tested in accordance with Test Method B153.

- 10.1.1.1 The expanded sample shall show no cracking or other defect visible to the unaided eye.
- 10.1.1.2 The expansion test is not required for tube furnished in tempers other than O60 and HE80.
 - 10.2 Flattening Test Alternative:
- 10.21 As an alternate to the expansion test for product over 4 in 100 mm] in diameter, the flattening test described in Test Method B968/B968M may be performed.
- 10.2.2 During inspection, the flattened areas of the test specimen shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

11. Other Requirements

- 11.1 Purchases for U.S. Government Agencies—If the product ordered is for an agency of the U.S. Government, when specified in the contract or purchase order, the product furnished shall conform to the conditions specified in the Supplementary Requirements section of Specification B251/B251M.
 - 11.2 Nondestructive Test Requirements:

Each pipe or tube shall be subjected to either the hydrostatic test or the eddy current test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.

- 11.2.1 *Electromagnetic (Eddy Current) Test:* Each tube up to and including 3.125-in. [80-mm] nominal outside diameter shall be subjected to an eddy current test. Testing shall follow the procedures of Practice E243 and the Test Methods section of this specification.
- 11.2.1.1 The provisions for the determination of "end-effect" in Practice E243 shall not apply.
- 11.2.1.2 The tested tubes, which do not actuate the signaling device of the testing unit, shall be considered as conforming to the requirements of the test.
- 11.2.1.3 Either notch depth or drilled hole standards shall be

^A At 0.5 % extension under load.

^B Rockwell hardness values shall apply only to tube or pipe having a wall thickness of 0.020 in. [0.5 mm] or over and an outside diameter of 5/16 in. [8 mm] or over. For all other tube no Rockwell hardness values shall apply. Rockwell hardness tests shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specified Rockwell hardness, other Rockwell scales and values may be specified subject to agreement between the manufacturer and the purchaser. ^C Although no minimum grain size is specified, the product must nevertheless have fully recrystallized grain structure.

11.2.1.4 Notch depth standards shall be 22 % of the wall thickness.

11.2.1.5 The sizes of drilled hole standards shall in accordance with Table X1.2 of Practice E243.

11.2.1.6 *Hydrostatic Test Alternative*—As an alternative to the eddy current test for tubes of diameters above 1.25 in. [32 mm], the manufacturer shall have the option to perform the hydrostatic test to the method in the Test Methods section.

11.2.2 Hydrostatic Test—When specified in the contract or purchase order, or as an alternate to the eddy current test for tubes above 1.25 in. [32 mm] in diameter (see 11.2.1.6), each tube shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to produce a fiber stress of 7000 psi [48 MPa] as determined by the following equation for thin hollow cylinders under tension:

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psi [MPa];

t = wall thickness of the material, in. [mm];

D = outside diameter of the material, in. [mm]; and

S = allowable stress of the material, psi [MPa].

11.2.2.1 The tube need not be subjected to a pressure gage reading over 1000 psi [7 MPa] unless specifically stipulated in the contract or purchase order.

11.2.2.2 When the hydrostatic test is specified for tubes of less than 0.50 in. [12 mm] in outside diameter and less than 0.060 in. [1.5 mm] in wall thickness, the manufacturer shall have the option to perform either the hydrostatic test or the pneumatic test to the requirements specified in Section 14.

11.2.3 *Pneumatic Test*—When specified in the contract or purchase order, each tube shall be subjected to a minimum internal air pressure of 60 psig [415 kPa] for 5 without showing evidence of leakage.

12. Dimensions, Mass, and Permissible Variations

12.1 Wall Thickness Tolerances—The wall thickness tolerances shall be in accordance with Table 3.

12.2 *Diameter Tolerances*—The diameter tolerances shall be in accordance with Table 4.

12.3 Tolerance on distances between parallel surfaces for tubes other than round shall be as agreed between the manufacturer or supplier and purchaser.

12.4 The following tolerances shall be as specified in Specification B251/B251M with particular reference to the following tables and related paragraphs:

12.4.1 Length Tolerances and Schedule of Tube Lengths—Section 5.5 and Tables 5 and 6.

12.4.2 Roundness—Section 5.4.

12.4.3 Squareness of Cut—Section 5.6.

12.4.4 Straightness Tolerances Section 5.7.1 and Table 7.

13. Specimen Preparation

13.1 *Chemical Analysis*—Analytical specimen preparation shall be the responsibility of the reporting laboratory.

13.2 Flattening Test—Test specimens shall be according to Test Method B968/B968M. When the temper is other than annealed, the sample may be annealed prior to testing.

14. Test Methods

14.1 Chemical Analysis:

14.1.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published test methods, some of which are considered by ASTM as no longer viable. These and others not listed may be used subject to agreement.

TABLE 3 Wall Thickness Tolerances

Note 1—Maximum Deviation of Any Point—The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

	S. An	•	Outs	side Diameter, ^A in	. [mm]	·	
Wall Thickness, in. [mm]	1/32 to 1/8	Over 1/8 to 5/8	Over 5/8 to 1	Over 1 to 2	Over 2 to 4	Over 4 to 7	Over 7 to 10
	[0.80 to 3.2] incl	[3.2 to 16], incl	[16 to 25], incl	[25 to 50] incl	[50 to 150] incl	[100 to 200] incl	[200 to 250], incl
Up to 0.017 [.40] incl	0.0025 [0.064]	0.0015 [0.38]	0.002 [0.057]	0.0025 [0.064]			
Over 0.017 to 0.024 [0.040 to 0.60]	0.004 [0.10]	0.0025 [0.064]	0.0025 [0.064]	0.003 [0.076]			
incl							
Over 0.024 to 0.034 [0.60 to 0.90]	0.004 [0.10]	0.003 [0.076]	0.003 [0.076]	0.004 [0.10]	0.005 [0.013]		
incl							
Over 0.034 to 0.057 [0.90 to 1.4]	0.004 [0.10]	0.004 [0.10]	0.0045 [0.11]	0.0045 [0.11]	0.0065 [0.17]	0.009 [0.23]	
incl							
Over 0.057 to 0.082 [1.4 to 2.1] incl		0.0045 [0.11]	0.005 [0.13]	0.005 [0.13]	0.0075 [0.19]	0.010 [0.25]	0.013 [0.33]
Over 0.082 to 0.119 [2.1 to 3.0] incl		0.005 [0.13]	0.0065 [0.17]	0.0065 [0.17]	0.009 [0.23]	0.011 [0.28]	0.014 [0.36]
Over 0.119 to 0)164 [3.0 to 4.2] incl		0.007 [0.18]	0.007 [0.18]	0.0075 [0.19]	0.010 [0.25]	0.013 [0.33]	0.015 [0.38]
Over 0.164 to 0.219 [4.2 to 5.5] incl			0.009 [0.23]	0.010 [0.25]	0.012 [0.30]	0.015 [0.38]	0.018 [0.46]
Over 0.219 to 0.283 [5.5 to 7.2] incl			0.012 [0.30]	0.013 [0.33]	0.015 [0.38]	0.018 [0.46]	0.020 [0.51]
Over 0.283 to 0.379 [7.2 to 9.6] incl				0.15 [0.38]	0.018 [0.46]	0.020 [0.51]	0.023 [0.58]
Over 0.379 [9.6]				6 ^B	6 ^B	8 ^B	8 ^B

When tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in this table by more than 50 %.

^B Percent of the specified wall thickness expressed to the nearest 0.001 in. [0.025 mm]

TABLE 4 Average Diameter^A Tolerances

		TABLE TATOLOGO BIGINOTO	10101411000	
Specif	ied Diameter	Tolerance Applies to	Tolerances, plus and minus, ^B in. for Tubes of Copper Alloy UNS Nos. C70400, C70600, C70620, C71500, C71520, and C72200	Tolerances, plus and minus, ^B mm for Tubes of Copper Alloy UNS Nos. C70400, C70620, C71500, C71520, and C72200
in.	mm			
Up to 1/8, incl	Up to 3.2, incl	inside diameter	0.003	0.076
Up to 1/8, incl	Up to 3.2, incl	outside diameter	0.0025	0.064
Over 1/8 to 5/8, incl	Over 3.2 to 16, incl	inside or outside	0.0025	0.064
Over 5/8 to 1, incl	Over 16 to 25, incl	inside or outside	0.003	0.076
Over 1 to 2, incl	Over 25 to 50, incl	inside or outside	0.004	0.10
Over 2 to 3, incl	Over 50 to 75, incl	inside or outside	0.005	0.13
Over 3 to 4, incl	Over 75 to 100, incl	inside or outside	0.006	0.15
Over 4 to 5, incl	Over 100 to 125, incl	inside or outside	0.008	0.20
Over 5 to 6, incl	Over 125 to 150, incl	inside or outside	0.009	0.23
Over 6 to 8, incl	Over 150 to 200, incl	inside or outside	0.010	0.25
Over 8 to 10, incl	Over 200 to 250, incl	inside or outside	0.013	0.33

^A The average outside or inside diameter of a tube is the average of the maximum and minimum outside diameters, or of the maximum and minimum inside diameters, whichever is applicable, as determined at any one cross section of the tube.

^B If tolerances all plus or all minus are desired, double the values given.

Element	Test Method
Carbon	E76
Chromium	E118
Copper	E478
Iron	E54
Lead	E478; atomic absorption
Manganese	E75
Nickel	E478; gravimetric
Phosphorus	E62
Silicon	E54
Sulfur	E76
Zinc	E478: atomic absorption

14.1.2 Test methods for the determination of element(s) required by contractual or purchase order agreement shall be as agreed upon by the manufacturer or supplier and the purchaser.

14.2 Other Tests:

- 14.2.1 *Tensile Strength*—Tensile strength shall be determined in accordance with Test Methods E8/E8M.
- 14.2.1.1 Whenever test results are obtained from both fullsize and machined specimens and they differ, the test results from the full-size specimens shall prevail.
- 14.2.2 Flattening Test—Each test specimen shall be flattened according to Test Method B968/B968M.
- 14.2.3 *Electromagnetic (Edd) Current) Test*—Testing shall follow the procedures in Practice E243, except for the determination of "end-effect:"
- 14.2.3.1 Notch-depth standards shall be rounded to the nearest 0.001 in [0.025 mm]. The notch depth tolerance shall be ± 0.0005 in [0.013 mm].
- 14.2.3.2 Drilled hole standards shall be rounded to the nearest 0.001 in. (0.025 mm). The drilled hole tolerance shall be ± 0.0005 in. [0.013 mm].
- 14.2.3.3 Alternatively, at the option of the manufacturer, using speed-insensitive eddy current testing units that are

equipped so that a percentage of the maximum imbalance signal can be selected, a maximum imbalance signal of 0.3 % shall be used.

14.2.3.4 Tubes that do not activate the signaling device of the eddy current tested shall be considered as conforming to the requirements of this test. Tubes with discontinuities indicated by the testing unit are permitted, at the option of the manufacturer, to be reexamined or retested to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil, or moisture shall not be cause for rejection of the tubes provided the tube dimensions are still within prescribed limits and the tune is suitable for its intended application.

14.2.4 *Hydrostatic Test*—The test method used shall permit easy visual detection of any leakage or by pressure differential. Any evidence of leakage shall be cause for rejection.

14.2.5 *Pneumatic Test*—The test method used shall permit easy visual detection of any leakage or by pressure differential. Any evidence of leakage shall be cause for rejection.

15. Certification

15.1 The test report and certification requirements of Specification B251/B251M are mandatory.

16. Keywords

16.1 copper-nickel; pipe; seamless; tube; UNS No. C70400; UNS No. C70600; UNS No. C70620; UNS No. C71000; UNS No. C71500; UNS No. C72200

APPENDIX

(Nonmandatory Information)

X1. PREFERRED SIZES

X1.1 It is recommended that wherever possible, product purchased to this specification be ordered to the diameters and wall thicknesses indicated in Table X1.1.

TABLE X1.1 Preferred Wall Thicknesses for Drawn Seamless Pipe Based on SPS Diameter

					•			<u> </u>
	Outside Dia-				Wall Thickness			<u> </u>
SPS	meter, in. [mm]			Specials			_ Regula	Extra Stron
	, ,	in. [mm]	in. [mm]	in. [mm]	in. [mm]	in. [mm]	in. [mm]	in. [mm]
1/8	0.405 [10.3]	0.058 [1.47]					0,062 [1.57]	0.100 [2.54
1/4	0.540 [13.7]	0.065 [1.65]	0.072 [1.83]				0.082 [2.08]	0.123 [3.12
3/8	0.675 [17.1]	0.065 [1.65]	0.072 [1.83]	0.095 [2.41]	0.148 [3.76]	4	0.090 [2.29]	0.127 [3.23
1/2	0.840 [21.3]	0.065 [1.65]	0.072 [1.83]	0.120 [3.03]	0.203 [5.16]		0.107 [2.72]	0.149 [3.78
3/4	1.050 [26.7]	0.065 [1.65]	0.083 [2.11]	0.148 [3.76]	0.238 [6.05]	C)	0.114 [2.90]	0.157 [3.99
1	1.315 [33.4]	0.065 [1.65]	0.095 [2.41]	0.203 [5.16]	0.340 [8.64]	100	0.126 [3.20]	0.182 [4.62
11/4	1.660 [42.2]	0.072 [1.83]	0.095 [2.41]	0.120 [3.03]	0.220 [5.59]	0.380 [9.65]	0.146 [3.71]	0.194 [4.93
11/2	1.900 [48.3]	0.072 [1.83]	0.109 [2.77]	0.134 [3.40]	0.250 [6.35]	0.425 [10.8]	0.150 [3.81]	0.203 [5.10
2	2.375 [60.3]	0.083 [2.11]	0.120 [3.03]	0.165 [4.19]	0.340 [8.64]	0.520 [13.2]	0.156 [3.96]	0.221 [5.6
21/2	2.875 [73.0]	0.083 [2.11]	0.134 [3.40]	0.203 [5.16]	0.380 [9.65]		0.187 [4.75]	0.280 [7.11
3	3.500 [88.9]	0.095 [2.41]	0.165 [4.19]	0.250 [6.35]	0.458 [11.6]		0.219 [5.56]	0.304 [7.7
31/2	4.000 [102]	0.095 [2.41]	0.180 [4.57]	0.284 [7.21]	\\ \omega_{\sum_{m}}^{\cdots} \		0.250 [6.35]	0.321 [8.1
4	4.500 [114]	0.109 [2.77]	0.203 [5.16]	0.340 [8.64]			0.250 [6.35]	0.341 [8.6
5	5.552 [141]	0.125 [3.18]	0.220 [5.59]	0.425 [10.8]			0.250 [6.35]	0.375 [9.5
6	6.625 [168]	0.134 [3.40]	0.259 [6.58]	0.457 [11.6]			0.250 [6.35]	0.437 [11
				8 /				
				, O'				
			\sim)`				
			Ko					
			~0					
			11.					
		2	7					
		7.						
		XO.						
		X.						
	<i>-</i> 1	70.						
	G	•						
	all .							
	-O'							
	\mathcal{C}							
	Ci							
	\sim							
27								
$\mathcal{O}_{X_{i}}$								
	4.500 [114] 5.552 [141] 6.625 [168]							
				661				

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR WELDED COPPER-NICKEL PIPE

SB-467

(Identical with ASTM Specification B467-14 except that the use of filler metal is prohibited. Certification, test report, and product specification marking have been made mandatory...)

Cida to vice with a full before the following the filler metal is prohibited. Certification, test report, and product specification marking have been made mandatory...)

Specification for Welded Copper-Nickel Pipe

1. Scope

1.1 This specification establishes the requirements for welded copper-nickel alloy pipe for general engineering purposes. The following alloys are covered:

Copper Alloy UNS No.	Type of Metal
C70600	90-10 copper-nickel
C70620	90-10 copper-nickel
	(Modified for Welding)
C71500	70-30 copper-nickel
C71520	70-30 copper-nickel
	(Modified for Welding)

1.2 *Units*—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B950 Guide for Editorial Procedures and Form of Product Specifications for Copper and Copper Alloys
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

- E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys 2.2 Other Documents:
- American Welding Society Specification A5.6 American Welding Society Specification A5.7

3. Terminology

3.1 For the definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Types of Welded Pipe

- 4.1 As-Welded—Pipe that has been welded with no further work performed other than straightening or cutting to length, or both
- 4.2 Welded and Annealed—Welded pipe that has been vannealed to produce a uniform grain size appropriate to the specified annealed temper.
- 4.3 Welded and Cold Drawn—Welded pipe with internal flash removed by scarfing, and subsequently cold drawn to conform to the specified temper.
- 4.4 Fully Finished—Welded pipe with internal and external flash removed by scarfing and the pipe or tube subsequently cold drawn over a mandrel and annealed as necessary to conform to the specified temper.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable.
 - 5.1.1 ASTM designation and year of issue,
 - 5.1.2 Copper Alloy UNS No. (Section 1 and Table 1),
 - 5.1.3 Temper (Section 8),

TABLE 1 Chemical Requirements

Element	•		(Composition, %	•	·	
Copper or Copper Alloy by UNS No	Copper (incl silver)	Nickel (incl Cobalt)	Lead, max	Iron	Zinc, max	Manganese	Other Named Alloys
C70600 ^A	Remainder	9.0-11.0	0.05	1.0-1.8	1.0	1.0	
C70620 ^A	86.5 min	9.0–11.0	.02	1.0–1.8	.50	1.0	C .05 max P .02 max S .02 max
C71500 ^A	Remainder	29.0-33.0	0.05	.40-1.0	1.0	1.0	~
C71520 ^A	65.0 min	29.0–33.0	.02	.40–1.0	.50	1.0	C .05 max P .02 max S .02 max

^ACu + Sum of Named Elements, 99.5 % min.

- 5.1.4 Dimensions: diameter and wall thickness (12.2 and 12.3),
 - 5.1.5 Lengths: whether specific or stock (12.4),
 - 5.1.6 Quantity of each size,
 - 5.1.7 If the product is to be subsequently welded,
 - 5.1.8 Packaging and Package Marking (Section 23), and
 - 5.1.9 Intended application.
- 5.2 The following options are available but may not be included unless specified at the time of placing the order when required.
- 5.2.1 Heat identification or traceability requirements, or both (see 14.2.1.4).
 - 5.2.2 Certifications mandatory (see Section 21).
 - 5.2.3 Test report mandatory (see Section 22).
- 5.2.4 Radiographic examination: whether or not required (see Section 11),
 - 5.2.5 Source inspection: Whether or not required (19.2),
 - 5.2.6 Hydrostatic test (see 11.3),
- 5.2.7 When product is ordered for ASME Boiler & Pressure Vessel Code Application,
 - 5.2.8 Type of flash to be furnished (6.3),
 - 5.2.9 Pneumatic Test (see 11.3.2).

6. Materials and Manufacture

- 6.1 Material:
- 6.1.1 The material of manufacture shall be strip of one of the Copper Alloy UNS Nos. listed in 1.1 of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.1.2 In the event hear identification or traceability is required, the purchaser shall specify the details desired.
 - 6.2 Manufacture:
- 6.2.1 The product shall be manufactured by forming the material into a ubular shape and welded on a suitable forming mill.
 - 6.3 *Flash*:
- 6.3.1 If the pipe is made by the high-frequency welding process, the external flash shall always be removed. The internal flash shall be treated as one of the following:
- 6.3.1.1 *IFI*—Internal flash to remain in the "as-welded" condition.
 - 6.3.1.2 IFR—Internal flash to be removed by scarfing, or
 - 6.3.1.3 IFD—Internal flash to be displaced.

- 6.3.2 Unless otherwise specified, the Infoondition will be furnished.
 - 6.4 Filler Material:
- 6.4.1 Welded copper-nickel pipe shall be produced by a welding technique that does not require filler metal. Specifically, welding shall be accomplished using electric or high frequency resistance or other appropriate techniques that do not require filler metal.

7. Chemical Composition

- 7.1 The material shall conform to the chemical requirements specified in Table 1.
- 7.2 These specification limits do not preclude the presence of other elements. Limits for unnamed elements may be established by agreement between manufacturer or supplier and purchaser.
- 7.2.1 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 7.2.1.1 When all the elements in Table 1 are analyzed, their sum shall be 99.5 % minimum.

8. Temper

- 8.1 Tempers, as defined in Classification B601 and this specification, are as follows:
- 8.1.1 The pipe shall be supplied in any one of the following tempers as specified and shall meet the mechanical requirements of Table 2, Table 3, or Table 4:

TABLE 2 Mechanical Requirements of As-Welded and Fully Finished Pipe When Furnished in the Annealed Temper (WO61)

Copper Alloy UNS No.	Outside Diameter, in. (mm)	Tensile Strength, min, ksi ^A (MPa) ^B	Yield Strength at 0.5 % Ex- tension Under Load, min, ksi ^A (MPa) ^B	Elongation in 2 in. (50.8 mm), min, %
C70600	up to 41/2 (114), incl	40 (275)	15 (105)	25.0
	over 4½ (114)	38 (260)	13 (90)	25.0
C70620	up to 41/2 (114), incl	40 (275)	15 (105)	25.0
	over 4½ (114)	38 (260)	13 (90)	25.0
C71500	up to 41/2 (114), incl	50 (345)	20 (140)	30.0
	over 4½ (114)	45 (310)	15 (105)	30.0
C71520	up to 41/2 (114), incl	50 (345)	20(140)	30.0
	over 41/2 (114)	45 (310)	15 (105)	30.0

^A ksi = 1000 psi.

B See Appendix X2.

TABLE 3 Mechanical Requirements of Welded and Cold-Drawn and Fully Finished Pipe in Drawn Tempers

	•	•	•	
Copper Alloy UNS No.	Outside Diameter, in. (mm)	Tensile Strength, min, ksi ^A (MPa) ^B	Yield Strength at 0.5 % Ex- tension Under Load, min, ksi ^A (MPa) ^B	Elongation in 2 in. (50.8 mm), min, %
C71500	up to 2 (50.8), incl, for	72 (495)	50 (345)	12.0
	wall thicknesses up to 0.048 (1.21 mm), incl. for wall thicknesses over 0.048 in. (1.21 mm)	72 (495)	50 (345)	15.0
C71520	up to 2 (50.8), incl, for wall thicknesses up to 0.048 (1.21 mm), incl.	72 (495)	50 (345)	12.0
	for wall thicknesses over 0.048 in. (1.21 mm)	72 (495)	50 (345)	15.0

 $^{^{}A}$ ksi = 1000 psi.

TABLE 4 Mechanical Requirements of As-Welded Pipe

Copper Alloy UNS No.	Condition	Outside Diameter, in. (mm)	Tensile Strength, min, ksi (MPa)	Yield Strength at 0.5 % Ex- tension Under Load, min, ksi (MPa)
C70600	welded from annealed	up to 4½ (114),	45 (310)	30 (205)
	strip welded from cold- rolled strip	incl up to 4½ (114), incl	54 (375)	45 (310)
C70620	welded from annealed strip	up to 4½ (114), incl	45 (310)	30 (205)
	welded from cold- rolled strip	up to 4½ (114), incl	54 (375)	45 (310)

- 8.1.1.1 As welded from annealed sheet, strip, or plate (WM50),
- 8.1.1.2 As welded from cold-worked sheet strip, or plate (WM00, WM01, WM02, etc.).
 - 8.1.1.3 Welded and light annealed (WOO),
- 8.1.1.4 Welded and cold drawn in either light drawn, eight hard (Copper Alloy UNS No. C70600 and C70620 only) or hard drawn and stress relieved (WR00), (WR04), or
 - 8.1.1.5 Fully finished welded and annealed (WO61).

9. Mechanical Property Requirements

- 9.1 Tensile Strength Requirements:
- 9.1.1 Product (urnished under this specification shall conform to the tensile and yield strength requirements prescribed in Table 2, Table 3, or Table 4 when tested in accordance with Test Methods E8/E8M.

10. Performance Requirements

10.1 Expansion Test Requirements:

10.1.1 The annealed pipe shall be capable of (see 8.1.1.1 and 8.1.1.3) being expanded in accordance with Test Method B153 to 30 % of its outside diameter. Pipe supplied in the "as welded" condition shall be expanded to 20 % of its outside diameter.

- 10.1.2 The annealed ends of pipe furnished end annealed shall be capable of being expanded 30 % of its outside diameter in accordance with Test Method B153.
- 10.1.3 The expanded tube area shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
- 10.1.4 Pipe furnished in other tempers is not subject to this
 - 10.2 Flattening Test Alternative:
- 10.2.1 As an alternative to the expansion test for product over 4 in. (102 mm) in diameter, the flattening test described in the Test Method section in Test Method B968/B968M may be performed.

11. Nondestructive Tests for Pipe

- 11.1 Radiographic Examination—Radiographic examination of the welds shall be as agreed upon.
- 11.2 Eddy-Current Test—Each pipe of nominal outside diameter within the capabilities of the eddy-current tester shall be subjected to an eddy-current test. Testing shall follow the procedures of Practice E243. The pipe shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the material for the intended application.
- 11.2.1 Notch depth standards rounded to the nearest 0.001 in. (0.025 mm) shall be 22 % of the nominal wall thickness. The notch depth tolerance shall be ± 0.0005 in. (0.013 mm).
- 11.2M Pipe that does not actuate the signaling device of the eddy-current tester shall be considered as conforming to the requirements of this test. Pipe with discontinuities indicated by the testing unit may be reexamined or retested, at the option of the manufacturer, to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil, or moisture, shall not be cause for rejection of the pipe, provided the dimensions are still within prescribed limits and the pipe is suitable for its intended application.
- 11.2.2 As an alternate to the Eddy Current test, the manufacturer shall have the option to perform a Hydrostatic Test (11.3.1).
- 11.3 Hydrostatic Test Alternative—As an alternative to the eddy current test for tubes above 2.000 in. (50.8 mm), the manufacturer shall have the option to perform the hydrostatic test to the tests described in 11.3.1 and 11.3.2.
- 11.3.1 Hydrostatic Test—When specified, the pipe shall withstand, without showing weakness or defects, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi (48 MPa), determined by the following equation for thin hollow cylinders under tension. The pipe need not be tested at a hydrostatic pressure of over 1000 psig (7 MPa), unless so specified.

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psig (or MPa),

= wall thickness of the pipe, in. (or mm),

D = outside diameter of the pipe, in. (or mm), and

= allowable stress of the material.

^B See Appendix X2.

11.3.2 *Pneumatic Test*—When specified, the pipe shall be subjected to an internal air pressure of 60 psig (400 kPa) minimum for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the pipe under water or by the pressure-differential method. Any evidence of leakage shall be cause for rejection.

12. Dimensions, Mass, and Permissible Variations

12.1 For purposes of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

Note 1—Blank spaces in the tolerance tables indicate that the material is not generally available or that no tolerance has been established (see Appendix X1).

- 12.2 Outside Diameter Tolerances:
- 12.2.1 The outside diameter for pipe furnished "as-welded," "as-welded and drawn," and "as-welded fully finished" shall conform to the tolerances in Table 5 except as noted in 12.2.2.
- 12.2.2 These outside diameter tolerances shall not apply to the "as-welded" pipe when measured across that portion which contains the weld zone.
 - 12.3 Wall Thickness Tolerances:
- 12.3.1 The wall thickness of pipe furnished in drawn tempers or as fully finished shall conform to the tolerances shown in Table 6, except as noted in 12.3.2 and 12.3.3.
- 12.3.2 The tolerances of Table 6 shall not apply to that portion of the "as-welded" wall which contains the weld flash or head.
- 12.3.3 The tolerances of Table 6 shall be increased by 100 % for that portion of the "as-welded" wall which contains the weld zone.
 - 12.4 Lengths and Tolerances:
- 12.4.1 Pipe in straight lengths shall be furnished in stock lengths with ends included unless the order requires specific lengths or specific lengths with ends.
- 12.4.2 The tolerances for pipe furnished in straight lengths shall be as shown in Table 7.
- 12.4.3 The schedule for pipe furnished with specific or stock lengths with ends shall be in accordance with Table 8.
- 12.5 Squareness of Cut. The departure from squareness of the end of any pipe shall not exceed 0.016 in./in. (0.406 mm/mm) of diameter.

TABLE 5 Average Outside Diameter^A Tolerances

Specified Diameter, in. (mm)	Tolerances, plus and minus, B in. (mm) for Pipe of Copper Alloy UNS Nos. C70600, C71000, C71500
Over 2 to 3 (50.8 to 76.2), incl	0.005 (0.13)
Over 3 to 4 (76.2 to 102), incl	0.006 (0.15)
Over 4 to 5 (102 to 127), incl	0.008 (0.20)
Over 5 to 6 (127 to 152), incl	0.009 (0.23)
Over 6 to 8 (152 to 203), incl	0.010 (0.25)
Over 8 to 10 (203 to 254), incl	0.013 (0.33)
Over 10 to 12 (254 to 305), incl	0.015 (0.38)
Over 12 (305)	0.5 %

^A The average outside diameter of a pipe is the average of the maximum and minimum outside diameters, as determined at any one cross section.

12.6 *Roundness*—The difference between the major and minor diameter of pipe as determined at any one cross section shall not exceed 3 % of the nominal outside diameter.

13. Workmanship, Finish, and Appearance

- 13.1 Roundness, straightness, uniformity of the wall thickness, and inner and outer surface of the tube shall be such as to make it suitable for the intended application. Unless otherwise specified on the purchase order, the cut ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.
- 13.2 The product shall be clean and free from defects, but blemishes of a nature that do not interfere with the intended application are acceptable. Annealed temper tubes may have a dull iridescent film on both the inside and outside surface, and drawn temper tubes may have a superficial film of drawing lubricant on the surfaces.

14. Sampling

14.1 Sampling—The lot size, portion size, and selection of pieces shall be as follows:

14.1.1 Lot Size.

Outside Diameter, in. (mm)	Lot Size, lb (kg)
Up to 4 (102)	10 000 (4550)
Up to 4 (102) (102), incl	
Over 4 (102)	20 000 (9100)

14.1.2 Portion Size:

No. of Pieces in Lot	No. of Sample Pieces to Be Taken
1 to 50	1
51 to 200	2
201 to 1500	3
Over 1500	0.2 % of the total number of pieces in the

- 14.2 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, and so forth shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 14.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 14.2.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semifinished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 14.2.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 14.2.1.2 When samples are taken from the semifinished product, a sample shall be taken to represent each 10 000 lb (4550 kg) or fraction thereof, except that not more than one sample shall be required per piece.

^B If tolerances all plus or all minus are desired, double the values given.

TABLE 6 Wall Thickness Tolerances, in. (mm)

Note 1—Maximum Deviation at Any Point: The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

			Outside Diame	ter, in. (mm)		
Wall Thickness, in. (mm)	Up to 2½ (63.5), incl	Over 2½ to 4½ (63.5 to 114), incl	Over 4½ to 6½ (114 to 165), incl	Over 6½ to 9 (165 to 230), incl	Over 9 to 11½ (230 to 292), incl	Over 11½ (292)
To 0.017 (0.43), incl	0.0013 (0.0033)					
Over 0.017 to 0.021 (0.43 to 0.53), incl	0.0015 (0.038)					
Over 0.021 to 0.026 (0.53 to 0.66), incl	0.002 (0.051)					1
Over 0.026 to 0.037 (0.66 to 0.94), incl	0.0025 (0.064)	0.003 (0.076)				^
Over 0.037 to 0.050 (0.94 to 1.27), incl	0.003 (0.076)	0.0035 (0.089)	0.0035 (0.089)			:01
Over 0.050 to 0.073 (1.27 to 1.85), incl	0.0035 (0.089)	0.004 (0.10)	0.004 (0.10)	0.007 (0.18)		<i>Vil</i> O
Over 0.073 to 0.130 (1.85 to 3.30), incl	0.004 (0.10)	0.0045 (0.11)	0.0045 (0.11)	0.008 (0.20)		- C)
Over 0.130 to 0.205 (3.30 to 5.20), incl	0.0045 (0.11)	0.005 (0.12)	0.005 (0.12)	0.010 (0.25)	0.012 (0.30)	0.014 (0.36)
Over 0.205 to 0.300 (5.20 to 7.61), incl	0.005 (0.12)	0.006 (0.15)	0.006 (0.15)	0.012 (0.30)	0.014 (0.36)	0.018 (0.46)
Over 0.300 to 0.500 (7.61 to 12.7) and over	0.006 (0.15)	0.007 (0.18)	0.007 (0.18)	0.019 (0.48)	0.017 (0.43)	0.023 (0.58)

TABLE 7 Length Tolerances for Pipe Furnished in Straight Lengths^A

Length	Tolerances, in. (mm) Applicable Only to Full-Length Pieces
Specific Lengths:	
Up to 6 in. (152 mm), incl	1/16 (1.6)
Over 6 in. to 2 ft (152 to 610 mm), incl	3/32 (2.4)
Over 2 to 6 ft (610 mm to 1.83 m), incl	1/8 (3.2)
Over 6 to 14 ft (1.83 to 4.27 m), incl	1/4 (6.4)
Over 14 ft (4.27 m)	1/2 (13)
Specific lengths with ends	1 (25)
Stock lengths with or without ends	1 (25)

^A As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

TABLE 8 Schedule of Specific and Stock Lengths with Ends Included

Major Outside Dimensions, in. (mm)	Nominal Length, ft (m)	Shortest Permissible Length, ^A % of Nominal Length	Maximum Permissible Weight of Ends, % of Lot Weight
Up to 3 (76.2), incl	6 to 20 (1.85 to 6.10), incl	55	30
Over 3 to 3½ (76.2 to 88.9), incl	6 to 20 (1.85 to 6.10), incl	50	40

A Expressed to the nearest ½ ft (150 mm).

- 14.2.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific castings analysis with a specific quantity of finished material.
- 14.2.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.
- 14.3 Tension Tests—For the tension tests a specimen shall be taken from each of the pieces selected in accordance with 14.1. The required tension tests shall be made on each of the specimens so selected.
- 14.3.1 The required tension tests shall be made on each of the specimens so selected.

15. Number of Tests and Retests

15.1 *Tests*:

- 15.1.1 *Chemical Analysis*—Chemical composition shall determine as the per element mean of the results from at least two replicate analyses of the samples, and the results of each replication must meet the requirements of the product specification.
- 15.1.2 Tension Test. When tensile strength is specified, two tubes shall be selected from each lot and subjected to the tension test which shall, in case of disagreement, be made in accordance with Test Methods E8/E8M.
- 15.1.3 Other Tests—For tests specified in Section 10, specimens shall be taken from each of the pieces selected in accordance with 14.1.
 - 15.2 Retests:
- 15.2.1 When test results obtained by the purchaser fail to conform with the product specification requirement(s), the manufacturer or supplier shall have the option to perform a retest.
- 15.2.2 Retesting shall be as directed in this specification for the initial test, except the number of test specimens shall be twice that required normally for the test.
- 15.2.3 Test results for all specimens shall conform to the requirement(s) of this specification in retest, and failure to comply shall be cause for lot rejection.

16. Specimen Preparation

- 16.1 Chemical Analysis:
- 16.1.1 Preparation of the analytical test specimen shall be the responsibility of the reporting laboratory.
 - 16.2 Tensile Test:
- 16.2.1 Tension test specimens shall be of the full section of the pipe and shall conform to the requirements of Test Specimens section of Test Methods E8/E8M, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimen for Large-Diameter Tubular Products, of Test Methods E8/E8M may be used when a full-section specimen cannot be tested.
- 16.2.2 When the limitations of the testing machine preclude the use of a full specimen, specimens conforming to Tension Test Specimens for Large-Diameter Tubular Products of Test Methods E8/E8M shall be used.

- 16.3 Expansion Test:
- 16.3.1 Test specimen shall conform to the requirements of the Specimen Preparation section of Test Method B153.
 - 16.4 Flattening Test:
- 16.4.1 The flattening test shall be performed in accordance with Test Method section in Test Method B968/B968M.

17. Test Methods

17.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published test methods, some of which are considered by ASTM as no longer viable. These and others not listed may be used subject to agreement.

Element	Method
---------	--------

Copper 60 to 99.74 Nickel, inc. Cobalt Lead 0.05 to 0.10 Iron 0.05 to 1.8 Zinc to 1.0 Manganese to 1.0 Phosphorus 0.001 to 0.04 E478 Electrolytic E478 Gravimetric E478 Atomic Absorption E54 E478 Atomic Absorption E62 E62

- 17.2 Tension test specimens shall be of the full section of the tube and shall conform to the requirements of the Significance and Use section of Test Methods E8/E8M.
- 17.3 Whenever tension test results are obtained from both full-size and from machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.
- 17.4 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the rate of stressing to the yield strength should not exceed 100 ksi/min (690 MPa/min). Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. (0.5 mm/mm) of gage length (or distance between grips for full-section specimens).
- 17.5 Flattening Test—The flattening test shall be performed in accordance with Test Method section in Test Method B968/B968M.

18. Significance of Numerical Limits

18.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, and observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property

Rounded Unit for Observed or Calculated Value

Chemical composition

Tensile strength Yield strength Elongation nearest unit in the last right-hand place of figures of the specified limit nearest ksi (nearest MPa up to 10 ksi, incl, nearest 5 MPa over 10 ksi) nearest 1 %

19. Inspection

19.1 The manufacturer, or supplier, shall inspect and make tests necessary to verify the product furnished conforms to specification requirements.

- 19.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer, or supplier, and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector representing the purchaser that the product is being furnished in accordance with the specification shall be included in the agreement. All tests and the inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 19.3 The manufacturer, or supplier, and the purchaser may conduct the final inspection simultaneously by mutual agreement.

20. Rejection and Rehearing

- 20.1 Rejection:
- 20.1.1 Product that fails to conform to the specification requirements, when tested by the purchaser or purchaser's agent, may be rejected.
- 20.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition a written notification of rejection shall follow.
- 20.1.3 In case of dissatisfaction with the results of the test upon which rejection is based, the manufacturer or supplier, shall have the option to make claim for a rehearing.
- 20.2 Rehearing—As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product specification, or, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

21. Certification

21.1 The manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements.

21.2 DELETED

22. Test Report

22.1 A report of test results shall be furnished.

23. Packaging and Package Marking

- 23.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.
- 23.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, total length or piece count, or both, and name of supplier. The specification number shall be shown.

24. Keywords

24.1 copper nickel; pipe; welded pipe; UNS No. C70600; UNS No. C70620; UNS No. C71500; UNS No. C71520

APPENDIXES

X1. SUGGESTED SIZES FOR PIPE

X1.1 Suggested wall thickness for welded copper-nickel alloy pipe are given in Table X1.1.

TABLE X1.1 Suggested Wall Thicknesses^A of Welded Pipe Based on SPS Diameters

	NS No. C706 No. C71520	500;									200
	Al	PPENDIXES	;								5,
	(Nonman	ndatory Inform	nation)							50,	
	X1. SUGGES	STED SIZES	FOR PIPE					٠. ٥	10/1		
for welde	ed copper-nic	ckel				\	G	ecr.			
ARIF X11	Suggested Wa	II Thicknesse	sA of Welded	Dina Basad			\				
TOLL XIII	on	SPS Diameter	S			or?	•				
SPS, in.	Outside Diameter,	SPS Diameter		mm)	NE	BR	•				
	Outside Diameter, in. (mm)	SPS Diameter	S Thickness, in. (B	mm) C 0.134 (3.40)	SME	BR	•				
SPS, in.	Outside Diameter,	SPS Diameter Wall	S Thickness, in. (mm) C 0.134 (3.40) 0.165 (4.19)	SNE	BR	•				
SPS, in.	Outside Diameter, in. (mm) 2.875 (73.0)	Wall A	S Thickness, in. (B 0.083 (2.11)	mm) C 0.134 (3.40) 0.165 (4.19) 0.180 (4.57)	SME	BR	•				
SPS, in. 2.5	Outside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9)	SPS Diameter Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42)		SME	BR	•				
SPS, in. 2.5 3 3.5	Outside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102)	SPS Diameter Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15)	SME	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141)	SPS Diameter Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59)	SME	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168)	SPS Diameter Wall A	B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57)	SME	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5 6 7	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194)	Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21)	SME	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (168) 7.625 (194) 8.625 (219)	Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64)	SNE	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244)	Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76) 0.187 (3.75)	0.180 (4.57) 0.203 (6.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64)	SME	BR					
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273)	SPS Diameter Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76) 0.187 (4.75) 0.187 (4.75)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64) 0.380 (9.65)	SME	BR					
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273) 12.750 (324)	Wall A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76) 0.187 (3.75)	0.180 (4.57) 0.203 (6.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64)	SNE	BR	•				
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273) 12.750 (324) 14.0 (355)	SPS Diameter Wall A 0.134 (3.40) 0.156 (3.96) 0.165 (4.19)	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.134 (3.40) 0.137 (4.75) 0.187 (4.75) 0.187 (4.75) 0.250 (6.35)	0.180 (4.57) 0.203 (5.15) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64) 0.380 (9.65)	SME	BR					
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273) 12.750 (324) 14.0 (355) 16.0 (406)	Wall A 0.134 (3.40) 0.156 (3.96) 0.165 (4.19) 0.165 (4.19)	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76) 0.187 (3.75) 0.187 (4.75) 0.250 (6.35)	0.180 (4.57) 0.203 (6.15) 0.203 (5.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64) 0.380 (9.65) 0.454 (11.5)	SME	BR					
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16 18	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273) 12.750 (324) 14.0 (355) 16.0 (406) 18.0 (457)	A	S Thickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.134 (3.40) 0.137 (4.75) 0.187 (4.75) 0.187 (4.75) 0.250 (6.35)	0.180 (4.57) 0.203 (6.15) 0.203 (5.15) 0.203 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.380 (9.65) 0.454 (11.5)	SME	BR					
SPS, in. 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12 14 16	Ontside Diameter, in. (mm) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114) 5.000 (127) 5.563 (141) 6.625 (168) 7.625 (194) 8.625 (219) 9.625 (244) 10.750 (273) 12.750 (324) 14.0 (355) 16.0 (406)	Wall A 0.134 (3.40) 0.156 (3.96) 0.165 (4.19) 0.165 (4.19)	SThickness, in. (B 0.083 (2.11) 0.095 (2.42) 0.095 (2.42) 0.109 (2.77) 0.120 (3.05) 0.125 (3.17) 0.134 (3.40) 0.134 (3.40) 0.148 (3.76) 0.187 (3.75) 0.187 (4.75) 0.250 (6.35)	0.180 (4.57) 0.203 (6.15) 0.203 (5.15) 0.220 (5.59) 0.259 (6.57) 0.284 (7.21) 0.340 (8.64) 0.340 (8.64) 0.380 (9.65) 0.454 (11.5) 	SME	BO					

^A These wall thicknesses correspond to MIL-T-16420 classes for the same outside

Column C-Class 700

X2. METRIC EQUIVALENTS

X2.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared $(N = kg m/s^2)$. The derived SI unit for pressure or SMENORMOC

stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

Column A-Class 50

Column B-Class 200

SPECIFICATION FOR WELDED UNS N08020, N08024, AND N08026 ALLOY TUBES SB-468 (Identical with ASTM Specification B468-04(2009) except that certification has been made mandatory.)

ASMENORANDOC. COM. Circk to view the full Path. (Identical with ASTM Specification B468-04(2009) except that certification has been made mandatory.)

SPECIFICATION FOR WELDED UNS N08020, N08024, Section II Part B) 20' AND N08026 ALLOY TUBES

SB-468

[Identical with ASTM Specification B 468-04(2009) except that certification has been made mandatory.]

Scope

- 1.1 This specification covers welded UNS N08020, N08024, and N08026 alloy boiler, heat exchanger, and condenser tubes for general corrosion-resisting and lowor high-temperature service.
- **1.2** This specification covers tubes $\frac{1}{8}$ to 5 in. (3.18 to 127 mm), inclusive, in outside diameter and 0.015 to 0.500 in. (0.38 to 12.70 mm), inclusive, in wall thickness. Table 2 of Specification B 751 lists the dimensional requirements of these sizes. Tubes having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.
- **1.3** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- **1.4** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/ material as provided by the manufacturer to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

Referenced Documents 2.

2.1 ASTM Standards:

- A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- B 751 Specification for General Requirements for Nickel and Nickel-Alloy Welded Tube
- B 899 Terminology Relating to Non-ferrous Metals and Alloys

Terminology

3.1 Definitions:

3.1.1 Definitions for terms defined in Terminology B 899 shall apply unless otherwise defined by the requirements of this document.

General Requirement

4.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B 751 unless otherwise provided herein.

5. Ordering Information

- **5.1** It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - 51.1 Quantity (feet or number of lengths),
 - **5.1.2** UNS number,
- **5.1.3** Size (outside diameter and minimum or average wall thickness).
 - **5.1.4** Length (random or specific),
 - **5.1.5** ASTM designation,
 - **5.1.6** *Product Analysis* State if required,
 - **5.1.7** DELETED
- **5.1.8** Purchaser Inspection State which tests or inspections are to be witnessed, if any, and
 - **5.1.9** Supplementary requirements, if any.

Materials and Manufacture

- **6.1** The tubing shall be made from flat-rolled stock by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final heat treatment, the material shall be cold-worked in either the weld metal only, or in both the weld and base metal.
- **6.2** Heat Treatment Tubing of UNS N08020 alloy shall be furnished in the stabilized-annealed condition. Tubing of UNS N08024 alloy shall be furnished in the annealed condition. Tubing of UNS N08026 alloy shall be furnished in the solution-annealed condition.

TABLE 1
CHEMICAL REQUIREMENTS

		Composition, %					
Element	UNS N08020	UNS N08024	UNS N08026				
Carbon, max	0.07	0.03	0.03				
Manganese, max	2.00	1.00	1.00				
Phosphorus, max	0.045	0.035	0.03				
Sulfur, max	0.035	0.035	0.03				
Silicon, max	1.00	0.50	0.50				
Nickel	32.00-38.00	35.00-40.00	33.00-37.20				
Chromium	19.00-21.00	22.50-25.00	22.00-26.00				
Molybdenum	2.00-3.00	3.50-5.00	5.00-6.70				
Copper	3.00-4.00	0.50-1.50	2.00-4.00				
Columbium (Nb) + tantalum	8× carbon−1.00	0.15-0.35					
Nitrogen			0,10-0.16				
Iron ^A	Remainder	Remainder	Remainder				

A By difference.

NOTE 1 — The recommended annealing temperatures are 1800 to 1850°F (982 to 1010°C) for UNS N08020, 1925 to 1975°F (1052 to 1079°C) for UNS N08024, and 2050 to 2200°F (1121 to 1204°C) for UNS N08026.

7. Chemical Composition

- **7.1** The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification B 751.
- **7.2** If a product analysis is performed, it shall meet the chemistry limits prescribed in Table 1, subject to the analysis tolerances specified in Table 6 of Specification B 751.

8. Mechanical Properties and Other Requirements

- **8.1** *Mechanical Properties* The material shall conform to the mechanical property requirements specified in Table 2. One test is required for each lot as defined in Specification B 751.
- **8.2** Flattening Test A flattening test shall be made on each end of one tube per lot. Superficial ruptures

MECHANICAL PROPERTY REQUIREMENTS

Tensile Strength, min, ksi (MPa)	Yield Strength, min, ksi (MPa)	Elongation in 2 in. (50.8 mm), min, %
80 (551)	35 (241)	30.0

resulting from surface imperfections shall not be cause for rejection.

- **8.3** Flange Test A flange test shall be made on each end of one tube per lot.
- **8.4** *Nondestructive Test Requirements* Each tube shall be subjected to either a pressure test or a nondestructive electric test at the manufacturer's option. The purchaser may specify which test is to be used.

9. Keywords

9.1 welded tube; N08020; N08024; N08026

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order:

intergranular corrosion testing shall be the same as for mechanical testing.

S1.1.1 In addition to the anneal recording to the specimen shall be served for the specimen shall be specimen shall b

S1.1.2 If any corrosion test specimen fails the test, the material represented by such specimens may be reheat-

SB-473 (Identical with ASTM Specification B473-07(20)3) except that certification has been made mandatory.) SPECIFICATION FOR UNS N08020, UNS N08024, AND UNS N08026 NICKEL ALLOY BAR AND WIRE

SPECIFICATION FOR UNS N08020, UNS N08024, AND Section II Part B 201 UNS N08026 NICKEL ALLOY BAR AND WIRE

SB-473

(Identical with ASTM Specification B 473-07(2013) except that certification has been made mandatory.)

Scope

- 1.1 This specification covers UNS N08020, UNS N08026, and UNS N08024 bar and wire other than required for reforging.
- 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- **1.3** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. **Referenced Documents**

- **2.1** ASTM Standards:
- 2.1 ASTM Standards:
 A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

Terminology 3.

- **3.1** Definitions of Terms Specific to This Standard:
- 3.1.1 The terms bar and wire as used in this specification are described as follows:
- **3.1.2** bars, n hot-finished rounds, squares, octagons, and hexagons: $\frac{1}{4}$ in. (6.35 mm) and over in diameter

or size. Hot-finished flats: $\frac{1}{4}$ to 10 in. (254 mm), inclusive, in width, ½ in. (3.175 mm) and over in thickness. Coldfinished rounds, squares, octagons, hexagons, and shapes: over ½ in. (12.7 mm) in diameter or size. Cold-finished flats: $\frac{3}{8}$ in. (9.525 mm) and over in width (see Discussion(1)), $\frac{1}{8}$ in. and over in thickness (see Discussion(2)).

- **3.1.2.1** Discussion (1) Widths less than $\frac{3}{8}$ in. (9.525 mm) and thicknesses less than $\frac{3}{16}$ in. (4.75 mm)are generally described as flat wire.
- **3.1.2.2** Discussion (2) Thicknesses $\frac{1}{8}$ in. (3.175 mm) to under $\frac{3}{16}$ in. (4.75 mm) can be cold-rolled strip as well as bar.
- \sim 3.1.3 wire, n cold finished only: round, square, octagon, hexagon, and shape wire, $\frac{1}{2}$ in. (12.7 mm) and under in diameter or size. Cold-finished only: flat wire, $\frac{3}{16}$ in. (4.76 mm) to under $\frac{3}{8}$ in. (9.525 mm) in width, 0.010 in. (0.254 mm) to under $\frac{3}{16}$ in. in thickness.

4. **Ordering Information**

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.1** Quantity (weight or number of pieces),
 - **4.1.2** Name of material or UNS number,
 - **4.1.3** Form (bar or wire),
 - 4.1.4 Dimensions,
 - 4.1.5 Condition,
 - **4.1.6** Finish,
 - **4.1.7** ASTM designation and year of issue,
 - **4.1.8** Inspection (15.1),
 - **4.1.9** Supplementary requirements, if any, and

remainder^A

CHEMICAL REQUIREMENTS						
		Composition, %				
Element	UNS N08026	UNS N08020	UNS N08024			
Carbon, max	0.03	0.07	0.03			
Manganese, max	1.00	2.00	1.00			
Phosphorus, max	0.03	0.045	0.035			
Sulfur, max	0.03	0.035	0.035			
Silicon, max	0.50	1.00	0.50			
Nickel	33.00 to 37.20	32.00 to 38.00	35.00 to 40.00			
Chromium	22.00 to 26.00	19.00 to 21.00	22,50 to 25.00			
Molybdenum	5.00 to 6.70	2.00 to 3.00	3.50 to 5.00			
Copper	2.00 to 4.00	3.00 to 4.00	0.50 to 1.50			
Columbium (Nb) + tantalum		8 × carbon-1.00	0.15 to 0.35			
Nitrogen	0.10 to 0.16					

remainder^A

TABLE 1 CHEMICAL REQUIREMENTS

Iron

4.1.10 If possible, the intended end use.

NOTE 1 — A typical ordering description is as follows: 200 bars, UNS N08020, 1 in. (25.4 mm) round by 10 to 14 ft (3.0 to 3.6 m), centerless ground, Specification B 473.

5. Materials and Manufacture

5.1 Heat Treatment — The product of UNS N08020 alloy shall be furnished in the stabilized-annealed condition. The product of UNS N08026 alloy shall be furnished in the solution-annealed condition. The product of UNS N08024 alloy shall be furnished in the annealed condition.

NOTE 2 — The recommended annealing temperatures all followed by quenching in water or rapidly cooling by other means are as follows: 1700 to 1850°F (927 to 1010°C) for UNS N08020, 2050 to 2200°F (1121 to 1204°C) for UNS N08026, and 1925 to 1975°F (1052 to 1079°C) for UNS N08024.

6. Chemical Composition

- **6.1** The material shall conform to the requirements as to chemical composition prescribed in Table 1.
- **6.2** If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations prescribed in Specification B 880.

7. Condition

- **7.1** Bars shall be furnished annealed and either hot finished or cold finished. Strain-hardened material is available only as cold finished.
- **7.2** Wire will be furnished only as annealed and cold finished.

8. Mechanical Properties

remainder^A

8.1 The material shall conform to the applicable requirements as to mechanical properties prescribed in Table 2.

Dimensions and Permissible Variations

- **9.1** Bar Bars shall conform to the variations in dimensions prescribed in Tables 3–11, inclusive, as applicable.
- **9.2** *Wire* Wire shall conform to the permissible variations in dimensions prescribed in Tables 12–16, inclusive, as applicable.

10. Workmanship, Finish, and Appearance

10.1 The product shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

11. Sampling

11.1 *Lot:*

- **11.1.1** A lot for chemical analysis shall consist of one heat.
- **11.1.2** A lot for mechanical properties shall consist of all material from the same heat, nominal diameter or thickness, of each heat-treatment charge.

11.2 Test Material Selection:

- **11.2.1** *Chemical Analysis* Representative samples shall be taken during pouring or subsequent processing.
- **11.2.1.1** Check analysis shall be wholly the responsibility of the purchaser.

 $^{^{\}it A}$ By difference.

TABLE 2 MECHANICAL PROPERTY REQUIREMENTS⁴

	Diameter or		ensile gth, min		ield gth, min	Elongation in 2 in. (50.8 mm), min,	Reduction of area,
Condition	Thickness, in. (mm)	ksi	MPa	ksi	MPa	%	min, %
Annealed, hot finished or cold finished	All	80	551	35	241	30.0 ⁸	50.0
Annealed, strain-hardened	Up to 2 (50.8) incl	90	620	60	415	15.0	40.0

A For wire only, tensile strength 90 to 120.0 ksi (620 to 830 MPa); no requirements on yield strength, elongation, and reduction of area.

B Cold-finished shapes require only 15%, minimum, elongation.

TABLE 3 PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED ROUND AND SQUARE BARS

	Permissible Variations fro	m Specified Size, in. (mm)	Out-of-Round ^A or Out-
	0ver	Under	of-Square, B in. (mm)
$\frac{1}{4}$ (6.35) to $\frac{5}{16}$ (7.94), incl ^{C,D}	E	E	E
Over $\frac{5}{16}$ (7.94) to $\frac{7}{16}$ (11.11), incl ^{C,D}	0.006 (0.15)	0.006 (0.15)	0.009 (0.23)
Over $\frac{7}{16}$ (11.11) to $\frac{5}{8}$ (15.88), incl ^{C,D}	0.007 (0.18)	0.007 (0.78)	0.010 (0.25)
Over $\frac{5}{8}$ (15.88) to $\frac{7}{8}$ (22.22), incl	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)
Over $\frac{7}{8}$ (22.22) to 1 (25.40), incl	0.009 (0.23)	0.009 (0.23)	0.013 (0.33)
Over 1 (25.40) to $1\frac{1}{8}$ (28.58), incl	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)
Over $1\frac{1}{8}$ (28.58) to $1\frac{1}{4}$ (31.75), incl	0.011 (0.28)	0.011 (0.28)	0.016 (0.41)
Over $1\frac{1}{4}$ (31.75) to $1\frac{3}{8}$ (34.92), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over $1\frac{3}{8}$ (34.92) to $1\frac{1}{2}$ (38.10), incl	0.014 (0.36)	0.014 (0.36)	0.021 (0.53)
Over $1\frac{1}{2}$ (38.10) to 2 (50.80), incl	¹ / ₆₄ (0.40)	¹ / ₆₄ (0.40)	0.023 (0.58)
Over 2 (50.80) to $2\frac{1}{2}$ (63.50), incl	$\frac{1}{32}$ (0.79)	0	0.023 (0.58)
Over $2\frac{1}{2}$ (63.50) to $3\frac{1}{2}$ (88.90), incl	³/ ₆₄ (1.19) 🕻 💙	0	0.035 (0.89)
Over $3\frac{1}{2}$ (88.90) to $4\frac{1}{2}$ (114.30), incl	¹ / ₁₆ (1.59)	0	0.046 (1.17)
† Over $4\frac{1}{2}$ (114.30) to $5\frac{1}{2}$ (139.70), incl	⁵ / ₆₄ (1.98)	0	0.058 (1.47)
Over $5\frac{1}{2}$ (139.70) to $6\frac{1}{2}$ (165.10), incl	¹ / ₈ (3.18)	0	0.070 (1.78)
Over $6\frac{1}{2}$ (165.10) to 8 (203.20), incl	⅓₂ (3.97)	0	0.085 (2.18)

^A Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same cross section.

TABLE 4 PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED HEXAGONAL AND OCTAGONAL BARS

20 C.	Permissible Variations from	Permissible Variations from Specified Size, in. (mm)			
Specified Sizes Measured Between Opposite Sides, in. (mm)	Over	Under	for Hexagons only, in. (mm)		
$\frac{1}{4}$ (6.35) to $\frac{1}{2}$ (12.70), incl	0.007 (0.18)	0.007 (0.18)	0.011 (0.28)		
Over $\frac{1}{2}$ (12.70) to 1 (25.40), incl	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)		
Over 1 (25.40) to $1\frac{1}{2}$ (38.10), incl	0.021 (0.53)	0.021 (0.53)	0.025 (0.64)		
Over $1\frac{1}{2}$ (38.10) to 2 (50.80), incl	$\frac{1}{32}$ (0.79)	¹ / ₃₂ (0.79)	¹ / ₃₂ (0.79)		
Over 2 (50.80) to $2\frac{1}{2}$ (63.50), incl	³ / ₆₄ (1.19)	³ / ₆₄ (1.19)	³ / ₆₄ (1.19)		
Over $2\frac{1}{2}$ (63.50) to $3\frac{1}{2}$ (88.90), incl	¹/ ₁₆ (1.59)	¹ / ₁₆ (1.59)	¹ / ₁₆ (1.59)		

^B Out-of-square section is the difference in the two timensions at the same cross section of a square bar, each dimension being the distance between opposite faces.

 $^{^{}C}$ Size tolerances have not been evolved for rounds in the size range of $^{1}\!\!/_{4}$ to $^{5}\!\!/_{16}$ in. (6.35 to 7.94 mm), inclusive. Size tolerances have not been evolved for round sections in the size range of $^{1}\!\!/_{4}$ in. to approximately $^{5}\!\!/_{8}$ in. (6.35 to 15.88 mm) in diameter which are produced on rod mills in coils.

Deviations in size of coiled product made on rod mills are greater than size tolerances for product made on bar mills.

^E Squares in this size are not produced as hot-rolled products.

[†] Editorially corrected.

TABLE 5
PERMISSIBLE VARIATIONS IN THICKNESS AND WIDTH FOR HOT-ROLLED FLAT BARS

		Permissible Vari	iations in Thickne	ss for Thicknesses	s Given, in. (mm)		
	¹ / ₈ (3.18) to ¹ / ₂	/ ₂ (12.70), incl	Over ¹ / ₂ (12.70) to 1 (25.40),		Over 1 (25.40) to 2 (50.80), incl			
Specified Width, in. (mm)	0ver	Under	0ver	Under	0ver	Under		
To 1 (25.40), incl	0.008 (0.20)	0.008 (0.20)	0.010 (0.25)	0.010 (0.25)		0'0		
Over 1 (25.40) to 2 (50.80), incl	0.012 (0.30)	0.012 (0.30)	0.015 (0.38)	0.015 (0.38)	0.031 (0.79)	0.031 (0.79)		
Over 2 (50.80) to 4 (101.60), incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)		
Over 4 (101.60) to 6 (152.40), incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)		
Over 6 (152.40) to 8 (203.20), incl	0.016 (0.41)	0.016 (0.41)	0.025 (0.64)	0.025 (0.64)	0.031 (0.79)	0.031 (0.79)		
Over 8 (203.20) to 10 (254.00), incl	0.021 (0.53)	0.021 (0.53)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)		
	Over 2 (50.80) to 4 (101.60), Ov		60), Over 4 (101.60) to 6 (152.40), incl					.52.40) to 8 20), incl
	Over	Under	0ver	Under	0ver	Under		
To 1 (25.40), incl					/ /			
Over 1 (25.40) to 2 (50.80), incl				CHI				
Over 2 (50.80) to 4 (101.60), incl	0.062 (1.57)	0.031 (0.79)						
Over 4 (101.60) to 6 (152.40), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)				
Over 6 (152.40) to 8 (203.20), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)		
Over 8 (203.20) to 10 (254.00), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)		
			3/0	Permissible \	Variations in Wi	dth, in. (mm)		
Specified Width, in. (mm)			or a	Over		Under		
To 1 (25.40), incl		LOTAS	4/	0.015 (0.38))	0.015 (0.38)		
Over 1 (25.40) to 2 (50.80), incl		12	11.	0.031 (0.79))	0.031 (0.79)		
Over 2 (50.80) to 4 (101.60), incl		25		0.062 (1.57))	0.031 (0.79)		
Over 4 (101.60) to 6 (152.40), incl		c P		0.093 (2.36))	0.062 (1.57)		
Over 6 (152.40) to 8 (203.20), incl				0.125 (3.18))	0.156 (3.96)		
Over 8 (203.20) to 10 (254.00), incl				0.156 (3.96))	0.187 (4.75)		

TABLE 6
PERMISSIBLE VARIATIONS IN SIZE OF COLD-FINISHED ROUND BARS

rien	Permissible Variations from Specified Size, $(mm)^{A,B}$			
Specified Size, in. (mm)	0ver	Under		
Over ${}^{1}\!$	0.002 (0.05) 0.0025 (0.06) 0.003 (0.08)	0.002 (0.05) 0.0025 (0.06) 0.003 (0.08)		

A Unless otherwise specified, size tolerances are over and under as shown in the above table. When required, however, they may be specified all over and nothing under, or all under and nothing over, or any combination of over and under, if the total spread in size tolerance for a specified size is not less than the total spread shown in the table.

 $^{^{\}mathcal{B}}$ When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

 $^{^{\}it C}$ Cold-finished bars over 4 in. (101.60 mm) in diameter are produced; size tolerances for such bars have not been evolved.

TABLE 7 PERMISSIBLE VARIATIONS IN SIZE OF COLD-FINISHED HEXAGONAL, OCTAGONAL, AND SQUARE **BARS**

^A When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

TABLE 8 PERMISSIBLE VARIATIONS IN WIDTH AND THICKNESS OF GOLD-FINISHED FLAT **BARS**

	DAIG	
		in Width, over and under, mm) ^A
Width, in. (mm)	For Thicknesses 1/4 (6.35) and Under	For Thicknesses Over ¹ / ₄ (6.35)
³ / ₈ (9.52) to 1 (25.40), incl	0.004 (0.10)	0.002 (0.05)
Over 1 (25.40) to 2 (50.80), incl	0.006 (0.15)	0.003 (0.08)
Over 2 (50.80) to 3 (76.20), incl	0.008 (0.20)	0.004 (0.10)
Over 3 (76.20) to $4\frac{1}{2}$ (114.30), incl	0.010 (0.25)	0.005 (0.13)
Thickness, in. (mm)		e Variations in Thickness, nd under, in. (mm) ^A
½ (3.18) to 1 (25.40), incl		0.002 (0.05)
Over 1 (25.40) to 2 (50.80), incl		0.003 (0.08)
Over 2 (50.80) to 3 (76.20), incl		0.004 (0.10)
Over 3 (76.20) to $4\sqrt[3]{2}$ (114.30), incl ^B		0.005 (0.13)

 $^{^{}A}$ When it is necessary to heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

 $^{^{\}it B}$ Cold-finished flat bars over $4\frac{1}{2}$ in. (114.30 mm) wide or thick are produced; width and thickness tolerances for such bars have not been evolved.

TABLE 9 PERMISSIBLE VARIATIONS IN LENGTH OF HOT-FINISHED OR COLD-FINISHED BARS

	Permissible Variations in Length, in. (mm)				
Specified Size of Rounds, Squares, Hexagons, and Octagons and Widths of Flats, ^A	For Lengths U (3,658 mm	•	For Lengths Over 12 (3,658 mm) to 25 ft (7,620 mm), incl		
in. (mm)		Under	0ver	Under	
To 2 (50.80), incl	½ (12.70)	0	³ / ₄ (19.05)	0	
Over 2 (50.80) to 4 (101.60), incl	³ / ₄ (19.05)	0	1 (25.40)	0	
Over 4 (101.60) to 6 (152.40), incl	1 (25.40)	0	$1\frac{1}{4}$ (31.75)	0	
Over 6 (152.40) to 9 (228.60), incl	$1\frac{1}{4}$ (31.75)	0	$1\frac{1}{2}$ (38.10)	0 0	
Over 9 (228.60) to 12 (304.80), incl	1½ (38.10)	0	2 (50.80)		

NOTE 1 — The order should specify random lengths or specific lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specific lengths are ordered, Table 10 or Table 11 shall apply.

TABLE 10
PERMISSIBLE VARIATIONS IN LENGTH OF HOT-FINISHED OR COLD-FINISHED
BARS MACHINE CUT AFTER MACHINE STRAIGHTENING

Specified Size of Rounds, Squares, Hexagons, and Octagons	For Lengths Up		For Lengths ((3,658 mm) t (7,620 mm)	to 25 ft
and Widths of Flats, A in. (mm)	Over	Under	0ver	Under
To 3 (76.20), incl	¹ / ₈ (3.18)	0	³ / ₁₆ (4.76)	0
Over 3 (76.20) to 6 (152.40), incl	(4.76)	0	$\frac{1}{4}$ (6.35)	0
Over 6 (152.40) to 9 (228.60), incl	¹ / ₄ (6.35)	0	⁵ / ₁₆ (7.94)	0
Over 9 (228.60) to 12 (304.80), incl	½ (12.70)	0	$\frac{1}{2}$ (12.70)	0

NOTE 1 — The order should specify random lengths or specific lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specific lengths are ordered, Table 9 or Table 10 shall apply.

TABLE 11 PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF MACHINE STRAIGHTENED HOTFINISHED OR COLD-FINISHED BARS

Measurement is taken on the concave side of the bar with a straight edge.

Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine straightened to the following tolerances:

Hot finished:

 1 % in. (3.18 mm) in any 5 ft (1524 mm), but may not exceed 1 % in. (3.18 mm) × [length in feet (mm)]/ [5 ft (1524 mm)]

Cold finished:

 $^{1}\!\!\!/_{16}$ in. (1.59 mm) in any 5 ft (1524 mm), but may not exceed $^{1}\!\!\!/_{16}$ in. (1.59 mm) \times [length in feet (mm)]/ [5 ft (1524 mm)]

^A The maximum width of bar flats is 10 in. (254.00 mm).

^A The maximum width of bar flats is 10 in. (254.00 mm).

TABLE 12 DIAMETER AND OUT-OF-ROUND TOLERANCES FOR ROUND WIRE (DRAWN, POLISHED, CENTERLESS GROUND, CENTERLESS GROUND AND POLISHED) $^{A,B,\mathcal{C}}$

	Diameter Toler	rance, in. (mm)
Specified Diameter, in. (mm)	Over	Under
000 (12.70)	0.002 (0.05)	0.002 (0.05)
der 0.5000 (12.70) to 0.3125 (7.94), incl	0.0015 (0.04)	0.0015 (0.04)
der 0.3125 (7.94) to 0.0440 (1.12), incl	0.001 (0.03)	0.001 (0.03)
der 0.0440 (1.12) to 0.0330 (0.84), incl	0.0008 (0.02)	0.0008 (0.02)
er 0.0330 (0.84) to 0.0240 (0.61), incl	0.0005 (0.013)	0.0005 (0.013)
er 0.0240 (0.61) to 0.0120 (0.30), incl	0.0004 (0.010)	0.0004 (0.010)
er 0.0120 (0.30) to 0.0080 (0.20), incl	0.0003 (0.008)	0.0003 (0.008)
er 0.0080 (0.20) to 0.0048 (0.12), incl	0.0002 (0.005)	0.0002 (0.005)
er 0.0048 (0.12) to 0.0030 (0.08), incl	0.0001 (0.003)	0.0001 (0.003)

A Diameter tolerances are over and under as given in this table. Also, round wire can be produced to tolerances all over and nothing under, or all under and nothing over, or any combination over and under, if the total spread in diameter tolerances for a specified diameter is not less than the total spread given in this table.

TABLE 13 SIZE TOLERANCES FOR DRAWN WIRE IN HEXAGONS, OCTAGONS, AND SQUARES

· S	Size	Tolerance, in. (mm)
Specified Size, ^A in. (mm)	0ver	Under
¹ / ₂ (12.70)	0	0.004 (0.10)
Under $\frac{1}{2}$ (12.70) to $\frac{5}{16}$ (7.94), incl	0	0.003 (0.08)
Under $\frac{5}{16}$ (7.94) to $\frac{1}{8}$ (3.18), incl	0	0.002 (0.05)

^A Distance across flats.

TABLE 14 LENGTH TOLERANCES FOR ROUND AND SHAPE, STRAIGHTENED AND CUT WIRE, EXACT LENGTH RESHEARED WIRE

cjic.		Tolerance, in. (mm)				
Diameter, in. (mm)	Length, ft (mm)	0ver	Under			
0.125 (3.18) and under	Up to 12 (3,658), incl	¹ / ₁₆ (1.59)	0			
0.125 (3.18) and under	Over 12 (3,658)	½ (3.18)	0			
Over 0.125 (3.18) to 0.500 (12.70), incl	Under 3 (914)	$\frac{1}{32}$ (0.79)	0			
Over 0.125 (3)18) to 0.500 (12.70), incl	3 (914) to 12 (3,658), incl	$\frac{1}{16}$ (1.59)	0			
Over 0.125 (3.18) to 0.500 (12.70), incl	Over 12 (3,658)	½ (3.18)	0			

 $^{^{\}it B}$ The maximum out-of-round tolerance for round wire is one half of the total size tolerance given in this table.

 $^{^{\}it C}$ When it is necessary to heat treat after cold finishing because of special mechanical property requirements, tolerances are commonly double those shown.

TABLE 15 SIZE TOLERANCES FOR WIRE FOR WHICH THE FINAL OPERATION IS A SURFACE TREATMENT FOR THE PURPOSE OF REMOVING SCALE OR DRAWING LUBRICANT

0ver	Under	
	Olldel	
0.004 (0.10)	0.004 (0.10)	
0.003 (0.08)	0.003 (0.08)	
0.002 (0.05)	0.002 (0.05)	
0.0013 (0.03)	0.0013 (0.03)	~ ~ ~
0.0008 (0.02)	0.0008 (0.02)	JO)
BLE 16		j
	0.002 (0.05) 0.0013 (0.03) 0.0008 (0.02)	0.002 (0.05) 0.0013 (0.03) 0.0008 (0.02) 0.0008 (0.02) 0.0008 (0.02)

TABLE 16 THICKNESS AND WIDTH TOLERANCES FOR COLD-FINISHED FLAT WIRE

	Width Tolera	ince, in. (mm)			
Specified Width, in. (mm)	Under 0.029 (0.74)	0.029 (0.74) to 0.035 (0.89), excl	0.035 (0.89) to ³ / ₁₆ (4.76), excl	0ver	Under
Under $\frac{3}{8}$ (9.52) to $\frac{1}{16}$ (1.59), incl	0.001 (0.03)	0.0015 (0.04)	0.002 (0.05)	0.005 (0.13)	0.005 (0.13)

11.2.2 Mechanical Properties — Samples of the material to provide test specimens shall be taken from such locations in each lot as to be representative of that lot.

12. Number of Tests

- **12.1** Chemical Analysis One test per lot.
- **12.2** *Mechanical Properties* One test per lot.

13. Specimen Preparation

13.1 Tension test specimens shall be taken from the material after final heat treatment, and shall be selected in the longitudinal direction. The tension test specimens shall conform to the appropriate sections of Test Methods E 8.

14. Test Methods

14.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall, in case of disagreement, be determined in accordance with the following methods:

Test	ASTM Designations
Chemical analysis	E 1473 ^A
Tension	$\to 8^A$

^A Iron shall be determined arithmetically by difference.

15. Inspection

15.1 If specified, source inspection of the material by the purchaser at the manufacturer's plant shall be made as agreed upon between the purchaser and the manufacturer as part of the purchase contract.

Rejection and Rehearing

16.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

17. Certification

17.1 A producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.

18. Product Marking

18.1 Each bundle or box shall be properly tagged with metal tags showing heat number, grade, condition, specification number and size to assure proper identification.

19. Packaging and Package Marking

19.1 Bars or wire shall be bundled or boxed in such a manner as to assure safe delivery to their destination when properly transported by any common carrier.

20. Keywords

20.1 bar; UNS N08020; UNS N08024; UNS N08026; wire

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order.

S1. Corrosion Tests for UNS N08020

- **S1.1** One intergranular corrosion test per heat shall be performed by the manufacturer on a sensitized specimen and tested in accordance with Practices A 262. When this Rect ment, the reheat-try of Ashir Bryc. I.B. ashir by C. supplementary requirement is specified, the specific practice (Practice B or Practice E) shall also be specified. If
- S1.1.1 In addition to the stabilize anneal, the specishall be sensitized for 1 h at 1250°F (677°C) before a subjected to corrosion testing.

 31.1.2 If any specimer of meet the term is the specimen of the stabilized anneal, the specimen of the stabilized anneal and the stabilized anneal and the stabilized anneal an men shall be sensitized for 1 h at 1250°F (677°C) before being subjected to corrosion testing.
 - fails to meet the test requirement, the material represented by such specimen may be reheat-treated and resubmitted

NC Section II Part B) 202 SPECIFICATION FOR ZIRCONIUM AND ZIRCONIUM SB-493/SB-493M ASTM Specification **ALLOY FORGINGS**

with ASTM 4

Circk to view the full public click to view the full (Identical with ASTM Specification B493/B493M-14(2019).)

Specification for **Zirconium and Zirconium Alloy Forgings**

1. Scope

- 1.1 This specification covers three grades of zirconium and zirconium alloy forgings (see 4.1).
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 The following safety hazards caveat pertains only to the test method portion, Section 12, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

E8/E8M Test Methods for Tension Testing of Metallic Materials

3. Terminology

- 3.1 Lot Definition:
- 3.1.1 forgings, n—parts, including semi-finished products. or complex shapes, produced by hot mechanical work using hammers, presses, or forging machines; a lot shall consist of a material of the same size, shape condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8-h period for final continuous anneal, or to a single furnace load for final batch

4. Classification

5. Ordering Information

- Classification

 4.1 The forgings are furnished in three grades as follows:

 4.1.1 Grade R60702—Unalloyed zirconium.

 4.1.2 Grade R60704—Zirconium-tin alloy.

 4.1.3 Grade R60705—Zirconium-niob

 Ordering Inform 5.1 Orders for material under this specification shall include the following information:
 - 5.1.1 Quantity (weight and number of pieces),
 - 5.1.2 Name of material (zirconium forgings),
 - 5.1.3 Finish (Section 9),
- 5.1.4 Dimension (diameter, thickness, length, width, or as specified in appropriate drawings),
 - 5.1.5 ASTM designation and year of issue,
 - 5.1.6 Grade number (see 4.1), and
- 5.1.7 Additions to the specification and supplementary requirements, if required, including, but not limited to: product marking (see 17.1), check analysis (see 7.3), inspection (see 13.1). Tot definition (see 3.1.1), internal soundness (see S1.1), and surface quality (see S2.1) requirements.

Note 1—A typical ordering description is as follows: 8000-lb zirconium forgings, mechanically descaled, 100 mm by 120 mm by 1.2 m rectangular bar, ASTM B493/B493M - 08, Grade R60702.

6. Materials and Manufacture

- 6.1 The forgings shall be formed with conventional forging equipment normally found in primary ferrous and nonferrous metal plants.
 - 6.2 Forgings shall be furnished in the annealed conditions.

7. Chemical Composition

7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.

TABLE 1 Chemical Requirements^A

	Composition, % UNS Grade Designation							
Element								
	R60702	R60704	R60705					
Zirconium + hafnium, min ^B	99.2	97.5	95.5					
Hafnium, max	4.5	4.5	4.5					
Iron + chromium	0.2 max	0.2 to 0.4	0.2 max					
Tin		1.0 to 2.0						
Hydrogen, max	0.005	0.005	0.005					
Nitrogen, max	0.025	0.025	0.025					
Carbon, max	0.05	0.05	0.05					
Niobium			2.0 to 3.0					
Oxygen	0.16	0.18	0.18					

A By agreement between the purchaser and the manufacturer, analysis may be required and limits established for elements and compounds not specified in the table of chemical composition.

TABLE 2 Permissible Variation in Check Analysis Between
Different Laboratories

Element	Permissible Variation
Liement	in Product Analysis, %
Hydrogen	0.002
Nitrogen	0.01
Carbon	0.01
Hafnium	0.1
Iron + chromium	0.025
Tin	0.05
Niobium	0.05
Oxygen	0.02

- 7.2 The manufacturer's ingot analysis shall be considered the chemical analysis for forgings, except for hydrogen and nitrogen, which shall be determined on the finished product.
- 7.3 When requested by the purchaser and stated in the purchase order, a check analysis for any elements listed in Table 1 shall be made on the finished product.
- 7.3.1 The manufacturer's analysis shall be considered as verified if the check analysis confirms the manufacturer's reported values within the tolerances prescribed in Table 2.

8. Workmanship and Quality Level Requirements

8.1 The material shall be free of injurious imperfections. Minor surface imperfections may be removed by spot grinding if such grinding does not reduce the dimensions of the finished piece below the minimum permitted by the tolerance for the product.

9. Finish and Appearance

- 9.1 The forgings shall have one of the following surface conditions as specified in the purchase order:
 - 9.1.1 As forged,
 - 912 Mechanically descaled, or
 - 91.3 Mechanically descaled and pickled.

10. Tensile Requirements

10.1 The material, as represented by the test specimens, shall conform to the tensile properties prescribed in Table 3.

11. Number of Tests and Retests

11.1 Two tension tests shall be performed on each lot.

TABLE 3 Tensile Requirements

	UNS Grade Designation								
	R60702	R60704	R60705						
Tensile strength, min, MPa [ksi]	380 [55]	415 [60]	485 [70]						
Yield strength, min, MPa [ksi]	205 [30]	240 [35]	380 [55]						
Elongation in 50 mm [2 in.], gauge min, % ^A	16	14	16						

A When a sub-size specimen is used, the gauge length shall be as specified in Test Methods E8/E8M for that specimen.

11.2 Two chemistry tests for hydrogen and nitrogen content shall be performed on each lot of finished product.

11.3 Retests:

- 11.3.1 If any sample or specimen exhibits obvious surface contamination or improper preparation disqualifying it as a truly representative sample, it shall be discarded and a new sample or specimen substituted.
- 11.3.2 If the results of any tests of any lot do not conform to the requirements specified, retests shall be made on additional forgings of double the original number from the same lot, each of which shall conform to the requirements specified.

12. Test Methods

- 12.1 Tension Tests—Tension tests shall be performed in accordance with Test Methods E8/E8M. Determine the yield strength by the offset (0.2 %) method. Determine the tensile properties using a strain rate of 0.003 to 0.007 mm/mm/min [in./in./min] through the yield strength. After the yield strength has been exceeded, increase the cross-head speed to approximately 0.05 mm/mm/min [in./in./min] to failure.
- 12.2 *Chemical Tests*—The chemical analyses shall be performed according to the standard techniques normally used by the manufacturer.

13. Inspection

- 13.1 The manufacturer shall inspect the material covered by this specification prior to shipment. If so specified in the purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacture. In such cases, the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for the purchaser's inspection at the place of manufacture to be waived.
- 13.2 The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. This inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of

^B Zirconium is determined by difference.

dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 A producer's or supplier's certification shall be furnished to the purchaser certifying that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. A report of the test results shall be included as part of the certification.

16. Referee

16.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

17. Product Marking

17.1 Unless otherwise specified, each forging over 1 kg [2 lb], manufactured in accordance with this specification, shall be marked legibly, either by stenciling, stamping, or rolling with the manufacturer's private identification mark, the ASTM the container, or on a metal tag securely fastened to each part or package of parts. designation, the grade, and lot number. On smaller than 1 kg [2

18. Packaging and Package Marking

18.1 The forgings shall be packaged either in a suitable box or banded on a skid.

19. Keywords

19.1 zirconium; zirconium alloy forging

SUPPLEMENTARY REQUIREMENTS

S1. Special Internal Soundness

SS.1 The manufacture of Activities for the formal state of the state o S1.1 Forging shall be produced with specified internal

S2. Surface Quality

S2.1 The surface quality shall be as agreed upon between the manufacturer and the purchaser.

SPECIFICATION FOR CASTINGS, NICKEL AND NICKEL SA-494/SA-494M

(Identical with ASTM Specification A494/A494M-15 except that certification has been made mandatory, UNS Numbers corrected for Grades M35-2, N3M, and N7M in Table 1, and E1473 replaces E30, E38, and E76 in paras. 2.1 and 7.3.) ASMENORMOC. COM. Circk to view the full Pr

Specification for Castings, Nickel and Nickel Alloy

1. Scope

- 1.1 This specification covers nickel, nickel-copper, nickel-copper-silicon, nickel-molybdenum, nickel-chromium, and nickel-molybdenum-chromium alloy castings for corrosion-resistant service.
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

- 2.1 ASTM Standards:
- A370 Test Methods and Definitions for Mechanical Testing of Steel Products
- A488/A488M Practice for Steel Castings, Welding, Qualifications of Procedures and Personnel
- A732/A732M Specification for Castings, Investment, Carbon and Low Alloy Steel for General Application, and Cobalt Alloy for High Strength at Elevated Temperatures
- A781/A781M Specification for Castings, Steel and Alloy, Common Requirements, for General Industrial Use
- A957/A957M Specification for Investment Castings Steel and Alloy, Common Requirements, for General Industrial Use
- E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High Temperature Alloys
- E354 Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

3. Terminology

- 3.1 Definitions:
- 3.1.1 *master heat*—a single furnace charge of refined alloy, which may either be poured directly into castings or into remelt alloy for individual melts.
- 3.1.2 *melts*—a single turnace charge poured into castings. When master heats are used to prepare melts, a melt analysis shall be reported.

4. General Conditions for Delivery

- 4.1 Except for investment castings, castings furnished to this specification shall conform to the requirements of Specification A781/A781M, including any supplementary requirements that are indicated on the purchase order. Failure to comply with the general requirements of Specification A781/A781M constitutes nonconformance with this specification. In case of conflict between the requirements of this specification and Specification A781/A781M, this specification shall prevail
- 4.2 Investment castings furnished to this specification shall conform to the requirements of Specification A957/A957M, including any supplementary requirements that are indicated in the purchase order. Failure to comply with the general requirements of Specification A957/A957M constitutes nonconformance with this specification. In case of conflict between the requirements of this specification and Specification A957/A957M, Specification A957/A957M shall prevail.

5. Ordering Information

- 5.1 Orders for castings to this specification should include the following information:
 - 5.1.1 Quantity, in pieces, and
 - 5.1.2 Grade designation (Table 1) and class (Table 2).

TABLE 1 Chemical Requirements

	Other	CY5SnBiM	N26055		0.05 1.5 0.5 0.03	2.0-3.5 2.0 balance	11.0-14.0	::	:	3.0-5.0 3.0-5.0	EBPVC Section II Part B) 2											
		/ CY40	<u> </u>		0.40 1.50 3.00 0.03 0.02	B 11.0 balance	14.0-17.0	ВВ	В	: :	ant B)											
		CX2MW	_		0.02 1.00 0.80 0.025 0.020	5 12.5- 14.5 2.0-6.0 balance	0 20.0-	2.5-3.5	0.35	: :												
		V CX2M			0.02 1.00 0.50 0.020 0.020	15.0-16.5 1.50 balance	22.0-24.0	ВВ	В	: :	section											
	ò	CW12MW			0.12 1.00 1.00 0.030 0.020	16.0- 18.0 4.5-7.5 balance	15.5-		5.25 0.20- 0.40	: :	aryC											
	N-i-O	CW6MC			0.06 1.00 1.00 0.015 0.015	8.0-10.0 5.0 balance	20.0-23.0	3.15-4.50 B	В	N												
		CW6M	_		0.07 1.00 1.00 0.030 0.020	17.0- 20.0 3.0 balance	17.0-	2 0 0	30	<u>:</u> :												
nts		CW2M	N26455		0.02 1.00 0.80 0.03 0.02	15.0-17.5 2.0 balance	16.0-17.5	1.0	В	: :												
TABLE 1 Chemical Requirements		CUSMCuC	N08826	Composition, %	0.050 1.0 1.0 0.030 0.020 1.50-3.50	2.5-3.5 balance 38.0-44.0	19.5-23.5	0.60-1.20 B	В	: :												
Chemical		N12MV	N30012	Com	0.12 1.00 1.00 0.030 0.020	26.0-30.0 4.0-6.0 balance	1.00	::	0.20-0.60	: :												
TABLE 1	Ni-Mo	N7M	N30003 N			7	7	3)			3)			3)		0.02 1.00 0.030 0.020	30.0- 33.0 3.00 balance	1.0	: :	В	: :	
		4						0.03 1.00 0.50 0.030 0.020														
Ob Co	(0)	M35-2	_			0.35 1.50 2.00 0.03 0.02 26.0-33.0	3.50 balance	:	0.5	:	: :											
Cilica indicate		M35-1 ^A	_		0.35 1.50 1.25 0.03 0.02 0.26.0-		:	0.5	:	: :	only.											
off.	Ni-Cu	M30H	-		0.30 1.50 2.7-3.7 0.03 0.02 0 27.0-33.0	3.50 balance	:		:	: :	information											
VIET I—Values are maximum unless otherwise indicated.		M30C ^A	_		0.30 1.50 1.0-2.0 0.03 0.02 26.0-33.0	3.50 balance	:	1.0-3.0	:	: :	ported for i											
CEMIN Maxim		M25S			0.25 1.50 3.5-4.5 0.03 0.02 27.0-33.0	3.50 balance	:		:	: :	oc when w											
-Values &	Ē	CZ100	N02100		1.00 1.50 2.00 0.03 0.02 1.25	3.00	<u> </u>	::	:	: :	5-1 or M3C											
Note 1-	Alloy	Grade	UNS		O W P Si n	M Fe	Ö	Cb (Nb) W	>	Bi Su	A Order M35-1 or M30C when weldability is required. ^B Element to be analyzed and reported for information only,											

TABLE 2 Heat-Treat Requirements

Grade	Heat Treatment
CZ100, M35-1, M35-2, CY40 Class 1, M30H, M30C,	As cast
M25S Class 1, CY5SnBiM	
M25S, Class 2 ^A	Load into furnace at 600°F [315°C] maximum. Heat to 1600°F [870°C] and hold
	for 1 h plus an additional 30 min for each ½ in. [13 mm] of cross section over 1
	in. B Cool to 1300°F [705°C] C and hold at temperature for 30 min then quench in oil to room temperature.
M25S, Class 3	Load into furnace at 600°F [315°C] maximum. Heat slowly to 1100°F [605°C] and
	hold to develop maximum hardness. Furnace or air cool to room temperature.
N12MV, N7M, N3M	Heat to 2000°F [1095°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water or rapid cool by other means.
CW12MW, CW6M, CW6MC, CW2M	Heat to 2150°F [1175°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water or rapid cool by other means.
CY40, Class 2	Heat to 1900°F [1040°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water or rapid cool by other means.
CX2MW	Heat to 2200°F [1205°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water or rapid air cool by other means.
CU5MCuC	Heat to 2100°F [1150°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water. Stabilize at 1725-1815°F [940-990°C], hold for
	sufficient time to heat castings to temperature, quench in water or rapid cool by
	other means.
CX2M	Heat to 2100°F [1150°C] minimum, hold for sufficient time to heat castings to
	temperature, quench in water or rapid air cool by other means.

A M25S, while machinable in the "as-cast" condition, is capable of being solution heat-treated for improved machinability. It may be subsequently age hardened to the hardness specified in Table 3 and finished machined or ground.

^B For cross sections over 6 in. [125 mm], it may be necessary to increase the hold time if maximum softness is desired.

- 5.2 The purchaser shall specify any of the following information required to describe adequately the desired material:
 - 5.2.1 Heat-treat condition (see 6.1 and 6.2),
 - 5.2.2 Repair welding (see Section 11)
- 5.2.3 Source inspection requirements, if any (see Specification A781/A781M),
- 5.2.4 Marking-for-identification requirements, if any (see 13.1), and
- 5.2.5 Supplementary requirements desired, including the standards of acceptance.

6. Heat Treatment

6.1 Castings shall be heat-treated in accordance with the requirements in Table 2.

Note 1—Proper heat treatment of these allows is usually necessary to enhance corrosion resistance and, in some cases, to meet mechanical properties. Minimum heat-treat temperatures are specified; however, it is sometimes necessary to heat-treat at higher temperatures, hold for some minimum time at temperature, and then rapidly cool the castings in order to enhance the corrosion resistance and meet mechanical properties.

6.2 When Class 1 is specified, grades CY40 and M25S shall be supplied in the as-cast condition. When Class 2 is specified, grades CY40 and M25S shall be supplied in the solution heat-treated condition. When Class 3 is specified, grade M25S shall be supplied in the age-hardened condition.

7. Chemical Composition

- 7. These alloys shall conform to the chemical composition requirements prescribed in Table 1.
- 7.2 The grades that pertain to this specification are placed into the five general categories given below. The producer shall report for information all elements in Table 1 for which a limit is given for any alloy in the same alloy family. The alloy families are:

- (1) Nickel + CZ100
- (2) Nickel-copper M35-1, M35-2, M30C, M30H, M25S
- (3) Nickel-molybdenum N12MV, N7M, N3M
- (4) Nickel-chromium CY40, CW6M, CW2M, CW6MC, CX2MW, CU5MCuC, CX2M
 - (5) Other CY5SnBiM
- 7.3 An analysis of each master heat shall be made by the manufacturer to determine the percentages of the elements specified in Table 1. The analysis shall be made from a representative sample taken during the pouring of the master heat. Chemical composition shall be reported to the purchaser or his representative.
- 7.4 Test Methods E1473 or Test Methods E354 shall be used for referee purposes.

8. Tensile Properties

- 8.1 One tension test shall be made from each master heat except for grades M25S and CY5SnBiM when the master heat is used to pour the castings. One tension test shall be made from each melt except for grades M25S and CY5SnBiM. Test results shall conform to the tensile requirements specified in Table 3. Test bars shall be poured in special blocks from the same heat as the castings represented.
- 8.2 The bar from which the test specimen is taken shall be heat-treated in production furnaces to the same procedure as the castings it represents. If the castings are not heat-treated, the bar used for the test specimen must not be heat-treated.
- 8.3 Test specimens may be cut from castings, at the producer's option, instead of from test bars.
- 8.4 When castings are produced by methods other than investment process, tension test coupons shall be machined to

For maximum softness and the least variation in hardness levels, castings should be transferred from an oven at 1600°F [870°C] to a second oven at 1300°F [705°C].

Alloy Family	Ni			Ni-Cu				Ni-M	0	Ni-Cr								Other
	CZ100	M25S	M30C	МЗОН	M35- 1	M35- 2	N3M	N7M	N12MV	CU5- MCuC	CW2M	CW6M	CW6MC	CW- 12MW	CX2M	CX2MW	CY40	CY5S- nBiM
Tensile strength, min, ksi [MPa]	50 [345]		65 [450]	100 [690]	65 [450]	65 [450]	76 [525]	76 [525]	76 [525]	75 [520]	72 [495]	72 [495]	70 [485]	72 [495]	72 [495]	80 [550]	70 [485]	
Yield strength, min, ksi [MPa] Elongation	18 [125] 10		32.5 [225] 25	60 [415] 10	25 [170] 25	30 [205] 25	40 [275] 20.0	40 [275] 20	40 [275] 6	35 [240] 20	40 [275] 20	40 [275] 25	40 [275] 25	40 [275] 4	39 [270] 40	45 [310] 30	28 [195] 30	60
in 2 in. [50 mm], ^A min, % Hardness HBW		В														······································	ion,	

TABLE 3 Mechanical Properties

- A When ICI test bars are used in tensile testing as provided for in Specification A732/A732M, the gage length to reduced section diameter ratio shall be 4 to 1.
- ^B 300 HBW minimum for the age hardened condition.

the form and dimension shown in Fig. 8 of, and tested in accordance with, Test Methods E8.

- 8.4.1 When castings are produced by the investment process, test specimens in accordance with Specification A732/A732M shall be used for measurement of tensile properties.
- 8.5 If any specimen shows defective machining or develops flaws, it may be discarded and another substituted from the same heats.
- 8.6 To determine conformance with the tension test requirements, an observed value or calculated value shall be rounded in accordance with the "Rounding Method" of Practice E29 to the nearest 0.5 ksi [5 MPa] for yield and tensile strength and to the nearest 1 % for elongation and reduction of area. In the special case of rounding the number "5" when no additional numbers other than "0" follow the "5," rounding shall be done in the direction of the specification limits if following Practice E29 would cause rejection of material.

9. Workmanship, Finish, and Appearance

9.1 Critical surfaces of all castings intended for corrosionresistant service shall be cleaned. Cleaning may be accomplished by blasting with clean sand or metallic corrosionresistant shot or by other approved methods.

10. Quality

- 10.1 The castings shall not be peened, plugged, or impregnated to stop leaks.
- 10.2 Internal chills and chaplets may be used in the manufacture of castings. However, the chills, chaplets and affected cast material must be completely removed.

11. Repair by Welding

- 11.1 Repairs shall be made by using a welding procedure and operators capable of producing sound welds. The composition of deposited weld metal shall be similar to that of the castings.
- 11.2 Weld repairs shall be considered major in the case of a casting that has leaked on hydrostatic test or when the depth of the cavity after preparation for repair exceeds 20 % of the actual wall thickness, or 1 in. [25 mm], whichever is smaller, or when the extent of the cavity exceeds approximately 10 in.² [65 cm²]. All other weld repairs shall be considered minor. Major and minor weld repairs shall be subject to the same quality standards as are used to inspect the castings.

- 11.3 Castings of M30H, M25S, and CY5SnBiM may not be weld repaired.
- 11.4 Grades N12MV, N7M, N3M, CW12MW, CW6M, CW2M, CX2MW, CX2M, CW6MC, and CU5MCuC may require post-weld heat treatment after major weld repairs. If post-weld heat treatment is required, it must be specified along with the grade. If required, it shall be performed in accordance with Section 6.
- 11.5 For grade CU5MCuC, the composition of the deposited weld metal shall be similar to that of AWS A5.14 ER NiCrMo3 or AWS A5.11 E NiCrMo3.

12 Rejection and Rehearing

12.1 Samples that represent rejected material shall be preserved for two weeks from the date of transmission of the rejection report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

13. Certification

13.1 A manufacturer's certification shall be furnished to the purchaser stating that the material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

14. Product Marking

- 14.1 Castings shall be marked for the material identification with the ASTM specification designation (A494/A494M) and grade symbol, that is, CY40. The manufacturer's name or identification mark and the pattern number shall be cast or stamped on all castings except those of such small size as to make such marking impractical. To minimize small defects caused by dislodged particles of molding sand, the number of cast identification marks shall be minimized. The marking of heat numbers on individual castings shall be agreed upon by the manufacturer and the purchaser. Markings shall be in such position as not to injure the usefulness of the casting.
- 14.1.1 When the castings are too small to mark individually, a symbol traceable to the heat shall be placed on the castings and the required identification then placed on a tag affixed to the container in which these castings are shipped.

15. Keywords

15.1 corrosion-resistant applications; nickel; nickel alloy castings; nickel alloys; nickel castings

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall not apply unless specified in the purchase order. A list of standard supplementary requirements for use at the option of the purchaser is included in Specifications A781/A781M and A957/A957M. Those which are ordinarily considered for use with this specification are given below; others enumerated in Specifications A781/A781M and A957/A957M may be used with this specification upon agreement between the manufacturer and the purchaser.

S2. Radiographic Examination

S3. Liquid Penetrant Examination

S6. Certification

S10. Hardness Tests

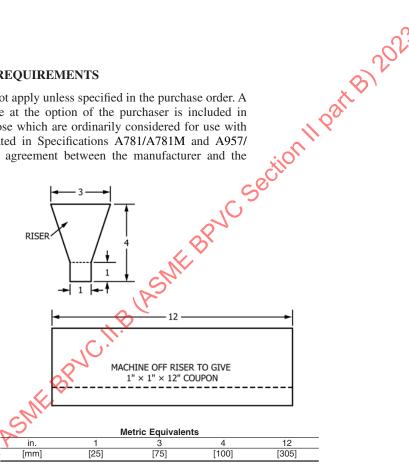
S10.1 When composition M25S material is ordered with a hardness maximum or range in the as-cast or solution heat-treated condition, hardness tests shall be made in accordance with Test Methods and Definitions A370. The test location, number of tests, and hardness values shall be agreed upon between the manufacturer and purchaser.

S10.1.1 If castings are ordered in the as-cast condition, hardness determinations shall be made on two different representative areas of each casting or coupon selected for test.

S10.1.1.1 By agreement between purchaser and producer, those as-cast castings that fail to meet the required hardness may be accepted in the solution heat-treated and hardened condition if the hardness thus developed meets the hardness requirement of the specification.

S10.1.2 If castings ordered are in the solution heat-treated condition, two sample castings or two coupons representing the lot shall be heat-treated for tests (see S10.1.1). Hardness determinations shall be made on two different representative areas of each casting or coupon.

S10.1.3 When hardness tests are made, the specimens shall be at least ½ in. [6 mm] in thickness and the area to be tested shall be ground clean before the hardness tests are made.


S50. Weldability Test

S50.1 If weldability tests are specified for M30C or M35-1, prepare a coupon obtained from a test bar shown in Fig. S50.1 or Fig. S50.2 for each lot of composition M30C or M35-1 castings. The weld test to be used shall be agreed upon between the purchaser and manufacturer.

S50.1.1 Prepare and weld the test bar cast in accordance with Fig. S50.1 and in accordance with Fig. S50.3.

S50.1.1.1 Machine the cast skin and unsound metal from two adjacent faces of the as-cast specimen, exclude the riser face, and cut the specimen into approximately 6-in. [150-mm] lengths.

S50.1.1.2 Clamp the two 6-in. [150 mm] lengths together to form a double V-joint and weld two passes at a time on alternate sides of the specimen using ½-in. [3-mm] diameter electrodes that will deposit metal of similar composition of the test pieces.

Note 1—Riser shall be machined off and 1 in. [25 mm] square by 12 in. [305 mm] coupon shall be used for x-weld test. See Fig. S50.3.

FIG. S50.1 Weld Test Bar (As Cast)

S50.1.1.3 Allow the specimen to cool to room temperature between passes, remove all flux, and examine visually for cracks.

S50.1.1.4 The clamps may be removed from the specimen after the first two weld passes have been completed.

S50.1.1.5 Deposit alternate series of passes until the double V-groove has been completely filled. After the second series (number 4 pass) a 5/32-in. [4-mm] diameter electrode may be used if desired.

S50.1.1.6 During welding allow each pass to cool, clean, and examine visually for cracks. The presence of cracks shall be cause for rejection.

S50.1.1.7 Upon completion of the welding, cut one section approximately ¾ in. [19 mm] long transverse to the weld from each end and discard.

S50.1.1.8 Polish each end of the remaining center section on a 100/200-grit wheel and etch with concentrated HNO₃ or with Lepito's etchant. Prepare Lepito's etchant as follows: (1) 15 g of $(NH_4)_2SO_4$ dissolved in 75 cm³ of water; (2) 250 g of FeCl₃ (powdered) dissolved in 100 cm³ of HCl; (3) mix solutions (1) and (2) and add 30 cm³ of HNO₃.

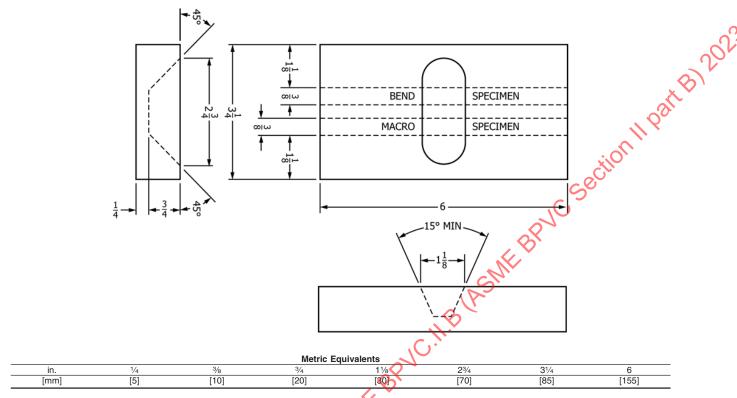


FIG. S50.2 Weld Test Bar (As Cast)

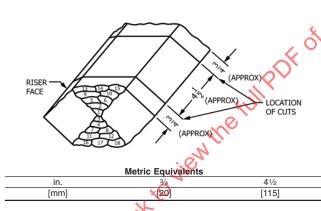


FIG. \$50.3 X-Weld Test

S50.1.1.9 Examine the etched section under low magnification (5 to 10x). The lot represented by the test specimen shall be accepted if it complies with the following crack requirements: (1) Three cracks maximum in linear inch of base metal and (2) the length of any crack in the base metal does not exceed 0.20 in. [5 mm].

\$50.1.1.10 Cracks observed in the weld metal during the low-magnification examination shall not be cause for rejection. \$50.1.1.11 Failure of welded test bars to comply with any of the requirements \$50.1 through \$50.1.1.10 shall result in rejection of the lot represented.

S50.1.2 Prepare and weld the test bar cast in accordance with Fig. S50.2 as follows:

S50.1.2.1 Fill the groove in the block completely with weld deposit using manual metallic arc process with ½-in. [3.2–mm] or 5/32-in. [4-mm] diameter electrodes that will deposit metal of similar composition of the test piece.

S50.1.2.2 Remove one 3/8-in. [10-mm] thick bend coupon longitudinally from the welded block by machining, sawing, abrasive cutting, or other suitable means. Make a transverse side bend test of the welded joint in accordance with Practice A488/A488M.

S50.1.2.3 Remove a transverse weld macro-specimen from the welded plate and visually examine for cracks. This specimen may be the same one to be used for the bend specimen.

S50.1.3 Acceptance:

S50.1.3.1 Cracks as tears in the casting in the fusion zone or heat-affected zone of the macro-specimen shall be cause for rejection. Cracks originating at the weld bead undercuts, at weld slag inclusions, or at casting defects shall not be cause for rejection.

S50.1.3.2 Cracks or other open defects exceeding ½-in. [3.2 mm] measured in any direction on the convex surface of the bent specimens shall be cause for rejection, except that cracks occurring on the corners while testing and cracks originating at weld bead undercuts shall not be considered.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR COPPER ALLOY CONTINUOUS CASTINGS SB-507 SB-505/SB-505M

(Identical with ASTM Specification B505/B505M-18 except that certification, marking, test reports, and conformance to mechanical requirements have been made mandatory.) ASMENORMOC. COM. Cick to view the full Pr

Specification for **Copper Alloy Continuous Castings**

1. Scope

- 1.1 This specification establishes requirements for continuously cast rod, bar, tube, and shapes produced from copper alloys with nominal compositions as listed in Table 1.²
- 1.2 Castings produced to this specification may be manufactured for and supplied from stock. In such cases the manufacturer shall maintain heat traceability to specific manufacturing date and chemical analysis.
- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the SMENORMDOC. COM. Click to view the full Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical

B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal and Continuous Castings

B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Ma-

E10 Test Method for Brinell Hardness of Metallic Materials E18 Test Methods for Rockwell Hardness of Metallic Ma-

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 Other Standard:

ASME Boiler and Pressure Vessel Code

3. Terminology

3. For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. General Requirements

- 4.1 The following sections of Specification B824 form a part of this specification. The definition of a casting lot as defined in Section 12, Sampling, takes precedence over Specification B824.
 - 4.1.1 Terminology (Section 3),
 - 4.1.2 Other Requirements (Section 7),
 - 4.1.3 Workmanship, Finish, and Appearance (Section 9),
 - 4.1.4 Number of Tests and Retests (Section 11),
 - 4.1.5 Specimen Preparation (Section 12),
 - 4.1.6 Test Methods (Section 13),
 - 4.1.7 Significance of Numerical Limits (Section 14),
 - 4.1.8 Inspection (Section 15),
 - 4.1.9 Rejection and Rehearing (Section 16),
 - 4.1.10 Certification (Section 17),
 - 4.1.11 Test Report (Section 18),
 - 4.1.12 Product Marking (Section 19),

TABLE 1 Nominal Composition

Copper							Co	mpositio	n, %				
Alloy UNS No.	Designation —	Copper	Tin	Lead	Zinc	Nickel	Aluminum	Iron	Manganese	Silicon	Phosphorus	Bismuth	Sulfur
C83470	low-lead sulfur tin bronze	93	4		2	0.5						***	0.5
C83600	leaded red brass	85	5	5	5								
C83800	leaded red brass	82.9	3.8	6	6.5								
C84200	leaded semi-red brass	80	5	2.5	13								0
C84400	leaded semi-red brass	80	2.9	7	8.5								ار م
C84800	leaded semi-red brass	76	2.5	6.2	15								Λ.Υ.
C85470	vellow brass	62.5	2.5		34.3		0.5				0.13		
C85700	leaded naval brass	61	1	1.2	36							<	
C86200	high-strength yellow brass	63			25		4	3	3.8			dio,	
C86300	high-strength yellow brass	63			25		6.2	3	3.8		··· C	S _C	
C86500	high-strength yellow brass	57.5			39		1	1.2	8.0		\sqrt{C}		
C87700	silicon bronze	88.5			8					3	~~		
C87710	silicon bronze	86			10					4	V ••••		
C87850	silicon brass	76			20.9					3	0.12		
C89320	bismuth tin bronze	89	6									5.0	
C89720 ^A	bismuth brass	67.4	1		29		0.5		•••	0.5		1.5	
C90300	tin bronze	87.5	8.2		4					10.5			
C90500	tin bronze	87.5	10	•••	2			•••	··· C			•••	•••
C90700	tin bronze	89	11			•••				•	•••	•••	
C91000	tin bronze	85	15	•••	•••	•••		•••	_ /:/			•••	•••
C91300	tin bronze	80.5	19	•••	•••				⟨ 2)		•••	•••	
C92200	leaded tin bronze	88	6	1.5	4	•••			V		•••	•••	•••
C92300		87	8.2	0.6							•••		•••
C92500	leaded tin bronze	86.5	0.2 11	1.2	3.8	 1.2		(()	•			•••	
	nickel-phosphor bronze				•••	1.2		7			•••		
C92700	leaded tin bronze	87.5	10	1.8	•••				•••		•••		
C92800	leaded tin bronze	80	16	5			\\ \\						
C92900	leaded nickel-tin bronze	84	10	2.6		3.4			•••				
C93200	high-leaded tin bronze	83	6.9	7	3	🦰	M.						
C93400	high-leaded tin bronze	83.5	8	8)						
C93500	high-leaded tin bronze	84.5	5.2	9	1								
C93600	high-leaded tin bronze	81	7	12		X.'							
C93700	high-leaded tin bronze	80	10	9.5		0							
C93800	high-leaded tin bronze	77	6.9	14.5	_<								
C93900	high-leaded tin bronze	78	6	16	\mathcal{O}								
C94000	high-leaded tin bronze	70.5	13	15) V								
C94100	high-leaded tin bronze	75.5	5.5	20					•••		***		
C94300	high-leaded tin bronze	69.5	5.2	25									•••
C94700	nickel-tin bronze	87.5	5.2	0	1.8	5.2		•••			•••	•••	
C94800	leaded nickel-tin	86.5	5.2	0.6	1.8	5.2							
C95200	bronze aluminum bronze	87.8	ille				9	3.2					
C95300	aluminum bronze	88.88	,				10	1.2					
C95400	aluminum bronze	85.2					10.8	4					
C95410	aluminum bronze	83.2				2	10.8	4					
C95500	nickel-aluminum bronze	81				4.2	10.8	4					
C95520	nickel-aluminum bronze	79.1				5.1	11	4.8					
C95700	manganese nickel aluminum	74.8				2.2	7.5	3	12.5				
	bronze												
C95800	nickel-aluminum bronze	81.3				4.5	9	4	1.2				
C95900 (aluminum bronze	83.2					12.8	4.0					
C96400	copper-nickel	67				30		0.90					
C96900	copper-nickel	76.8	8			15			0.20				•••
C96970	copper-nickel-tin	76.8 85	6	•••	•••	9.0	•••	•••			•••		•••
C97300	leaded nickel bronze	55.5	2.2	9.5	 21	12.5	•••	•••			***		
C97600	leaded nickel bronze	55.5 65	2.2 4	9.5 4	6			•••		•••		•••	•••
C97800	leaded nickel bronze	65.5	4.8	1.8	2.5	20.2 25.5		•••				•••	
C97600 C99500					1.2		1.0	4.0		1.2	•••		
C99500	special alloy	89.1			1.2	4.5	1.2	4.0		1.3			

Antimony 0.07, Boron 0.001.

4.1.13 Packaging and Package Marking (Section 20),

4.1.14 Keywords (Section 21), and

4.1.15 Supplementary Requirements.

5. Ordering Information

- 5.1 Include the following information in orders for product:
- 5.1.1 ASTM designation and year of issue (for example, B505/B505M 04),
- 5.1.2 Copper Alloy UNS No. (for example, C93200), including HT if heat treatment is required.
- 5.1.3 Condition (Table 9) and (as cast, heat treated, and so forth),
- 5.1.4 Dimensions: inside diameter, outside diameter, thickness and width,
- 5.1.5 Form: cross-section, such as tube, round, hexagon, octagon, square, or rectangle,
- 5.1.6 Tolerances, if different from Section 10 and Tables 2-8.
- 5.1.7 Length (including length tolerance if other than mill lengths),
- 5.1.8 Number of castings or total weight, for each size and form,

5.1.9 DELETED

- 5.1.10 When castings are purchased for agencies of the U.S. Government, the Supplementary Requirements of Specification B824 may be specified.
- 5.2 The following requirements are optional and should be specified in the purchase order when required:
- 5.2.1 Chemical analysis of residual elements (Section 7 and Specification B824),
 - 5.2.2 DELETED
 - 5.2.3 Witness inspection (Specification B824),
 - 5.2.4 DELETED
 - 5.2.5 DELETED
 - 5.2.6 Product marking (Specification B824),
 - 5.2.7 Castings for seawater service (Section 6), and
- 5.2.8 Approval of weld repair and records of repair (Section 11).

6. Materials and Manufacture

6.1 For better corrosion resistance in seawater applications, castings in Copper Alloy UNS No. C95800 shall be given a temperature anneal heat treatment at 1250 \pm 50°F [675 \pm

TABLE 2 Suggested Heat Treatments

Copper Alloy UNS No.	Solution Treatment (not less than h followed by water quench), °F [°C]	Annealing Treatment (not less than 2 h followed by air cool), °F [°C]
00500	1585–1635	1150–1225
C95300	[860–890]	[620–660]
C95400,	1600–1675	1150-1225
C95410, C95500	[870–910]	[620–660]
C95520	(2 h followed by water quench)	925–1000 [495–540]

TABLE 3 Finishing Allowances for Tube (Round Only)

	Finish Allowan	ices Added to
Finished Outside Diameter.	Finished	or Print
	Dimensions of th	e Part, in. [mm]
in. [mm]	Inside Diameter	Outside
	inside Diameter	Diameter
All Alloys Excep	ot as Noted Below	
Up to 4 [102], excl	-0.031 [-0.79]	+ 0.031 [0.79]
4 [102] -5 [127], incl	-0.063 [-1.6]	+ 0.063 [1.6]
Over 5 [127]	-0.094 [-2.4]	+ 0.094 [2.4]
Copper Alloy UNS Nos. C85470, C86	200, C86300, C86500	, C87700, C87710,
C87850, C89720, C95200, C95300,	C95400, C95500, C958	300, C95900, and
C9	96400	
Up to 3 [76.2], incl	-0.125 [-3.2]	+ 0.063 [1.6]
Over 3 [76.2] -4 [102], incl	-0.125 [-3.2]	+ 0.094 [2.4]
Over 4 [102] -51/2 [140], incl	-0.188 [-4.8]	+ 0.125 [3.2]
Over 5½ [140]	-0.250 [-6.4]	0 .188 [4.8]

TABLE 4 Finishing Allowances for Rod and Bar

Finished Outside Diameter or Distance Between	Rounds	Squares, Rectangles, Hexagons,
Parallel Surfaces, in. [mm]	CMIL	Octagons
All Alloys Ex	cept as Noted Below	ı
Up to 4 [102], excl	+ 0.031 [0.79]	+ 0.031 [0.79]
4 [102] –5 [127], incl	+ 0.063 [1.6]	+ 0.063 [1.6]
Over 5 [127]	+ 0.094 [2.4]	+ 0.094 [2.4]
Copper Alloy UNS Nos. C85470, C	86200, C86300, C86	5500, C87700, C87710,
C87850, C89	720, C95200, C9530	0,
C95400, C95500,	C95800, C95900, C	96400
Up to 3 [76.2], inc)	+ 0.0625 [1.6]	+ 0.0625 [1.6]
Over 3 [76.2] 4 [102], incl	+ 0.093 [2.4]	+ 0.093 [2.4]
Over 4 [102] -5½ [140], incl	+ 0.125 [3.2]	+ 0.125 [3.2]
Over 5½ [140]	+ 0.188 [4.8]	+ 0.188 [4.8]

TABLE 5 Diameter Tolerances for Rod and Bar

Diameter or Distance Be-	Tolerances, Plus ^A a	and Minus, ^A in. [mm]
tween Parallel Surfaces.		Squares, Rectangles,
in. [mm]	Rounds	Hexagons,
		Octagons
All Alloys I	Except as Noted Below	
Up to 4 [102], excl	0.005 [0.13]	0.016 [0.41]
4 [102] -5 [127], incl	0.008 [0.20]	0.016 [0.41]
Over 5 [127]	0.016 [0.41]	0.016 [0.41]
Copper Alloy UNS Nos. C85470,	C86200, C86300, C86	500, C87700, C87710,
C87850, C89720, C95200, C953	300, C95400, C95500,	C95800, C95900, and
	C96400	
Up to 3 [76.2], incl	0.010 [0.25]	0.020 [0.51]
Over 3 [76.2] -4 [102], incl	0.015 [0.38]	0.020 [0.51]
Over 4 [102] -5½ [140], incl	0.020 [0.51]	0.020 [0.51]
Over 5½ [140]	0.025 [0.64]	0.025 [0.64]

^A When tolerances are specified as all plus or all minus, double the values given.

28°C] for 6 h minimum. Cooling shall be by the fastest means possible that will not cause excessive distortion or cracking. Propeller castings shall be exempt from this requirement.

- 6.2 Copper Alloy UNS Nos. C95300, C95400, C95410, and C95500 may be supplied in the heat-treated condition to obtain the higher mechanical properties shown in Table 9. Suggested heat treatments for these alloys and Copper Alloy UNS No. C95520 are given in Table 2. Actual practice may vary by manufacturer.
- 6.3 Copper Alloy UNS No. C95520 is used only in the quench-hardened and tempered (TQ30) condition, see Table 2.

TABLE 6 Diameter Tolerances for Tube (Round Only)

	To	olerances, in. [mr	n]
Average Outside Diameter,	Outside	Inside D	liameter
in. [mm]	Diameter	Iliside L	nametei
iii. [iiiii]	Plus ^A or Minus ^A	Plus ^B	Minus ^B
All Alloy	s Except as Not	ed Below	
Up to 4 [102], excl	0.005 [0.13]	0.012 [0.30]	0.033 [0.84]
4 [102] -5 [127], incl	0.008 [0.20]	0.016 [0.41]	0.046 [1.2]
Over 5 [127]	0.016 [0.41]	0.032 [0.81]	0.064 [1.6]
Copper Alloy UNS Nos. C8547	0, C86200, C86	300, C86500, C8	37700, C87710,
C87850, C89720, C95200, C9	95300, C95400,	C95500, C95800), C95900, and
	C96400		
Up to 3 [76], incl	0.010 [0.25]	0.012 [0.32]	0.033 [0.84]
Over 3 [76] -4 [102], incl	0.015 [0.38]	0.015 [0.38]	0.050 [1.3]
Over 4 [102] -5½ [140], incl	0.020 [0.51]	0.025 [0.64]	0.070 [1.8]
Over 5½ [140]	0.025 [0.64]	0.035 [0.86]	0.090 [2.3]

^A When tolerances are specified as all plus or all minus double the values given. ^B When tolerances are specified as all plus or all minus, total the values given.

TABLE 7 Roundness Tolerances

Outside Diameter, in. [mm]	Maximum Out-of-Roundness, ^A in. [mm]
Up to 4 [102], excl	0.020 [0.51]
4 [102] -5 [127], incl	0.032 [0.81]
Over 5 [127]	0.064 [1.6]
Copper Alloy UNS Nos. C85470, C862	200, C86300, C86500, C87700, C87710,
C87850, C89720, C95200, C95300, C	095400, C95500, C95800, C95900, and
C9	6400
Up to 3 [76.2], incl	0.025 [0.64]
Over 3 [76.2] -4 [102], incl	0.040 [1.0]
Over 4 [102] -51/2 [140], incl	0.060 [1.5]
Over 5½ [140]	0.075 [1.9]

^A The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube.

TABLE 8 Tolerances for Shapes

Outside Dimer	nsion, ^A in. [mm]	Inside Dimensi	on, ^B in. [mm]
	All Alloys Except	t as Noted Below	
Plus	Minus	Plus	Minus
0.016 [0.41]	0.016 [0.41]	0.032 [0.81]	0.064 [1.6]
Copper Alloy UNS	Nos. C85470, C8620	00, C86300, C865 00 ,	C87700, C87710,
C87850, C89720,	C95200, C95300, C	95400, C95500, C956	300, C95900, and
	C96	6400 (
Dimensional tolerar	ces shall be subject	to agreement betwee	n purchaser

and manufacturer

6.4 Copper Alloy UNS No. C96900 is normally supplied heat treated at 1520°F [825°C] for 1 h followed by a water quench, then aged at 800°F [425°C] for 4 h followed by a water quench.

6.5 If test bar coupons representing castings made in Copper Alloy UNS Nos. C94700HT, C95300HT, C95400HT, C95410HT, C95500HT, C95520HT, C95800 temper annealed, \$295900 annealed, and \$C96900 are removed from the continuous castings before heat treatment, the coupons shall be heat treated with the continuous castings.

7. Chemical Composition

7.1 The continuous castings shall conform to the requirements for elements shown in Table 10.

- 7.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.3 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %.
- 7.4 For alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of results of all other elements determined and 100%.
- 7.5 When all named elements in Table 10 with values are analyzed, their sum shall be as specified in Table 11.
- 7.6 Analysis shall be made for Other Elements only when specified in the purchase order, and shall be considered outside the limits specified in Table 11.

8. Mechanical Property Requirements

- 8.1 Reference should be made to Table 9 for minimum mechanical requirements.
 - 8.2 DELETED
- 8.3 Exceptions to mechanical property requirements may be taken in the case of small diameter solids or castings having section thicknesses less than the ½-in. [12.7-mm] diameter of the standard tension test specimen. In these cases, mechanical property requirements shall be subject to agreement between the purchaser and the manufacturer. For suggested dimensions of substandard test bars, see Test Methods E8/E8M.

9. ASME Requirements

- 9.1 Continuous casting shall comply with the following:
- 9.1.1 Certification requirements of Specification B824.
- 9.1.2 Foundry test report requirements of Specification B824.
- 9.1.3 Continuous castings shall be marked with the manufacturer's name, the Copper Alloy UNS No., and the casting quality factor. In addition, heat numbers, or serial numbers that are traceable to heat numbers, shall be marked on all pressurecontaining castings individually weighing 50 lb [22.7 kg] or more. Pressure-containing castings weighing less than 50 lb [22.7 kg] shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as not to injure the usefulness of the casting.
- 9.1.4 When Copper Alloy UNS No. C95200 is specified, a sample from each 2000-lb interval or continuous casting shall be tested. Each continuous casting from which the test bar was taken shall be identified should retesting be required. If all of the test bars from the initial sampling meet the requirements, the lot shall be acceptable. The fractured bars shall be retained for chemical verification.

A When tolerances are specified as all plus or minus, double the values given.

^B When tolerances are specified as all plus or all minus, total the values given.

TABLE 9 Mechanical Requirements

Copper Alloy	Tensile Str	ength, min ^A	Yield Strength, at 0 Under Loa		Elongation in 4D or 2 in. or	Brinell Hardness,	Remarks
UNS No.	ksi ^B	MPa ^C	ksi ^B	MPa ^C	50 mm, min, %	min	
C83470	36	248	15	103	15		
C83600	36	248	19	131	15		
C83800	30	207	15	97	16		
C84200	32	221	16	110	13		Section 1
C84400	30	207	15	103	16		
C84800	30	207	15	103	16		
C85470	50	345	21	150	15		
C85700	40	276	14	97	15		\sim
C86200	90	621	45	310	18		. 01.
C86300	110	758	62	427	14		XIO
C86500	70	483	25	172	25		-C)~.
C87700	25	172	17	117	18		0
C87710	64	441	22	152	20		2
C87850	65	448	25	172	8	103 [500 kg]	
C89320	35	241	18	124	15	roo looding,	
						70 [1000 kg]	
C89720	36	250	16	110	18	70 [1000 kg]	
C90300	44	303	22	152	18	\(\sigma\)	
C90500	44	303	25	172	10	, V	
C90700	40	276	25	172	10		
C91000	30	207				· ·	
C91300					C	160 [3000 kg]	
C92200	38	262	19	131	718		
C92300	40	276	19	131	16		
C92500	40	276	24	165	10		
C92700	38	252	20	138	8		Rockwell
				130	•		
C92800							B72–82
C92900	45	310	25	172	8		
C93200	35	241	20	138	10		
C93400	34	234	20	38	8		
C93500	30	207	16	110	12		
C93600	33	227	20	138	10		
C93700	35	241	20	138	6		
C93800	25	172	16	110	5		
C93900	25	172	16	110	5		
			100			00 [E00 ka]	
C94000						80 [500 kg]	
C94100	25	172	17	117	7		
C94300	21	145	1 5	103	7		
C94700	45	310	20	138	25		
C94700HT	75	517	50	345	5		heat treated
C94800	40	276	20	138	20		
C95200	68	469	26	179	20		
C95300	70	483	26	179	25		
C95300HT	80	552	40	276	12		heat treated
C95400	85	586	32	221	12		man mana
C95400HT	95	655	45	310	10		hoot trooted
							heat treated
C95410	85	586	32	221	12		been and the state of the state
C95410HT	95	655	45	310	10		heat treated
C95500	95	655	42	290	10		
C95500HT	110	758	62	427	8		heat treated
C95520HT	125	862	95 ^D	655 ^D	2	262 [3000 kg]	heat treated
C95700	90 🎺	620	40	275	15	3.	
C95800 ^F	85	586	35	241	18		
C95900	. 67					241 [3000 kg]	
C95900 C96400	65		 25			i [oooo kg]	
	65	448	35	241 704P	25		Deeless II Co
C96900HT	110	758	105 ^D	724 ^D	4		Rockwell C32
C96970	105	723	90^{D}	620 ^D	3		Rockwell C27
C97300	30	207	15	103	8		
C97600	40	276	20	138	10		
C97800	45	310	22	152	8		
C99500	70	483	40	276	12		

A Minimum reside strength and yield strength shall be reduced 10 % for cast bars having a cross section, thickness, diameter, or wall of 4 in. [102 mm] or more. The cross sections are the diameter of a round solid, the distance across the flats of a solid hexagon, the thickness of a rectangle, and the wall thickness of a tube.

B ksi = 1000 psi.

See Appendix.

P teld strength at 0.2 % offset, min^A, ksi^B, MPa^C.

Copper Alloy UNS No. C95520 used only in the quench-hardened and tempered (TQ30) condition.

F As cast or temper annealed.

S
₪
ē
Ξ
ė
·≡
≓
8
č
=
Ŗ
ĕ
Ε
<u>e</u>
ㅎ
O
0
_
Щ
닖
щ
≤
_

					TABLE	ABLE 10 Chemical Requirements	Requiremen	ıts					
Copper	>					Composition, % max, except as indicated	max, except as	indicated					
Alloy UNS. No.	Copper	Ć. ₽Ç	Lead	Zinc	Iron	Nickel Including Cobalt	Aluminum	Manganese	Bismuth	Antimony	Sulfur	Phosphorus	Silicon
C83470	90.0–96.0 ⁴ 84.0–86.0 ⁴	3.0-5.0	0.09	1.0–3.0	0.50	1.0	0.01	1 :	: :	0.20	0.20-0.6	1.0	0.00
C83800	82.0-83.8 ^A	3.3-4.2	• 5.0–7.0	5.0-8.0	0.30	1.0⁴	0.005	: :	: :	0.25	0.08	1.5	0.005
C84200	78.0–82.0 ⁴	4.0–6.0	2.0-3.0	10.0–16.0	0.40	0.84	0.005	:	:	0.25	0.08	1.5	0.005
C84400	78.0–82.0 ⁴	2.3–3.5	0.8.0	7.0–10.0	0.40	1.0 ^A	0.005	:	:	0.25	0.08	t. t	0.005
C84800	600-650	2.0-3.0	0.00	13.0-17.0 Rom	0.40	.0.1	0.005	:	÷	0.25	0.08	1.5	0.005
C85700	58.0−64.0 ^A	0.50-1.5	0.8–1.5	32.0-40.0	0.7	1.04	0.8	: :	: :	: :	: :		0.05
C86200	60.0-66.0 ^A	0.20	0.20	22.0-28.0	2.0-4.0	1.0⁴	3.0-4.9	2.5–5.0	: :	: :	: :	: :	:
C86300	60.0-66.04	0.20	0.20	22,0-28.0	2.0-4.0	1.04	5.0-7.5	2.5-5.0	:	:	:	:	:
C86500	$55.0-60.0^{4}$	1.0	0.40	36.0+42.0	0.40-2.0	1.04	0.50-1.5	0.10-1.5	:	:	:	:	:
C87700	87.5 min	2.0	0.09	7.0-9.0	0.50	0.25 ^B	:	0.8	:	0.10	:	0.15	2.5–3.5
C87710	84 min	2.0	0.09	9.0-11.0	0.50	0.25	:	8.00	:	0.10	:	0.15	3.0–5.0
C89320	/5.0 = /8.0 87.0=91.0	0.30	60.0 60.0	nem 10	00	0.20	0.005	2.0	4 0-6 0	0.35	0	0.05-0.20	0.005
C89720 ^C	63.0 min	0.60-1.5	0.09	26.0–32.0	0.10	0.10	0.35-1.5	0.10	0.50-2.0	0.02-0.20		0.02	0.40-1.0
C90300	86.0-89.04	7.5–9.0	0.30	3.0-5.0	0:50	1.04	0.005	:	:	0.20	0.05	1.5	0.005
C90500	86.0-89.04	9.0-11.0	0:30	1.0-3.0	0.20	1.04	0.005	:	÷	0.20	0.05	1.5	0.005
C90700	88.0-90.04	10.0–12.0	0.50	0.50	0.15	0.504	0.005	:	:	0.20	0.05	1.5	0.005
C91000	84.0–86.0	14.0–16.0	0.20	3.5	0.10	28.0	0.005	:	:	0.20	0.05	J.5	0.005
032200	86.0-90.0 ^A	5 5-6 5	10-20	0.73	0.25	0.5U	0.003	:	:	0.20	0.05	. r	0.003
C92200 C92300	85.0-89.0 ^A	7.5–9.0	0.3-1.0	2.5-5.0	0.25	<u> </u>	0.005	: :	: :	0.25	0.05	<u>. ti</u>	0.005
C92500	85.0-88.04	10.0–12.0	1.0–1.5	0.50	0:30	0.8-1-54	0.005	: :	: :	0.25	0.05	1.5	0.005
C92700	86.0-89.04	9.0-11.0	1.0-2.5	0.7	0.20	1.04	0.005	:	:	0.25	0.02	1.5	0.005
C92800	78.0–82.0 ⁴	15.0–17.0	4.0–6.0	0.8	0.20	0.84	0.005	:	:	0.25	0.05	7.5	0.005
C92900	82.0–86.0	9.0–11.0	2.0–3.2	0.25	0.20	2.8-4.0	0.005	:	:	0.25	0.05	J.5	0.005
C93200	82 0-85 0 ^A	0.7-0.0	0.0-0.0	7.0–4.0 0.8	0.20	0	0.00	:	:	0.50	0.00	. r	0.003
C93500	83.0-86.0 ^A	4.3–6.0	8.0–10.0	2.0	0.20	1.04	0.005	: :	: :	0.30	0.08	1.5	0.005
C93600	79.0–83.0	6.0–8.0	11.0-13.0	1.0	0.20	1.0	0.005	:	÷	0.55	0.08	1.5	0.005
C93700	78.0–82.0	9.0–11.0	8.0–11.0	0.8	0.70	0.50	0.005	.: ر	:	0.50	0.08	1.5	0.005
C93800	76.0-79.0	6.3–7.5	13.0-16.0	0.8 8.4	0.15	0.0	0.005	1	:	8.0	0.08	1.5 7.	0.005
C93900	69.0–72.0	12.0–14.0	14.0–16.0	0.50	0.25	0.50-1.0	0.005	Q	: :	0.50	0.25^{E}	. <u></u>	0.005
C94100 ^E	72.0–79.0	4.5–6.5	18.0–22.0	1.0	0.25	1.0	0.005	? :	: :	0.8	0.25^{E}	1.5	0.005
$C94300^E$	67.0-72.0	4.5-6.0	23.0-27.0	0.8	0.15	1.0	0.005	7	:	8.0	0.25^{E}	1.5	0.005
C94700 ^F	85.0–90.0	4.5–6.0	0.09	1.0–2.5	0.25	4.5–6.0	0.005	0.20	- NO	0.15	0.05	0.05	0.005
C94800	84.0–89.0 86.0 min	4.5–6.0	0.3–1.0	1.0–2.5	0.25	4.5–6.0	0.005 8 5_9 5	0.20	N	0.15	0.05	0.05	0.005
C95200 C95300	86.0 min	: :	: :	: :	0.8–1.5	: :	9.0–11.0	: :	\ \!\!	: :	: :	: :	: :
C95400	83.0 min	: :	:	:	3.0-5.0	1.5	10.0-11.5	0.50	\$: :	:	: :	:
C95410	83.0 min	:	:	:	3.0-5.0	1.5–2.5	10.0-11.5	0.50	:))	:	:	:
C95500	78.0 min	:	:	:	3.0–5.0	3.0-5.5	10.0-11.5	3.5	:	7	:	:	:
C95520	74.5 min	0.25	0.03	0.30	4.0–5.5	4.2–6.0	10.5–11.5	1.5	:	֝֞֝֟֝֟֝֝֟֝֝֟֝֟֝֟֝֟֝ ֖֓֓֞	:	:	0.15
095800	79 0 min	:		:	3.5.4.5.H	4 0-5 0 ^H	7.0-0.7 8.5-9.5	0.8-1.5	:		:	:	0.00
C95900	remainder	: :	:	: :	3.0-5.0	0.50	12.0–13.5	1.5	: :	S.	: :	: :	:
C96400'	remainder	:	0.01	:	0.25-1.50	28.0-32.0	:	1.5	:	:	0.05	0.02	0.50
C96900	remainder	7.5-8.5	0.02	0.50	: "	14.5-15.5	:	0.05-0.30	:	:	Š	:	0:30
C96970 C97300	53.0–58.0	1.5–3.0	0.02 8.0–11.0	0.30 17.0–25.0	1.5	11.0–14.0	0.005	0.50	: :	0.35	0.08	0.05	0.15
C97600 C97800	64.0–67.0	3.5-4.5	3.0–5.0	3.0-9.0	<u></u>	19.0–21.5	0.005	0.0	: : :	0.25	0.08	0.05	0.15

SB-505/SB-505M			AS	ME	BPVC.II.B-2023
			Silicon	0.50-2.0	
			Phosphorus	:	" Part B)
			Sulfur	:	a cition I.
			Antimony	:	984 0.01 %.
			Bismuth	:	d content exc
		s indicated	Manganese	0.5	ttained if the lea
	Continued	max, except as	Aluminum	0.5–2.0	ion without be a
	TABLE 10	Composition, %	Nickel Including Cobalt	3.5-5.50 ^B	-treated condit
	S	0	Iron	3.0–5.0	cel. 00 in the heat 50-1.5 %. 10 % max.
SWENORMOC. COM. Cilck to	Jien'		Zinc	0.50-2.0	A fine framewing oper may be calculated as coper may be calculated as calculated
OM. Click			Lead	0.09	r be calculated a lel-backed bearir ax. tits of Copper Alli arbon 0.15 % me arbon 0.15 % me nagnesium 0.15
			Ξ	:	n, copper may n used for ste all be 0.25% n cal requiremen 5 max, coball inckel content. or elements: cr er elements: r er elements: r
,ENORMI			Copper	remainder	r oopper minimur Co0.01. S. Castings S shr, whe is Castings S shr, hat the mechanic ntent shall be 0.C hall not exceed r irements for othe irements for other irements for
SW		Copper	Alloy UNS. No.	C99500	A In determining B Not including 1 C Boron 0.0005- C Boron shall be C F For Continuou or F It is possible tt a Chomium content si Chemical requirable Magnesium 0. K Chemical requirable Magnesium 0. K Chemical requirable Magnesium 0.
					704

TABLE 11 Sum of All Named Elements Analyzed

Copper Alloy UNS No.	Copper Plus Named Elements, % min	Copper Alloy UNS No.	Copper Plus Named Elements, % min
C83470	99.5	C93400	99.0
C83600	99.3	C93500	99.0
C83800	99.3	C93600	99.3
C84200	99.3	C93700	99.0
C84400	99.3	C93800	99.0
C84800	99.3	C93900	98.9
C85470	99.5	C94000	98.7
C85700	98.7	C94100	98.7
C86200	99.0	C94300	99.0
C86300	99.0	C94700	98.7
C86500	99.0	C94800	98.7
C87700	99.2	C95200	99.0
C87710	99.2	C95300	99.0
C87850	99.5	C95400	99.5
C89320	99.5	C95410	99.5
C89720	99.5	C95500	99.5
C90300	99.4	C95520	99.5
C90500	99.7	C95700	99.5
C90700	99.4	C95800	99.5
C91000	99.4	C95900	99.5
C91300	99.4	C96400	99.5
C92200	99.3	C96900	99.5
C92300	99.3	C96970	99.5
C92500	99.3	C97300	99.0
C92700	99.3	C97600	99.7
C92800	99.3	C97800	99.6
C92900	99.3	C99500	99.7
C93200	99.0		

TABLE 12 Straightness Tolerances

Product	Length, ^A ft [m]	Maximum Curvature ^B (Depth of Arc), in. [mm]
Round rod or tube	up to 10 [3.05] 10 [3.05] and over	1/4 [6.4] in any 5-ft [1.52-m] portion 1/2 [13] in any 10-ft [3.05-m] portion 1/2
Bar and shape	any length	½ [13] in any 6-ft [1.83-m] portion ^{A,B}

A Of total length.

10. Dimensions and Permissible Variations

10.1 Allowance for finishing over maximum outside dimension and under inside dimension of round tubes to be machined shall be as shown in Table 3. Allowances for finishing the outside diameter of rounds and distance between parallel surfaces of bars to be machined shall be as shown in Table 4. Table 3 and Table 4 are to be used in conjunction with Tolerance Table 6 and Table 5, respectively.

10.2 Condentricity:

10.2.1 All Alloys Except as Noted in 10.2.2—The outside periphery of continuously cast tubing shall be concentric with the bore within a permissible variation of 2 % of the nominal wall thickness over ½ in. [6.35 mm]. If the wall thickness is ¼ in. or less, permissible variations in concentricity shall be subject to agreement between the purchaser and the manufacturer.

10.2.2 Copper Alloy UNS Nos. C86200, C86300, C86400, C95200, C95300, C95400, C95410, C95500, C95520, C95800, C95900, and C96400—The outside periphery of

continuously cast tubing shall be concentric with the bore within a permissible variation of 4% of the nominal wall thickness.

- 10.3 Diameter Tolerances for Continuously Cast Rod and Bar—See Table 5.
- 10.4 Diameter Tolerances for Continuously Cast Tube (Round only)—See Table 6.
- 10.5 Roundness—For continuously cast tubing in straight lengths, the roundness tolerances shall be as shown in Table 7.
- 10.6 Dimensional Tolerances for All Other Shapes (not Covered by 10.1 or 10.2)—See Table 8.

11. Casting Repair

- 11.1 Continuous castings shall not be mechanically repaired, plugged, or burned in.
- 11.2 Weld repair is permitted for Copper Alloy UNS Nos. C95200, C95300, C95400, C95410, C95500, C95800, and C95900.
- 11.3 Weld repairs may be made at the manufacturer's discretion, provided each excavation does not exceed 20 % of the casting section or wall thickness or 4 % of the casting surface area.
- 11.4 Excavations that exceed those described in 11.3 may be made at the manufacturer's discretion, except that when specified in the purchase order (5.2), the weld procedure shall be approved by the purchaser and the following records shall be maintained:
- 11.4.1 A sketch or drawing showing the dimensions, depth, and location of excavations,
 - 11.4.2 Post-weld heat treatment, when applicable,
 - 11.4.3 Weld repair inspection results,
 - 11.4.4 Casting identification number,
 - 11.4.5 Weld procedure identification number,
 - 11.4.6 Welder identification, and
 - 11.4.7 Name of inspector.
- 11.5 The castings shall not be impregnated without approval of the purchaser.
- 11.6 Weld repair of other alloys in this specification is not permitted without approval by the purchaser.

12. Sampling

- 12.1 Sampling shall be accordance with the requirements of Practice E255.
- 12.2 Unless otherwise specified, a lot shall consist of castings of the same composition and same cross-sectional dimensions, produced during the continuous operation of one casting machine, and submitted for inspection at one time.
- 12.3 A sample for chemical analysis shall be taken from each lot at each interval of 2000 lb [910 kg] of continuous production of the lot. When castings are produced from alloy ingots of known composition, the sampling interval may be raised to one sample for each 4000 lb [1810 kg] of continuous production of the lot.

^B Applicable to any longitudinal surface or edge.

- 12.4 One sample for tension testing shall be taken from each lot. This sample may be taken before mechanical straightening. Test bar specimens shall be positively identified with the castings they represent. Where castings are heat treated, test bar specimens shall be heat treated with the castings they represent.
- 12.5 When Copper Alloy UNS No. C95200 is specified, a sample from each 2000-lb interval or continuous casting shall be tested. Each continuous cast bar from which the test bar was taken shall be identified should retesting be required. If all of the test bars from the initial sampling meet the requirements, the lot shall be acceptable.
- 12.5.1 The fractured bars shall be retained for chemical verification.
- 12.6 Tension test bar specimens shall be taken from continuous castings in accordance with Fig. 6 of Practice B208.

13. Test Methods

13.1 Analytical chemical methods are given in Specification B824 (Section 13).

- 13.2 Brinell Hardness Reading shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Method E10. If a Brinell hardness is required and a tension test is not required, testing shall be in accordance with Test Method E10.
- 13.3 Rockwell Hardness Reading shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Methods E18. If a Rockwell hardness is required and a 10 Section tension test is not required, testing shall be in accordance with Test Methods E18.

14. Product Marking

14.1 DELETED

15. Keywords

15.1 continuous castings; copper alloy castings JC.II.B (ASM)

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one SINENORMOC. COM. Citck to view kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or

stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

SPECIFICATION FOR NICKEL-IRON-SPING Section II Death Bars and Section SB-511 (Identical with ASTM Specification B511-01(2009) except that certification has been made mandatory.)

SPECIFICATION FOR NICKEL-IRON-CHROMIUM-Section II Part B 201 SILICON ALLOY BARS AND SHAPES

SB-511

[Identical with ASTM Specification B 511-01(2009) except that certification has been made mandatory.]

1. Scope

- 1.1 This specification covers wrought alloys UNS N08330 and UNS N08332 in the form of hot-finished and cold-finished bar and shapes intended for heat-resisting applications and general corrosive service.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

Referenced Documents

- **2.1** ASTM Standards:
- B 536 Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Plate, Sheet, and Strip
- B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 112 Test Methods for Determining Average Grain Size E 1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

3. **Terminology**

- **3.1** Definitions of Terms Specific to This Standard:
- **3.1.1** bar, n material round, rectangular, hexagonal, octagonal, or square solid section, furnished in straight lengths.
- **3.1.2** shapes, $n \rightarrow$ material of solid section in such forms as angles, channels, tees, I-beams, and four-fluted bars.

Ordering Information

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to the following:
 - **4.1.1** Alloy (Table 1),
 - **4.1.2** Quantity (weight or number of pieces),
 - **4.1.3** ASTM designation and year of issue,
 - **4.1.4** Section (round, square, I-beam, etc.),
 - **4.1.5** Dimension, including length,

TABLE 1 MECHANICAL PROPERTIES

Alloy	Condition	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2% Offset, min, psi (MPa)	Elongation in 2 in. or 50 mm, or 4 <i>D</i> , min, %
UNS N08330	Annealed	70,000 (483)	30,000 (207)	30 ^A
UNS N08332	Annealed	67,000 (462)	27,000 (186)	30

^A Applies to round bar only. For other cross-sections and shapes the minimum elongation shall be 25%.

TABLE 2					
CHEMICAL	REQUIREMENTS				

Element	Composition Limits, %	
С	^A	
Mn	2.00 max	
Р	0.03 max	
S	0.03 max	
Si	0.75-1.50	
Cr	17.0-20.0	
Ni	34.0-37.0	
Cu	1.00 max	
Pb	0.005 max	
Sn	0.025 max	
Fe	Remainder ^B	

^A Alloy UNS N08330: 0.08 max.

- **4.1.6** *Certification* Certification is required.
- **4.1.7** Samples for Product (Check) Analysis State whether samples for product (check) analysis shall be furnished.
- **4.1.8** Purchaser Inspection If a purchaser wishes to witness tests or inspections of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

5. Materials and Manufacture

5.1 All material shall be furnished in the heat-treated condition, except that cold-drawn hexagons may be given a cold-draw sizing pass subsequent to the final heat treatment.

NOTE 1 — Hot-finished rectangular bat in widths 10 in. (254 mm) and under may be furnished as hot-finished plate with sheared or cut edges in accordance with Specification 8 536.

6. Chemical Composition

- **6.1** The material shall conform to the requirements as to chemical composition specified in Table 2.
- **6.2** If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in accordance with Specification B 880.

7. Mechanical and Other Properties

- **7.1** The mechanical properties of the material at room temperature shall conform to those shown in Table 1.
- **7.2** *Grain Size* Annealed alloy UNS N08332 shall conform to an average grain size of ASTM No. 5 or coarser.

7.3 Annealing Temperature — Alloy UNS N08330 shall be annealed at 1900°F (1040°C) minimum. Alloy UNS N08332 shall be annealed at 2100°F (1150°C) minimum.

8. Dimensions and Permissible Variations

8.1 All bars and shapes shall conform to the permissible variations in dimensions specified in Tables 3–14, inclusive.

9. Workmanship, Finish, and Appearance

9.1 The material shall be uniform in quality and temper, smooth, commercially straight, and free of injurious imperfections.

10. Sampling

- **10.1** Lot Definition:
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot for mechanical properties and grain size testing shall consist of material from one heat of the same condition and cross section, and in no case more than 30 000 lb (13 600 kg) in weight.
 - **10.2** Test Material Selection:
- **10.2.1** *Chemical Analysis* Representative samples from each lot shall be taken during pouring or subsequent processing.
- **10.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.
- **10.2.2** *Mechanical Properties and Grain Size* Samples of the material to provide test specimens for mechanical properties and grain size shall be taken from such locations in each lot as to be representative of that lot.

11. Number of Tests

- **11.1** *Chemical Analysis* One test per lot.
- **11.2** Grain Size One test per lot.
- 11.3 Mechanical Properties One test per lot.

12. Specimen Preparation

- **12.1** Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.
- **12.1.1** All material shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen

Alloy UNS N08332: 0.05-0.10.

 $^{^{\}it B}$ Element shall be determined arithmetically by difference.

TABLE 3
PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED ROUND AND SQUARE BARS

			Size	Tolerance		Out-of-Round	(Note 1)
Specifi	ed Size	0ver		Un	ider	or Out-of-Square Section (Note 2)	
in.	mm	in.	mm	in.	mm	in.	mm
½ to ½6	6.4 to 7.9	0.005	0.13	0.005	0.13	0.008	0.20
Over $\frac{5}{16}$ to $\frac{7}{16}$	7.9 to 11.1	0.006	0.15	0.006	0.15	0.009	0.23
Over $\frac{7}{16}$ to $\frac{5}{8}$	11.1 to 15.9	0.007	0.18	0.007	0.18	0.010	0.25
Over $\frac{5}{8}$ to $\frac{7}{8}$	15.9 to 22.2	0.008	0.20	0.008	0.20	0.012	0.30
Over $\frac{7}{8}$ to 1	22.2 to 25.4	0.009	0.23	0.009	0.23	0.013	0.33
Over 1 to $1\frac{1}{8}$	25.4 to 28.6	0.010	0.25	0.010	0.25	0.015	0.38
Over $1\frac{1}{8}$ to $1\frac{1}{4}$	28.6 to 31.8	0.011	0.28	0.011	0.28	0.016	0.41
Over $1\frac{1}{4}$ to $1\frac{3}{8}$	31.8 to 34.9	0.012	0.30	0.012	0.30	0.018	0.46
Over $1\frac{3}{8}$ to $1\frac{1}{2}$	34.9 to 38.1	0.014	0.36	0.014	0.36	0.021	0.53
Over $1\frac{1}{2}$ to 2	38.1 to 50.8	1/64	0.4	1/64	0.4	0.023	0.58
Over 2 to $2\frac{1}{2}$	50.8 to 63.5	1/32	0.8	0		0.023	0.58
Over $2\frac{1}{2}$ to $3\frac{1}{2}$	63.5 to 88.9	3/64	1.2	0		0.035	0.89
Over $3\frac{1}{2}$ to $4\frac{1}{2}$	88.9 to 114.3	1/16	1.6	0		0.046	1.17
Over $4\frac{1}{2}$ to $5\frac{1}{2}$	114.3 to 139.7	5/64	2.0	0		0.058	1.47
Over $5\frac{1}{2}$ to $6\frac{1}{2}$	139.7 to 165.1	1/8	3.2	0		0.070	1.78
Over $6\frac{1}{2}$ to 8	165.1 to 203.2	5/32	4.0	0		0.085	2.16

NOTE 1- Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same cross section.

NOTE 2 — Out-of-square section is the difference in the two dimensions at the same cross section of a square bar, each dimension being the distance between opposite faces.

NOTE 3 — Size tolerances for rounds in the size range from $\frac{1}{4}$ to $\frac{5}{16}$ in. (6.4 to 7.9 mm), incl, and for rounds in the size range from $\frac{1}{4}$ in. (6.4 mm) to approximate $\frac{5}{8}$ in. (15.9 mm), which are produced on rod mills in coils, are not shown herein.

NOTE 4 — Variations in size of coiled product made on rod mills are greater than size tolerances for product made on bar mills.

TABLE 4
PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED HEXAGONAL AND OCTAGONAL BARS

		"Ve	Size	Tolerance		Maximu	m Difference
Specified Sizes Between Oppo		7.	0ver		Jnder		rements for gons Only
in.	mm	in.	mm	in.	mm	in.	mm
$\frac{1}{2}$ to 1, incl	12.7 to 25.4	0.010	0.25	0.010	0.25	0.015	0.38
Over 1 to $1\frac{1}{2}$, incl	25.4 to 38.1	0.021	0.53	0.021	0.53	0.025	0.64
Over $1\frac{1}{2}$ to 2, incl	38.1 to 50.8	¹ / ₃₂	0.8	1/32	0.8	1/32	0.8
Over 2 to $2\frac{1}{2}$, incl	50.8 to 63.5	3/64	1.2	3/64	1.2	3/64	1.2
Over $2\frac{1}{2}$ to $3\frac{1}{2}$, incl	63.5 to 88.9	1/16	1.6	1/16	1.6	1/16	1.6

TABLE 5
PERMISSIBLE VARIATIONS IN THICKNESS AND WIDTH FOR HOT-ROLLED FLAT BARS

				Thickness	Tolerance	es, in., for (Given Thicl	kness			
	½, incl	Over $\frac{1}{2}$ to 1, incl	Over 1 to 2, incl		2 to 4,		1 to 6,		6 to 8, icl	Width T	olerance
Specified Widths, in.	Ov	er and Unde	r	0ver	Under	0ver	Under	0ver	Under	0ver	Under
To 1, incl	0.008	0.010								0.015	0.015
Over 1 to 2, incl	0.012	0.015	0.031							0.031	0.031
Over 2 to 4, incl	0.015	0.020	0.031	0.062	0.031					0.062	0.031
Over 4 to 6, incl	0.015	0.020	0.031	0.062	0.031	0.093	0.062			0.093	0.062
Over 6 to 8, incl	0.016	0.025	0.031	0.062	0.031	0.093	0.062	0.125	0.156	0.125	0.156
Over 8 to 10, incl	0.021	0.031	0.031	0.062	0.031	0.093	0.062	0.125	0.156	0.156	0.187
				Thickness	Tolerance	s, mm, for	Given Thic	kness	270		
		0ver	0ver					. <	9		
	3.2 to 12.7,	12.7 to 25.4,	25.4 to 50.8,	Over	50.8 to	Over 1	01.6 to	nyar 1	52.4 to		
	incl	incl	incl		6, incl		1, incl	100	2, incl	Width T	olerance
	Ov	er and Unde	r	0ver	Under	0ver	Under	0ver	Under	0ver	Under
To 25.4, incl	0.20	0.25					.8			0.38	0.38
25.4 to 50.8, incl	0.20	0.23	0.80			• • • •	11.			0.80	0.80
50.8 to 101.6, incl	0.38	0.51	0.80	1.58	0.80	,()	•			1.58	0.80
101.6 to 152.4, incl	0.38	0.51	0.80	1.58	0.80	2.36	1.58			2.36	1.58
						<)					
152.4 to 203.2, incl	0.41	0.64	0.80	1.58	0.80	2.36	1.58	3.18	3.96	3.18	3.96

TABLE 6
PERMISSIBLE VARIATIONS IN SIZE OF COLD-FINISHED ROUND BARS

<u> </u>	US.		Size Tolera	nce (Note 1)	
Specified S	Size	Ove	er	Und	er
in.	mm	in.	mm	in.	mm
Over $\frac{1}{2}$ to $\frac{1}{2}$ incl 1 to $\frac{1}{2}$ incl	12.7 to 25.4	0.002	0.05	0.002	0.05
1 to $1\frac{1}{2}$ incl	25.4 to 38.1	0.0025	0.06	0.0025	0.06
$1\frac{1}{2}$ to 4, incl (Note 3)	38.1 to 101.6	0.003	0.08	0.003	0.08

 \bullet NOTE 1 — Size tolerances are over and under as shown in the table. Also, rounds can be produced to tolerances all over and nothing under, or all under and nothing over, or any combination of over and under, if the total spread in size tolerance for a specified size is not less than the total spread shown in the table.

NOTE 2 - When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

NOTE 3 - Cold-finished bars over 4 in. (102 mm) in diameter are produced; size tolerances for such bars are not included herein.

TABLE 7 PERMISSIBLE VARIATIONS IN SIZE OF COLD-FINISHED HEXAGONAL, OCTAGONAL, AND SQUARE BARS

		Permissik	ole Variations from	Specified Size
Specific	ed Size		Uı	nder
in.	mm	0ver	in.	mm
Over $\frac{1}{2}$ to 1, incl	12.7 to 25.4	0	0.004	0.10
Over 1 to 2, incl	25.4 to 50.8	0	0.006	0.15
Over 2 to 4, incl	50.8 to 101.2	0	0.008	0.20
Over 4	101.2	0	0.010	0.25
$NOTE - When \ it\ is$				
are double those shown	in the table.			BRY

TABLE 8 PERMISSIBLE VARIATIONS IN WIDTH AND THICKNESS OF COLD-FINISHED FLAT BARS

				/		
			Width Tolerance (Note:	I), Over and Under		
Widt	:h	For Thicknesses 1/4	in. (6.4 mm) and Under	For Thicknesses over	For Thicknesses over $\frac{1}{4}$ in. (6.4 mm)	
in.	mm	in.	mm	in.	mm	
3/8 to 1, incl	9.5 to 25.4	0.004	0.10	0.002	0.05	
Over 1 to 2, incl	25.4 to 50.8	0.006	0.15	0.003	0.08	
Over 2 to 3, incl	50.8 to 76.2	0.008	0.20	0.004	0.10	
Over 3 to $4\frac{1}{2}$, incl	76.2 to 114.3	0.010	0.25	0.005	0.13	
Thickn	ess	4	Thickness Tolerance, (Not	e 1) Over and Under		
in.	mm	OQ.	in.	mr	n	
½ to 1, incl	3.18 to 25.4		0.002	0.0	15	
Over 1 to 2, incl	25.4 to 50.8	K)	0.003	0.0	18	
Over 2 to 3, incl	50.8 to 76.2		0.004	0.1	.0	
Over 3 to $4\frac{1}{2}$, incl	76.2 to 114.3	KI,	0.005	0.1	.3	

y to h. bars over Click to ${\sf NOTE\ 1-When\ it\ is\ necessary\ to\ heat\ treat\ or\ heat\ treat\ and\ pickle\ after\ cold\ finishing,\ tolerances\ are\ double-those\ shown\ in\ the\ table.}$ NOTE 2 — Cold-finished flat bars over $\frac{4}{7}$ in. (114.3 mm) wide or thick are produced: width and thickness tolerances for such bars are not

TABLE 9
PERMISSIBLE VARIATIONS IN LENGTH OF HOT FINISHED OR COLD FINISHED BARS

			Permissible Variati	ons in Length, in. (mm)	
Specified Sizes of Rounds, Squares, Hexagons, Octagons		To 12 ft (3	.66 m), incl	Over 12 to 25 ft (3.66 to 7.62 m), incl	
and Widths of Flat		0ver	Under	O ver	Under
To 2, incl	51	½ (12.7)	0	³ / ₄ (19.1)	0, 9
Over 2 to 4, incl	51 to 102	³ / ₄ (19.1)	0	1 (25.4)	0
Over 4 to 6, incl	102 to 152	1 (25.4)	0	$1\frac{1}{4}$ (31.8)	
Over 6 to 9, incl	152 to 229	$1\frac{1}{4}$ (31.8)	0	$1\frac{1}{2}$ (38.1)	0
Over 9 to 10, incl	229 to 254	$1\frac{1}{2}$ (38.1)	0	2 (50.8)	0

NOTE — Tolerances in this table apply when specific lengths are ordered. When random lengths are ordered, the length range is not less than 24 in. (610 mm).

TABLE 10

PERMISSIBLE VARIATIONS IN LENGTH OF HOT FINISHED OR COLD FINISHED BARS

MACHINE-CUT AFTER MACHINE STRAIGHTENING

			Permissible Variati	ons in Length, in. (mm)	
Specified Sizes of Rounds, Squares, Hexagons, Octagons		To 12 ft (3	.66 m), incl	Over 12 to 25 ft (3.66 to 7.62 m), incl	
and Widths of F		0ver	Under	Over	Under
To 3, incl	76.2	½ (3.2)	0	³ / ₁₆ (4.8)	0
Over 3 to 6, incl	76.2 to 152.4	³ / ₁₆ (4.8)	0	½ (6.4)	0
Over 6 to 9, incl	152.4 to 228,6	½ (6.4)	0	⁵ / ₁₆ (7.9)	0
Over 9 to 12, incl	228.6 to 304.8	$\frac{1}{2}$ (12.7)	0	$\frac{1}{2}$ (12.7)	0

NOTE — Tolerances in this table and when specific lengths are ordered. When random lengths are ordered, the length range is not less than 24 in. (610 mm).

^A The maximum width of bar flats is 10 in. (254 mm).

The maximum width of bar flats is 10 in. (254 mm).

TABLE 11
DIMENSIONAL TOLERANCES—HOT EXTRUSIONS

Largest Section Dimension, in. (mm)	Tolerance, ±, in. (mm)
Under 1 (25.40)	0.020 (0.51)
1 (25.40) to 3 (76.20), excl	0.031 (0.79)

TABLE 12 ANGULARITY TOLERANCE—HOT EXTRUSIONS

	Tolerance, ±, °
Specified angle or angles	2

TABLE 13 LENGTH TOLERANCES FOR SHAPES AND HOT EXTRUSIONS SPECIFIED TO EXACT LENGTHS, MACHINE CUT AFTER STRAIGHTENING

	Length Tolerance, in. (mm)		
Largest Sectional Dimension, in. (mm)	0ver	Under	
Up to 3 (76.2), excl	½ (6.4)	0	

TABLE 14 PERMISSIBLE VARIATIONS IN STRAIGHTNESS (CAMBER) OF HOT-FINISHED BARS, HOT EXTRUSIONS AND COLD-FINISHED BARS

Hot-finished bar and hot extrusions:

 $\frac{1}{8}$ in. (3.2 mm) in any 5 ft (1.5 m), but may not exceed ($\frac{1}{8}$ × No. of feet in length)/5

2.1 mm × No. of metres in length Cold-finished bars:

 $\frac{1}{16}$ in. (1.6 mm) in any 5 ft (1.5 m) but may not exceed ($\frac{1}{16}$ × No. of feet in length)/5

1.05 mm × No. of metres in length

NOTE 1 — Measurement is taken on the concave side of the bar with a straightedge and represents the greatest deviation of the side from a straight line.

shown in Test Methods E 8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E 8 for rectangular bar up to $\frac{1}{2}$ in. (12.7 mm) inclusive, in thicknesses that are too wide to be pulled full size.

13. Test Methods

13.1 Chemical Composition — In case of dispute, the chemical analysis shall be made in accordance with Test Methods E 1473.

13.2 Grain Size — The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Test Methods E 112. In case of dispute the "referee" method for determining average grain size shall be the planimetric method.

13.3 Tension Test — Test Methods E 8.

13.4 Rounding Method — For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice F 29:

	Rounded Unit for Observed
Requirements	or Calculated Value
Chemical composition and toler-	nearest unit in the right-hand place
ances (when expressed in dec	of figures of the specified limit.
imals)	If two choices are possible, as
8	when the digits dropped are
	exactly a 5 or a 5 followed only
(C).	by zeros, choose the one ending
	in an even digit with zero
	defined as an even digit.
Tensile strength and yield strength	nearest 1000 psi (6.9 MPa)
Elongation	nearest 1%
Grain size	
0.0024 in. (0.060 mm) or larger	nearest multiple of 0.0002 in.
	(0.005 mm)
Less than 0.0024 in. (0.060	nearest multiple of 0.0001 in.
mm)	(0.002 mm)

14. Inspection

14.1 Inspection of the material by the purchaser shall be as agreed upon between the purchaser and the supplier as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 A producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. A report of the test results shall be furnished.

- Sentagendoc Com. Clore when the full pot of sent above. He had been come the full pot of sent above.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR WELDED NICKER THE SECTION FOR WELDED NICKER THE SECTION FOR WELDED NICKERS THE SECTION FOR WELDEN FOR WELDEN FOR WELDEN FOR WELDEN FOR WELD NICKERS THE SECTION F SB-514 SB-514 SB-514 SB-514 SB-514 SB-514 SB-514

Cification By Republic Click to view the full Policy of the Author Control of the (Identical with ASTM Specification B514-05(2019) except for the deletion of para. 5.1.6.)

Specification for Welded Nickel-Iron-Chromium Alloy Pipe

1. Scope

- 1.1 This specification covers nickel-iron-chromium alloys in the form of welded, cold-worked, and annealed pipe for general corrosive service and heat-resisting applications. These products are furnished in three alloys: UNS N08120, UNS N08800, and UNS N08810. Alloy UNS N08800 is employed normally in service temperatures up to and including 1100 °F (593 °C). Alloys UNS N08120 and UNS N08810 are employed normally in service temperatures above 1100 °F where resistance to creep and rupture is required, and are annealed to develop controlled grain size for optimum properties in this temperature range.
- 1.2 This specification covers outside diameter and nominal wall pipe shown in ANSI B36.19. Pipe having other dimensions may be furnished provided such pipe complies with all other requirements of the specification.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

B775 Specification for General Requirements for Nickel and Nickel Alloy Welded Pipe

B899 Terminology Relating to Non-ferrous Metals and Alloys

2.2 ANSI Standard:

B36.19 Stainless Steel Pipe

3. Terminology

3.1 Terms defined in Terminology B899 shall apply unless defined otherwise in this standard.

4. General Requirement

4.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B775 unless otherwise provided herein.

5. Ordering Information

- 5.1 Orders for material under this specification should include the following information:
 - 5.1.1 Alloy name or UNS number.
 - 5.1.2 ASTM designation and year of issue.
 - 5.1.3 Condition (temper) (Table 1).
 - 5.1.4 Dimensions:
- 5.1.4.1 Nominal pipe size or outside diameter and schedule number or nominal wall thickness.
 - 5.1.4.2 Length (specific or random).
 - 5.1.5 Quantity (feet or metres, or number of pieces).
 - 5.1.6 DELETED
- 5.1.7 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished.
- 5.1.8 Purchaser Inspection—If the purchaser wishes to witness tests or inspection of material at the place of

TABLE 1 Mechanical Property Requirements

Alloy	Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2 % Offset, min, psi (MPa)	Elongation in 2 in. or 50 mm, min, %
UNS N08120	annealed	90 000 (621)	40 000 (276)	30
UNS N08800	annealed	75 000 (520)	30 000 (207)	30
UNS N08810	annealed	65 000 (450)	25 000 (170)	30

manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

6. Materials and Manufacture

- 6.1 Pipe shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final solution treatment, the material shall be cold worked either in both weld and base metal or in weld metal only.
- 6.2 Pipe shall be furnished with a scale-free finish. When bright annealing is used, descaling is not necessary.

7. Chemical Composition

- 7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- 7.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Table 1 of Specification B775.

TABLE 2 Chemical Requirements

TABLE 2 Chemical nequirements					
	Composition Limits, %				
Element	Alloy N08120	Alloys N08800 and N08810			
Nickel	35.0 min	30.0 min			
	39.0 max	35.0 max 🔷 💙			
Chromium	23.0 min	19.0 min			
	27.0 max	23.0 max			
Iron	remainder	39.5 min ^A			
Manganese, max	1.5	1(5)			
Carbon	0.02 min	K B			
	0.10 max	10			
Copper, max	0.50 max	0.75			
Silicon, max	1.0	1.0			
Sulfur, max	0.03	0.015			
Aluminum	0.40 max 🔿	0.15 min			
		0.60 max			
Titanium	0.20 max	0.15 min			
		0.60 max			
Columbium	0,4 min	•••			
	0.9 max	•••			
Molybdenum	• 2.50 max				
Phosphorus	0.040 max	•••			
Tungsten	2.50 max	•••			
Cobalt, max	3.0				
Nitrogen	0.15 min				
	0.30 max				
Boron	0.010 max				

Non shall be determined arithmetically by difference.

Alloy UNS N08800: 0.10 max. Alloy UNS N08810: 0.05 to 0.10.

8. Mechanical and Other Requirements

- 8.1 *Mechanical Properties*—The material shall conform to the requirements for mechanical properties prescribed in Table 1.
- 8.2 *Grain Size*—A transverse sample representing the full-wall thickness of annealed alloys UNS N08120 and N08810 shall conform to an average grain size of ASTM No. 5 or coarser.
- 8.3 Flattening Test—Pipe shall be capable of withstanding, without cracking, flattening under a load applied gradually at room temperature until the distance between the platens is five times the wall thickness. The weld shall be positioned 90° from the direction of the applied flattening force.
- 8.4 Annealing Temperature—Alloy UNS N08120 shall be annealed at 2150 °F (1177 °C) minimum; alloy UNS N08810 shall be annealed at 2050 °F (1120 °C) minimum.
 - 8.5 *Nondestructive Test Requirements:*
- 8.5.1 Category 1—Each piece of each lot shall be subject to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy ourrent, or ultrasonic.
- 8.5.2 Category 2—Each piece in each lot shall be subjected to a leak test and an electric test as follows:
- 8.5.2.1 Leak Test—Hydrostatic or pneumatic (air underwater).
- 8.5.22 *Electric Test*—Eddy current or ultrasonic.
- 8.6 The manufacturer shall have the option to test Category or Category 2 and select the nondestructive test methods, if not specified by the purchaser.
- 8.7 Transverse Guided Bend Test—At the option of the pipe manufacturer, the transverse guided bend test may be substituted in lieu of the flattening test. Two bend specimens shall be taken transversely from pipe or the test specimens may be taken from a test plate of the same material and heat as pipe, which is attached to the end of the cylinder and welded as a prolongation of the pipe longitudinal seam. One test is required for each lot as defined in Specification B775.

9. Number of Tests

- 9.1 Chemical Analysis—One per lot.
- 9.2 Mechanical Properties—One test per lot.
- 9.3 Flattening or Transverse Guided Bend Test—One test per lot.
 - 9.4 *Grain Size*—One test per lot.
 - 9.5 Nondestructive—Each piece in each lot.

10. Keywords

10.1 UNS N08120; UNS N08800; UNS N08810; welded pipe

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B) 202 SB-515 (Identical with ASTM Specification B515-9529/14) except that certification has been made mandatory.) (Identical with ASTM Specification B515-9529/14) except that certification has been made mandatory.) SPECIFICATION FOR WELDED UNS NO8120, UNS NO8800, UNS NO8810, AND UNS NO8811 ALLOY TUBES

SPECIFICATION FOR WELDED UNS N08120, BPVC Section II Part B 201 UNS N08800, UNS N08810, AND UNS N08811 ALLOY **TUBES**

SB-515

[Identical with ASTM Specification B 515-95(2014) except certification has been made mandatory.]

1. Scope

- 1.1 This specification covers welded UNS N08120, UNS N08800, UNS N08810 and UNS N08811 alloy boiler, heat exchanger, and condenser tubes for general corrosion resisting and low or high-temperature service.
- **1.2** This specification covers tubes $\frac{1}{8}$ to 5 in. (3.18 to 127 mm), inclusive, in outside diameter and 0.015 to 0.500 in. (0.38 to 12.70 mm), inclusive, in wall thickness. Table 2 of Specification B 751 lists the dimensional requirements of these sizes. Tubes having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.
- 1.3 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.
- **1.4** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet forth's product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- **2.1** ASTM Standards:
- B 751 Specification for General Requirements for Nickel and Nickel Alloy Welded Tube

Ordering Information

- 31 Orders for material to this specification should include the following information:
 - **3.1.1** Quantity (feet or number of lengths),

- 3.1.2 UNS Number.
- **3.1.3** Size (outside diameter minimum or average wall thickness),
 - **3.1.4** Length (random or specific),
 - **3.1.5** *Class*,
 - **3.1.6** ASTM Designation,
 - **3.1.7** *Product Analysis* State if required,
- 31.8 Certification Certification and a report of test results are required, and
- 3.1.9 Purchaser Inspection State which tests or inspections are to be witnessed, if any.

Materials and Manufacture

- **4.1** Tube shall be made from flat-rolled alloy by an automatic welding process with no addition or filler metal. Subsequent to welding and prior to final annealing, the material shall be cold-worked in either the weld metal only or both weld and base metal.
- **4.2** Tube shall be furnished with oxide removed. When bright annealing is used, descaling is not necessary.

Chemical Composition

- **5.1** The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification B 751.
- **5.2** If a product analysis is performed, it shall meet the chemistry limits prescribed in Table 1, subject to the analysis tolerances specified in Table 6 of Specification B 751.

TABLE 1
CHEMICAL REQUIREMENTS

	Composition Limits, %				
Element	Alloy N08120	Alloy N08800	Alloy N08810	Alloy N08811	
Nickel, min	35.0	30.0	30.0	30.0	
Nickel, max	39.0	35.0	35.0	35.0	
Chromium, min	23.0	19.0	19.0	19.0	
Chromium, max	27.0	23.0	23.0	23.0	
Iron, min	remainder	39.5 (A)	39.5 (A)	39.5 (A)	
Manganese, max	1.5	1.5	1.5	1.5	
Carbon, min	0.02				
Carbon, max	0.10	0.10	0.05 to 0.10	0.06 to 0.10	
Copper, max	0.50	0.75	0.75	0.75	
Silicon, max	1.0	1.0	1.0	1.0	
Sulfur, max	0.03	0.015	0.015	0.015	
Aluminum, min (B)		0.15	0.15	0.15	
Aluminum, max	0.40	0.60	0.60	0.60	
Titanium, min (B)		0.15	0.15	0.15	
Titanium, max	0.20	0.60	0.60	0.60	
Columbium , min	0.4				
Columbium, max	0.9		2		
Molybdenum, max	2.50				
Phosphorus, max	0.040				
Tungsten, max	2.50		' Ο'		
Cobalt, max	3.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Nitrogen, min	0.15		X		
Nitrogen, max	0.30		,		
Boron, max	0.010				

NOTES:

(A) Iron shall be determined arithmetically by difference.

(B) Alloy UNS N08811: Al + Ti, 0.85−1.20. C

TABLE 2
MECHANICAL PROPERTY REQUIREMENTS

Alloy	Condition (Temper)	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2% Offset, min, psi (MPa)	Elongation in 2 in. or 50 mm, min, %
UNS N08120	annealed	90 000 (621)	40 000 (276)	30
UNS N08800	annealed	75 000 (520)	30 000 (205)	30
UNS N08810 and UNS N08811	annealed	65 000 (450)	25 000 (170)	30

6. Mechanical and Other Properties

- **6.1** *Mechanical Properties*—The material shall conform to the mechanical property requirements specified in Table 2. One test is required for each lot as defined in Specification B 751.
- **6.2** Grain Size A transverse sample representing the full-wall thickness of annealed alloys UNS N08120, N08810, and N08811 shall conform to an average grain size of ASTM No. 5 or coarser.
- **6.3** Flattening Test A flattening test shall be made on each end of one tube per lot. Superficial ruptures resulting from surface imperfections shall not be cause for rejection.

- **6.4** Flange Test A flange test shall be made on each end of one tube per lot.
 - **6.5** Nondestructive Test Requirements:
- **6.5.1** Class 1 Each piece of each lot shall be subject to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.
- **6.5.2** Class 2 Each piece in each lot shall be subjected to a leak test and an electric test as follows:
- **6.5.2.1** *Leak Test* Hydrostatic or pneumatic (air underwater).
 - **6.5.2.2** *Electric Test* Eddy current or ultrasonic.

JOHN DIE JART BOYC SERVEN HAR AND SERVE BAYC. H.B. ASHIE BAYC SERVEN HAR AND SERV

724

(23)

SPECIFICATION FOR WELDED NICKELS CHROMIUM-ALUMINUM ALLOY (UNS NO6699) AND NICKEL-CHROMIUM-IRON ALLOY (UNS NO6600, UNS NO6601, UNS NO6603, UNS NO6025, UNS NO6045, UNS NO6690, AND UNS NO6693) TUBES

B-516

(Identical with ASTM Specification B\$16-18 except that certification and a test report have been made mandatory.)

Cick to item to the control of the contro

Specification for Welded Nickel-Chromium-Aluminum Alloy (UNS N06699) and Nickel-Chromium-Iron Alloy (UNS N06600, UNS N06601, UNS N06603, UNS N06025, UNS N06045, UNS N06690, and **UNS N06693) Tubes**

1. Scope

- 1.1 This specification covers welded UNS N06600, N06601, N06603, N06025, N06045, UNS N06690, UNS N06693, and UNS N06699 alloy boiler, heat exchanger, and condenser tubes for general corrosion resisting and low or high-temperature service.
- 1.2 This specification covers tubes ½ to 5 in. (3.18 to 127 mm), inclusive, in outside diameter and 0.015 to 0.500 in. (0.38 to 12.70 mm), inclusive, in wall thickness. Table 2 of Specification B751 lists the dimensional requirements of these sizes. Tubes having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical EMENOR MOC. COM. Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- Section II Part B 202 for B751 Specification for General Requirements for Nickel and Nickel Alloy Welded Tube
- B899 Terminology Relating to Non-ferrous Metals and Alloys

3. Terminology

3.1 Terms defined in Terminology B899 shall apply unless defined otherwise in this standard.

4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
- 4.1.1 Quantity (feet or number of lengths),
 - 4.1.2 UNS number,
- 4.1.3 Size (outside diameter minimum or average wall thickness),
 - 4.1.4 Length (random or specific),
 - 4.1.5 Class,
 - 4.1.6 ASTM designation,
 - 4.1.7 *Product Analysis*—State if required,
- 4.1.8 *Certification*—Certification and a report of test results are required,
- 4.1.9 Purchaser Inspection—State which tests or inspections are to be witnessed, if any.

5. Material and Manufacture

5.1 Tube shall be made from flat-rolled alloy by an automatic welding process with no addition or filler metal. Subsequent to welding and prior to final annealing, the material shall be cold-worked in either the weld metal only or both weld and base metal.

TABLE 1 Chemical Requirements

□				Comp	position Limits, %			
Element	N06600	N06601	N06603	N06025	N06045	N06690	N06693	N06699
Nickel ^A	72.0 min	58.0-63.0	Bal	Bal	45.0 min	58.0 min	Bal	Bal
Chromium	14.0 min 17.0 max	21.0-25.0	24.0–26.0	24.0–26.0	26.0–29.0	27.0-31.0	27.0-31.0	26.0-30.0
Iron	6.0 min 10.0 max	Bal ^A	8.0–11.0	8.0-11.0	21.0–25.0	7.0-11.0	2.5-6.0	2.5 max
Manganese	1.0 max	1.0 max	0.15 max	0.15 max	1.0 max	0.5 max	1.0 max	0.50 max
Carbon	0.15 max	0.10 max	20.0-40.0	0.15-0.25	0.05-0.12	0.05 max	0.15 max	0.005-0.10
Copper	0.5 max	1.0 max	0.50 max	0.10 max	0.3 max	0.5 max	0.5 max	0.50 max
Silicon	0.5 max	0.5 max	0.50 max	0.5 max	2.5-3.0	0.5 max	0.5 max	0.50 max
Sulfur	0.015 max	0.015 max	0.010 max	0.010 max	0.010 max	0.015 max	0.01 max	0.01 max
Aluminum		1.0-1.7	2.4-3.0	1.8-2.4			2.5-4.0	1.9-3.0
Titanium			0.01-0.25	0.1-0.2			1.0 max	0.60 max
Niobium							0.5-2.5	0.50 max
Phosphorus			0.020 max	0.02 max	0.02 max			O.02 max
Zirconium			0.01-0.40	0.01-0.10			C s	0.10 max
Yttrium			0.01-0.15	0.05-0.12				
Cerium					0.03-0.09		0	
Nitrogen								0.05 max

^A Element shall be determined arithmetically by difference.

5.2 Tube shall be furnished with oxide removed. When bright annealing is used, descaling is not necessary.

6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification B751.
- 6.2 If a product analysis is performed, it shall meet the chemistry limits prescribed in Table 1, subject to the analysis tolerances specified in Specification B751.

7. Mechanical Properties and Other Requirements

7.1 Mechanical Properties—The material shall conform to the mechanical property requirements specified in Table 2. One test is required for each lot as defined in Specification B751.

TABLE 2 Mechanical Property Requirements

_				
	Alloy	Tensile Strength min, psi (MPa)	Yield Strength 0.2 % Offset, min, osi (MPa)	Elongation in 2 in. or 50 mm, min, %
	N06600	80 000 (550)	35 000 (240)	30
	N06601	80 000 (550)	30 000 (205)	30
	N06603	94 000 (650)	43 000 (300)	25
	N06025	98 000 (680)	39 000 (270)	30
	N06045	90 000 (620)	35 000 (240)	30
	N06690	85 000 (586)	35 000 (240)	30
	N06693	100 000 (690)	50 000 (345)	30
	N06699	89.000 (610)	35 000 (240)	40

- 7.2 Flattening Test A flattening test shall be made on each end of one tube per lot. Superficial ruptures resulting from surface imperfections shall not be cause for rejection.
- 7.3 Flange Test—A flange test shall be made on each end of one tube per lot.
 - 7.4 Nondestructive Test Requirements:
- 74.1 Class 1—Each piece in each lot shall be subject to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.
 - 7.4.2 Class 2—Each piece in each lot shall be subjected to a leak test and an electric test as follows:
 - 7.4.2.1 *Leak Test*—Hydrostatic or pneumatic (air underwater).
 - 7.4.2.2 Electric Test—Eddy current or ultrasonic.
 - 7.5 The manufacturer shall have the option to test to Class 1 or Class 2 and select the nondestructive test methods, if not specified by the purchaser.

8. General Requirements

8.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification B751 unless otherwise provided herein.

9. Keywords

9.1 welded tube; N06600; N06601; N06603; N06025; N06045; N06690; N06693; N06699

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR WELDED NICKER THE SPECIFIC Section II Park BY THE SPECIFIC SECTION II PARK B CHROMIUM-IRON ALLOY (UNS N06600, UNS N06603,

(Identical with ASTM Specification B517-98 except Table 1 was corrected, certification has been made mandatory, and other editorial changes have been made.) ASMENORANDOC. COM. Circle to view the full

SPECIFICATION FOR WELDED NICKEL-CHROMIUM-IRON ALLOY (UNS N06600, UNS N06603, UNS N06025, AND UNS N06045) PIPE

SB-517

(Identical with ASTM Specification B 517-98 except Table 1 was corrected, certification has been made mandatory, and other editorial changes have been made.)

1. Scope

- 1.1 This specification covers welded, cold-worked, and annealed nickel-chromium-iron alloy (UNS N06600, N06603, N06025, and N06045) pipe for general corrosive service and heat-resisting applications.
- 1.2 This specification covers outside diameter and nominal wall pipe shown in ANSI B36.19. Pipe having other dimensions may be furnished provided such pipe complies with all other requirements of this specification.
- **1.3** The values stated in inch-pound units are to be regarded as the standard.

2. Referenced Documents

- 2.1 ASTM Standard
- B 775 Specification for General Requirements for Nickel and Nickel Alloy Welded Pipe
- **2.2** *ANSI Standard* B36.19 Stainless Steel Pipe

3. General Requirement

3.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification SB-775 unless otherwise provided herein.

4. Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

- **4.1.1** Alloy name or UNS number.
- **4.1.2** ASTM designation and year of issue.
- **4.1.3** Condition (temper).
- 4.1.4 Dimensions:
- **4.1.4.1** Nominal pipe size or outside diameter and schedule number or nominal wall thickness.
 - **4.1.4.2** Length (specific or random).
 - 41.5 Quantity (feet or meters, or number of pieces).
- 4.1.6 Certification Certification and a report of test results are required.
- **4.1.7** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished.
- **4.1.8** Purchaser Inspection If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

5. Materials and Manufacture

- **5.1** Pipe shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final heat treatment, the material shall be cold worked either in both weld and base metal or in weld metal only.
- **5.2** Pipe shall be furnished with a scale-free finish. When bright annealing is used, descaling is not necessary.

6. Chemical Composition

6.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.

TABLE 1
CHEMICAL REQUIREMENTS
Composition Limits, %

		Composition	Limits, %		Product (Check) Analysis
Element	N06600	N06603	N06025	N06045	Variations, Under Min. or Over Max., of the Specified Limit of Element
Nickel ^A	72.0 min.	Bal	Bal	45.0 min.	0.45
Chromium	14.0 min.	24.0-26.0	24.0-26.0	26.0-29.0	0.15
	17.0 max.				0.25
Iron	6.0 min.	8.0-11.0	8.0-11.0	21.0-25.0	0.10
	10.0 max.				0.10
Manganese	1.0	0.15 max.	0.15 max.	1.0 max.	0.03 0.01
Carbon	0.15 max.	20.0-40.0	0.15-0.25	0.05-0.12	6 0.01
Copper	0.5 max.	0.50 max.	0.10 max.	0.3 max.	0.03
Silicon	0.5 max.	0.50 max.	0.5 max.	2.5-3.0	0.03
Sulfur	0.015 max.	0.010 max.	0.010 max.	0.010 max.	0.003
Aluminum		2.4-3.0	1.8-2.4		?
Titanium		0.01-0.25	0.1-0.2		• • • •
Phosphorus		0.020 max.	0.02 max.	0.02 max	
Zirconium		0.01-0.40	0.01-0.10	S	
Yttrium		0.01-0.15	0.05-0.12	1.00	
Cerium				0.03-0.09	
Nitrogen				0.05-0.12	

^A Nickel shall be determined arithmetically by difference.

6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Table 1 of Specification SB-775.

7. Mechanical and Other Requirements

- **7.1** *Mechanical Properties* The material shall conform to the requirements for mechanical properties prescribed in Table 2.
- **7.2** Flattening Test Pipe shall be capable of withstanding, without cracking, flattening under a load applied gradually at room temperature until the distance between the platens is five times the wall thickness. The weld shall be positioned 90° from the direction of the applied flattening force.
 - 7.3 Nondestructive Test Requirements:
- **7.3.1** Category 1 Each piece of each lot shall be subject to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.
- 7.3.2 Category 2 Each piece in each lot shall be subjected to a leak test and an electric test as follows:
- **7.3.2.1** *Leak Test* hydrostatic or pneumatic (air underwater), and
 - **7.3.2.2** *Electric Test* eddy current or ultrasonic.
- **7.4** The manufacturer shall have the option to test Category 1 or Category 2 and select the nondestructive test methods, if not specified by the purchaser.

TABLE 2
MECHANICAL PROPERTY REQUIREMENTS

Alloy	Tensile Strength, Min., psi (MPa)	Yield Strength, 0.2% Offset, Min., psi (MPa)	Elongation in 2 in. or 50 mm, Min., %
N06600	80,000 (550)	35,000 (240)	30
N06603	94,000 (650)	43,000 (300)	25
N06025	98,000 (680)	39,000 (270)	30
N06045	90,000 (620)	35,000 (240)	30

8. Number of Tests

- **8.1** *Chemical Analysis* One per lot.
- **8.2** *Mechanical Properties* One test per lot.
- **8.3** Flattening One test per lot.
- **8.4** *Nondestructive* Each piece in each lot.

9. Keywords

9.1 welded pipe; N06600; N06603; N06025; N06045

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

MC Section II Part B) 202 SB-523/SB-523M SB-523/SB-523M (Identical with ASTM Specification B523/B523M-18.) SPECIFICATION FOR SEAMLESS AND WELDED ZIRCONIUM AND ZIRCONIUM ALLOYTUBES

Specification for Seamless and Welded Zirconium and Zirconium Alloy **Tubes**

1. Scope

- 1.1 This specification covers two grades of zirconium and zirconium alloy seamless and welded tubes.
- 1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm², the values stated in either inch-pound or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
- 1.3 The following precautionary caveat pertains only to the test methods portion of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recognmendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

B551/B551M Specification for Zirconium and Zirconium Alloy Strip, Sheet, and Plate

B614 Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces

E8/E8M Test Methods for Tension Testing of Metallic Ma-

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E213 Practice for Ultrasonic Testing of Metal Pipe and

E426 Practice for Electromagnetic (Eddy Current) Examination of Seamless and Welded Tubular Products, Titanium, Austenitic Stainless Steel and Similar Alloys

3. Terminology

- Terminology

 3.1 Definitions of Terms Specific to This Standard

 3.1.1 annealed, n—for purposes of this specification
 aled" denotes material that exhibits a recruitcure.

 2.2 Lot Definitions:
 2.1 tubes, n
 shar nealed" denotes material that exhibits a recrystallized grain
- size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.

4. Classification

- 4.1 The types are furnished in two grades as follows:
- 4.1.1 Grade R60702—Unalloyed zirconium.
- 4. 2 Grade R60704—Zirconium-tin alloy.

5. Ordering Information

- 5.1 Orders for material under this specification should include the following information:
 - 5.1.1 Quantity (weight or number of pieces, or both),
- 5.1.2 Name of material (zirconium seamless or welded
- 5.1.3 Dimensions (diameter, wall thickness as either average or minimum, lengths),
 - 5.1.4 ASTM designation and year of issue,
 - 5.1.5 Grade number (see 4.1), and

5.1.6 Additions to the specification, if required. See 6.3.1, 7.3, 10.1, 12.7.3, 14.1, and 15.1 for additional optional requirements for the purchase order.

Note 1—A typical ordering description is as follows: 1000 pieces of seamless zirconium tubes, 2 in. [50 mm] in outside diameter by 0.06 in. [15 mm] in average wall thickness by 10 ft [3 m] in length, vacuum annealed, ASTM B523/B523M - 01, Grade R60702.

6. Materials and Manufacture

- 6.1 Seamless tube shall be made by any seamless method that will yield a product meeting the requirements of this specification.
- 6.2 Welded tube shall be made from sheet or strip meeting the requirements of Specification B551/B551M by an automatic arc-welding process or other method of welding that will yield a product meeting the requirements of this specification. Filler metal shall not be used. Welded tubing shall be supplied as follows:
 - 6.2.1 As welded, or
 - 6.2.2 As welded and further reduced.
 - 6.3 The tube shall be furnished annealed.
 - 6.3.1 Purchaser shall specify one of the following:
 - (a) annealed in air
 - (b) annealed in vacuum

7. Chemical Composition

- 7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.
- 7.2 The manufacturer's ingot analysis shall be considered the chemical analysis for tubing, except for hydrogen and nitrogen, which shall be determined on the finished product.
- 7.3 When requested by the purchaser and stated in the purchase order, a product analysis for any elements listed in Table 1 shall be made on the finished product.
- 7.3.1 The manufacturer's analysis shall be considered as verified if the check analysis confirms the manufacturer's reported values within the tolerances prescribed in Table 2.

8. Tensile Requirements

8.1 The material, as represented by the test specimens, shall conform to the tensile properties prescribed in Table 3.

TABLE 1 Chemical Requirements^A

Con	nposition, %
UNS Gra	ade Designation
R60702	R60704
99.2	97.5
4.5	4.5
0.2 max	0.2 to 0.4
	1.0 to 2.0
0.005	0.005
0.025	0.025
0.05	0.05
0.16	0.18
	UNS Gra R60702 99.2 4.5 0.2 max 0.005 0.025 0.05

^A By agreement between the purchaser and the manufacturer, analysis may be required and limits established for elements and compounds not specified in the table of chemical composition.

TABLE 2 Permissible Variation in Product Analysis Between Different Laboratories

Element	Permissible Variation in Product Analysis, %
Hydrogen	0.002
Nitrogen	0.01
Carbon	0.01
Hafnium	0.1
Iron + chromium	0.025
Tin	0.05
Niobium	0.05
Oxygen	0.02

TABLE 3 Tensile Requirements

	UNS Gr	ade Designation
	R60702	R60704
Tensile strength, min, ksi [MPa]	55 [380]	60 [415]
Yield strength, min, ksi [MPa]	30 [205]	35 [240]
Elongation in 2 in. or 50 mm, min, %	16	14

9. Permissible Variation in Dimensions

- 9.1 *Diameter*—At any point (cross section) along the length of the libe, the variation in outside diameter shall not exceed those prescribed in Table 4.
- 9.2 Length—When tubes are ordered cut to length, the length shall be not less than that specified, but a variation of ½ in. [3.2 mm] will be permitted on tube up to 10 ft [3 m], inclusive. For lengths over 10 ft, an additional over-tolerance of ½ in. [3.2 mm] for each 10 ft [3 m] or fraction thereof shall be permissible up to ½ in. [13 mm], maximum.
- 9.3 *Straightness*—The tube shall be free of bends or kinks and the maximum uniform bow shall not exceed the values shown in Table 5.
- 9.4 Squareness of Cut—The angle of cut of the end of any tube up to $1\frac{1}{2}$ in. [40 mm] in outside diameter may depart from square not more than 0.016 in./in. [mm/mm].

10. Workmanship and Quality Level Requirements

10.1 The finished tube shall be clean and free of foreign material, shall have smooth ends, free of burrs, and shall be free of injurious external and internal imperfections in accordance with standards of acceptability agreed upon between the manufacturer and the purchaser. Minor defects may be removed provided the dimensional tolerances of Table 4 are not exceeded.

11. Significance of Numerical Limits

11.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding methods of Practice E29.

^B The value for zirconium + hafnium, min, is a warranted but not a measured value.

TABLE 4 Permissible Variations in Outside Dimensions Based on Individual Measurements

Outside Diameter, in. [mm]	Diameter Tolerance, in. [mm] ^{A,B}	Permissible Variations ^C in Wall Thickness, <i>t</i> , %
Under 1 [25], excl	±0.004 [±0.100]	10
Over 1 to 11/2 [25 to 40], incl	±0.005 [±0.125]	10
Over 11/2 to 2 [40 to 50], incl	±0.006 [±0.150]	10
Over 2 to 21/2 [50 to 65], incl	±0.007 [±0.180]	10
Over 21/2 to 31/2 [65 to 90], incl	±0.010 [±0.250]	10

A These permissible variations in outside diameter apply only to tubes as finished at the mill before subsequent swaging, expanding, bending, polishing, or other fabricating

^C When minimum wall tubes are ordered, tolerances are all plus and shall be double the values shown.

TABLE 5 Straightness

Length, ft [m]	Maximum Curvature Depth of Arc
Over 3 to 6 [0.9 to 1.85], incl	1/8 in. [3.2 mm]
Over 6 to 8 [1.8 to 2.5], incl	3∕16 in. [5 mm]
Over 8 to 10 [2.5 to 3.0], incl	1/4 in. [6.4 mm]
Over 10 [3.0]	1/4 in./any 10 ft [2.1 mm/m]

Property

Rounded Unit for Observed or Calculated Value

Chemical composition, and tolerances nearest unit in the last right-hand place (when expressed as decimals) Tensile strength and yield strength Elongation

of figures of the specified limit nearest 1000 psi [10 MPa] nearest 1 %

12. Number of Tests and Retests

- 12.1 One longitudinal tension test, see 13.1, shall be made from each lot.
- 12.2 One chemistry test, see 7.2 and 13.8, for hydrogen and nitrogen shall be made from each lot of finished product.
 - 12.3 One flare test, see 13.6, shall be made from each lot.
- 12.4 One reverse flattening test, see 13.7, shall be made from each lot of welded tubing.
 - 12.5 Welded Tubes:
- 12.5.1 Welded tubes shall be nondestructively tested using the following procedures:
 - 12.5.1.1 Eddy Current Test, see 13.2.
 - 12.5.1.2 Ultrasonic Test, see 13.3.
- 12.5.1.3 Hydrostatic Test, see 13.4, or pneumatic test, see
 - 12.6 Seamless Tubes:
- 12.6.1 Seamless tubes shall be nondestructively tested using the following procedures:
 - 12.6.1.1 Ultrasonic Test, see 13.3.
- 12.6.12 Eddy Current Test, see 13.2, or hydrostatic test, see 13.4, or pneumatic test, see 13.5.
- 12.7 Retests:
- 12.7.1 If any sample or specimen exhibits obvious surface contamination or improper preparation disqualifying it as a truly representative sample, it shall be discarded and a new sample or specimen substituted.
- 12.7.2 If the results of any tests of any lot do not conform to the requirements specified, retests shall be made on additional

tubes of double the original number from the same lot, each of which shall conform to the requirements specified.

12.7.3 Retesting after failure of initial retests may be done only with the approval of the purchaser

13. Test Methods

13.1 Tension Tests—Conduct the tension test in accordance with Test Methods E8/E8M. Determine the yield strength by the offset (0.2 %) method. Determine the tensile properties using a strain rate of 0.003 to 0.007 in./in. [mm/mm]/min through the yield strength. After the yield strength has been exceeded, the cross-head speed may be increased to approximately 0.05 in./in. [mm/mm]/min to failure.

- 13.2 Eddy Current Testing:
- 132.1 Perform the nondestructive test in accordance with Practice E426, or a purchaser-approved procedure.
- 13.2.1.1 Drilled Hole—The calibration tube shall contain three or more holes, equally spaced circumferentially around the tube and longitudinally separated by a sufficient distance to allow distinct identification of the signal form each hole. The holes shall be drilled radially and completely through the tube wall, with care being taken to avoid distortion of the tube while drilling. The holes shall not be larger than 0.031 in. [0.8 mm] in diameter. As an alternative, the producer may choose to drill one hole and run the calibration standard through the test coil three times, rotating the tube approximately 120° each time. More passes with smaller angular increments may be used, provided testing of the full 360° of the coil is obtained. For welded tubing, if the weld is visible, one of the multiple holes or the single hole shall be drilled in the weld.

13.3 Ultrasonic Testing:

- 13.3.1 For ultrasonic testing, the longitudinal calibration reference notches shall be at the option of the manufacturer, and be any one of the three common notch shapes in accordance with Practice E213. The depth of the notch shall not exceed 10 % of the specified wall thickness of the material or 0.004 in. [0.10 mm], whichever is greater.
- 13.3.2 Set aside any tubes showing an indication in excess of that obtained from the calibration standard and subject them to rework, retest, or rejection. A tube, therefore, set aside may be further examined for confirmation of the presence of a defect and may be resubmitted for inspection by the same technique if no defect is found. Any tube may also be resubmitted for inspection if reworked so as to remove the

^B Ovality is the maximum and minimum outside diameter of a tube measured at any one cross section. If the measurement is made with a ring gage, the following formula shall apply: Ovality = specified OD tube + diameter tolerance +0.002 in. [.05 mm] (length of ring gage, 1 in. [25 mm] x specified tube OD.

defect within the specified diameter and wall thickness tolerances as prescribe in Table 4.

13.4 Hydrostatic Test:

13.4.1 Each tube, so tested, shall withstand, without showing bulges, leaks, or other defects, an internal hydrostatic pressure that will produce in the tube wall a stress of 50 % of the minimum specified yield strength at room temperature, except as restricted by 13.4.2. Determine the hydrostatic pressure as follows:

$$P = 2St/D \tag{1}$$

where:

P = minimum hydrostatic test pressure, psi [MPa],

S = allowable fiber stress of one half the minimum yield strength, psi [MPa],

= wall thickness, in. [mm], and

D = outside diameter, in. [mm].

13.4.2 The maximum hydrostatic test pressure shall not exceed 2500 psi [17.2 MPa] for sizes 3 in. [75 mm] and under, or 2800 psi [19.3 MPa] for sizes over 3 in. [75 mm]. Maintain the hydrostatic pressure for not less than 5 s. When requested by the purchaser and so stated in the order, test the tube in sizes 14 in. [350 mm] in diameter and smaller, to one and one half times the specified working pressure, provided the fiber stress corresponding to those test pressures does not exceed one half the minimum specified yield strength of the material as determined by the equation given in 13.4.1. When one and one half times the working pressure exceeds 2800 psi [19.3 MPa], the hydrostatic test pressure shall be a matter of agreement between the manufacturer and the purchaser.

13.5 Pneumatic Test—Each tube so tested shall withstand an internal air pressure of 150 psi [1.0 MPa], minimum, for 5 s, minimum, without showing evidence of leakage. Use the test method that permits easy visual detection of any leakage, such as by placing the tube under water or by using the pressure differential method. Any evidence of leakage shall be cause for rejection of that tube.

13.6 Flare Test—A section of the annealed tube, approximately 4 in. [100 mm] in length, shall be capable of being flared without cracking visible to the unaided eye. Make the flare with a tool having a 60° included angle until the specified outside diameter has been increased by 15 %.

Note 2—Samples of tube supplied in tempers other than annealed may be annealed before testing.

13.7 Reverse Flattening Test—Subject welded tube to a reverse flattening test in accordance with Test Methods and Definitions A370. Open and flatten a section of the tube approximately 4 in. [100 mm] long that is slit longitudinally 90° either side of the weld with the weld at the point of maximum bend. No cracking is permitted

13.8 *Chemical Tests*—Conduct the chemical analysis by the standard techniques normally used by the manufacturer.

14. Inspection

14.1 The manufacturer shall inspect the material covered by this specification prior to shipment. If so specified in the

purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacture. In such cases, the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for the purchaser's inspection at the place of manufacture to be waived.

14.2 The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. This inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

15. Rejection

15.1 Rejection for failure of the material to meet the requirements of this specification shall be reported to the manufacturer. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of the notice of rejection, other instructions for disposition.

16. Certification

16. A producer or supplier shall furnish the purchaser with a certificate that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. The certificate shall include a report of the test results.

17. Referee

17.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

18. Product Marking

18.1 Each length of tube ½ in. [13 mm] and larger in outside diameter, manufactured in accordance with this specification shall be marked legibly, either by stenciling, stamping, or rolling, with the manufacturer's private identifying mark, the ASTM designation, method of manufacture, the grade, and heat number. On smaller than ½ in. [13 mm] in outside diameter tubing that is bundled, the same information may be stamped legibly on a metal tag securely attached to each bundle.

19. Packaging and Package Marking

19.1 The tube shall be packaged in such a manner as to assure safe delivery to its destination when properly transported by common carrier.

20. Keywords

20.1 tubes; tubing; zirconium; zirconium alloy

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

SPECIFICATION FOR NICKEL-IRON-SPIN SPECIFICATION ALLOYS (UNS NO8320 NO8332) SEAMLESS PIPE AND CHROMIUM-SILICON ALLOYS (UNS NO8330 AND

(Identical with ASTM Specification B535-99 except that certification has been made mandatory.) ASMENORANDOC. COM. Click to view the full

SPECIFICATION FOR NICKEL-IRON-CHROMIUM-SILICON ALLOYS (UNS N08330 AND N08332) SEAMLESS PIPE AND TUBE

SB-535

(Identical with ASTM Specification B 535-99 except that certification has been made mandatory.)

1. Scope

- **1.1** This specification covers alloys UNS N08330 and N08332 in the form of hot-finished and cold-finished seamless pipe and tube intended for heat resisting applications and general corrosive service.
- **1.2** The values stated in inch-pound units are to be considered as the standard. The values given in parentheses are for information only.

2. Referenced Document

- 2.1 ASTM Standard:
- B 829 Specification for General Requirements for Nickel and Nickel Alloy Seamless Pipe and Tube

3. General Requirement

3.1 Material furnished under this specification shall conform to the applicable requirements of Specification B 829 unless otherwise provided herein.

4. Ordering Information

- **4.1** It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
 - **4.1.** Alloy name or UNS number,
 - **4.1.2** ASTM designation and year of issue,
 - **4.1.3** Dimensions:
- **4.1.3.1** *Pipe* Specify standard pipe size and schedule,

- **4.1.3.2** *Tube* Specify outside diameter and nominal or minimum wall,
 - **4.1.3.3** *Length* (specific or random),
 - 4.1.4 Finish:
- **4.1.4.1** *Pipe* → Specify cold-worked or hotworked,
- **4.1.4.2** Tube Specify cold-worked or hot-finished.
 - 4.1.5 Quantity (feet or meters or number of pieces),
 - **4.1.6** Certification Certification is required,
- **4.1.7** Samples for Product (Check) Analysis State whether samples for product analysis should be furnished, and
- **4.1.8** Purchaser Inspection If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

5. Materials and Manufacture

5.1 Heat Treatment — The material shall be furnished in the annealed condition. The final heat treatment of UNS N08330 shall be 1900°F (1040°C) minimum. The final heat treatment of UNS N08332 shall be 2100°F (1150°C) minimum.

6. Chemical Composition

- **6.1** The material shall conform to the composition limits specified in Table 1.
- **6.1.1** A chemical analysis shall be made on each lot of material as described in Specification B 829.

TABLE 1
CHEMICAL REQUIREMENTS

	Composition	
Element	Limits, %	
С	^A	
Mn	2.00 max	
Р	0.03 max	
S	0.03 max	
Si	0.75-1.50	
Cr	17.0-20.0	
Ni	34.0-37.0	
Cu	1.00 max	
Pb	0.005 max	
Sn	0.025 max	
Fe	remainder ^B	

^A Alloy UNS N08330: 0.08 max. Alloy UNS N08332: 0.05-0.10.

6.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product analysis variations prescribed in Specification B 829.

7. Mechanical and Other Properties

- **7.1** The material shall conform to the mechanical properties listed in Table 2.
- **7.1.1** One tension test shall be made on each lot of material.
- **7.2** Grain Size Annealed alloy UNS N08332 shall conform to an average grain size of ASTM No. 5 or coarser. One test per lot is required.

7.3 Flattening Test — One section of pipe or tube per lot, not less than $2\frac{1}{2}$ in. (63.5 mm) in length, shall be flattened cold between parallel plates in two steps. During the first step, which is test for ductility, no cracks or breaks on the inside, outside, or end surfaces shall occur until the distance between the plates is less than the value H calculated as follows:

$$H = 1.09 t/(0.09 + t/D)$$

where:

H = distance between parallel plates, in

t =specified wall thickness, in., and

D = nominal outside diameter, in

During the second step, which is a test for soundness, the flattening shall be continued until the specimen breaks or the opposite walls of the pipe or tube meet.

7.4 Hydrostatic Test.

7.4.1 Each pipe or tube shall be subjected to the hydrostatic test

8. Dimensions and Permissible Variations

8.1 The permissible variations in outside diameter for pipe, both cold-finished and hot-finished, are shown in Table 3. Other dimensions and permissible variations are provided in Specification B 829.

9. Keywords

9.1 high-temperature alloy; N08330; N08332; seamless pipe; seamless tube

TABLE 2
MECHANICAL PROPERTIES

Alloy	Condition	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2% offset, min, psi (MPa)	Elongation in 2 in. or 50 mm, or 4 <i>D</i> , min, %	Hardness ^A
UNS N08330	annealed	70 000 (483)	30 000 (207)	30	70 to 90 HRB
UNS N08332	annealed	67 000 (462)	27 000 (186)	30	65 to 88 HRB

^A Hardness values are informative only and not to be construed as the basis for acceptance.

^B Element shall be determined arithmetically by difference.

TABLE 3 PERMISSIBLE VARIATIONS IN OUTSIDE DIAMETER, HOT-FINISHED AND COLD-FINISHED PIPE Permissible Variations in Outside Diameter Over Under	TABLE 3 PERMISSIBLE VARIATIONS IN OUTSIDE DIAMETER, HOT-FINISHED AND COLD-FINISHED PIPE Permissible Variations in Outside Diameter	TABLE 3 PERMISSIBLE VARIATIONS IN OUTSIDE DIAMETER, HOT-FINISHED AND COLO-FINISHED PIPE Permissible Variations in Outside Diameter Diameter Permissible Variations in Outside Diameter Over Under Nominal Pipe Size, in: 1 1/2, 1 0.8 1/2, 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	SB-535	ASM	IL DI VOIII							
$\frac{\text{Permissible Variations in Outside}}{\text{Diameter}} \\ \frac{\text{Over}}{\text{Under}} \\ \frac{\text{Inder}}{\text{Inder}} \\ \frac{1}{\sqrt{6}} \text{ to } 1/\frac{1}{\sqrt{6}}, \text{ incl} \\ \frac{1}{\sqrt{6}}, \text{ incl} \\ $	Nominal Pipe Size, in. in. mm in. mm	Nominal Pipe Size, in. Nominal Pipe Size, in. Nominal Pipe Size, i		PERMISSIBLE VARIA HOT-FINISHED	TABLE ATIONS I AND COI	3 IN OUTSII _D-FINISH	DE DIAM HED PIPE	ETER, E				
Nominal Pipe Size, in. Over Under in. mm in. mm	Nominal Pipe Size, in.	Nominal Pipe Size, in. Nominal Pipe Size, in.			Perm	nissible Vari Dian	iations in C	Outside				
1	10 1/2 1/2 10 1/2	100 100		Nominal Pine Size in	0	ver	Ur	nder				· O
of ASME BRYC.II.B. (ASME BRYCS)	Ato View the full POF of Asynt Bryc. II. B. Asynt B	MOCCOM. Click to view the full poly of Ashir Brycese		1/8 to 1/2, incl Over 1/2 to 4, incl Over 4 to 8, incl Over 8 to 18, incl	1/64 1/32 1/16 3/32	0.4 0.8 1.6 2.4	1/ ₃₂ 1/ ₃₂ 1/ ₃₂ 1/ ₃₂ 1/ ₃₂ 1/ ₃₂	0.8 0.8 0.8 0.8			actio	Ullbr
	x to view the full PDY	NIDOC.COM. Circle to View the full PDY						IIB (A.	MEB	SAC		
AORINDOC, COM. Citic.	A China Change of the Change o		ENORMOC. COM. Click	to view the full Pr	of ot	ASME	\$X					

SPECIFICATION FOR NICKEL-IRON-STRUCTURE SPECIFICATION FOR NICKEL-IRON-STRUCTURE SPECIFICATION ALLOYS (UNS NO8320 NO8332) PLATE, SHEET, AND CHROMIUM-SILICON ALLOYS (UNS NO8330 AND

(Identical with ASTM Specification B536-95.) Cick to view the fully cick to view the fully and the fully and the fully and the fully are the fully and the fully are the fully and the fully are the full

SPECIFICATION FOR NICKEL-IRON-CHROMIUM-SILICON ALLOYS (UNS N08330 AND N08332) PLATE, SHEET, AND STRIP

SB-536

(Identical with ASTM Specification B 536-95.)

1. Scope

- 1.1 This specification covers nickel-iron-chromium-silicon alloys (UNS N08330 and UNS N08332) plate, sheet, and strip intended for heat resisting applications and general corrosive service.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

2. Referenced Documents

- **2.1** ASTM Standards:
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 10 Test Method for Brinell Hardness of Metallic Materials
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys
- E 112 Test Methods for Determining the Average Grain Size
- E 140 Standard Hardness Conversion Tables for Metals (Relationship Between Brinell Hardness, Vickers Hardness, Rockwell Hardness, Rockwell Superficial Hardness, and Knoop Hardness)
- E 353 Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys

3. Terminology

- **3.1** Descriptions of Terms Specific to This Standard:
- 3.1.1 plate material $\frac{3}{16}$ in. (4.76 mm) and over in thickness and over 10 in. (254 mm) in width.

- 3.1.2 sheet material under $\frac{3}{16}$ in. (4.76 mm) in thickness and 24 in. (610 mm) in width.
- 3.1.3 strip material under $\frac{3}{16}$ in. (4.76 mm) in thickness and under 24 in. (610 mm) in width.

4. Ordering Information

- **4.1** Orders for material to this specification shall include the following information:
 - **41.1** Quantity (weight or number of pieces),
 - **4.1.2** Alloy (Table 1),
 - **4.1.3** Form (plate, sheet or strip),
 - **4.1.4** ASTM designation and year of issue,
 - **4.1.5** *Dimensions* Thickness, width, and length,
 - **4.1.6** Edge (for strip only),
- **4.1.7** *Finish* (Appendix) for sheet specify whether one or both sides are to be polished,
- **4.1.8** *Certification* State if certification is required (Section 15),
- **4.1.9** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished, and
- **4.1.10** Purchaser Inspection If purchaser wishes to witness tests or inspections of material at place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

5. Chemical Composition

5.1 The material shall conform to the requirements as to chemical composition specified in Table 2.

TABLE 1
MECHANICAL PROPERTIES

Alloy	Condition	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2% offset, min, psi (MPa)	Elongation in 2 in. or 50 mm, or 4 <i>D</i> , min, %	Hardness ^A
UNS N08330	annealed	70 000 (483)	30 000 (207)	30	70 to 90 HRB
UNS N08332	annealed	67 000 (462)	27 000 (186)	30	65 to 88 HRB

^A Hardness values are informative only and not to be construed as the basis for acceptance.

TABLE 2
CHEMICAL REQUIREMENTS

Element	Composition Limits, %	Product (Check) Analysis Variations, under min or over max of the specified limit of element
С	^A	0.01
Mn	2.00 max	0.04
Р	0.03 max	0.005
S	0.03 max	0.005
Si	0.75-1.50	0.05 under;
		0.10 over
Cr	17.0-20.0	0.25
Ni	34.0-37.0	0.30
Cu	1.00 max	0.04
Pb	0.005 max	
Sn	0.025 max	
Fe	remainder ^B	

⁴ Alloy UNS N08330: 0.08 max Alloy UNS N08332: 0.05-0.10

5.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in Table 2.

6. Mechanical and Other Properties

- **6.1** The tensile properties of the material at room temperature shall conform to those shown in Table 1.
- **6.2** Grain Size Annealed alloy UNS N08332 shall conform to an average grain size of ASTM No. 5 or coarser.
- **6.3** Annealing Temperature Alloy UNS N08330 shall be annealed at 1900°F (1040°C) minimum. Alloy UNS N08332 shall be annealed at 2100°F (1150°C) minimum.

Permissible Variations in Dimensions and Weight

- **7.1** *Sheet*, shall conform to the variations in dimensions specified in Tables 3 to 8, inclusive.
- **7.2** *Cold-Rolled Strip*, shall conform to the permissible variations in dimensions as specified in Tables 9 to 13, inclusive.

TABLE 3
THICKNESS TOLERANCES FOR HOT-ROLLED AND
COLD-ROLLED SHEETS

__	Tolerance Over and
Specified Thickness, in. (mm)	Under, in. (mm)
Over 0.145 to less than $\frac{3}{16}$ (3.68 to less than 4.76)	0.014 (0.36)
Over 0.130 to 0.145 (3.30 to 3.68), incl	0.012 (0.30)
Over 0.114 to 0.130 (2.90 to 3.30), incl	0.010 (0.25)
Over 0.098 to 0.114 (2.49 to 2.90), incl	0.009 (0.23)
Over 0.083 to 0.098 (2.11 to 2.49), incl	0.008 (0.20)
Over 0.072 to 0.083 (1.83 to 2.11), incl	0.007 (0.18)
Over 0.058 to 0.072 (1.47 to 1.83), incl	0.006 (0.15)
Over 0.040 to 0.058 (1.02 to 1.47), incl	0.005 (0.13)
Over 0.026 to 0.040 (0.66 to 1.02), incl	0.004 (0.10)
Over 0.016 to 0.026 (0.41 to 0.66), incl	0.003 (0.08)
Over 0.007 to 0.016 (0.18 to 0.41), incl	0.002 (0.05)
Over 0.005 to 0.007 (0.13 to 0.18), incl	0.0015 (0.04)
0.005 (0.13)	0.001 (0.03)

TABLE 4
PERMISSIBLE VARIATIONS IN WIDTH AND LENGTH
FOR HOT-ROLLED AND COLD-ROLLED RESQUARED
SHEETS (Stretcher Leveled Standard of Flatness)

	Tolerances		
	0	ver	
Specified Dimensions, in. (mm)	in.	mm	Under
For thicknesses under 0.131 (3.33):			
Widths up to 48 (1219) excl	1/16	1.6	0
Widths 48 (1219) and over	1/8	3.2	0
Lengths up to 120 (3048) excl	1/16	1.6	0
Lengths 120 (3048) and over	1/8	3.2	0
For thicknesses 0.131 (3.33) and over:			
All widths and lengths	1/4	6.4	0

- **7.3** *Plate*, shall conform to the permissible variations in dimensions specified in Tables 14 to 20, inclusive.
- **7.4** Sheet Strip, and Plate Material with No. 1 finish may be ground to remove surface defects, provided such grinding does not reduce the thickness, width or length at any point beyond the permissible variations in dimensions.

 $^{^{\}it B}$ Element shall be determined arithmetically by difference.

TABLE 5
WIDTH, LENGTH, AND CAMBER TOLERANCES FOR
HOT-ROLLED AND COLD-ROLLED SHEETS NOT
RESQUARED OR STRETCHER LEVELED WIDTH
TOLERANCES

	Tolerance for Specified Width, in. (mm)		
Specified Thickness, in. (mm)	24 to 48 (610 to 1220), excl	48 in., (1220) and over	
Less than $\frac{3}{16}$ (4.76)	½16 (1.6) over, 0 under	$\frac{1}{8}$ (3.2) over, 0 under	
Length Tolerances			

	Tolerance, in. (mm)			
Specified Length, ft (cm) Over Under				
Up to 10 (305), incl	½ (6.4)	0 (0)		
Over 10 to 20 (305 to 610), incl	½ (12.7)	0 (0)		
Camber Tolerances ^A				

Tolerance per Unit length of any 8 ft (244 cm), in. (mm) 24 to 36 in, (610 to 914), incl Over 36 in. (914) Tolerance per Unit length of any 8 ft (244 cm), in. (mm) $\frac{1}{8}$ (3.2) $\frac{3}{32}$ (2.4)

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and temper, smooth, commercially straight or flat and free of injurious imperfections.

9. Sampling

- **9.1** *Lot* Definition:
- **9.1.1** A lot for chemical analysis shall consist of one heat.
- **9.1.2** A lot for mechanical properties, hardness, and grain size testing shall consist of all material from the same heat, nominal thickness, and condition.
- 9.1.2.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same thickness and condition, except that for plates weighing over 500 lb only one specimen shall be taken.
- **9.2** Test Material Selection:
- **9.2.1** Chemical Analysis Representative samples from each lot shall be taken during pouring or subsequent processing.
- **9.2.1.1** Product (check) analysis shall be wholly the responsibility of the purchaser.

9.2.2 *Mechanical Properties and Grain Size* — Samples of the material to provide specimens for mechanical properties and grain size shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

- **10.1** Chemical Analysis One test per lot.
- 10.2 Grain Size One test per lot.
- **10.3** Tensile Properties, Hardness and Bend Test One test per lot.

11. Specimen Preparation

- 11.1 Tension test, bend test, and grain size specimens shall be taken from material in the final condition (temper). Tension tests shall be transverse to the direction of rolling, where width will permit.
- 11.2 Tension test specimens shall be any of the standard or subsize specimens shown in Test Methods E 8.
- 11.3 In the event of disagreement, referee specimens shall be as follows:
- 11.3.1 Full thickness of the material, machine to the form and dimensions shown for the sheet-type specimen in Pest Methods E 8 for material under $\frac{1}{2}$ in. (12.7 mm) in thickness.
- 11.3.2 The largest possible round specimen shown in Test Methods E 8 for material $\frac{1}{2}$ in. (12.7 mm) and over.

12. Methods of Test

- **12.1** Chemical Composition In case of disagreement, the chemical composition shall be determined in accordance with Test Methods E 353 except, Methods E 38 are to be used for elements not covered by Methods E 353.
- **12.2** *Tension Test* Tension testing shall be conducted in accordance with Test Methods E 8.
- **12.3** *Grain Size* The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Methods E 112. In case of dispute, the "referee" method for determining average grain size shall be the planimetric method.
 - **12.4** *Rockwell Hardness* Test Method E 18.
 - 12.5 Brinell Hardness Test Method E 10.
- **12.6** *Hardness Conversion* Hardness Conversion Tables E 140.
- **12.7** *Rounding Method* For purposes of determining compliance with the limits in this specification, an observed

^A Camber is the greatest deviation of a side edge from a straight line, and measurement is taken by placing an 8-ft (2440-mm) straightedge *on the concave side* and measuring the greatest distance between the sheet edge and the straightedge.

TABLE 6 FLATNESS TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS

Sheets Not Specified to Stretcher Levele	ed Standard of Flatness
--	-------------------------

Sheets No	Sheets Not Specified to Stretcher Leveled Standard of Flatness		
Specified Thickness, in. (mm)	Width, in. (mm)	Flatness Tolerance (max Deviation from a Horizontal Flat Surface), in. (mm)	
0.062 (1.57) and over	To 60 (1524), incl	½ (12.7)	
	Over 60 to 72 (1524 to 1829), incl	³ / ₄ (19.1)	
	Over 72 (1829)	1 (25.4)	
Under 0.062 (1.57)	To 36 (914), incl	½ (12.7)	
	Over 36 to 60 (914 to 1524), incl	³ / ₄ (19.1)	
	Over 60 (1524)	1 (25.4)	

Sheets Specified to Stretcher Level Standard of Flatness

Specified Thickness in. (mm)	Width, in. (mm)	Length, in. (mm)	Flatness Tolerance in. (mm)
Under $\frac{3}{16}$ (4.76)	To 48 (1220), incl	To 96 (2440), incl	½ (3.2)
Under $\frac{3}{16}$ (4.76)	To 48 (1220), incl	Over 96 (2440)	¹ / ₄ (6.4)
Under $\frac{3}{16}$ (4.76)	Over 48 (1220)	To 96 (2440), inch	¹ / ₄ (6.4)
Under $\frac{3}{16}$ (4.76)	Over 48 (1220)	Over 96 (2440)	¹ / ₄ (6.4)
	i P	MEBI	
TABLE 7 TOLERANCES FOR HOT-R	OLL ED AND	WEIGHT TOLERAN	TABLE 8

TABLE 7 DIAMETER TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS, SHEARED CIRCLES

	Tolerance Over Specified Diameter (No Tolerance Under) in. (mm)		
Constitution of the	111201	30 to 48	0
Specified Thickness, in. (mm)	Under 30 (760)	(760 to 1220), incl	0ver 48 (1220)
Over 0.097 (2.46) Over 0.057 to 0.097 (1.45 to 2.46), incl	$\frac{1}{8}$ (3.2) $\frac{3}{32}$ (2.4)	³ / ₁₆ (4.8) ⁵ / ₃₂ (4.0)	¹ / ₄ (6.4) ⁷ / ₃₂ (5.6)
0.057 (1.45) and under	½ (1.6)	½ (3.2)	³ / ₁₆ (4.8)
ASMENORANDOC.COM.			

TABLE 8 WEIGHT TOLERANCES FOR HOT-ROLLED AND COLD-**ROLLED SHEETS**

It is not practicable to produce hot-rolled and cold-rolled sheets to exact theoretical weight. Sheets of any one item of a specified thickness and size in any finish may be overweight to the following extent:

- (1) An item of five sheets or less, or an item estimated to weigh 200 lb (90 kg) or less, may actually weigh as much as 10 percent over the theoretical weight.
- (2) An item of more than five sheets and estimated to weigh more than 200 lb (90 kg) may actually weigh as much as $7\frac{1}{2}$ percent over the theoretical weight.
- (3) The underweight variations for sheets are limited by the under thickness tolerances shown in Table 3.

For determining theoretical weight the factor, 42 lb/ft² · in. (0.0008 kg/cm² · mm) thickness may be used.

TABLE 9
THICKNESS TOLERANCES FOR COLD-ROLLED STRIP IN COILS AND CUT LENGTHS

	Thickness Tolerances, in. (mm), for the Thicknesses and Widths given, over and under Width, in. (mm)			
Specified thickness, in. (mm), incl	$\frac{3}{16}$ (4.8) to 6 (152), incl	Over 6 (152) to 12 (305), incl	Over 12 (305) to 24 (610), excl	
0.005 (0.13) to 0.010 (0.25)	10%	10%	10%	
Over 0.010 (0.25) to 0.011 (0.28)	0.0015 (0.04)	0.0015 (0.04)	0.0015 (0.04)	
Over 0.011 (0.28) to 0.013 (0.33)	0.0015 (0.04)	0.0015 (0.04)	0.002 (0.05)	
Over 0.013 (0.33) to 0.017 (0.43)	0.0015 (0.04)	0.002 (0.05)	0.002 (0.05)	
Over 0.017 (0.43) to 0.020 (0.51)	0.0015 (0.04)	0.002 (0.05)	0.0025 (0.06)	
Over 0.020 (0.51) to 0.029 (0.74)	0.002 (0.05)	0.0025 (0.06)	0.0025 (0.06	
Over 0.029 (0.74) to 0.035 (0.89)	0.002 (0.05)	0.003 (0.08)	0.003 (0.08)	
Over 0.035 (0.89) to 0.050 (1.27)	0.0025 (0.06)	0.0035 (0.09)	0.0035 (0.09)	
Over 0.050 (1.27) to 0.069 (1.75)	0.003 (0.08)	0.0035 (0.09)	0.0035 (0.09)	
Over 0.069 (1.75) to 0.100 (2.54)	0.003 (0.08)	0.004 (0.10)	0.005 (0.13)	
Over 0.100 (2.54) to 0.125 (3.18)	0.004 (0.10)	0.0045 (0.11)	0.005 (0.13)	
Over 0.125 (3.18) to 0.161 (4.09)	0.0045 (0.11)	0.0045 (0.11)	0.005 (0.13)	
Over 0.161 (4.09) to $\frac{3}{16}$ (4.76) excl	0.005 (0.13)	0.005 (0.13)	0.006 (0.15)	

NOTE 1 — Thickness measurements are taken at least $\frac{3}{8}$ in. (9.5 mm) in from edge of the strip, except that on widths less than 1 in. (25.4 mm) the tolerances are applicable for measurements at all locations.

TABLE 10
WIDTH TOLERANCES COLD-ROLLED STRIP IN COILS AND CUTLENGTHS, EDGE NUMBERS 1 AND 5

Specified Edge No.	Width, in. (mm)	Thickness, in. (mm)	Width Tolerance, in. (mm) for Thickness and Width given over and under
1 and 5	% ₃₂ (7.1) and under	1/6 (1.6) and under	0.005 (0.13)
1 and 5	Over $\frac{9}{32}$ (7.1) to $\frac{3}{4}$ (19.1) incl	$\frac{\sqrt{3}}{\sqrt{32}}$ (2.4) and under	0.005 (0.13)
1 and 5	Over 3/4 (19.1) to 5 (127) incl	1/ ₈ (3.2) and under	0.005 (0.13)
5	Over 5 (127) to 9 (229) incl	½ (3.2) to 0.008 (0.20) incl	0.010 (0.25)
5	Over 9 (229) to 20 (508) incl	0.105 (2.67) to 0.015 (0.38) incl	0.010 (0.25)
5	Over 20 (508) to 24 (610) excl	0.080 (2.03) to 0.023 (0.58) incl	0.015 (0.38)

TABLE 11
WIDTH TOLERANCES COLD-ROLLED STRIP IN COILS AND CUT LENGTHS EDGE NUMBER 3

*	Widt	h Tolerance, in.	(mm) Over and	Under, for Thick	ness and Width (Given
Click	Under ½ (12.7) to	$\frac{1}{2}$ (12.7) to	0ver 6 (152) to 9	Over 9 (229) to 12	Over 12 (305) to 20	0ver 20 (508) to 24
Specified Thickness in. (mm)	$\frac{3}{16}$ (4.8)	6 (152)	(229)	(305)	(508)	(610)
0.068 (1.73) and under	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	0.010 (0.25)	0.016 (0.41)	0.020 (0.51)
Over 0.068 (1.75) to 0.099 (2.51), incl	0.008 (0.20)	0.008 (0.20)	0.010 (0.25)	0.010 (0.25)	0.016 (0.41)	0.020 (0.51)
Over 0.099(2,51) to 0.160 (4.06), incl	0.010 (0.25)	0.010 (0.25)	0.016 (0.41)	0.016 (0.41)	0.020 (0.51)	0.020 (0.51)
Over 0.160 (4.06) to under $\frac{3}{16}$ (4.76) excl		0.016 (0.41)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)

NOTE 2 - Above tolerances include crown.

TABLE 12 LENGTH TOLERANCES COLD-ROLLED STRIP IN CUT LENGTHS

Specified Length, in. (mm)	Tolerance, in. (mm) Over Specified Length, No Tolerance Under
Up to 60 (1524) incl	3/8 (9.5)
Over 60 (1524) to 120 (3048) incl	1/2 (12.7)
Over 120 (3048) to 240 (6096) incl	5/8 (15.9)

TABLE 13 CAMBER TOLERANCES COLD-ROLLED STRIP IN COILS AND CUT LENGTHS

Specified Width, in. (mm)	Tolerance in. (mm) per unit Length of any 8 ft. (2440 mm)
Up to $1\frac{1}{2}$ (38.1) incl Over $1\frac{1}{2}$ (38.1) to 24 (609.6) exc	½ (12.7) ½ (6.4)

NOTE — Camber is the deviation of a side edge from a straight line, and measurement is taken by placing an 8-ft (24-mm) straight edge on the concave side and measuring the greatest distance between the strip edge and the straight edge.

TABLE 14 PERMISSIBLE VARIATIONS IN THICKNESS FOR PLATES^A

	*IVE	Width, in. (mm)				
	0 84 (2134), incl	Over 84 (2134) to 120 (3048), incl	Over 120 (3048) to 144 (3658), incl	Over 144 (3658)		
Specified Thickness, in. (mm)	7.	Tolerance	e Over Specified Thickness, B i	n. (mm)		
$\frac{1}{1_{16}}$ (4.76) to $\frac{3}{8}$ (9.52), exc	0.045 (1.14)	0.050 (1.27)				
$\frac{3}{8}$ (9.52) to $\frac{3}{4}$ (19.05), excl	0.055 (1.40)	0.060 (1.52)	0.075 (1.90)	0.090 (2.29)		
3/4 (19.05) to 1 (25.40), excl	0.060 (1.52)	0.065 (1.65)	0.085 (2.16)	0.100 (2.54)		
1 (25.40) to 2 (50.80), excl	0.070 (1.78)	0.075 (1.90)	0.095 (2.41)	0.115 (2.92)		
2 (50.80) to 3 (76.20), excl	0.125 (3.18)	0.150 (3.81)	0.175 (4.44)	0.200 (5.08)		
3 (76.20) to 4 (101.6), excl	0.175 (4.44)	0.210 (5.33)	0.245 (6.22)	0.280 (7.11)		

⁴ Thickness is measured along the longitudinal edges of the plate at least $\frac{3}{8}$ in. (9.52 mm), but not more than 3 in. (76.20 mm), from the

For circles, the over thickness tolerances in this table apply to the diameter of the circle corresponding to the width ranges shown. For plates of irregular shape, the over thickness tolerances apply to the greatest width corresponding to the width ranges shown. For plates up to 10 in. (254.0 mm), incl, in thickness, the tolerance under the specified thickness is 0.010 in. (0.25 mm).

TABLE 15 WIDTH AND LENGTH TOLERANCES FOR PLATES $^{A,\ B}$

Tolerance Over Specified Width and Length for Given Width, Length, and Thickness, in. Under 3/8 in. Over ½ in. in Thickness $\frac{3}{8}$ to $\frac{1}{2}$ in., incl, in Thickness Width Width, in. Length, in. Width Length Width $\frac{1}{8}\frac{3}{16}\frac{1}{4}\frac{4}{5}\frac{1}{16}\frac{3}{18}\frac{3}{16}\frac{1}{4}\frac{4}{3}\frac{8}{8}\frac{7}{16}\frac{1}{2}\frac{1}{4}\frac{4}{5}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{2}\frac{1}{16}\frac{1}{1$ 48 and under 144 and under Over 48 to 60, incl 1/4 5/16 3/8 7/16 1/4 5/16 3/8 7/16 5/16 3/8 7/16 1/2 5/8 11/16 3/4 7/8 5/8 3/4 7/8 Over 60 to 84, incl Over 84 to 108, incl Over 108 3/8
7/16
1/2
9/16
5/8
1/2
5/8
11/16
3/4
7/8 1/4 5/16 7/16 1/2 5/8 48 and under over 144 to 240 Over 48 to 60, incl Over 60 to 84, incl Over 84 to 108, incl Over 108 5/16 3/8 1/2 5/8 11/16 1/2 5/8 3/4 7/8 1/2 5/8 3/4 7/8 48 and under over 240 to 360 Over 48 to 60, incl Over 60 to 84, incl 1 Over 84 to 108, incl Over 108 1 ½ 1 ¼ 1 ¼ 1 ¼ 1 ¾ 1 ¾ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 60 and under over 360 to 480 Over 60 to 84, incl Over 84 to 108, incl Over 108 1 ½ 1 ½ 1 ¾ 1 ¾ 1 ½ 1 ⁵/₈ 1 ⁵/₈ 1 ⁵/₈ 1 ³/₄ 60 and under over 480 to 600 5/8 3/4 7/8 Over 60 to 84, incl Over 84 to 108, incl Over 108 $1 \frac{3}{4}$ $1 \frac{3}{4}$ $1 \frac{3}{4}$ 1 ½ 1 ½ 1 ½ 1 ½ 60 and under over 600 3/4 7/8 7/8 Over 60 to 84, incl Over 84 to 108, incl Over 108 1 3/4 2 1/4

Tolerance Over Specified Width and Length for Given Width, Length, and Thickness, mm

		Under	9.5 mm	9.5 to 12.7 mm,	incl in Thickness	Over 12.7 mi	n in Thickness
Width, mm	Length, mm	Width	Length	Width	Length	Width	Length
1219 mm and under		3.2	4.8	4.8	6.4	7.9	9.5
Over 1219 to 1524, incl	3658 and under	4.8	6.4	6.4	7.9	9.5	11.1
Over 1524 to 2134, incl		6.4	7.9	7.9	9.5	11.1	12.7
Over 2134 to 2743, incl		7.9	9.5	9.5	11.1	12.7	14.3
Over 2743		9.5	11.1	11.1	12.7	15.9	17.5
1219 mm and under		4.8	9.5	6.4	12.7	7.9	15.9
Over 1219 to 1524, incl	over 3658 to 6096	6.4	11.1	7.9	15.9	9.5	19.1
Over 1524 to 2134, incl		9.5	12.7	11.1	17.5	12.7	19.1
Over 2134 to 2743, incl	and the same of th	11.1	14.3	12.7	19.1	15.9	22.2
Over 2743, incl		12.7	15.9	15.9	22.2	17.5	25.4
1219 mm and under	7.	6.4	12.7	7.9	15.9	9.5	19.1
Over 1219 to 1524, incl	over 6096 0 9144	7.9	15.9	9.5	19.1	12.7	19.1
Over 1524 to 2134, incl		11.1	17.5	12.7	19.1	15.9	22.2
Over 2134 to 2743, incl		14.3	19.1	15.9	22.2	19.1	25.4
Over 2743, incl		15.9	22.2	17.5	25.4	22.2	25.4
1524 mm and under		11.1	28.6	12.7	31.8	15.9	34.9
Over 1524 to 2134, incl	over 9144 to 12192	12.7	31.8	15.9	34.9	19.1	38.1
Over 2134 to 2734, incl	•	14.3	31.8	19.1	34.9	22.2	38.1
Over 2743		19.1	34.9	22.2	38.1	25.4	41.3
1524 mm and under		11.1	31.8	12.7	38.1	15.9	41.3
Over 1524 to 2134 Incl	over 12192 to 15240	12.7	34.9	15.9	38.1	19.1	41.3
Over 2134 to 2743, incl		15.9	34.9	19.1	38.1	22.2	41.3
Over 2743		19.1	38.1	22.2	41.3	25.4	44.3
1524 mm and under		12.7	44.5	15.9	47.6	19.1	47.6
Over 1524 to 2134, incl	over 15240	15.9	44.5	19.1	47.6	22.2	47.6
Over 2134 to 2743, incl		15.9	44.5	19.1	47.6	22.2	47.6
Over 2743		22.2	44.5	25.4	50.8	28.6	57.2

^A The tolerance under specified width and length is $\frac{1}{4}$ in. (6.4 mm).

^B Rectangular plates over 1 in. (25.4 mm) in thickness are not commonly sheared and are machined or otherwise cut to length and width or produced in the size as rolled, uncropped.

TABLE 16 CAMBER TOLERANCE FOR PLATES

TABLE 17 DIAMETER TOLERANCE FOR CIRCULAR PLATES

CAM	_0			
Tolerance = $\frac{1}{8}$ in	Tolerance = $\frac{1}{8}$ in. (3.175 mm) × [ft (cm) of length/5 ft (152.4 cm)]			002
DIAMETER	TABLE 17 TOLERANCE FOR (CIRCULAR PLATE		All Part B)
		s (No Under Tolerand		cijoli
		Thickness		e ^O
Specified Diameter, in. (mm)	To $\frac{3}{8}$ (9.5), excl	³ / ₈ to ⁵ / ₈ (9.5 to 15.9), excl	$\frac{5}{8}$ (15.9) and over	
To 60 (1524), excl 60 to 84 (1524 to 2134), excl 84 to 108 (2134 to 2743), excl 108 to 130 (2743 to 3302), excl	¹ / ₄ (6.4) ⁵ / ₁₆ (7.9) ³ / ₈ (9.5) ⁷ / ₁₆ (11.1)	3/8 (9.5) 7/16 (11.1) 1/2 (12.7) 9/16 (14.3)	1/2 (12.7) 9/16 (14.3) 5/6 (15.9) 11/16 (17.5)	

TABLE 18 FLATNESS TOLERANCES FOR RLATES

	F	Flatness Tolerance (Deviation from A Flat Horizontal Surface) for Thickness and Width Given, in.					in.		
					Width, in.				
Specified Thickness, in.	48 and Under	Over 48 to 60, excl	60 to 72, excl	72 to 84, excl	84 to 96, excl	96 to 108, excl	108 to 120, excl	120 to 144, excl	144 and Over
3/16 to 1/4, excl	3/4	11/16	11/4	1 1/8	1 %	1 %	1 1/8	2	
$\frac{1}{4}$ to $\frac{3}{8}$, excl	11/16	3/4	15/16	011/8	1 3/8	1 1/16	1 %	1 1/8	
$\frac{3}{8}$ to $\frac{1}{2}$, excl	1/2	%16	11/16	3/4	15/16	1 1/8	1 1/4	$1\frac{7}{16}$	$1\frac{3}{4}$
$\frac{1}{2}$ to $\frac{3}{4}$, excl	1/2	% ₁₆	⁵ / ₈	5/8	13/16	1 1/8	1 1/8	$1\frac{1}{8}$	$1\frac{3}{8}$
3/4 to 1, excl	1/2	%16	5/8	5/8	3/4	¹³ / ₁₆	15/ ₁₆	1	$1\frac{1}{8}$
1 to $1\frac{1}{2}$, excl	1/2	%16 ¢.	%16	% ₁₆	11/16	11/16	11/16	3/4	1
$1\frac{1}{2}$ to 4, excl	3/16	5/16	3/8	7/16	1/2	%16	5/8	3/4	7/8
4 to 6, excl	1/4	3/8	1/2	%16	5/8	3/4	7/8	1	11/8

	Flatness Tolerance (Deviation from A Flat Horizontal Surface) for Thickness and Width Given, mm								
		Width, mm							
Specified Thickness, mm.	1219 and Under	Over 1219 to 1524, excl	1524 to 1829, excl	1829 to 2134, excl	2134 to 2438, excl	2438 to 2743, excl	2743 to 3048, excl	3048 to 3658, excl	3658 and Over
4.8 to 6.4, excl	19.0	27.0	31.8	34.9	41.3	41.3	47.6	50.8	
6.4 o 9.5, excl	17.5	19.0	23.8	28.6	34.9	36.5	39.7	47.6	
9.5 to 12.7, exc	12.7	14.3	17.5	19.0	23.8	28.6	31.8	36.5	44.5
12.7 to 19.0 excl	12.7	14.3	15.9	15.9	20.6	28.6	28.6	28.6	34.9
19.0 to 25.4, excl	12.7	14.3	15.9	15.9	19.0	20.6	23.8	25.4	28.6
25.4 to 38.1, excl	12.7	14.3	14.3	14.3	17.5	17.5	17.5	19.0	25.4
38.1 to 102, excl	4.8	7.9	9.5	11.1	12.7	14.3	15.9	19.0	22.2
102 to 152, excl	6.4	9.5	12.7	14.3	15.9	19.0	22.2	25.4	28.6

TABLE 19
RECOMMENDED PLATE FLAME-CUTTING
TOLERANCES TO CLEAN UP IN MACHINING

Specified Thickness, in. (mm)	Machining Allowance per Edge, in. (mm)
Under 2 (51)	½ (6.4)
Over 2 to 3 (51 to 76), incl	³ / ₈ (9.5)
Over 3 to 6 (76 to 152), incl	½ (12.7)

value or a calculated value shall be rounded off as indicated below, in accordance with the rounding-off method of Practice E 29.

Requirement	Rounded-Off Unit for Observed or Calculated Value
Chemical composition and tolerances (when expressed in decimals)	Nearest unit in the last right- hand place of figures of the specified limit. If two choices are possible, as when the dig- its dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit
Tensile strength and yield strength	Nearest 1000 psi (6.9 MPa)
Elongation	Nearest 1%
Grain size: 0.0024 in. (0.060 mm) or larger	Nearest multiple of 0.0002 in. (0.005 mm)
Less than 0.0024 in. (0.060 mm)	Nearest multiple of 0.0001 in. (0.002 mm)

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be

TABLE 20 ABRASIVE-CUTTING WIDTH AND LENGTH TOLERANCES

		Over Specified ength, in. (mm) ⁴
Specified Thickness, in. (mm)	Width	Length
Up to $1\frac{1}{4}$ (32) Over $1\frac{1}{4}$ to $2\frac{3}{4}$ (32 to 70)	½ (3.2) ½ (4.8)	½ (3.2) ½ (4.8)

 $^A The tolerance under specified width and length is <math display="inline">^1 \! \%$ in. (3.2 mm).

reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

15. Certification

15.1 When specified in the purchase order or contract, a producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material: The name of the material or UNS number, heat number, the letters ASTM, the specification number, the year of issue, the size, and other such information as may be defined in the contract or order.

17. Keywords

17.1 N08330; N08332; plate; sheet; strip

APPENDIX

(Nonmandatory Information)

X1. FINISHES

- **X1.1** *Scope* This appendix lists the finishes in which plate, sheet, and strip are normally supplied. These are subject to change and the manufacturer should be consulted for the latest information available.
- **X1.2** *Sheet* The various types of finish procurable on sheet products are:
- **X1.2.1** *No. 1 Finish* Hot-rolled, annealed, and descaled.
 - **X1.2.2** No. 2D Finish Dull, cold-rolled finish.
 - **X1.2.3** No. 2B Finish Bright, cold-rolled finish.
- **X1.2.3.1** *Bright-Annealed Finish* A bright cold-rolled finish retained by final annealing in a controlled atmosphere furnace.

NOTE X1.1 — Explanation of Finish:

- No. 1 Produced on hand sheet mills by hot rolling to specified thicknesses followed by annealing and descaling. Generally used in industrial applications, such as for heat or corrosion resistance, where smoothness and uniformity of finish is not of particular importance.
- No. 2D Produced on either hand sheet mills or continuous mills by cold rolling to the specified thickness, annealing, and descaling. The dull finish may result from the descaling or pickling operation of may be developed by a final light cold-rolled pass on dull rolls. The dull finish is favorable for the retention of lubricants on the surface in deep drawing operations. This finish is generally used in forming deep drawn articles which may be polished after fabrication.
- No. 2B Commonly produced the same as No. 2D, except that the annealed and descaled sheet receives a final light cold-rolled pass on polished rolls. This is a general purpose cold-rolled finish. It is commonly used for all but exceptionally difficult deep drawing application. This finish is more readily polished than No. 1 or No. 2D finish.

Bright-Annealed Finish a bright cold-rolled highly reflective finish retained by final annealing in a controlled atmosphere furnace. The purpose of the atmosphere is to prevent scaling or oxidation during annealing. The atmosphere is usually comprised of either dry hydrogen or a mixture of dry hydrogen and dry nitrogen (sometimes known as dissociated ammonia).

- X1.3 Strip The various types of finish procurable on cold-rolled strip products shall be as follows:
- **X1.3.1** *No. 1 Finish* Cold-rolled to specified thickness, annealed, and pickled.

- **X1.3.2** *No. 2 Finish* Same as No. 1 finish, followed by a final light cold-rolled pass, generally on highly-polished rolls.
- **X1.3.3** Bright-Annealed Finish A bright cold-rolled finish retained by final annealing in a controlled atmosphere furnace.

NOTE X1.2 — Explanation of Finish:

- *No.* 1 Appearance may be dull-gray matte to fairly reflective. This finish is used for severely drawn or formed parts as well as for applications where the brighter No. 2 finish is not required, such as in parts for heat resistance.
- No. 2 This finish has a smoother and more reflective surface. This is a general purpose finish, widely used for household and automotive trim, tableware, utensils, trays, etc.
- Bright-Annealed Finish A bright cold-rolled highly reflective finish retained by final annealing in a controlled atmosphere furnace. The purpose of the atmosphere is to prevent scaling or oxidation during annealing. The atmosphere is usually comprised of either dry hydrogen or a mixture of dry hydrogen and dry nitrogen (sometimes known as dissociated ammonia).
- **X1.3.4** The various types of edges obtainable on strip are as follows:
- **X1.3.5** *No. 1 Edge* Rolled edge, either round or square as specified.
 - **X1.3.6** *No. 3 Edge* An edge produced by slitting.
- **X1.3.7** *No.* 5 *Edge* Approximately square edge produced by rolling or filing after slitting.
- **X1.4** *Plate* The types of finish obtainable on plate are as follows:
- **X1.4.1** *Hot-Rolled, Annealed* Scale not removed. Use of plates in this condition is generally confined to heat-resisting applications.
- **X1.4.2** *Hot-Rolled, Annealed, Descaled* Scale removed by a blast-cleaning or pickling operation. Finish commonly preferred for corrosion resisting applications or where non-flux type welding operations will be performed.
- **X1.4.3** *Cold-Rolled*, *Annealed* Bright-annealed finish or scale removed by a blast-cleaning or pickling operation.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

NC Section II Part B 202 SPECIFICATION FOR WELDED COPPER AND COPPER-ALLOY HEAT EXCHANGER TUBE

SB-543/SB-543M SHENORMOC. COM. Cick to view the full PILE. (Identical with ASTM Specification B543/B543M-18 except that certification and test reports have been made mandatory.)

Specification for Welded Copper-Alloy Heat Exchanger Tube

1. Scope

1.1 This specification establishes the requirements for welded tube of copper and various copper alloys up to 3½ in., inclusive, in diameter, for use in surface condensers, evaporators, heat exchangers, and general engineering applications. The following coppers or copper alloys are involved:

Copper or Copper Alloy UNS No.	Previously Used Designation	Type of Metal
C10800 ^A		oxygen-free, low phosphorus
C12200 ^A		DHP phosphorized, high
		residual phosphorus
C19400	•••	copper-iron alloy
C23000		red brass
C44300		arsenical admiralty
C44400		antimonial admiralty
C44500	•••	phosphorized admiralty
C68700		arsenical aluminum brass
C70400	•••	95-5 copper-nickel
C70600	•••	90-10 copper-nickel
C70620		90-10 copper-nickel (Modified
		for Welding)
C71000		80-20 copper-nickel
C71500	•••	70-30 copper-nickel
C71520	•••	70-30 copper-nickel (Modified
		for Welding)
C71640		copper-nickel-iron-manganese
C72200		

^A Copper UNS Nos. C10800 and C12200 are classified in Classification B224.

1.2 The values stated in either inch-pound or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.3 This standard does not purpoin to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determined to the safety of the user of this standard to establish appropriate safety, health, and environmental practices and determined to the safety of the user of this standard to establish appropriate safety, health, and environmental practices and determined to the safety of the user of this standard to establish appropriate safety, health, and environmental practices and determined to the safety of the user of this standard to establish appropriate safety, health, and environmental practices and determined to the safety of the user of this standard to establish appropriate safety.

mine the applicability of regulatory limitations prior to use. (Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:
- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B154 Test Method for Mercurous Nitrate Test for Copper Alloys
- **B224** Classification of Coppers
- B846 Terminology for Copper and Copper Alloys
- B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
- B900 Practice for Packaging of Copper and Copper Alloy Mill Products for U.S. Government Agencies
- B968/B968M Test Method for Flattening of Copper and Copper-Alloy Pipe and Tube
- E3 Guide for Preparation of Metallographic Specimens
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed

Copper by Gravimetry

E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)

E112 Test Methods for Determining Average Grain Size

E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)

E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ASME Standard:

ASME Boiler and Pressure Vessel Code

3. Terminology

3.1 For the definitions of the terms related to copper and copper alloys, refer to Terminology B846.

4. Types of Welded Tube

- 4.1 Forge-Welded Tube manufactured as described in 6.2.2.1, 6.2.2.2, and 6.2.2.3.
- 4.1.1 As-Welded Tube—Forge-welded tube with internal and external flash removed and no further refinement of grain structure
- 4.1.2 Welded and Annealed Tube—Forge-welded tube with internal and external flash removed, that has been annealed to produce a uniform grain size appropriate to the specified annealed temper.
- 4.1.3 Welded and Cold-Reduced Tube—Forge-welded tube with internal and external flash removed and subsequently cold-reduced to conform to the specified size and temper.
- 4.1.4 Welded and Cold-Drawn Tube—Forge-welded tube with internal and external flash removed and subsequently cold-drawn over a plug or mandrel to the specified size and temper.
- 4.2 Fusion-Welded Tube manufactured as described in section 6.3.
- 4.2.1 As-Welded Tube—Fusion-welded tube with no further refinement of grain structure.
- 4.2.2 Welded and Amealed Tube—Fusion-welded tube that has been annealed to produce a uniform grain size appropriate to the specified annealed temper. The structure of the weld zone shall be that which is typical of a fusion weld.
- 4.2.3 Welded and Cold-Reduced Tube—Fusion-welded tube subsequently cold-reduced to conform to the specified size and temper.
- 4.2.4 Welded and Cold-Drawn Tube—Fusion-welded tube subsequently cold-drawn over a plug or mandrel to the specified size and temper.

4.3 Fully Finished Tube—Welded tube with internal and external flash removed, if present, and subsequently cold-drawn over a plug or mandrel and annealed, and redrawn when necessary to conform to the specified temper.

5. Ordering Information

- 5.1 Include the following information when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
- 5.1.2 Copper or Copper Alloy UNS No. designation (for example, UNS No. C10800);
 - 5.1.3 Tube type (Section 4);
 - 5.1.4 Temper (Section 8);
- 5.1.5 Dimensions, the diameter, wall thickness, whether minimum or nominal wall, and length (Section 14); and
- 5.1.6 Quantity of each size (number of pieces and length, in inches or feet and inches);
- 5.2 The following options are available but may not be included unless specified at the time of placing of the order, when required:
 - 5.2.1 When heat identification or traceability details;
- 5.2.2 Whether a pressure test is to be used instead of the eddy-current test (Section 13.1);
- 5.2.3 Whether cut ends of the tube are to be deburred, chamfered, or otherwise treated (Section 15);
- 5.24 If the product is to be subsequently welded, (see Table 1, Foomote F);
- 5.2.5 DELETED
- 5.2.6 DELETED
- 5.3 If product is purchased for agencies of the U.S. Government (see the Supplementary Requirements section of {this specification or the general requirements section} for additional requirements, if specified), and
 - 5.3.1 DELETED

6. Materials and Manufacture

- 6.1 Materials:
- 6.1.1 The material of manufacture shall be strip of one of the Copper Alloy UNS Nos. listed in section 1.1 of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 6.2 Manufacture:
- 6.2.1 The product shall be manufactured by forming the material into a tubular shape on a suitable forming mill.
- 6.2.2 Welding shall be accomplished by any process that produces a forge weld leaving no crevice in the weld seam visible to the unaided eye.
- 6.2.2.1 Forge-Welded Tube—The edges of the strip shall be heated to the required welding temperature, usually by high frequency electric current, and be pressed firmly together causing a forge-type joint to be formed with internal and external flash or bead.
- 6.2.2.2 The external flash (that portion of the weld which extends beyond the normal wall) shall always be removed.

TABLE 1 Chemical Requirements

Copper or						Composition	n, %					
Copper Alloy UNS No.	Copper ^A	Nickel incl Cobalt	Lead, max	Iron	Zinc	Man- ganese	Aluminum	Phosphorus	Tin	Antimony	Arsenic	Other Elements
C10800	99.95 ^{A, B} min							0.005-0.012				
C12200	99.9 ^A min							0.015-0.040				
C19400	97.0 min		0.03	2.1-2.6	0.05-0.20			0.015-0.15				
C23000	84.0-86.0 ^{C, D}		0.05	0.05 max	remainder							
C44300	70.0-73.0		0.07	0.06 max	remainder				0.8-1.2 ^E		0.02-0.06	
C44400	70.0-73.0		0.07	0.06 max	remainder				0.8-1.2 ^E	0.02-0.10		
C44500	70.0-73.0		0.07	0.06 max	remainder			0.02-0.10	0.8-1.2 ^E			
C68700	76.0-79.0 ^{A, F}		0.07	0.06 max	remainder		1.8-2.5				0.02-0.06	
C70400	remainder ^{A, F}	4.8-6.2	0.05	1.3-1.7	1.0 max	0.30-0.8						
C70600	remainder ^{A, F}	9.0-11.0	0.05	1.0-1.8	1.0 max	1.0 max						X/O
C70620	86.5 min ^{A, F}	9.0-11.0	0.02	1.0-1.8	0.50 max	1.0		0.02 max				O 0.05 max
											~ @	S 0.02 max
C71000	remainder ^{A, F, G}	19.0-23.0	0.05	0.50-1.0	1.0 max ^G	1.0 max		G			5	G
C71500	remainder ^{A, F}	29.0-33.0	0.05	0.40-1.0	1.0 max	1.0 max					C_{λ}	
C71520	65.0 min ^{A, F}	29.0-33.0	0.02	0.40-1.0	0.50 max	1.0 max		0.02 max				C 0.05 max
											7	S 0.02 max
C71640	remainder ^{A, F, G}	29.0-32.0	0.05^{G}	1.7-2.3	1.0 max^G	1.5-2.5		G		X		C 0.06 ^G
										, 0		max
										1		S 0.03 max
C72200	remainder ^{A, C, G, H}	15.0–18.0	0.05 ^G	0.50 - 1.0	1.0 max ^G	1.0 max		G		X .		^G Si 0.03
									CA			max
									PSI			Ti 0.03 max ^H

A Cu value includes Ag.

- 6.2.2.3 The internal flash shall be removed to the extent that it shall not exceed 0.006 in. [0.152 mm] in height or 10 % of the nominal wall thickness, whichever is greater.
- 6.3 Fusion-Welded Tube—The edges of the strip shall be brought together and welded, usually by a GTAW welding process, without the addition of filler metal, causing a fusion-type joint to be formed with no internal or external flash or bead removal necessary.
- 6.4 Fully Finished Tube—May be welded and subsequently processed by any method that would produce a tube suitable for subsequent cold-drawing and annualing.
- 6.5 There shall be no crevice in the weld seam visible to the unaided eye.

7. Chemical Composition

- 7.1 The material shall conform to the chemical compositional requirements in Table 1 for the Copper or Copper Alloy UNS No. designation specified in the ordering information.
- 7.2 The composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for upparted elements.
- 7.3 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 7.3.1 Copper Alloy UNS Nos. C70400, C70600, C70620, C71000, C71500, and C71640—When all the elements in Table 1 are analyzed, their sum shall be 99.5 % minimum.

- 7.3.2 Copper Alloy UNS No. C72200—When all the elements in Table 1 are analyzed, their sum shall be 99.8 % minimum.
- 7.4 For copper alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 7.4.1 Copper Alloy UNS No. C23000—When all the elements in Table 1 are analyzed, their sum shall be 99.8 % minimum.
- 7.4.2 Copper Alloy UNS Nos. C44300, C44400, and C44500—When all the elements in Table 1 are analyzed, their sum shall be 99.6 % minimum.
- 7.4.3 Copper Alloy UNS No. C68700—When all the elements in Table 1 are analyzed, their sum shall be $99.5\,\%$ minimum.

8. Temper

- 8.1 Tube tempers shall be designated as follows:
- 8.1.1 Welded and annealed WO61.
- 8.1.1.1 Welded and light cold worked WC55.
- 8.2 Other tempers shall be produced to the mechanical properties as agreed upon between the manufacturer or supplier and the purchaser.
- 8.3 Tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, and C68700 shall be furnished in the annealed temper or the stress-relieved condition as specified in the purchase order unless otherwise agreed upon between the purchaser and the manufacturer or supplier.

 $^{^{}B}$ Copper + silver + phosphorus.

^CCu + Sum of Named Elements, 99.8 % min.

^D Not including Ag.

^E For tubular products, the minimum Sn content may be 0.9 %

FCu + Sum of Named Elements, 99.5 % min.

^G When the product is for subsequent welding applications and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

H Chromium 0.30 to 0.7.

8.4 Tubes of Copper Alloy UNS Nos. C12200, C19400, C70400, C70600, C70620, C71000, C71500, C71520, C71640, and C72200 are normally supplied in the temper specified in the purchase order without stress-relief treatment.

Note 1—Some tubes, when subjected to aggressive environments, may be subject to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is suggested that tubes of Copper Alloy UNS Nos. C23000, C44300, C44400, C44500, and C68700 be subjected to a stress-relieving thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall be to the requirements agreed upon between the manufacturer and the purchaser.

9. Grain Size for Annealed Tempers

9.1 Samples of annealed temper tubes shall be examined at a magnification of 75 diameters. The grain size shall be determined in the wall beneath the internal enhancement. While there is not grain size range, the microstructure shall show complete recrystallization and the weld zone shall have a structure typical of hot-forged welds.

10. Mechanical Property Requirements

- 10.1 Tensile Strength and Yield Strength Requirements:
- 10.2 Product furnished under this specification shall conform to the tensile and yield strength requirements prescribed in Table 2 or Table 3 when tested in accordance with Test Methods E8/E8M.

10.2.1 Acceptance or rejection based upon mechanical properties shall depend only on tensile strength and yield strength.

11. Performance Requirements

- 11.1 Expansion Test Requirements:
- 11.1.1 Product in the annealed tempers and the light coldworked temper shall withstand expansion in accordance with Test Method B153 to the degree specified in Table 4.
- 11.1.2 The expanded tube area shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
 - 11.2 Flattening Test:
- 11.2.1 The flattening test shall be performed in accordance with the Test Method section in B968/B968M.
 - 11.3 Reverse Bend Test:
- 11.3.1 When specified in the contract or purchase order, the reverse bend test described in 19.2.8 of the Test Methods section shall be performed.
- 11.3.2 The sample shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.

12. Other Requirements

- 12.1 Mercurous Nitrate Test or Ammonia Vapor Test:
- 12. N The mercurous nitrate or ammonia vapor test is required only for Copper Alloys UNS Nos. C23000; C44300;

TABLE 2 Tensile Requirements—Inch-Pound Values

Note 1—See Table 3 for tensile requirements—SI values.

Conney or Conney Alley LINC No.	Tempe	•	Tensile Strength,	Yield Strength at 0.5 %
Copper or Copper Alloy UNS No. ————	Designation	Name	min, ksi ^A	Extension Under Load, min ksi ^A
C10800, C12200	W061	annealed	30	9 ^B
	WC55	light cold-worked	32	15
C19400	W061	annealed	45	15
	W061 WC55 W061 WC55	light cold-worked	45	22
C23000	W061	annealed	40	12
	WC55	light cold-worked	42	20
C44300, C44400, C44500	W061	annealed	45	15
XO.	WC55	light cold-worked	50	35
C44300, C44400, C44500 C68700	W061	annealed	50	18
···CV	WC55	light cold-worked	C	С
C70400	W061	annealed	38	12
	WC55	light cold-worked	40	30
C70600	W061	annealed	40	15
	WC55	light cold-worked	45	35
C70620	WO61	annealed	40	15
	WC55	light cold-worked	45	35
C71000	W061	annealed	45	16
C).	WC55	light cold-worked	50	35
C71500	W061	annealed	52	18
	WC55	light cold-worked	54	35
Q71520	WO61	annealed	52	18
7,	WC55	light cold-worked	54	35
C71640	W061	annealed	63	25
	WC55	light cold-worked	75	40
C72200	W061	annealed	45	16
	WC55	light cold-worked	50	30

^A ksi = 1000 psi.

^B Light straightening operation is permitted.

C Where no properties are shown, strength requirements shall be as agreed upon between the purchaser and the manufacturer or supplier.

TABLE 3 Tensile Requirements—SI Values

Note 1—See Table 2 for tensile requirements—inch-pound values.

Copper or Copper Alloy	Tempe	r	Tensile Strength,	Yield Strength at 0.5 %
UNS No.	Designation	Name	min, MPA	Extension Under Load, min, MPA
C10800, C12200	W061	annealed	205	60 ^A
	WC55	light cold-worked	220	105
C19400	W061	annealed	310	105
	WC55	light cold-worked	310	150
C23000	W061	annealed	275	85
	WC55	light cold-worked	290	140
C44300, C44400, C44500	W061	annealed	310	105
	WC55	light cold-worked	345	240
C68700	W061	annealed	345	125
	WC55	light cold-worked	В	BO
270400	W061	annealed	260	C-85
	WC55	light cold-worked	275	205
70600	W061	annealed	275	105
	WC55	light cold-worked	310	240
C70620	WO61	annealed	275	105
	WC55	light cold-worked	310	240
C71000	W061	annealed	310	110
	WC55	light cold-worked	345	240
C71500	W061	annealed	360	125
	WC55	light cold-worked	370	240
C71520	WO61	annealed	360	125
	WC55	light cold-worked	370	240
C71640	W061	annealed	435	170
	WC55	light cold-worked	515	275
C72200	W061	annealed	310	110
	WC55	light cold-worked	345	205

^A Light straightening operation is permitted.

TABLE 4 Expansion Requirements

IABLE 4 Expansion Requirements					
Temper	Copper or Copper Alloy UNS No.	Expansion of Tube Outside Diameter, in Percent of Origi- nal Outside Diameter			
Annealed	C10800 C12200 C19400 C23000 C44300, C44400, C44500 C68700 C70400 C70600 C70620 C71000 C71500 C71520 C71640	30 30 30			
Light cold-worked	C72200 C10800 C12200 C19400 C70400 C70600 C70620 C71000 C71500 C71520	30 20 20 20 20 20 20 20 20 20			
Annealed and light cold- worked, stress relieved	C71640 C72200 C23000 C44300, C44400, C44500 C68700	20 20 20 20 20 20			

C43400; C44500; C60800; and C68700; when purchased if not applied in an annealed temper (**Warning**—Mercury is a definite health hazard. With the Mercurous Nitrate Test, equipment for the detection and removal of mercury vapor produced in volatilization, and the use of protective gloves is recommended.)

- 12.1.2 The test specimens, cut 6 in. [152 mm] in length from the enhanced section shall withstand, without cracking, an immersion in the standard mercurous nitrate solution in Test Method B154 or immersion in the ammonia vapor solution as defined in Test Method B858.
- 12.1.3 Unless otherwise agreed upon between the manufacturer or supplier and the purchaser, the manufacturer shall have the option of using either the mercurous nitrate test or the ammonia vapor test. If agreement cannot be reached, the mercurous nitrate test standard shall be utilized.
- 12.1.4 If the ammonia vapor test is selected, the appropriate risk level pH value for the test solution shall be agreed upon by the manufacturer and purchaser, or alternately, if the purchaser defers to the manufacturer's expertise for the selection of the test pH value, the minimum value selected shall be 9.8.

13. Nondestructive Testing

13.1 Each tube shall be subjected to the eddy-current test in 13.1.1. Fully finished tube (see 4.3) may be tested in the final drawn, annealed, or heat-treatment temper or in the drawn temper prior to the final anneal or heat treatment, unless otherwise agreed upon between the manufacturer or supplier and the purchaser. Tube supplied welded and annealed (see 4.1.2) may be tested in the welded condition before anneal or

Where no properties are shown, strength requirements shall be as agreed upon between the purchaser and the manufacturer or supplier.

heat treatment, unless otherwise agreed upon between the manufacturer or supplier and the purchaser. The purchaser may specify either of the tests in 13.1.2 or 13.1.3 as an alternative to the eddy-current test.

13.1.1 *Eddy Current Test*—Each tube shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the tube for the intended application. Testing shall follow the procedures of Practice E243, except as modified in 13.1.1.2.

13.1.1.1 The depth of the round-bottom transverse notches and the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Table 5 or Table 6 and Table 7 or Table 8 respectively.

13.1.1.2 The discontinuities used to calibrate the test system may be placed in the strip from which the tube will be manufactured. These calibration discontinuities will pass through the continuous operations of forming, welding, and eddy-current testing. The test unit sensitivity required to detect the resultant discontinuities shall be equivalent to or greater than that required to detect the notches or drilled holes of Table 5 or Table 6 and Table 7 or Table 8 respectively, or other calibration discontinuities that may be used by mutual agreement between the manufacturer or supplier and the purchaser. Calibration discontinuities may be on the outside tube surface, the internal tube surface, or through the tube wall and shall be spaced to provide signal resolution adequate for interpretation. Each calibration discontinuity shall be detected by the eddy-current tester.

13.1.1.3 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered as conforming to the requirements of this test. Tubes causing irrelevant signals because of moisture, soil, and like effects may be reconditioned and retested. Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals because of visible and identifiable handling marks may be retested by the hydrostatic test prescribed in 13.1.2, or the pneumatic test prescribed in 13.1.3. Tubes meeting requirements of either test shall be considered to conform if the tube dimensions are within the prescribed limits, unless otherwise agreed to by the manufacturer or supplier and the purchaser.

13.1.2 Hydrostatic Test. When specified, each tube selected in accordance with 13.1 shall withstand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi [48 MPa], determined by the following equation for thin hollow cylinders

TABLE 5 Notch Depth—Inch-Pound Values

NOTE 1—See Table 6 for notch depth—SI values.

Tube Wall	Tube Outside Diameter, in.				
Thickness, in.	Over 1/4 to 3/4, incl	Over 3/4 to 11/4, incl	Over 11/4 to 31/8, incl		
Over 0.017–0.032	0.005	0.006	0.007		
Incl 0.032-0.049 Incl 0.049-0.083	0.006 0.007	0.006 0.0075	0.0075 0.008		
Incl 0.083-0.109 Incl 0.109-0.120	0.0075 0.009	0.0085 0.009	0.0095 0.011		

TABLE 6 Notch Depth—SI Values

Note 1—See Table 5 for notch depth—inch-pound values.

Tube Wall	Tube Outside Diameter, mm				
Thickness, mm	Over 6 to 19,	Over 19 to 32,	Over 32 to 80,		
	incl	incl	incl		
Over 0.4-0.8	0.13	0.15	0.18		
Incl 0.8-1.3	0.15	0.15	0.19		
Incl 1.3-2.1	0.18	0.19	0.20		
Incl 2.1-2.8	0.19	0.22	0.24		
Incl 2.8-3.0	0.23	0.23	0.28		

TABLE 7 Diameter of Drilled Holes—Inch-Pound Values

Note 1—See Table 8 for diameter of drilled holes SI values.

Tube Outside Diameter	Diameter of Drilled		
in.	in	Drill No.	
1/4 -3/4, incl	0.025	72	
Over 3/4 -1, incl	0.031	68	
Over 1-11/4, incl	0.036	64	
Over 11/4 -11/2, incl	0.042	58	
Over 1½ -1¾, incl	0.046	56	
Over 1¾ –2, incl	0.052	55	

TABLE 8 Diameter of Drilled Holes—SI Values

Note 1—See Table 7 for diameter of drilled holes—inch-pound values.

		1
Tube Outside Diameter	Diameter of Drilled Holes	Drill No.
mm	mm	
6.0-19.0, incl	0.65	72
Over 19.0–25.4, incl	0.80	68
Over 25.4-31.8, incl	0.92	64
Over 31.8-38.1, incl	1.1	58
Over 38.1-44.4, incl	1.2	56
Over 44.4–50.8, incl	1.3	55

under tension. The tube need not be tested at a hydrostatic pressure over 1000 psig [7.0 MPa] unless so specified.

$$P = 2St/(D - 0.8t) \tag{1}$$

where:

P = hydrostatic pressure, psig [MPa],

= thickness of tube wall, in. [mm],

D = outside diameter of the tube, in. [mm], and

S = allowable stress of the material, psi [MPa].

13.1.3 *Pneumatic Test*—When specified, each tube shall be subjected to an internal air pressure of 60 psig [400 kPa] minimum for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the tube under water or by the pressure-differential method. Any evidence of leakage shall be cause for rejection.

14. Dimensions, Mass, and Permissible Variations

14.1 *Diameter*—The outside diameter of the tubes shall not vary from that specified by more than the amounts shown in Table 9 or Table 10 as measured by "go" and "no-go" ring gages. Where no values are shown in the table, dimensions shall be as agreed upon between the purchaser and the manufacturer or supplier.

TABLE 9 Diameter Tolerances—Inch-Pound Values

Note 1—See Table 10 for diameter tolerances—SI values.

		Wa	all Thickness, in.		
Outside Diameter, in.	0.020 ^A 0.022 0.025 0.028	0.032	0.035	0.042	0.049 and Over
_		Diameter Tole	erance, Plus and Minus	, in.	
Up to 0.500, incl	0.003	0.0025	0.0025	0.0025	0.0025
Over 0.500-0.740, incl	0.004	0.004	0.004	0.0035	0.003
Over 0.740-1.000, incl	0.006	0.006	0.005	0.0045	0.004
Over 1.000-1.250, incl	***	0.009	0.008	0.006	0.0045
Over 1.250-1.375, incl	***			0.008	0.005
Over 1.375-2.000, incl	•••				0.006
Over 2.000-3.125, incl	•••				0.0065

A Thin wall thicknesses are supplied only in light cold-worked tubes.

TABLE 10 Diameter Tolerances—SI Values

Note 1—See Table 9 for diameter tolerances—inch-pound values.

	*				
		V	all Thickness, mm	c Mr	
Outside Diameter, mm	0.508 ⁴ 0.559 0.635 0.711	0.813	0.889	1.07	1.24 and Over
		Diameter To	lerance, Plus and Minus	, mm	
Up to 12, incl	0.076	0.064	0.064	0.064	0.064
Over 12–18, incl	0.10	0.10	0.10	0.089	0.076
Over 18-25, incl	0.15	0.15	0.13	0.11	0.10
Over 25-35, incl			△X	0.20	0.13
Over 35-50, incl			, V		0.15
Over 50-79			(0.17

A Thin wall thicknesses are supplied only in light cold-worked tubes.

14.2 Wall Thickness Tolerances:

- 14.2.1 Tubes Ordered to Minimum Wall—No tube at its thinnest point shall be less than the specified wall thickness or greater than the specified wall thickness plus twice the tolerance values shown in Table 11 or Table 12
- ance values shown in Table 11 or Table 12.

 14.2.2 *Tubes Ordered to Nominal Wall*—The maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Table 12 or Table 12.
- 14.3 Length—The length of the tubes shall not be less than that specified when measured at a temperature of 20 °C, but may exceed the specified value by the amounts given in Table 13 or Table 14.

14.4 *Squareness of Cut*—The departure from squareness of the end of any tube shall not exceed the values shown in Table 15 or Table 16.

Note 2—For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

15. Workmanship, Finish, and Appearance

15.1 Roundness, straightness, uniformity of the wall thickness, and inner and outer surface of the tube shall be such as to make it suitable for the intended application. Unless

TABLE 11 Wall Thickness Tolerances—Inch-Pound Values

Note 1—See Table 12 for SI values.

		Outside Dian	neter, in.	
Wall Thickness, in.	Over 1/8 to 5/8, incl	Over % to 1, incl	Over 1 to 2, incl	Over 2 to 3.125, incl
		Wall Thickness Tolerances	s, Plus and Minus, in.	
0.020 incl, to 0.032	0.003	0.003		
0.032 incl, to 0.035	0.003	0.003	0.004	
0.035 incl, to 0.058	0.004	0.0045	0.0045	0.005
0.058 incl, to 0.083	0.0045	0.005	0.005	0.0055
0.083 incl, to 0.120	0.005	0.0065	0.0065	0.0065
0.120 incl, to 0.135	0.007	0.007	0.0075	0.008

TABLE 12 Wall Thickness Tolerances, Plus and Minus—SI Values

Note 1—See Table 11 for inch-pound values.

Well Thickness man		Outside Diameter, mm	
Wall Thickness, mm -	Over 12 to 25, incl	Over 25 to 50, incl	Over 50 to 80, incl
0.50, incl to 0.80	0.08		
0.80, incl to 0.90	0.08	0.10	
0.90, incl to 1.5	0.11	0.11	0.13
1.5, incl to 2.1	0.13	0.13	0.14
2.1, incl to 3.0	0.17	0.17	0.17
3.0, incl to 3.4	0.18	0.19	0.20

TABLE 13 Length Tolerances—Inch-Pound Values

Note 1—See Table 14 for SI values.

Specified length, ft	Tolerance, all Plus, in.
Up to 15	3/32
Over 15-20, incl	1/8
Over 20-30, incl	5/32
Over 30-60, incl	3/8
Over 60–100, incl ^A	1/2

^A Condenser tubes in lengths over 100 ft are not in present demand. Tolerance values for these lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.020, incl to 0.032 shall be agreed upon between the manufacturer or supplier and the purchaser.

TABLE 14 Length Tolerances—SI Values

Note 1—See Table 13 for inch-pound values.

Specified Length, mm	Tolerance, all Plus, mm	
Up to 4500	2.4	
Over 4500-6000, incl	3.2	
Over 6000-10 000, incl	4.0	. 1
Over 10 000-18 000, incl	9.5	X
Over 18 000–30 000, incl ^A	13.0	O,

^A Condenser tubes in lengths over 30 000 mm are not in present demand. Tolerance values for these lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.5, inclusive to 0.8 shall be agreed upon between the manufacturer or supplier and the purchaser.

TABLE 15 Squareness of Cut-Inch-Pound Values

Note 1—See Table 16 for SI values.

	~~~	
Tube Outside Diameter, in.	Volerance, in.	Yolerance, in.
Up to %, incl	→ 0.010 in.	<b>3</b> 0.010 in.
Over 5/8	0.016 in./in. of diameter	0.016 in./in. of diameter

#### TABLE 16 Squareness of Cut—SI Values

Note 1—See Table 15 for inch-pound values.

Tube Outside Diameter, mm	Tolerance, mm
Up to 16, incl Over 16	0.25 mm
Over 16	0.40 mm/mm of diameter

otherwise specified on the purchase order, the cut ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.

15.2 Welded and annealed, fully finished annealed, or stress-relieved tubes shall be clean and smooth but may have a superficial, dull iridescent film on both the inside and the

outside surfaces. All other tubes shall be clean and smooth but may have a superficial film of drawing or other ubricant on the surfaces.

#### 16. Sampling

- 16.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:
- 16.1.1 Lot Size—600 tibes or 10 000 lb [4550 kg] or a fraction of either, whichever constitutes the greater weight.
- 16.1.2 *Portion Size* Sample pieces from two individual lengths of finished product.
- 16.2 Samples taken for the purpose of the tests prescribed in the specification shall be selected in a manner that will represent correctly the material furnished and avoid needless destruction of finished material when samples representative of the material are available from other sources.
- 16.3 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E255. Drillings, millings, and so forth, shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 16.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 16.3.1 Instead of sampling in accordance with Practice E255, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 16.3.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 16.3.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb [4550 kg] or fraction thereof, except that not more than one sample shall be required per piece.
- 16.3.2 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 16.3.3 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

#### 17. Number of Tests and Retests

- 17.1 *Tests*:
- 17.1.1 Chemical Analysis—Chemical composition shall determine in accordance with element mean of the results from at least two replicate analyses of the samples, and the results of each replication must meet the requirements of the product specification.
  - 17.1.2 Tension Tests:
- 17.1.2.1 When tensile strength is specified, two tubes shall be selected from each lot and subjected to the tension test which shall, in case of disagreement, be made in accordance with Test Methods E8/E8M.
  - 17.1.3 Other Tests:
- 17.1.3.1 For tests specified in Sections 9; 11; and 12, specimens shall be taken from each of the pieces selected in accordance with 16.1.
  - 17.2 Retests:
- 17.2.1 When requested by the manufacturer or supplier, a retest shall be permitted when results of test obtained by the purchaser fail to conform to the requirements of the product specification.
- 17.2.2 The retest shall be as directed in the product specification for the initial test, except the number of test specimens shall be twice that normally required for the specified test.
- 17.2.3 All test specimens shall conform to the product specification requirement(s) in retest. Failure to conform shall be cause for rejection.

#### 18. Specimen Preparation

- 18.1 Chemical Analysis:
- 18.1.1 Preparation of the analytical test specimen shall be the responsibility of the reporting laboratory.
  - 18.2 Grain Size:
- 18.2.1 Test specimen shall be prepared in accordance with Guide E3.
  - 18.3 Tensile Test:
- 18.3.1 The test specimen shall be of the full section of the tube and shall conform to the requirements of the section titled "Specimens for Pipe and Tube" in Test Methods E8/E8M.
- 18.3.1.1 When the limitations of the testing machine preclude the use of a full section specimen, specimens conforming to "Tension Test Specimens for Large-Diameter Tubular Products" of Test Methods E8/E8M shall be used.
  - 18.4 Expansion (Pin Test):
- 18.4.1 Test specimen shall conform to the requirements of the Specimen Preparation section of Test Method B153.
  - 18.5 Flattening Test:
- 18.5.1 Test specimen shall conform to the appropriate requirements of the Test Specimen Section of Test Method B968/B968M.
  - 18.6 Reverse Bend Test:
- 18.6.1 A representative tube sample shall be cut to a length that will accommodate the test. The sample is permitted to be annealed when the temper is other than annealed.
- 18.6.2 The product test specimen shall be cut longitudinally, 90° on each side of the weld, when visible or identifiable.

- 18.7 Mercurous Nitrate Test:
- 18.7.1 Specimens for the mercurous nitrate test shall be 6 in. [152 mm] in length and shall conform to the requirements of
- 18.9 Specimens for the ammonia vapor test shall be 6 in. [152 mm] in length and shall conform to the requirements of Test Method B858.

  19. Test Methods

  19.1 In cere

19.1 In cases of disagreement, test methods for chemical analysis shall be subject to agreement between the manufacturer or supplier and the purchaser. The following table is a list of published methods, some of which may no longer be viable, which, along with others not listed, may be used subject to agreement.

Element		Method
Copper 99.75 to 99.99	E53 Elec	trolytic
Copper 60 to 99.74	E478 Ele	ectrolytic
Tin 0.9 to 1.2	E478 Titi	rimetric
Aluminum 1.8 to 6.5	E478 Titi	rimetric
Nickel, inc. Cobalt	E478 Gra	avimetric
Lead 0.05 to 0.10	E478 Atc	mic Absorption
Iron 0.05 to 1.8	E54	
Zinc to 1.0	E478 Atc	mic Absorption
Zinc 14.0 to 30.0	E478 Titi	rimetric
Manganese to 1.0	E62	
Arsenic 0.02 to 0.5	E62	
Antimony 0.02 to 0.1	E62	
Phosphorus 0.001 to 0.04	E62	
Chromium 0.30 to 0.70	E118	
<b>∽</b> ¹		

- 19.2 Other Tests:
- 19.2.1 The product furnished shall conform to specified requirements when subjected to tests in accordance with the following table:

Requirement	ASTM Designation
Grain Size	E112
Tensile strength	E8/E8M
Expansion test	B153
Flattening test	B968/B968M
Reverse bend test	Section 19.2.8
Electromagnetic (eddy-current) test	E243
Hydrostatic test	Section 19.2.10
Pneumatic test	Section 19.2.11

- 19.2.2 Tension test specimens shall be of the full section of the tube and shall conform to the requirements of the Significance and Use Section of Test Methods E8/E8M.
- 19.2.3 Whenever tension test results are obtained from both full-size and machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.
- 19.2.4 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the range of stressing to the yield strength should not exceed 100 ksi/min [690 MPa/min]. Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. [mm/mm] of gage length (or distance between grips for full-section specimens).
- 19.2.5 The surface of the test specimen for microscopical examination of grain size shall approximate a radial longitudinal section of the tube.

- 19.2.6 The surface of the test specimen for microscopical examination of the weld interface shall approximate a transverse section of the tube.
- 19.2.7 Flattening Test—Each test specimen shall be flattened in a press in accordance with Test Method B968/B968M.
- 19.2.8 Reverse Bend Test—The test specimen shall be flattened and bent around a mandrel with a diameter four times the wall thickness, with the mandrel parallel to the length and in contact with the outside surface of the tube. The weld shall be placed at the point of maximum bend.
  - 19.2.9 Electromagnetic (Eddy-Current) Test:
- 19.2.9.1 Either notch-depth or drilled-hole, artificial discontinuity, calibration standards shall be used.
- 19.2.9.2 The depth of the round bottom traverse notches in the discontinuity, standard used to adjust the sensitivity of the testing unit, are shown in Table 5 or Table 6 with a tolerance of  $\pm 0.0005$  in. ( $\pm 0.013$  mm).
- 19.2.9.3 The diameters of the drilled holes in the artificial discontinuity, calibration standard used to adjust the sensitivity of the testing unit, are shown in Table 7 or Table 8 and shall not vary by more than + 0.001, 0.000 in. [+ 0.025, 0.000 mm] of the hole diameter specified.
- 19.2.9.4 The manufacturer shall have the option of using a speed-insensitive, eddy-current unit that is equipped capable of selecting a fraction of the maximum unbalance signal. In such instances, the following percent maximum unbalance signals shall be used:

- 19.2.9.5 The specimens with discontinuities used to calibrate the testing unit shall be permitted to be placed in the strip from which the tube will be manufactured. These calibration discontinuities will pass through the continuous operations of forming, welding, and eddy-current testing. The testing unit sensitivity required to detect the resultant discontinuities shall be equivalent to or greater than that required to detect the notches or drilled holes.
- 19.2.9.6 The round-bottom, traverse-notch, calibration discontinuities shall be on the outside tube surface or inside tube surface. The discontinuities, notch or drilled hole, shall be spaced to provide signal resolution adequate for interpretation. Each calibration discontinuity shall be detected by the testing unit.
- 19.2.9.7 Tubes with discontinuities indicated by the testing unit may, at the option of the manufacturer, be reexamined or retested to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil, or moisture, shall not be cause for rejection of the tubes, provided the tube dimensions are still within prescribed limits and the tube is suitable for its intended application.
- 19.2.10 *Hydrostatic Test*—Fiber stress shall be determined by the following equation for thin hollow cylinders under tension:

$$P = 2St/(D - 0.8t) \tag{2}$$

where:

P = hydrostatic pressure, psi [MPa];

t = thickness of tube wall, in. [mm];

D = outside diameter of the tube, in. [mm]; and

S = allowable stress of the tube, psi. [MPa].

- 19.2.10.1 The tube need not be tested at a hydrostatic pressure over 1000 psi [7.0 MPa] unless so specified.
- 19.2.11 *Pneumatic Test*—Testing shall be such as to permit easy visual detection of leakage, such as a pressure differential method or submerging the tube under water.

#### 20. Significance of Numerical Limits

20.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Property

Rounded Unit for Observed or Calculated Value

Chemical composition

Tensile strength and yield strength Grain size: Up to 0.055 mm, incl, Over 0.055 mm Expansion: nearest unit in the last righthand place of figures nearest ksi (Nearest 5 MPa) nearest multiple of 0.005 mm to the nearst 0.010 mm Nearest 1 %

#### 21. Inspection

- 1.1 The manufacturer or supplier shall inspect and make tests necessary to verify that the furnished product conforms to specification requirements.
- 21.2 Source inspection of the product by the purchaser may be agreed upon between the manufacturer or supplier and the purchaser as part of the purchase order. In such case, the nature of the facilities needed to satisfy the inspector representing the purchaser shall be included in the agreement. All tests and the inspection shall be conducted so as not to interfere unnecessarily with the operation of the works.
- 21.3 When mutually agreed upon, the manufacturer or supplier and the purchaser shall conduct the final inspection simultaneously.

#### 22. Rejection and Rehearing

- 22.1 Rejection:
- 22.1.1 Product that fails to conform to the specification requirements, when tested by the purchaser or purchaser's agent, may be rejected.
- 22.1.2 Rejection shall be reported to the manufacturer or supplier promptly. In addition, a written notification of rejection shall follow.
- 22.1.3 In case of dissatisfaction with the results of the test upon which rejection is based, the manufacturer or supplier shall have the option to make claim for a rehearing.
- 22.2 Rehearing—As a result of product rejection, the manufacturer or supplier shall have the option to make claim for a retest to be conducted by the manufacturer or supplier and the purchaser. Samples of the rejected product shall be taken in accordance with the product specification and subjected to test by both parties using the test method(s) specified in the product

specification, or, upon agreement of both parties, an independent laboratory may be selected for the test(s) using the test method(s) specified in the product specification.

#### 23. Certification

23.1 The purchaser shall be furnished certification that samples representing each lot have been tested and inspected as directed in this specification and requirements have been met.

23.2 DELETED

#### 24. Test Reports

24.1 A report of test results shall be furnished.

#### 25. Packaging and Package Marking

25.1 Packaging:

25.1.1 The product shall be separated by size, composition, and temper and prepared for shipment by common carrier in such a manner as to afford protection from the normal hazards of transportation.

#### 25.2 Package Marking:

- 25.2.1 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, gross and net weight, and name of supplier.
- 25.2.2 When specified in the contract or purchase order, the product specification number shall be shown.

#### 26. Keywords

26.1 condenser; copper; copper alloy; copper nickel; evaporator; heat exchanger; welded tube; UNS No. C10800; UNS No. C12200; UNS No. C19400; UNS No. C23000; UNS No. C44300; UNS No. C44400; UNS No. C44500; UNS No. C68700; UNS No. C70400; UNS No. C70600; UNS No. C70620; UNS No. C71000; UNS No. C71500; UNS No. C71520; UNS No. C71640; UNS No. C72200

#### SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

#### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 ASTM Standard:

ASTM B900 Practice for Packaging of Copper and Copper Alloy Mill Products for US Government Purchases Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipmen (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage

#### S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements

unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

#### S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

#### S4. Preparation for Delivery

- S4.1 Preservation, Packaging, Packing:
- S4.1.1 *Military Agencies*—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of Practice B900.
- S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.
  - S4.2 Marking:
- S4.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.
- S4.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

#### **APPENDIX**

#### X1. DENSITY OF COPPER AND COPPER ALLOYS

**TABLE X1.1 Densities** 

UNS No.  C10800, C12200  C19400  C23000  C244300, C44400, C44500  C44300, C44400, C44500  C68700  Density, Ib/in.³  Density, g/cm³  3.94  8.94  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75	X1. DENSITY OF COPPER AND COPPER ALLOYS  X1.1 The densities of the alloys covered by this specification are given in Table X1.1.  TABLE X1.1 Densities  Note 1—This information is for reference only.  Copper or Copper Alloy UNS No.  C10800, C12200  C19400  C19400  C19400  C23000  C19400  C23000  C23000  C44300, C44400, C44500  C308  C68700  Density, Ib/in.3  Density, g/cm3  Density, g/cm3  S18,54  S175  S175  S18,75  S18,33  S18,33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33 C70400 0.323 8.94 C70600, C70620 0.323 8.94 C71500, C71520 0.323 8.94 C71640 0.323 8.94 C71640 0.323 8.94 C71640 0.323 8.94		APPENDIX		
UNS No.  C10800, C12200  C19400  C23000  C244300, C44400, C44500  C44300, C44400, C44500  C68700  Density, Ib/in.³  Density, g/cm³  3.94  8.94  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75	UNS No.  C10800, C12200  C19400  C23000  C244300, C44400, C44500  C44300, C44400, C44500  C68700  Density, lb/in.³  Density, g/cm³³  8.94  8.95  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	(Nonma	ndatory Informatio	on)	
UNS No.  C10800, C12200  C19400  C23000  C44400, C44400  C44500  C44500  C44600  C44500  C44600  C4460	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	UNS No.  C10800, C12200  C19400  C23000  C23000  C44400, C44500  C44400, C44500  C68700  Density, lb/in.³  Density, g/cm³  S.94  S.94  S.95  S.9	X1. DENSITY OF (	COPPER AND COP	PPER ALLOYS	
UNS No.  C10800, C12200  C19400  C23000  C44400, C44400  C44500  C44500  C44600  C44500  C44600  C4460	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	UNS No.  C10800, C12200  C19400  C23000  C23000  C44400, C44500  C44400, C44500  C68700  Density, lb/in.³  Density, g/cm³  S.94  S.94  S.95  S.9	lloys covered by this speci	fica-		6
UNS No.  C10800, C12200  C19400  C23000  C244300, C44400, C44500  C44300, C44400, C44500  C68700  Density, Ib/in.³  Density, g/cm³  3.94  8.94  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75	C19800, C12200 0.323 8.94 C19400 0.322 9.94 C23000 0.316 8.75 C24300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	TAE	BLE X1.1 Densities	.00	
UNS No.  C10800, C12200  C19400  C23000  C244300, C44400, C44500  C44300, C44400, C44500  C68700  Density, Ib/in.³  Density, g/cm³  3.94  8.94  8.75  8.75  8.75  8.75  8.75  8.75  8.75  8.75	C19800, C12200 0.323 8.94 C19400 0.322 9.94 C23000 0.316 8.75 C24300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C10800, C12200 0.323 8.94 C19400 0.322 9.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33		is for reference only	ctil	
C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C19400 0.322 6.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	C19400 0.322 8.91 C23000 0.316 8.75 C44300, C44400, C44500 0.308 8.53 C68700 0.301 8.33	UNS No.		Density, g/cm ³	
BRUCI	WHO FULL BOY OF ASME BOYCE.	Cick to view the full PDF of ASMIF BRYC. The	ORANDOC.COM. Cick to view the full POF of ASME BRYC. The	C19400 C23000 C44300, C44400, C44500 C68700	0.322 0.316 0.308 0.301	8.91 8.75 8.53 8.33 8.94 8.94 8.94 8.94 8.94	
DEMINDOC. COM. Circle to view.	DRMDOC. P			767			

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# NC Section II Part B) 202 SB-548 Bruch Specification B548-03(2009).) (Identical with ASTA Specification B548-03(2009).) (Identical with ASTA Specification B548-03(2009).) TEST METHOD FOR ULTRASONIC INSPECTION OF **ALUMINUM-ALLOY PLATE FOR PRESSURE VESSELS**





# TEST METHOD FOR ULTRASONIC INSPECTION OF JC Section II Part B) 20's ALUMINUM-ALLOY PLATE FOR PRESSURE VESSELS



**SB-548** 



[Identical with ASTM Specification B 548-03(2009).]

#### Scope

- 1.1 This test method covers pulse-echo ultrasonic inspection of aluminum-alloy plate of thickness equal to or greater than 0.500 in. (12.7 mm) for use in the fabrication of pressure vessels. The ultrasonic test is employed to detect gross internal discontinuities oriented in a direction parallel to the rolled surface such as cracks, ruptures, and laminations, and to provide assurance that only plate that is free from rejectable discontinuities is accepted for delivery.
- 1.2 The inspection method and acceptance criteria included in this standard shall be limited to plate of the following aluminum alloys: 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5050, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6061, and Alclad 6061.
- 1.3 This test method applies only to ultrasonic tests using pulsed longitudinal waves which are transmitted and received by a search unit containing either a single crystal or a combination of electrically interconnected multiple crystals. Ultrasonic tests employing either the throughtransmission or the angle-beam techniques are not
- 1.4 This test method shall be used when ultrasonic inspection as prescribed herein is required by the contract, purchase order, or referenced plate specification.
- 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- **1.6** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

#### Referenced Documents

**2.1** The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.

#### 2.2 ASTM Standards:

E114 Practice for Ultrasonic Pulse-Echo Straight-Beam Examination by the Contact Method

E214 Practice for Immersed Ultrasonic Testing by the Reflection Method Using Pulsed Longitudinal Waves

E317 Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments

#### 2.3 Other Standards:

ASNT Recommended Practice for Nondestructive Testing Personnel Qualification and Certification—Ultrasonic Testing Method—SNT-TC-1A

#### 3. **Summary of Method**

- **3.1** The plate is inspected ultrasonically by scanning one rolled surface with a beam of pulsed longitudinal waves which is oriented in a direction perpendicular to the entry surface of the plate. The ultrasound is transmitted into the plate either by the direct contact, immersion, or liquidcolumn coupling method. During the scan, an indication representing the first back reflection is observed on the Ascan screen of the test instrument.
- **3.2** When the test system sensitivity level is appropriately adjusted, a discontinuity is detected during the scan by noting an isolated indication associated with a loss of the first back reflection indication. The apparent size of the discontinuity is determined by measuring the total area

in the scanned entry surface of the plate where the isolated indication and the loss of back reflection persist. The estimated discontinuity size and location are then compared with suitable acceptance criteria.

NOTE 1 — Additional information describing ultrasonic tests by the direct contact method and by the immersion method is available in Practices E114 and E214.

#### 4. Significance and Use

- **4.1** A number of factors such as the condition of the entry and back surfaces of the plate, the inclination of the ultrasonic beam with respect to the entry surface, and the performance characteristics of the test system may cause either a reduction of isolated indications or a substantial loss of back reflection and thereby could seriously impair the reliability of the test procedure outlined in this standard.
- **4.2** Accurate evaluations of discontinuity size also may be limited significantly by variations in beam characteristics which exist in most search units. For this reason, discontinuity size as determined by the test procedure outlined in this method is regarded as "apparent" or "estimated" in recognition of the limited quantitative value of the measurement.
- **4.3** Because a large number of interacting variables in a test system can adversely influence the results of an ultrasonic test, the actual quantitative effects of detected discontinuities upon the mechanical properties of the inspected plate are difficult to establish. Consequently, this ultrasonic inspection method is not applicable as an exclusive indicator of the ultimate quality and performance of pressure vessels but provides a reliable control of plate quality to avoid failure during the forming process for fabrication of vessels.

#### 5. Apparatus

- **5.1** Test Instrument Any electronic device that produces pulsed longitudinal waves and displays ultrasonic reflections on an Ascan indicator when used with an appropriate search unit is satisfactory. The instrument shall provide stable, linear amplification of received pulses at a selected test frequency and shall be free from significant interface signal interference at the required sensitivity level.
- 5.2 Search Unit The search unit recommended for this standard is the flat nonfocusing type, and contains a piezoelectric crystal which generates and receives longitudinal waves at the rated frequency when connected to the test instrument through a suitable coaxial cable. A dual-crystal search unit containing both a transmitting and a receiving crystal in one container may be used provided the test instrument will accommodate two-crystal operation

and the resulting pulse-echo test is equivalent to that obtained with a search unit containing a single-crystal.

- **5.2.1** The total effective area of the crystal or combination of crystals in the search unit used for initial scanning shall not be less than 0.4 in.² (2.6 cm²) nor greater than 3.0 in.² (19.4 cm²).
- **5.2.2** The effective diameter of the round search unit used to evaluate discontinuity size shall not exceed 0.75 in. (19 mm).

NOTE 2 — For control purposes, the performance characteristics of the test instrument and search unit may be established in accordance with procedures outlined in Practice E317.

- **5.3** Tank For tests by the immersion method, any container is satisfactory that will facilitate the accurate, stable positioning of both the search unit and the plate to be inspected.
- **5.4** Scanning Apparatus During the inspection procedure, the search unit is supported by any one of the following devices. The scanning apparatus shall permit measurement of both the scan distance and the index distance within ±0.1 in. (±2 mm).
- **5.41** Manipulator and Bridge When a manipulator is used in tests by the immersion method, the manipulator shall adequately support a search tube containing a search unit and shall provide fine adjustment of angle within 1° in two vertical planes that are perpendicular to each other. The bridge shall be of sufficient strength to provide rigid support for the manipulator and shall allow smooth, accurate positioning of the search unit. Special search unit supporting fixtures may be used provided they meet the requirements prescribed for a manipulator and bridge.
- **5.4.2** *Liquid Coupling Nozzle* For tests by the liquid-column coupling method, the nozzle is usually positioned manually and shall be capable of containing the couplant while rigidly supporting the search unit with its active surface immersed in the couplant. The couplant distance shall be maintained so that the second couplant reflection is to the right of the first back reflection on the instrument cathode ray tube (CRT). The couplant path shall not vary more than  $\pm \frac{1}{4}$  in. (6.4 mm) during calibration, initial scanning, and discontinuity evaluation. The recommended minimum inside dimension of the nozzle is 1.0 in. (25 mm) greater than the maximum dimension of the crystal surface in the search unit. Provisions also should be included for adjustment of search unit inclination within 1° in two vertical planes that are perpendicular to each other.
- NOTE 3 Nozzles containing either sealed or unsealed openings may be used for inspecting plate provided the test results obtained with either device are equivalent to those obtained by the immersion method.
- **5.4.3** Contact Scanning Unit During tests by the contact method, the search unit usually is supported and

positioned manually on the entry surface of the inspected plate. However, special fixtures for contact scanning may be employed provided their use ensures conformance to the requirements in this specification.

**5.5** *Couplant* — Clean, deaerated water at room temperature is the recommended couplant for tests either by the immersion method or by the liquid-column coupling technique. Inhibitors or wetting agents or both may be used. For tests by the contact method, the recommended couplant is clean, light-grade oil.

NOTE 4 — Other coupling liquids may be employed for inspecting plate provided their use does not adversely affect test results.

#### 6. Personnel Requirements

- **6.1** The testing operator performing the ultrasonic examination prescribed in this standard shall be qualified and certified to at least a Level I—Ultrasonic Testing in accordance with the ASNT Recommended Practice SNT-TC-1A.
- **6.2** The required documentation supporting qualification and certification of ultrasonic testing operators shall be established by the certifying agency and shall be available upon request by the purchaser.

#### 7. Condition of Plate

- **7.1** The entry and back surfaces of the inspected plate shall be sufficiently clean, smooth, and flat to maintain a first back reflection amplitude greater than 50% of the initial standardization amplitude while scanning an area in the plate that does not contain significant isolated ultrasonic discontinuities.
- **7.2** The inspected plate shall be at room temperature during the test.

#### 8. Procedure

- **8.1** Preferred Method— The ultrasonic test may be performed by either the liquid column coupling, the direct contact, or the immersion methods. However, the immersion method is preferred.
- **8.1.1** Maintain the couplant distance so that the second couplant reflection is to the right of the first back reflection on the instrument's A-scan display. The couplant path shall not vary more than  $\pm \frac{1}{4}$  in. (6.4 mm) during calibration, initial scanning, and discontinuity evaluation.
- **8.2** Test Frequency When using any of the three methods listed in 8.1, the recommended test frequency is 5.0 MHz. Other test frequencies between 2.0 MHz and 10.0 MHz may be employed when necessary to minimize possible adverse effects of plate thickness, microstructure,

and test system characteristics upon test results and thereby maintain a clean, easily interpreted A-scan screen pattern throughout the inspection.

- **8.3** Sensitivity Standardization Standardize the sensitivity level of the test system operating at the selected frequency by adjusting the instrument gain control to obtain a first back reflection amplitude of  $75 \pm 5\%$  of the vertical limit exhibited by the A-scan indicator when the search unit is positioned over an area free from significant discontinuities in the plate to be inspected. During tests by either the immersion method or the liquid column coupling method, adjust the angular alignment of the search unit to obtain a maximum number of back reflections before the final sensitivity level is established.
- **8.4** Scanning With no further adjustments of the instrument gain controls, locate the search unit over one corner of the plate to be inspected so that the edge of the crystal in the search unit is about 1 in. (25 mm) from either edge of the plate.
- **8.4.1** Subsequent to checking the angular alignment of the search unit with respect to the rolled entry surface to ensure a maximum first back reflection, proceed to scan the plate continuously by moving the search unit at a constant scanning rate (see 8.6) from the initial starting position to the opposite edge in a direction perpendicular to the predominant rolling direction of the plate.
- **8.4.2** During the scan, note the occurrence of isolated discontinuity indications and monitor the amplitude of the first back reflection by continuously observing the A-scan indicator screen.

NOTE 5 — Auxiliary monitoring devices may be employed in the test system to enhance detection reliability during the scan.

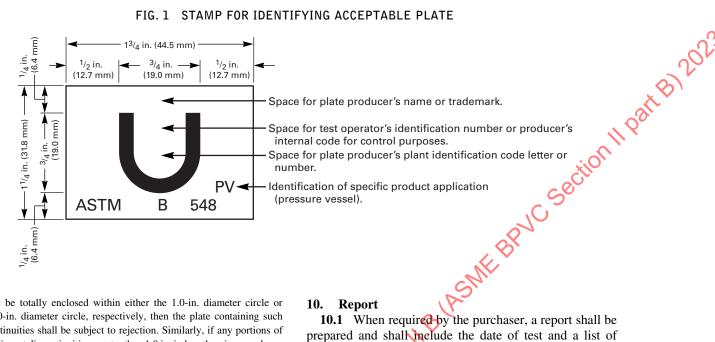
**8.5** Scan Index — When the initial scan is completed, move the search unit over a predetermined scan index distance in a direction parallel to the predominant rolling direction of the plate and proceed with a second scan along a line parallel to the initial scanning direction while observing the test pattern on the A-scan indicator screen. Calculate the scan index distance as follows:

Scan index distance (in.),  $S_i = 0.8 + 0.7 D_s$ 

Scan index distance (mm),  $S_i = 20 + 0.7 D_s$ 

where:

- $D_s$  = actual crystal diameter.
- **8.5.1** Continue the inspection by constantly observing the test pattern on the A-scan indicator while successively scanning the plate at a constant scanning rate in a direction perpendicular to the predominant rolling direction of the plate and indexing the search unit through the index distance calculated in 8.5.


- **8.5.2** During the inspection procedure, check the test system sensitivity standardization periodically by noting the amplitude of the first back reflection when the search unit is repositioned over the reference area of the plate and by adjusting the instrument gain control as required to maintain the sensitivity standardization specified previously in 8.3.
- **8.6** Scanning Rate When the screen pattern on the A-scan indicator is monitored visually by the test operator during the inspection, the scanning rate shall not be greater than 12 in./s (305 mm/s).
- NOTE 6 Scanning rates greater than 12 in./s (305 mm/s) may be employed if auxiliary monitoring apparatus is used to maintain adequate detection reliability.
- **8.7** Detection of Discontinuities When an isolated ultrasonic indication of amplitude greater than 30% of the A-scan vertical limit is encountered or when the first back reflection indication decreases to an amplitude less than 5% of the vertical limit at any time during the inspection procedure, stop the scan and angulate the search unit to obtain a maximum isolated indication and to determine that the loss of back reflection is not caused by misalignment of the search unit with respect to the plate.
- **8.7.1** To ensure that the loss of back reflection is not caused by surface interference, check the condition of both the entry and back surfaces of the plate at the location where a substantial (95% or greater) loss of back reflection occurs.
- **8.7.2** Either a maximized isolated ultrasonic indication exhibiting an amplitude greater than 50% of the amplitude of the initial first back reflection used for standardization, or a substantial loss of the first back reflection indication not attributable to either search unit misalignment or surface interference is an indication of an internal discontinuity.
- NOTE 7 Isolated indications occurring midway between the entry surface indication and the first back reflection may cause a second indication at the location of the first back reflection on the A-scan screen. When this condition is verified by checking the multiple back reflection pattern, a complete loss of the first back reflection can be assumed.
- **8.8** Estimation of Discontinuity Size Note the location of the search unit where the scan was stopped when either an isolated indication or a loss of back reflection was observed.
- **8.8.1** Using a search unit containing a crystal of effective diameter no greater than 0.75 in. (19 mm), make an evaluation scan of an entire 6-in. (152-mm) square area which is centered around the point on the plate entry surface where the scan was discontinued. The recommended index distance for this evaluation is as follows:  $S_i$  (in. or mm) = 0.7  $D_s$ , where  $D_s$  is the actual diameter of the search unit crystal.

- **8.8.2** To determine the apparent size of the discontinuity, mark each location corresponding to the center of the search unit on the plate entry surface where a  $95 \pm 5\%$  loss of first back reflection is observed or where the isolated indication exhibits an amplitude equal to  $50 \pm 5\%$  of the amplitude of the initial first back reflection established during the standardization procedure outlined in 8.3.
- **8.8.3** Continue to mark the location of the search unit at each point where either or both of the discontinuity conditions specified in paragraph 8.8.2 are observed. The entire discontinuity shall be outlined even if it extends beyond the original 6-in. (152-mm) square evaluation scan area.
- **8.8.4** The estimated discontinuity size is the area defined by the boundary consisting of successive marks as established by this procedure.
- NOTE 8 Automatic recording devices may be used to establish the estimated size of a discontinuity provided the recorded results are equivalent to those obtained by the procedure presented in 8.8.
- **8.9** When the estimated size of a detected discontinuity is determined, return the search unit to the original stopping position and continue the initial scan to complete the inspection.

#### . Acceptance Standards

- **9.1** Upon completing the inspection procedure, measure the longest dimension of each marked area representing a detected discontinuity. Also, when an engineering drawing showing the part to be fabricated from the plate is supplied, compare the locations of the discontinuities with the dimensions on the drawing.
- **9.2** If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95% or greater) exceeds 1.0 in. (25 mm), the discontinuity is considered to be significant and the plate shall be subject to rejection.
- **9.3** If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95% or greater) exceeds 3.0 in. (76 mm), the discontinuity is considered to be significant and the plate shall be subject to rejection.
- **9.4** If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95% or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other, the proximity between the two discontinuities is considered to be significant, and the plate shall be subject to rejection.
- NOTE 9 A template containing a 1.0-in. diameter hole and a 3.0-in. diameter hole is a convenient device for rapidly establishing the significance of discontinuities. If the discontinuities described in 9.2 and 9.3

#### FIG. 1 STAMP FOR IDENTIFYING ACCEPTABLE PLATE



cannot be totally enclosed within either the 1.0-in. diameter circle or the 3.0-in. diameter circle, respectively, then the plate containing such discontinuities shall be subject to rejection. Similarly, if any portions of two adjacent discontinuities greater than 1.0 in. in length as in accordance with 9.4 appear within the 3.0-in. diameter circle, the plate shall be subject to rejection.

- **9.5** A plate containing significant discontinuities of rejectable size shall be acceptable if it is established by the purchaser that the discontinuities will be removed from the plate by machining during the subsequent fabrication process.
- cick to view the septed if the **9.6** Upon specific consent of the purchaser, a plate with significant discontinuities may be accepted if repaired by

#### Report

- 10.1 When required by the purchaser, a report shall be prepared and shall include the date of test and a list of parameters including the type (model number) of instrument and search unit, the test method, frequency, and the couplant employed for the inspection.
- 10.2 Preparation of a drawing showing the location of all significant discontinuities in the inspected plate is recommended when the ultimate rejection or acceptance of the plate is to be determined by negotiation between the manufacturer and the purchaser.
- 10.3 The identification of an acceptable plate is desirable and is recommended. For this purpose, a suitable stamp should be employed to indicate conformance to this ultrasonic standard. The recommended stamp for identifying acceptable plate is shown in Fig. 1.

# SPECIFICATION FOR ZIRCONIUM AND ZIRCONIUM SB-550/SB-550M ASTM Specifics **ALLOY BAR AND WIRE**





**(23)** 

with ASTM 4

with ASTM 4

click to view the full public click to v (Identical with ASTM Specification B550/B550M-07(2019).)

#### Specification for Zirconium and Zirconium Alloy Bar and Wire

#### 1. Scope

- 1.1 This specification covers three grades of zirconium and zirconium alloy bar and wire.
- 1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm², the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.
- 1.3 The following precautionary caveat pertains only to the test methods portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

#### 2. Referenced Documents

- 2.1 ASTM Standards:
- E8 Test Methods for Tension Testing of Metallic Materials [Metric] E0008_E0008M
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

#### 3. Terminology

3.1 Definitions of Terms Specific to This Standard:

- tallized grain structure.
- 3.1.1 annealed, n—denotes material that exhibits a recrus-lized grain structure.

  3.2 Lot Definitions:
  3.2.1 bar and wire, n—a lot shall ne size, shape, conditions:

  of or recruited that exhibits a recrus-like that exhibits a same size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.
  - 3.2.2 *Forms*:
- 3.2.2.1 bar, n—a hot rolled, forged, or cold worked semifinished solid section product whose cross sectional area is equal to or less than 16 in. [10 323 mm²]; rectangular bar must be less than or equal to 10 in. [254 mm] in width and greater than 0.1875 in. [4.8 mm] in thickness.
- 3.2.2.2 wire, n—rounds, flats, or special shapes less than or equal to 0.1875 in. [4.8 mm] in thickness or major dimension.

#### 4. Classification

- 4. The bar or wire is to be furnished in three grades as follows:
  - 4.1.1 Grade R60702—Unalloyed zirconium.
  - 4.1.2 Grade R60704—Zirconium-tin.
  - 4.1.3 Grade R60705—Zirconium-niobium.

#### 5. Ordering Information

- 5.1 Orders for material under this specification should include the following information:
  - 5.1.1 Quantity (weight or number of pieces),
  - 5.1.2 Name of material (zirconium bar or wire) (Table 1),
  - 5.1.3 Grade number (see 4.1),
- 5.1.4 Standard designation and year of issue, for example ASTM Specification B550/B550M - 07, and
  - 5.1.5 Additions to the specification as required.

Note 1-A typical ordering description is as follows: 1000 lb [500 kg] zirconium cold drawn bar, 0.35 in. [10 mm] in diameter by 10 ft [3 m] in length, ASTM B550 – 01, Grade R60702.

#### 6. Materials and Manufacture

6.1 Bar and wire covered by this specification shall be formed with conventional fabrication methods and equipment found in primary ferrous and nonferrous metal plants.

#### **TABLE 1 Product Sections and Size**

Product	Section	Size
Bars:	Hot-finished round, squares, octagons, and hexagons	1/4 in. [6.4 mm] and over in diameter or size
	Hot-finished flats	1/4 in. [6.4 mm] to 10 in. [250 mm], incl, in width, and $1/6$ in. [3.2 mm] and over in thickness
	Cold-finished rounds, squares, octagons, hexagons, and shapes	Over ½ in. [13 mm] in diameter or size ^A
	Cold-finished flats	¾ in. [9.5 mm] and over in width, ^B and ¼ in. [3.2 mm] and over in thickness ^C
Wire:	Cold-finished rounds, squares, octagons, hexagons, and shapes	½ in. [13 mm] and under in diameter or size
	Cold-finished flats	$1/_{16}$ in. [1.6 mm] to under $\%$ in. [9.5 mm] in width, and 0.010 in. [.25 mm] to under $\%_{16}$ in. [4.8 mm] in thickness

A Sizes ½ in. [13 mm] and under are wire when in coils, and cut wire when finished in straight lengths.

**TABLE 2 Condition** 

Form	Condition
Bars	hot finished
	hot finished and annealed cold finished
Wire	cold finished and annealed cold finished cold finished and annealed

- 6.2 The products covered include the sections and sizes shown in Table 1.
- 6.3 Bar and wire will be supplied in the conditions prescribed in Table 2.

#### 7. Chemical Composition

- 7.1 The material shall conform to the requirements as conforming to the requirement of the req
- 7.2 The manufacturer's ingot analysis shall be considered the chemical analysis for bar and wire, except for hydrogen and nitrogen, which shall be determined on the finished product.
- 7.3 When requested by the purchaser and stated in the purchase order, a product analysis for any elements listed in Table 3 shall be made on the finished product.
- 7.3.1 The manufacturer's analysis shall be considered as verified if the check analysis confirms the manufacturer's reported values within the tolerances prescribed in Table 4.

#### 8. Mechanical Properties

8.1 The annealed material shall conform to the requirements for mechanical properties, at room temperature, as prescribed in Table 5. Were supplied for welding applications shall be furnished with a temper suitable for uniform feeding in semiautomatic or automatic welding equipment.

#### 9. Permissible Variations in Dimensions

- 9.1 Unless otherwise specified, all bar or wire shall conform to the permissible variations in dimensions prescribed in Tables 6-14, as follows:
- 9.1.1 Table 6, Dimensional Tolerances for Hot-Finished Rounds, Squares, Octagons, and Hexagons.
- 9.1.2 Table 7, Dimensional Tolerances in Hot-Rolled Flat Bars.

- 9.1.3 Table 8, Permissible Variations in Sectional Dimensions for Cold-Finished Bars in Rounds, Hexagons, Octagons, and Squares.
- 9.1.4 Table 9, Permissible Variations in Width and Thickness for Cold-Finished Bars in Flats.
- 9.1.5 Table 10, Permissible Variations in Sectional Dimensions for Wire.9.1.6 Table 11, Permissible Variations in Thickness and
- 9.1.6 Table N, Permissible Variations in Thickness and Width for Cold-Finished Flat Wire.
- 9.1.7 Table 12, Permissible Variations in Length for Hot-Finished or Cold-Finished Bars.
- 1.8 Table 13, Permissible Variations in Length for Round and Shape, Straightened and Cut Wire, and Exact Length Resheared Wire.
- 9.1.9 Table 14, Permissible Variations in Straightness for Hot- or Cold-Finished Bars.

#### 10. Workmanship, Finish, and Appearance

- 10.1 Bars in the hot-finished condition which will conform to the tolerances prescribed in Tables 6 and 7, shall be furnished with one of the following finishes as designated on the purchase order:
  - 10.1.1 Not descaled,
  - 10.1.2 Mechanically descaled,
  - 10.1.3 Mechanically descaled and pickled, and
  - 10.1.4 Turned (round bars only).
- 10.2 Bars and wire in cold-finished condition that will conform to the tolerances prescribed in Tables 8-12, shall be furnished with one of the following finishes as designated on the purchase order.
  - 10.2.1 Cold drawn or cold rolled, or swaged,
  - 10.2.2 Turned (round bars only),
  - 10.2.3 Centerless ground (round bars only), and
  - 10.2.4 Polished (round bars only).
- 10.3 Bars or wire shall be free of cracks, seams, slivers, blisters, burrs, and other injurious imperfections in accordance with standards of acceptability agreed upon between the manufacturer and the purchaser.

#### 11. Significance of Numerical Limits

11.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the

^B Widths less than % in. [9.5 mm] and thicknesses less than % in. [4.8 mm] are generally described as flat wire.

^C Thickness 1/8 in. [3.2 mm] to under 3/16 in. [4.8 mm] can be cold-rolled strip as well as bar.

TABLE 3 Chemical Requirements^A

Element		Composition, %	
Element	Grades R60702	Grades R60704	Grades R60705
Zirconium + hafnium, min	99.2	97.5	95.5
Hafnium, max	4.5	4.5	4.5
Iron + chromium	0.2 max	0.2 to 0.4	0.2 max
Tin		1.0 to 2.0	
Hydrogen, max	0.005	0.005	0.005
Nitrogen, max	0.025	0.025	0.025
Carbon, max	0.05	0.05	0.05
Niobium			2.0 to 3.0
Oxygen, max	0.16	0.18	0.18

A By agreement between the purchaser and the manufacturer, analysis may be required and limits established for elements and compounds not specified in the table of chemical composition.

TABLE 4 Permissible Variation in Check Analysis Between
Different Laboratories

Element	Permissible Variation in Product Analysis, %
Hydrogen	0.002
Nitrogen	0.01
Carbon	0.01
Hafnium	0.1
Iron + chromium	0.025
Tin	0.05
Niobium	0.05
Oxygen	0.02

TABLE 5 Tensile Requirements²

		Grades	
	R60702	R60704	R60705
Tensile Strength, min, ksi (MPa)	55 [380]	60 [415]	80 [550]
Yield Strength, min, ksi (MPa)	30 [205]	35 [240]	55 [380]
Elongation in 2 in. or 50 mm min, %B	16	14	16

^A For bar only.

TABLE 6 Dimensional Tolerances for Hot-Finished Rounds, Squares, Octagons, and Hexagons

Specified Size, in. [mm]	Variation in Size, in. [mm]	Out of Round, Out of Square, in. [mm]		
Up-0.500 [13]	+0.030 -0 [+0.75]	0.025 [0.64]		
Over 0.500-1.000 [13-25]	+0.050 -0 [+1.3]	0.040 [1]		
Over 1.000-2.000 [25-50]	+0.070 -0 [+1.8]	0.060 [1.5]		
Over 2.000-4.000 [50-100]	+0.150 -0 (+3.8]	0.080 [2]		
Over 4.000-6.000 [100-150]	+0.250 -0 [+6.4]	0.100 [2.5]		

following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding methods of Practice E29.

Property
Chemical composition and tolerances
(when expressed as decimals)
Tensile strength and yield strength
Elongation

Rounded Unit for Observed or Calculated Value nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (10 MPa) nearest 1 %

#### 12. Number of Tests and Retests

- 12.1 One longitudinal tension test shall be made from each lot of bar and rod, see 13.1.
- 12.2 One chemistry test for hydrogen and nitrogen content shall be made from each lot of finished product, see 13.2.

TABLE 7 Dimensional Tolerances in Hot-Rolled Flat Bars

Thickness, in. [mm]	Variation in Thickness, in. [mm]	Variation in Width, ^A in. [mm]
Up-0.150 [3.8]	+0.020 -0 [+0.5]	1/8 -0 [3.2]
Over 0.150–0.250 [3.8–6.3]	+0.030 -0 [+0.75]	5/32 -0 [4.0]
Over 0.250-0.350 [6.3-8.9]	+0.040 -0 [+1.0]	³ / ₁₆ -0 [4.8]
Over 0.350-0.450 [8.9-11.4]	+0.050 0 [+1.3]	7/32 -0 [5.6]
Over 0.450-0550 [11.4-14]	+0.070 -0 [+1.8]	В
Over 0.550-1.500 [14-38]	+0.080 -0 [+2.0]	В
Over 1.500 [38]	<b>2</b>	В

A For bars sheared from plate, width tolerances shall be as follows:

^B Depends on size and quantity ordered.

Specified Thickness, in.	Width Tolerances, in. [mm]	
[mm]	Over	Under
Over 0.100-0.150	1/16 [1.6]	1/16 [1.6]
Over 0.150-0.250	5/64 [2.0]	5/64 [2.0]
Over 0.250-0.350	³ / ₃₂ [2.4]	3/32 [2.4]
Over 0.350-0.450	⁷ / ₆₄ [2.8]	⁷ / ₆₄ [2.8]
Over 0.450-0.550	1/8 [3.2]	1/8 [3.2]
Over 0.550-0.650	5/32 [4.0]	5/32 [4.0]

TABLE 8 Permissible Variations in Sectional Dimensions for Cold-Finished Bars in Rounds, Hexagons, Octagons, and Squares

Specified Size, in. [mm]		Permissible Variation, in. ^A [mm]			
		Over	Under		
Rounds					
Over ½ -1, incl	[13–25]	0.002 [0.05]	0.002 [0.05]		
1-11/2, excl	[25-38]	0.0025 [0.06]	0.0025 [0.06]		
1½ -4, incl ^B	[38-100]	0.003 [0.08]	0.003 [0.08]		
Hexagons, Octagons, and Squares					
Over ½ -1, incl	[13–25]	0	0.004 [0.10]		
Over 1-2, excl	[25-50]	0	0.006 [0.15]		
Over 2-3, incl	[50-75]	0	0.008 [0.20]		
Over 3	[75]	0	0.010 [0.25]		

^A When it is necessary to heat treat or heat treat and pickle after cold finishing, because of special hardness or mechanical property requirements, tolerances are double those shown in the table.

#### 12.3 Retests:

- 12.3.1 If any sample or specimen exhibits obvious surface contamination or improper preparation disqualifying it as a truly representative sample, it shall be discarded and a new sample or specimen substituted.
- 12.3.2 If the results of any tests of any lot do not conform to the requirements specified, retests shall be made on additional samples from the same lot, each of which shall conform to the requirements specified.

^B When a sub-size specimen is used, the gage length shall be as specified in Test Methods E8 for the specimen.

 $^{^{\}mathcal{B}}$  For permissible variations on sizes over 4 in. [100 mm] the manufacturer should be consulted.

TABLE 9 Permissible Variations in Width and Thickness for Cold-Finished Bars in Flats

		Permissible Variations in Width for		
Width in [mm]		Thicknesses Given,	Over and Under,	
Width, in. [mm]		in. ^A [n	nm]	
		1/4 [6.4] and under	Over 1/4 [6.4]	
	Wi	dth		
³ ⁄ ₈ −1, incl		0.004 [0.10]	0.002 [0.05]	
Over 1-2, incl		0.006 [0.15]	0.003 [0.08]	
Over 2-3, incl		0.008 [0.20]	0.004 [0.10]	
Over 3-4½, incl ^B		0.010 [0.25]	0.005 [0.13]	
	Thick	ness		
Thickness, in.	[mm]	Permissible Variations in Thickness		
THICKIESS, III.	[mm]	Over and Under, in. ^A [mm]		
1/8 −1, incl	1/8 -1, incl [3.2-25]		0.05]	
Over 1–2, incl [25–50]		0.003 [0.08]		
Over 2-3, incl	Over 2–3, incl [50–75]		0.10]	
Over 3–4½, incl ^B [75–115]		0.005 [	0.13]	

^A When it is necessary to heat treat and pickle after cold finishing, because of hardness or mechanical property requirements, tolerances are double those shown in the table.

TABLE 10 Permissible Variations in Sectional Dimensions for Wire^A

WIIC		
Considered Circs in Immed	Permissible \	/ariation, in. [mm]
Specified Size, in. [mm]	Over	Under
Drawn, Centerless Ground, Cent	terless Ground an	nd Polished
Round Wire, and	Square Wire ^B	
1/2 [13]	0.002 [0.05]	0.002 [0.05]
Under ½ -5/16, incl [13-18]	0.0015 [0.04]	0.0015 [0.04]
Under 5/16 -0.044, incl [8-1.1]	0.001 [0.025]	0.001 [0.025]
Under 0.044-0.033, incl [1.1-0.8]	0.0008 [0.020]	0.0008 [0.020]
Under 0.033-0.024, incl [0.8-0.6]	0.0005 [0.013]	0.0005 [0.013]
Under 0.024-0.012, incl [0.6-0.3]	0.0004 [0.010]	0.0004 [0.010]
Under 0.012-0.008, incl [0.3-0.2]	0.0003 [0.008]	0.0003 [0.008]
Under 0.008-0.007, incl [0.2-1.8]	0.0002 [0.005]	0.0002 [0.005]
Under 0.007-0.00476, incl [0.18-0.12]	0.0002 [0.005]	0.0002 [0.005]
Under 0.00476-0.003, incl [0.12-0.08]	0.0001 [0.003]	0.0001 [0.003]
Drawn Wire in Hexago	ns and Octagons	C
1/2	0	0.004 [0.10]
Under ½ -5/16, incl	0	0.003 [0.08]
Under 5/16 -1/8, incl	0 💃	0.002 [0.05]
Wire for Which the Final Operation is a Si		to Remove Scale or
Drawing Lu		
1/2	0.004 [0.10]	0.004 [0.10]
Under ½ –5/16, incl	0.003 [0.08]	0.003 [0.08]
Under 5/16 -0.044, incl	0.002 [0.05]	0.002 [0.05]
Under 0.044-0.033, incl	0.0013 [0.03]	0.0013 [0.03]
Under 0.033-0.024, incl	0.0008 [0.02]	0.0008 [0.02]

A Manufacturers should be consulted to all tolerances for half-round, oval, and half-oval wires.

### 13. Test Methods

13.1 Tension Tests—The tension test shall be conducted in accordance with Test Methods E8. Determine the yield strength by the offset (0.2 %) method. Determine the tensile properties using a strain rate of 0.003 to 0.007 in./in. [mm/mm]/min through the yield strength. After the yield strength has been exceeded, the cross-head speed may be increased to approximately 0.05 in./in. [mm/mm]/min to failure.

13.2 *Chemical Tests*—The chemical analyses shall be conducted by the standard techniques normally used by the manufacturer.

### 14. Inspection

14.1 The manufacturer shall inspect the material covered by this specification prior to shipment. If so specified in the purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacture. In such cases the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for purchaser's inspection at the place of manufacture to be waived

14.2 The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. This inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

### 15. Rejection

15.1 Rejection for failure of the material to meet the requirements of this specification shall be reported to the manufacturer. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense unless the purchaser receives, within three weeks of the notice of rejection, other instructions for disposition.

### 16. Certification

16.1 A producer or supplier shall furnish the purchaser with a certificate that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. The certificate shall include a report of the test results.

### 17. Referee

17.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

### 18. Product Marking

18.1 Each bundle, box, or coil shall be marked or tagged legibly and conspicuously with the purchase order or contract number, manufacturer's private identification mark, the ASTM designation, the grade, size, ingot number, and gross, net, and tare weights.

### 19. Packaging and Package Marking

19.1 All material shall be boxed, crated, banded on skids, or bundled in such a manner as to assure safe delivery to its destination when properly transported by common carrier.

### 20. Keywords

20.1 bar; wire; zirconium; zirconium alloy

^B For permissible variations on widths and thicknesses over 4½ in. [115 mm] the manufacturer should be consulted.

^B The maximum out-of-round tolerance for round wire is one half of the total size tolerance shown in the above table.

^C Dimensions are across flats:

TABLE 11 Permissible Variations in Thickness and Width for Cold-Finished Flat Wire

		Permissible Variation in Thickness	for Given	Permissible	Variation in
Specified Width, in.	Thickness, Over or Under, in. [mm]			Width, i	in. [mm]
	Under 0.029 [0.74]	0.029 [0.75]-0.035 [0.89], excl	0.035 [0.89]-3/16 [4.80], incl	Over	Under
Under 3/8 [9.5] to 1/16 [1.6], incl	0.001 [0.025]	0.0015 [0.04]	0.002 [0.05]	0.005 [0.125]	0.005 [0.125]

### TABLE 12 Permissible Variations in Length for Hot-Finished or Cold-Finished Bars

	Permissible Variation in Length, in. [mm]					
Specified Sizes of Rounds, Squares, Hexagons, — Octagons, and Widths of Flats, in. —	To 12 ft [3.5 m], incl			Over 12 ft [3.5 m] to 25 ft [7.6], incl		25 ft [7.6], incl
Cotagons, and Widins of Flats, in.		Over	Under	(	Over	Under
To 2, incl [50]	1/2	[13]	0	3/4	[20]	0:\0
Over 2-4, incl [50-100]	3/4	[20]	0	1	[25]	0
Over 4–6, incl [100–150]	1	[25]	0	11/4	[32]	0,0
Over 6–9, incl [150–225]	11/4	[32]	0	11/2	[38]	0
Over 9–12, incl [225–300]	11/2	[38]	0	2	[50]	0
		Machine-Cu	t After Machine Staightening			10
To 3, incl	1/8	[3.2]	0	3/16	[4.8]	0
Over 3–6, incl	3/16	[4.8]	0	1/4	[6.4]	0
Over 6–9, incl	1/4	[6.4]	0	5/16	[8.0]	0
Over 9–12, incl	1/2	[13.0]	0	1/2	[13.0]	0

### TABLE 13 Permissible Variations in Length for Round and Shape, Straightened and Cut Wire, and Exact Length Resheared Wire

Diameter, in. [mm]	Law side 64 [see]	Permissible Variation, in.		
Diameter, in. [mm]	Length, ft [m]	Over	Under	
0.125 [3.2] and under	Up to 12 [3.5], incl	1/16 [1.6]	0	
0.125 [3.2] and under	Over 12 [3.5]	1/8 [3.2]	0	
Over 0.125 [3.2] to 0.500 [13.0], incl	Under 3 [1.0]	/32 [0.8]	0	
Over 0.125 [3.2] to 0.500 [13.0], incl	3 to 12, incl [1.0-3.5]	16 [1.6]	0	
Over 0.125 [3.2] to 0.500 [13.0], incl	Over 12 [3.5]	1/8 [3.2]	0	

### TABLE 14 Permissible Variations in Straightness for Hot- or Cold-Finished Bars^A

Bars	Permissible Variation
Hot finished	¹/s in. [3.2] in any 5 ft [1.5 m]; but may not exceed ⅓ [0.4] × (number of feet [meters] in length/5)
Cold finished	1/16 in. [1.6] in any 5 ft [1.5/m]; but may not exceed 1/16 [0.2] × (number of feet [meters] in length/5)

^{**}The measurement is taken on the concave side of the bar with a straight-edge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine-straightened to the tolerances specified in the Table.

**The measurement is taken on the concave side of the bar with a straight-edge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine-straightened to the tolerances specified in the Table.

**The measurement is taken on the concave side of the bar with a straight-edge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine-straightened to the tolerances specified in the Table.

**The measurement is taken on the concave side of the bar with a straight-edge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine-straightened to the tolerances specified.

**The measurement is taken on the concave side of the bar with a straight-edge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine-straightened to the tolerances specified in the Table.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on the concave side of the bar with a straight-edge.

**The measurement is taken on

# NC Section II Part B) 202 SPECIFICATION FOR ZIRCONIUM AND ZIRCONIUM ALLOY STRIP, SHEET, AND PLATE SB-551/SB-551M ASTM Specifics:





with ASTM 4

Circk to view the full public click to view the full (Identical with ASTM Specification B551/B551M-12(2017).)

# Specification for Zirconium Alloy Strip, Sheet, and Plate

### 1. Scope

- 1.1 This specification covers five grades of zirconium strip, sheet, and plate.
- 1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm², the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.
- 1.3 The following precautionary caveat pertains only to the test method portions of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

### 2.1 ASTM Standards:

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E290 Test Methods for Bend Testing of Material for Ductility

Citck to Republic Citc

### 3. Terminology

- 3.1 *Definitions:*
- 3.1.1 *annealed*, *n*—denotes material that exhibits a recrystallized grain structure.
  - 3.2 Lot Definition:
- 3.2.1 *lot*, *n*—a lot shall consist of a material of the same size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.
  - 3.3 Forms:
- 3.3.1 *strip*, n—a flat product, may be supplied in coil, less than 6 in. [150 mm] in width and from 0.005 in. [0.13 mm] to 0.188 in. [4.8 mm] in thickness.
- 3.3.2 sheet, n—a flat product 6 in. [150 mm] or more in width and from 0.005 in. [0.13 mm] to 0.188 in. [4.8 mm] in thickness.
- **3.3.3** *plate*, *n*—a flat product more than 0.125 in. [3.2 mm] in thickness.

### 4. Classification

- 4.1 The strip, sheet, or plate is to be furnished in five grades as follows:
  - 4.1.1 Grade R60700—Low oxygen zirconium.
  - 4.1.2 Grade R60702—Unalloyed zirconium.
  - 4.1.3 Grade R60704—Zirconium-tin.
  - 4.1.4 Grade R60705—Zirconium-niobium.
  - 4.1.5 Grade R60706—Zirconium-niobium.

### 5. Ordering Information

- 5.1 Orders for material under this specification should include the following information, as applicable:
  - 5.1.1 Standard designation and year of issue,
  - 5.1.2 Quantity (weight or number of pieces),
- 5.1.3 Lot definition for continuous anneal, if applicable (3.2.1),
  - 5.1.4 Form (3.3) and dimensions,
  - 5.1.5 Grade (4.1),
- 5.1.6 Metallurgical condition, if not in the recrystallized annealed condition (6.3),

- 5.1.7 Chemical analysis of elements not listed (7.1.4),
- 5.1.8 Product analysis (7.1.3 and 7.3.1),
- 5.1.9 Tensile test temperature (8.1),
- 5.1.10 Material condition and finish (9.1 9.5),
- 5.1.11 Workmanship and appearance (11.1 and 11.3),
- 5.1.12 Purchaser inspection (15.1 and 15.2),
- 5.1.13 Rejection and referee (16.2),
- 5.1.14 Product marking, (18.1 and 18.1.1),
- 5.1.15 Packaging and package marking (19.1),
- 5.1.16 Additions to the specification and supplementary requirements, if required, and
- 5.1.17 Additional requirements for explosion cladding, if applicable (Supplementary Requirements S.1).

Note 1—A typical ordering description is as follows: 9000-lb [5000 kg] zirconium sheet, 0.098 in. [2.5 mm] by 12 in. [300 mm] by 144 in. [3.5 m], ASTM B551/B551M-07, Grade R60705.

### 6. Materials and Manufacture

- 6.1 Material covered by this specification shall be made from ingots that are produced by vacuum or plasma arc melting, vacuum electron-beam melting, a combination of these three methods or other melting processes conventionally used for reactive metals. All processes to be done in furnaces usually used for reactive metals.
- 6.2 The various mill products covered by this specification shall be formed with the conventional extrusion, forging, or rolling equipment normally found in primary ferrous and nonferrous plants.
- 6.3 The strip, sheet, and plate shall be supplied in the recrystallized annealed condition unless otherwise specified in the purchase order.

### 7. Chemical Composition

- 7.1 The material covered by this specification hall conform to the chemical composition requirements prescribed in Table 1.
- 7.1.1 The elements listed in Table 1 are intentional alloy additions or elements which are inherent to the manufacture of sponge, ingot or mill product.
- 7.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.

- 7.1.3 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table 1 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
- 7.1.4 When agreed upon by producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
- 7.2 The manufacturer's ingot analysis shall be considered the chemical analysis for strip, sheet, and plate, except for hydrogen and nitrogen, which shall be determined on the finished product.
- 7.2.1 The ingot shall be sampled in sufficient places along the side wall so that the top sample is within 5 in. [125 mm] of the top face. A minimum of three samples per ingot is required.
- 7.2.2 These samples shall be analyzed for the alloying and impurity elements given in Table 1.
- 7.2.3 Alternatively, the manufacturer may sample an intermediate or final size during processing with the same frequency and in the same positions relative to the ingot as specified in 7.2.1 to determine the composition, except for hydrogen and nitrogen, which shall be determined on the finished product.

### 7/3 Check Analysis:

- 7.3.1 Check analysis is an analysis made by the purchaser or the manufacturer of the metal after it has been processed into finished mill forms, and is either for the purpose of verifying the composition of a heat or lot or to determine variations in the composition within a heat or lot. Acceptance or rejection of a lot of material may be made by the purchaser on the basis of this check analysis. When requested by the purchaser and stated in the purchase order, a product check analysis for any elements listed in Table 1 shall be made on the finished product.
- 7.3.2 Check analysis limits shall be as specified in Table 2. These limits are the amounts an individual result for a given element may vary under or over the specified limits shown in Table 1.

TABLE 1 Chemical Requirements^A

Ola			Composition, %		
Element			Grades		
Ci	R60700	R60702	R60704	R60705	R60706
Zirconium + hafnium, min	99.2	99.2	97.5	95.5	95.5
Hamium, max	4.5	4.5	4.5	4.5	4.5
Iron + chromium	0.2 max	0.2 max	0.2 to 0.4	0.2 max	0.2 max
Tin	•••		1.0 to 2.0		
Hydrogen, max	0.005	0.005	0.005	0.005	0.005
Nitrogen, max	0.025	0.025	0.025	0.025	0.025
Carbon, max	0.05	0.05	0.05	0.05	0.05
Niobium	•••			2.0 to 3.0	2.0 to 3.0
Oxygen, max	0.10	0.16	0.18	0.18	0.16

^A By agreement between the purchaser and the manufacturer, analysis may be required and limits established for elements and compounds not specified in the table of chemical composition (see 7.1.1).

TABLE 2 Permissible Variation in Check Analysis Between **Different Laboratories** 

Element	Permissible Variation in Product Analysis, %	
Hydrogen	0.002	
Nitrogen	0.01	
Carbon	0.01	
Hafnium	0.1	
Iron + chromium	0.025	
Tin	0.05	
Niobium	0.05	
Oxygen	0.02	

- 7.3.3 Check analysis tolerances do not broaden the specified heat analysis requirements but cover variations between laboratories in the measurement of chemical content.
- 7.3.4 The manufacturer shall not ship material that is outside the limits specified in Table 1 for the applicable grade.

### 8. Mechanical Properties

- 8.1 The material, as represented by the test specimens, shall conform to the tensile properties prescribed in Table 3 for room temperature mechanical properties.
- 8.2 For strip and sheet, the bend test specimen shall stand being bent at ambient temperature through an angle of 105° without fracture in the outside of the bent portion. The bend shall be made around a mandrel having a radius equal to that shown in Table 3 for the applicable grade. Bend testing shall be performed in accordance with Test Methods E290.

### 9. Condition and Finish

9.1 Sheet, strip, or plate shall be furnished in one of the following conditions as designated on the purchase order:

> Form Condition Strip hot-rolled hot-rolled, annealed cold-rolled cold-rolled, annealed cold-rolled, amealed, followed by a final light cold-rolled pass generally on polished rolls hot-rolled Sheet hot-rolled, annealed cold-rolled, annealed cold-rolled, annealed, followed by a final light cold-rolled pass. generally on polished rolls hot-rolled hot-rolled, annealed

- 9.2 Hot-rolled sheet, strip, or plate shall be furnished with one of the following finishes as designated in the purchase order:
- 9.3 Cold-rolled sheet or strip shall be furnished with one of e following finishes as designated in the purchase order 9.3.1 Bright cold-rolled, 9.3.2 Ground 32 μin. [0.8 μm.] 9.3.3 Pickled the following finishes as designated in the purchase order:
- 9.4 Hot-Rolled Strip—The following types of edges can be furnished on hot-rolled strip when specified in the purchase order:
  - 9.4.1 Mill edge,
  - 9.4.2 Split edge, or
  - 9.4.3 Sheared edge.
- 9.5 Cold-Rolled Strip—A stitledge is normally furnished on cold-rolled strip. A machined edge is available for weld preparation when specified in the purchase order.
- 9.6 Sheet and Place-Both hot- and cold-rolled sheet and plate are furnished with a sheared edge.

### 10. Permissible Variations in Dimensions and Weights

- 10.1 *Thickness*—The variations in thickness of strip, sheet, and plate are given in the following tables:
  - 10.1.1 Hot-rolled strip, Table 4.
- 10.1.2 Cold-rolled strip, Table 5.
- 10.1.3 Hot- and cold-rolled sheet, Table 6.
- 10.1.4 Plate, Table 7.
- 10.2 Width—The variations in width are given in the following tables:
  - 10.2.1 Hot-rolled strip, Table 8.
  - 10.2.2 Cold-rolled strip, Table 9.
  - 10.2.3 Hot- and cold-rolled sheet, Table 10.
  - 10.2.4 Plate, Table 11.
- 10.3 Length—The variations in length are given in the following tables:
  - 10.3.1 Hot- and cold-rolled strip, Table 12.
  - 10.3.2 Hot- and cold-rolled sheet, Table 13.
  - 10.3.3 Plate, Table 11.
- 10.4 Crown Tolerances—The variations in crown tolerances are given in the following tables:
  - 10.4.1 Hot-rolled strip, Table 14.

**TABLE 3 Tensile Requirements** 

	Grades					
	R60700	R60702	R60704	R60705	R60706	
Tensile strength, min, ksi [MPa]		55 [380]	60 [415]	80 [550]	74 [510]	
Yield strength, min, ksi [MPa]		30 [205]	35 [240]	55 [380]	50 [345]	
Tensile strength, max, ksi [MPa]	55 [380]					
Yield strength, max, ksi [MPa]	44 [305]					
Elongation in 2 in. or 50 mm, min, % ^A	20	16	14	16	14	
Bend test radius ^B	5T	5T	5T	3T	2.5T	

A When a sub-size specimen is used, the gage length shall be as specified in Test Methods E8/E8M for that specimen.

^B T equals the thickness of the bend test specimen. Bend tests are not applicable to material over 0.187 in. [4.8 mm] in thickness.

TABLE 4 Permissible Variations in Thickness of Hot-Rolled Zirconium Strip^A

	zaroomam omp		
Specified Width, in. [mm]	Variation from Specified Thickness for Widths Given, Over and Under, in [mm]		
	0.083-0.118 [2.1-3.0]	Over 0.118–0.188 [3.0–4.78]	
To 3½ [90], incl	0.005 [0.13]	0.006 [0.15]	
Over 3½ [90] -6 [150], incl	0.006 [0.15]	0.007 [0.18]	

^A Thickness measurements are taken at least 3/8 in. [10 mm] from edge.

- 10.4.2 Cold-rolled strip, Table 15.
- 10.4.3 Hot-rolled sheet, Table 16.
- 10.4.4 Cold-rolled sheet, Table 17.
- 10.5 Camber Tolerances—The variations in camber tolerances are given in the following tables.
  - 10.5.1 Hot- and cold-rolled strip, Table 18.
  - 10.5.2 Hot- and cold-rolled sheet, Table 19.
  - 10.5.3 Plate, Table 20.
- 10.6 *Diameter*—The variation in diameter tolerance for circular plates is given in Table 21.
- 10.7 *Flatness*—The permissible variation from a flat surface for plate is given in Table 22.
- 10.8 Weight—The actual shipping weight of any one item of an ordered thickness and width in any finish may exceed estimated weight by as much as 10 %.

### 11. Workmanship and Appearance

- 11.1 Cracks, seams, slivers, blisters, burrs, and other injurious imperfections shall not exceed standards of acceptability agreed upon by the manufacturer and the purchaser
- 11.2 The finished strip, sheet, or plate shall be visibly free of oxide, grease, oil, residual lubricants, and other extraneous materials.
- 11.3 Methods of testing for these defects and standards of acceptability shall be as agreed upon between the manufacturer and the purchaser.
- 11.4 The manufacturer shalf be permitted to remove surface imperfections provided such removal does not reduce the dimensions below the minimum permitted by the tolerances for that dimension.

### 12. Significance of Numerical Limits

12.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding methods of Practice E29.

Property

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerances (when expressed as decimals) Tensile strength and yield strength Elongation nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi [10 MPa] nearest 1 %

### 13. Number of Tests and Retests

- 13.1 One longitudinal tension shall be made from each lot (see 14.2).
- 13.2 One chemistry test for hydrogen and nitrogen content shall be made from each lot of finished product (see 14.1).
- 13.3 Two bend tests, one in the longitudinal and one in the transverse direction, shall be made from each lot (see 8.2).

### 13.4 Retests:

- 13.4.1 If any sample or specimen exhibits obvious surface contamination or improper preparation disqualifying it as a truly representative sample, it shall be discarded and a new sample or specimen substituted.
- 13.4.2 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. Retests shall be made on double the original number of samples from the same lot. Both retest values shall conform to the requirements specified. These acceptable retest values will become the test values for certification.
- 13.4.3 If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 16. Retesting after failure of initial retests may be done only with the approval of the purchaser.

### 14. Sampling and Test Methods

- **14.1** Sampling:
- 14.1.1 Samples for chemical and mechanical testing shall be taken from the finished material after all metallurgical processing to determine conformity to this specification. The samples may be taken prior to final inspection and minor surface conditioning by abrasion and pickling shall be representative of the finished product.
- 14.1.2 Care shall be exercised to ensure that the sample selected for testing is representative of the material and that it is not contaminated by the sampling procedure. If there is any question relating to the sampling technique or the analyses, the methods of sampling and analysis shall be as agreed upon between the purchaser and the manufacturer.
- 14.1.3 The utmost care must be used in sampling reactive metals for chemical analysis because of their great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, in cutting samples for analysis, the operation should be carried out in a dust-free atmosphere. Chips should be collected from clean metal and tools should be clean and sharp. Samples for analysis should be stored in suitable containers.
  - 14.2 Test Methods:
  - 14.2.1 Chemistry:
- 14.2.1.1 Analyses shall be made using the manufacturer's standard methods.
- 14.2.1.2 The chemical composition enumerated in this specification shall in case of disagreement, be measured by methods mutually agreed upon by the manufacturer and the purchaser.
  - 14.2.2 Tension Tests:
- 14.2.2.1 The room temperature tensile tests shall be conducted in accordance with Test Methods E8/E8M. The yield strength shall be determined by the offset (0.2 %) method. The

### TABLE 5 Permissible Variations in Thickness of Cold-Rolled Zirconium Strip

Note 1—For thickness under 0.010 in. [0.25 mm] in width to 6 in. [150 mm] a tolerance of ±10 % of the thickness shall apply.

Note 2—Thickness measurements shall be taken 3/8 in. [10 mm] in from edge of the strip, except on widths less than 1 in. [2.5 mm] where the tolerances are applicable for measurements at all locations.

	Permissible \	/ariations in Thickness, for Widths Give	en, ± in. [mm]
Specified Thickness, in. [mm]	³ / ₁₆ [4.8] to 1 [25], excl	1 [25] to 3 [75], excl	3 [75] to 6 in. [150], excl
0.188-0.160 [4.78-4.06], incl	0.002 [0.05]	0.003 [0.08]	0.004 [0.10]
0.160-0.100 [4.05-2.52], incl	0.002 [0.05]	0.002 [0.05]	0.003 [0.08]
0.099-0.069 [2.51-1.75], incl	0.002 [0.05]	0.002 [0.05]	0.003 [0.08]
0.068-0.050 [1.74-1.27], , incl	0.002 [0.05]	0.002 [0.05]	0.003 [0.08]
0.049-0.040 [1.26-1.01], incl	0.002 [0.05]	0.002 [0.05]	0.0025 [0.07]
0.039-0.035 [0.99-0.90], incl	0.002 [0.05]	0.002 [0.05]	0.0025 [0.06]
0.034-0.029 [0.87-0.73], incl	0.0015 [0.04]	0.0015 [0.04]	0.002 [0.05]
0.028-0.026 [0.72-0.66], incl	0.001 [0.025]	0.0015 [0.04]	0.0015 [0.04]
0.025-0.020 [0.65-0.51], incl	0.001 [0.025]	0.001 [0.025]	0.0015 [0.04]
0.019 [0.50] and under	0.001 [0.025]	0.001 [0.025]	0.001-[0.025]

### TABLE 6 Permissible Variations in Thickness of Hot- and Cold-Rolled Zirconium Sheet^A

	Cold-Holled Zircollidili Olleet	
Specified Thickness, in. [mm]	Hot-Rolled Permissible Variations in Thickness, $\pm$ in. [mm]	Cold-Rolled Permissible Variations in Thickness, ± in. [mm]
0.146 to 0.188 [3.70 to 4.76], excl	0.014 [0.35]	0.007 [0.18]
0.131 to 0.145 [3.32 to 3.69]	0.012 [0.30]	0.006 [0.15]
0.115 to 0.130 [2.92 to 3.31]	0.010 [0.25]	0.005 [0.13]
0.099 to 0.114 [2.50 to 2.91]	0.009 [0.23]	0.0045 [0.11]
0.084 to 0.098 [2.13 to 2.49]	0.008 [0.20]	0.004 [0.10]
0.073 to 0.083 [1.85 to 2.12]	0.007 [0.18]	0.0035 [0.09]
0.059 to 0.072 [1.49 to 1.84]	0.006 [0.15]	0.003 [0.08]
0.041 to 0.058 [1.04 to 1.48]	0.005 [0.13]	0.0025 [0.07]
0.027 to 0.040 [0.68 to 1.03]	0.004 [0.10]	0.002 [0.05]
0.017 to 0.026 [0.43 to 0.67]	0.003 [0.08]	0.0015 [0.4]
0.008 to 0.016 [0.20 to 0.42]	0.002 [0.05]	0.001 [0.03]
0.006 to 0.007 [0.14 to 0.19]	0.0015 [0.04]	0.0008 [0.02]
0.005 [0.13] or less	0.001 [0.025]	0.0005 [0.01]

^A Thickness measurements are taken at least ¾ in. [10 mm] in from edge. Tolerances do not include crown.

### TABLE 7 Permissible Variations in Thickness of Zirconium Plate

	(V).	Wid	lth, in. [mm] ^A	
Specified Thickness, in. [mm]	To 84 [2130],	Over 84 [2130] to	Over 120 [3050] to	Over 144 [3660]
Specified Trilckness, in. [min]	incl	120 [3050], incl	144 [3660], incl	
	. 1	Tolerances Over Sp	pecified Thickness, in. [mm] ^B	
0.125 [3.2] to 0.375 [9.5], excl	0.045 [1.14]	0.050 [1.27]		
0.375 [9.5] to 0.75 [19], excl	0.055 [1.40]	0.060 [1.52]	0.075 [1.90]	0.090 [2.29]
0.75 [19] to 1.0 [25], excl	0.060 [1.52]	0.065 [1.65]	0.085 [2.16]	0.100 [2.54]
1.0 [25] to 2.0 [50], excl	0.070 [1.78]	0.075 [1.90]	0.095 [2.41]	0.115 [2.92]
2.0 [50] to 3.0 [75], excl	0.125 [3.18]	0.150 [3.81]	0.175 [4.44]	0.200 [5.08]
3.0 [75] to 4.0 [100], excl	0.175 [4.44]	0.210 [5.33]	0.245 [6.22]	0.280 [7.11]
4.0 [100] to 6.0 [150], excl	0.250 [6.35]	0.300 [7.62]	0.350 [8.89]	0.400 [10.16]
6.0 [150] to 8.0 [200], excl	0.350 [8.89]	0.420 [10.67]	0.490 [12.45]	0.560 [14.22]
8.0 [200] to 10.0 [250], incl	0.450 [11.43]	0.540 [13.72]	0.630 [16.00]	

TABLE 8 Permissible Variations in Width of Hot-Rolled Zirconium Strip

			Permissible Variation	in Width, in. [mm]		
Specified Width, in. [mm]	Mill I	Edge	Slit E	Edge	Sheare	d Edge
$\bigcirc$	+	-	+	-	+	_
3½ [90] and under	1/8 [3.2]	0 [0]	1/32 [0.8]	1/32 [0.8]	1/16 [1.6]	1/16 [1.6]
Over 3½ [90] – 6 [150], incl	3/16 [4.8]	1/8 [3.2]	1/32 [0.8]	1/32 [0.8]		0 [0]

A Thickness is measured along the longitudinal edges of the plate at least % in. [10 mm], but not more than 3 in. [75 mm] from the edge.

B For circles, the over thickness tolerances in this table apply to the diameter of the circle corresponding to the width ranges shown. For plates of irregular shape, the over thickness tolerances apply to the greatest width corresponding to the width ranges shown. For plates up to 10 in. [250 mm], incl. in thickness, the tolerance under the specified thickness (s 0.01 in. [0.25mm].

TABLE 9 Permissible Variations in Width of Cold-Rolled Zirconium Strip (Slit Edge)

Considered Thickness in [mm]	Permissible Variations in Thickness, pl [mm	
Specified Thickness, in. [mm] -	Under ½ [12]	½ to 6 [12 to 152], incl
0.188 to 0.161[4.76 to 4.08], incl		0.016 [0.41]
0.160 to 0.100 [4.07 to 2.53], incl	0.010 [0.25]	0.010 [0.25]
0.099 to 0.069 [2.52 to 1.74], incl	0.008 [0.20]	0.008 [0.20]
0.068 [1.73] and under	0.005 [0.13]	0.005 [0.13]

TABLE 10 Permissible Variations in Width of Hot- and Cold-Rolled Zirconium Sheet

Specified Width, in. [mm] for	Permissible Variations
Thickness Under 3/16 in. [4.8 mm]	in Width, in. [mm]
6-24 [150-600], excl	+1/8, - 0 [+3.2, -0]
24-48 [ 600-1200], excl	+1/8 , -0 [+3.2, -0]
48 and over [1200]	+3/16, -0 [+4.8, -0]

tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in./min [mm/mm/min] through the yield strength. After the yield strength has been exceeded, the crosshead speed can be increased to approximately 0.05 in./in./min [mm/mm/min] to produce failure in approximately one additional minute.

14.2.2.2 Small size, 1-in. [25-mm] gage length specimens, proportional to the standard specimen, can be used.

14.2.3 Flatness:

14.2.3.1 Flatness shall be determined in accordance with Eq 1 (see Fig. 1):

Flatness, 
$$\% = (H/L) \times 100$$

where:

H = maximum vertical distance between a flat reference surface and the lower surface of the sheet, and

L= minimum horizontal distance between the highest point on the sheet and the point of contact with a flat reference surface. (Fig. 1 is included to illustrate the method for taking measurements for calculation of sheet flatness; however, a value of H less than 1/32 in. [0.8 mm] shall not be cause for rejection.)

### 15. Inspection

15.1 The manufacturer shall inspect the material covered by this specification prior to shipment and, on request, shall furnish the purchaser with certificates of test. If so specified in the purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacturer. In such cases the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for purchaser's inspection at the place of manufacture to be waived.

15.2 The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance

with this specification. This inspection shall be so conducted as to not interfere unnecessarily with the operation of the works.

### 16. Rejection and Referee

16.1 Material not conforming to the specification or to authorized modifications shall be subject to rejection by the purchaser.

16.2 Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of the notice of rejection, other instructions for disposition.

16.3 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

### 17. Certification

17.1 A producer or supplier shall furnish the purchaser with a certificate that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. The certificate shall include a report of the test results.

### 18. Product Marking

18.1 *Identification*—Unless otherwise specified, each plate, sheet, and strip shall be marked in the respective location indicated below, with the number of this specification, heat number, manufacturer's identification, and the nominal thickness. The characters shall be not less than 3/8 in. [9.52 mm] in height, shall be applied using a suitable marking fluid, and shall be capable of being removed with a hot alkaline cleaning solution without rubbing. The marking shall have no deleterious effect on the material or its performance. The characters shall be sufficiently stable to withstand ordinary handling.

18.1.1 Plate, flat sheet, and flat strip over 6 in. [150 mm] in width shall be marked in lengthwise rows of characters recurring at intervals not greater than 3 in. [75 mm], the rows being spaced not more than 1 in. [40 mm] apart and alternatively staggered. Heat numbers shall occur at least three times across the width of the material and at intervals not greater than 2 ft [0.6 m] along the length. As an option, when permitted by the purchaser, each plate, sheet, or cut length strip may be marked in at least one corner with the number of this specification, heat number, manufacturer's identification, and the nominal thickness in inches or millimetres as required.

TABLE 11 Permissible Variations in Width and Length of Rectangular, Sheared Zirconium Plate

Note 1—The permissible variation under the specified width and length is 1/4 in. [6.4 mm]

Note 2—Rectangular plates over 1 in. [25 mm] in thickness are not commonly sheared, and are machined or otherwise cut to length and width or produced in the size as-rolled, uncropped.

		Permiss	ible Variations O	ver Specified	Dimension, fo	r Thickness G	iven, in. [mm]
Specified Length, in. [m]	Specified Width, in. [m]	Under	3/8 in. [9.5 mm]	3⁄8 −5⁄8 in.	[9.5–16 mm],	excl % in. [16	mm] and Over
		Width	Length	Width	Length	Width	Length
Under 120 [3.0]	Under 60 [1.5]	3/8 [9.5]	1/2 [13]	7/16 [11]	5/8 [16]	1/2 [13]	3/4 [20]
	60-84 [1.5-2.1], excl	7/16 [11]	5/8 [16]	1/2 [13]	¹¹ / ₁₆ [18]	5/8 [16]	7/8 [22]
	84-108 [2.1-2.74], excl	1/2 [13]	3/4 [20]	5/8 [16]	7/8 [22]	3/4 [20]	1 [25]
	108 [2.74] or over	5/8 [16]	7/8 [22]	3/4 [20]	1 [25]	7/8 [22]	11/8 [29]
120-240 [3.0-6.0], excl	Under 60 [1.5]	3/8 [9.5]	3/8 [16]	½ [13]	½ [22]	5/8 [16]	[25]
	60-84 [1.5-2.1], excl	1/2 [13]	3/4 [20]	5/8 [16]	7/8 [22]	3/4 [20] 🦰	1 [25]
	84-108 [2.1-2.74], excl	9/16 [14]	7/8 [22]	11/16 [18]	¹⁵ / ₁₆ [24]	13/16 [21]	11/8 [29]
	108 [2.74] or over	5/8 [16]	1 [25]	3/4 [20]	11/8 [29]	7/8 [22]	11/4 [32]
240-360 [6.0-9.0], excl	Under 60 [1.5]	3/8 [9.5]	1 [25]	½ [13]	11/8 [29]	<b>%</b> [16]	11/4 [32]
	60-84 [1.5-2.1] excl	1/2 [13]	1 [25]	5/8 [16]	11/8 [29]	3/4 [20]	13/4 [32]
	84-108 [2.1-2.74], excl	9/16 [14]	1 [25]	11/16 [18]	11/8 [29]	7/8 [22]	1% [35]
	108 [2.74] or over	11/16 [18]	11/8 [29]	7/8 [22]	11/4 [32]	1 [25]	13/8 [35]
360-480 [9.0-12.0], excl	Under 60 [1.5]	7/16 [11]	11/8 [29]	1/2 [13]	<b>1</b> / ₄ [32]	5/8 [16]	1½ [38]
	60-84 [1.5-2.1], excl	1/2 [13]	11/4 [32]	5/8 [16]	138 [35]	3/4 [20]	1½ [38]
	84-108 [2.1-2.74], excl	9/16 [14]	11/4 [32]	3/4 [20]	13/8 [35]	7/8 [22]	1½ [38]
	108 [2.74] or over	3/4 [20]	1% [35]	7/8 [22]	1½ [38]	1 [25]	15/8 [41]
480-600 [12.0-15.0], excl	Under 60 [1.5]	⁷ /16 [ <b>11</b> ]	11/4 [32]	1/2 [13]	1½ [38]	5⁄8 [16]	15/6 [41]
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	60-84 [1.5-2.1], excl	1/2 [13]	1% [35]	5∕8 [16]	1½ [38]	3/4 [20]	15/6 [41]
	84-108 [2.1-2.74], excl	5% [16]	1% [35]	3/4 [20]	1½ [38]	7/8 [22]	1% [41]
	108 [2.74] or over	3/4 [20]	1½ [38]	7/8 [22]	15/8 [41]	1 [25]	13/4 [45]
600 [15.0] or over	Under 60 [1.5]	1/2 [13]	13/4 [45]	5/8 [16]	17/8 [48]	5/8 [16]	17/8 [48]
	60-84 [1.5-2.1], excl	5% [16]	13/4 [45]	3/4 [20]	17/8 [48]	7/8 [22]	17/8 [48]
	84–108 [2.1–2.74], excl	5/8 [16]	13/4 [45]	3/4 [20]	17/8 [48]	7/8 [22]	17/8 [48]
	108 [2.74] or over	⁷ / ₈ [22] <b>८</b>	13/4 [45]	1 [25]	2 [50]	11/8 [29]	21/4 [57]

TABLE 12 Permissible Variations in Length of Hot- and Cold-Rolled Zirconium Strip

Specified Length, ft [m]	Permissible Variations in Length, in. [mm]
To 5 [1.5], incl	+3/8 , - 0 [+ 9.5, -0]
Over 5-10 [1.5-3], incl	+½, –0 [+13, –0]
Over 10-20 [3-6.1], incl	+5% , -0 [+16, -0]

TABLE 13 Permissible Variations in Length of Hot- and Cold-Rolled Zirconium Sheet

Specified Length, ft [m]	17,6	Permissible Variations in Length, in. [mm]
To 5 [1.5], incl Over 5 [1.5]–10 [3], incl Over 10 [3]–15 [4.6], incl	Click	+3/8 , - 0 [+9.5, -0] +1/2 , - 0 [+13, -0] +1, -0 [+25, -0]

TABLE 14 Crown Tolerances for Hot-Rolled Zirconium Strip

Specified Width, in. [mm]	Permissible Variation in Thickness from Edge to Center of Strip, for Widths Given, in. [mm]
To 3½ [90], incl Over 3½ –6 [90–150], incl	0.003 [0.08]
Over 3½ -6 [90-150], incl	0.004 [0.10]

18.1.2 Flat strip 6 in. [150 mm] and under in width shall be marked near one end.

TABLE 15 Crown Tolerances for Cold-Rolled Zirconium Strip

Specified Thickness, in. [mm]	Tolerance by which the Thickness at Middle of Strip may be Greater than at the Edges, for Width to 6 in. [150 mm], in. [mm]
0.005 [.13]-0.010 [.25], incl	0.0008 [.02]
Over 0.010 [.25]-0.025 [.64], incl	0.001 [0.25]
Over 0.025 [.64]-0.065 [1.65], incl	0.0015 [.04]
Over 0.065 [1.65]-0.188 [4.8], excl	0.002 [.05]

18.1.3 Coiled sheet and strip shall be marked near the outside end of the coil.

### 19. Packaging and Package Marking

- 19.1 Unless otherwise specified, material purchased under this specification may be packaged for shipment either by boxing, crating, single boarding, burlapping, or with no protection in accordance with the manufacturer's standard practice.
- 19.2 All material shall be packaged in such a manner as to assure safe delivery to its destination when properly transported by any common carrier.
- 19.3 The package shall be so marked as to indicate the nature of any special handling required.
- 19.4 Each bundle, box, or coil shall be legibly and conspicuously marked or tagged with the following information:
  - 19.4.1 Purchase order or contract number,

TABLE 16 Crown Tolerances for Hot-Rolled Zirconium Sheet

Specified Width, in. [mm]	Permissible Variation in Thickness from Edge to Center of Strip, for Widths Given, in. [mm]
6–12 [150–300], incl Over 12–18 [300–460], incl	0.004 [0.10] 0.006 [0.15]
Over 18–24 [460–500], excl	0.008 [0.20]

### TABLE 17 Crown Tolerances for Cold-Rolled Zirconium Sheet

Specified Thickness, in. [mm]	Tolerance by Which the Thickness at Middle of Strip may be Greater than at the Edges, for Widths Given, in. [mm]			
_	6 [150] to 12 [300], incl	Over 12 [300] to 24 [600], incl		
0.005 [.13]-0.010 [.25], incl	0.001 [.025]	0.0015 [.04]		
Over 0.010 [.25]-0.025 [.64], incl	0.0015 [.04]	0.002 [.05]		
Over 0.025[.64]-0.065 [1.65], incl	0.002 [.05]	0.0025 [.06]		
Over 0.065 [1.65]-3/16 [4.8], excl	0.0025 [.06]	0.003 [.08]		

# TABLE 18 Camber Tolerance for Hot- and Cold-Rolled Zirconium Strip^A

Specified Width, in. [mm]	Tolerance, per Unit Length of any 8 ft [2.4 m],
	in. [mm]
To 11/2 [38], incl	1/8 [3.2]
Over 1½ -6 [38-150], incl	3/32 [2.4]

^A Camber is the greatest deviation of a side edge from a straight line, the measurement being taken on the concave side with a straightedge.

# TABLE 19 Camber Tolerances for Hot- and Cold-Rolled Zirconium Sheet^A

			400.	
Specified Width, in. [mn		S	Tolerance per Unit	
		Lengt	th of any 8 ft [24 m], in. [mm]	
6-36 [600-900], incl	×	•	1/8 [3.2]	
Over 36 [900]	\ O.		3/32 [2.4]	

A Camber is the greatest deviation of a side edge from a straight line, the measurement being taken on the concave side with a straightedge.

### TABLE 20 Camber Tolerances for Zirconium Plates^A

Tolerance:	1/8 in. [3.2 mm] x (number of feet of length/5)
Tolerance.	(number of metres/1.5)

^A Camber is the greatest deviation of a side edge from a straight line. The measurement is taken by placing a straightedge on the concave side and measuring the greatest distance between the plate edge and the straightedge.

19.4.2 Name of material,

19.4.3 Grade,

19.4.4 Size,

19.4.5 Lot, heat, or ingot number,

19.4.6 Condition (see Section 9),

19.4.7 Gross, net and tare weights, and

19.4.8 Standard specification number.

### 20. Keywords

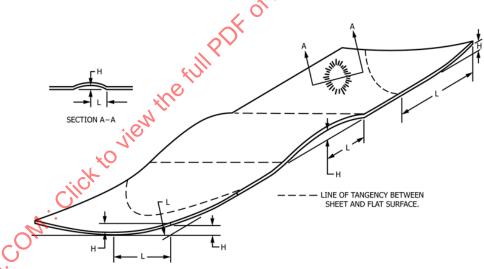
20.1 plate; sheet; strip; zirconium; zirconium alloy

**TABLE 21 Diameter Tolerances for Circular Zirconium Plates** 

Charified Diameter in [m]	Diar	r Specified Diame neter and Thickne erance Under), in.	ss
Specified Diameter, in. [m]	To % [9.5], incl, in Thickness	3/8 to 5/8 [9.5–16] excl, in Thickness	5/8 [16] and Over in Thickness ^A
To 60 [1.5], excl	1/4 [6.4]	3/8 [9.5]	1/2 [13]
60-84 [1.5-2.1], incl	5/16 [8.0]	7/16 [11]	9/16 [14]
84-108 [2.1-2.8], excl	3/8 [9.5]	1/2 [13]	5/8 [16]
108-130 [2.8-3.3], incl	7/ ₁₆ [11]	9/16 [14]	11/16 [17.5]

A Circular plates over 5% in. [16 mm] in thickness are not commonly sheared and are machined or otherwise cut.

### TABLE 22 Permissible Variations From a Flat Surface for Annealed Zirconium Plate-inch [mm]


Note 1-Variations in flatness apply to plates up to 15 ft [4.6 m] in length, or to any 15 ft [4.6 m] of longer plates.

Note 2—If the longer dimension is under 36 in. [1 m], the variation is not greater than 1/4 in. [6.4 mm].

Note 3—The shorter dimension specified is considered the width and the variation in flatness across the width does not exceed the tabular amount for that width dimension.

Note 4—The maximum deviation from a flat surface is measured in accordance with 14.2.3 and Fig. 1.

			Permissible V	ariations in Fla	tness, for Widths G	Given, Plus and M	linus, in. [mm]	]	
Specified Thickness, in. [mm]	48 in. [1.2 r	n]48 [1.2 m]– 60[1.5 m],	60 [1.5]– 72 [1.8 m],	72 [1.8]– 84 [2.1 m],	84 [2.1]– 96 [2.4 m],	96 [2.4 m] 108[2.74 m],	108 [2.74]– 120 [3.05		144 [3.7 m] n],and Over
		excl	excl	excl	excl	excl	excl	excl	•
1/8 [3.2]-1/4 [6.4], excl	3/4 [20]	11/16 [27]	11/4 [32]	1% [35]	15/8 [41]	15⁄8 [41]			
1/4 [6.4]-3/8 [9.5], excl	11/16 [17.5]	3/4 [20]	¹⁵ / ₁₆ [24]	11/8 [28.6]	1% [35]	17/16 [36.5]	1%16 [40]	1% [48]	
3/8 [9.5]-1/2 [13], excl	1/2 [13]	9/16 [14]	¹¹ / ₁₆ [17.5]	3/4 [20]	15/16 [24]	11/8 [28.6]	11/4 [32]	17/16 [36.5]	13/4 [45]
½ [13]-¾ [20], excl	1/2 [13]	9/16 [14]	5/8 [16]	5/8 [16]	13/16 [20.6]	11/8 [28.6]	11/8 [28.6]	11/8 [28.6]	1% [35]
3/4 [20]-1 [25], excl	1/2 [13]	9/16 [14]	5/8 [16]	5/8 [16]	3/4 [20]	13/16 [30]	15/16 [24]	1 [25]	11/8 [28.6]
1 [25]-1½ [38], excl	1/2 [13]	9/16 [14]	9/16 [14]	9/16 [14]	¹¹ / ₁₆ [17.5]	11/16 [17.5]	11/16 [17.5]	3/4 [20]	1 [25]
1½ [39]-4 [100], excl	3/16 [4.8]	5/16 [8]	3/8 [9.5]	7/16 [11]	1/2 [13]	9/16 [14]	5/8 [16]	3/4 [20]	7/8 [22]
4 [100]-6 [150], excl	1/4 [6.4]	3/8 [9.5]	1/2 [13]	9/16 [14]	5/8 [16]	3/4 [20]	7/8 [22]	1 [25]	11/8 [28.6]



Flatness Deviation,  $\% = (H/L) \times 100$ . H = maximum distance between flat surface and lower surface of sheet. L = minimum distance between highest point on sheet and point of contact with flat surface.

### SUPPLEMENTARY REQUIREMENTS

### S.1 Additional Requirements for Material to be Used for **Explosion Cladding**

- S1.1 These requirements apply exclusively for sheet and plate to be used for explosion cladding.
- S1.3 Additional flatness requirements:
- S1.3.1 The permissible variation in flatness for zirconium a 22). A smill is seed (halanced).

  A mill is seed (halanced).

  A mill is seed (halanced).

  A smill is material grades R60700 and R60702 for explosion cladding applications shall be ½ that of the limits in Table 22. Localized flatness variations shall not exceed 0.12 in. [3 mm] in 39 in [7] m], as measured using a straight edge placed (balanced) at any

791

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# SPECIFICATION FOR NICKEL ALLOY FORGINGS



**SB-564** 

(Identical with ASTM Specification B564-17a except that confication and test reports have been made mandatory, and acceptable ASTM editions are limited to 06 and later for N06200 material.)

Confidence in the full policy of the confidence of the

### Specification for Nickel Alloy Forgings

### 1. Scope

1.1 This specification covers forgings of:

Alloy Type	UNS Number(s)
Fe-Ni-Cr-Mo-N	N08367
Low-carbon Cr-Ni-Fe-N	R20033
Low-carbon Ni-Cr-Mo	N06035, N06058, N06059, N06044
Low-carbon Ni-Cr-Mo-Cu	N06200
Low-carbon Ni-Cr-Mo-W	N06686
Low-carbon Ni-Fe-Cr-Mo-Cu	N08031, N08034
Low-carbon Ni-Mo-Cr	N10276, N06022, N10362
Low-carbon Ni-Mo-Cr-Ta	N06210
Ni	N02200
Ni-Co-Cr-Si	N12160
Ni-Cr-Co-Mo	N06617
Ni-Cr-Fe	N06600, N06603, N06690
Ni-Cr-Fe-Al	N06025
Ni-Cr-Fe-Si	N06045
Ni-Cr-Mo-Nb	N06625
Ni-Cr-Mo-Si	N06219
Ni-Cr-Mo-W	N06110
Ni-Cr-W-Mo	N06230
Ni-Cu	N04400
Ni-Fe-Cr	N08120, N08800, N08810, N08811
Ni-Fe-Cr-Mo-Cu	N08825
Ni-Fe-Cr-W	N06674
Ni-Mo	N10665, N10675, N10629
Ni-Mo-Cr-Fe	N10242, N10624

- 1.1.1 The nickel-iron-chromium alloys are UNS N08120, UNS N08800, UNS N08810, and UNS N08811. Alloy UNS N08800 is normally employed in service temperatures up to and including 1100°F (593°C). Alloys UNS N08810, N08120, and UNS N08811 are normally employed in service temperatures above 1100°F (593°C) where resistance to creep and rupture is required, and are annealed to develop controlled grain size for optimum properties in this temperature range.
- 1.1.2 Nickel-iron-chromium-tungsten alloy UNS N06674 is normally employed in service temperatures above 1100°F (593°C) where resistance to creep and rupture is required, and is annealed to develop optimum properties in this temperature range.

- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

2.1 ASTM Standards:

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)

E112 Test Methods for Determining Average Grain Size E350 Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron

E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

2.2 Military Standards:

MIL-STD-129 Marking for Shipment and Storage MIL-STD-271 Nondestructive Testing Requirements for Metals

### 3. Ordering Information

- 3.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
  - 3.1.1 Alloy (Table 1).
  - 3.1.2 Condition (Table 2).
  - 3.1.3 Quantity (mass or number of pieces).
  - 3.1.4 Forging, sketch or drawing.
- 3.1.5 *Certification*—Certification and a report of test results are required (14.1).
- 3.1.6 Samples for Product (Check) Analysis—Whether samples for product (check) analysis should be furnished (see 4.2).
- 3.1.7 Purchaser Inspection—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (12.1).

### 4. Chemical Composition

- 4.1 The material shall conform to the composition limits specified in Table 1.
- 4.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations in accordance with Specification B880.

### 5. Mechanical Properties and Other Requirements

- 5.1 *Mechanical Properties*—The material shall conform to the mechanical properties specified in Table 2.
- 5.2 Grain Size—Annealed alloys UNS N08810, N08120, and UNS N08811 shall conform to an average grain size of ASTM No. 5 or coarser. Annealed alloy UNS N06674 shall conform to an average grain size of ASTM No. 7 or coarser.

### 6. Dimensions and Permissible Variations

6.1 Dimensions and tolerances shall be as specified on the applicable forging sketch or drawing.

### 7. Workmanship, Finish, and Appearance

7.1 The material shall be uniform in quality and condition, sound, and free of injurious imperfections.

### 8. Sampling

8.1 Lot Definition:

**8.1.1** A lot for chemical analysis shall consist of one heat.

8.1.2 A lot for mechanical properties and grain size testing shall consist of all material from the same heat, size, finish, condition, and processed at one time.

- 8.2 Test Material Selection:
- 8.2.1 *Chemical Analysis*—Representative samples shall be taken during pouring or subsequent processing.
- 8.2.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 8.2.2 Mechanical Properties and Grain Size—Samples of the material to provide test specimens for mechanical properties and grain size shall be taken from such locations in each of as to be representative of that lot.

### 9. Number of Tests

- 9.1 Chemical Analysis—One test per lot.
- 9.2 Mechanical Properties—One test per lot.
- 9.3 *Grain Size*—For alloys N08810, N08120, UNS N08811, and N06674, one test per lot.

### 10. Specimen Preparation

- 10.1 The tension test specimen representing each lot shall be taken from a forging or from a test prolongation.
- 10.2 The axis of the specimen shall be located at any point midway between the center and the surface of solid forgings and at any point midway between the inner and outer surfaces of the wall of hollow forgings, and shall be parallel to the direction of greatest metal flow. Specimens transverse to the direction of flow may be used provided all other requirements of this standard are satisfied.
- 10.3 The specimens shall be the largest possible round type shown in Test Methods E8.

### 11. Test Methods

11.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

Test ASTM Designation
Chemical Analysis E76, E350, E1473
Tension E8
Rounding Procedure E29
Grain Size E112

- 11.2 The measurement of average grain size may be carried out by the planimetric method, the comparison method, or the intercept method described in Test Methods E112. In case of dispute, the "referee" method for determining average grain size shall be the planimetric method.
- 11.3 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value, or a calculated value, shall be rounded as indicated as follows, in accordance with the rounding method of Practice E29:

Test Rounded Unit for Observed or Calculated Value
Chemical composition nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (6.9 MPa)

Elongation nearest 1 %

Grain size:

0.0024 in. (0.060 mm) or larger less than 0.0024 in. (0.060 mm)

nearest multiple of 0.0002 in. (0.005 mm) nearest multiple of 0.0001 in. (0.002 mm)

ww- ww- rathon ckel- rromium- lolybdenum loy VS S0658 S60 55 50 10 010 10 010 10 10 10 10 10 10 10 10	t lesse m m m m m m m m m m m m m m m m m m	Nickel- Copper Alloy UNS N04400 63.0 ⁸ min 28.0-34.0 2.5 2.0 0.3 0.5	Low- Carbon Nickel- Molybdenum- Chromium	Nickel- Chromium- Iron- Aluminum	Low- Carbon	-///-		-wo-l	Low- Carbon	Nickel-
Nickel	t lese	Nickel- Copper Alloy UNS N04400 63.0 ⁸ min 28.0-34.0 2.5 2.5 2.0 0.3 0.5 0.024	Nickel- Molybdenum- Chromium	Chromium- Iron- Aluminum	Calboli	LOW-	Niokol	200	Calcol	
Alloy Alloy Alloy Molybdenum Alloy Molybdenum Holy Alloy Molybdenum Alloy Molybdenum Alloy Molybdenum Molybden	esee En	Alloy UNS N04400 63.0 ⁸ min 28.0-34.0 2.5 2.0 2.0 0.3 0.5	Molybdenum- Chromium	Aluminum	Nickel-	Nickel-	Chromium-	Nickel-	Nickel-	Chromium- Molyhdenim-
NOSZOO   NOS   Alloy	esse ru u u ru	UNS N04400 63.0 ⁶ min 28.0-34.0 2.5 2.0 0.3 0.5 0.024		Allov	Chromium- Molybdenum	Chromium- Molybdenum	Iron-Silicon Alloy	Chromium- Molybdenum	Chromium- Molybdenum	Tungsten
See	Lesse Lin mu	63.08 min 63.08 min 28.0-34.0 2.0 0.3 0.5 0.05	Alloy UNS	UNS	Alloy UNS	Alloy UNS	UNS	Alloy UNS	Alloy UNS	UNS
86 0.25 26 0.34 0.00 0.30 0.30 0.30 0.30 0.30 0.30	ese m m u ese ese ese ese ese ese ese ese ese e	28.0-34.0 2.5 2.5 2.0 0.3 0.5 0.024	halancaB	halance	NU00U35 halance ^B	NU06044	1000045 45 min	NUOUSS	NUGUSS	51 0 ^B min
See 0.46 2.5 2.0-6.0 7,80-110 2.00 0.3 max 210-25.0 15  See 0.35 2.0 0.050 70.15 0.50 0.02 max 0.050 0.00  O.35 0.50 0.050 0.02 max 0.050 0.00  O.35 0.05 0.050 0.02 max 0.050 0.010  O.01 0.024 0.02 0.050 0.02 max 0.010  O.01 0.024 0.02 0.045 0.020 max 0.010  O.01 0.024 0.02 0.045 0.020 0.010  O.01 0.024 0.02 0.045 0.040 0.040  O.02 0.030 max 0.040 0.010  O.03 0.040 0.040 0.040 0.040  O.04 0.040 0.040 0.040 0.040  O.05 0.050 0.040 0.040 0.040  O.05 0.050 0.050 0.050  O.05 0.050 0.05	ese m m m m m m m m m m m m m m m m m m	2.5 2.0 0.3 0.5 0.024	Odial Co	0.10	0.30	2 ::	0.3	0.50	0.50	0.50
See 0.35 2.0 0.50 0.15 0.15 0.50 0.07-0.30 1.0 0.50 0.50 0.010 0.05 0.002 max 0.05-0.12 0.010 0.010 0.015 0.024 0.024 0.025 0.086 0.020 max 0.05-0.12 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	989 E C E	2.0 0.3 0.5 0.024	2.0-6.0	8.0-11.0	2.00	0.3 max	21.0-25.0	1.5	1.5	1.0
0.15 0.3 0.015 0.050 0.020 max 0.05-0.12 0.010 0.035 0.05 0.05 0.05 0.05 0.05 0.05 0.	Ę Ę <u>Ē</u> Ę	0.3 0.5 0.024	0.50	0.15	0.50	0.07-0.30	1.0	0.50	0.5	1.0
0.35 0.55 0.008 0.55 0.050 0.020 max 25-3.0 0.10 0.10 0.001 0.001 0.0024 0.0024 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00	Ę Ę <u>Ę</u> Ę	0.5 0.024	0.015	0,15-0.25	0.050	0.02 max	0.05-0.12	0.010	0.010	0.15
1	ium um m ojum t+	0.024	0.08	0.5	0.60	0.20 max	2.5-3.0	0.10	0.10	1.0
m			0.02 20.0-22 F	0.0	0.015 32.25	0.020 max	0.010	0.010	0.010	0.015
1.8-2.4		:	20.0	2.0.2	34.25		0.00	0.01	0.13	2
m 0.1-0.2		:	:	1.8-2.4	0.40	0.30 max	:	0.40	0.1-0.4	1.0
m		:	:	0.1-0.2		0.10-0.30	:	:	:	1.0
us 12.5-14.5 7.60-900 0.80-1.20 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0 18.5-21.0	(Nb) + Tantalum	:	:	:		:	:	:	:	1.0
num 12.5-14.5 7.60-900 0.80-1.20 18.5-21.0  us 0.02 0.03 0.030 0.020 max 0.02 0.015  us 0.02 0.030 0.030 0.020 max 0.02 0.015  2.5-3.5 0.60 0.30 0.030 0.33  num 0.35 0.20 0.3  num 0.02 - 0.15  num 0.01-0.10 0.01-0.10 0.03-0.99	Tantalum									
us 125-14.5 760-900 0.80-1.20 18.5-21.0  us 2.5-3.5 0.02 0.02 0.02 0.015 0.015 0.015 0.016 0.020 max 0.02 0.015 0.015 0.015 0.020 max 0.02 0.015 0.035 0.035 0.030 0.030 0.030 0.030 0.035 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.0					7					
us 0.02 0.030 0.020 max 0.02 0.015  2.5-3.5 0.060 0.030  m	_	:	12.5-14.5	:	7.60-9.00	0.80-1.20	:	18.5-21.0	15.0-16.5	9.0-12.0
m		:	0.02	0.02	0.030	0.020 max	0.02	0.015	0.015	0.50
1.00	ue.	:	2.5-3.5	:	09:0	: /	:	0.3	:	1.0-4.0
num  m  m  m  m  m  m  m  m  m  m  m  m		:	2.5	:	1.00	Ċ.	:	0.3	0.3	:
num  m  m  m  m  m  m  m  m  m  m  m  m	_	:	0.35	:	0.20	Š	:	:	:	:
mum  mum  mum  mum  mum  mum  mum  mum		:	:	:	:	3	:	0.02 - 0.15	:	:
		:	:	:	:	7	:	:	:	:
		:	:	:	:	ت :	:	:	:	:
		:	:	:	:	:	:	:	:	:
	Titanium					X				
		:	:	:	:	<b>ر</b> :	:(	:	:	:
	Molybdenum						P			
		:	:	:	:	:	C	:	:	:
	(aN)									
		:	:		:	:		:	:	:
800.0-\$000					:	:		:	:	:
0.000	<u> </u>	:	:	0.01-0-10				::	:	:

(continued)	
<b>Requirements</b> ^A	
1 Chemical	
TABLE	

Low-Carbon Nickel- Nickel- Nickel- Nickel- Nickel- Chromium Alloy Alloy Alloy ONS N06219 N06219 N06219 N06219 N06219 O.05 0.05 0.05 0.05 0.010 0.08 0.010	. É SE	Nickel Chromium- Tungsten- Molybdenum Alloy UNS	Nickel- Chromium- Iron- Aluminum Alloy UNS	Nickel Chromium- Cobalt- Molybdenum Alloy	Nickel- Chromium- Molybdenum- Columbium Alloy UNS N06625	Nickel- Chromium- Iron Alloy UNS N06600	Nickel- Iron- Chromium- Tungsten Alloy
5/15/2		Nickel Chromium- Tungsten- Molybdenum Alloy UNS N06230	Nickel- Chromium- Iron- Aluminum Alloy UNS N06603	Nickel Chromium- Cobalt- Molybdenum Alloy	Nickel- Chromium- Molybdenum- Columbium Alloy UNS N06625	Nickel- Chromium- Iron Alloy UNS NO6600	Nickel- Iron- Chromium- Tungsten Alloy
NEX.	, E Ne FUIII	Chromium- Tungsten- Molybdenum Alloy UNS	Alloy UNS NO6603	Chonium- Cobalt- Molybdenum Alloy	Columbium Columbium Alloy UNS N06625	Nickel- Chromium- Iron Alloy UNS N06600	Trungsten Trungsten Alloy
E. Co	i ve full	Configuration Molybdenum Alloy UNS N06230	Controlling Inch Inch Inch Inch Inch Inch Inch Inch	Constitution Cobalt- Molybdenum Alloy	Ontollium Molybdenum- Columbium Alloy UNS N06625	Chromium- Iron Alloy UNS N06600	Chromium- Tungsten Alloy UNS
**O	ė ve fulli	Tungsten- Molybdenum Alloy UNS N06230	Iron- Aluminum Alloy UNS N06603	Cobalt- Molybdenum Alloy	Molybdenum- Columbium Alloy UNS N06625	Iron Alloy UNS N06600	Chromium- Tungsten Alloy UNS
*0	Le full	Molybdenum Alloy UNS N06230	Aluminum Alloy UNS N06603	Molybdenum Alloy	Columbium Alloy UNS N06625	Alloy UNS N06600 72.08 min	Tungsten Alloy UNS
0	Le full	Alloy UNS N06230	Alloy UNS N06603	Alloy	Alloy UNS N06625	UNS NO6600 72 0 ⁸ min	Alloy
	we full	UNS N06230	UNS N06603		UNS N06625	UNS N06600	SNO
	WE FULL	UNS N06230	UNS N06603		UNS N06625	UNS N06600 72.08 min	NNS
	WE FULL	N06230	N06603	GIVI	N06625	N06600	CNO
	WE FUIL	1400200	00000	NO6617	1400020	72 0 ^B min	NOGEZA
	ne full	c		1000	c	72 0g min	1000
0.57 0.57 0.05 0.05 0.07	S JIII	balance ^B	balance ^B	44.5 min	58.0 ² min	5.1	balance ^B
2.0- 0.55 0.03 0.70 0.70	SULL	:	0.5	0.5	:	0.5	:
0.50 0.00 0.77 0.00		3.0	8.0-11.0	3.0	5.0	6.0-10.0	20.0-27.0
0.00	7//	0.30-1.00	0.15	1.0	0.5	1.0	1.50
0.0	)	0.05_0.15	0.00.0	0.05_0.15	010	1 T	0 + 0
.0.0		0.00	0.50		5	5 0	
0.0		0.25-0.75	0.5	0.1	0.5	0.5	0.1
		0.015	0.010	0.015	0.015	0.015	0.015
18.0-20.0 18.0		20.0-24.0	24.0–26.0	20.0–24.0	20.0–23.0	14.0–17.0	21.5-24.5
0.50		0.50	2.4-3.0	0.8-1.5	0.4	:	:
0.50	0.50	Ö	0.01-0.25	9.0	0.4		0.05-0.20
					3 15 1 15		
:		:	:	:	55	:	:
18.0-20.0 7.0-	7.0-9.0	1.0-3.0		8.0-10.0	8.0–10.0	:	:
0.0	50	0.030	0.02	:	0.015	:	0:030
:		13.0-15.0	2	:	:	:	6.0-8.0
1.0		5.0	5	10.0 min-			
				15.0	•	•	•
			7	2			
:			~ ·	:	:	:	: 0
:		: 0	:	: 0	:	:	0.02
:		0.015	:	0.006	:	:	-50000
				6			0.000
:		0.005-0.050	:	1	:	:	:
		:		P	:	:	
:		:	;		:	:	:
							0.10-0.35
•		:		:	Q	:	0.00
					くら		
			:	:	3	:	:
1.5-2.2							
		: :	0.01-0.10	:	<b>1</b>	:	:
		: : :	0.01-0.10	: :	1 _C	: :	: :
			0.01-0.10	: :	1°	: :	: :
	10.00	0.020		0.030 13.0—15.0 5.0  0.005—0.050 	0.030 13.0—15.0 5.0  0.005—0.050 	13.0—15.0 10.0 min— 13.0—15.0 10.0 min— 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	13.0–15.0 10.0 min– 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15

			-wo						
Low- Carbon Nickel- Chromium- Molybdenum- Tungsten Alloy		Low- Carbon Nickel- Iron- Chromium- Copper Alloy	Carbon Nickel- Iron- Chromium- Molybdenum- Copper Alloy	Nickel- Iron- Chromium Alloy	Iron- Nickel- Chromium- Molybdenum- Nitrogen Alloy	Nickel- Iron- Chromium Alloy	Nickel-Iron- Chromium Alloy	Nickel-Iron- Chromium Alloy	Nickel- Iron- Chromium- Molybdenum- Copper Alloy
NNS N06686	06990N	UNS N08031	UNS N08034	UNS N08120	UNS N08367	UNS N08800	UNS N08810	UNS N08811	UNS N08825
Nickel remainder	58.0 ⁸ min	30.0–35.0	33.5–35.0	35.0–39.0	23.50–25.50	30.0–35.0	30.0–35.0	30.0–35.0	38.0–46.0
Copper	0.5	1.0–1.4	0.5–1.5	0.50	0.75	0.75	0.75	0.75	1.5–3.0
ganese	0.5	2.0	1.0-4.0	1.5	2.00	1.5	1.5	1.5	1.0
_	0.05	0.015	0.01	0.02-0.10	0.030	0.10	0.05-0.10	0.06-0.10	0.05
	0.5	0.3	0.1	1.0	1.00	1.0	1.0	1.0	0.5
Sulfur Chromium 19 0–23 0	0.015 27 0–31 0	0.010 0.80	0.000	0.03	0.030	0.015 19 0–23 0	0.015 19 0–23 0	0.015	0.03 19 5–23 5
	2 :	2 :	0.3	0.40	2 :	0.15-0.60	0.15-0.60	0.15-0.60	0.2
	:	:	:	0.20	:	0.15-0.60	0.15-0.60	0.15-0.60	0.6-1.2
Columbium	:	:	:	0.4-0.9	:	:	:	:	:
(Nb) + Tentaliim				C					
Mokhdeniim 15 0–17 0		6.0-7.0	0 2 0 9	0 50	8.00_7.00				0 5.3 5
	: :	0.020	0.020	0.040	0.040	: :	: :	: :	5.5
	: :	9	9	2.50		: :	: :	: :	: :
	: :	: :	: :	3.0	S	: :	: :	: :	: :
Vanadium	:	:	:	:	2	:	:	:	:
Nitrogen	:	0.15-0.25	0.10-0.25	0.15-0.30	0.18-0.25	:	:	:	:
	:	:	:	0.010	ر :	:	:	:	:
Aluminum	:	:	:	:		: <	:	0.00	:
Titanium +	:			:	:	: දුර	:	0.00.0	:
Nickel +	:	:	:	:	:	S	:	:	:
Molybdenum						C >			
Columbium	:	:	:	i	:		:	:	:
(gN)						<u> </u>			
	:	:	:	:	:		: <	:	:
=	:	:	:	:	:		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:	:
Ceridin	:	: :	:	: :	: :	: :	2	: :	: :

			IABLE	IABLE 1 Cnemical Requirements: (continued)	ellells (confina	90)			
Element	Nickel- Molybdenum- Chromium- Iron Alloy	denum	Low- Carbon Nickel- Molybdenum- Chromium	Nicke Molyl Chrol Iron Alloy	Nickel- Molybdenum Alloy	Nickel- Molybdenum Alloy	Nickel- Molybdenum Alloy	Nickel- Cobalt- Chromium- Silicon Alloy	Chromium- Nickel-Iron- Nitrogen Alloy
	UNS N10242	92	<b>ONS</b> M0362	UNS N10624	UNS N10629	UNS N10665	UNS N10675	UNS N12160	UNS R200033
Nickel	balance ^B	balance ^B	balance		balance	balance ^B	65.0 min	balance ^B	30.0–33.0
Copper Iron	2.0	-7.0	1.25		0.5 1.0–6.0	2.0	0.20 1.0–3.0	3.5	0.30–1.20 balance ^B
Manganese Carbon	0.80	1.0 0.010	0.60	0.1.0	1.5 0.010	1.0 0.02	3.0 0.01	1.5 0.15	2.0 0.015
Silicon	0.80	0.08	0.08		0.05	0.10	0.10	2.4–3.0	0.50
Chromium	7.0-9.0	14.5–16.5	13.8-15.6	6.010.0	0.5–1.5	1.0	1.0–3.0	26.0–30.0	31.0–35.0
Aluminum Titanium	0.50	: :	0.50	0.5	0.1–0.5	: :	0.50	0.20-0.80	: :
Columbium (Nb) +	:	:	:	P	:: ``	:	:	: :	:
Tantalum	040-080	15.0-17.0	21 5.23 0	010-050	300	08.0	07.0_32.0	<del>-</del>	0 6 0 0
Phosphorus	0.030	0.04	0.025	0.025	0.04	0.04	0.030	0:030	0.30-2.0
Tungsten Cobalt	1.00	3.0–4.5 2.5	: :	1.0	2.5	1.00	3.0 3.0	1.0 27.0–33.0	: :
Vanadium	:	0.35	:	:	7	:	0.20	:	: d
Boron	0.006	: :	: :	: :	٠٠ <b>٠</b> : :	: :	: :	: :	09:0-05:0
Lanthanum Aluminum +	:	: :	:	:	:	<b>?</b>	:	:	1
Titanium	:	Į.			i	P		I	ŧ
Nickel + Molybdenum	:	:	:	:	:		94.0–98.0	:	:
Columbium	i	i	i		i		0.20	1.0	:
Tantalum	:	:	:	i	ï	:	0.20	:	:
Zirconium Cerium	:	:	:	:	:	:		:	:
Yttrium	: :		: :	: :	: :	: :	7	: :	: :

799

TABLE 2 Mechanical Property Requirements^A

	TABLE 2 Mechanical Prope	erty Requirements		
Material and Condition	Maximum Section Thickness, in. (mm)	Tensile Strength, min, ksi (MPa)	Yield Strength, 0.2 % Offset, min, ksi (MPa)	Elongation in 2 in. or 50 mm or 4 <i>D</i> , min, %
Iron-nickel-chromium-molybdenum- nitrogen alloy UNS N08367, solution annealed		95 (655)	45 (310)	30
Low-carbon chromium-nickel-iron- nitrogen alloy UNS R20033, solution annealed Low-carbon nickel-chromium-		109 (750)	55 (380)	40
molybdenum alloy UNS N06035, solution annealed		85 (586)	35 (241)	40
alloy UNS N06044, solution annealed		100 (690)	45 (310)	30
alloy UNS N06058, solution annealed		110 (760)	52 (360)	40
alloy UNS N06059, solution annealed		100 (690)	45 (310)	45
Low-carbon nickel-chromium- molybdenum-copper alloy UNS N06200, solution annealed		100 (690)	45 (310)	45
Low-carbon nickel-chromium- molybdenum-tungsten alloy UNS N06686, solution annealed		100 (690)	45 (310)	45
Low-carbon nickel-iron-chromium- molybdenum-copper-alloy		94 (650)	40 (276)	40
UNS N08031, solution annealed UNS N08034, solution annealed		94 (650)	40 (280)	40
Low-carbon nickel-chromium- molybdenum alloy UNS N10276, solution annealed		100 (690)	41 (283)	40
Low-carbon nickel-chromium- molybdenum alloy UNS N06022, solution annealed		100 (690)	45 (310)	45
Low-carbon nickel-molybdenum- chromium UNS N10362, solution annealed	Jiew the full PDF of P	105 (725)	45 (310)	40
Low-carbon nickel-molybdenum- chromium-tantalum alloy UNS	K	100 (690)	45 (310)	45
N06210, solution annealed Nickel alloy UNS N02200, annealed	0	55 (380)	15 (105)	40
Nickel-cobalt-chromium-silicon alloy UNS N12160, solution annealed	الزرع	90 (620)	35 (240)	40
Nickel-chromium-cobalt-molybdenum alloy UNS N06617, annealed		95 (655)	35 (241)	35
Nickel-chromium-iron alloy UNS N06600, annealed	His	80 (552)	35 (241)	30
Nickel-chromium-iron-aluminum alloy UNS N06603, annealed	:.ew	94 (650)	43 (300)	25
Nickel-chromium-iron alloy UNS N06690, annealed		85 (586)	35 (241)	30
Nickel-chromium-iron-aluminum alloy UNS N06025, solution annealed	Up to 4 (102) Over 4 (102) to 12 (305) incl	98 (680) 84 (580)	39 (270) 39 (270)	30 15
Nickel-chromium-iron-silicon alloy		90 (620)	35 (240)	35
UNS N06045, solution annealed Nickel-chromium-molybdenum columbium alloy UNS N06625,	Up to 4 (102), incl Over 4 ^B (102) to 10 (254), incl	120 (827) 110 (758)	60 (414) 50 (345)	30 25
annealed Nickel-chromium-molybdenum-silicon alloy UNS N06219, solution		96 (660)	39 (270)	50
annealed Nickel-chromium-molybdenum- tungsten alloy UNS N06110,	Up to 4 (102), incl Over 4 (102) to 10 (254), incl	95 (655) 90 (621)	45 (310) 40 (276)	60 50
annealed Nickel-chromium-tungsten- nolybdenum alloy UNS N06230, solution annealed ^C		110 (758)	45 (310)	40
Nickel-copper alloy UNS N04400, annealed		70 (483)	25 (172)	35
Nickel-iron-chromium alloys: UNS N08120, solution annealed		90 (621)	40 (276)	30
UNS N08800, annealed UNS N08810 and UNS N08811,		75 (517)	30 (207)	30

TABLE 2 Continued

Material and Condition	Maximum Section Thickness, in. (mm)	Tensile Strength, min, ksi (MPa)	Yield Strength, 0.2 % Offset, min, ksi (MPa)	Elongation in 2 in. or 50 mm or 4 <i>D</i> , min, %
Nickel-iron-chromium-molybdenum- copper alloy UNS N08825, annealed		85 (586)	35 (241)	30
Nickel-iron-chromium-tungsten alloy UNS N06674, solution annealed C		86 (590)	34 (235)	30
Nickel-molybdenum alloy UNS N10665, solution annealed		110 (760)	51 (350)	40
Nickel-molybdenum alloy UNS N10675, solution annealed		110 (760)	51 (350)	40
Nickel-molybdenum alloy UNS N10629, solution annealed		110 (760)	51 (350)	40
Nickel-molybdenum-chromium-iron alloy UNS N10242, annealed		105 (725)	45 (310)	40
Nickel-molybdenum-chromium-iron alloy UNS N10624, annealed		104 (720)	46 (320)	40

A Forging quality is furnished to chemical requirements and surface inspection only.

### 12. Inspection

12.1 Inspection of the material by the purchaser shall be made as agreed upon between the purchaser and the seller as part of the purchase contract.

### 13. Rejection and Rehearing

13.1 Material, tested by the purchaser, that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 14. Certification

14.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested,

and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 15. Product Marking

M5.1 The material shall be marked legibly with the name of the material, this specification number, the heat number and condition, and such other information as may be defined in the contract or order.

### 16. Keywords

16.1 nickel alloy forgings

### SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and

Copper-Base Alloy Mill Products

S1.1.2 Military Standards:

MIL-STD-129 Marking for Shipment and Storage

S1.1.3 Military Specification:

MIL-C-3993 Packaging of Copper

MIL-STD-792 Copper-Base Alloy Mill Products

### S2. Chemical Composition

S2.1 UNS alloy N04400 shall conform to the composition limits specified in Table 1 except as specified in Table S2.1

**TABLE S2.1 Chemical Requirements** 

	-	
	Composition Limits, %	
Element	UNS 04400	
Carbon	0.2 max	
Sulfur	0.015 max	
Aluminum	0.5 max	
Lead	0.006 max	
Tin	0.006 max	
Zinc	0.02 max	
Phosphorous	0.02 max	

^B Over 4 to 10-in. (102 to 254-mm) diameter for parts machined from forged bar.

^C Solution annealed at a minimum temperature of 2150°F (1177°C) followed by a water quench or rapidly cooled by other means.

### S3. Mechanical Properties

S3.1 Mechanical property requirements for UNS alloy N04400 forgings in the hot finished and hot finished/high tensile conditions shall be as specified in Table S3.1

### S4. Number of Tests

S4.1 One tensile specimen is required for each forging greater than 250 pounds in as shipped weight.

### **S5.** Nondestructive Tests

S5.1 When specified by the purchaser, each piece of each lot shall be inspected. The purchaser shall specify if one or both tests are required.

S5.2 Ultrasonic Tests:

S5.2.1 *General Requirements*:

S5.2.1.1 Ultrasonic testing shall be performed in accordance with MIL-STD-271 as modified by the requirements specified herein. Testing shall be done by a longitudinal wave or shear wave technique as specified herein.

S5.2.1.2 Acoustic compatibility between the production material and the calibration standard material shall be within 75 %. If the acoustic compatibility is within 25 %, no gain compensation is required for the examination. If acoustic compatibility difference is between 25 % and 75 %, a change in the gain or dB controls shall be accomplished to compensate for the differences in acoustic compatibility. This method cannot be used if the ultrasonic noise level exceeds 50 % of the rejection value.

S5.2.2Calibration:

S5.2.2.1 Shear Wave—The shear wave test shall be calibrated on two notches, one notch cut into the inside and one into the outside surface. The notches shall be cut axially and shall have a depth of 5 % of the material thickness of  $\frac{1}{4}$  in (6.4 mm), whichever is less. Notch length shall not exceed 1 in. (25.4 mm). Notches shall be made either in the piece to be examined or in a separate defect-free specimen of the same size (within  $\pm \frac{1}{8}$  in. (3.18 mm), shape, material, and condition, or acoustically similar material. The position and amplitude of the response from each notch shall be marked on the instrument screen or a transparent overly, and these marks shall be used as the evaluation reference. Indications that appear between these points shall be evaluated on the basis of a straight line joining the two peak amplitudes.

S5.2.2.2 Longitudinal Wave—The longitudinal wave test shall be calibrated on a flat-bottomed reference hole of a given diameter in accordance with Table S5.1 for specified material thickness drilled either into the piece to be tested or into a separate defect free specimen of the same size (within  $\pm \frac{1}{8}$  in

TABLE S5.1 Ultrasonic Testing Reference Hole for Rod, Bar, Disc, Pancake Forgings, and Forgings

Material Thickness, in. (mm)	Hole Diameter, in. (mm)
Up to and including 6 (152)	1/8 5(3.18)
Over 6 (152) and including 16 (406)	1/4 (6.4)
Over 16 (406)	As agreed upon

(3.18 mm), shape, material, and condition, or acoustically similar material. Holes are to be drilled to midsection and the bottom of the hole shall be parallel to the entrant surface. The ultrasonic test instrument shall be adjusted so that the response from the reference hole shall not be less than 25 % and not more than 75 % of screen height.

S5.2.2.3 Recalibration—During quality conformance inspection, any realignment of the search unit that will cause a decrease in the calibrated sensitivity and resolution, or both, or any change in search unit, couplant, instrument settings, or scanning speed from that used for calibration shall require recalibration. Recalibration shall be performed at least once per 8-h shift.

S5.2.3 *Procedure* Paragraphs S 5.2.3.1 through S5.2.3.4 describe the requirements for rod, bar, and simple forged shapes.

S5.2.3.1 Rod—Rod shall be testing using the longitudinal wave technique. The scanning path shall be circumferential or helical with the beam directed along a radius of the rod.

\$5.2.3.2 Bar—Bar shall be tested using the longitudinal wave technique through one side of each pair of parallel sides (thickness and width only).

S5.2.3.3 Ring and Hollow Round Products—Rings and other hollow cylindrical products shall be tested using the shear wave method by the contact or immersion technique. The shear wave entrant angle shall be such to ensure reflection from the notch or notches used in calibration. For contact testing, the search unit shall be fitted with a wedge or shoe machined to fit the curvature of the piece being inspected. The product also shall be inspected with a longitudinal wave test from the external circumferential and end surfaces.

S5.2.3.4 *Disc or Pancake Forgings*—Disc or pancake forgings shall be inspected with a longitudinal wave technique from both parallel surfaces.

S5.2.4 Acceptance Criteria:

S5.2.4.1 *Shear Wave*—Any material that produces indications equal to or larger than the response from the reference notch or higher than the straight line joining the two peak amplitudes shall be rejected.

TABLE S3.1 Mechanical Properties of UNS N04400 Forgings

Condition and Diameter Between Parallel Surfaces, in. (mm)	Tensile Strength, min, psi (Mpa)	Yield Strength, min, psi (Mpa) (0.2% offset)	Elongation in 2 in. or 50 mm, or 4D, min, %
Hot Finished -to 12 (305)	80 000 (552)	40 000 (276)	30
Hot Finished -over 12 (305)	75 000 (517)	40 000 (276)	30
Hot Finished/High Tensile - Rounds 3 to 6 (76 to 152) inclusive	95 000 (655)	70 000 (483)	20
Hot Finished/High Tensile - Rounds over 6 to 12 (152 to 305) and hex, squares, and flats 3 to 12 (76 to 305)	85 000 (586)	60 000 (414)	25

S5.2.4.2 Longitudinal Wave—Any material that produces indications equal to or larger than the response from the reference hole, or that produces a complete loss of back reflection shall be rejected. Material shall be tested using a square, rectangular, or circular transducer having an effective area of one square inch or less, but no dimension shall be smaller than the diameter of the reference hole. In the event of disagreement on the degree of back reflection loss, it shall be determined by the contact method using a 1 to 1½ in. (25.4 to 28.6 mm) diameter transducer or one whose area falls within this range.

S5.2.4.3 *Reference Notch Removal*—If reference notches or flat-bottomed holes are made in the material to be tested, they shall be so located than their subsequent removal will not impair the suitability of the material for its intended use.

\$5.3 Liquid Penetrant Inspection:

S5.3.1 *Procedure*—Liquid penetrant inspection shall be in accordance with MIL-STD-271.

S5.3.2 *Surface Requirements*—The surface produced by hot working is not suitable for liquid penetrant testing Therefore, liquid penetrant testing will not be applicable to products ordered with a hot finished surface.

S5.3.3 Acceptance Criteria—Linear defects revealed by liquid penetrant inspection shall be explored by grinding or other suitable means. Depth of defects shall not exceed the dimensional tolerance of the material.

### **S6.** Quality Assurance

S6.1 Responsibility for Inspection:

S6.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspections and test requirements specified. Except as otherwise specified in the contract or purchase order, the

manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

### S7. Identification Marking

S7.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used. In addition, the method and location of marking shall be in accordance with MIL-STD-792. Forging stock shall be marked with low stress die stamps or vibroetching.

### S8. Preparation for Delivery

S8.1 Preservation, Packaging, and Packing:

S8.1.1 *Military Agencies*—The material shall be separated by size, composition, grade, or class, and shall be preserved and packaged level A or C, and packed Level A, B, or C as specified in the contract or purchase order.

S8.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions for the various levels of packaging protection.

\$8.2 *Marking*:

38.2.1 *Military Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S8.2.2 *Civil Agencies*—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# SB-572 (Identical with ASTM Specification B572-06(2011) except that E527 was removed from References, and certification have been made mandatory.)



### Standard Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Rod

### 1. Scope

- 1.1 This specification covers alloys UNS N06002, UNS N06230, UNS N12160, and UNS R30556 in the form of rod for heat resisting and general-corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Rods 5/16 to 3/4 in. (7.94 to 19.05 mm) exclusive in diameter, hot or cold finished, solution-annealed, and pickled or mechanically descaled.
- 1.2.2 Rods 3/4 to 31/2 in. (19.05 to 88.9 mm) inclusive in diameter, hot or cold finished, solution annealed, ground, or turned.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

2.1 ASTM Standards:

SWENORMOC. COM. Click to view B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (WS)

E1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 rod, n-product of round solid section furnished in straight lengths.

### 4. Ordering Information

- 4.1 K is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 4.1.1 *Alloy*,
- 4.1.2 Dimensions-Nominal diameter and length. The shortest useable multiple length should be specified (Table 1),
- 4.1.3 Certification—State if certification or a report of test results is required (Section 16).
- 4.1.4 Purchaser Inspection—State which tests or inspections are to be witnessed (Section 13), and
- 4.1.5 Samples for Product (Check) Analysis—State whether samples should be furnished (9.2.2).

### 5. Chemical Composition

- 5.1 The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- 5.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 2 subject to the permissible tolerances in Specification B880.

### 6. Mechanical and Other Requirements

6.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 3.

**TABLE 1 Permissible Variations in Length of Rods** 

	· · · · · · · · · · · · · · · · · · ·
Random mill lengths	2 to 12 ft (610 to 3660 mm) long with not more than 25 weight % under 4 ft (1.22 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above.  For each multiple, an allowance of ½ in. (6.35 mm) shall be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed.
Cut lengths	A specified length to which all rods shall be cut with a permissible variation of + ½ in.  (3.17 mm) – 0.

**TABLE 2 Chemical Requirements** 

Element	Composition Limits, %			
Element	UNS N06002	UNS N06230	UNS N12160	UNS R30556
Nickel	remainder ^A	remainder ^A	remainder ^A	19.0-22.5
Iron	17.0-20.0	3.0 max	3.5 max	remainder ^A
Chromium	20.5-23.0	20.0-24.0	26.0-30.0	21.0-23.0
Cobalt	0.5-2.5	5.0 max	27.0-33.0	16.0-21.0
Molybdenum	8.0-10.0	1.0-3.00	1.0 max	2.5-4.0
Tungsten	0.2-1.0	13.0-15.0	1.0 max	2.0-3.5
Carbon	0.05-0.15	0.05-0.15	0.15 max	0.05-0.15
Silicon	1.00 max	0.25-0.75	2.4-3.0	0.20-0.80
Manganese	1.00 max	0.30-1.00	1.5 max	0.50-2.00
Phosphorus	0.04	0.030 max	0.030 max	0.04 max
Sulfur	0.03	0.015 max	0.015 max	0.015 max
Columbium			1.0 max	0.30 max
Tantalum				0.30-1.25
Aluminum		0.50 max		0.10-0.50
Zirconium				0.001-0.10
Lanthanum		0.005-0.050		0.005-0.10
Nitrogen				0.10-0.30
Boron		0.015 max		0.02 max
Titanium			0.20-0.80	, O

^A See 12.1.1.

**TABLE 3 Mechanical Property Requirements** 

		X	
	Tensile	Yield Strength	Elongation in
UNS	Strength, min,	(0.2 % Offset),	2 in. (50.8mm) or
0110	ksi (MPA)	min, ksi (MPa)	$4D^{A}$
	, ,	· N	min, %
N06002	95 (660)	35 (240)	35
N06230 ^B	110 (760)	45 (310)	40
N12160 ^C	90 (620)	35 (240)	40
R30556 ^D	100 (690)	45 (310)	40

A D refers to the diameter of the tension specimen.

6.2 Grain Size—Annealed alloy (UNS N12160) shall contour to an average grain size of ASTM Number 5 or coarser.

### 7. Dimensions, Mass, and Permissible Variations

- 7.1 *Diameter*—The permissible variations from the specified diameter shall be as prescribed in Table 4.
- 7.2 Out-of-Roundness—The permissible variation in roundness shall be as prescribed in Table 4.

- 7.3 *Machining Allowances*—When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations:
- 7.3.1 As-finished (Annealed and Descaled)—For diameters of 5/16 to 11/16 in. (7.94 to 17.46 mm) inclusive, an allowance of 1/16 in. (1.59 mm) on the diameter should be made for finish machining.

### 7.4 Length:

- 7.4.1 Unless multiple, nominal, or cut lengths are specified, random mill lengths shall be furnished.
- 7.4.2 The permissible variations in length of multiple, nominal, or cut length rod shall be as prescribed in Table 1. Where rods are ordered in multiple lengths (a) 4-in. (6.35-mm) length addition shall be allowed for each uncut multiple length.

### 7.5 *Ends*:

- 7.5.1 Rods ordered to random or nominal lengths shall be furnished with either cropped or sawed ends.
- 7.5.2 Rods ordered to cut lengths shall be furnished with square saw cut or machined ends.
- 7.6 Weight—For calculations of mass or weight, the following densities shall be used:

Alloy	Density	
$C_{1}$	lb/in.3	(g/cm ³ )
N06002	0.297	(8.23)
N06230	0.324	(8.97)
N12160	0.292	(8.08)
R30556	0.297	(8.23)

Straightness—The maximum curvature (depth of chord) shall not exceed 0.050 in. multiplied by the length of the chord in feet (0.04 mm multiplied by the length in centimetres).

### 8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, and free of injurious defects.

### 9. Sampling

- 9.1 Lots for Chemical Analysis and Mechanical Testing:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot of bar for mechanical testing shall be defined as the material from one heat in the same condition and specified diameter.
  - 9.2 Sampling for Chemical Analysis:
- 9.2.1 A representative sample shall be obtained from each heat during pouring or subsequent processing.
- 9.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 9.3 Sampling for Mechanical Testing—A representative sample shall be taken from each lot of finished material.

### 10. Number of Tests and Retests

- 10.1 Chemical Analysis, One test per heat.
- 10.2 Tension Tests—One test per lot.
- 10.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

^B Solution annealed at a temperature between 2200 to 2275°F (1204 to 1246°C) followed by a water quench or rapidly cooled by other means.

^C Solution annealed at 1950°F (1065°C) minimum.

^D Solution annealed at 2100°F (1150°C) minimum.

Permissible Variations, in. (mm) Specified Diameter, in. (mm) Diameter Out of Roundness, max Hot-Finished, Annealed, and Descaled Rods 5/16 to 7/16 (7.94-11.11), incl 0.012 (0.30) 0.012 (0.30) 0.018 (0.46) 0.014 (0.36) Over 7/16 to 5/8 (11.11-15.87), incl 0.014 (0.36) 0.020 (0.51) Over 5/8 to 3/4 (15.87-19.05), excl 0.016 (0.41) 0.016 (0.41) 0.024 (0.61) Hot-Finished, Annealed, and Ground or Turned Rods 3/4 to 31/2 (19.05-88.9), incl 0.010 (0.25) 0.008 (0.20)

TABLE 4 Permissible Variations in Diameter and Out-of-Roundness of Finished Rods

### 11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material after final heat treatment and tested in the direction of fabrication.
- 11.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8.
- 11.3 In the event of disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8.

### 12. Test Methods

- 12.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM methods:
- 12.1.1 *Chemical Analysis*—Test Methods E1473. For elements not covered by Test Methods E1473, the referee method shall be as agreed upon between the manufacturer and the purchaser. The composition of the remainder element shall be determined arithmetically by difference.
  - 12.1.2 Tension Test—Test Methods E8.
  - 12.1.3 Method of Sampling—Practice E55.
  - 12.1.4 Determining Significant Places—Practice E29.
- 12.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29:

Requirements

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerance

nearest unit in the last right-hand place of figures of the specified limit

Tensile strength and yield strength Elongation

nearest 1000 psi (7 MPa) nearest 1 %

### 13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

### 14. Rejection and Rehearing

14.1 Material, tested by the purchaser, that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 16. Product Marking

- 16.1 Each piece of material ½ in. (12.7 mm) and over in diameter shall be marked with this specification number alloy, name of the material, and size of the product.
- 16.2 Each bundle or shipping container shall be marked with the name of the material; this specification number alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

### 17. Keywords

17.1 rod; N06002; N06230; N12160; R30556

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc. com. chek to her the full poly of a sent above.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

(23)

# SPECIFICATION FOR NICKEL-MOLYBDENUM-CHROMIUM-IRON ALLOYS (UNS N10003, N10242) ROD



SB-573 BPVC.II.P

(Identical with ASTM Specification B573-06(2015) except that certification and test reports have been made mandatory.)

(Identical with ASTM Specification B573-06(2015) except that certification and test reports have been made mandatory.)

(Identical with ASTM Specification B573-06(2015) except that certification and test reports have been made mandatory.)

### Specification for Nickel-Molybdenum-Chromium-Iron Alloys (UNS N10003, N10242) Rod

### 1. Scope

- 1.1 This specification covers nickel-molybdenumchromium-iron alloys (UNS N10003 and UNS N10242) rod for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Rods  $\frac{5}{16}$  to  $\frac{3}{4}$  in. (7.94 to 19.05 mm) excl in diameter, hot or cold finished, annealed, and pickled or mechanically
- 1.2.2 Rods  $\frac{3}{4}$  to  $\frac{3}{2}$  in. (19.05 to 88.9 mm) incl in diameter. hot or cold finished, annealed, ground, or turned.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

2.1 ASTM Standards:

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Allovs

E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E1473 Test Methods for Chemical Analysis of Nickel, Co-SWEWO SWILL OC. COM balt and High-Temperature Alloys

### 3. Terminology

- straight lengths.

### 4. Ordering Information

- Terminology

  3.1 Definitions of Terms Specific to This Standard

  3.1.1 rod, n—a product of round solid section furnical aight lengths.

  Ordering Information

  1 It is the recruirement requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include but are not limited to the following:
- 4.1.1 Dimensions—Nominal diameter and length. The shortest usable multiple length shall be specified (Table 1).
- 4.1.2 Certification—State if certification or a report of test results is required (Section 15).
- 4.1.3 Purchaser Inspection—State which tests or inspections are to be witnessed (Section 13).
- 4.1. Samples for Product (Check) Analysis—State whether samples shall be furnished (9.2.2).

### 5. Chemical Composition

- 5.1 The material shall conform to the requirements as to chemical composition prescribed in Table 2.
- 5.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 2 subject to the permissible tolerances in Specification

### 6. Mechanical Properties and Other Requirements

6.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 3.

### 7. Dimensions and Permissible Variations

7.1 Diameter—The permissible variations from the specified diameter shall be as prescribed in Table 4.

TABLE 1 Permissible Variations in Length of Rods

Random mill lengths	2 to 12 ft (610 to 3660 mm) long with not more than 25 weight % under 4 ft (1.22 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of ¼ in. (6.35 mm) shall be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths Cut lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed. A specified length to which all rods shall be cut with a permissible variation of + ½ in. (3.17 mm) – 0.

**TABLE 2 Chemical Requirements** 

Element	Composition, %	
Element	UNS N10242	UNS N10003
Chromium	7.0-9.0	6.0-8.0
Iron, max	2.0	5.0
Carbon	0.03 max	0.04-0.08
Silicon, max	0.80	1.00
Cobalt, max	1.00	0.20
Manganese, max	0.80	1.00
Tungsten, max		0.50
Vanadium, max		0.50
Molybdenum	24.0-26.0	15.0-18.0
Phosphorus, max	0.030	0.015
Sulfur, max	0.015	0.020
Aluminum plus titanium, max		0.50
Copper, max	0.50	0.35
Boron, max	0.006	0.010
Nickel	remainder	remainder
Aluminum, max	0.50	

**TABLE 3 Mechanical Property Requirements** 

	UNS	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 % Offset), min, ksi (MPa)	Elongation in 2 in. (50.8 mm) or 4D ^A min, %
	N10003 N10242	100 000(690)	40 000(280)	35
_	N10242	105 000(725)	45 000(310)	40

- ^A 4D— D refers to the diameter of the tension specimen.
- 7.2 Out-of-Roundness—The permissible variation in roundness shall be as prescribed in Table 4.
- 7.3 Machining Allowances. When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations:
- 7.3.1 As-finished (Annealed and Descaled)—For diameters of 5/16 to 11/16 in. (7.94 to 17.46 mm) incl, an allowance of 1/16 in. (1.59 mm) on the diameter should be made for finish machining.
  - 7.4 Length:
- 7.4.1 Unless multiple, nominal, or cut lengths are specified, random mill lengths shall be furnished.
- 7.4.2 The permissible variations in length of multiple, nominal, or cut length rod shall be as prescribed in Table 1. Where rods are ordered in multiple lengths, ½ in. (6.35 mm) length addition shall be allowed for each uncut multiple length.
  - 7.5 *Ends*:
- 7.5.1 Rods ordered to random or nominal lengths shall be furnished with either cropped or sawed ends.

- 7.5.2 Rods ordered to cut lengths shall be furnished with square saw cut or machined ends.
- 7.6 Weight—For calculation of mass or weight, the following densities shall be used:

Alloy	lb/in ³	g/cm ³
N10003	0.317	8.78
N10242	0.327	9.05

7.7 Straightness—The maximum curvature (depth of chord) shall not exceed 0.050 in. multiplied by the length of the chord in feet (0.04 mm multiplied by the length in centimetres).

### 8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, and free of injurious imperfections.

### 9. Sampling

- 9.1 Lots for Chemical Analysis and Mechanical Testing:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot of bar for mechanical testing shall be defined as the material from one heat in the same condition and specified diameter.
  - 9.2 Sampling for Chemical Analysis:
- 9.2.1 A representative sample shall be obtained from each heat during pouring or subsequent processing.
- 9.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
- Sampling for Mechanical Testing—A representative sample shall be taken from each lot of finished material.

### 10. Number of Tests and Retests

- 10.1 Chemical Analysis—One test per heat.
- 10.2 Tension Tests—One test per lot.
- 10.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

### 11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material after final heat-treatment and tested in the direction of fabrication.
- 11.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8.
- 11.3 In the event of disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8.

### 12. Test Methods

- 12.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM methods:
  - 12.1.1 Chemical Analysis—Test Methods E1473.
  - 12.1.2 Tension Test—Test Methods E8.
  - 12.1.3 Determining Significant Places—Practice E29.

TABLE 4 Permissible Variations in Diameter and Out-of-Roundness of Finished Rods

		Permissible Variations, in. (mm)	
Specified Diameter, in. (mm)	Diameter		Out of Doundress may
	Plus	Minus	Out of Roundness, max
	Hot-Finished, Anneale	d, and Descaled Rods	
√16 to √16 (7.94 to 11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over 7/16 to 5/8 (11.11 to 15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)
Over 5/8 to 3/4 (15.87 to 19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)
	Hot-Finished, Annealed, a	nd Ground or Turned Rods	
3/4 to 31/2 (19.05-88.9), incl	0.010 (0.25)	0	0.008 (0.20)

12.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29:

Requirements

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerance nearest unit in the last right-hand place

Tensile strength and yield strength Elongation

nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (7 MPa) nearest 1 %

### 13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

### 14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 16. Product Marking

- 16.1 Each piece of material ½ in. (12.7 mm) and over in diameter shall be marked with this specification number, name of the material, and size of the product.
- 16.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

### 17. Keywords

▶17.1 rod; UNS N10003; UNS N10242

APPENDIX

(Nonmandatory Information)

X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance, and the manufacturer shall be consulted for details.

SPECIFICATION FOR LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM, LOW-CARBON NICKEL-MOLYBDENUM-CHROMIUM, LOW-CARBON NICKEL-MOLYBDENUM-CHROMIUM-TANTALUM, LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM-COPPER, AND LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM-TUNGSTEN ALLOY ROD



SB-574

(Identical with ASTM Specification B574-17 except that certification and test reports have been made mandatory.)

Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

# 1. Scope

- 1.1 This specification covers rod of low-carbon nickel-chromium-molybdenum alloys (UNS N10276, N06022, N06035, N06044, N06455, N06058, and N06059), low-carbon nickel-molybdenum-chromium (USN N10362), low-carbon nickel-molybdenum-chromium-tantalum (UNS N06210), low-carbon nickel-chromium-molybdenum-copper alloy (UNS N06200), and low-carbon nickel-chromium-molybdenum-tungsten (UNS N06686) as shown in Table 1, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Rods  $\frac{5}{16}$  to  $\frac{3}{4}$  in. (7.94 to 19.05 mm), exclusive, in diameter, hot or cold finished, solution annealed and pickled, or mechanically descaled.
- 1.2.2 Rods ³/₄ to 3½ in. (19.05 to 88.9 mm), inclusive, in diameter, hot or cold finished, solution annealed, ground or turned.
- 1.2.3 Rods ½ to 3½ in. (6.35 to 88.9 mm), inclusive, in diameter, solution annealed, cold finished, as cold finished, ground or turned (N06059 and N06686 only, see Table 2 and Table 3).
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, ossociated with its use. It is the

responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations (study by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

# 2. Referenced Documents

ASTM Standards:

- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

# 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *rod*, *n*—a product of round solid section furnished in straight lengths.

4		
1		
3	1	
3		
3		
3		
į		
ć	1	
	I	
7		
ì	ľ	
7		
3		
į		
ē		
_		
Ľ		
ч		
7	7	
ì		
٠		
1	١	

	I I									I
		Alloy N06686	15.0-17.0 19.0-23.0 5.0 max	3.0-4.4	0.010 0.08 0.75	0.04	0.02		: :	
		Alloy N06210	18.0–20.0 18.0–20.0 1.0 max	1.0	0.015 0.08 0.5	0.35	0.02		1.5–2.2	ASME BRYC Section II Part B)
		Alloy N10362	21.5-23.0 13.8-15.6 1.25 max	1 1	0.010 0.08 0.60	0.025	0.010	0.50 max	: :	Section
		Alloy N06200	15.0–17.0 22.0–24.0 3.0 max	 2.0 max	0.010 0.08 0.5	0.025	0.010	0.50 max 1.3–1.9	: :	CANE BRUC
	%	Alloy N06058	18.5–21.0 20.0- 23.0 1.5, max	0.3 max 0.3 max	0.010 0.10 0.5	0.015	0.010 	0,40 max 0.50 max	0.02-0.15	(AS)
Requirements	Composition Limits, %	Alloy N06059	15.0–16.5 22.0–24.0 1.5, max	0.3	0.010 0.10	0.00	0.010	0.1–0.4 0.50 max	: :	
TABLE 1 Chemical Requirements	CO	Alloy N06455	14.0–17.0 14.0–18.0 3.0 max	C.	0.015			:: : : : : : : : : : : : : : : : : : :	: :	
7 X TABI	0	Alloy N06022	12.5–14.5 20.0–22.5 2.0–6.0	2.5–3.5 2.5	0.015 0.08 0.50	0.35	0.02 	:: :: :: :: :: : : : : : : : : : :	: :	
clickto view		Alloy N10276	15.0–17.0 14.5–16.5 4.0–7.0	3.0–4.5 2.5	0.010 0.08 1.0	0.35	0.03	:: :: :: :: :: :: :: :: :: :: :: ::	: :	
COWI.C.		Alloy N06044	0.80-1.20 43.5-45.3 0.3 max	1 1	0.02 0.20 0.07-0.30	0.020	0.020 0.10-0.30	0.30 max 	: :	
ORMDOC.		Alloy N06035	7.60-9.00 32.25-34.25 2.00 max	0.60 max 1.00	0.050 0.60 0.50	0.20	0.015	0.40 max	: :	
EMORNIDOC. COM. Click to view to		Element	Molybdenum Chromium Iron	Tungsten Cobalt, max	Carbon, max Silicon, max Manganese, max	Vanadium, max Phosphorus, max	Sulfur, max Titanium	Aluminum Copper	Tantalum Nitrogen	⁴ See 12.1.1.
	•				817					•

TABLE 2 Permissible Variations in Diameter and Out-of-Roundness of As Cold Finished Rods

		Permissible Variations, in. (mm)				
Specified Diameter, in. (mm)	Diam	Diameter				
	+	_	<ul><li>Out of Roundness, max</li></ul>			
1/4 -7/16 (6.35-11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)			
Over 7/16 -5/8 (11.11-15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)			
Over 5/8 -3/4 (15.87-19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)			
³ / ₄ -3 ¹ / ₂ (19.05-88.9), incl	0.010 (0.25)	0.010 (0.25)	0.010 (0.25)			

# TABLE 3 Mechanical Property Requirements for As Cold Finished Rods

Alloy	Grade	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. (50.8 mm) or 4D ⁴ min, 3
N06059	1	120 (827)	85 (586)	20
	2	135 (931)	125 (862)	20
	3	160 (1103)	150 (1034)	<b>C</b> 15
N06686	1	120 (827)	85 (586)	20
	2	135 (931)	125 (862)	20
	3	160 (1103)	150 (1034)	20

 $[\]overline{^{A}D}$  refers to the diameter of the tension specimen.

TABLE 4 Permissible Variations in Diameter and Out-of-Roundness of Hot or Cold Finished, Solution Annealed Rods

		Permissible Variations, in. (mm	1)					
Specified Diameter, in. (mm)	Dia	Diameter						
	+	14.	<ul> <li>Out of Roundness, max</li> </ul>					
5/16 Hot-Finished, Annealed, and Descaled Rods								
5/16 -7/16 (7.94-11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)					
Over 7/16 -5/8 (11.11-15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)					
Over 5/8 -3/4 (15.87-19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)					
Hot-Finished, Annealed, and Ground or Turred Rods								
3/4 -31/2 (19.05-88.9), incl	0.010 (0.25)	0	0.008 (0.20)					

TABLE 5 Mechanical Property Requirements for Hot or Cold Finished, Solution Annealed Rods

Alloy	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. (50.8 mm) or 4 <i>D</i> ^A min, %
N10276	100 000 (690)	41 000 (283)	40
N06022	100 000 (690)	45 000 (310)	45
N06035	85 000 (586)	35 000 (241)	30
N06044	100 000 (690)	45 000 (310)	30
N06455	100 000 (690)	40 000 (276)	40
N06058	110 000 (760)	52 000 (360)	40
N06059	100 000 (690)	45 000 (310)	45
N06200	100 000 (690)	45 000 (310)	45
N10362	105 000 (725)	45 000 (310)	40
N06686	100 000 (690)	45 000 (310)	45
N06210	100 000 (690)	45 000 (310)	45

A D refers to the diameter of the tension specimen.

# 4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 4.1.1 *Alloy*—Table 1.
- 412 Dimensions—Nominal diameter and length. The hortest usable multiple length should be specified (Table 4).
- 4.1.3 *Certification*—Certification and a report of test results are required (Section 15).
- 4.1.4 *Purchaser Inspection*—State which tests or inspections are to be witnessed (Section 13).

4.1.5 Samples for Product (Check) Analysis—State whether samples should be furnished (9.2.2).

# 5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 1.
- 5.2 If a product (check) analysis is made by the purchaser, the material shall conform to the product (check) analysis variations per Specification B880.

# 6. Mechanical Properties and Other Requirements

6.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 3 and Table 5.

# 7. Dimensions and Permissible Variations

- 7.1 *Diameter*—The permissible variations from the specified diameter shall be as prescribed in Table 2 and Table 4.
- 7.2 Out of Roundness—The permissible variation in roundness shall be as prescribed in Table 2 and Table 4.
- 7.3 *Machining Allowances*—When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations.
- 7.3.1 As-finished (Annealed and Descaled)—For diameters of 5/16 to 11/16 in. (7.94 to 17.46 mm) inclusive, an allowance of 1/16 in. (1.59 mm) on the diameter should be made for finish machining.
  - 7.4 Length:
- 7.4.1 Unless multiple, nominal, or cut lengths are specified, random mill lengths shall be furnished.
- 7.4.2 The permissible variations in length of multiple, nominal, or cut length rod shall be as prescribed in Table 6. Where rods are ordered in multiple lengths, a ¼-in. (6.35-mm) length addition shall be allowed for each uncut multiple length.
  - 7.5 *Ends*:
- 7.5.1 Rods ordered to random or nominal lengths shall be furnished with either cropped or sawed ends.
- 7.5.2 Rods ordered to cut lengths shall be furnished with square sawcut or machined ends.
- 7.6 Weight—For calculations of mass or weight, the following densities shall be used:

Alloy	Densit	y . <b>Q Y</b>
-	lb/in. ³	g/cm ³
N10276	0.321	8.87
N06022	0.314	8.69
N06035	0.296	8.18
N06044	0.287	7.97
N06455	0.312	8.64
N06058	0.318	8.80
N06059	0.311	8.60
N06200	0.307	8.50
N10362	<b>0</b> 319	8.83
N06686	0.315	8.73
N06210	0.316	8.76

# TABLE 6 Permissible Variations in Length of Rods

Random mill lengths	2 to 12 ft (610 to 3660 mm) long with not more than 25 weight % under 4 ft (1.22 m).
Multiple lengths	Furnished in multiples of a specified unit length, within
1000	the length limits indicated above. For each multiple, an allowance of ½ in. (6.35 mm) shall be made for cutting, unless
MIL	otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed.
Cut lengths	A specified length to which all rods shall be cut with a permissible variation of ±1/6 in. (3.17 mm) = 0

7.7 Straightness—The maximum curvature (depth of chord) shall not exceed 0.050 in. multiplied by the length of the chord in feet (0.04 mm multiplied by the length in centimetres).

# 8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, and free of injurious imperfections.

# 9. Sampling

- 9.1 Lots for Chemical Analysis and Mechanical Testing:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot of bar for mechanical testing shall be defined as the material from one heat in the same condition and specified diameter.
  - 9.2 Sampling for Chemical Analysis:
- 9.2.1 A representative sample shall be obtained from each heat during pouring or subsequent processing.
- 9.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
- 9.3 Sampling for Mechanical Testing—A representative sample shall be taken from each lot of finished material.

# 10. Number of Tests and Retests

- 10.1 Chemical Analysis—One test per heat.
- 10.2 Tension Tests—One test per lot.
- 10.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

# 11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material after final heat-treatment and tested in the direction of fabrication.
- 11.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8.
- 11.3 In the event of disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8.

# 12. Test Methods

- 12.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM methods:
- 12.1.1 *Chemical Analysis*—Test Methods E1473, For elements not covered by Test Methods E1473, the referee method shall be as agreed upon between the manufacturer and the purchaser. The nickel composition shall be determined arithmetically by difference.
  - 12.1.2 Tension Test—Test Methods E8.
  - 12.1.3 Method of Sampling—Practice E55.
  - 12.1.4 Determining Significant Places—Practice E29.

12.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29:

Requirements

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerances
Tensile strength and yield strength
Elongation

nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (7 MPa)

nearest 1 %

# 13. Inspection

13.1 Inspection of the material shall be made as agreed upon by the manufacturer and the purchaser as part of the purchase contract.

# 14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

# 15. Certification

15.1 A manufacturer's certification shall be furnished to the

purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

# 16. Product Marking

16.1 Each piece of material ½ in. (12.7 mm) and over in diameter shall be marked with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.

16.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare and net weight; consignor and consignee address; contract or order number, and such other information as may be defined in the contract or order.

# 17. Keywords

17.1 N06022; N06035; N06044; N06058; N06059; N06200; N06210; N06455; N06686; N10276; N10362; rod

APPENDE

(Nonmandatory Information)

X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequency fabrication is necessary for optimum performance and the manufacturer shall be consulted for details.

SPECIFICATION FOR LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM, LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM-COPPER, LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM-TANTALUM, LOW-CARBON NICKEL-CHROMIUM-MOLYBDENUM-TUNGSTEN, AND LOW-CARBON NICKEL-MOLYBDENUM-CHROMIUM ALLOY PLATE, SHEET, AND STRIP



(Identical with ASTM Specification B575-17 except that certification and test reports have been made mandatory.)

Specification for

Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

# 1. Scope

- 1.1 This specification covers plate, sheet, and strip of low-carbon nickel-chromium-molybdenum alloys (UNS N10276, N06022, N06455, N06035, N06044, UNS N06058, UNS N06059), low-carbon nickel-chromium-molybdenum-copper alloy (UNS N06200), low-carbon nickel-molybdenum-chromium (UNS N10362), low-carbon nickel-chromium-molybdenum-tantalum alloy (UNS N06210), and low-carbon nickel-chromium-molybdenum-tungsten alloy (UNS N06686) as shown in Table 1, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 *Sheet and Strip*—Hot or cold rolled, solution annealed, and descaled unless solution anneal is performed in an atmosphere yielding a bright finish.
- 1.2.2 *Plate*—Hot or cold rolled, solution annealed, and descaled.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided

by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

# 2. Referenced Documents

2.1 ASTM Standards:

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip £112 Test Methods for Determining Average Grain Size

E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

# 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *cold-rolled plate,* n—material  $\frac{3}{16}$  to  $\frac{3}{8}$  in. (4.76 to 9.52 mm), inclusive, in thickness.
- 3.1.2 hot-rolled plate, n—material  $\frac{3}{16}$  in. (4.76 mm) and over in thickness.
- 3.1.3 plate, n—material  $\frac{3}{16}$  in. (4.76 mm) and over in thickness.
- 3.1.4 *sheet and strip, n*—material under ³/₁₆ in. (4.76 mm) in thickness.

U.
Ξ
7
~
5
ě
Ė
=
7
ă
-
7
8
7
_
ā
듯
C
_
ш
щ
=
TABI
⊴
Н

			ASME BPVC.II.B-2023	SB-575
		Alloy N06686	15.0-17.0 19.0-23.0 5.0 max 3.0-4.4  0.010 0.08 0.75  0.02-0.25 remainder ^A 	JC Section II Part B)
		Alloy N10362	21.5-23.0 1.25 max   0.010 0.010 0.025 0.010  remainder ⁴ 0.50 max 	II Part B)
		Alloy N06210	18.0–20.0 11.0 max 1.0 0.015 0.015 0.02 0.02 0.02 remainder ^A 1.5–2.2	c. Section .
		Alloy N06200	15.0–17.0 22.0–24.0 3.0 max 2.0 max 0.010 0.08 0.50 0.025 0.010 remainder ^A 0.50 max 1.3–1.9	70
		Alloy N06058	18.5–21.0 20.0–23.0 1.5, max 0.3 max 0.3 max 0.010 0.10 0.015 0.016 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	
Requirements	Composition Limits, %	Alloy N06059	15.0-16.5 22.0-24.0 1.5, max  0.010 0.010  Bal 0.1-0.4 0.50 max	
TABI F 1 Chemical Requirements	Con	Alloy N06455	14.0–17.0 14.0–17.0 2.0 2.0 0.015 0.03 0.03 0.03 0.03 	
7 7 14 14 14	10	Alloy N06022	12.5–14.5 20.0–22.5 20.0–22.5 2.5–3.5 2.5 2.5 0.015 0.02 0.02 0.02	
click to view		Alloy N10276	15.0–17.0 14.5–16.5 4.0–7.0 3.0–4.5 2.5 0.010 0.08 1.0 0.35 0.04 0.03	
COM		Alloy N06044	0.80-1.20 43.5-45.3 0.03 max 0.02 0.07-0.30 0.020 0.010-0.30 Bal 0.30 max difference.	
		Alloy N06035	7.60–9.00 32.25–34.25 32.25–34.25 0.00 max 0.00 max 1.00 0.050 0.050 0.050 0.030 0.015 0.40 max 0.30 max	
annoc.com. click to view	, ,	Element	Molybdenum 7 60–9.00 0.80–1.2 Chromium 32.25–34.25 43.5-45. Chromium 32.25–34.25 43.5-45. Chromium 2.00 max 0.3 max Tungsten 0.60 max Carbon, max 0.60 0.02 Silicon, max 0.60 0.07-0.3 Vanadium, max 0.20 Phosphorus, max 0.20 Phosphorus, max 0.015 0.020 Sulfur, max 0.015 0.020 Titanium Copper 0.40 max Tantalum Nitrogen Nitrogen A Shall be determined arithmetically by difference.	

Yield Strength (0.2 % Elongation in 2 in Tensile Strength, min, psi Rockwell Hardness,^E Allov Offset), min, psi (50.8 mm) or 4D^A min, % (MPa) (MPa) 100 HRB N10276 100 000 (690) 41 000 (283) 40 N06022 100 000 (690) 45 000 (310) 45 100 HRB N06455 100 000 (690) 40 000 (276) 40 100 HRB N06035 85 000 (586) 35 000 (241) 100 HRB 30 N06044 100 000 (690) 45 000 (310) 100 HRB 30 52 000 (360) N06058 110 000 (760) 100 HRB N06059 100 000 (690) 45 000 (310) 45 100 HRB 100 000 (690) 45 000 (310) 45 100 HRB N06200 100 HRB N10362 105 000 (725) 45 000 (310) 40 100 HRB N06686 45 000 (310) 100 000 (690) 45 100 HRB N06210 100 000 (690) 45 000 (310) 45

**TABLE 2 Mechanical Property Requirements** 

# 4. General Requirements

4.1 Material furnished to this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

# 5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 5.1.1 Alloy—Table 1,
- 5.1.2 *Dimensions*—Thickness (in decimals of an inch), width, and length (inch or fractions of an inch),
- 5.1.3 Optional Requirement—Plate; state how plate is to be cut (Specification B906, table titled Permissible Variations in Width and Length of Sheared, Torch-Cut, or Abrasive-Cut Rectangular Plate),
- 5.1.4 Certification—Certification and a report of test results is required (Specification B906, section on Material Test Report and Certification).
- 5.1.5 Purchase Inspection—State which tests or inspections are to be witnessed (Specification B906, section on Inspection), and
- 5.1.6 Samples for Product (Check) Analysis—State whether samples should be furnished (Specification B906, section on Sampling).

# 6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1.
- 6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 and Specification B906.

# 7 Mechanical Properties and Other Requirements

- 7.1 *Tensile Properties*—The material shall conform to the room temperature tensile properties prescribed in Table 2.
- 7.2 *Hardness*—The hardness values given in Table 2 are informative only.

7.3 Grain Size for Sheet and Strip—Sheet and strip shall conform to the grain sizes as illustrated in Plate 1 of Test Methods E112. The requirements shall be as indicated in Table 3

# 8. Dimensions, Mass, and Permissible Variations

8.1 Weight For calculations of mass or weight, the following densities shall be used:

/, <b>V</b>	Densit	ty
Alloy	lb/in. ³	g/cm ³
N10276	0.321	(8.87)
N06022	0.314	(8.69)
N06455	0.312	(8.64)
N06035	0.296	(8.18)
N06044	0.287	(7.97)
N06058	0.318	(8.80)
N06059	0.311	(8.60)
N06200	0.307	(8.50)
N06210	0.316	(8.76)
N10362	0.319	(8.83)
N06686	0.315	(8.73)

- 8.2 Thickness:
- 8.2.1 *Plate*—The permissible variations in thickness of plate shall be as prescribed in Specification B906, table titled Permissible Variations in Thickness of Plate.
- 8.2.2 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Specification B906, table titled Permissible Variations in thickness of Sheet and Strip. The thickness shall be measured with the micrometer spindle 3/8 in. (9.525 mm) or more from any edge for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. (25.4 mm) in width.
  - 8.3 Width:
- 8.3.1 *Plate*—The permissible variations in width of rectangular plates shall be as prescribed in Specification B906, table

**TABLE 3 Grain Size for Annealed Sheet** 

Thickness, in. (mm)	ASTM Micrograin Size Number	Average Grain Diameter, mm (in.)
0.125 (3.175) and under	3.0 or finer	0.127 (0.0050)
Over 0.125 (3.175)	1.5 or finer	0.214 (0.0084)

^A D refers to the diameter of the tension specimen.

^B Hardness values are shown for information purposes only and are not to be used as a basis of acceptance or rejection. For approximate hardness conversions, see Hardness Conversion Tables E140.

titled Permissible Variations in Width and Length of Sheared, Torch-Cut, or Abrasive-Cut Rectangular Plate.

- 8.3.2 *Sheet and Strip*—The permissible variations in width for sheet and strip shall be as prescribed in Specification B906, table titled Permissible Variations in width of Sheet and Strip.
  - 8.4 Length:
- 8.4.1 *Plate*—Permissible variations in the length of rectangular plate shall be as prescribed in Specification B906, table titled Permissible Variations in Width and Length of Sheared, Torch-Cut, or Abrasive-Cut Rectangular Plate.
- 8.4.2 *Sheet and Strip*—Sheet and strip may be ordered to cut lengths, in which case a variation of ½ in. (3.175 mm) over the specified length shall be permitted, with a 0 minus tolerance.
  - 8.5 Straightness:
- 8.5.1 The edgewise curvature (depth of chord) of flat sheet, strip, and plate shall not exceed 0.05 in. (1.27 mm) multiplied by the length in feet or 0.04 mm multiplied by the length in centimetres.
- 8.5.2 Straightness for coiled strip is subject to agreement between the manufacturer and the purchaser.
- 8.6 Squareness (Sheet)—For sheets of all thicknesses and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be  $90 \pm 0.15^{\circ}$  ( $\frac{1}{16}$  in. in 24 in. of 2.6 mm/m).

- 8.7 *Flatness*—Plate, sheet, and strip shall be commercially flat.
  - 8.8 *Edges*:
- 8.8.1 Plates shall have sheared or cut (machined, abrasive cut, powder cut, or inert arc cut) edges, as specified.
  - 8.8.2 Sheet and strip shall have sheared or slit edges.

# 9. Product Marking

- 9.1 Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 9.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight, consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

# 10. Keywords

10.1 N06022; N06035; N06044; N06058; N06059; N06200; N06210; N10362; N06455; N06686; N10276; plate; sheet; strip

# APPENDIX

(Nonmandatory Information)

X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance, and the manufacturer shall be consulted for details.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# NC Section II Part B 202 SPECIFICATION FOR NICKEL-CHROMIUM-IRON-MOLYBDENUM-COPPER ALLOY ROD SB-581 BPVC.II.B ASNIE BPVC.II.B



A581-02

A581-02

ASNIENO RINIDOC.

CIICK TO VIEW THE FUIL PLOT

ASNIENO RINIDOC. (Identical with ASTM Specification B581-02(2008) except that certification and test reports have been made mandatory.)

# Standard Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy Rod

# 1. Scope

- 1.1 This specification covers rod of Ni-Cr-Fe-Mo-Cu alloys (UNS N06007, N06975, N06985, N06030, and N08031) as shown in Tables 1-3, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1~ Rods  $\frac{5}{16}$  to  $\frac{3}{4}$  in. (7.94 to 19.05 mm) excl in diameter, hot- or cold-finished, solution annealed and pickled or mechanically descaled.
- 1.2.2 Rods  $\frac{3}{4}$  to  $\frac{3}{2}$  in. (19.05 to 88.9 mm) incl in diameter, hot- or cold-finished, solution annealed, ground or turned.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

# 2. Referenced Documents

# 2.1 ASTM Standards:

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys

E8 Test Methods for Tension Testing of Metallic Materials

Citck

Citck

SME NO PRINTO COMPANIE OF THE PRINTO COMP

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition

E1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

# 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *rod*, *n*—material of round solid section furnished in straight lengths.

# 4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 4.1.1 *Alloy*—Table 1.
- 4.1.2 Dimensions—Nominal diameter and length. The shortest useable multiple length shall be specified (Table 4).
- 4.1.3 DELETED
- 4.1.4 Purchaser Inspection—State which tests or inspections are to be witnessed (Section 14).
- 4.1.5 Samples for Product (Check)Analysis—State whether samples shall be furnished (10.2.2).

# 5. Chemical Composition

- 5.1 *Heat Analysis*—The material shall conform to the composition limits specified in Table 1.
- 5.2 Product (Check)Analysis—If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in Specification B880.

# 6. Mechanical and Other Requirements

6.1 The material shall conform to the requirements of Table 2.

# 7. Straightness

7.1 The maximum curvature (depth of cord) shall not exceed 0.050 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres).

**TABLE 1 Chemical Requirements** 

Flowers		Composition	on Limits, %		
Element	Alloy N06007	Alloy N06975	Alloy N06985	Alloy N06030	Alloy N08031
Nickel	remainder ^A	47.0-52.0	remainder ^A	remainder ^A	30.0-32.0
Chromium	21.0-23.5	23.0-26.0	21.0-23.5	28.0-31.5	26.0-28.0
Iron	18.0-21.0	remainder ^A	18.0-21.0	13.0-17.0	remainder ^A
Molybdenum	5.5-7.5	5.0-7.0	6.0-8.0	4.0-6.0	307.0
Copper	1.5–2.5	0.70-1.20	1.5-2.5	1.0-2.4	1.0-1.4
Manganese	1.0-2.0	1.0 max	1.0 max	1.5 max	2.0 max
Cobalt, max	2.5		5.0 max	5.0 max	, 0'
Carbon, max	0.05	0.03	0.015 max	0.03 max	0.015
Tungsten	1.0 max		1.5 max	1.5-4.0	
Silicon, max	1.0	1.0	1.0 max	0.8 max	0.3
Phosphorus, max	0.04	0.03	0.04 max	0.04 max	0.020
Sulfur, max	0.03	0.03	0.03 max	0.02 max	0.010
Columbium + tantalum	1.75-2.50		0.50 max	0.30-1.50	<b>6</b>
Titanium	***	0.7-1.5		🗸	<b>)</b>
Nitrogen	0.15-0.25			C 1	

^A See 13.1.1.

**TABLE 2 Mechanical Property Requirements** 

Alloy	Specified Diameter, in. (mm)	Tensile Strength min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. or 50.8 mm or 4D A min
N06007	5/16 to 3/4 (7.94 to 19.05), incl	90 000 (621)	35 000 (241)	35
	Over 3/4 to 31/2 (19.05 to 88.9), incl	85 000 (586)	30 000 (207)	30
N06975	5/16 to 31/2 (7.94 to 88.9), incl	85 000 (586)	32 000 (221)	40
N06985	5/16 to 3/4 (7.9 to 19.05), incl	90 000 (621)	35 000 (241)	45
	Over 3/4 to 31/2 (19.05 to 88.9), incl	85 000 (586)	30 000 (207)	35
N06030		85 000 (586)	35 000 (241)	30
N08031	All sizes	94 000 (648)	40 000 (276)	40

^A D refers to the diameter of the tension specimen.

TABLE 3 Permissible Variations in Diameter and Out-of-Roundness of Rods

	\$ Y	Permissible Variations, in. (mm)				
Specified Diameter, in. (mm)	Diame	Out-of-Roundness, max				
	+	_	Out-of-Houridiless, max			
Hot-Finished, Annealed, and Descaled Rods						
5/16 to 7/16 (7.94 to 11.11), incl	0.012 (0.305)	0.012 (0.305)	0.018 (0.457)			
Over 7/16 to 5/8 (11.11 to 15.87), incl	0.014 (0.355)	0.014 (0.355)	0.020 (0.508)			
Over 5/8 to 3/4 (15.87 to 19.05), excl	0.016 (0.406)	0.016 (0.406)	0.024 (0.610)			
Hort-Einished, Annealed, and Ground or Turned Rods						
3/4 to 31/2 (19.05 to 88.9), incl	0.010 (0.254)	0	0.008 (0.203)			

# 8. Permissible Variations in Dimensions

- 8.1 *Diameter*—The permissible variations from the specified diameter and out-of-roundness shall be as prescribed in Table 3.
- 8.2 *Machining Allowances*—When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations:
- 8.2.1 As-Finished Rounds (Annealed and Descaled)—For diameters of ½6 to ½6 in. (7.94 to 17.46 mm) incl, an allowance of ½6 in. (1.59 mm) on the diameter should be made for finish machining.
- 8.3 Length—The permissible variations in length of finished rods shall be as prescribed in Table 4. Unless otherwise specified, random mill lengths shall be furnished. Rods ordered to random or nominal lengths shall be furnished with either cropped or saw-cut ends; material ordered to cut lengths shall be furnished with square saw-cut or machined ends. Where

## **TABLE 4 Permissible Variations in Length of Rods**

TABLE 4 Permi	issible Variations in Length of Rods
Random mill lengths	2 to 12 ft (61 to 366 cm) long with not more than 25 weight % under 4 ft (122 cm).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of ¼ in. (6.35 mm) will be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (61 cm) with no short lengths allowed.
Cut lengths	A specified length to which all rods will be cut with a permissible variation of + 1/6 in. (3.17 mm), - 0.

rods are ordered in multiple lengths, a ½-in. (6.35-mm) length addition shall be allowed for each uncut multiple length.

8.4 Weight—For calculation of mass or weight, the following densities shall be used:

	Der	nsity
Alloy	lb/in. ³	g/cm ³
N06007	0.300	8.31
N06975	0.295	8.17
N06985	0.300	8.31
N06030	0.297	8.22
N08031	0.293	8.10

# 9. Workmanship, Finish, and Appearance

9.1 The material shall be uniform in quality and condition, smooth, commercially straight, and free of injurious imperfections.

# 10. Sampling

- 10.1 Lots for Chemical Analysis and Mechanical Testing:
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot of rod for mechanical testing shall be defined as the material from one heat in the same condition and specified thickness.
  - 10.2 Sampling for Chemical Analysis:
- 10.2.1 A representative sample shall be obtained from each lot during pouring or subsequent processing.
- 10.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser and shall conform to the product (check) analysis variations per Specification B880.
  - 10.3 Sampling for Mechanical Testing:
- 10.3.1 A representative sample shall be taken from each lot of finished material.

# 11. Number of Tests and Retests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Tension Tests—One test per lot.
- 11.3 Retests—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

# 12. Specimen Preparation

- 12.1 Tension test specimens shall be taken from material after final heat treatment and tested in the direction of fabrication.
- 12.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8.
- 12.3 In the event of disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8.

# 13. Test Methods and Chemical Analysis

13.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be

determined, in case of disagreement, in accordance with the following ASTM methods:

- 13.1.1 *Chemical Analysis*—Test Methods E1473. For elements not covered by Test Methods E1473, the referee method shall be as agreed upon between the manufacturer and purchaser. The composition of the remainder element shall be determined arithmetically by difference.
  - 13.1.2 Tension Test—Test Methods E8.
  - 13.1.3 Method of Sampling—Practice E55.
  - 13.1.4 Determining Significant Places—Practice E29.
- 13.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29:

Requirements

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerances
Tensile strength and yield strength
Elongation

Rounded Unit for Observed or Calculated Value

nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (7 MPa)
nearest 1 %

# 14. Inspection

14.1 Inspection of the material shall be made as agreed upon by the manufacturer and the purchaser as part of the purchase contract.

# 15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

# 16. Certification

16.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

# 17. Product Marking

- 17.1 Each piece of material ½ in. (12.7 mm) and over in diameter shall be marked with this specification number, name of the material, and size of the product.
- 17.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare and net weight; consignor and consignee address; contract or other number; or such other information as may be defined in the contract or order.

# 18. Keywords

18.1 rod; N06007; N06975; N06985; N06030; N08031

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc. com. chek to her the full poly of a sent above.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# SPECIFICATION FOR NICKEL-CHROMIUM-IRON-MOLYBDENUM-COPPER ALLOY PLATE, SHEET, AND STRIP



SB-582

(Identical with ASTM Specification B582-07(2013) except that certification and test reports have been made mandatory by reference to SB-906.)

(Identical with ASTM Specification B582-07(2013) except that certification and test reports have been made mandatory by reference to SB-906.)

(Identical with ASTM Specification B582-07(2013) except that certification and test reports have been made mandatory by reference to SB-906.)

# **Standard Specification for** Nickel-Chromium-Iron-Molybdenum-Copper Alloy Plate, Sheet, and Strip

# 1. Scope

- 1.1 The specification covers plate, sheet, and strip of nickel-chromium-iron-molybdenum-copper alloys (UNS N06007, N06975, N06985, and N06030) as shown in Table 1, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Sheet and Strip—Hot or cold rolled, solution annealed, and descaled unless solution anneal is performed in an atmosphere yielding a bright finish.
- 1.2.2 Plate—Hot or cold rolled, solution annealed, and descaled.
- 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

# 2. Referenced Documents

# 2.1 ASTM Standards:

SMENORMOC. Com. Circk to view B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip

# 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard
- 3.1.1 cold-rolled plate, n—material  $\frac{3}{16}$  to  $\frac{3}{8}$  in (4.76 to 9.52 mm), inclusive, in thickness.
- 3.1.2 hot-rolled plate, n—material 3/16 in (4.76 mm) and over in thickness.
- 3.1.3 plate, n—material  $\frac{3}{16}$  in. (4776 mm) and over in
- 3.1.4 sheet and strip, n--material under 3/16 in. (4.76 mm) in thickness.

# 4. General Requirements

4.1 Materials furnished to this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

# 5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
  - 5.1.1 Alloy—Table 1,
- 5.1.2 Dimensions—Thickness (in decimals of an inch), width, and length (inch or fractions of an inch),
- 5.1.3 Optional Requirement, Plate—How the plate is to be cut (see 8.1 and Specification B906, Table A2.3),
  - 5.1.4 DELETED
- 5.1.5 Purchaser Inspection—State which tests or inspections are to be witnessed (Specification B906), and
- 5.1.6 Samples for Product (Check) Analysis—State whether samples should be furnished (Section 6).

# 6. Chemical Composition

- 6.1 Heat Analysis—The material shall conform to the composition limits specified in Table 1.
- 6.2 Product (Check) Analysis—If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in Specification B906.

**TABLE 1 Chemical Requirements** 

Flowers		Compos	sition Limits, %	_
Element	Alloy N06007	Alloy N06975	Alloy N06985	Alloy N06030
Nickel	remainder ^A	47.0 to 52.0	remainder ^A	remainder ^A
Chromium	21.0 to 23.5	23.0 to 26.0	21.0 to 23.5	28.0 to 31.5
Iron	18.0 to 21.0	remainder ^A	18.0 to 21.0	13.0 to 17.0
Molybdenum	5.5 to 7.5	5.0 to 7.0	6.0 to 8.0	4.0 to 6.0
Copper	1.5 to 2.5	0.70 to 1.20	1.5 to 2.5	1.0 to 2.4
Manganese	1.0 to 2.0	1.0 max	1.0 max	1.5 max
Cobalt, max	2.5		5.0	5.0
Carbon, max	0.05	0.03	0.015	0.03
Tungsten	1.0 max		1.5 max	1.5 to 4.0
Silicon, max	1.0	1.0	1.0	0.8
Phosphorus, max	0.04	0.03	0.04	0.04
Sulfur, max	0.03	0.03	0.03	0.02
Columbium + tantalum	1.75 to 2.50		0.50 max	0.30 to 1.50
Titanium		0.70-1.50		

^A The composition of the remainder element shall be determined arithmetically by difference.

# 7. Mechanical Properties and Other Requirements

- 7.1 *Tensile Properties*—The material shall conform to the mechanical property requirements prescribed in Table 2.
- 7.2 *Hardness*—The hardness values given in Table 2 are informative only.

# 8. Edges

- 8.1 Plates shall have sheared or cut machined, abrasive cut, powder cut, or inert arc cut edges, as specified.
  - 8.2 Sheet and strip shall have sheared or slit edges.

# 9. Permissible Variations in Dimensions

9.1 Weight—For calculation of mass or weight, the following densities shall be used:

		Density
Alloy	lb/in. ³	g/cm ³
N06007	0.300	8.31
N06975	0.295	8.17
N06985	0.300	8.31
NOGOZO	0.297	8 22

- 9.2 Thicknesses:
- 9.2.1 *Place* The permissible variations in thickness of plate shall be as prescribed in Specification B906, Table A2.1.
- 9.22 Sheet and Strip—The permissible variations in thickness of sheet and strip shall be as prescribed in Specification 8906, Table A2.2. The thickness shall be measured with the micrometer spindle 3/8 in. (9.52 mm) or more from any edge for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. (25.4 mm) in width.
  - 9.3 *Width:*

# TABLE 2 Mechanical Property Requirements

			- 1		
Alloy	Thickness, in. (mm)	Thickness, in. (mn)  Tensile Strength min, psi (MPa)  Yield Strength (0.2 % Offset) min, psi (MPa)		Elongation in 2 in. or 50.8 mm or 4 <i>D</i> ^A min, %	Rockwell Hardness, ^B max
	N	Annealed Plate			
	• • • • • • • • • • • • • • • • • • • •				
N06007	3/16 to 3/4 (4.76 to 19.05), incl	90 000 (621)	35 000 (241)	35	100 HRB
	Over 3/4 to 21/2 (19.05 to 63.5), incl	85 000 (586)	30 000 (207)	30	100 HRB
N06975	3/16 to 21/2 (4.76 to 63.5), incl	85 000 (586)	32 000 (221)	40	100 HRB
N06985	3/16 to 3/4 (4.76 to 19.05), incl	90 000 (621)	35 000 (241)	45	100 HRB
	Over 3/4 to 21/2 (19.05 to 63.5), incl	85 000 (586)	30 000 (207)	35	100 HRB
N06030	C)	85 000 (586)	35 000 (241)	30	
	. •				
	<b>~</b> / .	Annealed Sheet			
N06985	Over 0.020 (0.51)	90 000 (621)	35 000 (241)	45	100 HRB
		Annealed Sheet and S	Strip		
		/ /	/- /		
N06007	Over 0.020 (0.51)	90 000 (621)	35 000 (241)	40	100 HRB
N06975	Over 0.020 (0.51)	85 000 (586)	32 000 (221)	40	100 HRB
N06030	Over 0.020 (0.51)	85 000 (586)	35 000 (241)	30	•••

D refers to the diameter of the tension specimen

^B Hardness values are shown for information purposes only and are not to be used as a basis for rejection or acceptance. For approximate hardness conversions, see Specification B906.

- 9.3.1 Plate—The permissible variations in width of rectangular plates shall be as prescribed in Specification B906, Table A2.3.
- 9.3.2 Sheet and Strip-The permissible variations in width for sheet and strip shall be as prescribed in Specification B906, Table A2.4.
  - 9.4 Length:
- 9.4.1 Plate—Permissible variations in the length of rectangular plate shall be as prescribed in Specification B906, Table A2.3.
- 9.4.2 Sheet and Strip—Sheet and strip may be ordered to cut lengths, in which case a variation of ½ in. (3.18 mm) over the specified length shall be permitted, with a 0 minus tolerance.
- 9.5 Straightness—The edgewise curvature (depth of cord) of sheet, strip, and plate shall not exceed 0.05 in./ft (4.2 mm/m).
- 9.6 Squareness (Sheet)-For sheets of all thickness and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be  $90 \pm 0.15^{\circ}$  ( $\frac{1}{16}$  in. in 24 in. or 2.6 mm/m).

9.7 Flatness—Plate, sheet, and strip shall be commercially flat.

# 10. Product Marking and Package Marking

- 10.1 Each plate, sheet, or strip shall be marked on one face with the specification number, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 10.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

# 11. Keywords

11.1 plate; sheet; strip; N06007; N60975; N06985; N06030

# **APPENDIX**

(Nonmandatory Information)

X1. HEAT TREATMENT

AEATMEN ATTEMENT OF ASMIT AND COM. CITCA TO VIEW THE WITH A COMMENTAR FULL PLAY OF ASMIT AND COMMEN

# SPECIFICATION FOR COPPER ALLOY SAND CASTINGS FOR GENERAL APPLICATIONS SB-584 Specification B584-14 except that certification and test reports have been



ASMENORUMO C. COM. Click to View the full Policy of the Assertation of (Identical with ASTM Specification B584-14 except that certification and test reports have been made mandatory.)

# Specification for Copper Alloy Sand Castings for General Applications

# 1. Scope

1.1 This specification covers requirements for copper alloy sand castings for general applications. Nominal compositions of the alloys defined by this specification are shown in Table 1. This is a composite specification replacing former documents as shown in Table 1.

Note 1—Other copper alloy castings are included in the following ASTM Specifications: B22/B22M, B61, B62, B66, B67, B148, B176, B271/B271M, B369, B427, B505/B505M, B763/B763M, B770, and B806.

- 1.2 Component part castings produced to this specification may be manufactured in advance and supplied from stock. In such cases the manufacturer shall maintain a general quality certification of all castings without specific record or date of casting for a specific casting.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

# 2. Referenced Documents

2.1 ASTM Standards:

B22/B22M Specification for Bronze Castings for Bridges and Turntables

B61 Specification for Steam or Valve Bronze Castings

B62 Specification for Composition Bronze or Ounce Metal Castings

SMENORMDOC. COM. Click to view B66 Specification for Bronze Castings for Steam LocomoB67 Specification for Car and Tender Journal Bearings

B148 Specification for Aluminum-Bronze Sand Castings

B176 Specification for Copper-Alloy Die Castings

B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings

B271/B271M Specification for Copper-Base Alloy Centrifugal Castings

B369 Specification for Copper-Nickel Alloy Castings

B427 Specification for Gear Bronze Alloy Castings

B505/B505M Specification for Copper Alloy Continuous Castings

B763/B763M Specification for Copper Alloy Sand Castings for Valve Applications

B770 Specification for Copper-Beryllium Alloy Sand Castings for General Applications

B806 Specification for Copper Alloy Permanent Mold Castings for General Applications

B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ASME Code:

ASME Boiler and Pressure Vessel Code

# 3. Terminology

3.1 Definitions of terms relating to copper alloys can be found in Terminology B846.

# 4. General Requirements

- 4.1 The following sections of Specification B824 form a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
  - 4.1.1 Terminology,

**TABLE 1 Nominal Compositions** 

Classification	Copper Alloy UNS No.	Previous Desig- nation	Commercial Designation	Copper	Tin	Lead	Zinc	Nickel	Sulfur	Iron	Alum- inum	Man- ga nese	Anti- mony	Sili- con	Nio- bium	Bis- muth
Leaded red brass	C83450			88	21/2	2	61/2	1								
Low-lead sulfur tin	C83470			93	4		2	0.5	0.5							
bronze Leaded red brass	C83600	B145-4A	85-5-5-5 or No. 1	85	5	5	5									్ట
	C83800	B145-4B	composition commercial red	83	4	6	7								1	60
Lauria ad a suction d	004000		brass, 83-4-6-7	05.5	0		0	4.0	0.00						V),	
Low-lead semi-red brass	C84020			85.5	3		9	1.2	0.38					J.C		
Leaded semi-red	C84030 C84400	B145-5A	valve composition, 81-3-7-9	85.5 81	3 3	7	9 9	1.2	0.38				0.8	Scr		
brass	C84800	B145-5B	semi-red brass, 76-2½-6½-15	76	2½	61/2	15						ر س			
Leaded yellow brass	C85200	B146-6A		72	1	3	24					2				
	C85400	B146-6B	commercial No. 1 yellow brass	67	1	3	29					<b>Q</b>				
Yellow brass	C85470 ^A			62.5	2.5		34.3				0.5					
Leaded yellow brass	C85700	B146-6C	leaded naval brass	61	1	1	37			_G						
High-strength yellow brass	C86200	B147-8B	high-strength manganese	63			27		0	3	4	3				
	C86300	B147-8C	bronze high-strength manganese	61			27	, ()	11.	3	6	3				
	C86400	B147-7A	bronze leaded manga- nese bronze	58	1	1	38	37		1	1/2	1/2				
	C86400	B 132-A														
	C86500	B147-8A	No. 1 manganese bronze	58			39			1	1	1				
	C86700	B 132-B	leaded manga- nese bronze	58	1	S	34			2	2	2				
Silicon bronze + silicon brass	C87300	B198- 12A	silicon bronze	95	5	<b>Y</b>						1		4		
	C87400	B198- 13A	silicon brass	82	<u> </u>	1/2	14							3½		
	C87500	B198- 13B	silicon brass	82			14	• • •						4		
	C87600	B198- 13C	silicon bronze	91			5	• • •						4		
	C87610	B198- 12A	silicon bronze	92	• • •		4			• • •		• • • •		4	• • •	• • •
	C87710 C87845 ^B		silicon bronze silicon bronze	86 76			10 21.26							4 2.7		
	C87850 ^C		silicon brass	76			20.9							3		
Bismuth selenium	C89510 ^D		sebiloy I	87	5		5									1.0
brass	C89520 ^E	_x O	sebiloy II	86	5½		5									1.9
	C89530 ^F			86.5	4.7		8.0									1.5
	C89535	<b>/</b>		86.5	3.0		7.0	0.65								1.4
Bismuth brass	C89537			85.0	4.5		9.0							0.9		1.7
	C89570 ^G			60.5	8.0		36.5	0.32			0.5					1.0
	C89720 ^H			67.5	1		29.8				0.5			0.5		0.7
Bismuth red brass	C89833		bismuth brass	89	5		3									2.2
Bismuth bronze Bismuth semi-red	C89836 C89844		lead-free bronze bismuth brass	89.5 84½	5.5 4		3.0 8									2 3
Tin bronze + leaded tin bronze	C90300	B143-1B	modified "G" bronze, 88-8-0-4	88	8		4									
Low-lead tin bronze Tin bronze + leaded	C90420 C90500	 B143-1A	"G" bronze, 88-10-	87.5 88	8 10		3 2		0.38							
fin bronze	C92200	B143-2A	0-2 steam or valve	88	6	11/2	41/2									
	C92210		bronze-Navy "M"	88	5	2	4	1								
	C92300	B143-2B	87-5-1-4, Navy PC	87	8	1	4									
High-lead tin bronze	C92600 C93200	 B144-3B	87-10-1-2 83-7-7-3	87 83	10 7	1 7	2									
gii ioaa aii biolize	000200	ם ייים	33773	50	,											

TABLE 1 Continued

Classification	Copper Alloy UNS No.	Previous Desig- nation	Commercial Designation	Copper	Tin	Lead	Zinc	Nickel	Sulfur	Iron	Alum- inum	Man- ga nese	Anti- mony	Sili- con	Nio- bium	Bis- muth
	C93500	B144-3C	85-5-9-1	85	5	9	1									
	C93700	B144-3A	80-10-10	80	10	10										
	C93800	B144-3D	78-7-15	78	7	15										
	C94300	B144-3E	71-5-24	71	5	24										
Nickel-tin bronze + leaded nickel-tin bronze	C94700	B 292-A	nickel-tin bronze Grade "A"	88	5		2	5								11
DIOILEO	C94800	B 292-B	leaded nickel-tin bronze Grade "B"	87	5	1	2	5							30	
	C94900		leaded nickel-tin bronze Grade "C"	80	5	5	5	5						-0	C),	
Spinodal alloy	C96800			82	8			10						5	0.2	
Leaded nickel bronze	C97300	B149- 10A	12 % leaded nickel silver	57	2	9	20	12					10	٠		
	C97600	B149-11A	20 % leaded nickel silver	64	4	4	8	20					57			
	C97800	B149-11B	25 % leaded nickel silver	66	5	2	2	25				6X	·			

^A Phosphorus 0.13.

- 4.1.2 Other Requirements,
- 4.1.3 Dimensions, Mass, and Permissible Variations,
- 4.1.4 Workmanship, Finish, and Appearance,
- 4.1.5 Sampling,
- 4.1.6 Number of Tests and Retests,
- 4.1.7 Specimen Preparation,
- 4.1.8 Test Methods,
- 4.1.9 Significance of Numerical Limits,
- 4.1.10 Inspection,
- 4.1.11 Rejection and Rehearing,
- 4.1.12 Certification,
- 4.1.13 Test Report,
- 4.1.14 Product Marking,
- 4.1.15 Packaging and Package Marking, and
- 4.1.16 Supplementary Requirements.

# 5. Ordering Information

- 5.1 Orders for castings under this specification should include the following information:
  - 5.1.1 Specification title, number, and year of issue,
  - 5.1.2 Quantity of castings,
- 5.1.3 Copper alloy UNS Number (Table 1) and temper (as-cast, heat treated, and so forth),
- 5.1.4 Pattern or drawing number, and condition (as-cast, machined, etc.),
  - 5.1.5 DELETED
- 5.1.6 When material is purchased for agencies of the U.S. government, the Supplementary Requirements of Specification B824 may be specified.
- 5.2 The following options are available and should be specified in the purchase order when required:

- 5.2.1 Chemical analysis of residual elements (7.3),
- 5.22 Pressure test or soundness requirements (Specification B824).
- 5.2.3 Approval of weld repair or impregnation, or both (Section 9).
  - 5.2.4 DELETED
  - 5.2.5 DELETED
  - 5.2.6 Witness inspection (Specification B824), and
  - 5.2.7 Product marking (Specification B824).

# 6. Manufacture

- 6.1 Copper alloy UNS Nos. C94700 and C96800 may be supplied in the heat treated condition to obtain the higher mechanical properties shown in Table 2. Suggested heat treatments for these alloys are given in Table 3. Actual practice may vary by manufacturer.
- 6.2 Separately cast test bar coupons representing castings made in copper alloy UNS Nos. C94700HT and C96800HT shall be heat treated with the castings.

# 7. Chemical Composition

- 7.1 The castings shall conform to the compositional requirements for named elements as shown in Table 4 for the copper alloy UNS numbers specified in the purchase order.
- 7.2 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements agreed upon between manufacturer or supplier and purchaser. Copper or zinc, when zinc is 20 % or greater, may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 4 are analyzed, their sum shall be as specified in Table 5.

^B Phosphorus 0.04.

^C Phosphorus 0.12.

^D Selenium 0.5.

E Selenium 0.9.

^F Selenium 0.20.

^G Phosphorus 0.1.

^H Antimony 0.07, Boron 0.001.

**TABLE 2 Mechanical Requirements** 

_		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
_	Copper Alloy		Strength, iin	Yield Strei	ngth, ^A min	Elongation in 2 in.
	UNS No.	ksi ^B	MPa ^C	ksi ^B	MPa ^C	or 50 mm, min, %
	C83450	30	207	14	97	25
	C83470	28	195	14	97	15
	C83600	30	207	14	97	20
	C83800	30	207	13	90	20
	C84020	38	262	16	110	22
	C84030	34	234	16	110	17
	C84400	29	200	13	90	18
	C84800	28	193	12	83	16
	C85200	35	241	12	83	25
	C85400	30	207	11	76	20
	C85470	50	345	21	150	15
	C85700	40	276	14	97	15
	C86200	90	621	45	310	18
	C86300	110	758	60	414	12
	C86400	60	414	20	138	15
	C86500	65	448	25	172	20
	C86700	80	552	32	221	15
	C87300	45	310	18	124	20
	C87400	50	345	21	145	18
	C87500	60	414	24	165	16
	C87600	60	414	30	207	16
	C87610	45	310	18	124	20
	C87710	47	324	24	165	10
	C87845	52	359	18	124	29
	C87850	59	407	22	152	16
	C89510	26	184	17	120	8
	C89520	25	176	17	120	6
	C89530	28	195	13 ^D	90 ^D	15
	C89535	32	220	16 ^D	110 ^D	15
	C89537	14	100	13	90	5
	C89570	50	350	26	180	10
	C89720	30	210	16	110	15
	C89833	30	207	14	97	16
	C89836	33	229	14	97	20
	C89844	28	193	13	90	15 🔥
	C90300	40	276	18	124	20
	C90420	41	283	22	152	/17
	C90500	40	276	18	124	20
	C92200	34	234	16	110	22
	C92210	32	225	15	103	20
	C92300	36	248	16	110	18
	C92600	40	276	18	124	20
	C93200	30	207	14	97	15
	C93500	28	193	12	83	15
	C93700	30	207	12	83	15
	C93800	26	179	14	97	12
	C94300	24	165	· CA		10
	C94700	45	310	20	138	25
(	C94700 (HT)	75	517	50	345	5
	C94800	40	276	20	138	20
	C94900	38	262	15	103	15
	C96800	125	862	100 ^D	689 ^D	3
(	C96800 (HT)	135	931	120 ^D	821 ^D	
	C97300	30 (	207	15	103	8
	C97600	40	276	17	117	10
	C97800	50	345	22	152	10
_						

 $[^]A$  Yield strength shall be determined as the stress producing an elongation under load of 0.5 % that is, 0.01 in. (0.254 mm) in a gage length of 2 in. or 50 mm.  B  ksi = 1000 psi.

7.3 It is recognized that residual elements may be present in cast copper alloys. Analysis shall be made for residual elements only when specified in the purchase order.

**TABLE 3 Suggested Heat Treatments** 

Copper Alloy UNS No.	Solution Treatment (not less than 1 h followed by water quench)	Annealing Treatment (not less than 2 h followed by air cool)
C96800	1500°F (815°C)	(Age to develop properties) 660°F (350°C)
	Solution treatment (not less than 2 h followed by water quench)	Precipitation hardening (5 h)
C94700	1425-1475°F (775-800°C)	580–620°F (305–325°Q)

# 8. Mechanical Properties

8.1 Mechanical properties shall be determined from separately cast test bar castings, and shall meet the requirements shown in Table 2.

# 9. Casting Repair

- 9.1 The castings shall not be weld repaired without approval of the purchaser (5.2.3).
- 9.2 The castings shall not be impregnated without approval of the purchaser (5.2.3).

# 10. ASME Requirements

- 10.1 Castings shall comply with the following:
- 10.1.1 Certification requirements of Specification B824.
- 10.02 Foundry test report requirements of Specification B824.
- 10.1.3 Castings shall be marked with the manufacturer's name, the copper alloy UNS number, and the casting quality factor. In addition, heat numbers or serial numbers that are traceable to heat numbers shall be marked on all pressure-containing castings individually weighing 50 lbs (22.7 kg) or more. Pressure-containing castings weighing less than 50 lbs (22.7 kg) shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as to not impair the usefulness of the casting.
- 10.2 The castings shall not be repaired, plugged, welded, or "burned in" unless permission from the purchaser has been previously secured. This will be given only when the defects are such that after the approved repair the usefulness and strength of the castings has not been impaired.
- 10.3 Alloys in this specification are generally weldable. Preparation for repair welding shall include inspection to ensure complete removal of the defect. Repairs shall be made utilizing welding procedures qualified in accordance with Section IX of the ASME code and repair welding shall be done by welders or welding operators meeting the qualification requirements of ASME Section IX. The following records shall be maintained:
- 10.3.1 A sketch or drawing showing the dimensions, depth, and location of excavations,

^C See Appendix X1.

^D Yield strength 0.2 %, offset

		Tita- nium	:	:	: :	0.10	0.10	:	: :	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	:	:	:	:		:	: :	:	0.10	:	:	:	: :	:	:	:
		Car- bon	:	:	: :	0.10	0.10	:	: :	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:	:	:	:	:		:	: :	:	0.10	:	:	:	: :	:	:	
		Zirco- nium	:	:	: :	0.10	0.10	:	: :	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	÷	:	:	:	:	:	:	:		:	: :	:	0.10	:	:	:	: :	:	:	:
		Boron	:	:	: :	0.10	0.10	:	: :	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:		00000	0.0001-	0.0020	0.01 %	:	: :	:	0.10	:	:	:	: :	:	1	,
		Phos- phorus	0.05	0.10	0.03	0.05	0.05	0.02	0.02	:	0.02-0.25	:	:	:	:	:	:	:		: :	:	0.15	0.03-0.06	0.05-0.20	0.05	0.05	0.05	0.40	:	0.05-0.15	0.02	0	0.050	0.05	0.05	0.05	0.02	0.05		0.03	0.15	0.05 0.10 ^B	;
		Sulfur	0.08	0.20-0.6	0.08	0.10-0.65	0.10-0.65	0.08	0.05	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	0.08	0.08	:	:	:	:	:	o o	0.08	0.08	0.05	0.10-0.65	0.05	0.05	0.05	0.05	0.08	0.08	,
		Anti- mony	0.25	0.20	0.25	0.02	0.10-1.5	0.25	0.20	:	:	:	:	:	:	:	:	:	: :	: :	:	0.10	0.015	0.10	0.25	0.25	0.20	0.20	:	:	S	1	0 C	0.25	0.20	0.02	0.20	0.25	0.20	0.25	0.35	0.30	;
		Sele- nium	:	:	: :	:	:	:	: :	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	0.35-0.70	0.8-1.1	0.10-0.30	0.50	9		<u> </u>		:	: :	:	:	:	:	:	: :	:	:	
rements	s Indicated	Bismuth	:	:	: :	:	:	:	: :	:	:	:	:	:	:	:	:	:		: :	:	:	:	:	0.5-11.5	1.6-2.2	1.0-2.0	0.8–2.0	0.50-00.0	0.50-1.5	0.50-2.0	1	1.7-2.7	2.0-4.0	:	:	:	:	:	: :	:	:	:
al Requ	Except a	Silicon	0.005	0.01	0.005	0.005	0.005	0.005	0.05	0.05	:	0.05	:	:	:	:		0.4.0	3.0-5.0	3.5-5.5	3.0-5.0	3.0-5.0	25-29	2.7-34	0.005	0.005	0.01	0.01	2.1-0.0	:	0.40-1.0		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
Chemic	n, % Max	Manga- nese	:	:	: :	0.20	0.20	:	: :	:	:	:	2.5-5.0	2.5-5.0	0.10-1.0	0.10–1.5	1.0-3.5	0.1-0.0		200	0.25	0.80	0.10	0.10	:	:	:	:	:	:	0.10		:	: :	:	0.20	:	:	:	: :	:	:	:
TABLE 4 Chemical Requirements	Composition, % Max Except as Indicated	Alumi- num	0.005	0.01	0.005	0.005	0.005	0.005	0.005	0.35	0.10-1.0	0.80	6				5		0.50	3 :	:	:	0.09	:	0.005	0.005	0.01	0.01	:	0.10-1.0	0.35-1.5	L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	,
		Nickel Incl. Cobalt	0.75-2.0 ^A	1.0 2	0. V	0.50-2.0	0.50-2.0	1.0 4.0 4.0 4.0	0. V		: :,	¥0.	8	1.04	1.04	- 1	1.0	:		: :	:	0.25	0.20	0.20	1.0	1.0	1.0	0.30-1.0	:	0.15-0.50	0.10		0.0	1.04	1.04	1.0	1.04	1.04	10.7-1.0	0.7 _A	1.04	1.0 ^A	;
		Iron	0:30	0.50				0.40	0.40	6	0.20	0.7	2.0-4.0	2.0-4.0	0.40-2.0	0.40-2.0	0.5-0.1	0.20	: :	0.20	0.20	0.50	0.10	0.10	0.20	0.20	0.30	0.30	000	0.50	0.10	0	0.30	0.30	0.20	0.40	0.20	0.25	0.25	0.20	0.20	0.20	;
		Zinc	5.5-7.5	1.0-3.0	5.0-8.0	5.0-14.0	5.0-14.0	7.0-10.0	20.0–27.0	24.0-32.0	Remain	32.0-40.0	22.0-28.0				30.0–38.0	12 0-16 0	12.0–16.0	4.0-7.0	3.0-5.0	9.0-11.0	Remain-	der Remain-	der 4.0-6.0	4.0-6.0	7.0-9.0	5.0-9.0	0.01-0.0	35.0-38.0	26.0–32.0	0	0.0-6.0	7.0–10.0	3.0-5.0	1.0-5.0	1.0-3.0	3.0–5.0	3.0-4.5	1.3–2.5	2.0-4.0	0.0	)
		Lead	1.873.0	0.09	5.0-7.0	0.09	0.09	5.5-7.0	1.5–3.8	1.5-3.8	60.0	0.8-1.5	0.20	0.20	0.50-1.5	0.40	0.50-0.5	9.0	0.09	0.09	0.09	0.09	0.05	0.09	0.09	0.09	0.20	0.25	0.03	0.09	60.0	6	0.09 25	0.20	0.30	0.09	0.30	1.0-2.0	0.30-1.0	0.8–1.5	0.8-0.9	8.0-10.0	
	~		2.0–3.5	3.0–5.0	3.3-4.2	2.0-4.0	2.0-4.0	2.3–3.5	0.7-2.0	0.50-1.5	1.0-4.0	0.50-1.5	0.20	0.20	0.50-1.5	0.1	1.5	:	: :	: :	:	2.0	0.10	0:30	4.0-6.0	2.0-6.0	3.5-6.0	2.5–5.5	2.0-0.0	0.20-1.5	0.6-1.5	0	4.0-6.0	3.0-5.0	7.5-9.0	7.5–8.5	9.0-11.0	5.5–6.5	4.5-5.5	9.3–10.5	6.3-7.5	4.3–6.0	
		Copper	87.0-89.04	90.0–96.04	84.0-83.8 ^A	82.0-89.0	82.0-89.0	78.0-82.0 ²	70.0-74.0 ^A	65.0-70.0 ^A	60.0–65.0	58.0-64.04	60.0-66.04	60.0-66.04	56.0-62.04	55.0-60.04	55.0-60.0	94.0 min	79.0 min	88.0 min	90.0 min	84.0 min	75.0–78.0	75.0–78.0	86.0–88.0	85.0-87.0	84.0-89.0	84.0-89.0	04.0-00.0	58.0-63.0	63.0 min	0	86.0-91.0	83.0-86.0	86.0-89.04	86.0-89.0	86.0-89.04	86.0-90.04	86.0–89.07	86.0-88.5 ^A	81.0-85.04	83.0-86.0 ⁴ 78.0-82.0	
		Copper Alloy UNS No.		C83470			C84030	C84400	C85200		C85470	C85700	C86200				C86700	C87400	C87500	C87600	C87610	C87710	$C87845^{C}$	C87850	C89510	C89520	C89530	C89535	700000	C89570	C89720		C89833	C89844		C90420			C92210			C93500	

	A	SME BPVC.II.B-2023	SB-584
	Tta- nium		
	Car-	:::::::	200
	Zirco- nium	::::::::	A BY
	Boron		1100
	Phos- phorus	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Section
	Sulfur	0.08 0.05 0.05 0.05 0.08 0.08 0.08 0.08	ASME BRYC Section II Part B 20
	Anti- mony	0.80 0.80 0.15 0.15 0.25 0.02 0.35 0.25	% 10:0 SME
	Sele- nium		content
per	as Indicated Bismuth	0.001	if the lead
Continu	Except 8	0.005 0.005 0.005 0.005 0.005 0.05 0.15 0.1	obtainec
ABLE 4	Manga-	5 0.0 5 0.20 0.0 5 0.20 0.0 5 0.20 0.0 5 0.10 0.0 5 0.05 0.0 5 1.0 0.0	will not be
4	Compositic Alami num	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	at treated)
an'i	Nickel Incl. Cobalt	1.0 ⁴ 1.0 4.5–6.0 4.5–6.0 4.0–6.0 9.5–10.5 11.0–14.0 19.0–21.5 24.0–27.0	US nickel.
io io	Iron	0.15 0.15 0.25 0.25 0.30 0.50 1.5 1.5	copper pl
Click	Zinc	0.8 0.8 1.0-2.5 1.0-2.5 4.0-6.0 17.0-25.0 3.0-9.0	% max. % copper alloy i-0.15 % max
COM	Lead	13.0-16.0 23.0-27.0 0.09 ^E 0.30-1.0 4.0-6.0 0.005 8.0-11.0 3.0-5.0	per may be (shall be 1.0 max.) uirements of nesium 0.003
and of	투	6.3-7.5 4.5-6.0 4.5-6.0 4.5-6.0 4.0-6.0 7.5-8.5 1.5-3.0 3.5-4.5	inimum, cop phosphorus mium 0.015 chanical req ix, and mag
PINE NO SUPER CHILD C. COM. CHICK TO WENT	Copper	75.0-79.0 67.0-72.0 85.0-90.0 84.0-89.0 79.0-81.0 remainder 53.0-58.0 63.0-67.0	A in determining copper mininum, copper may be calculated as copper plus nickel.  For continuous castings, phosphorus shall be 1.0 % max.  Areacto 0.015 max. Chromium 0.015 max.  Magnesium 0.01-0.10.  Fit is possible that the mechanical requirements of copper alloy UNS No. C94700 (heat treated) will not be obtained if the lead contemended to 1.0-0.30 % max, and magnesium 0.005-0.15 % max.  Fit is possible that the mechanical requirements of copper alloy UNS No. C94700 (heat treated) will not be obtained if the lead contemended to 1.0-0.30 % max, and magnesium 0.005-0.15 % max.
	Copper Alloy UNS No.	C93800 C94300 C94700 C94800 C94900 C96800 F C97300 C97600	A In determining copper n B For continuous castings C Arsenic 0.015 max; Chr D Magnesium 0.01–0.10. E It is possible that the mr F Nicbium 0.10–0.30 % m
		843	

**TABLE 5 Sum of All Named Elements Analyzed** 

Copper Alloy UNS Number	Copper Plus Sum of Named Elements, % Minimum	ME BRUC Section II part
C83450	99.3	
C83470	99.5	
C83600	99.3	
C83800	99.3	
C84020	99.3	x \
C84030	99.3	
C84400	99.3	~ · · · · · · · · · · · · · · · · · · ·
C84800	99.3	, 0
	99.1	<b>,</b> , , , , , , , , , , , , , , , , , ,
C85200	99.1	<b>^</b>
C85400	98.9	
C85470	99.5	XIO
C85700	98.7	-C)V
C86200	99.0	
C86300	99.0	
C86400	99.0	
C86500	99.0	
C86700	99.0	
C87300	99.5	X
C87400	99.2	, <b>V</b>
C87500	99.5	
C87600	99.5	
C87610	99.5	9.
C87710	99.2	)`
C87845	99.5	
C87850	99.5	
C89510	99.3	
C89520	99.3	
C89530	99.5	
	99.5	
C89535	99.5	
C89537	99.5	
C89570	99.5	
C89720	99.5	
C89833	99.3	
C89836	99.5	
C89844	99.3	
C90300	99.4	
C90420	99.3	
C90500	99.7	
C92200	99.5 99.5 99.3 99.5 99.3 99.4 99.3 99.7 99.3 99.3 99.3	
C92210	99.3	
C92300	99.3	
C92600	99.3	
C93200	99.2	
C93500	99.4	
C93700	99.0	
Cagona	98.9	
C94300	99.0	
C94700	99.3	
C04900		
C94800	99.3	
C94900	99.2	
C96800	99.5	
C94300 C94700 C94800 C94900 C96800 C97300 C97600 C97800	99.0	
C97600	99.7	
C97800	99.6	

10.3.2 Postweld heat treatment, when applicable,

10.3.3 Weld repair inspection results,

10.3.4 Casting identification number,

10.3.5 Weld procedure identification number,

10.3.6 Welder identification, and

10.3.7 Name of inspector.

# 11. Sampling

11.1 Test bar castings for copper alloy UNS Nos. C86200, C86300, C86400, C86500, and C86700 shall be cast to the form and dimensions shown in Figs. 1 or 2 of Practice B208. Test bar castings for all other alloys listed in this specification shall be cast to the form and dimensions shown in Figs. 2, 3, or 4 of Practice B208.

11.2 For small remelts the lot size shall not exceed 100 lbs (455 kg) of castings and shall consist of all of the metal from a single master heat poured from an individual melting unit or group of melting units operating during the course of one-half shift, not to exceed 5 h.

# 12. Test Methods

# 12.1 Analytical chemical methods are given in Specification B824.

# 13. Keywords

tion II part B 202 13.1 copper alloy castings; copper-base alloy castings; sand castings

# **APPENDIX**

(Nonmandatory Information)

# X1. METRIC EQUIVALENTS

General of September of Ashir Bayer. He ashir by a september of the ashir by a sep X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The

stress is the newton per square metre (N/m²) which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa, the metric equivalents are expressed as megapascal (MPa), which is the same as INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN THE POP OF CHARGE IN

# NC Section II Part B 202 SPECIFICATION FOR NICKEL-IRON-CHROMIUM-MOLYBDENUM-COLUMBIUM STABILIZED ALLOY (UNS N08700) PLATE, SHEET, AND STRIP





SB-599
(Identical with ASTM Specification B599-92^{£1}(2014).) click to view the fully control of the control of t

# SPECIFICATION FOR NICKEL-IRON-CHROMIUM-JC Section II Part B 20% MOLYBDENUM-COLUMBIUM STABILIZED ALLOY (UNS N08700) PLATE, SHEET, AND STRIP



**SB-599** 



[Identical with ASTM Specification B 599-92 $^{\epsilon 1}$ (2014).]

# Scope

- 1.1 This specification covers nickel-iron-chromiummolydenum-columbium stabilized alloy (UNS N08700) plate, sheet, and strip in the solution-annealed condition.
- 1.2 The values stated in inch-pound units are to be regarded as the standard.

# **Referenced Documents**

- **2.1** ASTM Standards:
- A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- E 8 Test Methods of Tension Testing of Metallic Materials
- E 10 Test Method for Brinell Hardness of Metallic Mate-
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E 140 Hardness Conversion Tables for Metals (Relationship Between Brinell Hardness, Vickers Hardness, Rockwell Hardness, Rockwell Superficial Hardness, and Knoop Hardness)
- E 350 Test Method for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron
- E 353 Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys

# Terminology

- **23.1** Descriptions of Terms Specific to This Standard:
- **3.1.1** The terms plate, sheet, and strip as used in this specification are described as follows:

- **3.1.1.1** plate material **0**.1875 in. (4.76 mm) and over in thickness and over 10 in. (254 mm) in width.
- **3.1.1.2** *sheet* material under 0.1875 in. (4.76 mm) in thickness and over 24 in. (610 mm) in width.
- **3.1.1.3** *strip* material under 0.1875 in. (4.76 mm) in thickness and under 24 in. (610 mm) in width.

# **Ordering Information**

- 4.1 Orders for material under this specification should include the following information:
  - **4.1.1** Quantity (weight or number of pieces).
  - **4.1.2** Name of material or UNS N08700.
  - **4.1.3** Form (plate, sheet, or strip).
  - 4.1.4 Dimensions.
  - **4.1.5** Type of edge required (for strip only, see 9.4).
- **4.1.6** Finish (Section 10) For sheet ordered with No.4 finish, specify whether one or both sides are to be polished.
  - **4.1.7** ASTM designation and year of issue.
- **4.1.8** Corrosion Test State if intergranular corrosion test is required (Section 8).
- **4.1.9** *Marking* State if metal die identification is required on plate  $\frac{1}{4}$  in. (6.35 mm) or thicker (Section 17).
- 4.1.10 Certification or Test Reports State if certification or test reports are required (Section 16).

# Materials and Manufacture

**5.1** *Heat Treatment* — The final heat treatment shall be a solution anneal. Minor cold working such as flattening

TABLE 1 CHEMICAL REQUIREMENTS

Element	Composition, %
Nickel	24.0–26.0
Iron	remainder ^A
Chromium	19.0-23.0
Molybdenum	4.3-5.0
Columbium	$8 \times \text{carbon to } 0.40$
Carbon, max	0.04
Silicon, max	1.00
Manganese, max	2.00
Phosphorus, max	0.040
Sulfur, max	0.030
Copper, max	0.50

 $^{^{\}mathcal{A}}$  Determined arithmetically by difference.

or temper rolling may be performed after the final solution annealing treatment.

NOTE — This recommended solution anneal consists of heating to a minimum temperature of 2000°F (1090°C) and cooling rapidly to room temperature.

# **Chemical Composition**

- **6.1** The material sampled, in accordance with 11.2, shall conform to the composition limits prescribed in Table 1.
- **6.2** If a product analysis is subsequently made, the material shall conform to the composition limits with the product analysis variation prescribed in Table 2

### 7. **Mechanical Requirements**

**7.1** The material shall conform to the requirements as to the mechanical property prescribed in Table 3.

### **Intergranular Corrosion Test** 8.

**8.1** All material supplied to this specification shall be capable of passing the intergranular corrosion test, but the test need not be performed on any given lot unless it is specified on the purchase order. If the test is specified, it shall be performed by the manufacturer on specimens taken in the as-shipped condition. Specimens shall be tested in the sensitized condition (1 h at 1250°F (677°C)), and tested in accordance with Practice C of Practices A 262. The corrosion rate shall not exceed 2.5 mils/month (165  $mg/dm^2 \cdot day$ ).

# **Dimensions and Permissible Variations**

9.1 Sheet — The material referred to as sheet shall conform to the variations in dimensions prescribed in Tables 4 to 9, inclusive.

TABLE 2 PRODUCT (CHECK) ANALYSIS

Element	Tolerances Over the Maximum Limit or Under the Minimum Limit, %
Nickel	0.20
Chromium	0.20
Molybdenum	0.10
Columbium	0.05
Carbon	0.01
Silicon	0.05
Manganese	0.04
Phosphorus	0.005
Sulfur	0.005
Copper	0.03

- 9.2 Cold-Rolled Strip -The material referred to as cold-rolled strip shall conform to the permissible variations in dimensions prescribed in Tables 10 to 13, inclusive.
- 9.3 Plate The material referred to as plate shall conform to the permissible variations in dimensions prescribed in Tables 14 to 19, inclusive.
  - **9.4** Edges for Cold-Rolled Strip:
- **9.4.1** The various types of edges procurable shall be as follows:
- **9.4.1.1** No. 1 Edge Rolled edge, contour as specified.
  - **9.4.1.2** *No. 3 Edge* An edge produced by slitting.
- **9.4.1.3** No. 5 Edge Approximately square edge produced by rolling or filing, or both, after slitting.

## 10. Workmanship, Finish, and Appearance

- 10.1 The material shall be free of injurious imperfections and shall correspond to the designated finish as described as follows:
- **10.1.1** *Sheet* The various types of finish procurable on sheet products shall be as follows:
- **10.1.1.1** No. 1 Finish Hot rolled, annealed, and descaled; produced by hot rolling to specified thicknesses followed by annealing and descaling (see 10.2).
- **10.1.1.2** *No. 2D Finish* Dull, cold-rolled finish; produced by cold rolling to the specified thickness, annealing, and descaling. The dull finish results from the descaling and pickling operations.
- 10.1.1.3 No. 2B Finish Bright, cold-rolled finish; produced by giving a final light cold-rolled pass with polished rolls, to a sheet that has been annealed and descaled.
- 10.1.1.4 No. 4 Finish General-purpose polished finish. Following initial grinding with coarser abrasives,

	TABLE 3	
MECHANICAL	<b>PROPERTY</b>	REQUIREMENTS

Form	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 % offset), min, ksi (MPa)	Elongation in 2 in. or 50 mm, or 4D, min, %	Rockwell Hardness (or equivalent) ^A
Sheet	80 (550)	35 (240)	30	75–90 HRB
Strip	80 (550)	35 (240)	30	75-90 HRB
Plate	80 (550)	35 (240)	30	75-90 HRB

A Hardness values are shown for information only and shall not constitute a basis for acceptance or rejection as long as the other mechanical properties are met.

TABLE 4
THICKNESS TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS

Specified Thickness, in. (mm)	Tolerance, over and under, in. (mm)
Over 0.145 to less than 0.1875 (3.68 to less than 4.76)	0.014 (0.36)
Over 0.130 to 0.145 (3.30 to 3.68), incl	0.012 (0.30)
Over 0.114 to 0.130 (2.90 to 3.30), incl	0.010 (0.25)
Over 0.098 to 0.114 (2.49 to 2.90), incl	0.009 (0.23)
Over 0.083 to 0.098 (2.11 to 2.49), incl	0.008 (0.20)
Over 0.072 to 0.083 (1.83 to 2.11), incl	0.007 (0.18)
Over 0.058 to 0.072 (1.47 to 1.83), incl	0.006 (0.15)
Over 0.040 to 0.058 (1.02 to 1.47), incl	0.005 (0.13)
Over 0.026 to 0.040 (0.66 to 1.02), incl	0.004 (0.10)
Over 0.016 to 0.026 (0.41 to 0.66), incl	0.003 (0.08)
Over 0.007 to 0.016 (0.18 to 0.41), incl	0.002 (0.05)
Over 0.005 to 0.007 (0.13 to 0.18), incl	0.0015 (0.04)
0.005 (0.13)	0.001 (0.03)

TABLE 5
WIDTH AND LENGTH TOLERANCES FOR HOT-ROLLED
AND COLD-ROLLED RESQUARED SHEETS
(STRETCHER LEVELED FLATNESS)

	Tolerance,	in. (mm)
Specified Dimensions, in. (mm)	0ver	Under
For thicknesses under 0.031 (0.79):		
Widths up to 48 (1219), excl	$\frac{1}{16}$ (1.6)	0
Widths 48 (1219) and over	½ (3.2)	0
Lengths up to 120 (3048), excl	$\frac{1}{16}$ (1.6)	0
Lengths 120 (3048) and over	$\frac{1}{8}$ (3.2)	0
For thicknesses 0.031 (0.79) and		
over:		
All widths and lengths	½ (6.4)	0

sheets are generally finished last with abrasives approximately 120 to 150 mesh. Sheets can be produced with one or two sides polished. When polished on one side only, the other side may be rough ground in order to obtain the necessary flatness.

**10.1.1.5** *Bright Annealed* — Bright finish produced by cold rolling to thickness, then annealing in a protective atmosphere.

- **10.1.2** *Strip* The type of finish procurable on coldrolled strip shall be as follows:
- **10.1.2.1** *No. 1 Finish* Cold rolled to specified thickness, annealed, and pickled (see 10.2). Appearance of this finish is a dull gray.
- **10.1.2.2** No. 2 Finish Same as No. 1 finish, followed by a final light cold-rolled pass, generally on highly polished rolls.
- **10.1.2.3** *Bright Annealed* Bright finish produced by cold rolling to thickness, then annealing in a protective atmosphere.
- **10.1.3** *Plate* The types of finish procurable on plates shall be as follows:
- **10.1.3.1** *Hot- or Cold-Rolled, Annealed* Scale not removed (see 10.2).
- **10.1.3.2** *Hot- or Cold-Rolled, Annealed, Descaled* Scale removed by a blast cleaning or pickling operation (see 10.2).
- 10.2 Spot grinding to remove surface imperfections is permitted for material produced in accordance with 10.1.1.1, 10.1.2.1, 10.1.3.1, and 10.1.3.2, provided such grinding does not reduce the thickness or width at any point beyond the permissible variations in dimensions.

TABLE 6 WIDTH, LENGTH, AND CAMBER TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS NOT RESQUARED

WIDTH, LENGTH, AND CAMBER TO SHEE	TS NOT RESQUARED	ED AND COLD-ROLLED
	Width Tolerances	
	Tolerance for Spe	cified Width, in. (mm)
Specified Thickness, in. (mm)	24 to 48 (610 to 1219), excl	48 (1219) and Over
Less than $\frac{3}{16}$ (4.76)	½ ₁₆ (1.6) over, 0 under	cified Width, in. (mm)  48 (1219) and Over  1/8 in. (3.2) over, 0 under  ce. in. (mm)
	Length Tolerances	
	Toleran	ce, in. (mm)
Specified Length, ft (mm)		Under
Up to 10 (3050), incl	½ (6.4)	0,(0)
Over 10 to 20 (3050 to 6100), incl	½ (12.7)	0 (0)
C	amber Tolerances ⁴	
Specified Width, in. (mm)		rance per Unit Length of any ft (2440 mm), in. (mm)
24 to 36 (610 to 914), incl Over 36 (914)		¹ / ₈ (3.2) ³ / ₃₂ (2.4)

 $^{^{\}it A}$  Camber is the greatest deviation of a side edge from a straight line, and measurement is taken by placing an 8-ft (2440-mm) straightedge on the concave side and measuring the greatest distance between the sheet edge and the straightedge.

TABLE 7
FLATNESS TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS

	35 TOLLIKANOLS TOK 1104 KOLL	ED AND GOLD NO				
	Sheets not Specified to Stretcher Lev	eled Standard of Fla	tness			
Specified Thickness, in. (mm)	Width, in. (mm)		Flatness Tolerance (max Deviation from a Horizontal Flat Surface), in. (mm)			
0.062 (1.57) and over	to 60 (1524), incl		½ (12.7)			
	to 60 (1524), incl over 60 to 72 (1524 to 1829), incl over 72 (1829) to 36 (914), incl		³ / ₄ (19.1)			
	1829), incl					
	over 72 (1829)		1 (25.4)			
Under 0.062 (1.57)	to 36 (914), incl		½ (12.7)			
	over 36 to 60 (914 to		³ / ₄ (19.1)			
	1524), incl					
	over 60 (1524)		1 (25.4)			
Sheets Specified to Stretcher Level Standard of Flatness						
Specified Thickness, In. (mm) Width, in. (mm) Length, in. (mm)		Flatness Tolerance, in. (mm)				
Under $\frac{3}{16}$ (4.76)	to 48 (1219), incl	to 96 (2438), incl	¹ / ₈ (3.2)			
Under $\frac{3}{16}$ (4.76)	to 48 (1219), incl	over 96 (2438)	¹ / ₄ (6.4)			
Under $\frac{3}{1}$ (4.76)	over 48 (1219)	to 96 (2438), incl	½ (6.4)			
Under $\frac{3}{16}$ (4.76)	over 48 (1219)	over 96 (2438)	½ (6.4)			

**CIRCLES** Tolerance Over Specified Diameter (No Tolerance Under), in. (mm) 30 to 48 (762 Under 30 (762) to 1219), incl Over 48 (1219) Specified Thickness, in. (mm) Over 0.097 (2.46)  $\frac{1}{8}$  (3.2)  $\frac{3}{16}$  (4.8)  $\frac{1}{4}$  (6.4)  $\frac{3}{32}$  (2.4) ⁵/₃₂ (4.0)

 $\frac{1}{16}$  (1.6)

### TABLE 8 DIAMETER TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS, SHEARED

### TABLE 9 WEIGHT TOLERANCES FOR HOT-ROLLED AND COLD-ROLLED SHEETS

Over 0.057 to 0.097 (1.45 to

0.057 (1.45) and under

2.46), incl

It is not practicable to produce hot-rolled and cold-rolled sheets to exact theoretical weight. Sheets of any one item of a specified thickness and size in any finish may be overweight to the following extent:

- (1) An item of five sheets or less, or an item estimated to weigh 200 lb (90.7 kg) or less, may actually weigh as much as 10% over the theoretical weight.
- (2) An item of more than five sheets and estimated to weigh more than 200 lb (90.7 kg) may actually weigh as much as  $7\frac{1}{2}\%$  over the theoretical weight.
- (3) The underweight variations for sheets are limited by the under thickness tolerances shown in Table 4.

For determining theoretical weight the factor, 42 lb/ft² · in. (0.0008) kg/cm² · mm) thickness may be used.

### Sampling

- 11.1 Lots of Chemical Analysis, Mechanical Testing, and Corrosion Testing:
- 11.1.1 A lot for chemical analysis shall consist of one heat.
- **11.1.2** Plate A lot of plate for testing and inspection purposes shall consist of the products resulting from the rolling of one heat of material in the same condition and specified thickness, solution annealed by the same practice, but in no case more than 25,000 lb (11,340 kg).
- **11.1.3** Sheet and Strip A lot of sheet or strip for testing and inspection purposes shall consist of material from one heat in the same form (sheet or strip), condition, finish, and specified thickness, solution annealed by the same practice but in no case more than 25,000 lb (11,340 kg).
  - **11.2** Sampling for Chemical Analysis:
- **11.2.1** A representative sample shall be taken from each lot during pouring or subsequent processing.
- 11.2.2 Product analysis, if performed, shall be wholly the responsibility of the purchaser.

### 11.3 Sampling for Mechanical Tests

½ (3.2)

11.3.1 A sample of the material to provide test specimens for mechanical tests shall be taken from such a location in each lot as to be representative of that lot.

 $\frac{7}{32}$  (5.6)

 $\frac{3}{16}$  (4.8)

- 11.3.2 When samples are to be taken after delivery, the purchaser of material ordered to cut lengths may request on the purchase order additional material of adequate size to provide sample coupons for inspection purposes.
- **11.4** Sampling for Corrosion Tests A sample for corrosion testing shall be taken from a location chosen to be representative of the lot.

### **Number of Tests and Retests**

- **12.1** In the case of sheet or strip supplied in coil form, two or more tension tests (one from each end of each coil), and one or more hardness tests shall be made on specimens taken from each end of the coil. When material is supplied in flat sheet, flat strip, or plate, one tension and one or more hardness tests shall be made on each 100 or less sheets, strips, or plates of the same lot. When specified, one corrosion test shall be conducted for each lot.
- **12.2** If any specimens selected to represent any lot fail to meet any of the test requirements, the material represented by such specimens may be retested. If there is valid reason to believe the result is not representative, the material may be re-reannealed and retested.

### **13. Specimen Preparation**

**13.1** Tension test specimens from material under  $\frac{1}{2}$  in. (12.7 mm) in thickness shall be of the full thickness of the material and machined to the form and dimensions shown for the sheet-type specimen in Test Methods E 8. Tension test specimens from material  $\frac{1}{2}$  in. (12.7 mm) and over shall be of the full thickness of the material, machined to the form and dimensions shown for the plate-type specimen in Test Methods E 8, or shall be the largest possible round

0.04

0.04

0.02

0.04

0.02

0.02

0.02

0.02

0.25

THICKNESS TOLERANCES A.B.C FOR COLD-ROLLED STRIP FOR THE THICKNESSES AND WIDTHS GIVEN, OVER AND UNDER TABLE 10

						Width, in.				
	0.187 to 1, Mincl		Over 1 to 3, incl	Over 3 to 6, incl		Over 6 to 9, Over incl	Over 9 to 12, incl	Over 12 to 16, incl	0ver 16 to 20, incl	Over 20 to 24, incl
Specified Thickness, in.					Thickr	Thickness Tolerance, in.				
Over 0.160 to less than 0.1875	0.002	0.003	03	0.004	0.004	0.004		0.005	0.006	0.006
Over 0.099 to 0.160, incl	0.002	0.002	02	0.003	0.003	0.004		0.004	0.005	0.005
Over 0.068 to 0.099, incl	0.002	0.002	02	0.003	0.003	0.003		0.004	0.004	0.004
Over 0.049 to 0.068, incl	0.002	0.002	02	0.003	0.003	0.003		0.003	0.004	0.004
Over 0.039 to 0.049, incl	0.002	0.0	02	0.0025	0.003	0.003		0.003	0.004	0.004
Over 0.034 to 0.039, incl	0.002	0.005	02	0.0025	0.0025	0.003		0.003	0.003	0.003
Over 0.028 to 0.034, incl	0.0015		0.0015	0.002	0.002	0.0025	5	0.0025	0.003	0.003
Over 0.025 to 0.028, incl	0.001	0.0	0.0015	0.0015	0.002	0.002		0.002	0.0025	0.003
Over 0.019 to 0.025, incl	0.001	0.001	01 0	0.0015	0.0015			0.002	0.0025	0.0025
Over 0.016 to 0.019, incl	0.001	0.001	01	0.001	0.0015		5	0.002	0.002	0.002
Over 0.012 to 0.016, incl	0.001	0.001	01	0.001	0.001	0.0015	5	0.0015	0.002	0.002
Over 0.011 to 0.012, incl	0.001	0.001	01	0.001	0.001	0.0015	5	0.0015	0.0015	0.0015
Over 0.010 to 0.011, incl	0.001	0.001	01	0.001	0.001	0.001		0.0015	0.0015	0.0015
0.010	0.001	0.001	0.1	0.001	0.001	0.001		0.001	0.0015	0.0015
				5	Wid	Width, mm				
	4.76 to	Over 25.4 to	Over 76.2 to		Over 152.4 to	Over 228.6 to	Over 304.8 to	)4.8 to	Over 406.4 to	Over 508 to
	23.4, IIICI	70.2, IIICI	132.4, IIICI		220.07 MIG	204.0, IIICI	400.4, IIICI	, IIC	200, IIICI	007.0, IIICI
Specified Thickness, mm					Thickness	Thickness Tolerance, mm				
Over 4.06 to less than 4.75	0.05	0.08	0.10		0.10	0.10	0.13	છ	0.15	0.15
Over 2.51 to 4.06, incl	0.05	0.05	0.08		0.08	0.10	0.10	0.	0.13	0.13
Over 1.73 to 2.51, incl	0.05	0.05	0.08		0.08	0.08	0.10	0.	0.10	0.10
Over 1.24 to 1.73, incl	0.05	0.05	0.08		0.08	0.08	0.08	8(	0.10	0.10
Over 0.99 to 1.24, incl	0.05	0.05	90.0		0.08	0.08	0.0	8(	0.10	0.10
Over 0.86 to 0.99, incl	0.05	0.05	90.0		90.0	0.08	0.08	8(	0.08	80.0
Over 0.71 to 0.86, incl	0.04	0.04	0.02		0.05	90.0	90.0	9(	0.08	0.08
Over 0.64 to 0.71, incl	0.02	0.04	0.04		0.05	0.05	0.05	)5	90.0	0.08
Over 0.48 to 0.64, incl	0.02	0.02	0.04		0.04	0.05	0.05	)5	90.0	90.0
Over 0.41 to 0.48, incl	0.02	0.02	0.02		0.04	0.04	0.05	)5	0.05	0.05
to 0.41,	0.02	0.02	0.02		0.02	0.04	<b>S</b>	4	0.05	0.05
0.28 to	0.02	0.02	0.02		0.02	0.04	0.0	4	0.04	0.04
Over 0.25 to 0.28, incl	0.02	0.02	0.02		0.02	0.02	0.04	40	0.04	0.04
										,

nesses under 0.005 in. (0.127 mm) in widths up to 24 in. (610 mm), excl, the producer should be consulted.

⁸ Thickness measurements are taken ³/₈ in. (9.5 mm) in from the edge of the strip, except that on widths less than 1 in. (25.4 mm) the tolerances are applicable for measurements at all under 0.010 to 0.005 in. (0.254 to 0.127 mm), incl, in widths over 16 to 24 in. (406 to 610 mm), excl, a tolerance of ±15 % of the thickness applies. For thickness tolerances on thick-A For thicknesses under 0.010 to 0.005 in. (0.254 to 0.127 mm), incl, in widths up to and including 16 in. (406 mm), a tolerance of ±10% of the thickness applies. For thicknesses

locations.

 $[\]ensuremath{^{\mathcal{C}}}$  The tolerances in this table do not include crown tolerances

TABLE 11
CROWN TOLERANCES FOR COLD-ROLLED STRIP

Additional Thickness, at Middle of Strip Over That Shown in Table 10 for Edge Measurement, for Widths and Thicknesses Given, in. (mm)

		casar cirrority for triaming arise timentings	303 4.1.0.1, 1.1. (1.11.1.)
		Width, in. (mm)	
Specified Thickness, in. (mm)	To 5 (127), incl	Over 5 to 12 (127 to 305), incl	Over 12 to 24 (305 to 610), excl
0.005 to 0.010 (0.127 to 0.254), incl Over 0.010 to 0.025 (0.254 to 0.635), incl Over 0.025 to 0.065 (0.635 to 1.65), incl Over 0.065 to 0.1875 (1.65 to 4.76), excl	0.0075 (0.19) 0.001 (0.02) 0.0015 (0.04) 0.002 (0.05)	0.001 (0.02) 0.0015 (0.04) 0.002 (0.05) 0.0025 (0.06)	0.0015 (0.04) 0.002 (0.05) 0.0025 (0.06) 0.003 (0.08)

specimen shown in Test Methods E 8. Tension test specimens shall be taken from material after final heat treatment and shall be selected in the transverse direction unless prohibited by width.

13.2 Corrosion test specimens shall be prepared so that at least one major surface represents the as-supplied surface, with only light surface grinding permitted on this surface.

### 14. Test Methods

**14.1** Determine the chemical composition and properties of the material as enumerated in this specification, in case of disagreement, in accordance with the following methods:

Test	ASTM Designations
Chemical analysis	E 350, E 353 ^{A,B}
Tension	E 8
Brinell hardness	E10
Rockwell hardness	E48
Hardness conversion	E 140
Rounding procedure	E 29
Method of sampling for product analysis	E 55
Intergranular corrosion test	A 262, Practice C

^A Iron shall be determined arithmetically by difference.

**14.2** For purpose of determining compliance with the limits in this specification, an observed value or a calculated value shall-be rounded as indicated in accordance with the rounding method of Practice E 29.

	Rounded Unit for Observed
Requirements	or Calculated Value

Chemical composition hardness and tolerance (when expressed in decimals)

Tensile strength and yield strength Elongation

Nearest unit in the last right-hand place of figures of the specified limit

nearest 1000 psi (7 MPa) nearest 1%

### 15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 16. Certification

16.1 When specified in the purchase order or contract, a manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.

### 17. Product Marking

17.1 Each piece (plate, sheet, strip, or coil) shall be marked legibly with the specification number, UNS number, heat number, and the name of the manufacturer. When specified, marking shall be by die stamping on plates  $\frac{1}{4}$  in. (6.35 mm) or thicker.

^B Test Methods E 350 are to be used only for elements not covered by Test Methods E 353.

E 12 LED STRIP ON EDGE NOS. 1,	E 12 LED STRIP ON EDGE NOS. 1,	TABLE 12 D-ROLLED STRIP ON EDGE NOS. 1,		5, and 3
E 12 LED STRIP ON EDG	E 12 LED STRIP ON EDG	E 12 LED STRIP ON EDG		H
TABLE 12 R COLD-ROLLED STRIP 0	TABLE 12 S FOR COLD-ROLLED STRIP 0	TABLE 12 TOLERANCES FOR COLD-ROLLED STRIP 0		N EDGE N
TABLE 12 R COLD-ROLLED	TABLE 12 S FOR COLD-ROLLED	TABLE 12 TOLERANCES FOR COLD-ROLLED	<b>.</b>	STRIP 0
R COLI	S FOR COLI	TOLERANCES FOR COLI	TABLE 12	<b>J-ROLLED</b>
	S F0	TOLERANCES FO		R COLI

	5	Edge Nos	Edge Nos. 1 and 5			
				Width Tolerar	Width Tolerance for Thickness and Width Given, in.	th Given, in.
Specified Edge No.	Width, in.	Thickness, in.		0ver		Under
1 and 5	% and under	$1_{16}$ and under		0.005		0.005
1 and 5	over $\%_2$ to $\%_4$ , incr	$\frac{3}{32}$ and under		0.005		0.005
1 and 5	over $\frac{3}{4}$ to 5, incl	$\frac{1}{8}$ and under		0.005		0.005
5	over 5 to 9, incl	$\frac{1}{8}$ to 0.008, incl	ncl	0.010		0.010
5	over 9 to 20, incl	0.105 to 0.015	5.	0.010		0.010
5	over 20 to $23^{15}/_{6}$ , incl	0.080 to 0.023	5	0.015		0.015
		Edge Edge	Edge No. 3			
		(Width Tolerance	for Thickness and Wic	Width Tolerance for Thickness and Width Given, Over and Under, in.	er, in.	
Specified Thickness, in.	Under $^{1}/_{2}$ to $^{3}/_{16}$ , incl	1/2.to.6, incl	Over 6 to 9, incl	Over 9 to 12, incl	Over 12 to 21, incl	Over 21 to 24, incl
Under 0.1875 to 0.161, incl	:	0.01	0.020	0.020	0.031	0.031
0.160 to 0.100, incl	0.010	0.010	0.016	0.016	0.020	0.020
0.099 to 0.069, incl	0.008	0.008	0.010	0.010	0.016	0.020
0.068 and under	0.005	0.005	9000	0.010	0.016	0.020
		Edge Nos.	s. 1 and 5			
				Width Toleran	Width Tolerance for Thickness and Width Given, mm	th Given, mm
Specified Edge No.	Width, mm	Thickness, mm	MI WILL	0ver		Under
1 and 5	7.1 and under	1.6 and under	1 _C	0.13		0.13
1 and 5	Over 7.1 to 19.0, incl	2.4 and under	, ·	0.13		0.13
1 and 5	Over 19.0 to 127	3.2 and under		0.13		0.13
5	Over 127 to 229	3.2 to 0.203, incl	incl	0.25		0.25
5	Over 229 to 508	2.7 to 0.381, incl	incl	0.25		0.25
5	Over 508 to 608	2.0 to 0.584, incl	incl	00,38		0.38
		Edge	Edge No. 3	K		
		Width Tolerano	e for Thickness and W	Width Tolerance for Thickness and Width Given, Over and Under, mm	ıder, mm	
	Under 12.7 to 4.76,	12.7 to 152,	Over 152 to	Over 229 to	Over 305 to 533,	Over 533 to 610,
Specified Thickness, mm	incl	incl	229, incl	305, incl	incl	excl
Under 4.76 to 4.09, incl	:	0.41	0.51	0.51	62.00	0.79
4.06 to 2.54, incl	0.25	0.25	0.41	0.41	150	0.51
2.51 to 1.75, incl	0.20	0.20	0.25	0.25	0.45	0.51
1.73 and under	0.13	0.13	0.13	0.25	0.41	0.51

TABLE 13 LENGTH AND CAMBER⁴ TOLERANCES FOR COLD-ROLLED STRIP

	ABLE 13 ERANCES FOR COLD-ROLLED STRIP	
Leng	th Tolerances	$\sim$
Specified Length, ft (mm)	Tolerance Over Specified Length (No Under Tolerance), in. (mm)	872
To 5 (1524), incl Over 5 to 10 (1520 to 3050), incl Over 10 to 20 (3050 to 6100), incl	³ / ₈ (9.5) ¹ / ₂ (12.7) ⁵ / ₈ (15.9)	III Part
Camb	er Tolerances	ction,
Specified Width, in. (mm)	Tolerance per Unit Length of any 8 ft (2440 mm), in. (mm)	Gectio
To $1\frac{1}{2}$ (38.1), incl Over $1\frac{1}{2}$ to 24 (38.1 to 610), excl	¹ / ₂ (12.7) ¹ / ₄ (6.4)	5
Over 1½ to 24 (38.1 to 610), excl	<u>-</u>	

 $^{^{}A}$  Camber is the deviation of a side edge from a straight line, and measurement is taken by placing an 8-ft straightedge on the concave side and measuring the greatest distance between the strip edge and the straightedge.

TABLE 14
THICKNESS^A TOLERANCES ON PLATES^{B,C}

			<del>///</del> ·	
		Width, in. (mm) Tolerance Over S	ecified Thickness, in. (mm	)
		Over 84 to 120 (2134 to	Over 120 to 144 (3048	
Specified Thickness, in. (mm)	To 84 (2134), incl	3048), incl	to 3658), incl	Over 144 (3658)
2 2		/,		
$\frac{3}{16}$ to $\frac{3}{8}$ (4.76 to 9.53), excl	0.046 (1.17)	0.050 (1.27)		
$\frac{3}{8}$ to $\frac{3}{4}$ (9.53 to 19.05), excl	0.054 (1.37)	0.058 (1.47)	0.075 (1.91)	0.090 (2.29)
3/4 to 1 (19.05 to 25.4), excl	0.060 (1.52)	0.064 (1.63)	0.083 (2.11)	0.100 (2.54)
1 to 2 (25.4 to 50.8), incl	0.070 (1.78)	0.074 (1.88)	0.095 (2.41)	0.115 (2.92)

⁴ Thickness is measured along the longitudinal edges of the plate at least ³/₈ in. (9.53 mm), but not more than 3 in. (76.20 mm), from the edge.

^B For circles, the above over-thickness tolerances apply to the diameter of the circle corresponding to the width ranges shown. For plates of ASIMEMORINDOC. COM. Circle to view the irregular shape, the above over-thickness tolerances apply to the greatest width corresponding to the width ranges shown.

 $^{^{\}it C}$  For plates up to 2 in. (50.8 mm), incl, in thickness the tolerance under specified thickness is 0.01 in. (0.254 mm).

TABLE 15 WIDTH AND LENGTH TOLERANCES FOR PLATES A,B

		Tolerance Over Specified Width and Length for Given Width, Length, and Thickness, in.					
		Unde	r ³ / ₈ in.	3/ ₈ to ¹ / Thic	, incl, in kness	Over ¹ / ₂ ii	1 Thickness
Width, in.	Length, in.	Width	Length	Width	Length	Width	Length
48 and under Over 48 to 60, incl Over 60 to 84, incl Over 84 to 108, incl Over 108	144 and under	1/8 3/16 1/4 5/16 3/8	3/16 1/4 5/16 3/8 7/16	3/16 1/4 5/16 3/8 7/16	1/4 5/16 3/8 7/16 1/2	5/16 3/8 7/16 1/2 5/8	3/8 7/46 1/2 9/2 9/16 11/16
48 and under Over 48 to 60, incl Over 60 to 84, incl Over 84 to 108, incl Over 108	over 144 to 240	3/16 1/4 3/8 7/16 1/2	3/8 7/ 1/6 1/2 9/16 5/6	1/4 5/16 7/16 1/2 5/8	1/4 5/16 3/8 1/16 1/2 1/2 5/8 11/16 3/4 7/8 5/8	11/16	5/8 3/4 3/4 7/8 1
48 and under Over 48 to 60, incl Over 60 to 84, incl Over 84 to 108, incl Over 108	over 240 to 360	1/4 5/16 7/16 7/16 9/16 5/8	78 17 5/8 11/16 3/4 7/8	5/16 3/8 1/2 5/8 11/16	5/8 3/4 3/4 7/8	3/8 1/2 5/6 3/4 7/8 3/4 7/8	3/4 3/4 7/8 1
60 and under Over 60 to 84, incl Over 84 to 108, incl Over 108	over 360 to 480	7, /16 1, /2 /16 3,4	1 ½ 1 ¼ 1 ¼ 1 ¾ 1 ¾	1/2 5/8 3/4 7/8	1 1/4 3/8 1 3/8 1 1/2	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
60 and under Over 60 to 84, incl Over 84 to 108, incl Over 108	over 480 to 600	7/16 1/2 5/2 5/8 3/4	1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈	1/2 5/, 38 34 7/8	1 ½ 1 ½ 1 ½ 1 ½ 1 ½	5/ ₈ 3/ ₄ 7/ ₈ 1	1 5/8 1 5/8 1 5/8 1 3/4
60 and under Over 60 to 84, incl Over 84 to 108, incl Over 108	over 600	1/2 5/8 5/8 7/8	1 ³ / ₄ 1 ³ / ₄ 1 ³ / ₄ 1 ³ / ₄	7/ ₈ 5/ ₈ 3/ ₄ 3/ ₄ 1	1 7/8 1 7/8 1 7/8 2	3/ ₄ 7/ ₈ 7/ ₈ 1 1/ ₈	$ \begin{array}{ccccc} 1 & \frac{7}{8} \\ 1 & \frac{7}{8} \\ 1 & \frac{7}{8} \\ 2 & \frac{1}{4} \end{array} $

		Tolerance	Over Specified V	Vidth and Length	for Given Width,	Length, and Thio	kness, mm
		Under 9	.5 mm		' mm incl, in kness		2.7 mm in ckness
Width, mm	Length, mm	Width	Length	Width	Length	Width	Length
1219 mm and under	3658 and under	3.2	4.8	4.8	6.4	7.9	9.5
Over 1219 to 1524, incl		4.8	6.4	6.4	7.9	9.5	11.1
Over 1524 to 2134, incl		6.4	7.9	7.9	9.5	11.1	12.7
Over 2134 to 2743, incl		7.9	9.5	9.5	11.1	12.7	14.3
Over 2743	1/13	9.5	11.1	11.1	12.7	15.9	17.5
1219 mm and under	over 3658 to 6096	4.8	9.5	6.4	12.7	7.9	15.9
Over 1219 to 1524, incl		6.4	11.1	7.9	15.9	9.5	19.1
Over 1524 to 2134, incl	HI.	9.5	12.7	11.1	17.5	12.7	19.1
Over 2134 to 2743, incl	4	11.1	14.3	12.7	19.1	15.9	22.2
Over 2743	S. Na	12.7	15.9	15.9	22.2	17.5	25.4
1219 mm and under	over 6096 to 9144	6.4	12.7	7.9	15.9	9.5	19.1
Over 1219 to 1524, incl	7.	7.9	15.9	9.5	19.1	12.7	19.1
Over 1524 to 2134, incl	×O	11.1	17.5	12.7	19.1	15.9	22.2
Over 2134 to 2743, incl		14.3	19.1	15.9	22.2	19.1	25.4
Over 2743	1	15.9	22.2	17.5	25.4	22.2	25.4
1524 mm and under	over 9144 to 12 192	11.1	28.6	12.7	31.8	15.9	34.9
Over 1524 to 2134, incl		12.7	31.8	15.9	34.9	19.1	38.1
Over 2134 to 2743, incl		14.3	31.8	19.1	34.9	22.2	38.1
Over 2743		19.1	34.9	22.2	38.1	25.4	41.3
1524 mm and under	over 12 192 to 15 240	11.1	31.8	12.7	38.1	19.1	41.3
Over 1524 to 2134, incl		12.7	34.9	15.9	38.1	22.2	41.3
Over 2134 to 2743, incl		15.9	34.9	19.1	38.1	22.2	41.3
Over 2743		19.1	38.1	22.2	41.3	25.4	44.5
1524 mm and under	over 15 240	12.7	44.5	15.9	47.6	19.1	47.6
Over 1524 to 2134, incl		15.9	44.5	19.1	47.6	22.2	47.6
Over 2134 to 2743, incl		15.9	44.5	19.1	47.6	22.2	47.6
Over 2743		22.2	44.5	25.4	50.8	28.6	57.2

 $^{^{}A}$  The tolerance under specified width and length is  $^{1}_{4}$  in. (6.35 mm).  B  Rectangular plates over 1 in. (25.4 mm) in thickness are not commonly sheared and are machined or otherwise cut to length and width or produced in the size as rolled, uncropped.

### TABLE 16 CAMBER TOLERANCE FOR PLATES

### TABLE 17 DIAMETER TOLERANCES FOR CIRCULAR PLATES

		BLE 16 RANCE FOR PLATES	
	Maximum camber ^{$A$} = $^{1}/_{8}$ in	. (3.2 mm) in any 5 ft (1524 mm)	
	and measurement is taken by p	a side edge from a straight line, placing a 5-ft (1524-mm) straight- measuring the greatest distance ghtedge.	JC Section 1
	DIAMETER TOLERANC	BLE 17 ES FOR CIRCULAR PLATES over Specified Diameter for Given Diameter	
		(No Under Tolerance), in. (mm) Thickness	<b>V</b> ,
Specified Diameter, in. (mm)	To 0.375 (9.53), excl	0.375 to 0.625 (9.53 to 15.88) excl	0.625 (15.88) and over
To 60 (1524), excl 00 to 84 (1524 to 2134), excl 04 to 108 (2134 to 2743), excl 08 to 130 (2743 to 3302), excl	1/ (6.4)	³ / ₈ (9.5) ⁷ / ₁₆ (11.1) ¹ / ₂ (12.7) ⁹ / ₁₆ (14.3)	$\frac{1}{2}$ (12.7) $\frac{9}{16}$ (14.3) $\frac{5}{8}$ (15.9) $\frac{11}{16}$ (17.5)
0 to 84 (1524 to 2134), excl. 4 to 108 (2134 to 2743), excl. 8 to 130 (2743 to 3302), excl. 9 to 130 (2743 to 3302), excl. 9 to 130 (2743 to 3302), excl.	oview the full		

^A Camber is the deviation of a side edge from a straight line, and measurement is taken by placing a 5-ft (1524-mm) straightedge on the concave side and measuring the greatest distance between the plate and the staightedge.

TABLE 18 FLATNESS TOLERANCES FOR PLATES

					ASI	ME BE	PVC.II.I	B-2U	23							SB-599
			144 and Over		13,4 18,8	$\frac{1}{8}$	$\frac{7_8'}{1^{1/8}}$			3658 and Over		44.5	34.9	28.6	22.2	0.00
			120 to 144, excl	2 17/8	1,76 1,78	1 3/4	3,			3048 to 3658, excl	50.8	47.6 36.5	28.6	25.4	19.1	Section II Part
	ınd Width Given, in.		108 to 120, excl	17 ₈ 17 ₁₆	1,4 1,7 1,4	15/16 11/16	2,8 2,8 8,2 8,2 8,2 8,2 8,2 8,2 8,2 8,2	d Width Given, mm		2743 to 3048, excl	47.6	39.7	28.6	23.8	15.9	Csection
	Tolerance (Deviation from a Flat Horizontal Surface) for Thickness and Width Given, in		96 to 108, excl	$\frac{15_8}{17_{16}}$	7,7%	$\frac{3}{16}$	3/16	olerance (Deviation from a Flat Horizontal Surface) for Thickness and Width Given, mm		2438 to 2743, excl	41.3	36.5	28.8	20.6	14.3	12.1
8 ES FOR PLATES	lat Horizontal Surfa	Width, in.	84 to 96, excl	15/8 13/8	15/16 3/16	3, 11, 16	¹ / ₈ / ₈ / ₂ / ₂ / ₁ / ₁ / ₂ / ₈ / ₁ / ₂ / ₂ / ₃ / ₁ / ₂ / ₃	t Horizontal Surfac	Width mm	2134 to 2438, excl	41.3	34.9 23.8	20.6	19.1	12.7	6.01
TABLE 18 FLATNESS TOLERANCES FOR PLATES	Deviation from a F		72 to 84, excl	13%	<b>₹</b>		7.16 7.16 7.16 7.16	eviation from a Flat		1829 to 2134, excl	34.9	28.6 19.1	15.9	15.9	11.1	C.+1
	ıtness		50 to 72,	$1^{1/4}_{4}$	11/16 5/8	28 / 2 16	3,2 2,2 2,2	Flatness Tolerance (D		1524 to 1829, excl	31.8	23.8 17.5	15.9	15.9	7.6. 7.6.	1771
-M. Click	Ç		0ver 48 60, exc	1,16	7,677	1,6	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	H.		0ver 1219 to 1 1524, excl	27.0	19.1 14.3	14.3	14.3	7.9	
*WDOC.CO.			48 and Under	3,4 11,16	, , , , , , , , , , , , , , , , , , ,	,	² / ₁ / ₄			1219 and Under	19.1	17.5 12.7	12.7	12.7		t.
MOBINDOC. COM. Circk			Specified Thickness, in.	$^{3}_{16}$ to $^{1}_{4}$ , excl	% to ½, excl ½ to ¾, excl	$\frac{3}{4}$ to 1, excl 1 to $\frac{1}{2}$ , excl	$1\frac{1}{2}$ to $\frac{1}{4}$ , excl 4 to 6, excl			Specified Thickness, mm	4.76 to 6.35, excl	6.35 to 9.53, excl 9.53 to 12.7, excl	12.7 to 19.05, excl	19.05 to 25.4, excl	38.1 to 102, excl	יסק נס יסק' פערו

TABLE 19 RECOMMENDED PLATE FLAME-CUTTING TOLERANCES TO CLEANUP IN MACHINING

Specified Thickness, in. (mm)	Machining Allowance per Edge, in. (mm)
2 (51) and under	¹ / ₄ (6.4)
Over 2 to 3 (51 to 76), incl	¹ / ₄ (6.4) ³ / ₈ (9.5)
Over 3 to 6 (76 to 152), incl	½ (12.7)

ABRASIVE-CUTTING WIDTH AND LENGTH TOLERANCES

	TABLE RECOMMENDED PLATE TOLERANCES TO CLEAN	FLAME-CUTTING		o ^o
	Specified Thickness, in. (mm)	Machining Allowance per Edge, in. (mm)		2201
	2 (51) and under Over 2 to 3 (51 to 76), incl Over 3 to 6 (76 to 152), incl	½ (6.4) ¾ (9.5) ½ (12.7)		II Part D
			Section	All Part B) 202?
	TABLE ABRASIVE-CUTTING WIDTH AI		SPVC	
Specified Thick	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Over ^A Specified Width and Lengt	th, in (mm) Length	
			(3.2) (16. (4.8)	
A The tolerance	e under the specified width and length is	; ½ in. (3.2 mm).		
Up to 1½ (32) Over 1½ to 2¾  A The tolerance  ASMENORMINOC.	to view the full Por of	ASME		
ASMENORM				
	860			

## NC Section II Part B) 202 SPECIFICATION FOR WELDED NICKEL AND NICKEL-COBALT ALLOY PIPE SB-619/SB-619M with ASTM Specification B619/B619M-17 except certification and test reports have been addressed in the state of the state



ASMENORANDOC. COM. Circk to view the full Policy of the Control of (Identical with ASTM Specification B619/B619M-17 except certification and test reports have been made mandatory per SB-775.)

### Specification for Welded Nickel and Nickel-Cobalt Alloy Pipe

### 1. Scope

- 1.1 This specification covers welded pipe of nickel and nickel-cobalt alloys (UNS N10001; UNS N10242; UNS N10665; UNS N12160; UNS N10624; UNS N10629; UNS N10675; UNS N10276; UNS N06455; UNS N06007; UNS N06975; UNS N08320; UNS N06002; UNS N06022; UNS N06035; UNS N06044; UNS N06058; UNS N06059; UNS N06200; UNS N10362; UNS N06985; UNS N06030; UNS R30556; UNS N08031; UNS N06230; UNS N06686; UNS N06210; and UNS R20033) as shown in Table 1.
- 1.2 This specification covers pipe in Schedules 5S, 10S, 40S, and 80S through 8-in. nominal pipe size and larger as set forth in ANSI B36.19 (see Table 2).
  - 1.3 Two classes of pipe are covered as follows:
- 1.3.1 Class I—As welded and solution annealed or welded and sized and solution annealed.
- 1.3.2 Class II—Welded, cold worked, and solution annealed.
- 1.4 All pipe shall be furnished in the solution annealed and descaled condition. When atmosphere control is used, descaling is not necessary.
- 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided

by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

2.1 ASTM Standards:

B775 Specification for General Requirements for Nickel and Nickel Alloy Welded Pipe

B899 Terminology Relating to Non-ferrous Metals and Alloys

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ANSI Standards:

B36.19 Stainless Steel Pipe

B21 Pipe Threads

23 ASME Boiler and Pressure Vessel Code

Section IX Welding and Brazing Qualifications

### 3. Terminology

3.1 For definitions of terms used in this standard refer to Terminology B899.

### 4. General Requirement

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B775 unless otherwise provided herein.

### 5. Ordering Information

5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this

ents
uirem
Requ
nical
Chen
_
쁘
AB
F

	Mg												:													
	÷ S	2			94.0-	0.86 :	:						:		:											
	Та				0.20	max ::	:						:		:											0.3-
	පි දි	(CI)			0.20	max ::	:						:		:											0.30 max
	Ф				:	:	:	0.006	S				:		:										_<	0.02 max
	z				:	:	:						:	0.02-	5 :									_C Č	70	0.10-
	La				:	:	:						:		:							,	ری	2		0.005-
	Zr				0.10	max	:						:		:						0	R	7			0.001-
	₹				0.50	0.1-	o :	0.50	<u> </u>			0.40 max	0.30 max	0.40	0.1-	t o				1		/				0.10-
	g \( \frac{\frac{1}{2}}{2} \)	+Ta	:	:	:	:	:			:	:	:	:	:	:	:		1.75-		0.50	max 0.30-	06.1	:	:		:
	ਰੋ		:	:				0.50 max		:		0.30 max			0.50		11	2			2.5		:			:
	F		:	:		ax	:			:	:	:	0.10-		:	0.70	<u>(C.,</u>	:	0.70-		:		4xC min	:		:
% "	S	Y B	0.03	0.03	0.010	0.01	0.01	0.015	0			0.015	0.020	0.010	0.010	0.03		0.03	0.03	0.03	0.02		0.03	0.03		0.015
Composition Limits, %	- Xem	X B	0.04	0.04	0.030	0.04	0.025	0:030	2			0.030	0.020	0.075	0.015	0.04		0.04	0.03	0.04	0.04		0.04	0.04		0.04
mpositio	>		0.2-			. ax	:		i c			20 8 20	<b>V</b>		:	:		:	:	:	:		:			:
Ö	M		1.0	1.0	3.0	1.5	1.0	0.80 m	Š (	i ax		0.50 max	0.07-	0.50	0.5 0.5	1.0	Š	1.0-	1.0	max 1.0	1.5		2.5 max	0.1	max	0.50-
	ပိ		2.5	1.0	max 3.0	2.5	1.0	1.00				1.00 max			0.3	2.0	Š	2.5 max	<u> </u>	5.0	max 5.0	ax	:	0.5-	2.5	16.0-
	Si	Š	1.0	0.10	0.10	0.05	0.10	180	9	0 0	9	09.0	0.20	0.10	0.10	90.0		1.0	1.0	1.0	max 0.8		1.0	1.0		0.20-
	O		0.05	0.05	max 0.01	0.01	0 0 1	0.03		max 0.010	max	0.050 max	0.02 max	0.010	0.010	0.015	<u> </u>	0.05 max	0.03	max 0.015	max 0.03	II ax	0.05 max	0.05-	0.15	0.05-
	>		:	:		wax.	_			2.4.0					¥ :	:		1.0			1.5-		:		0.1	3.5
	Fe		4.0-6.0	2.0 max	1.0-3:0	1.0-6.0	5.0-8.0	2.0 max	7			2.00 max	0.3 max	1.5 max	1.5 max	3.0 max		18.0-21.0	remainder	18.0-21.0	13.0-17.0		remainder	17.0-20.0		remainder
	Mo	<u>ر</u>	-67,	•	30.0 27.0-		21.0			17.0						0.41	?	-5.5	0.		0.8 4.0	<u> </u>	4.0- 6.0		10.0	2.5-
	رچ	·				0.5-				16.5						-0.41					23.5		21.0-		23.0	21.0-
>	Ē		remainder ⁴ 1	remainder ⁴ 1	65.0 min 1	remainder ⁴ 0	remainder ⁴   6	remainder ⁴ 7	A			remainder ⁴ 3	balance 4	balance 2	balance	remainder ⁴ 1	_	remainder ⁴ 2	47.0-52.0	remainder ^A 2	remainder ⁴ 2	.,	25.0-27.0	remainder ⁴		19.0-22.5
			Ni-Mo Alloys N10001	N10665 re	N10675 6	N10629 re	N10624 re	Ni-Mo-Cr-Fe Alloy N10242	Low C Ni- Cr-Mo Alloys			N06035 re	N06044 ba	N06058 ba	N06059 ba	N06455 re	Ni-Cr-Fe- Mo-Cu Allovs	200	N06975 4	N06985 re	N06030 re	Ni-Fe-Cr-Mo	Alloys N08320 29	Ni-Cr-Mo-Fe Alloy N06002		

	H	Hi Wo Mo			:			:	:		C Section II par
	H	- a	:		i .	:	:	:	:	1.5-	2
		g (g	:		:	:	:	1.0 max	:	÷	" bg
		m	0.015 max		ŧ	i	i i	÷	:	i	ion
		z	:		:	0.15-	:	÷	0.35-	÷	cectile
		La	0.005-		:	:	:	i	:	: 1	C
		Zr	:		i	:	:	:	:	, & ?	
		¥	0.50 max	0.50 max	0.50 max	:	:	:	CN		
		Cb (Nb) +Ta	i	:	:	:	:	: ~	R	:	
		ō	i	6. 6.	:	-0.1 4.1	:		0.3-		
		F	:	:	:	i i	0.02-	0.20	:	÷	
penu	s, %	S max	0.015	0.010	0.010	0.010	0.02	0.015	0.01	0.02	
Continued	Composition Limits, %	тах	0.03	0.025	0.025	0.020	0.04	0.030	0.02	0.02	
TABLE 1	mpositio	>	:	:	: 4	0	:	:	:	0.35 max	
TA	ဒီ	Ā	0.30-	0.50 max	o xx	2.0 max	0.75 max	1.5 max	2.0 max	0.5	
		ပိ	5.0 max	2.0 max	'III'	i	i	27.0- 33.0	:	1.0 max	
		Si	0.25-	0.0	0.08	0.3	0.08	2.4-	0.50†	0.08 fference	
		ပ	0.05-	0.010 max	0.010 max	0.015 max	0.010 max	0.15 max	0.015 max	0.015 max ally by di	, ,
	ľ	≥ . (	13.00	:	:	:	3.0-	1.0 max	:	 hmetica	
	2	T.C.	3.0 max	3.0 max	1.25 max	balance	5.0 max	3.5 max	balance	1.0 max	
$\mathcal{L}_{\mathcal{O}}$		ω	3.0	15.0- 17.0	21.5-	6.0-	15.0-	1.0 max	0.50-	18.0- 20.0	
200		ဝ်	20.0-	22.0-	13.8-	28.0	19.0-	30.0	35.0	18.0- 20.0	
SEMPOC.CO		Ē	remainder ⁴	remainder	remainder ⁴	30.0-32.0	remainder ^A	remainder	30.0-33.0	Alloy N06210 remainder 18.0- 18.0- 1.0 max 0.015 0.08  The composition of the remainder shall be determined arithmetically by difference	

### **TABLE 2 Dimensions of Welded Pipe**

Note 1—The following table is a partial reprint of Table 1 of ANSI B36.19.

Note 2—The decimal thickness listed for the respective pipe sizes represents their nominal or average wall dimensions.

Nominal	Outside	Diamatan				Nominal Wa	all Thickness					
Pipe Size,	Outside	Diameter	Schedu	ule 5S ^A	Schedu	le 10S ^A	Sche	dule 40S	Schedu	edule 80S [mm]		
in.	in.	[mm]	in.	[mm]	in.	[mm]	in.	[mm]	in.	[mm]		
1/8	0.405	10.29			0.049	1.24	0.068	1.73		_9		
1/4	0.540	13.72			0.065	1.65	0.088	2.24		. •0'		
3/8	0.675	17.15			0.065	1.65	0.091	2.31		1/ 1		
1/2	0.840	21.34	0.065	1.65	0.083	2.11	0.109	2.77		~ /.		
3/4	1.050	26.67	0.065	1.65	0.083	2.11	0.113	2.87				
1.0	1.315	33.41	0.065	1.65	0.109	2.77	0.133	3.38	X.	$\mathbf{O}$		
11/4	1.660	42.16	0.065	1.65	0.109	2.77	0.140	3.56	-63	•		
11/2	1.900	48.26	0.065	1.65	0.109	2.77	0.145	3.68	~ O			
2	2.375	60.33	0.065	1.65	0.109	2.77	0.154	3.91	0.218	5.54		
21/2	2.875	73.03	0.083	2.11	0.120	3.05	0.203	5.16	0.276	7.01		
3	3.500	88.90	0.083	2.11	0.120	3.05	0.216	5.33				
31/2	4.000	101.60	0.083	2.11	0.120	3.05	0.226	5.74	7			
4	4.500	114.30	0.083	2.11	0.120	3.05	0.237	6.02				
5	5.563	141.30	0.109	2.77	0.134	3.40	0.258	6.55				
6	6.625	168.28	0.109	2.77	0.134	3.40	0.280	7.11				
8	8.625	219.18	0.109	2.77	0.148	3.76	0.322	8.18				

^A Schedules 5S and 10S wall thicknesses do not permit threading in accordance with ANSI B2.1-1960.

specification. Examples of such requirements include, but are not limited to the following:

- 5.1.1 *Alloy* (Table 1),
- 5.1.2 Class (see 1.3),
- 5.1.3 Quantity (feet or number of lengths),
- 5.1.4 *Size* (nominal size or outside diameter and schedule number or average wall thickness),
  - 5.1.5 Length—Specify cut length or random,
- 5.1.6 *Certification*—Certification and a report of test results is required (SB-775).
- 5.1.7 Purchaser Inspection—State which tests or inspections are to be witnessed.
- 5.1.8 *Ends*—Plain ends cut and deburred will be furnished, unless otherwise specified, and
- 5.1.9 Samples for Product (Check) Analysis—State whether samples shall be furnished.

### 6. Materials and Manufacture

- 6.1 The pipe shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal.
- 6.2 Subsequent to welding and prior to final heat treatment, Class II pipes shall be cold worked either in both weld and base metal or in weld metal only. The method of cold working may be specified by the purchaser.

### 7. Chemical Composition

- 7.1 The material shall conform to the composition limits specified in Table 1.
- Table 1 subject to the permissible tolerances in Specification B775.

### 8. Mechanical Properties and Other Requirements

8.1 *Tension Test*—The tensile properties of the material at room temperature shall conform to those shown in Table 3.

- 8.1.1 One tension test shall be made on each lot of pipe.
- 8.2 Flattening Test—One flattening test shall be made on a specimen from one end of one pipe from each lot.
  - 8.3 Transverse Guided Bend Test:
- 8.3.1 At the option of the pipe manufacturer, the transverse guided bend test may be substituted in lieu of the flattening test. Two bend specimens shall be taken transversely from pipe or the test specimens may be taken from a test plate of the same material and heat as pipe, which is attached to the end of the cylinder and welded as a prolongation of the pipe longitudinal seam. Except as provided in 8.3.2, one shall be subjected to a face guided bend and a second to a root guided bend test. One specimen shall be bent with the inside surface of the pipe against the plunger and the other with the outside surface of the pipe against the plunger. Guided bend test specimens shall be prepared and tested in accordance with Section IX, Part QW 160 of the ASME Boiler and Pressure Vessel Code and shall be one of the types shown in QW462.2 and QW462.3 of that code.
- 8.3.2 For specified wall thicknesses 3/8 in. [9.5 mm] and over, but less than 3/4 in. [19 mm] side bend tests may be made instead of the face and root bend tests. For specified wall thicknesses 3/4 in. [19 mm] and over, both specimens shall be subjected to the side bend tests. Side bend specimens shall be bent so that one of the side surfaces becomes the convex surface of the bend specimen.
- 8.3.3 The bend test shall be acceptable if no cracks or other defects exceeding ½ in. [3 mm] in any direction be present in the weld metal or between the weld and the pipe or plate metal after bending. Cracks which originate along the edges of the specimen during testing, and are less than ½ in. [6.5 mm] measured in any direction shall not be considered.
- 8.4 *Hydrostatic or Nondestructive Electric Test*—Each pipe shall be subjected to either the hydrostatic or the nondestructive electric test at the manufacturer's option.

**TABLE 3 Mechanical Properties of Pipe** 

	mamour r roport		
Alloy	Tensile Strength, min, ksi [MPa]	Yield Strength (0.2 % Offset), min, ksi [MPa]	Elongation in 2 in. [50.8 mm] or 4D, ^A min, %
Ni-Mo Alloys			
alloy N10001	100 [690]	45 [310]	40
alloy N10665	110 [760]	51 [350]	40
alloy N10675	110 [760]	51 [350]	40
alloy N10629	110 [760]	51 [350]	40
alloy N10624	104 [720]	46 [320]	40
Ni-Mo-Cr-Fe Alloy			
alloy N10242	105 [725]	45 [310]	40
Low C Ni-Cr-Mo Alloys			
alloy N10276	100 [690]	41 [283]	40
alloy N06022	100 [690]	45 [310]	45
alloy N06035	85 [586]	35 [241]	30
alloy N06044	90 [620]	45 [310]	20
alloy N06455	100 [690]	40 [276]	40
Ni-Cr-Fe-Mo-Cu Alloys			
alloy N06007	90 [621]	35 [241]	35
alloy N06975	85 [586]	32 [221]	40
alloy N06985	90 [621]	35 [241]	45
alloy N06030	85 [586]	35 [241]	30
Ni-Fe-Cr-Mo Alloy (N08320)	75 [517]	28 [193]	35
Ni-Cr-Mo-Fe Alloy (N06002)	100 [690]	40 [276]	35
Ni-Fe-Cr-Co Alloy (R30556)	100 [690]	45 [310]	40
Ni-Cr-W-Mo Alloy (N06230) ^B	110 [760]	45 [310]	40
Low C-Ni-Cr-Mo Alloys			
alloy N06058	110 [760]	52 [360]	40
alloy N06059	100 [690]	45 [310]	45
Low C-Ni-Cr-Mo-Cu Alloy	100 [690]	45 [310]	45
(N06200)			
Low C-Ni-Mo-Cr Alloy	105 [725]	45 [310]	40
(N10362)			
Ni-Fe-Cr-Mo-Cu Low Carbon Alloy (N08031)	94 [650]	40 [276]	40
Low C Ni-Cr-Mo-W Alloy	100 [690]	45 [310]	45
(N06686)			
Ni-Co-Cr-Si alloy (N12160)	90 [620]	35 [240]	40
Cr-Ni-Fe-N Low Carbon Alloy	109 [750]	55 [380]	40
(R20033) Low C Ni-Cr-Mo-Ta Alloy (N06210)	100 [690]	45 [310]	45)
1 -7			

^A D refers to the diameter of the tension specimen.

### 9. Dimensions and Permissible Variations

9.1 Wall Thickness—Variations in wall thickness shall not exceed the specified nominal wall thickness by more than  $\pm 12\frac{1}{2}$ %, except as follows:

9.1.1 If weld beads are present on the inner surface of the pipe, they shall not exceed the wall thickness of the pipe by more than 20 % or 0.050 in. [1.27 mm], whichever is less, of the specified nominal wall thickness for Class I pipe, and 5 % or 0.005 in [0.127 mm], whichever is less, of the specified nominal wall thickness for Class II pipe.

**TABLE 4 Permissible Variations in Outside Diameter** 

Nominal	Perm	issible Variation	in Outside Diame	ter ^A
Pipe Size, in.	İı	n.	mm	1
1/8 [10.29]	+0.002	-0.006	+0.05	-0.15
1/4 [13.72]	+0.003	-0.008	+0.08	-0.20
3/s [17.15]	+0.004	-0.008	+0.08	-0.20
1/2 [21.34]	+0.004	-0.010	+0.10	-0.25
3/4 [26.67]	+0.005	-0.012	+0.13	-0.30
1 [33.41]	+0.005	-0.012	+0.13	-0.30
11/4 [42.16]	+0.005	-0.012	+0.13	-0.30
1½ [48.26]	+0.008	-0.015	+0.20	-0.38
2 [60.22]	+0.010	-0.016	+0.25	-0.41
21/2 [73.03]	+0.010	-0.016	+0.25	-0.41
3 [88.90]	+0.012	-0.018	+0.30	-0.46
31/2 [101.60]	+0.012	-0.018	+0.30	0.46
4 [114.30]	+0.014	-0.020	+0.36	_0.51
5 [141.30]	+0.063	0.031	+1.60	-0.79
6 [168.28]	+0.063	0.031	+1.60	-0.79
8 [219.18]	+0.063	0.031	+1.60	-0.79

^A The permissible variations in the above table apply to individual measurements, including out of roundness (ovality).

9.1.2 Sunken welds in Class Tripe shall not be deeper than 15 % of the specified nominal wall thickness and never deeper than 0.030 in. [0.79 mm]. Class II pipe shall not have sunken welds

9.2 Outside Diameter—The permissible variations in outside diameter shall not exceed the limits prescribed in Table 4, except as provided for in 9.1.2.

9.3 For pipe diameters greater than shown in Table 4, permissible variations in dimensions at any point in a length of pipe shall not exceed the following:

9.3.1 *Outside Diameter*—Based on circumferential measurement, ±0.5 % of the nominal outside diameter.

9.3.2 Out-of-Roundness—Differences between major and minor outside diameters, 1.0 % of the specified outside diameter

9.3.2.1 For thin-wall pipe, defined as pipe having a wall thickness of 3% or less of the outside diameter, the difference in the extreme outside readings (ovality) in any one cross section shall not exceed 1.5% of the specified outside diameter.

9.3.3 *Alignment (Camber)*—Using a 10 ft. [3 m] straightedge placed so that both ends are in contact with the pipe, the camber shall not be more than ½ in. [3.17 mm].

### 10. Keywords

10.1 UNS N06002; UNS N06007; UNS N06022; UNS N06030; UNS N06035; UNS N06044; UNS N06058; UNS N06059; UNS N06200; UNS N10362; UNS N06210; UNS N06230; UNS N06455; UNS N06975; UNS N06985; UNS N08031; UNS N08320; UNS N10001; UNS N10242; UNS N10276; UNS N10624; UNS N10629; UNS N10665; UNS N10675; UNS R30556; welded pipe

^B Solution annealed at a temperature between 2200 to 2275°F [1204 to 1246°C] followed by a water quench or rapidly cooled by other means

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc. com. chek to her the full poly of a sent above.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
## SPECIFICATION FOR NICKEL-IRON-STATE SPECIFICATION ALLOY (UNS NO PLATE, SHEET, AND STPICE SPECIFICATION PLATE) CHROMIUM-MOLYBDENUM ALLOY (UNS NO8320)



ASMENORANDOC. COM. Click to view the full (Identical with ASTM Specification B620-03(2013) except that certification and test reports have been made mandatory.)

### Standard Specification for Terminology 3.1 Definitions of Terms Specific to This Standard: 3.1.1 plate, n—material ³/₁₆ in. (4.76 mm) and or ckness. 3.1.2 sheet and strip, n—material kness. Fener Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320) Plate, Sheet, and Strip

### 1. Scope

- 1.1 This specification covers rolled nickel-iron-chromiummolybdenum alloy (UNS N08320) plate, sheet, and strip, for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 *Sheet and Strip*—Hot or cold rolled, solution annealed, and descaled unless solution anneal is performed in an atmosphere yielding a bright finish.
  - 1.2.2 Plate—Hot rolled, solution annealed, and descaled.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

2.1 ASTM Standards:

B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and SMENORMDOC. COM. Click Scleroscope Hardness

### 3. Terminology

- thickness.

### 4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B906 unless otherwise provided herein.

### 5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
- 5.1.1 Dimensions—Thickness (in decimals of an inch), width, and length (inch or fraction of an inch).
- 5.1.2 *Certification*—Certification and a report of test results are required (Specification B906, Section 21).
  - 5.1.3 Optional Requirement:
- 5.1.3.1 Plate—State how plate is to be cut (Specification B906, Table A2.3).
- 5.1.4 Purchase Inspection—State which tests or inspections are to be witnessed (Specification B906, Section 18).
- 5.1.5 Samples for Product (Check) Analysis—State whether samples should be furnished (Specification B906, Section 7.2.2).

### 6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1.
- 6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 and Specification B906.

**TABLE 1 Chemical Requirements** 

Element	Composition Limits, %
Nickel	25.0–27.0
Iron	remainder ^A
Chromium	21.0-23.0
Molybdenum	4.0-6.0
Manganese, max	2.5
Carbon, max	0.05
Titanium, min	4 × carbon
Silicon, max	1.00
Phosphorus, max	0.04
Sulfur, max	0.03

^A See Specification B906.

### 7. Mechanical Properties and Other Requirements

- 7.1 *Tensile Properties*—The material shall conform to the room temperature tensile properties prescribed in Table 2.
- 7.2 *Hardness*—The hardness values given in Table 2 are informative only.

### 8. Dimensions, Mass, and Permissible Variations

- 8.1 Weight—The material covered by this specification shall be assumed to weigh 0.291 lb/in.³ (8.05 g/cm³).
  - 8.2 Thickness:
- 8.2.1 *Sheet and Strip*—The thickness shall be measured with the micrometer spindle ³/₈ in. (9.525 mm) or more from any edge for material 1 in. (25.4 mm) or over in width and at any place on material under 1 in. in width.

**TABLE 2 Mechanical Property Requirements** 

Tensile Strength min, psi (MPa)	Yield Strength (0.2 % Offset) min, psi (MPa)	Elongation in 2 in. (50.8 mm) or 4D ^A min, %	Rockwell Hardness, ^B max
75 000 (517)	28 000 (193)	35	95 HRB

^A D refers to the diameter of the tension specimen.

8.3 Length:

ASME BPVC.II.B-2023

- 8.3.1 *Sheet and Strip:* Sheet and strip may be ordered to cut lengths, in which case a variation of ½ in. (3.175 mm) over the specified length shall be permitted with a zero minus tolerance.
  - 8.4 Straightness:
- 8.4.1 The edgewise curvature (depth of cord) of flat sheet, strip, and plate shall not exceed 0.05 in. multiplied by the length in feet or 0.04 mm multiplied by the length in centimetres
- 8.4.2 Straightness for coiled strip is subject to agreement between the manufacturer and the purchaser.
- 8.5 Squareness (Sheet)—For sheets of all thicknesses and widths of 6 in. (152.4 mm) or more, the angle between adjacent sides shall be  $90 \pm 0.15$  deg ( $\frac{1}{16}$  in./24 in. or 2.6 mm/m).
- 8.6 Flatness—Plate, sheet, and strip shall be commercially flat.
  - 8.7 Edges:
- 8.7.1 Plate shall have sheared or abrasive cut or plasmatorch-cut edges as specified.
  - 8.7.2 Sheet and strip shall have sheared or slit edges.

### 9. Certification

9.1 A manufacturer's certification shall be furnished to the purchaser stating that the material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 10. Product Marking

- 10.1 Each plate, sheet, or strip shall be marked on one face with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.
- 10.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

### 11. Keywords

11.1 plate; sheet; strip; N08320

### APPENDIX

(Nonmandatory Information)

X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance, and the manufacturer shall be consulted for details.

^B Hardness values are shown for information purposes only and are not to be used as a basis for rejection or acceptance. For approximate hardness conversions, see Hardness Conversion Tables E140.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
# SPECIFICATION FOR NICKEL-IRON-SPECE CARONIUM-MOLYBDENUM ALLOY (UNS NO8320) ROD (Identical with ASTM "



ASMENORANDOC. COM. Click to View the Full Poly mandatory.)

### **Standard Specification for** Nickel-Iron-Chromium-Molybdenum Alloy (UNS N08320) Rod

### 1. Scope

- 1.1 This specification covers nickel-iron chromiummolybdenum alloy (UNS N08320) rod for use in general corrosive service.
- 1.2 The following products are covered under this specification:
- 1.2.1 Rods ⁵/₁₆ to ³/₄ in. (7.94 to 19.05 mm) excl in diameter, hot or cold finished, solution annealed and pickled or mechanically descaled.
- 1.2.2 Rods  $\frac{3}{4}$  to  $\frac{3}{2}$  in. (19.05 to 88.9 mm) incl in diameter, hot or cold finished, solution annealed, ground or turned.
- 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

### 2.1 ASTM Standards:

B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and SMENORMOC.COM. Click to view Cobalt Alloys

E8 Test Methods for Tension Testing of Metallic Materials

- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 rod, n—a product of round solid section furnished in straight lengths.

### 4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include but are not limited to the following:
- 4.1.1 Dimensions-Nominal diameter and length. The shortest useable multiple length shall be specified (Table 1).
  - 4.12 DELETED
- 4.1.3 Purchaser Inspection—State which tests or inspections are to be witnessed (Section 13).
- 4.1.4 Samples for Product (Check) Analysis—State whether samples shall be furnished (9.2.2).

### 5. Chemical Composition

- 5.1 The material shall conform to the composition limits specified in Table 2.
- 5.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 2 subject to the permissible tolerances in Specification B880.

### 6. Mechanical Properties and Other Requirements

6.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 3.

### 7. Dimensions, Mass and Permissible Variations

7.1 Diameter—The permissible variations from the specified diameter shall be as prescribed in Table 4.

TABLE 1 Permissible Variations in Length of Rods

Random mill lengths	2 to 12 ft (610 to 3660 mm) long with not more than 25 weight % under 4 ft (1.22 m).
Multiple lengths	Furnished in multiples of a specified unit length, within the length limits indicated above. For each multiple, an allowance of 1/4 in. (6.35
	mm) shall be made for cutting, unless otherwise specified. At the manufacturer's option, individual specified unit lengths may be furnished.
Nominal lengths	Specified nominal lengths having a range of not less than 2 ft (610 mm) with no short lengths allowed.
Cut lengths	A specified length to which all rods shall be cut with a permissible variation of + 1/2 in. (3.17 mm) - 0.

**TABLE 2 Chemical Requirements** 

	4
Element	Composition Limits,%
Nickel	25.0–27.0
Iron	remainder ⁴
Chromium	21.0-23.0
Molybdenum	4.0-6.0
Manganese, max	2.5
Carbon, max	0.05
Titanium, min	4  imes carbon
Silicon, max	1.00
Phosphorus, max	0.04
Sulfur, max	0.03

^A See 12.1.1.

**TABLE 3 Mechanical Property Requirements** 

Tensile Strength, min,	Yield Strength (0.2 %	Elongation in 2 in. 📞
psi (MPa)	Offset), min, psi (MPa)	(50.8) or 4 <i>D</i> ^A , min, %
75 000 (517)	28 000 (193)	35

^A D refers to the diameter of the tension specimen.

- 7.2 Out of Roundness—The permissible variation in roundness shall be as prescribed in Table 4.
- 7.3 Matching Allowances—When the surfaces of finished material are to be machined, the following allowances are suggested for normal machining operations:
- 7.3.1 As-finished (Annealed and Descaled)—For diameters of 5/16 to 11/16 in. (7.94 to 17.46 mm) incl, an allowance of 1/16 in. (1.59 mm) on the diameter should be made for finish machining.
  - 7.4 Length:
- 7.4.1 Unless multiple, nominal, or cut lengths are specified, random mill lengths shall be furnished.
- 7.4.2 The permissible variations in length of multiple, nominal, or cut length rod shall be as prescribed in Table 1. Where rods are ordered in multiple lengths, an additional ½ in. (6.35 mm) in length shall be allowed for each uncut multiple length.
  - 7.5 *Ends*:
- 7.5.1 Rods ordered to random or nominal lengths shall be furnished with either cropped or sawed ends.
- 7.5.2 Rods ordered to cut lengths shall be furnished with square saw cut or machined ends.
- 7.6 Weight—The material covered by this specification shall be assumed to weigh 0.291 lb/in.³(8.05 g/cm³).

7.7 Straightness—The maximum curvature (depth of cord) shall not exceed 0.050 in. multiplied by the length of the cord in feet (0.04 mm multiplied by the length in centimetres).

### 8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and conditions smooth, and free of injurious imperfections.

### 9. Sampling

- 9.1 Lots for Chemical Analysis and Mechanical Testing:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 A lot of bar for mechanical testing shall be defined as the material from one heat in the same condition and specified diameter.
  - 9.2 Sampling for Chemical Analysis:
- 9.2.1 A representative sample shall be obtained from each heat during pouring or subsequent processing.
- 9.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
  - 9.3 Sampling for Mechanical Testing:
- 9.3.1 A representative sample shall be taken from each lot of finished material.

### 10. Number of Tests and Retests

- 10.1 Chemical Analysis—One test per heat.
- 10.2 Tension Tests—One test per lot.
- 10.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

### 11. Specimen Preparation

- 11.1 Tension test specimens shall be taken from material after final heat-treatment and tested in the direction of fabrication.
- 11.2 Tension test specimens shall be any of the standard or subsized specimens shown in Test Methods E8.
- 11.3 In the event of a disagreement, the referee specimen shall be the largest possible round specimen shown in Test Methods E8.

### 12. Test Methods

- 12.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM methods:
  - 12.1.1 Chemical Analysis—Test Methods E1473.
  - 12.1.2 Tension Test—Test Methods E8.
  - 12.1.3 Determining Significant Places—Practice E29.
- 12.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29:

TABLE 4 Permissible Variations in Diameter and Out-of-Roundness of Finished Rods

		Permissible Variations, in. (mr	n)
Specified Diameter, in. (mm)	Diam	neter	Out of Boundages, may
	Plus	Minus	Out of Roundness, max
	Hot-Finished, Annealed, and Descale	ed Rods	
5/16 to 7/16 (7.94-11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over 7/16 to 5/8 (11.11-15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)
Over5/8 to 3/4 (15.87-19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)
·	Hot-Finished, Annealed, and Ground or T	urned Rods	
3/4 to 31/2 (19.05-88.9), incl	0.010 (0.25)	0	0.008 (0.20)

Requirements

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerance Tensile strength and yield strength nearest unit in the last right-hand place of figures of the specified limit nearest 1000 psi (7 MPa) nearest 1 %

### 13. Inspection

Elongation

13.1 Inspection of the material shall be made as agreed upon by the manufacturer and the purchaser as part of the purchase contract.

### 14. Rejection and Rehearing

14.1 Material tested by the purchaser that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 15. Certification

15.1 A manufacturer's certification shall be furnished to the

purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 16. Product Marking

16.1 Each piece of material 1/2 in. (12.7 mm) or over in diameter shall be marked with the specification number, alloy, heat number, manufacturer's identification, and size. The markings shall have no deleterious effect on the material or its performance and shall be sufficiently stable to withstand normal handling.

16.2 Each bundle or shipping container shall be marked with the name of the material; this specification number; alloy; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; and such other information as may be defined in the contract or order.

### 17. Keywords

17.1 rod; UNS N08320

APPENDIX

(Nonmandatory Information)

### X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance, and the manu-

facturer shall be consulted for details.

# WC Section II Part B 202 SB-622 (Identical with ASTM Specification B622-17b except that certification and test reports have been made mandatory and "Remainder" element defined in Table 1.)



### Specification for Seamless Nickel and Nickel-Cobalt Alloy Pipe and Tube

### 1. Scope

- 1.1 This specification covers seamless pipe and tube of nickel and nickel-cobalt alloys (UNS N10001, UNS N10242, UNS N10665, UNS N12160, UNS N10675, UNS N10276, UNS N06455, UNS N06007, UNS N08320, UNS N06975, UNS N06002, UNS N06985, UNS N06022, UNS N06035, UNS N06044, UNS N08135, UNS N06255, UNS N06058, UNS N06059, UNS N06200, UNS N10362, UNS N06030, UNS N08031, UNS N08034, UNS R30556, UNS N08535, UNS N06250, UNS N06060, UNS N06230, UNS N06686, UNS N10629, UNS N06210, UNS N10624, and UNS R20033) as shown in Table 1.
- 1.2 Pipe and tube shall be supplied in the solution annealed and descaled condition. When atmosphere control is used, descaling is not necessary.
- 1.3 This specification is limited to tubes up to and including 3.5 in. (88.9 mm) outside diameter.
- 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

2.1 ASTM Standards:

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

E8 Test Methods for Tension Testing of Metallic Materials E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

### 3. Terminology

- 3.1 Definitions:
- 3.1.1 average diameter, n—the average of the maximum and minimum outside diameters, or the maximum and minimum inside diameters, as determined at any cross section of the tube.
- 3.1.2 *pipe, n*—seanless tube conforming to the particular dimensions commercially known as standard pipe sizes (Appendix X2).
- 3.1.3 *tube*, *n*—a hollow product of round or any other cross section having a continuous periphery.

### 4. General Requirements

74.1 Material furnished under this specification shall conform to the applicable requirements of Specification B829 unless otherwise provided herein.

### 5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 5.1.1 *Alloy* (Table 1).
  - 5.1.2 Dimensions:
- 5.1.2.1 *Tube*—Outside diameter, minimum or average wall thickness, and length.
- 5.1.2.2 *Pipe*—Standard pipe size and schedule (Appendix X2).

		11						TAI	3LE 1	Chemi	cal Re	TABLE 1 Chemical Requirements	ents											
		>							შ	mpositi	Composition Limits, %	ts, %								•				
	Ż	ပ်	<b>Ç</b> §.	Ψ.	>	O	Si	S	M	>	тах	S	F	n O	Cb +Ta (Nb)	₹	Zr	La	z	ω	g Q	Та	Ä Š	Mg
Ni-Mo Alloys N10001	remainder A	1.0	26.0-	4.0-6.0	:	0.05	1.0	2.5	1.0	0.2-	0.04	0.03	:	:	:									
N10665	remainder A	1.0 max		2.0 max	: .	0.02	0.10	1.0 max			0.04	0.03	:	:	:									
N10675	65.0 min	1.0-	27.0-	1.0-3.0	8	0.01	0.10			0.20 max	0.030	0.010	0.20 cm	0.20	:	0.50 max	0.10	i	:	:	0.20 max	0.20 g	94.0-	
N10629	remainder	0.5-	26.0-	1.0-6.0	:	0.01	0.05		1.5		0.04	0.01		0.5	:	0.1-	<u> </u>	:	:	:			; :	
N10624	remainder A	6.0-		5.0-8.0	:	0.0 max	0.10	1.0 max	1.0 max	:	0.025	0.01	:	0.5 max	:		:	:	:	:	:	:	:	
Ni-Mo-Cr-Fe Allov		2				Y I	14	Š	<u> </u>					<u> </u>										
N10242	remainder A	7.0-	24.0-26.0	2.0 max		0.03 max	080	00-E	0.80 max		0:030	0.015		0.50 max		0.50 max				0.006 max				
Low C Ni- Cr-Mo Alloys								<del>\(\theta\)</del>																
N10276	remainder A	14.5-	15.0-	4.0-7.0		0.010 max	0.08	<u> </u>			0.04	0.03	:	:	:									
N06022	remainder A	20.0-	-	2.0-6.0		0.015	0.08	2.5	0.50	035	0.02	0.02	:	:	:									
N06035	remainder	32.25	, - ,	2.00 max		0.050	09:0		_	$\overline{}$	0.030	0.015	:	0:30	:	0.40	:	:	:	:	:	:	:	:
N06044	balance	34.25 43.5-		0.3 max	max	0.02	0.20				0.020	0.020	0.10-	ax	:	max 0.30	:	:	:	:	:	:	:	:
N06058	balance	20.0-	•	1.5 max		max 0.010	0.10		0.30		0.015	0.010		0.50	:	max 0.40			0.02-					
N06059	balance	23.0 22.0-		1.5 max	:: max	0.010	max 0.10		max 0.5	:	0.015	0.010	, <	max 0.50	:	max 0.1-	:	:	0.15	:	:	:	:	
N06455	remainder	24.0		3.0 max	i	max 0.015	0.08	max 2.0	max 1.0	:	0.04	0.03		max 	:	4.0								
Ni-Cr-Fe-	τ	18.0	17.0			max		шах	шах				max	\C										
Mo-Cu Alloys														· · ·										
N06007	remainder A	21.0-	5.5-	18.0-21.0	1.0	0.05	1.0	2.5	1.0-	:	0.04	0.03	:	1.5- 7.0	re r	4								
N06975	47.0-52.0	23.0-	4,	remainder		0.03	1.0		1.0	:	0.03	0.03	0.70-	0.70-	3 ::	()								
N06985	remainder	21.0-	9	18.0-21.0		0.015	1.0		1.0	:	0.04	0.03			0.50	24	~							
N06030	remainder	28.0-	٠,	13.0-17.0		max 0.03	0.8		1.5	:	0.04	0.02	:		0.30-	•	1							
N06255	47.0-52.0	23.0-		remainder		max 0.03	1.0	: max	1.0	:	0.03	0.03	69.0	1.2	06.1		<del>)</del>	0						
N06250	50.0-54.0	26.0 20.0- 23.0	9.0 10.1-	remainder A	max 0.25- 1.25	0.020	0.09	:	1.00 max	:	0:030	0.005		max 0.25- 1.25	:			70	(					
Ni-Fe-Cr-Mo Alloys N08320	25.0-27.0	21.0-		remainder		0.05	1.0		2.5	:	0.04	0.03			:				280	÷.				
N08135	33.0-38.0	23.0 20.5-	6.0	A remainder		max 0.030	0.75		max 1.00				ri :						*	00	•			
N06002	remainder A	23.5		17.0-20.0	0.80	0.05-	1.0	-5.0	1.0	:	0.04	0.03	:	:	:						16			
		۷.02			>:-		7	┪	IIIaA	1	1	1	1	1	1	1	1		7		,	1		

		Mg			⊬ v	
		Ä + ο			7, 00	
		Б		1.25	: 2	
		9 (Q	C	max max	:: C	
		В			0.015 max	
		z	(	0.30		a ciju
		La	i c	0.10	0.005- 0.050	
		Zr		0.10	:: 00	
		Ι	(	0.50	0.50 max	CINE
		Cb (Nb) +Ta	1.25	:	: 00	
		no On	1.25	:	:: F0	
		F	:	:	07	
Continued	its, %	S	0.005 max	0.0	0.015	
	Composition Limits, %	P max	0.030 max	40.0	0.03	
TABLE 1	omposi	>		:	041	
1		Mn			1.00	
		S			5.0 max	
		Si			0.25-	
		O		0.15	15.0 0.15	
		>	1.25	3.55	13.0- 15.0	
		Fe	emainder	A A	3.0 max	
		٥	• 🔾		1.0- 3.0	
		Ö	19.0-	23.0	20.0- 24.0	
52/	_	Ξ			remainder A	
				0	N06230 remainder 20.0- 1.0- 3.0 max 13.0-0.05- 0.25- 5.0 0.30 0.03 0.015 0.03 0.015 0.005 0.005 0.015 0.005 0.015 0.005 0.015 0.005 0.015 0.005 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.	

- 5.1.3 Ends—Plain ends cut and deburred will be furnished.
- 5.1.4 DELETED
- 5.1.5 Samples for Check Analysis—State whether samples for check analysis should be furnished.
- 5.1.6 *Purchaser Inspection*—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state, indicating which tests or inspections are to be witnessed (Section 14).

### 6. Chemical Composition

- 6.1 The material shall conform to the composition limits specified in Table 1.
- 6.2 If a product (check) analysis is made by the purchaser, the material shall conform to the requirements specified in Table 1 subject to the permissible tolerances in accordance with Specification B829.

### 7. Mechanical Properties

7.1 The mechanical properties of the material at room temperature shall conform to those shown in Table 2.

### 8. Hydrostatic Test or Non-Destructive Electric Test

8.1 Each pipe or tube shall be tested by the manufacturer by either hydrostatic or a non-destructive electric test in accordance with Specification B829. Hydrostatic testing at a pressure greater than 1000 psi may be performed upon agreement between the purchaser and manufacturer or at the option of the manufacturer provided that the allowable fiber stress per Specification B829 is not exceeded.

TABLE 2 Mechanical Properties of Pipe and Tube

	Tensile Strength,	Yield Strength	Elongation in 2
Alloy	min, ksi	(0.2 % Offset)	in.
Alloy	(MPa)	min, ksi (MPa)	(50.8 mm) or
	(IVIF a)	IIIII, KSI (IVIFa)	4 <i>D</i> , ^{<i>A</i>} min, %
Ni-Mo			
UNS N10001	100 (690)	45 (310)	40
UNS N10665	110 (760)	51 (350)	40
UNS N10675	110 (760)	51 (350)	40
UNS N10629	110 (760)	51 (350)	40
UNS N10624	104 (720)	46 (320)	40
Ni-Mo-Cr-Fe	101 (120)	10 (020)	
UNS N10242	105 (725)	45 (310)	
Low C Ni-Cr-Mo	103 (123)	43 (010)	.0
UNS N10276	100 (600)	41 (202)	40
	100 (690)	41 (283)	45
UNS N06022	100 (690)	45 (310)	,
UNS N06035	85 (586)	35 (241)	30
UNS N06044	100 (690)	45 (310)	30
UNS N06455	100 (690)	40 (276)	40
Ni-Cr-Fe-Mo-Cu		07	
UNS N06007	90 (621)	35 (241)	35
UNS N06975	85 (586)	32 (221)	40
UNS N06985	90 (621)	35 (241)	40
UNS N06030	85 (586)	35 (241)	30
UNS N06255	85 (586)	32 (221)	40
UNS N06250	90 (621)	35 (241)	40
Ni-Fe-Cr-Mo		, ,	
UNS N08320	75 (517)	28 (193)	35
UNS N08135	73 (503)	31 (214)	40
Ni-Cr-Mo-Fe	(555)	0. (2)	
UNS N06002	100 (690)	40 (276)	35
UNS N06060	90 (621)	35 (241)	40
Ni-Fe-Cr	100 (690)	45 (310)	40
Co-R30556	100 (030)	43 (310)	40
Ni-Cr-W-Mo			
UNS N06230 ^B	110 (700)	45 (010)	40
	110 (760)	45 (310)	40
Low C-Ni-Cr-Mo	440 (700)	FO (000)	40
UNS N06058	110 (760)	52 (360)	40
UNS N06059	100 (690)	45 (310)	45
Low C-Ni-Cr-			
Mo-Cu			
UNS N06200	100 (690)	45 (310)	45
Low C-Ni-Mo-Cr			
UNS N10362	105 (725)	45 (310)	40
Ni-Fe-Cr-Mo-Cu			
low carbon			
UNS N08031	94 (650)	40 (276)	40
UNS N08034	94 (650)	40 (280)	40
UNS N08535	73 (503)	31 (214)	40
Low C Ni-Cr-	- \/	- \/	· <del>-</del>
Mo-W			
UNS N06686	100 (690)	45 (310)	45
Ni-Co-Cr-Si	100 (030)	40 (010)	40
	00 (600)	25 (240)	40
UNS N12160	90 (620)	35 (240)	40
low carbon Cr-Ni-			
Fe-N	100 /===:	== (0.00)	4-
UNS R20033	109 (750)	55 (380)	40
Low carbon Ni-Mo-C			
UNS N06210	100 (690)	45 (310)	45

^A D refers to the diameter of the tension specimen.

^B Solution annealed at a minimum temperature of 2200°F (1204°C) followed by a water quench or rapidly cooled by other means.

### 9. Weight

9.1 For calculation of mass or weight, the following densities shall be used:

	Der	nsity
Alloy	lb/in.3	g/cm ³
Nickel-molybdenum:		· ·
UNS N10001	0.334	9.24
UNS N10242	0.327	9.05
UNS N10665	0.333	9.22
UNS N10675	0.333	9.22
UNS N10629	0.333	9.22
UNS N10624	0.322	8.9
Low carbon nickel-chromium-molybdenum:		
UNS N10276	0.321	8.87
UNS N06022	0.314	8.69
UNS N06035	0.296	8.18
UNS N06044	0.287	7.97
UNS N06455	0.312	8.64
Nickel-chromium-iron-molybdenum-copper:		
UNS N06007	0.300	8.31
UNS N06975	0.295	8.17
UNS N06985	0.300	8.31
UNS N06030	0.297	8.22
UNS N06255	0.299	8.29
UNS N06250	0.307	8.58
Nickel-iron-chromium-molybdenum:	0.007	0.00
UNS N08320	0.291	8.05
UNS N08135	0.292	8.10
Nickel-chromium-molybdenum-iron:	0.202	00
UNS N06002	0.297	8.23
UNS N06060	0.315	8.71
Nickel-iron-chromium-cobalt:	0.010	0.71
UNS R30556	0.297	8.23
Nickel-chromium-tungsten-molybdenum:	0.207	0.20
UNS N06230	0.324	8.97
Low carbon nickel-chromium-molybdenum:	0.02	0.07
UNS N06058	0.318	8.80
UNS N06059	0.311	8.6
UNS N06200	0.307	8.50
Low carbon-nickel-molybdenum-chromium:	0.007	0.00
UNS N10362	0.319	8.83
Low carbon nickel-iron-chromium-molybdenum-	0.0.0	0.00
copper:		
UNS N08031	0.29	8.1
UNS N08034	0.293	8.10
UNS N08535	0.291	8.07
Low carbon nickel-chromium-molybdenum-	0.231	0.07
tungsten:	-01	
UNS N06686	0.315	8.73
Nickel-cobalt-chromium-silicon:	0.013	0.70
UNS N12160	0.292	8.08
Low carbon chromium-nickel-iron-nitrogen:	0.232	0.00
UNS R20033	0.29	8.1
Low carbon nickel-molybdenum-chromium-tantalum:	0.23	0.1
UNS N06210	0.316	8.76
0140 1400Z10	0.510	0.70

### 10. Sampling

- 10.1 Lots for Chemical Analysis and Mechanical Testing are as defined in Specification B829.
  - 10.2 Sampling of Chemical Analysis:
- 10.2.1 A representative sample shall be taken from each lot during pouring or subsequent processing.
- 10.2.2 Product (check) analysis shall be wholly the responsibility of the purchaser.
  - 10.3 Sampling for Mechanical Testing:

10.3.1 A representative sample shall be taken from each lot of finished material.

### 11. Number of Tests and Retests

- 11.1 Chemical Analysis—One test per lot.
- 11.2 Tension Test—One test per lot.
- 11.3 *Retests*—If the specimen used in the mechanical test of any lot fails to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements.

### 12. Specimen Preparation

- 12.1 Tension test specimens shall be taken from material after final heat treatment and tested in the direction of fabrication.
- 12.2 Whenever possible, all pipe and tube shall be tested in full tubular size. When testing in full tubular size is not possible, longitudinal strip specimens, or the largest possible round specimen prepared in accordance with Test Methods E8, shall be used.

### 13. Test Methods

13.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined in accordance with the methods in Specification B829.

### 14. Inspection

74.1 Inspection of the material shall be in accordance with this specification and agreements between the manufacturer and the purchaser as part of the purchase contract.

### 15. Certification

15.1 A manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 16. Keywords

16.1 seamless pipe; seamless tube; UNS N06002; UNS N06007; UNS N06022; UNS N06030; UNS N06035; UNS N06044; UNS N06058; UNS N06059; UNS N06060; UNS N06200; UNS N06210; UNS N06230; UNS N06250; UNS N06255; UNS N10362; UNS N06455; UNS N06686; UNS N06975; UNS N06985; UNS N08031; UNS N08034; UNS N08135; UNS N08320; UNS N08535; UNS N10001; UNS N10242; UNS N10276; UNS N10624; UNS N10629; UNS N10665; UNS N10675; UNS N12160; UNS R20033; UNS R30556

### **APPENDIXES**

(Nonmandatory Information)

### X1. HEAT TREATMENT

X1.1 Proper heat treatment during or subsequent to fabrication is necessary for optimum performance and the manufacturer shall be consulted for details.

### **X2. PIPE SCHEDULES**

TABLE X2.1 Pipe Schedules^A

Naminal Dina Cina in	Outside Dispusator		Nominal Wall Thickness	
Nominal Pipe Size, in.	Outside Diameter	Schedule No. 10	Schedule No. 40	Schedule No. 80
		Inches	<u> </u>	
1/4	0.540	0.065	0.088	•••
3/8	0.675	0.065	0.091	0.126
1/2	0.840	0.083	0.109	0.147
3/4	1.050	0.083	0.113	0.154
1	1.315	0.109	0.133	0.179
11/4	1.660	0.109	0.140	0.191
11/2	1.900	0.109	0.145	0.200
2	2.375	0.109	0.154	0.218
21/2	2.875	0.120	0.203	0.276
3	3.500	0.120	0.216	0.300
		Millimetres		
1/4	13.72	1.65	2.24	
3/8	17.14	1.65	2.31	3.20
1/2	21.34	2.11	2.77	3.73
3/4	26.67	2.11	2.87	3.91
1	33.40		3.38	4.55
11/4	42.16	2.77 2.77	3.56	4.85
11/2	48.26	2.77	3.68	5.08
2	60.32	2.77	3.91	5.54
21/2	73.02	3.05	5.16	7.04
3	88.90	3.05	5.49	7.62

A The pipe schedules shown conform with standards adopted by the American National Standards Institute.

X2.1 The schedules listed in Table X2.1 are regularly available. This table is published for information only.

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
### SPECIFICATION FOR UNS N08925, UNS N08031, UNS N08034, UNS N08932, UNS N08926, UNS N08354, UNS N08830, AND UNS R20033 PLATE, SHEET, AND STRIP



SB-625

**(23**)

(Identical with ASTM Specification B625-17 except that certification and test reports have been made mandatory.)

Specification for UNS N08925, UNS N08031, UNS N08034, UNS N08932, UNS N08926, UNS N08354, UNS N08830, and UNS R20033 Plate, Sheet, and Strip

### 1. Scope

- 1.1 This specification covers alloys UNS N08925, UNS N08031, UNS N08034, UNS N08932, UNS N08926, UNS N08354, UNS N08830, and UNS R20033 plate, sheet, and strip in the annealed temper.
- 1.2 ASTM International has adopted definitions whereby some grades, such as UNS N08904, previously in this specification were recognized as stainless steels, because those grades have iron as the largest element by mass percent. Such grades are under the oversight of ASTM Committee A01 and its subcommittees. The products of N08904 previously covered in this specification are now covered by Specifications A240/ A240M and A480/A480M.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical SME NORMDOC. COM Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

- 2.1 ASTM Standards:
- tion II Part B 2026 A240/A240M Specification for Chromium-and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
- A480/A480M Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip
- B906 Specification for General Requirements for Flat-Rolled Nickel and Nickel Alloys Plate, Sheet, and Strip E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 plate, n—material  $\frac{3}{16}$  in. (4.76 mm) and over in thickness and over 10 in. (254 mm) in width.
- 5.1.2 sheet, n—material under 3/16 in. (4.76 mm) in thickness and 24 in. (609.6 mm) and over in width. Material under ³/₁₆ in. (4.75 mm) in thickness and in all widths with No. 4 finish.
- 3.1.3 strip, n—material under ³/₁₆ in. (4.76 mm) in thickness and under 24 in. (609.6 mm) in width.

### 4. General Requirements

4.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B906 unless otherwise provided herein.

### 5. Ordering Information

- 5.1 Orders for material under this specification shall include the following information:
  - 5.1.1 Quantity (weight or number of pieces),
  - 5.1.2 Alloy name or UNS number,
  - 5.1.3 Form, plate, sheet or strip,

TABLE 1 Chemical Requirements^A

			IABLE I CI	eiilicai nequile	illellis			
Elements	UNS N08925	UNS N08932	UNS N08354	UNS N08034	UNS N08031	UNS N08926	UNS N08830	UNS R20033
Carbon	0.020	0.020	0.030	0.01	0.015	0.020	0.015	0.015
Manganese	1.00	2.00	1.00	1.0-4.0	2.0	2.00	3.0-6.0	2.0
Phosphorus	0.045	0.025	0.030	0.020	0.020	0.03	0.035	0.02
Sulfur	0.030	0.010	0.010	0.010	0.010	0.01	0.010	0.01
Silicon	0.50	0.40	1.00	0.1	0.3	0.5	1.00	0.50
Nickel	24.00-26.00	24.0-26.0	34.0-36.0	33.5-35.0	30.0-32.0	24.00-26.00	29.0-34.0	30.0–33.0
Chromium	19.00-21.00	24.0-26.0	22.0-24.0	26.0-27.0	26.0-28.0	19.00-21.00	20.0-24.0	31.0–35.0
Molybdenum	6.0-7.0	4.5-6.5	7.0-8.0	6.0-7.0	6.0-7.0	6.0-7.0	4.5-6.5	0.50-2.0
Copper	0.8-1.5	1.0-2.0		0.5-1.5	1.0-1.4	0.5-1.5	0.50-2.00	0.30-1.20
Cobalt							0.50-3.5	<u>-0</u>
Tungsten							0.20-1.80	:(O)
Nitrogen	0.10-0.20	0.15-0.25	0.17-0.24	0.10-0.25	0.15-0.25	0.15-0.25	0.20-0.55	0.35-0.60
Iron	balance	balance	balance	balance	balance	balance	balance 🔿	balance
Aluminum				0.3				

^A Maximum %, unless range or minimum is indicated.

**TABLE 2 Mechanical Property Requirements** 

Alloy	Form	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. or 50.8 mm, or 4 <i>D</i> , min, %
UNS N08925	sheet	87 (600)	43 000 (295)	40
	strip	87 (600)	43 000 (295)	40
	plate	87 (600)	43 000 (295)	40
UNS N08932	plate	87 (600)	44 000 (305)	40
UNS N08031	sheet	94 (650)	40 000 (276)	40
	strip	94 (650)	40 000 (276)	40
	plate	94 (650)	40 000 (276)	40
UNS N08034	sheet	94 (650)	40 000 (280)	40
	strip	94 (650)	40 000 (280)	40
	plate	94 (650)	40 000 (280)	40
UNS N08926	sheet	94 (650)	43 000 (295)	35
	strip	94 (650)	43 000 (295)	35
	plate	94 (650)	43 000 (295)	35
UNS N08354	sheet	93 (640)	43 000 (295)	40
	strip	93 (640)	43 000 (295)	40
	plate	93 (640)	43 000 (295)	40
UNS N08830	sheet	110 (760)	55 000 (380)	40
	strip	110 (760)	55 000 (380)	40
	plate	110 (760)	55 000 (380)	40
UNS R20033	sheet	109 (750)	55 000 (380)	40
	strip	109 (750)	55 000 (380)	40
	plate	109 (750)	55 000 (380)	40

- 5.1.4 Dimensions,
- 5.1.5 Type edge required, for strip only (see Specification B906),
- 5.1.6 Finish (see Specification B906)—For sheet with No. 4 finish, specify whether one or both sides are to be polished,
  - 5.1.7 ASTM designation,
  - 5.1.8 Additions to the specification or special requirements,
- 5.1.9 Certification or test reports—Certification and test reports are required, and
  - 5.1.10 Source inspection—State if inspection is required.

### 6. Chemical Composition

- 6. The material shall conform to the composition limits specified in Table 1. One test per lot is required as defined in Specification B906.
- 6.2 If a product analysis is made by the purchaser, the material shall conform to the product (check) analysis variations in Specification B906.

### 7. Mechanical Properties and Other Requirements

7.1 *Tensile and Hardness Requirements*—The material shall conform to the mechanical property requirements specified in Table 2. One test per lot is required as defined in Specification B906.

### 8. Dimensions and Permissible Variations

8.1 *Sheet*—The material shall be furnished in accordance with the dimensional requirements established in Specification B906.

### 9. Keywords

9.1 UNS N08031; UNS N08034; UNS N08925; UNS N08926; UNS N08932; UNS N08354; UNS N08830; UNS R20033; plate; sheet; strip

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
# WC Section II Part B) 202 SB-626 RAVE. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para. SB-626 RAVE. (Identical with ASTM Specification 8626-17 except contribution and test reports have been made mandatory per para.



### Specification for Welded Nickel and Nickel-Cobalt Alloy Tube

### 1. Scope

- 1.1 This specification covers welded tubes made from the nickel and nickel-cobalt alloys (UNS N10001, UNS N10242, UNS N10665, UNS N12160, UNS N10629, UNS N10624, UNS N10675, UNS N10276, UNS N06455, UNS N06007, UNS N06975, UNS N08320, UNS N06985, UNS N06002, UNS N06022, UNS N06030, UNS N06035, UNS N06044, UNS N06058, UNS N06059, UNS N06200, UNS N06617, UNS N10362, UNS N06210, UNS N08031, UNS R30556, UNS N06230, UNS N06686, and UNS R20033) listed in Table 1 intended for heat exchanger and condenser tubes and tubes for general corrosive service for heat-resisting applications.
- 1.2 This specification covers tube \(^1\/_8\) to 3\(^1\/_2\) in. (3.2 to 88.9 mm) in outside diameter and 0.015 to 0.148 in. (0.41 to 3.7 mm) inclusive, in wall thickness.
- 1.3 The values stated in inch-pound units are to be regarded Odestructively tested in accordance with 4.2.1. as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established hothe Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

2.1 ASTM Standards:

B751 Specification for General Requirements for Nickel and Nickel Alloy Welded Tube

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

### 3. General Requirements

3.1 Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B751 unless otherwise provided herein.

### 4. Classification

- 4.1 Five classes of tube are covered as follows:
- 4.1.1 Class IA—Welded, sized, solution annealed, and non-
  - 4.1.2 Class IB—Welded, sized, and solution annealed.
- 4.1.3 Class IIA-Welded, cold worked, solution annealed, and nondestructively tested in accordance with 4.2.1.
- 4.1.4 Class IIB-Welded, cold worked, and solution an-
- 4.1.5 Class III—Welded, cold worked, solution annealed, and nondestructively tested in accordance with 4.2.2.
  - 4.2 Nondestructive Tests:
- 4.2.1 Class IA and Class IIA Tubes-Each finished tube shall be subjected to the hydrostatic test, the pneumatic test, or the eddy current test at the manufacturer's option.
- 4.2.2 Class III Tubes—Each finished tube shall be subjected to the pneumatic test and the eddy current test. Tubes larger than 1½ in. (38.1 mm) in outside diameter may be subjected to the hydrostatic test in lieu of the pneumatic test at the manufacturer's option.

### 5. Ordering Information

5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this

	_						2	2	ובו	מו ופל	nıreme	uts											ı
	).					ŀ		Con	nposition	n Limits,	%		,		•					•			
ž	ŏ	9	B 0	≯	O	Si	ŝ	Ĕ	>						₹			z	<u> </u>				Mg
remainder 1		_	4.0-6.0	:	0.05	1.0						:	:	:									
remainder 1	×		2.0 max	c									· :	:									
65.0 min 1			1.0-3.0	$\overline{}$		0.10				0.030	O		-	- O .	0	10	:	:	6 1				
remainder 0			1.0-6.0	: :	_			< >					. 5 5 8000			 : = gx	:	:	= ` 			· ·	
remainder 6			5.0-8.0	:				1.0 max	:				-	- :		:	:	:	· :	· :			
remainder 7			2.0 max			<del></del>		0.80	0	0.030	.015	<u> </u>	20	0 '	.50			<u></u>	900				
		0.02			шах							_	 	_	шах шах								
remainder 1			4.0-7.0	3.0-			· >	\ <u>&gt;</u>				:	:										
remainder 2	•		2.0-6.0	2.5-		0.08	_	<del>,                                    </del>	$\overline{}$			<u> </u>	· :										
remainder 3	,		2.00 max	0.60		09.0				0000			.30	0 '	.40								
balance 4			0.3 max	: EX		0.20				020.0			<u>X</u> :	· ·			:	:	<u> </u>				:
balance 2		18.5-	1.5 max	0.3	_	0.10		0.50	0		Oto:		. 20	<u> </u>	.40			-20.0					
balance 2			1.5 max	max ::		0.10		×			010.	- 6	max .50	- o 			:		:				
remainder 1			3.0 max	:		0.08		1.0 max	:			$\overline{}$	ž Q	:	4.0								
													10	. С									
remainder 2			18.0-21.0	1.0		1.0		1.0-	<u> </u>			= '		75-	<u> </u>								
47.0-52.0	23.5		remainder	: max		1.0		1.0	<u> </u>			70- 0.		ç; :	2								
remainder 2	26.0	7.0 9.0-	18.0-21.0		max 0.015	1.0		1.0	· :			1.50	$\sim$	20	7	C							
remainder 2	23.5		13.0-17.0			8.0		max 1.5	· :			:		30- 30-									
25.0-27.0			remainder	0.4 :				2.5 max	:					<u> </u>		<u>,                                    </u>	· Ox	0					
remainder 2			17.0-20.0					1.0	:				:	:				<u></u>	<u> </u>				
19.0-22.5			remainder			0.20-		0.50-					:		10- 0.	001-0.0				30 xan	3- 25-		
		1.0 Cr 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Cr	Cr	Cr Mo Fe W To 26.0- 4.046.0 max 30.0 1.0 26.0- 2.0 max 3.0 1.0 26.0- 1.0-3.0 3.0 1.0 25.0 2.0 max 32.0 1.0-3.0 1.0-3.0 1.0-5.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 30.0 1.0-6.0 1.5 max 1.5 30.0 1.0-6.0 1.0-6.0 1.5 max 1.5 30.0 1.0-6.0 1.0 3.5 22.5 14.5 20.0 0.3 max 1.5 30.0 1.0 1.0 3.5 23.0 20.0 1.5 1.5 max 1.5 max 1.5 30.0 1.0 1.0 1.0 23.5 23.5 20.0 1.5 1.5 max 1.5 30.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Cr Moo Fe W C C max 30.0 0.05 max 30.0 0	Cr Moo Fe W C Si Max 30.0 1.0 1.0 max 30.0 1.0 1.0 26.0 1.0 1.0 3.0 max 0.01 0.10 1.0 25.0 1.0 max 0.01 0.10 1.0 25.0 1.0 max 0.01 0.10 0.05 1.0 max 0.01 0.10 0.05 1.0 1.0 25.0 1.0 5.0 8.0 1.0 0.01 0.00 1.0 1.0 1.0 1.0 1.0 1.0	Cr Moo Fe W C Si O C Si	Cr Moo Fe W C Si O C Si	Cr Moo Fe W C Si O C Si	Cr Moo Fe W C Si O C Si	Cr. Wo Fe W C Si Co Mn V P S S CO	10   260-   4.0-6.0     0.05   1.0   2.5   1.0   0.2-   0.04   0.03       10   260-   4.0-6.0     0.05   1.0   1.0   1.0   1.0   0.04   0.03       10   260-   2.0 max   0.02   0.10   0.10   1.0   1.0   0.04   0.03       10   250-   1.0-3.0   0.04   0.03       10   250-   1.0-6.0     0.01   0.02   0.04   0.03       10   250-   1.0-6.0     0.01   0.02   0.04   0.03       10   250-   1.0-6.0     0.01   0.02   0.04   0.01       10   250-   1.0-6.0     0.01   0.02   0.03   0.01   0.02   0.01       10   250-   1.0-6.0     0.01   0.02   0.03   0.01   0.02   0.01       11   250-   1.0-6.0     0.01   0.03   0.03   0.01   0.02   0.01       11   250-   2.0 max     0.01   0.03   0.03   0.01       12   15.0   2.0 0 max   0.03   0.03   0.03   0.01   0.02   0.03       14   15   15.0   4.0-70   3.0   0.01   0.08   2.5   1.0   0.02   0.03   0.01       15   15.0   2.0 0 max   max	10   260-   40-80   1.0   2.5   1.0   2.5   1.0   0.2-6   0.04   0.03         10   260-   40-80   1.0   2.5   1.0   2.5   1.0   0.2-6   0.04   0.03         10   260-   40-80   2.0 max   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0	10   280   40-80	10   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260	10   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260   260	10   28.0   4.05.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2	10   280,   4.05   2.0   10   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5	10   280,   40.86   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   1.0   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.	10   260   10   10   10   10   10   10   10	10   250   40-50   10   10   10   10   10   10   10	10   280   20   10   280   20   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   10   28   28   28   28   28   28   28   2

891

	Ni+ Mo			:	:			i i	i		NC 58
	Ta Ta	:		:	:	:		: ×	:	1.5-	
	(N D	: :		: 9	:		i .	1.0 max	:	:	S
	В	0.015 max		0.006	÷	: 22	:	:	: 0	:	10
	z	:		:	:	0.15-	:	:	0.35-		7
	La	0.005-		:	÷	:	:	:			
	Zr	:		:	:	:	:	:	BS.	:	
	₹	0.50 max	0.50 max	1.5	0.50 max	:	:	(8			
	S (Np.	:	:	:	:	i i	1	<u>ن</u> ``	:	:	
	On	:	1.3-	0.5 max	:	1.0-	OR T	:	0.3-		
	F	:	:	0.6 max	:	NE	0.02-	0.20-	:	:	
Continued	S max	0.015	0.010	0.015	0.010	700	0.02	0.015	0.01	0.02	
	V P S max may	0.03	0.025	ŧ	0,025	0.020	0.04	0.030	0.02	0.02	
TABLE 1	>	1	i	1 0	O,		i .	:	:	0.35 max	
2	M M	0.30-	0.50 max	7. 1. X	0.60 max	2.0 max	0.75 max	1.5 max	2.0 max	0.5	
	ဝိ	5.0 max	o Hax	10.0-	:	:	i	27.0- 33.0	÷	1.0 max	
	Si	0.25-	1/8	1.0	0.08	0.3	0.08	3.0	0.50	0.08	
	O	13.0 ² 0.05-	0.010 max	0.05-	0.010 max	0.015 max	0.010 max	0.15 max	0.015 max	0.015 max	
	>	13.0	:	:	:	:	3.0-	1.0 max	:	:	
	i e	3.0 max	3.0 max	3.0 max	1.25 max	balance	5.0 max	3.5 max	balance	1.0 max	
CO	Mo	3.0	15.0-	8.0-	21.5-	6.0-	15.0-	1.0 max	0.50-	18.0-	
),	ö	20.0-	22.0-	20.0-	13.8-	28.0	19.0-	30.0	35.0	18.0-	
0	Z	remainder	remainder	44.5 min	remainder	30.0-32.0	remainder	remainder	30.0-33.0	remainder	

specification. Examples of such requirements include, but are not limited to the following:

- 5.1.1 Alloy (Table 1),
- 5.1.2 Class (see 4),
- 5.1.3 Quantity (feet or number of lengths),
- 5.1.4 Size (outside diameter and average wall thickness),
- 5.1.5 Length (cut or random),
- 5.1.6 *Certification*—Certification and a report of test results are required (SB-571),
- 5.1.7 Purchaser Inspection—State which tests or inspections are to be witnessed,
- 5.1.8 *Ends*—Plain ends cut and deburred will be furnished, unless otherwise specified, and
- 5.1.9 Samples for Product (Check) Analysis—State whether samples shall be furnished.

### 6. Materials and Manufacture

- 6.1 The tubes shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal.
- 6.2 Subsequent to welding and prior to final heat treatment, Class II and Class III tubes shall be cold worked either in both weld and base metal or in weld metal only. The method and amount of cold working may be specified by the purchaser. When cold drawn, the purchaser may specify the minimum amount of reduction in cross-sectional area or wall thickness, or both.
- 6.3 All tubes shall be furnished in the solution annealed and descaled condition. When atmosphere control is used, descaling is not necessary.

### 7. Chemical Composition

- 7.1 The material shall conform to the requirements for chemical composition prescribed in Table 1. One test is required for each lot as defined in Specification B751.
- 7.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the requirements specified in Table 1 subject to permissible variations specified in Specification B751.

### 8. Mechanical Properties and Other Requirements

- 8.1 Mechanical Properties—The material shall conform to the mechanical properties prescribed in Table 2. One test is required for each lot as defined in Specification B751.
  - 8.2 Flattening Test Requirements:
- 8.2.1 Evidence of laminated or unsound material or of incomplete weld that is revealed during the entire flattening test shall be cause for rejection.
- 8.2.2 Surface imperfections in the test specimens before flattening, but revealed during the flattening test, shall be judged in accordance with the finish requirements.
- 8.2.3 Superficial ruptures resulting from surface imperfections shall not be cause for rejection.
- 8.2.4 One test is required for each lot as defined in Specification B751.
  - 8.3 Flange Test Requirements:

**TABLE 2 Mechanical Properties** 

Alloy	Tensile Strength, min, ksi (MPa)	Yield Strength (0.2 Offset) min, ksi (MPa)	Elongation in 2 in. (50.8 mm) or 4D ^A , min, %
Ni-Mo			
UNS N10001	100 (690)	45 (310)	40
UNS N10665	110 (760)	51 (350)	40
UNS N10675	110 (760)	51 (350)	40
UNS N10629	110 (760)	51 (350)	40
UNS N10624	104 (720)	46 (320)	40
Ni-Mo-Cr-Fe		(C)	
UNS N10242	105 (725)	45 (310)	40
Low C Ni-Cr-Mo		07	
UNS N10276	100 (690)	41 (283)	40
UNS N06022	100 (690)	45 (310)	45
UNS N06035	85 (586)	35 (241)	30
UNS N06044	90 (620)	45 (310)	20
UNS N06455	100 (690)	40 (276)	40
Ni-Cr-Fe-Mo-Cu	~25.		
UNS N06007	90 (621)	35 (241)	35
UNS N06975	85 (586)	32 (221)	40
UNS N06985	90 (621)	35 (241)	45
UNS N06030	85 (586)	35 (241)	30
Ni-Fe-Cr-Mo			
UNS N08320	75 (517)	28 (193)	35
Ni-Cr-Mo-Fe			
UNS N06002	100 (690)	40 (276)	35
Ni-Fe-Cr-Co			
UNS R30556	100 (690)	45 (310)	40
Ni-Cr-W-Mo	440 (700)	45 (040)	40
UNS N06230 ^B	110 (760)	45 (310)	40
Low C-Ni-Cr-Mo UNS N06058	110 (760)	EQ (260)	40
UNS N06059	110 (760)	52 (360) 45 (310)	45
Low C-Ni-Cr-Mo-Cu	100 (690)	45 (310)	45
UNS N06200	100 (690)	45 (310)	45
Ni-Cr-Co-Mo	100 (090)	43 (310)	45
UNS N06617	95 (665)	35 (240)	35
Low C-Ni-Mo-Cr	00 (000)	00 (240)	00
UNS N10362	105 (725)	45 (310)	40
Low-carbon Ni-Fe-	()	(0.0)	
Cr-Mo-Cu			
UNS N08031	94 (650)	40 (276)	40
Low C-Ni-Cr-Mo-W	- (/	- \ -/	
UNS N06686	100 (690)	45 (310)	45
Ni-Co-Cr-Si	, ,	, ,	
UNS N12160	90 (620)	35 (240)	40
Low Carbon Cr-Ni-Fe-N	, ,		
UNS R20033	109 (750)	55 (380)	40
Low-C Ni-Mo-Cr-Ta			
LOW-O INI-INIO-OI-IA			

- A D refers to the diameter of the tension specimen
- B  Solution annealed at a minimum temperature of 2200°F (1204°C) followed by a water quench or rapidly cooled by other means.
- 8.3.1 Flange test specimens shall show no cracking or flaws. Superficial ruptures resulting from surface imperfections shall not be cause for rejection.
- 8.3.2 For tube less than 0.093 in. (2.36 mm) in inside diameter and tube having a wall thickness equal to or greater than the inside diameter, the flange test shall not be required.
- 8.3.3 One test is required for each lot as defined in Specification B751.
- 8.4 *Hydrostatic Test*—When tested by the manufacturer, each tube shall be subjected to the hydrostatic test per Specification B751.
- 8.5 *Pneumatic Test*—When tested by the manufacturer, each tube shall be subjected to the pneumatic test per Specification B751.

Senting and of com. class of weather the full of the sent and of the company of the sent and of the company of

894

# SPECIFICATION FOR PRECIPITATION-HARDENING AND SB-637 SB-637 (Identical with ASTM Specification Reg. 7-18 except certification and test reports have been made mandatory.) COLD WORKED NICKEL ALLOY BARS, FORGINGS, AND



### Specification for Section II part B 20% Precipitation-Hardening and Cold Worked Nickel Alloy Bars, Forgings, and Forging Stock for Moderate or High **Temperature Service**

### 1. Scope

- 1.1 This specification covers hot- and cold-worked precipitation-hardenable nickel alloy rod, bar, forgings, and forging stock for moderate or high temperature service (Table 1).
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

- 2.1 ASTM Standards:
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Allovs
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E139 Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
- E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness
- £1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

### 3. Terminology

- 3.1 Definitions:
- 3.1.1 bar, n—material of rectangular (flats), hexagonal, octagonal, or square solid section in straight lengths.
- 3.1.2 rod, n—material of round solid section furnished in straight lengths.

### 4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:
  - 4.1.1 Alloy (Table 1).
- 4.1.2 Condition (temper or cold worked) (Tables 2 and 3 and 6.1)
- AN Shape—Rod or bar (round, rectangle, square, hexagon, octagon).
  - 4.1.3.1 Forging (sketch or drawing).
  - 4.1.4 Dimensions, including length.
  - 4.1.5 Quantity (mass or number of pieces).
- 4.1.6 Forging Stock—Specify if material is stock for reforg-
  - 4.1.7 Finish.
- 4.1.8 DELETED

**TABLE 1 Chemical Requirements** 

Carbon 0.0 Manganese 0.5 Silicon 0.0 Phosphorus 0.0 Sulfur 0.0	NS 07022 010 max 5 max 08 max 025 max 015 max 0.0–21.4 0 max	UNS N07208 0.04–0.08 0.3 max 0.15 max 0.015 max 0.015 max	UNS N07252 (Formerly Grade 689) 0.10–0.20 0.50 max 0.50 max	UNS N07001 (Formerly Grade 685) 0.03–0.10 1.00 max	UNS N07500 (Formerly Grade 684) 0.15 max	UNS N07740	UNS N07750 (Formerly Grade 688) 0.08 max	UNS N07718 (Formerly Grade 718)
Carbon 0.0 Manganese 0.5 Silicon 0.0 Phosphorus 0.0 Sulfur 0.0	07022 010 max 5 max 08 max 025 max 015 max 1.0–21.4	0.04-0.08 0.3 max 0.15 max 0.015 max	(Formerly Grade 689) 0.10–0.20 0.50 max 0.50 max	(Formerly Grade 685) 0.03–0.10 1.00 max	(Formerly Grade 684) 0.15 max	N07740	(Formerly Grade 688)	(Formerly
Carbon         0.0           Manganese         0.5           Silicon         0.0           Phosphorus         0.0           Sulfur         0.0	010 max 5 max 08 max 025 max 015 max 1.0–21.4	0.04–0.08 0.3 max 0.15 max 0.015 max	0.10-0.20 0.50 max 0.50 max	Grade 685) 0.03–0.10 1.00 max	Grade 684) 0.15 max		Grade 688)	
Manganese 0.5 Silicon 0.0 Phosphorus 0.0 Sulfur 0.0	5 max 08 max 025 max 015 max 1.0–21.4	0.3 max 0.15 max 0.015 max	0.50 max 0.50 max	1.00 max		0.005-0.08	0.00 may	
Silicon 0.0 Phosphorus 0.0 Sulfur 0.0	08 max 025 max 015 max 1.0–21.4	0.15 max 0.015 max	0.50 max		0.75		0.08 max	0.08 max
Phosphorus 0.0 Sulfur 0.0	025 max 015 max 1.0-21.4	0.015 max			0.75 max	1.00 max	1.00 max	0.35 max
Sulfur 0.0	015 max 0.0–21.4		0.015	0.75 max	0.75 max	1.00 max	0.50 max	0.35 max
	.0–21.4	0.015 max	0.015 max	0.030 max	0.015 max	0.030 max		0.015 max
Chromium 20.			0.015 max	0.030 max	0.015 max	0.030 max	0.01 max	0.015 max
	nay nay	18.5-20.5	18.00-20.00	18.00-21.00	15.00-20.00	23.50-25.50	14.00-17.00	17.0-21.0
Cobalt 1.0	J IIIAA	9.0-11.0	9.00-11.00	12.00-15.00	13.00-20.00	15.00-22.00	1.00 max ^A	1.0 max ^A
Molybdenum 15.	5.5-17.4	8.0-9.0	9.00-10.50	3.50-5.00	3.00-5.00	2.00 max		2.80-3.30
Columbium (Nb) + tantalum							0.70–1.20	4.75–5.50
Titanium		1.90-2.30	2.25-2.75	2.75-3.25	2.50-3.25	0.50-2.50	2.25-2.75	0.65-1.15
	5 max	1.38–1.65	0.75–1.25	1.20-1.60	2.50-3.25	0.20-2.00	0.40-1.00	0.20-0.80
Zirconium	o max	0.020 max		0.02-0.12	2.00 0.20	0.20 2.00		
	006 max	0.003-0.010	0.003-0.01	0.003-0.01	0.003-0.01	0.0008-0.006		0.006 max
	8 max	1.5 max	5.00 max	2.00 max	4.00 max	3.00 max /	5.00-9.00	remainder ^B
	5 max	0.1 max		0.50 max	0.15 max	0.50 max	0.50 max	0.30 max
	mainder ^B	remainder ^B	remainder ^B	remainder ^B	remainder ^B	remainder ^B	70.00 min	50.0-55.0
	2 max	0.1 max				remainadi		
Columbium (Niobium)		0.2 max				0.50-2.50		
	3 max	0.5 max				11		
	NS N07080	0.0 max	•••					
(Fo	ormerly rade 80A)	UNS N07752	UNS N09925	UNS N07725		)		
Carbon 0.1	10 max	0.020-0.060	0.03 max	0.03 max	((),			
Manganese 1.0	00 max	1.00 max	1.0 max	0.35 max				
Silicon 1.0	00 max	0.50 max	0.5 max	0.20 max	07			
Phosphorus		0.008 max	0.03 max	0.015 max	Co ^N			
Sulfur 0.0	015 max	0.003 max	0.03 max	0.010 max				
Chromium 18.	3.00-21.00	14.50-17.00	19.5-22.5	19.00-22.50				
Cobalt		0.050 max						
Molybdenum			2.5-3.5	7.00-9.50				
Columbium		0.70-1.20	0.5 max (Nb only)	2.75-4.00				
(Nb) + tantalum			, , ,	ζ Y				
Titanium 1.8	80-2.70	2.25-2.75	1.9-2.40	1.00-1.70				
	50-1.80	0.40-1.00	0.1–0.5	0.35 max				
Boron		0.007 max						
	00 max	5.00-9.00	22.0 min	remainder ^B				
Copper		0.50 max	1.5–3.0					
Zirconium		0.050 max						
Vanadium		0.10 max						
	mainder ^B	70.0 min	42.0-46.0	55.0–59.0				

A If determined.

4.1.9 Samples for Product (Check) Analysis—Whether samples for product (check) analysis shall be furnished (9.2).

4.1.10 *Purchaser Inspection*—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed (Section 13).

### 5. Chemical Composition

- 5.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.
- 52 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations prescribed in Specification B880.

### 6. Mechanical Properties

6.1 Unless otherwise specified, the material shall be supplied in the cold worked or solution treated condition, suitable for subsequent age hardening.

- 6.2 The cold worked or solution treated material shall be capable of meeting the mechanical property requirements of Table 3, and the stress rupture requirements of Table 4 (except alloys UNS N07022, N09925 and N07725), following the precipitation hardening treatment described in Table 2.
- 6.3 When the material is to be supplied in the cold worked or solution treated plus aged condition, the requirements of Table 3 and Table 4 (except alloys UNS N07022, N09925 and N07725) shall apply, with the precipitation hardening treatment of Table 2, or as agreed upon between the purchaser and the manufacturer as part of the purchase contract.

### 7. Dimensions and Permissible Variations

7.1 Diameter, Thickness, or Width—The permissible variations from the specified dimensions of cold-worked rod and bar shall be as prescribed in Table 5, and of hot-worked rod and bar as prescribed in Table 6.

^B The element shall be determined arithmetically by difference.

TABLE 2 Heat Treatment^A

		TABLE 2 Heat Treatme	ent^	
Alloy	Recommended Annealing Treatment	Recommended Solution Treatment	Recommended Stabilizing Treatment	Precipitation Hardening Treatment
N07022 ^B Type 1A or 1B		1800 to 2100°F (982 to 1149°C), hold ½ h/in., 5 minutes minimum, rapid air cool or water quench		
N07022 ^C Type 2		1800 to 2100°F (982 to 1149°C),hold ½ h/in., 5 minutes minimum, rapid air cool or water quench		1125 ± 25°F (605 ± 14°C), hold 10 h, air cool ^B
N07022 Type 3		1800 to 2100°F (982 to 1149°C), hold ½ h/in., 5 minutes minimum, rapid air cool or water quench		1300 ± 25°F (705 ± 14°C), hold 16 h, furnase cool to 1125 ± 25°F (605 ± 14°C), hold 32 h, ai) cool
N07208		2000 to 2125°F (1093 to 1163°C), hold ½ h/in., 5 to 10 minutes minimum, water quench or rapid air cool	SN	1850 ± 25°F (1010 ±14°C), hold 2 h, air cool, followed by 1450 ± 25°F (788 ± 14°C), hold 8 h, air cool
N07252		1950 ± 25°F (1066 ± 14°C), hold 4 h, air cool	II.B.Ch	$1400 \pm 25$ °F (760 $\pm 14$ °C), hold 15 h, air cool or furnace cool
N07001		1825 to 1900°F (996 to 1038°C), hold 4 h, oil or water quench	1550 ± 25°F)(843 ± 14°C), hold 4 h, air cool	$1400 \pm 25$ °F (760 $\pm 14$ °C), hold 16 h, air cool or furnace cool
N07500	$2150 \pm 25^{\circ}F$ (1177 ± $14^{\circ}C$ ), hold 2 h, air cool (bars only)	1975 ± 25°F (1080 ± 14°C), hold 4 h, air cool	1550 ± 25°F (843 ± 14°C), hold 24 h, air cool	$1400 \pm 25^{\circ}F$ (760 $\pm 14^{\circ}C$ ), hold 16 h, air cool or furnace cool
N07740		2010°F (1100°C) minimum, hold 1 h per in. of thickness with ½ h minimim hold, water quench or rapid air cool		1400 to 1500°F (760 to 815°C), hold 4 h minimum for up to 2 in. thickness + additional ½ h per each additional in. of thickness, air cool
N07750 Type 1 (Service above 1100°F) (593°C)		2100 ± 25°F (1149 ± 14°C), hold 2 to 4 h, air cool	1550 ± 25°F (843 ± 14°C), hold 24 h, air cool	$1300 \pm 25$ °F ( $704 \pm 14$ °C), hold 20 h, air cool or furnace cool
N07750 Type 2 (Service up to 1100°F) (593°C)	to view it.	1800 ± 25°F (982 ± 14°C), hold ½ h min, cool at rate equivalent to air cool or faster		1350 ± 25°F (732 ± 14°C), hold 8 h, furnace cool to 1150 ± 25°F (62 1 ± 14°C), hold until total precipitation heat treatment has reached 18 h, air cool
N07750 Type 3	Click to	1975 – 2050°F (1079 – 1121°C), hold 1 to 2 h, air cool		$1300 \pm 25$ °F (704 ± 14°C), hold 20 h, + 4 – 0 h, air cool
		1975 $\pm$ 25°F (1080 $\pm$ 14°C), hold 1 to 2 h, cool by water or oil quenching		1320 ± 25°F (715 ± 14°C), hold 20 h, +2, -0 h, air cool
N07752 Type 2		1975 $\pm$ 25°F (1080 $\pm$ 14°C), hold 1 to 2 h, cool by water or oil quenching		$1400 \pm 25$ °F (760 ± $14$ °C), hold 100 h, +4, -0 h, air cool
M07/18		1700 to 1850°F (924 to 1010°C), hold ½ h min, cool at rate equivalent to air cool or faster		$1325 \pm 25^{\circ}$ F (718 $\pm$ 14°C), hold at temperature for 8 h, furnace cool to 1150 $\pm$ $25^{\circ}$ F (621 $\pm$ 14°C), hold until total precipitation heat treatment time has reached 18 h, air cool

TABLE 2 Continued

Alloy	Recommended Annealing Treatment	Recommended Solution Treatment	Recommended Stabilizing Treatment	Precipitation Hardening Treatment
N07080		1950 ± 25°F (1066 ± 14°C), hold 8 h, air cool	1560 ± 25°F (849 ± 14°C), hold 24 h, air cool	1290 ± 25°F (699 ± 14°C), hold 16 h, air cool
N07725		1900 ± 25°F (1038 ± 14°C), hold ½ min, and 4 h max, cool at rate equivalent to air cool		1350 ± 25°F (732 ± 14°C), hold at temperature for 5 to 8½ h, furnace cool to 1150 ± 25°F (621 ± 14°C), hold at temperature for 5 to 8 ½ h, air cool or faster
N09925		1825 to 1875°F (996 to 1024°C), hold ½ min, and 4 h max, cool at rate equivalent to air cool or faster		1365 ± 25°F (740 ±) 14°C), hold at temperature for 6 to 9 hr. furnace cool to 1150 ± 25°F (621 ± 14°C), hold until total precipitation heat treatment time has reached 18 h, air cool or faster

A The purchaser shall designate on the purchase order or inquiry any partial stage of heat treatment required on material to be shipped.

^B For solution treated + cold worked material only, when specified.

^C For solution treated + cold worked + precipitation hardened material only, when specified

- 7.1.1 *Out of Round*—Cold-worked and hot-worked rod, all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Table 5 and Table 6, except for hot-worked rod ½ in. (12.7 mm) and under, which may be out-of-round by the total permissible variations in diameter shown in Table 6.
- 7.1.2 *Corners*—Cold-worked bar shall have practically exact angles and sharp corners.
- 7.1.3 Cut Lengths—A specified length to which all rod and bar will be cut with a permissible variation of  $+ \frac{1}{8}$  in. (3.18 mm), -0 for sizes 8 in. (203 mm) and less in diameter or the distance between parallel surfaces. For larger sizes, the permissible variation shall be  $+ \frac{1}{4}$  in. (6.35 mm), -0.
- 7.1.4 Straightness for Cold-Worked and Hot Worked Rod and Bar—The maximum curvature (depth of chord) shall not exceed 0.050 in. multiplied by the length in feet (0.04 mm multiplied by the length in centimetres). Material under ½ in. (12.7 mm) in diameter or the distance between parallel surfaces shall be reasonably straight and free of sharp bends and kinks.
- 7.1.5 For forgings, dimensions and tolerances shall be as specified on the order, sketch, or drawing.
- 7.1.6 Dimensions and tolerances for forging stock shall be as agreed upon between the purchaser and the manufacturer.

### 8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

### 9. Sampling

- 9.1 *Lot*—Definition:
- 9.1.1 A lot for chemical analysis shall consist of one heat.
- 9.1.2 *Mechanical Properties*—A lot for tension, hardness, and stress-rupture testing shall consist of all material from the same heat, nominal diameter or thickness, or forging size, and condition (temper).
  - 9.1.2.1 For forging stock, a lot shall consist of one heat.

- 9.1.2.2 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same size and condition (temper).
  - 9.2 Test Material Selection:
- 9.2. Chemical Analysis—Representative samples shall be taken during pouring or subsequent processing.
- 9.2.1.1 *Product (Check) Analysis* shall be wholly the responsibility of the purchaser.
- 9.2.2 Mechanical Properties—Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

### 10. Number of Tests

- 10.1 Chemical Analysis—One test per lot.
- 10.2 Tension—One test per lot.
- 10.3 Hardness—One test per lot.
- 10.4 Stress-Rupture—One test per lot.

### 11. Specimen Preparation

- 11.1 Rod and Bar:
- 11.1.1 Tension test specimens shall be taken from material in the final condition (temper) and tested in the direction of fabrication.
- 11.1.2 All rod and bar shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E8/E8M shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E8/E8M for rectangular bar up to  $\frac{1}{2}$  in. (12.7 mm), inclusive, in thickness, which are too wide to be pulled full size.
- 11.1.3 Forging stock test specimens shall be taken from a forged-down coupon or a sample taken directly from stock.
  - 11.2 Forgings:

TABLE 3 Tensile and Hardness Requirements^A

Alloy	Heat Treatment	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % offset), min, psi (MPa)	Elongation in 2 in. (50 mm) or 4 <i>D</i> , min, %	Reduction of Area, min, %	Brinell or (Rockwell C) Hardness
N07022 Type 1A	solution + cold worked	160 000 (1103)	150 000 (1034)	17	50	382 max (42 Rc max)
N07022 Type 1B	solution + cold worked	185 000 (1276)	180 000 (1240)	13	30	425 max (46 Rc max)
N07022 Type 2	solution + cold worked + precipitation harden	178 000 (1227)	160 000 (1103)	15	24	479 max (50 Rc max)
N07022 Type 3	solution + precipitation harden	145 000 (1000)	80 000 (552)	15	14	228 min (20 Rc min)
N07208	solution + precipitation harden	150 000 (1034)	90 000 (620)	20	14	250 min (24 Rc min)
N07252	solution + precipitation harden	160 000 (1100)	90 000 (620)	20	18	310 min 34 Rc min)
N07001	solution + stabilize + precipitation harden	160 000 (1100)	110 000 (760)	15 ^B	18	310 min (34 Rc min)
N07500 (rod and bar)	anneal + solution + stabilize + precipitation harden	175 000 (120)	105 000 (725)	15	15	310 min (34 Rc min)
N07740	solution + precipitation harden	150 000 (1035)	90 000 (620)	20	18	
N07500 (forgings)	solution + stabilize + precipitation harden	170 000 (1170)	100 000 (690)	20	18	310 min (34 Rc min)
N07750 Type 1	solution at 2100°F (1149°C) + stabilize + precipitation harden	140 000 (965)	90 000 (620)	(P8		262 min (26 Rc min)
N07750 Type 2 ^C	solution at 1800°F (982°C) + precipitation harden	170 000 (1170)	115 000 (790)	18	18	302 to 363 (32-40 Rc)
N07750 Type 2 ^D	solution at 1800°F (982°C) + precipitation harden	170 000 (1170)	115 000 (790)	15 (10) ^E	15 (12) ^E	302 to 363 (32-40 Rc)
N07750 Type 3	solution anneal at 2000°F (1093°C) + precipitation harden	160 000 (1103), min 185 000	100 000 (689), min 130 000	20	20	267 to 363, Bm (27-40, Rc)
N07752 Type 1	solution anneal at 1975°F (1080°C) + precipitation harden	(1276), max 160 000 (1103), min 185 000	(896), max 100 000 (689), min 130 000	20	20	267 to 363, Ba (27-40, Rc)
N07752 Type 2	solution anneal at 1975°F (1080°C) + precipitation harden	(1276), max 140 000 (965)	(896), max 85 0000 (585)	20	20	
N07718	solution + precipitation harden	185 000 (1275)	150 000 (1034)	12 (6) ^E	15 (8) ^{<i>E</i>}	331 min (36 Rc min)
N07080	solution + stabilize + precipitation harden	135 000 (930)	90 000 (620)	20		
N07725	solution + precipitation harden	150 000 (1034)	120 000 (827)	20	35	393 max (43, Rc max)
N09925 ^F	solution + precipitation harden	140 000 (965)	105 000 (724)	18	25	346 max (38, Rc max)
N09925 ^G	solution + precipitation harden	140 000 (965)	110 000 (758)	18	25	346 max (38, Rc max)

A The supplier shall demonstrate that the material will meet fully heat-treated properties after full heat treatment in accordance with Table 2.

11.2.1 The tension test specimen representing each lot shall be taken from a forging or from a test prolongation.

12.2 The axis of the specimen shall be located at any point midway between the center and the surface of solid forgings and at any point midway between the inner and outer surfaces of the wall of hollow forgings, and shall be parallel to the direction of greatest metal flow.

11.2.3 The specimens shall be the largest possible roundtype shown in Test Methods E8/E8M.

11.3 Stress-rupture specimens shall be the same as tension specimens except modified as necessary for stress-rupture testing in accordance with Test Methods E139.

### 12. Test Methods

12.1 Determine the chemical composition and mechanical and other properties of the material as enumerated in this specification, in case of disagreement, in accordance with the following methods:

^B Forgings.

^C Up to 2.50 in. (63.5 mm), exclusive.

^D 2.50 to 4.00 in. (63.5 to 101.6 mm), exclusive.

E These values apply for tension specimens machined tangentially from near the center of large disk forgings over 50 in.2 (3225.8 mm²) in cross section or radially from rings 3 in. (76.2 mm) or more in thickness.

F Cold worked, solution annealed and aged, 0.625 in. (15.9 mm) to 3 in. (76.2 mm), inclusive.

^G Hot worked, solution annealed and aged, 1 in. (25.4 mm) or over.

TABLE 4 Stress-Rupture Requirements^A

Alloy	Heat Treatment	Test Temperature, °F (°C)	Stress, psi (MPa) ^B	Minimum Hours	Elongation in 2 in. or 50 mm (or 4 <i>D</i> ), min, %
N07208	solution + precipitation harden	1700 (927)	13 000 (89)	50	10
N07252	solution + precipitation harden	1500	30 000	100	10
N07001	solution + stabilize + precipitation harden	(816) 1500	(205) 33 000	100	5
N07500 (rod and bar)	anneal + solution + stabilize + precipitation harden	(816) 1500	(230) 38 000	100	5 , 9
N07740 ^A	solution + precipitation harden	(816) 1472	(260) 41 700	23	5
N07500 (forgings)	solution + stabilize + precipitation harden	(800) 1500	(288) 38 000	100	5
N07750 Type 1	solution at 2100°F (1149°C) + stabilize + precipitation	(816) 1350	(260) 45 000	100	5 3 if hours exceed
N07718	harden solution + precipitation harden	(732) 1200	(310) 100 000	23	(5)
N07080	solution + stabilize + precipitation harden	(649) 1400	(690) 47 000	23	3.5
N09925 ^A	solution + precipitation harden	760 	(325)		
N07725 ^A	solution + precipitation harden				

^A The supplier shall demonstrate that the material will meet fully heat-treated properties after full heat treatment in accordance with Table 2. Stress rupture is not required for alloys N09925 and N07725.

TABLE 5 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Cold-Worked Rods and Bars

Specified Dimension, in. (mm) ^A		ariations from ension, in. (mm)
	Plus	Minus
Rods:		
1/16 to 3/16 (1.59 to 4.76), excl	0	0.002 (0.051)
3/16 to 1/2 (4.76 to 12.70), excl	0	0.003 (0.076)
½ to 15/16 (12.70 to 23.81), incl	0.001 (0.025)	0.002 (0.051)
Over 15/16 to 115/16 (23.81 to 49.2), incl	0.0015 (0.038)	0.003 (0.076)
Over 1 ¹⁵ / ₁₆ to 2 ¹ / ₂ (49.2 to 63.5), incl	0.002 (0.051)	0.004 (0.102)
Bars:		X
1/16 to 3/16 (1.59 to 4.76), excl	0	0.002 (0.051)
3/16 to 1/2 (4.76 to 12.7), excl	0 📎	0.003 (0.076)

A Dimensions apply to the diameter of rods, to the distance between parallel surfaces of hexagonal, octagonal, and square bar, and separately to width and thickness of rectangular bar.

TABLE 6 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Hot-Worked Rods and Bars

Specified Dimension, in. (mm) ^A		ariations from ension, in. (mm)
X,	+	-
Rod and bar, hot-finished:		
1 (25.4) and under	0.016 (0.406)	0.016 (0.406)
Over 1 to 2 (25.4 to 50.8), incl	0.031 (0.787)	0.016 (0.406)
Over 2 to 4 (50.8 to 101.6), incl	0.047 (1.19)	0.031 (0.787)
Over 4 (101.6)	0.125 (3.18)	0.063 (1.60)
Rod, hot-finished and rough-turned		
or ground:		
Under 1 (25)	0.005 (0.13)	0.005 (0.13)
1 (25) and over	0.031 (0.79)	0

 $^{^{\}rm A}$  Dimensions apply to the diameter of rods, to the distance between parallel surfaces of hexagonal, octagonal, and square bar, and separately to width and thickness of rectangular bar.

^B Test specimens meeting minimum requirements may be overloaded to produce rupture in a reasonable and practical time period.

Test	ASTM Designation
Chemical Analysis	E1473
Tension	E8/E8M
Rounding Procedure	E29
Stress-rupture	E139
Hardness Conversion	E140

12.2 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29.

Test	Rounded Unit for Observed Or Calculated Value
Chemical composition, tolerances (when ex- pressed in decimals), and hardness	Nearest unit in the last right- hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5 or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.
Tensile strength and yield strength	Nearest 1000 psi (6.9 MPa)
Elongation	Nearest 1 %
Rupture life	1 h

### 13. Inspection

SMENORANDOC. COM. Circk to view the full policy of Activity.

### 14. Rejection and Rehearing

14.1 Material, tested by the purchaser, that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 15. Certification

15.1 A producer's or supplier's certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. A report of the test results shall be furnished.

### 16. Product Marking

16.1 Each bundle or shipping container shall be marked with the name of the material; condition (temper); this specification number; the size; gross, tare, and net weight; consignor and consignee address; contract or order number; or such other information as may be defined in the contract or order.

### 17. Keywords

17.1 bar; billet; forging; N07001; N07022; N07208; N07080; N07252; N07500; N07740; N07718; N07725; N07750; N07752; N09925

SPECIFICATION FOR Ni-Fe-Cr-Mo-Cu-N LOW-CARBON ALLOYS (UNS N08925, UNS N08031, UNS N08034, UNS N08354, AND UNS N08926), AND Cr-Ni-Fe-N LOW-CARBON ALLOY (UNS R20033) BAR AND WIRE, AND Ni-Cr-Fe-Mo-N ALLOY (UNS N08936) WIRE



SB-649

**(23**)

(Identical with ASTM Specification B649-17 except that certification has been made mandatory; and paras. 4.1.8 and 5.2 and Table 2, Footnote A have been deleted.)

Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08034, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire

### 1. Scope

- 1.1 This specification covers nickel-iron-chromiummolybdenum-copper-nitrogen alloys (UNS N08925, UNS N08031, UNS N08034, UNS N08354, and UNS N08926), and chromium-nickel-iron-nitrogen low-carbon alloy (UNS R20033) bar and wire, and nickel-chromium-ironmolybdenum-nitrogen alloy (UNS N08936) wire.
- 1.2 ASTM International has adopted definitions whereby some grades, such as UNS N08904, previously in this specification were recognized as stainless steels, because those grades have iron as the largest element by mass percent. Such grades are under the oversight of ASTM Committee A01 and its subcommittees. The products of N08904 previously covered in this specification are now covered by Specifications A479/ A479M and A484/A484M.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health and environmental practices, and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

- 2.1 ASTM Standards:
- Section II Part B 202 A479/A479M Specification for Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels
- A484/A484M Specification for General Requirements for Stainless Steel Bars, Billets, and Forgings
- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- E8 Test Methods for Tension Testing of Metallic Materials E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- £1473 Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 bars, n—hot-finished rounds, squares, octagons, and hexagons: 1/4 in. (6.35 mm) and over in diameter or size. Hot-finished flats: 1/4 in. to 10 in. (254 mm) inclusive in width, 1/8 in. (3.18 mm) and over in thickness. Cold-finished rounds, squares, octagons, hexagons, and shapes: over ½ in. (12.70 mm) in diameter or size. Cold-finished flats: 3/8 in. (9.52 mm) and over in width (see 3.1.1.1) and 1/8 in. and over in thickness (see 3.1.1.2).
- 3.1.1.1 Discussion—Widths less than 3/8 in. (9.52 mm) and thicknesses less than ³/₁₆ in. (4.76 mm) are described generally as flat wire.

- 3.1.1.2 *Discussion*—Thickness ½ in. to under ¾6 in. (3.18 mm to under 4.76 mm) can be cold-rolled strip as well as bar.
- 3.1.2 *wire, n*—cold-finished only: round, square, octagon, hexagon, and shape wire,  $\frac{1}{2}$  in. (12.70 mm) and under in diameter or size. Cold-finished only: flat wire,  $\frac{3}{16}$  in. to under  $\frac{3}{8}$  in. (4.76 mm to under 9.52 mm) in width, 0.010 to under  $\frac{3}{16}$  in. (0.25 to under 4.76 mm) in thickness.

### 4. Ordering Information

- 4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered to this specification. Examples of such requirements include, but are not limited to, the following:
  - 4.1.1 Quantity (weight or number of pieces),
  - 4.1.2 Alloy name or UNS number,
  - 4.1.3 Form (bar or wire),
  - 4.1.4 Dimensions.
  - 4.1.5 Finish (Section 9),
  - 4.1.6 ASTM designation and year of issue,
- 4.1.7 Exceptions to the specification or special requirements, and
  - 4.1.8 DELETED

### 5. Materials and Manufacture

5.1 *Heat Treatment*—With the exception of UNS N08936, the material shall be supplied in the solution-treated condition except as noted in 5.2. UNS N08936 shall be supplied in the cold drawn condition.

Note 1—The recommended heat treatment shall consist of heating to a temperature of 2010 to 2100°F (1100 to 1150°C) followed by water quenching for UNS N08925, UNS N08031, UNS N08034, 1975 to 2150°F (1080 to 1180°C) followed by water quenching or fast air cool for UNS N08354, and UNS N08926, or 2010 to 2150°F (1100 to 1180°C) followed by water quenching or fast air cool for UNS R20033.

### 5.2 DELETED

### 6. Chemical Composition

6.1 The material sampled in accordance with 10.2 shall conform to the requirements as to chemical composition prescribed in Table 1.

- 6.2 *Product Analysis*—Product analysis may be made by the purchaser to verify the identity of the finished material representing each heat or lot. Such analysis may be made by any of the commonly accepted methods that will positively identify the material.
- 6.2.1 If a product analysis is made, the material shall conform to the product check analysis variation per Specification B880.

### 7. Mechanical and Other Requirements

7.1 *Tensile Requirements*—The material shall conform to the requirements as to the mechanical property prescribed in Table 2.

### 8. Dimensions, Weight, and Permissible Variations

- 8.1 *Bar*—The material referred to as bar shall conform to the variations in dimensions prescribed in Tables 3-11 inclusive, as applicable.
- 8.2 *Wire*—The material referred to as wire shall conform to the permissible variations in dimensions prescribed in Tables 12-16 inclusive, as applicable.

### 9. Workmanship, Finish, and Appearance

- 9.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious defects.
- 2 Bars in the hot-finished condition may be furnished with one of the following finishes:
  - 9.2.1 Scale not removed,
  - 9.2.2 Pickled or descaled, or
  - 9.2.3 Turned (rounds only).
- 9.3 Bars in the cold-finished condition may be furnished with one of the following finishes:
  - 9.3.1 Cold-drawn,
  - 9.3.2 Centerless ground (rounds only), or
  - 9.3.3 Polished (rounds only).
- 9.4 Wire in the cold-finished condition may be furnished with one of the following finishes:
  - 9.4.1 Cold-drawn,
  - 9.4.2 Centerless ground (rounds only),
  - 9.4.3 Polished (rounds only), or

**TABLE 1 Chemical Requirements** 

Element	UNS N08936	UNS N08925	UNS N08031	UNS N08034	UNS N08354	UNS N08926	UNS R20033
Carbon, max	0.020	0.020	0.015	0.01	0.030	0.020	0.015
Manganese ⁴	4.00-6.00	1.00	2.0	1.0-4.0	1.00	2.00	2.0
Phosphorus, max	0.025	0.045	0.020	0.020	0.030	0.03	0.02
Sulfur, max	0.010	0.030	0.010	0.010	0.010	0.01	0.01
Silicon, max	0.50	0.50	0.3	0.1	1.00	0.5	0.50
Nickel	33.00-35.00	24.00-26.00	30.0-32.0	33.5-35.0	34.0-36.0	24.00-26.00	30.0-33.0
Chromium	26.00-28.00	19.00-21.00	26.0-28.0	26.0-27.0	22.0-24.0	19.00-21.00	31.0-35.0
Molybdenum	5.00-6.00	6.0-7.0	6.0-7.0	6.0-7.0	7.0-8.0	6.0-7.0	0.50-2.0
Copper	0.50	0.8-1.5	1.0-1.4	0.5-1.5		0.5-1.5	0.30-1.20
Nitrogen	0.30-0.50	0.1-0.2	0.15-0.25	0.10-0.25	0.17-0.24	0.15-0.25	0.35-0.60
Iron	balance						
Aluminum				0.3			

^A Maximum %, unless range or minimum is indicated.

TABLE 2 Mechanical Property Requirements^A

	Cold Finished and Hot Finished Annealed, $^{\mathcal{B}}$ All Sizes Except Where Noted					
Alloy	Tensile Strength, min, psi (MPa) ^C		Elongation in 2 in. (50.8 mm), min, %	Forging Quality, All Sizes		
UNS N08925	87 000 (600)	43 000 (300)	40	Α		
UNS N08031	94 000 (650)	40 000 (270)	40	Α		
UNS N08034	94 000 (650)	40 000 (280)	40	Α		
UNS N08926	94 000 (650)	43 000 (295)	35	Α		
UNS N08354	93 000 (640)	43 000 (295)	40	Α		
UNS R20033 UNS N08936	109 000 (750)	55 000 (380)	40	Α		
Up to 0.063 in. (1.60 mm) dia., incl.	280 000 (1931)	240 000 (1655)				
Over 0.063 in. (1.60 mm) dia.	250 000 (1724)	220 000 (1517)				

A DELETED

9.4.4 Pickled.

### 10. Sampling

- 10.1 Lots for Chemical Analysis and Mechanical Testing:
- 10.1.1 A lot for chemical analysis shall consist of one heat.
- 10.1.2 A lot for testing and inspection purposes shall consist of material from one heat of the same condition (temper), finish, and cross section, and in no case more than 30 000 lb (13 600 kg) in mass.

Note 2—Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same thickness and condition, except that for pieces weighing over 500 lb, only one specimen shall be taken.

- 10.2 Sampling for Chemical Analysis:
- 10.2.1 A representative sample shall be taken from each heat during pouring or subsequent processing.
- 10.2.2 If the manufacturer determines that the material meets the chemical requirements during pouring or subsequent processing, he shall not be required to sample and analyze the finished product.
- 10.2.3 Product analysis, if performed, shall be wholly the responsibility of the purchaser.
  - 10.3 Sampling for Mechanical Tests:
- 10.3.1 A sample of the material to provide test specimens for mechanical tests shall be taken from such a location in each lot as to be representative of that lot.
- 10.3.2 When samples are to be taken after delivery, the purchase of material ordered to cut lengths may request on the purchase order additional material of adequate size to provide sample coupons for inspection purposes.

### 11. Number of Tests

- 11.1 One chemical analysis shall be made on each lot in accordance with 10.1.1.
- 11.2 One tension test shall be made on each lot in accordance with 10.1.2.

11.2.1 If any specimens selected to represent any heat fail to meet any of the test requirements, the material represented by such specimens may be reheat-treated and resubmitted for test.

### 12. Specimen Preparation

12.1 Tension test specimens shall be taken from material after final heat treatment and shall be selected in the longitudinal direction. The tension test specimens shall conform to the appropriate sections of Test Methods E8.

### 13. Test Methods

13.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall, in case of disagreement, be determined in accordance with the following methods:

Test	ASTM Designations
Chemical analysis	E1473 ^A
Tension	E8
Rounding procedure	E29
Method of sampling	E55

^A Iron shall be determined arithmetically by difference.

13.2 For purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.

Requirements	Rounded Unit for Observed or
rodunonto	Calculated Value
acall	
Chemical composition	nearest unit in the last right-hand
(when expressed in decimals)	place of figures of the specified
•	limit
Tensile strength and yield strength	nearest 1000 psi (7 MPa)
Elongation	nearest 1 %

### 14. Inspection

14.1 Inspection of the material by the purchaser shall be made as agreed upon between the purchaser and the seller as part of and set forth in the purchase contract.

### 15. Rejection and Rehearing

15.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 16. Certification

- 16.1 A manufacturer's certification that the material was manufactured and tested in accordance with this specification shall be furnished at the time of shipment.
- 16.2 A copy of the test results shall be furnished at the time of shipment.

### 17. Packaging and Package Marking

17.1 *Marking*—Each bundle or box shall be tagged properly with metal tags showing heat number, grade, condition, specification number, and size to assure proper identification.

^B UNS N08936 shall be supplied in the cold drawn condition only.

^C For cold finished and annealed wire only, tensile strength 90 000 to 120 000 psi (620 to 830 MPa).

TABLE 3 Permissible Variations in Size of Hot-Finished Round and Square Bars

	Permissible Variations from	Permissible Variations from Specified Size, in. (mm)	
	Over	Under	in. (mm)
1/4 (6.35) to 5/16 (7.94), incl ^{C,D}	E	E	E
Over 5/16 (7.94) to 7/16 (11.11), incl ^{C,D}	0.006 (0.15)	0.006 (0.15)	0.009 (0.23)
Over 7/16 (11.11) to 5/8 (15.88), incl ^{C,D}	0.007 (0.18)	0.007 (0.18)	0.010 (0.25)
Over 5/8 (15.88) to 7/8 (22.22), incl	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)
Over 1/8 (22.22) to 1 (25.40), incl	0.009 (0.23)	0.009 (0.23)	0.013 (0.33)
Over 1 (25.40) to 11/8 (28.58), incl.	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)
Over 11/8 (28.58) to 11/4 (31.75), incl	0.011 (0.28)	0.011 (0.28)	0.016 (0.41)
Over 11/4 (31.75) to 13/8 (34.92), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over 13/8 (34.92) to 11/2 (38.10), incl	0.014 (0.36)	0.014 (0.36)	0.021 (0.53)
Over 1½ (38.10) to 2 (50.80), incl	1/64 (0.40)	1/64 (0.40)	0.023 (0.58)
Over 2 (50.80) to 21/2 (63.50), incl	1/32 (0.79)	0	0.023 (0.58)
Over 21/2 (63.50) to 31/2 (88.90), incl	3/64 (1.19)	0	0.035 (0.89)
Over 3½ (88.90) to 4½ (114.30), incl	1/16 (1.59)	0	0.046 (1.17)
Over 4½ (114.30) to 5½ (139.70), incl	5/64 (1.98)	0	0.058 (1.47)
Over 5½ (139.70) to 6½ (165.10), incl	½ (3.18)	0	0.070 (1.78)
Over 6½ (165.10) to 8 (203.20), incl	5/32 (3.97)	0	0.085 (2.18)

A Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same cross section.

TABLE 4 Permissible Variations in Size of Hot-Finished Hexagonal and Octagonal Bars

Specified Sizes Measured Between Opposite	Permissible Variations from	Maximum Difference in 3	
Sides, in. (mm)	Over	Under	Measurements for Hexagons only, in. (mm)
1/4 (6.35) to 1/2 (12.70), incl	0.007 (0.18)	0.007 (0.18)	0.011 (0.28)
Over ½ (12.70) to 1 (25.40), incl	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)
Over 1 (25.40) to 1½ (38.10), incl	0.021 (0.53)	0.021 (0.53)	0.025 (0.64)
Over 1½ (38.10) to 2 (50.80), incl	1/32 (0.79)	1/32 (0.79)	1/32 (0.79)
Over 2 (50.80) to 2½ (63.50), incl.	3/64 (1.19)	3/64 (1.19)	3/64 (1.19)
Over 2½ (63.50) to 3½ (88.90), incl	1/16 (1.59)	1/16 (1.59)	1/16 (1.59)

### TABLE 5 Permissible Variations in Thickness and Width for Hot-Finished Flat Bars

TABLE 5 Permissible variations in Inickness and Wigth for Hot-Finished Flat Bars							
		Permissible	Variations in Thickness for Thicknesses Given, in. (mm)				
Specified Width, in. (mm)	1/8 (3.18) to 1/2	(12,70), incl	Over ½ (12.70)	to 1 (25.40), incl	Over 1 (25.40)	Over 1 (25.40) to 2 (50.80), incl	
-	Over 🔇	Under	Over	Under	Over	Under	
To 1 (25.40), incl	0.008 (0.20)	0.008 (0.20)	0.010 (0.25)	0.010 (0.25)			
Over 1 (25.40) to 2 (50.80), incl	0.012 (0.30)	0.012 (0.30)	0.015 (0.38)	0.015 (0.38)	0.031 (0.79)	0.031 (0.79)	
Over 2 (50.80) to 4 (101.60), incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)	
Over 4 (101.60) to 6 (152.40), incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)	
Over 6 (152.40) to 8 (203.20), incl	0.016 (0.41)	0.016 (0.41)	0.025 (0.64)	0.025 (0.64)	0.031 (0.79)	0.031 (0.79)	
Over 8 (203.20) to 10 (254.00), incl	0.021 (0.53)	0.021 (0.53)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)	
<b>.</b>	Over 2 (50.80) to 4 (101.60), incl		Over 4 (101.60) t	to 6 (152.40), incl	Over 6 (152.40)	to 8 (203.20), incl	
	Over	Under	Over	Under	Over	Under	
To 1 (25.40), incl							
Over 1 (25.40) to 2 (50.80), incl							
Over 2 (50.80) to 4 (101.60), incl	0.062 (1.57)	0.031 (0.79)					
Over 4 (101.60) to 6 (152.40), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)			
Over 6 (152.40) to 8 (203.20), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)	
Over 8 (203.20) to 10 (254.00), incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)	
Specified Width, in. (mm)					tions in Width, in. (mm)		
				/er		der	
To 1 (25.40), incl			0.015 (0.38)			(0.38)	
Over 1 (25.40) to 2 (50.80), incl			0.031 (0.79)			(0.79)	
Over 2 (50.80) to 4 (101.60), incl			0.062 (1.57)			(0.79)	
Over 4 (101.60) to 6 (152.40), incl			0.093 (2.36) 0.062 (1.		, ,		
Over 6 (152.40) to 8 (203.20), incl			,			(3.96)	
Over 8 (203.20) to 10 (254.00), incl			0.156 (3.96) 0.187 (4.75)		(4.75)		

17.1.1 Large diameter bars may be line marked showing heat number, grade, condition, specification number, and size at the manufacturer's discretion.

17.2 *Packaging*—Bars or wire shall be bundled or boxed in such a manner as to assure safe delivery to their destination when properly transported by any common carrier.

907

^B Out-of-square section is the difference in the two dimensions at the same cross section of a square bar, each dimension being the distance between opposite faces. ^C Size tolerances have not been evolved for rounds in the size range from ½ to 5/16 in. (6.35 to 7.94 mm), incl. Size tolerances have not been evolved for round sections

in the size range from  $\frac{1}{4}$  (6.35 mm) to approximately  $\frac{9}{6}$  in. (15.88 mm) in diameter which are produced on rod mills in collaboration of Squares in this size are not produced as hot-rolled products.

E Variations in size of coiled product made on rod mills are greater than size tolerances for product made on bar mills

TABLE 6 Permissible Variations in Size of Cold-Finished Round **Bars** 

Specified Size, in. (mm)	Permissible Variations from Specified Size, in. (mm) ^{A,B}			
	Over	Under		
Over ½ (12.70) to 1 (25.40), excl	0.002 (0.05)	0.002 (0.05)		
1 (25.40) to 11/2 (38.10), excl	0.0025 (0.06)	0.0025 (0.06)		
1½ (38.10) to 4 (101.60), incl ^C	0.003 (0.08)	0.003 (0.08)		

A Unless otherwise specified, size tolerances are over and under as shown in the above table. When required, however, they may be specified all over and nothing under, or all under and nothing over, or any combination of over and under, if the total spread in size tolerance for a specified size is not less than the total spread

TABLE 7 Permissible Variations in Size of Cold-Finished

	tolerances for such bars have not bee			Over 2 (50.80) to 3 (76.20), incl Over 3 (76.20) to $4\frac{1}{2}$ (114.30), incl ^B
	TABLE 7 Permissible Varia Hexagonal, Octago	itions in Size of ( onal, and Square	Cold-Finished Bars	A When it is necessary to heat treat and pickle after are double those shown in the table.  B Cold-finished flat bars over 4½ in. (114.30 mm)
	Specified Size in (mm)	Permissible Varia	ations from Specified in. (mm) ^A	and thickness tolerances for such bars have not be
	Openied Oize, iii. (iiiii)	Over	Under	51
	Over ½ (12.70) to 1 (25.40), incl Over 1 (25.40) to 2 (50.80), incl Over 2 (50.80) to 3 (76.20), incl Over 3 (76.20)	0 0 0 0	0.004 (0.10) 0.006 (0.15) 0.008 (0.20) 0.010 (0.25)	EIIB (R
	^A When it is necessary to heat treat or he tolerances are double those shown in	neat treat and pickle a the table.	fter cold finishing, size	
	18. Keywords			NE BY
	18.1 UNS N08031; UNS N08926; UNS N08354; UNS	N08034; UNS N08936; UNS F	8 N08925; UNS R20033; bar; wire	S
	and oc. com. ci	ck to liew	ine full PDF	A When it is necessary to heat treat and pickle after are double those shown in the table.  B Cold-finished flat bars over 4½ in. (114.30 mm) wid and thickness tolerances for such bars have not be a
ASMEN	OF			
1			9	08

TABLE 8 Permissible Variations in Width and Thickness of Cold-**Finished Flat Bars** 

	Permissible Variations in Width, over and under, in. (mm) ^A			
Width, in. (mm)	For	For		
	Thicknesses	Thicknesses		
	1/4 (6.35) and	Over		
	Under	1/4 (6.35)		
3/8 (9.52) to 1 (25.40), incl	0.004 (0.10)	0.002 (0.05)		
Over 1 (25.40) to 2 (50.80), incl	0.006 (0.15)	0.003 (0.08)		
Over 2 (50.80) to 3 (76.20), incl	0.008 (0.20)	0.004 (0.10)		
Over 3 (76.20) to 4½ (114.30), incl	0.010 (0.25)	0.005 (0.13)		
Thickness, in. (mm)	Permissible Variations in Thick			
mickness, in. (min)	ness, over and under, in (mm) ^A			
1/8 (3.18) to 1 (25.40), incl	0.002 (0.05)			
Over 1 (25.40) to 2 (50.80), incl	0.003 (0.08)			
Over 2 (50.80) to 3 (76.20), incl	0.00	4 (0.10)		
Over 3 (76.20) to 4½ (114.30), incl ^B	0.005 (0.13)			

A When it is necessary to heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

shown in the table.

B When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the table.

^C Cold-finished bars over 4 in. (101.60 mm) in diameter are produced; size tolerances for such bars have not been evolved.

 $^{^{}B}$  Cold-finished flat bars over  $4\frac{1}{2}$  in. (114.30 mm) wide or thick are produced; width and thickness tolerances for such bars have not been evolved.

### TABLE 9 Permissible Variations in Length of Hot-Finished or Cold-Finished Bars

Note 1—The order should specify random lengths or specific lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specific lengths are ordered, Table 9 or Table 10 shall apply.

	Permissible Variations in Length, in. (mm)				
Specified Size of Rounds, Squares, Hexagons, and Octagons, and Widths of Flats, A in. (mm)	For Lengths Up to 12 ft (3658 mm), incl		For Length 12 ft (3658 25 ft (7620 incl	mm) to 0 mm),	
	Over	Under	Over	Under	
To 2 (50.80), incl	1/2 (12.70)	0	3/4 (19.05)	0	
Over 2 (50.80) to 4 (101.60), incl	3/4 (19.05)	0	1 (25.40)	0	
Over 4 (101.60) to 6 (152.40), incl	1 (25.40)	0	11/4 (31.75)	0	
Over 6 (152.40) to 9 (228.60), incl	11/4 (31.75)	0	1½ (38.10)	0	
Over 9 (228.60) to 12 (304.80), incl	1½ (38.10)	0	2 (50.80)	0	

^A The maximum width of bar flats is 10 in. (254.00 mm).

### TABLE 10 Permissible Variations in Length of Hot-Finished or Cold-Finished Bars Machine Cut After Machine Straightening

Note 1—The order should specify random lengths or specific lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specific lengths are ordered, Table 9 or Table 10 shall apply.

Specified Size of Rounds, Squares, Hexagons, and Octagons, and Widths of Flats. ^A in. (mm)	For Lengths Up to 12 ft (3658 mm), incl		For Lengths Over 12 ft (3658 mm) to 25 ft (7620 mm), incl	
riais, III. (IIIIII)	Over	Under	Over	Under
To 3 (76.20), incl	1/8 (3.18)	0	3/16 (4.76)	0
Over 3 (76.20) to 6 (152.40), incl	3/16 (4.76)	0	1/4 (6.35)	0
Over 6 (152.40) to 9 (228.60), incl	1/4 (6.35)	0	5/16 (7.94)	0
Over 9 (228.60) to 12 (304.80), incl	1/2 (12.70)	0	1/2 (12.70)	0

^A The maximum width of bar flats is 10 in. (254.00 mm).

### TABLE 11 Permissible Variations in Straightness of Machine Straightened Hot-Finished or Cold-Finished Bars

Measurement is taken on the concave side of the bar with a straightedge.

Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine straightened to the following tolerances:

Hot finished:

TABLE 12 Diameter and Out-of-Round Tolerances for Round Wire (Drawn, Polished, Centerless Ground, Centerless Ground and Polished) A,B,C 

Specified Diameter, in. (mm)	Diameter Tolerance, in. (mm)			
Specified Diameter, in. (min)	Over	Under		
0.5000 (12.70)	0.002 (0.05)	0.002 (0.05)		
Under 0.5000 (12.70) to 0.3125 (7.94), incl	0.0015 (0.04)	0.0015 (0.04)		
Under 0.3125 (7.94) to 0.0440 (1.12), incl	0.001 (0.03)	0.001 (0.03)		
Under 0.0440 (1.12) to 0.0330 (0.84), incl.	0.0008 (0.02)	0.0008 (0.02)		
Under 0.0330 (0.84) to 0.0240 (0.61), incl.	0.0005 (0.013)	0.0005 (0.013)		
Under 0.0240 (0.61) to 0.0120 (0.30), incl.	0.0004 (0.010)	0.0004 (0.010)		
Under 0.0120 (0.30) to 0.0080 (0.20), incl.	0.0003 (0.008)	0.0003 (0.008)		
Under 0.0080 (0.20) to 0.0048 (0.12), incl.	0.0002 (0.005)	0.0002 (0.005)		
Under 0.0048 (0.12) to 0.0030 (0.08), incl.	0.0001 (0.003)	0.0001 (0.003)		

^A Diameter tolerances are over and under as given in this table. Also, round wire can be produced to tolerances all over and nothing under, or all under and nothing over, or any combination over and under, if the total spread in diameter tolerances for a specified diameter is not less than the total spread given in this table.

TABLE 13 Size Tolerances for Drawn Wire in Hexagons, Octagons, and Squares

Considered City A in (1999)	Size Tol	erance, in. (mm)
Specified Size; ^A in. (mm)	Over	Under
½ (12.70) Under ½ (12.70) to 5/16 (7.94), incl	0	0.004 (0.10)
Under 1/2 (12.70) to 5/16 (7.94), incl	0	0.003 (0.08)
Under 1/16 (7.94) to 1/8 (3.18), incl	0	0.002 (0.05)

^A Distance across flats.

### TABLE 14 Length Tolerances for Round and Shape, Straightened and Cut Wire, Exact Length Resheared Wire

Diameter, in. (mm)	Length, ft (mm)	Tolerance, in. (mm)	
		Over	Under
0.125 (3.18) and under	Up to 12 (3658), incl	1/16 (1.59)	0
0.125 (3.18) and under	Over 12 (3658)	1/8 (3.18)	0
Over 0.125 (3.18) to 0.500 (12.70), incl	Under 3 (914)	1/32 (0.79)	0
Over 0.125 (3.18) to 0.500 (12.70), incl	3 (914) to 12 (3658), incl	1/16 (1.59)	0
Over 0.125 (3.18) to 0.500 (12.70), incl	Over 12 (3658)	1/8 (3.18)	0

½ in. (3.18 mm) in any 5 ft (1524 mm), but may not exceed ½ in. (3.18 mm) x (length in feet (mm))/(5 ft (1524 mm))
Cold finished:

^{1/16} in. (1.59 mm) in any 5 ft (1524 mm), but may not exceed 1/16 in. (1.59 mm)x (length in feet (mm))/(5 ft (1524 mm))

^B The maximum out-of-round tolerance for round wire is one half of the total size tolerance given in this table.

When it is necessary to heat treat after cold finishing because of special mechanical property requirements, tolerances are commonly double those shown.

Charified Size in (man)	Tolerance, in. (mm)			
Specified Size, in. (mm)	Over	Under		
1/2 (12.70)	0.004 (0.10)	0.004 (0.10)		
Under 1/2 (12.70) to 5/16 (7.94), incl	0.003 (0.08)	0.003 (0.08)		
Under 5/16 (7.94) to 0.044 (1.12), incl	0.002 (0.05)	0.002 (0.05)		
Under 0.044 (1.12) to 0.033 (0.84), incl	0.0013 (0.03)	0.0013 (0.03)		
Under 0.033 (0.84) to 0.024 (0.61), incl	0.0008 (0.02)	0.0008 (0.02)		

SB-649	ASME BPVC.II.B-2023						
	TABLE 15 Size To	atment fo		ose of Rem			1
	Specified Size, in. (mn			Tolerand	e, in. (mr		
	1/2 (12.70) Under 1/2 (12.70) to 5/1 Under 5/16 (7.94) to 0.0 Under 0.044 (1.12) to	6 (7.94), inc 044 (1.12), i	el ( incl (	Over 0.004 (0.10) 0.003 (0.08) 0.002 (0.05) 0.0013 (0.03)	0.004 0.003 0.002	Jnder 4 (0.10) 3 (0.08) 2 (0.05) 13 (0.03)	SME BRYC Section II Part B 202
	Under 0.033 (0.84) to		Width Tol			08 (0.02)	- ction II P
			ss Tolerance or under, for	e, in. (mm),		olerance,	$ \sim$ $\sim$ $\sim$
	Specified Width, in. (mm)	Under	0.029 (0.74) to	0.035 (0.89) to 3/16	Over	(mm) Under	- K. BRV
	Under 3/8 (9.52) to 1/16 (1.59), incl	0.001 (0.03)	(0.89), excl 0.0015 (0.04)	0.002 (0.05)	0.005 (0.13)	0.005	SMI
	, , , , , , , , , , , , , , , , , , , ,	(5)	(5-)	(51)	(311.2)	B	-
ASMENORMDOC. COM. CIN	3x to view the	Full Pr	₹ Of P	SMED			
			910				

### SPECIFICATION FOR SEAMLESS AND WELDED ZIRCONIUM AND ZIRCONIUM ALLOY WELDING FITTINGS



SB-653/SB-653M

**(23**)

(Identical with ASTM Specification B653/B653M-11(2020) except for the addition of para. 6.2.3 and Supplementary Requirement S4.)

Requirement S4.)

Control of para. 6.2.3 and Supplementary Requirement S4.)

### Specification for Seamless and Welded Zirconium and Zirconium Alloy Welding Fittings

### 1. Scope

- 1.1 This specification covers fittings, factory made from three grades of zirconium and zirconium alloys. The term welding fittings applies to butt-welding parts such as 45 and 90° elbows, 180° returns, caps, tees, reducers, lap-joint stub ends, and other types.
- 1.2 The values stated in either inch-pound units or SI units are to be regarded separately as the standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

- 2.1 ASTM Standards:
- B493 Specification for Zirconium and Zirconium Alloy **Forgings**
- B523/B523M Specification for Seamless and Welded Zirconium and Zirconium Alloy Tubes
- And the click some continues of the cont B550/B550M Specification for Zirconium and Zirconium

- B551/B551M Specification for Zirconium and Zirconium Alloy Strip, Sheet, and Plate
- B614 Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces
- B658/B658M Specification for Seamless and Welded Zirconium and Zirconium Alloy Pipe
- 2.2 ANSI Standards:
- B16.9 Wrought Steel Butt-Welding Fittings
- B36.19 Stainless Steel Pipe
- 2.3 Manufacturers' Standardization Society of the Valve and Fittings Industry Standards
  - SP-25 Standard Marking System for Valves, Fittings, Flanges, and Unions
  - SP-43 Standard Practice for Light Weight Stainless Steel
  - 2.4 American Society of Mechanical Engineers:
  - ASME Boiler and Pressure Vessel Code, Sections VIII and

### 3. Terminology

- 3.1 *Lot Definitions:*
- 3.1.1 weld fittings, n—definition is to be mutually agreed upon between manufacturer and the purchaser.

### 4. Classification

- 4.1 The fittings are furnished in three grades as follows:
- 4.1.1 Grade R60702 (PZ 2)—Unalloyed zirconium.
- 4.1.2 *Grade R60704 (PZ 4)*—Zirconium-tin.
- 4.1.3 Grade R60705 (PZ 5)—Zirconium-niobium.

### 5. Ordering Information

- 5.1 Orders for materials under this specification shall include the following information:
  - 5.1.1 Quantity,

- 5.1.2 Name of material (zirconium fittings),
- 5.1.3 Grade number (see 4.1),
- 5.1.4 ASTM designation and year of issue,
- 5.1.5 Hydrostatic test requirements (see 10.2),
- 5.1.6 Inspection requirements (see 11.1),
- 5.1.7 Finish (see Section 9), and
- 5.1.8 Additions to the specification and supplementary requirements, if required.

Note 1—A typical ordering description is as follows: 15 pieces, zirconium, 4-in. [100 mm], Schedule 40, 90° long radius elbows, descaled, ASTM B653 – 01, Grade R60702. Supplementary Requirement S3, Stress Relief Heat Treatment.

### 6. Materials and Manufacture

- 6.1 Forging, forming, or shaping operations may be performed by hammering, pressing, piercing, extruding, upsetting, rolling, bending, fusion welding, machining, or by a combination of these operations. The forming procedure shall be so applied that it will not produce injurious defects in the fittings.
- 6.2 Fittings containing welded seams or other joints made by welding shall comply with the following provisions:
- 6.2.1 Welded by welders, welding operators, and welding procedures qualified under the provisions of Section IX of the ASME Boiler and Pressure Vessel Code.
- 6.2.2 Filler metal, when used, shall be the same grade as the base metal.
  - 6.2.3 Supplementary Requirement S4 is mandatory.
- 6.2.4 All welds on grade R60705 shall be stress relief annealed within 14 days after welding to prevent delayed hydride cracking, in accordance with Supplementary Requirements Section S3, Stress Relief Heat Treatment.

### 7. Chemical Composition

7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.

### 8. Tensile Requirements

8.1 The material shall conform to the requirements as to the tensile properties prescribed in Table 1.

### 9. Workmanship, Finish, and Appearance

- 9.1 For fittings covered by ANSI B16.9 or MSS SP-43, or for fittings to be used with pipe ordered to ANSI B36.19, the sizes, shapes, and dimensions of the fittings shall be as specified in those standards.
- 9.2 The fittings shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which the fittings are intended. Minor defects may

be removed by grinding, providing the wall thickness is not decreased to less than the minimum thickness, and further provided that the ground-out area shall be faired out.

### 10. Hydrostatic Tests

- 10.1 All fittings shall be capable of withstanding without failure, leakage, or impairment of their serviceability, a test pressure prescribed in the applicable standards in Table 1 for the pipe or tubing with which the fitting is planned to be used.
- 10.2 Hydrostatic tests shall be performed when required by the purchase order.

### 11. Inspection

11.1 The manufacturer shall inspect the material covered by this specification prior to shipment. If so specified in the purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacture. In such cases, the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for the purchaser's inspection at the place of manufacture to be waived.

The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. This inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

### 12. Rejection

12.1 Rejection for failure of the material to meet the requirements of this specification shall be reported to the manufacturer. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of the notice of rejection, other instructions for disposition.

### 13. Certification

13.1 A producer or supplier shall furnish the purchaser with a certificate that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. The certificate shall include a report of the test results.

**TABLE 1 Permissible Raw Materials** 

Grade ^A		ı	Product and ASTM Designatio	n	
	Pipe	Tube	Plate	Bar	Forging
PZ 2	B658/B658M	B523/B523M	B551/B551M	B550/B550M	B493
(R60702)	Grade R60702	Grade R60702	Grade R60702	Grade R60702	Grade R60702
PZ 4	B658/B658M	B523/B523M	B551/B551M	B550/B550M	B493
(R60704)	Grade R60704	Grade R60704	Grade R60704	Grade R60704	Grade R60704
PZ 5	B658/B658M	B523/B523M	B551/B551M	B550/B550M	B493
(R60705)	Grade R60705	Grade R60705	Grade R60705	Grade R60705	Grade R60705

^A When fittings are of welded construction, the symbol shown shall be supplemented by the letter "W."

13.2 All material incorporated within the fitting shall be identified and shall be in accordance with the applicable standards in Table 1.

### 14. Referee

14.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

### 15. Product Marking

15.1 Unless otherwise specified, the manufacturer's name or trademark, the schedule number, material, and size shall be stamped (see Note 2), stenciled, electroetched, or otherwise suitably marked on each fitting. In addition, each fitting shall

be marked with the identification grade symbol and suffix for the respective specification listed in Table 1. On wall thicknesses thinner than Schedule 40S, no stamps or other indented markings shall be used. When the size does not permit complete marking, identification marks may be omitted in the sequence shown in MSS SP-25.

Note 2—When steel stamps are used, they should be applied prior to heat treatment and care should be taken so that the marking is not deep enough to cause cracks or to reduce the wall thickness of the fitting below the minimum allowed.

### 16. Packaging and Package Marking

16.1 The fittings shall be packaged suitably in such a manner as to assure safe delivery to its destination when properly transported by common carrier.

### 17. Keywords

17.1 fitting; pipe; zirconium; zirconium alloy

### SUPPLEMENTARY REQUIREMENTS

Supplementary requirements shall not be considered unless specified in the order, in which event the test shall be made by the manufacturer at the purchaser's expense.

### S1. Surface Inspection

S1.1 Liquid penetrant inspection may be performed on all outside-diameter surfaces of the fittings and inside-diameter surfaces where practicable. Acceptance shall be in accordance with Appendix 8, Section VIII of the ASME Boiler and Pressure Vessel Code.

### S2. Radiographic Inspections of Welds

S2.1 Radiographic inspection may be performed on all weldments of the fittings in accordance with paragraph UW-51, Section VIII, of the ASME Boiler and Pressure Vessel Code.

### S3. Stress-Relief Heat Treatment

S3.1 The stress-relieving treatment shall consist of holding the fitting at a minimum temperature of 1100°F [600°C] for not less than 30 min per inch [25 mm] of the maximum thickness in a nonreducing atmosphere.

S3.2 The minimum time at this temperature is 15 min. All stress-relieved parts shall be cleaned subsequently and shall be free of oxide scale contamination (see Practice B614).

### S4. Fittings Manufactured for ASME Construction

S4.1 All fittings welded with filler metal intended for applications under the rules of Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code shall conform to the following: Manufacturer of such products are limited to manufacturers holding the appropriate ASME Certificate of Authorization and Code Certification Mark. In addition to conforming to this specification, the manufacturer shall meet all applicable requirements of Section VIII, Division 1 of the Code. The materials used to fabricate the fitting shall conform to ASME SB Specifications. The product shall be subject to all applicable requirements of Section VIII, Division 1 of the Code, including welding, heat treatment, nondestructive examination, authorized inspections at point of manufacture, and application of the Code Certification Mark.

The applicable ASME Partial Data Report Form signed by an Authorized Inspector and a certified mill test report shall be furnished for each lot of fittings. The term "lot" applies to all fittings of the same mill heat of material, size, and wall thickness, which are heat treated, if applicable, in one furnace charge. Each fitting shall be marked in such a manner to identify each such piece with the "lot" and the certified mill test report.

## NC Section II Part By 202 SPECIFICATION FOR SEAMLESS AND WELDED ZIRCONIUM AND ZIRCONIUM ALLOY PIPE



(23)

SB-658/SB-658M ASMENORMOC. COM. Click to View the full POF (Identical with ASTM Specification B658/B658M-11(2020) except for the addition of para. 6.2.3 and Supplementary Requirement S1.)

### Specification for Seamless and Welded Zirconium and Zirconium Alloy Pipe

### 1. Scope

- 1.1 This specification covers three grades of seamless and welded zirconium pipe.
- 1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm², the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.
- 1.3 The following precautionary caveat pertains only to the test methods portions of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

### 2. Referenced Documents

2.1 ASTM Standards:

B614 Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals (Withdrawn 2017)

2.2 ANSI Standard:

B36.19 Stainless Steel Pipe

2.3 ASME Standard:

ASME Boiler and Pressure Vessel Code, Section VIII ASME Boiler and Pressure Vessel Code, Section IX

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard;
- 3.1.1 *annealed*, *n*—for purposes of this specification "annealed" denotes material that exhibits a recrystatized grain structure.
  - 3.2 Lot Definitions:
- 3.2.1 pipe, n—a lot shall consist of a material of the same size, shape, condition, and finish produced from the same ingot or powder blend by the same reduction schedule and the same heat treatment parameters. Unless otherwise agreed between manufacturer and purchaser, a lot shall be limited to the product of an 8 h period for final continuous anneal, or to a single furnace load for final batch anneal.

### 4. Classification

- 4.1 The pipe is furnished in three grades as follows:
- 4.1.1 Grade R60702—Unalloyed zirconium.
- 4.1.2 Grade R60704—Zirconium-tin alloy.
- 4.13 *Grade R60705*—Zirconium-niobium alloy.

### 5. Ordering Information

- 5.1 Orders for materials under this specification should include the following information:
  - 5.1.1 Quantity (weight or total length),
  - 5.1.2 Name of material (zirconium pipe),
  - 5.1.3 Grade number (see 4.1),
  - 5.1.4 Nominal pipe size and schedule (Table X1.1),
  - 5.1.5 Lengths (random or specified cut lengths),
  - 5.1.6 Method of manufacture (Section 6),
- 5.1.7 Workmanship and quality level requirements (Section 10),
  - 5.1.8 ASTM designation and year of issue, and
- 5.1.9 Additions to the specification and supplementary requirements, if required. See 7.3, 14.1, 15.1, and 18.1 for additional optional requirements for the purchase order.

Note 1—A typical ordering description is as follows: 240-ft [70-mm] zirconium pipe, seamless, descaled 3.0-in. [75-mm] Schedule 40 by 12-ft [3-m] lengths, ASTM B658/B658M - 05, Grade R60702.

TABLE 1 Chemical Requirements^A

		Composition, %			
Element	UNS Grade Designation				
	R60702	R60704	R60705		
Zirconium + hafnium, min	99.2	97.5	95.5		
Hafnium, max	4.5	4.5	4.5		
Iron + chromium	0.2 max	0.2 to 0.4	0.2 max		
Tin		1.0 to 2.0			
Hydrogen, max	0.005	0.005	0.005		
Nitrogen, max	0.025	0.025	0.025		
Carbon, max	0.05	0.05	0.05		
Niobium			2.0 to 3.0		
Oxygen, max	0.16	0.18	0.18		

A By agreement between the purchaser and the manufacturer, analysis may be required and limits established for elements and compounds not specified in the table of chemical compositions.

TABLE 2 Permissible Variation in Check Analysis Between
Different Laboratories

Element	Permissible Variation in Product Analysis, %
Hydrogen	0.002
Nitrogen	0.01
Carbon	0.01
Hafnium	0.1
Iron + chromium	0.025
Tin	0.05
Niobium	0.05
Oxygen	0.02

**TABLE 3 Tensile Requirements** 

	UNS Grade Designations			
	R60702	R60704	R60705	
Tensile strength, min, ksi [MPa]	55 [380]	60 [415]	80 [550]	
Yield strength, min, ksi [MPa]	30 [205]	35 [240]	55 [380]	
Elongation in 2 in. or 50 mm, min, % ^A	16	14	16	

^A When a sub-size specimen is used, the gauge length shall be a specified in Test Methods E8/E8M for that specimen.

### 6. Materials and Manufacture

- 6.1 Seamless pipe shall be made from any seamless method that will yield a product meeting this specification.
- 6.2 Pipe containing welded seams or other joints made by welding shall comply with the following provisions:
- 6.2.1 Welded by welders, welding operators, and welding procedures qualified under the provisions of Section IX of the ASME Boiler and Pressure Vessel Code.
- 6.2.2 Filler metal, when used, shall be the same grade as the base metal.
- 6.2.3 Supplementary Requirement S1 is mandatory.
- 6.2.4 Welds in grade R60705 shall be stress relief annealed within 14 days after welding to prevent delayed hydride cracking. The heat treatment shall be as follows:

- 6.2.4.1 The stress-relieving treatment shall consist of holding the pipe at a minimum temperature of 1100°F [600°C] for not less than 30 min per inch [25 mm] of the maximum thickness in a nonreducing atmosphere. The minimum time at this temperature is 15 min. All stress-relieved parts shall be cleaned subsequently and shall be free of oxide scale contamination (see Practice B614).
- 6.3 The pipe shall be furnished in the annealed or stress-relieved condition.

### 7. Chemical Composition

- 7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1.
- 7.2 The manufacturer's ingot analysis shall be considered the chemical analysis for piping, except for hydrogen and nitrogen, which shall be determined on the finished product.
- 7.3 When requested by the purchaser and stated in the purchase order, a product analysis for any elements listed in Table 1 shall be made on the finished product.
- 7.3.1 The manufacturer's analysis shall be considered as verified if the check analysis confirms the manufacturer's reported values within the tolerances prescribed in Table 2.

### 8. Tensile Requirements

8.1 The material, as represented by the test specimens, shall conform to the tensile properties prescribed in Table 3.

### 9. Permissible Variations in Dimensions

- 9.1 *Diametric*—Any point (cross section) along the length of the pipe, the variations in outside diameters shall not exceed those prescribed in Table 4.
- 9.1.1 The tolerances on the outside diameter include ovality except as provided for in 9.1.2.
- 9.1.2 Thin-wall pipe usually develops significant ovality (out-of-roundness) during final annealing, straightening, or both. Thin-wall pipe is defined as having a wall thickness of 3 % or less of the outside diameter. The diameter tolerances of Table 4 are not sufficient to provide for additional ovality

TABLE 4 Permissible Variations in Diameter^A

Nominal Outside Diameter, (NPS) ^B	Permissible Variations in Outside Diameter, in. [mm]		
in. [mm]	Over	Under	
1/8 to 11/2 [3.2 to 40], incl	1/64 [.4]	1/32 [.8]	
Over 11/2 to 4 [40 to 100], incl	1/32 [.8]	1/32 [.8]	
Over 4 to 8 [100 to 200], incl	1/16 [1.6]	1/32 [.8]	
Over 8 to 12 [200 to 305], incl	3/32 [2.4]	1/32 [.8]	

 $^{^{}A}$  For seamless pipe only. Tolerances on welded pipe shall be as agreed upon between the manufacturer and the purchaser.

^B NPS = nominal pipe size.

expected in thin-wall pipe and are applicable only to the mean of the extreme (maximum and minimum) outside diameter readings in any one cross section. However, for thin-wall pipe the difference in extreme outside diameter readings (ovality) in any one cross section shall not exceed 1.5 % of the specified outside diameter.

- 9.2 *Thickness*—The variation in thickness at any point shall not be more than  $\pm 12.5 \%$  of the nominal wall thickness specified.
  - 9.3 Length:
- 9.3.1 Pipe shall be furnished in lengths as specified in the purchase order. No pipe shall be under the specified length and not more than ½ in. [6.4 mm] over that specified.
- 9.3.2 For pipe ordered to random lengths, the lengths and variations shall be agreed upon between the manufacturer and the purchaser.

Note 2—A system of standard pipe sizes approved by the American National Standards Institute as ANSI B36.19, reproduced as Table X1.1, shall apply, pending the development of similar standards for zirconium.

### 10. Workmanship, Finish, and Appearance

10.1 The finished pipe shall be reasonably straight, shall have smooth ends, free of burrs, and shall be free of cracks, seams, blisters, and other injurious imperfections in accordance with standards of acceptability agreed upon between the manufacturer and the purchaser. Minor defects may be removed provided the dimensional tolerances in accordance with Section 9 are not exceeded. Unless otherwise specified, the pipe shall be furnished free of scale.

### 11. Significance of Numerical Limits

11.1 For the purpose of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding methods of Practice E29.

Property

Rounded Unit for Observed or Calculated Value

Chemical composition and tolerances (when expressed as decimals)

Nearest unit in the last right-hand place of figures of the specified limit Nearest 1000 psi [10 MPa]

Tensile strength and yield strength

Nearest 1%

### 12. Number of Tests and Retests

12.1 One longitudinal tension test shall be made from each lot, see 13.1.

- 12.2 One chemistry test for hydrogen and nitrogen content shall be made from each lot of finished product, see 13.3.
- 12.3 A hydrostatic proof test shall be performed on each length of pipe, see 13.2.
  - 12.4 Retests:
- 12.4.1 If any sample or specimen exhibits obvious surface contamination or improper preparation disqualifying it as a truly representative sample, it shall be discarded and a new sample or specimen substituted.
- 12.4.2 If the results of any tests of any lot do not conform to the requirements specified, retests shall be made on additional pipe of double the original number from the same lot, each of which shall conform to the requirements specified.
- 12.4.3 Retesting after failure of initial retests may be done only with the approval of the purchase

### 13. Test Methods

- 13.1 Tension Tests—Conduct the tension test in accordance with Test Methods E8/E8M. Determine the yield strength by the offset (0.2 %) method. Determine the tensile properties using a strain rate of 0.003 to 0.007 in./in. [mm/mm]/min through the yield strength. After the yield strength has been exceeded, the cross head speed may be increased to approximately 0.05 in./m. [mm/mm]/min to failure.
- 13.2 Hydrostatic Tests—Prior to dimensional checks, upsetting swaging, expanding, or other forming operations, test each pipe 1/8 in. [3.2 mm] and larger in outside diameter, and with wall thickness of 0.015 in. [0.4 mm] and over to a hydrostatic pressure sufficient to produce a fiber stress of three fourths of the minimum yield strength of the pipe, provided that the test pressure does not exceed 5000 psi [35 MPa]. Determine the test pressure as follows:

$$P = 2St/D \tag{1}$$

where:

P = hydrostatic test pressure, psi [MPa],

S = allowable fiber stress of three fourths of the minimum yield strength (Table 2), psi [MPa].

t = average wall thickness of the pipe, in. [mm], and

D = nominal diameter of the pipe, in. [mm].

- 13.3 *Chemical Tests*—Conduct the chemical analysis by the standard techniques normally used by the manufacturer. Guide E2626 may be used as a guide for chemical analysis techniques.
- 13.4 When specified in the purchase order, all butt welds shall be 100 % radiographed or x-rayed per ASME Code Section VIII, paragraph UW-51.

### 14. Inspection

14.1 The manufacturer shall inspect the material covered by this specification prior to shipment. If so specified in the purchase order, the purchaser or his representative may witness the testing and inspection of the material at the place of manufacture. In such cases, the purchaser shall state in his purchase order which tests he desires to witness. The manufacturer shall give ample notice to the purchaser as to the time

and place of the designated tests. If the purchaser's representative does not present himself at the time agreed upon for the testing, the manufacturer shall consider the requirement for the purchaser's inspection at the place of manufacture to be waived.

14.2 The manufacturer shall afford the inspector representing the purchaser, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. This inspection shall be so conducted as not to interfere unnecessarily with the operation of the works.

### 15. Rejection

15.1 Rejection for failure of the material to meet the requirements of this specification shall be reported to the manufacturer. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of the notice of rejection, other instructions for disposition.

### 16. Certification

16.1 A producer or supplier shall furnish the purchaser with a certificate that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. The certificate shall include a report of the test results.

### 17. Referee

17.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification or any special test specified by the purchaser, a mutually acceptable referee shall perform the tests in question. The results of the referee's testing shall be used in determining conformance of the material to this specification.

### 18. Product Marking

18.1 Unless otherwise specified, each length of pipe 3% in. [9.5 mm] nominal diameter and larger, manufactured in accordance with this specification, shall be marked legibly, either by stenciling, stamping, or rolling, with the manufacturer's private identifying mark, the ASTM designation, the grade, and heat number. On smaller than 3%-in. [9.5-mm] nominal diameter pipe that is bundled, the same information may be stamped legibly on a metal tag securely attached to each bundle.

### 19. Packaging and Package Marking

19.1 Pipe shall be packaged suitably in such a manner as to assure safe delivery to its destination when properly transported by common carrier.

### 20. Keywords

20.0 pipe; zirconium; zirconium alloy

### SUPPLEMENTARY REQUIREMENT

### S1. Pipe Produced for Use in ASME BPV Code Construction, Section VIII

S1.1 All pipe welded with filler metal intended for applications under the rules of the appropriate division of Section VIII of the ASME Boiler and Pressure Vessel Code shall conform to the following: Manufacturer of such products are limited to manufacturers holding the appropriate ASME Certificate of Authorization and Certification Mark. In addition to conforming to this specification, the manufacturer shall meet all applicable requirements of Section VIII. The plate used to fabricate the pipe shall conform to ASME SB-551/SB-551M. The product shall be subject to all applicable requirements of Section VIII including welding, heat treatment, nondestructive examination, authorized inspection at point of manufacture, and application of the Certification Mark. The applicable ASME Partial Data Report Form signed by an Authorized Inspector and a certified mill test report shall be furnished for each lot of pipe.

For pipe that is not heat treated or is heat treated in a continuous furnace, a lot shall consist of each 200 ft (61 m) or fraction thereof of all pipe if of the same mill heat treat and wall thickness subjected to the same heat treatment. For pipe that is heat treated in a batch-type furnace that is controlled within a 50°F range and is equipped with recording pyrometers so that the heating records are available, a lot may be defined the same as for continuous furnaces. Each length of pipe shall be marked in such a manner to identify each such piece with the "lot" and the certified mill test report.

### **APPENDIX**

### X1. PIPE DIMENSIONS

### TABLE X1.1 Dimensions of Welded and Seamless Zirconium Pipe

		APPENDIX			
		onmandatory Inform			
X1.1 Table X1.1 is from T SI units added in this standar	Table 1 of ANSI B36.19,	(1. PIPE DIMENSION, with the	ONS		Section II part
			eamless Zirconium Pi		section !
Note 1—The decimal thickness  Nominal Pipe Size,	Outside Diameter,	pe sizes represents their	r nominal or average wa Nominal Wall Thick		<u> </u>
in. [mm]	in. [mm]	Schedule 5S	Schedule 10S	Schedule 40S	Schedule 80S
1/6 [3.2] 1/4 [6.4] 3/6 [9.5] 1/2 [13] 3/4 [20] 1 [25] 11/4 [32] 11/2 [38] 2 [50] 21/2 [64] 3 [76] 31/2 [90] 4 [100] 5 [125] 6 [150] 8 [200] 10 [250] 12 [300]	0.405 [10.3] 0.540 [13.7] 0.675 [17.1] 0.840 [21.3] 1.050 [26.7] 1.315 [33.4] 1.660 [42.2] 1.900 [48.3] 2.375 [60.3] 2.875 [73.0] 3.500 [88.9] 4.000 [101.6] 4.500 [114.3] 5.583 [141.3] 6.625 [168.3] 8.625 [219.1] 10.750 [273.0] 12.750 [323.8]	0.065 [1.65] 0.065 [1.65] 0.065 [1.65] 0.065 [1.65] 0.065 [1.65] 0.065 [1.65] 0.083 [2.11] 0.083 [2.11] 0.083 [2.11] 0.083 [2.11] 0.083 [2.11] 0.109 [2.77] 0.109 [2.77] 0.109 [2.77] 0.109 [2.77] 0.134 [3.40] 0.156 [3.96]	0.049 [1.24] 0.065 [1.65] 0.065 [1.65] 0.065 [1.65] 0.083 [2.11] 0.109 [2.77] 0.109 [2.77] 0.109 [2.77] 0.109 [2.77] 0.109 [2.77] 0.120 [3.05] 0.120 [3.05] 0.120 [3.05] 0.120 [3.05] 0.134 [3.40] 0.148 [3.76] 0.165 [4.19] 0.180 [4.57]	0.068 [1.73] 0.088 [2.24] 0.091 [2.31] 0.109 [2.77] 0.113 [2.87] 0.133 [3.38] 0.140 [3.56] 0.154 [3.91] 0.203 [5.16] 0.216 [5.49] 0.226 [5.74] 0.237 [6.02] 0.258 [6.55] 0.280 [7.11] 0.322 [8.18] 0.365 [9.27] 0.375 [9.52]	0.095 [2.41] 0.119 [3.02] 0.126 [3.20] 0.147 [3.73] 0.154 [3.91] 0.179 [4.55] 0.191 [4.85] 0.200 [5.08] 0.218 [5.54] 0.276 [7.01] 0.300 [7.62] 0.318 [8.08] 0.337 [8.56] 0.375 [9.52] 0.432 [10.97] 0.500 [12.7] 0.500 [12.7]
8 [200] 10 [250] 12 [300]	ick to view the ful	MPD ^k			

# 





SB-666/SB-666M

(Identical with ASTM Specification B666/B666M-15.) al with AST, click to view the full POC. COM. Click to view the full POC.

### Practice for Identification Marking of Aluminum and Magnesium Products

### 1. Scope

- 1.1 This practice establishes the physical item marking requirements for identification purposes for aluminum and magnesium products. Package marking for shipment and inspection acceptance is not within the scope of this standard.
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase form a part of this specification to the extent referenced herein:
  - 2.2 ASTM Standards:
  - B361 Specification for Factory-Made Wrought Aluminum and Aluminum-Alloy Welding Fittings
  - B404/B404M Specification for Aluminum and Aluminum-Alloy Seamless Condenser and Heat-Exchanger Tubes with Integral Fins (Withdrawn 2006)
- B547/B547M Specification for Aluminum and Aluminum-Alloy Formed and Arc-Welded Round Tube

- B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- 2.3 ANSI Standards:
- H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum
- 2.4 Military Standards:
- MIL-STD-409 Alloy Nomenclature and Temper Designation System for Magnesium Base Alloys

### 3. Terminology

- 3.1 *Definitions*—Refer to Terminology B881 for definitions of product terms used in this specification.
  - 3.2 Definitions of Terms Specific to This Standard:
  - 3.2.1 Marking:
- 3.2.2 spormarking—marking the identification only once on the product.
- 3.2.3 *continuous marking*—recurring marking of the identification in intervals not greater than 40 in. [1000 mm] throughout the length of the product.
  - 3.2.4 *perimeter marking*—marking continuously the identification in one or two rows adjacent to the four edges of the product.
  - 3.2.5 tagging—attaching tags bearing the required identification markings to coils, bundles, or containers of items which are too small to mark or whose configuration preclude marking otherwise.

### 4. Basic Marking Requirements and Application

4.1 When this practice is required by the material specification or specified in the contract or purchase order, wrought aluminum and magnesium mill products shall be marked for identification purposes only with the following information on the product or on tags attached to the product:

4.1.1 Name or Registered Trademark of the Company, which performs the final processing or finishing operation such as rolling, stretching, thermal treatment, etc., prior to marketing the product;

Note 1—The company that performs nothing more than a simple shearing or sawing operation may be excluded from marking the product with its name.

- 4.1.2 Alloy and Temper of the Product—Designations shall be in accordance with ANSI H35.1/H35.1M for aluminum and MIL-STD-409 for magnesium;
- 4.1.3 Basic Number of the Specification to which the Product was Produced—The basic number does not include the revision indicator;
- 4.1.4 Specified (Ordered) Dimensions of the Following Products:
  - 4.1.4.1 Sheet and Plate—Thickness in inches [millimetres],
- 4.1.4.2 *Coiled Wire and Spooled Wire*—Diameter in inches [millimetres].
  - 4.1.4.3 Tube:
- (1) Straight Lengths—Outside diameter and wall thickness, in inches [millimetres],
  - (2) *Coiled*—Wall thickness, in inches [millimetres],
- 4.1.4.4 *Pipe*—Nominal pipe size and ANSI schedule number:
- 4.1.5 Lot number shall be included in the product marking. The definition of lot shall be that as defined in the material specification.
- 4.1.6 For magnesium products, the applicable lot number shall be marked on each piece in at least one location.
- 4.1.7 When required by the material specification, the word "seamless" on certain tube or pipe.
- Note 2—The requirements specified in 4.1 are minimum; marking systems that involve additional information shall be as agreed upon between the producer and the purchaser.
- 4.2 When this practice is required by the material specification or specified in the contract or purchase order, marking of cast aluminum products shall be in accordance with Section 6.
- 4.3 Product marking shall be such that it shall not rub off or be otherwise obliterated by contact arising from normal handling, exposure to the elements, shipment, and storage. The height of the characters shall be commensurate with the size of the product being marked; for example, not less than 0.375 in. [9 mm] for flat sheet and plate, not less than 0.250 in. [6 mm] for hand forgings and not less than 0.125 in. [3 mm] for tubular products. Legibility of all markings shall be such as required for ready readability and the required permanency of identification.
- 4.4 Product marking shall be accomplished in a manner that will not adversely affect the subsequent fabrication of the material, or produce stresses that would be deleterious to the functioning of the finished product. Marking on the product shall be with marking fluid applied by printing, stamping, or stenciling. Ghost images of the characters may remain upon the removal of marking applied. Impression stamping is considered detrimental and shall not be used except on ingot, castings, forging, and certain tube products, or when required by prior agreement between the producer and purchaser.

### 5. Marking of Wrought Aluminum and Magnesium Mill Products

- 5.1 When this practice is required by the material specification or specified in the contract or purchase order, wrought aluminum and magnesium mill products shall be marked as follows:
  - 5.1.1 Lot Number, All Products—Spot marking the products
- 5.1.2 *Coiled Sheet*—Spot marking in one or more rows the outside end as shown in Fig. 1 [Fig. 1M].
  - 5.1.3 Flat Sheet and Plate:
- 5.1.3.1 Flat sheet less than 0.012 in. [up through 0.30 mm] (for O temper, less than 0.020 in. [up through 0.50 mm]) in thickness—Spot marking near one end,
- 5.1.3.2 Plate and flat sheet 0.012 in and over [over 0.30 mm] (for O temper, 0.020 in. and over [over 0.50 mm]) in thickness and less than 6 in. [up through 150 mm] wide—Continuous marking in one row.
- 5.1.3.3 Plate up through 0.375 in. [10 mm] and flat sheet 0.012 in. and over [over 0.30 mm] (for O temper, 0.020 in. and over [over 0.50 mm]) in thickness, 6 through 60 in. [over 150 through 1500 mm] in width, and 36 through 200 in. [over 1000 through 5000 mm in length—Continuous marking in rows running the direction of rolling on 6 in. [150 mm] centers across the width on one surface as shown in Fig. 2 [Fig. 2M] and Fig. 3[Fig. 3M]. Using the marking pattern of Fig. 2 [Fig. 2M], every third row shall contain the producer's name or trademark and the ordered thickness. The other two rows shall each contain the alloy and temper and the specification number, and shall be staggered. Using the marking pattern of Fig. 3[Fig. 3M], there are two alternating rows. One row shall contain the producer's name or trademark and the ordered thickness, and the alternating row shall contain the alloy and temper and the specification number. Both the marking patterns shown in Fig. 2[Fig. 2M] and Fig. 3[Fig. 3M] provide the same information and either can be used.
- 5.1.3.4 Plate over 0.375 in. [10 mm] in thickness, flat sheet and plate over 60 in. [1500 mm] in width or over 200 in. [5000

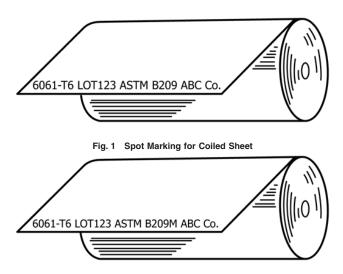
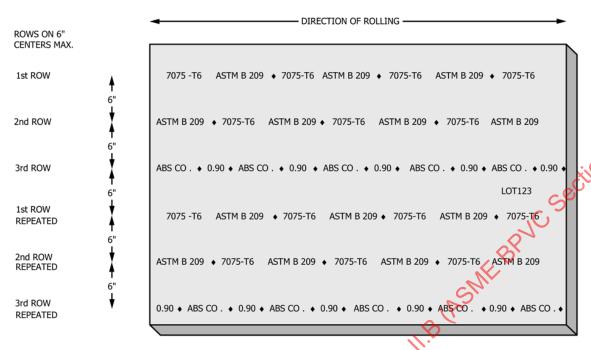
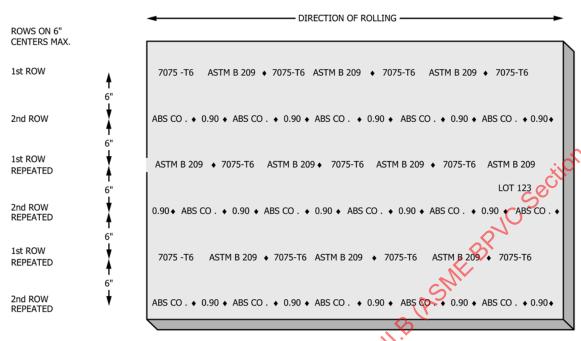




FIG. 1 M Spot Marking for Coiled Sheet



Note 1—Marking pattern is three staggered rows: two rows contain alloy, temper, and specification number, and every third row contains producer's name and ordered thickness. Figure shows spot marking of the lot number.

FIG 2 Continuous Marking for Plate Through 0.375 in. and Flat Sheet 0.012 in. and over (for Temper, 0.020 in. and over) in Thickness, 6 Through 60 in. in Width, and 36 Through 200 in. in Congth




Note 1 Marking pattern is three staggered rows: two rows contain alloy, temper, and specification number, and every third row contains producer's name and ordered thickness. Figure shows spot marking of the lot number.

FIG. 2 M Continuous Marking for Plate Through 10 mm and Flat Sheet over 0.30 mm (for O Temper, over 0.50 mm) in Thickness, over 150 Through 1500 mm in Width, and 1000 Through 5000 mm in Length

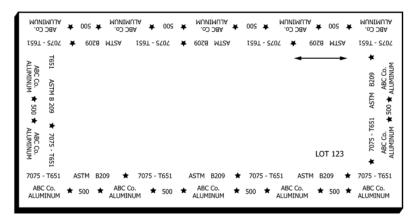
mm] in length—Same marking as 5.1.3.3 or perimeter marking on one surface. When perimeter marking of two rows is chosen, one row shall contain the producer's name or trade-

mark and the ordered thickness, and the second row shall contain alloy and temper, and the specification number as shown in Fig. 4 [Fig. 4M].



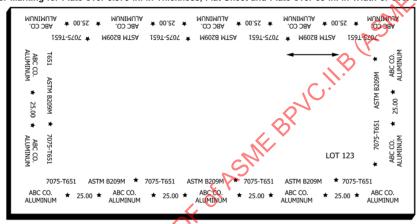
Note 1—Marking pattern is two alternating rows: one row contains alloy, temper, and specification number, and the alternating row contains the producer's name and ordered thickness. Figure shows spot marking of the lot number.

FIG 3 Continuous Marking for Plate Through 0.375 in. and Flat Sheet 0.012 in. and over (for 0 Temper, 0.020 in. and over) in Thickness, 6 Through 60 in. in Width, and 36 Through 200 in. in Length.




Note: Marking pattern is two alternating rows: one row contains alloy, temper, and specification number, and the alternating row contains the producer's name and ordered thickness. Figure shows spot marking of the lot number.

FIG. 3 M Continuous Marking for Plate Through 10 mm and Flat Sheet over 0.30 mm (for O Temper, over 0.50 mm) in Thickness, over 150 Through 1500 mm in Width, and 1000 Through 5000 mm in Length.


Note 3—If perimeter marking is applied to a full piece as produced but partial sheets or plates are supplied, an arrow shall be applied near one corner of each partial sheet or plate indicating the direction of rolling.

5.1.4 Circles:



Note 1—Figure shows spot marking of the lot number. Arrow indicates the rolling direction.

JC Section II Part B 202 FIG 4 Perimeter Marking for Plate over 0.375 in. in Thickness, Flat Sheet and Plate over 60 in. in Width or over 200 in. in Length.



Note 1—Figure shows spot marking of the lot number. Arrow indicates the rolling direction.

FIG. 4 M Perimeter Marking for Plate over 10 mm in Thickness, Flat Sheet and Plate over 1500 mm in Width or over 5000 mm in Length.

- 5.1.4.1 Circles 24 in. and over [over 600 mm] in diameter— Spot marking on each circle unless the circle was cut from sheet or plate having continuous marking, and
- 5.1.4.2 Circles less than 24 in. [up through 600 mm] in diameter—Tagging or marking of shipping container.

Note 4—Alclad one side flat sheet, plate, circles, and coiled sheet shall be marked on the bare side.

- 5.1.5 Tread Plate—Spot marking near one end on the back side.
- 5.1.6 Foll—Marking of this product is not required. Package marking only.
- 5.17 Rod, Bar, and Extruded Profiles—Continuous marking of straight lengths as shown in Fig. 5 [Fig. 5M], of sizes having an accessible flat surface of ½ in. or more [over 12.5 mm] in width (with less than 1/8 in. [3 mm and less] indented surface), or a diameter of ½ in. [over 12.5 mm] or more. Tagging is applicable to smaller sizes, lengths under 3 ft [1 m] and coils.
- 5.1.8 Structural Profiles-Spot marking near one end as shown in Fig. 6 [Fig. 6M].

- 5.1.9 Tube and Pipe—Continuous marking of non-round straight lengths in a single row of sizes having both a wall thickness of 0.029 in. and greater [over 0.72 mm] and a flat surface of ½ in. or more [over 12.5 mm] in width. Continuous marking of round straight lengths in a single row of sizes having both a wall thickness of 0.029 in. and greater [over 0.72 mm] and a diameter of ½ in. or more [over 12.5 mm]. Tagging is applicable to each coil or bundle of smaller sizes and lengths under 3 ft [1 m].
- 5.1.10 Wire—Tagging of coils and straight lengths, and spot marking on one flange of spools.
- 5.1.11 Bus Bar-Spot marking near one end except that specification number shall not be required to be marked on this product.
  - 5.1.12 Forgings:
- 5.1.12.1 Hand Forging—Spot marking on one place of each piece.
- 5.1.12.2 Die Forging-Marking in accordance with the requirements of the forging drawing.

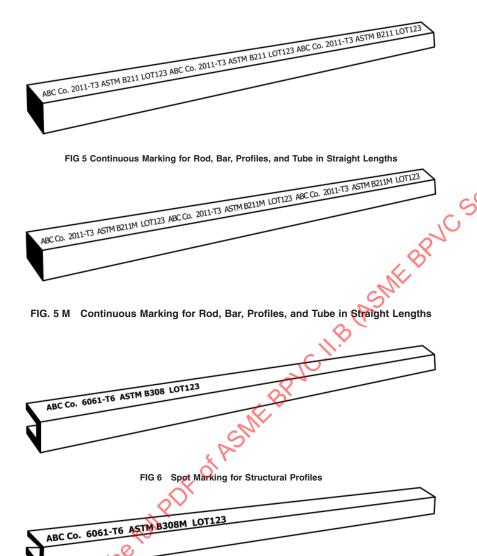



FIG. 6 M Spot Marking for Structural Profiles

### 6. Marking of Cast Aluminum Products

- 6.1 Castings—Marking shall be that as specified by the applicable material specification or as agreed upon between the producer and the purchaser.
  - 6.2 Remelt Ingot for Castings:
- 6.2. Marking of Aluminum Ingot—The producer's name or trademark (see 4.1.1), alloy designation (see 4.1.2) and cast number shall be impressioned-stamped or otherwise permanently marked on each ingot or if strapped together, not less than four ingots in each bundle, two in the top layer and two in the bottom layer. Specification number shall not be required to be marked on this product.
- 6.2.2 Marking of Magnesium Ingot—The producer's name or trademark (see 4.1.1), alloy designation (see 4.1.2), and cast number shall be impression-stamped or otherwise permanently

- marked on each ingot or bundle, if strapped together. Specification number shall not be required to be marked on this product.
- 6.3 Ingot or Billet for Fabricating—When specified in the contract or purchase order, marking shall include the producer's name or trademark, alloy and cast number. Specification data shall not be required to be marked on these products.

### 7. Marking of Unalloyed Aluminum and Magnesium Ingot

- 7.1 When specified in the contract or purchase order, unalloyed aluminum ingot shall be marked as follows:
  - 7.1.1 Producer's name, logo, or trademark,
- 7.1.2 Production location either permanently cast in, impression stamped, or otherwise marked,

## SB-668 (Identical with ASTM Specification B668-99 except that certification has been made mandatory.) (Identical with ASTM Specification B668-99 except that certification has been made mandatory.) (Identical with ASTM Specification B668-99 except that certification has been made mandatory.) SPECIFICATION FOR UNS N08028 SEAMLESS TUBES



### SPECIFICATION FOR UNS N08028 SEAMLESS TUBES



### **SB-668**

(Identical with ASTM Specification B 668-99 except that certification has been made mandatory.)

### 1. Scope

- **1.1** This specification covers UNS N08028 seamless cold-finished tubes intended for general corrosive service. The general requirements are covered in Specification B 829.
- **1.2** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

### 2. Referenced Documents

- **2.1** ASTM Standard:
- B 829 Specification for General Requirements for Nickel and Nickel Alloy Seamless Pipe and Tube

### 3. General Requirement

**3.1** Material furnished under this specification shall conform to the applicable requirements of Specification B 829 unless otherwise provided herein.

### 4. Ordering Information

- **4.1** Orders for material under this specification shall include the following information:
  - **4.1.1** Alloy name or UNS number,
  - **4.1.2** ASTM designation and year of issue,
- **4.1.3** *Dimensions* Outside diameter, minimum or average wall thickness (in inches or millimetres, not gage number), and length (specific or random),
  - **4.1.4** Quantity (feet or metres, or number of pieces),
  - **4.1.5** Optional requirements,
- **4.1.6** *Certification* Certification is required (Section 9)
- **4.1.7** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished, and

TABLE 1
CHEMICAL REQUIREMENTS

Element	Composition, %		
Carbon, max	0.030		
Silicon, max	1.0		
Manganese, max	2.50		
Phosphorus, max	0.030		
Sulfur, max	0.030		
Chromium	26.0-28.0		
Nickel	30.0-34.0		
Molybdenum	3.0-4.0		
Copper	0.6-1.4		
Iron	Remainder ^A		

^A Determined arithmetically by difference.

**4.1.8** Purchaser Inspection — If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state, indicating which tests or inspections are to be witnessed.

### 5. Material and Manufacture

- **5.1** Tubes shall be made by the seamless process and shall be cold finished.
- **5.2** Tubes shall be furnished in the solution-annealed condition.
- NOTE 1 The recommended heat treatment shall consist of heating the material to a temperature of 1975 to 2100°F (1080 to 1150°C) with subsequent quenching in water or rapidly cooling by other means.
- **5.3** The scale shall be removed by suitable means. When bright annealed, scale removal operations are not necessary.

### 6. Chemical Composition

**6.1** The material shall conform to the requirement prescribed in Table 1.

TABLE 2
TENSILE REQUIREMENTS

Tensile Strength, min, ksi (MPa)	Yield Strength, 0.2% Offset, min, ksi (MPa)	Elongation in 2 in. (50.8 mm) or 4 <i>D</i> , min, %
73 (500)	31 (214)	40

### TABLE 3 PERMISSIBLE VARIATIONS IN OUTSIDE DIAMETER AND WALL THICKNESS

		Wall	Thickness, %	04		
	Outside Diam	eter, in. (mm)	Avera	age	Minimur	n Wall
Specified Outside Diameter, in. (mm)	+	_	+	<b>/</b> -	+	-
Up to $\frac{5}{8}$ (15.9) excl	0.005 (0.13)	0.005 (0.13)	15.0	15.0	30.0	0
$\frac{5}{8}$ to $1\frac{1}{2}$ (15.9 to 38.1), incl	0.0075 (0.19)	0.0075 (0.19)	10.0	10.0	20.0	0
Over $1\frac{1}{2}$ to $3\frac{1}{2}$ (38.1 to 88.9), incl	0.010 (0.25)	0.010 (0.25)	10.0	10.0	22.0	0
Over $3\frac{1}{2}$ to $4\frac{1}{2}$ (88.9 to 114.3), incl	0.015 (0.38)	0.015 (0.38)	10.0	10.0	22.0	0
Over $4\frac{1}{2}$ to 5 (114.3 to 127), incl	0.020 (0.51)	0.020 (0.51)	12.5	12.5	22.0	0
Over 5 to 8 (127 to 203.2) incl	0.030 (0.76)	0.030 (0.76)	12.5	12.5	25.0	0

- **6.1.1** A chemical analysis shall be made on each lot of material as described in Specification B 829.
- **6.2** If a product (check) analysis is performed by the purchaser, the material shall conform to Table 1 subject to the product (check) analysis variations prescribed in Specification B 829.

### 7. Mechanical and Other Requirements

- **7.1** The material shall conform to the mechanical properties prescribed in Table 2. One test is required for each lot, as defined in Specification B 829.
- **7.1.1** One tension test shall be made on each lot of tubes.
- 7.2 Flaring Test One flaring test shall be made on a specimen from one end of one tube from each lot of finished tubes.
  - 7.3 Hydrostatic Test or Nondestructive Test:
- 7.3.1 Each tube shall be subjected to either the hydrostatic test or the nondestructive electric test at the manufacturer's option. The purchaser may specify which test is to be used.

### 8. Dimensions and Permissible Variations

**8.1** Outside Diameter and Wall Thickness — The permissible variations in the outside diameter and wall thickness of the tube shall not exceed those prescribed in Table 3.

### Certification

**9.1** A manufacturer's certification shall be furnished to the purchaser stating that the material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. A report of the test results shall be furnished.

### 10. Keywords

10.1 seamless tube; UNS N08028

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
### SB-672. (Identic With ASTM Specification B672-95.) (Identic With ASTM Specification B672-95.) SPECIFICATION FOR NICKEL-IRON-CHROMIUM-MOLYBDENUM-COLUMBIUM STABILIZED ALLOY (UNS





### SPECIFICATION FOR NICKEL-IRON-CHROMIUM-MOLYBDENUM-COLUMBIUM STABILIZED ALLOY (UNS N08700) BAR AND WIRE



**SB-672** 



(Identical with ASTM Specification B 672-95)

### 1. Scope

- **1.1** This specification covers nickel-iron-chromium-molybdenum-columbium stabilized alloy (UNS N08700) bar and wire.
- **1.2** The values stated in inch-pound units are to be regarded as the standard.

### 2. Referenced Documents

- 2.1 ASTM Standards
- A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance With Specifications
- E 38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E 353 Test Methods for Chemical Analysis of Stainless, Heat Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys

### 3. Terminology

- 3.1 Descriptions of Terms Specific to This Standard
- **3.1.1** The terms bar and wire as used in this specification are described as follows:
- 3.1.1.1 bars hot-finished rounds, squares, octagons, and hexagons:  $\frac{1}{4}$  in. (6.35 mm) and over in diameter or size. Hot-finished flats:  $\frac{1}{4}$  in. to 10 in. (254 mm), inclusive in width,  $\frac{1}{8}$  in. (3.18 mm) and over in thickness. Cold-finished rounds, squares, octagons, hexagons, and shapes: over  $\frac{1}{2}$  in. (12.7 mm) in diameter or size. Cold-finished flats:  $\frac{3}{8}$  in. (9.52 mm) and over in width (see

- 3.1.1.1),  $\frac{1}{8}$  in. and over in thickness (see 3.1.1.2).
- (1) Widths less than 0.375 in (9.52 mm) and thicknesses less than 0.187 in. (4.75 mm) are generally described as flat wire.
- (2) Thicknesses 0.123 in. to under 0.187 in. (3.18 mm to under 4.76 mm) can be cold-rolled strip as well as bar.
- **3.1.1.2** wire Cold-finished only: round, square, octagon, hexagon, and shape wire,  $\frac{1}{2}$  in. and under in diameter or size. Cold-finished only: flat wire,  $\frac{3}{16}$  in. (4.76 mm) to under 0.375 in. (9.52 mm) in width, 0.010 in (0.254 mm) to under  $\frac{3}{16}$  in. thickness.

### 4. Ordering Information

- **4.1** Orders for material under this specification shall include the following information:
  - **4.1.1** quantity (weight or number of pieces);
  - **4.1.2** name of material or UNS N08700;
  - **4.1.3** form (bar or wire);
  - **4.1.4** dimensions;
  - **4.1.5** finish;
  - **4.1.6** ASTM designation and year of issue;
- **4.1.7** Corrosion Test— State if intergranular corrosion test is required (Supplementary Requirements); and
- **4.1.8** *Certification or Test Reports* State if certification or test reports are required (Section 14).

NOTE 1 — A typical ordering description is as follows: 200 bars, UNS N08700, 1 in. (25.4 mm) round by 10 to 14 ft (3.0 to 4.3 m), centerless ground, ASTM 672 dated ______.

### 5. Materials and Manufacture

**5.1** *Heat Treatment* — The final heat treatment shall be a solution anneal. Straightening or cold finishing, or both,

TABLE 1
CHEMICAL REQUIREMENTS

Element	Composition, %
Nickel	24.0 to 26.0
Iron	Remainder [Note (1)]
Chromium	19.0 to 23.0
Molybdenum	4.3 to 5.0
Columbium	$8 \times \text{carbon to } 0.40$
Carbon, max	0.04
Silicon, max	1.00
Manganese, max	2.00
Phosphorus, max	0.040
Sulfur, max	0.030
Copper, max	0.50

NOTE:

(1) Determined arithmetically by difference.

TABLE 2
PRODUCT (CHECK) ANALYSIS

Element	Tolerances Over the Max Limit or Under the Min. Limit, %
Nickel	0.20
Chromium	0.20
Molybdenum	0.10
Columbium	0.05
Carbon	0.01
Silicon	0.05
Manganese	0.04
Phosphorus	0.005
Sulfur	0.005
Copper	0.03

may be performed after the final solution annealing operation. Cold drawing to more than a minor sizing reduction (preferred maximum 5% in area) after final solution annealing is not recommended.

NOTE 2 — The recommended solution anneal consists of heating to a minimum temperature of 2,000°F (1,090°C) and cooling rapidly to room temperature.

### 6. Chemical Composition

- **6.1** Heat analysis, on samples in accordance with 11.2, shall conform to the requirements as to chemical composition prescribed in Table 1.
- **6.2** If a product analysis is performed by the purchaser, the material shall conform to the composition limits within the product analysis variation prescribed in Table 2.

### 7. Mechanical Requirements

**7.1** The material shall conform to the requirements as to the mechanical property prescribed in Table 3.

### 8. Dimensions and Permissible Variations

- **8.1** Bar Bars shall conform to the variations in dimensions prescribed in Tables 4 to 12, inclusive, as applicable.
- **8.2** *Wire* Wire shall conform to the permissible variations in dimensions prescribed in Tables 13 to 17, inclusive, as applicable.

### 9. Workmanship, Finish, and Appearance

**9.1** The product shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

### 10. Sampling

- **10.1** Lot Definition
- **10.1.1** A lot for chemical analysis shall consist of one heat.
- **10.1.2** A lot for mechanical properties or corrosion testing (Supplementary Requirement S1) shall consist of all material from a heat and cross-sectional size, heat treated by the same practice.
  - 10.2 Test Material Selection
- **10.2.1** *Chemical Analysis* A representative sample from each lot shall be taken during pouring or subsequent processing.
- **10.2.1.1** *Product (Check) Analysis* shall be wholly the responsibility of the purchaser.
- **10.2.2** *Mechanical Properties and Corrosion Test* (Supplementary Requirement S1) Samples of the material to provide test specimens shall be taken from such locations in each lot as to be representative of that lot.

### 11. Number of Tests

- 11.1 Chemical Analysis one test per lot
- **11.2** *Mechanical Properties and Corrosion Test* (Supplementary Requirement S1) one test per lot

### 12. Test Methods

**12.1** Determine the chemical composition, mechanical properties, and corrosion resistance of the material as enumerated in this specification, in case of disagreement, in accordance with the following methods:

Test	ASTM Designation
Corrosion test (Supplementary Requirement S1)	A 262, Practice C
Chemical analysis	E 38, E 353 ^{A,B}
Tension	E 8
Rounding procedure	E 29
Method of sampling for product	E 55
analysis	

^A Iron shall be determined arithmetically by difference.

 $^{^{\}it B}$  Methods E 38 is to be used only for elements not covered in Test Methods E 353.

TABLE 3 MECHANICAL PROPERTY REQUIREMENTS

Condition	Material Dimensions, in.	Test Direction	Tensile Strength, Min., ksi (MPa)	Yield Strength (0.2 % Offset), Min., ksi (MPa)	Elongation in 2 in. or 50.8 mm, or 4 <i>D</i> , Min., %	Reduction of Area, Min., %
Annealed, hot-finished or cold-finished	All	Longitudinal	80 (550)	35 (240)	30.0	50.0
Annealed, hot-finished or cold-finished	Widths, 3 and over [Note (1)]	Transverse	80 (550)	35 (240)	25.0	40.0
NOTE: (1) If the material diam	neter or width is over 3	in. (76.2 mm), n	naterial may be tensil	e tested in the trans	sverse direction.	Social
			TADI 5 4	,	ASME D.	
			TABLE 4	\	<b>\</b> 7	

### NOTE:

TABLE 4 PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED ROUND AND SQUARE BARS

	Permissible Va Specified Siz		Out-of-Round [Note (1)] or
	0ver 🗸	Under	Out-of-Square [Note (2)], in. (mm)
0.250 (6.35) to 0.312 (7.94) incl [Notes (3), (4)]	[Note (5)]	[Note (5)]	[Note (5)]
Over 0.312 (7.94) to 0.438 (11.11) incl [Notes (3), (4)]	0.006 (0.15)	0.006 (0.15)	0.009 (0.23)
Over 0.438 (11.11) to 0.625 (15.88) incl [Notes (3), (4)]	0.007 (0.18)	0.007 (0.18)	0.010 (0.25)
Over 0.625 (15.88) to 0.875 (22.22) incl	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)
Over 0.875 (22.22) to 1.000 (25.40) incl	0.009 (0.23)	0.009 (0.23)	0.013 (0.33)
Over 1.000 (25.40) to 1.125 (28.58) incl	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)
Over 1.125 (28.58) to 1.250 (31.75) incl	0.011 (0.28)	0.011 (0.28)	0.016 (0.41)
Over 1.250 (31.75) to 1.375 (34.92) incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over 1.375 (34.92) to 1.500 (38.10) incl	0.014 (0.36)	0.014 (0.36)	0.021 (0.53)
Over 1.500 (38.10) to 2.000 (50.80) incl	0.016 (0.40)	0.016 (0.40)	0.023 (0.58)
Over 2.000 (50.80) to 2.500 (63.50) incl	0.031 (0.79)	0	0.023 (0.58)
Over 2.500 (63.50) to 3.500 (88.90) incl	0.047 (1.19)	0	0.035 (0.89)
Over 3.500 (88.90) to 4.500 (114.30) incl	0.063 (1.59)	0	0.046 (1.17)
Over 4.500 (114.30) to 5.500 (139.70) incl	0.078 (1.98)	0	0.058 (1.47)
Over 5.500 (139.70) to 6.500 (165.10) incl	0.125 (3.18)	0	0.070 (1.78)
Over 6.500 (165.10) to 8.000 (203.20) incl	0.156 (3.97)	0	0.085 (2.18)

### NOTES:

- (1) Out-of-round is the difference between the minimum diameters of the bar, measured at the same cross section.
- (2) Out-of-square section is the difference in the two dimensions at the same section of a square bar, each dimension being the distance between opposite faces.
- (3) Size tolerances have not been evolved for rounds in the size range of 0.250 to 0.312 in. (6.35 to 7.94 mm), inclusive. Size tolerances have not been evolved for round sections in the size range of 0.250 in. to approximately 0.625 in. (15.88 mm) in diameter which are produced on rod mills in coils.
- (4) Variations in size of coiled product made on rod mills are greater than size tolerances for product made on bar mills.
- (5) Squares in this size are not produced as hot-rolled products.

SB-672

TABLE 5
PERMISSIBLE VARIATIONS IN SIZE OF HOT-ROLLED HEXAGONAL AND OCTAGONAL BARS

Specified Sizes Measured Between	Permissible Variat Size, ii	Max Difference in 3 Measurements for	
Opposite Sides, in. (mm)		Under	Hexagons Only, in. (mm)
0.250 (6.35) to 0.500 (12.70) incl	0.007 (0.18)	0.007 (0.18)	0.011 (0.28)
Over 0.500 (12.70) to 1.000 (25.40) incl	0.010 (0.25)	0.010 (0.25)	0.015 (0.38)
Over 1.000 (25.40) to 1.500 (38.10) incl	0.021 (0.53)	0.021 (0.53)	0.025 (0.64)
Over 1.500 (38.10) to 2.000 (50.80) incl	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)
Over 2.000 (50.80) to 2.500 (63.50) incl	0.047 (1.19)	0.047 (1.19)	0.047 (1.19)
Over 2.500 (63.50) to 3.500 (88.90) incl	0.063 (1.59)	0.063 (1.59)	0.063 (1.59)

### TABLE 6 PERMISSIBLE VARIATIONS IN THICKNESS AND WIDTH FOR HOT-ROLLED FLAT BARS

		Permissible Va	ariations in Thickn	iess for Thickness (	Given, in. (mm)	
	0.125 (3.18) to 0.500 (12.70) Incl		Over 0.500 (12.70) to 1.000 (25.40) Incl		Over 1.000 (25.40) to 2.000 (50.80) Incl	
Specified Width, in. (mm)	0ver	Under	Over Under		0ver	Under
Γο 1.000 (25.40) incl	0.008 (0.20)	0.008 (0.20)	0.010 (0.25)	0.010 (0.25)		
Over 1.000 (25.40) to 2.000 (50.80) incl	0.012 (0.30)	0.012 (0.30)	0.015 (0.38)	0.015 (0.38)	0.031 (0.79)	0.031 (0.79)
Over 2.000 (50.80) to 4.000 (101.60) incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)
Over 4.000 (101.60) to 6.000 (152.40) incl	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	0.020 (0.51)	0.031 (0.79)	0.031 (0.79)
Over 6.000 (152.40) to 8.000 (203.20) incl	0.016 (0.41)	0.016 (0.41)	0.025 (0.41)	0.025 (0.41)	0.031 (0.79)	0.031 (0.79)
Over 8.000 (203.20) to 10.000 (254.00) incl	0.021 (0.53)	0.021 (0.53)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)	0.031 (0.79)
		(50.80) to 1.60) Incl		(101.60) to 52.40) Incl		(152.40) to 3.20) Incl
	Over 🗸	Under	Over	Under	0ver	Under

	Over 2.000 (50.80) to 4.000 (101.60) Incl		Over 4.000 (101.60) to 5.000 (152.40) Incl		0ver 6.000 (152.40) to 8.000 (203.20) Incl	
	Over 🗸	Under	0ver	Under	0ver	Under
To 1.000 (25.40) incl	N					
Over 1.000 (25.40) to 2.000 (50.80) incl	jie.			• • •		• • •
Over 2.000 (50.80) to 4.000 (101.60) incl	0.062 (1.57)	0.031 (0.79)	• • •	• • •	• • •	• • •
Over 4.000 (101.60) to 6.000 (152.40) incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)		• • •
Over 6.000 (152.40) to 8.000 (203.20) incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)
Over 8.000 (203.20) to 10.000 (254.00) incl	0.062 (1.57)	0.031 (0.79)	0.093 (2.36)	0.062 (1.57)	0.125 (3.18)	0.156 (3.96)

	~C.	Permissible Variation	ns in width, in. (mm)
	Specified Width, in. (mm)		Under
	To 1.000 (25.40) incl	0.015 (0.38)	0.015 (0.38)
~	Over 1.000 (25.40) to 2.000 (50.80) incl	0.031 (0.79)	0.031 (0.79)
$\langle O \rangle$	Over 2.000 (50.80) to 4.000 (101.60) incl	0.062 (1.57)	0.031 (0.79)
1.5	Over 4.000 (101.60) to 6.000 (152.40) incl	0.093 (2.36)	0.062 (1.57)
	Over 6.000 (152.40) to 8.000 (203.20) incl	0.125 (3.18)	0.156 (3.96)
W.	Over 8.000 (203.20) to 10.000 (254.00) incl	0.156 (3.96)	0.187 (4.75)

TABLE 7
PERMISSIBLE VARIATIONS IN SIZE OF COLDFINISHED ROUND BARS

	Permissible Variations From Specified Size, in. (mm) [Notes (1), (2)]		
Specified Size, in. (mm)	0ver	Under	
Over 0.500 (12.70) to 1.000 (25.40) excl	0.002 (0.05)	0.002 (0.05)	
1.000 (25.40) to 1.500 (38.10) excl	0.0025 (0.06)	0.0025 (0.06)	
1.500 (38.10) to 4.000 (101.60) incl [Note (3)]	0.003 (0.08)	0.003 (0.08)	

### NOTES:

- (1) Unless otherwise specified, size tolerances are over and under as shown in Table 7. When required, however, they may be specified all over and nothing under, or all under and nothing over, or any combination of over and under, if the total spread in size tolerance for a specified size is not less than the total spread shown in the Table.
- (2) When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the Table.
- (3) Cold-finished bars over 4 in. (101.60 mm) in diameter are produced; size tolerances for such bars have not been evolved.

TABLE 8
PERMISSIBLE VARIATIONS IN SIZE OF COLDFINISHED HEXAGONAL, OCTAGONAL, AND SQUARE
BARS

	From S	sible Variations Specified Size, m) [Note (1)]
Specified Size, in. (mm)	0ver	Under
Over 0.500 (12.70) to 1.000 (25.40) incl Over 1.000 (25.40) to 2.000 (50.80) incl Over 2.000 (50.80) to 3.000 (76.20) incl Over 3.000 (76.20)	ONO OHIO	0.004 (0.10) 0.006 (0.15) 0.008 (0.20) 0.010 (0.25)

### NOTE:

(1) When it is necessary to heat treat or heat treat and pickle after cold finishing, size tolerances are double those shown in the Table.

### 13. Rejection and Rehearing

13.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

### 14. Certification

**14.1** When specified in the purchase order or contract, a manufacturer's certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that

TABLE 9
PERMISSIBLE VARIATIONS IN WIDTH AND
THICKNESS OF COLD-FINISHED FLAT BARS

	Permissible Variations in Width, Over and Under, in. (mm) [Note (1)]			
Width, in. (mm)	For Thicknesses 0.250 (6.35) and Under	For Thickness Over 0.250 (6.35)		
0.375 (9.52) to 1.000 (25.40) incl	0.004 (0.10)	0.002 (0.05)		
Over 1.000 (25.40) to 2.000 (50.80) incl	0.006 (0.15)	0.003 (0.08)		
Over 2.000 (50.80) to 3.000 (76.20) incl	0.008 (0.20)	0.004 (0.10)		
Over 3.000 (76.20) to 4.500 (114.30) incl	0.010 (0.25)	0.005 (0.13)		
Thickness, in. (mm)	Permissible Va Thickness, Over in. (mm) [N	and Under,		
0.125 (3.18) to 1.000	0.002 (	0.05)		
Over 1.000 (25.40) to 2.000 (50.80) incl	0.003 (0	0.08)		
Over 2.000 (50.80) to 3.000 (76.20) incl	0.04 (0	.10)		
Over 3.000 (76.20) to 4.500 (114.30) incl [Note (2)]	0.005 ((	0.13)		

### NOTES:

- (1) When it is necessary to heat treat and pickle after cold finishing, size tolerances are double those shown in the Table.
- (2) Cold-finished flat bars over 4.500 in. (114.30 mm) wide or thick are produced; width and thickness tolerances for such bars have not been evolved.

the test results on representative samples meet specification requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.

### 15. Product Marking

**15.1** Each bundle, box, or bar shall be properly tagged with metal tags showing heat number, UNS number, condition, specification number, and size to assure proper identification.

### 16. Packaging and Package Marking

**16.1** Bars or wire shall be bundled or boxed in such a manner as to assure safe delivery to their destination when properly transported by any common carrier.

### 17. Keywords

**17.1** bar; nickel-iron-chromium-molybdenum-columbium; UNS N08700; wire

### TABLE 10 PERMISSIBLE VARIATIONS IN LENGTH OF HOT-FINISHED OR COLD-FINISHED BARS

	Permissible Variations in Length, in. (mm)					
Specified Size of Rounds, Squares, Hexagons,	For Lengths U	•	For Lengths Over 12 ft (3,658 mi to 25 ft (7,620 mm) Incl			
and Octagons and Widths of Flats, in. (mm)	0ver	Under	0ver	Under		
o 2.000 (50.80) incl	0.500 (12.7)	0	0.750 (19.1)	0		
ver 2.000 (50.80) to 4.000 (101.60) incl	0.750 (19.0)	0	1.000 (25.4)	0		
ver 4.000 (101.60) to 6.000 (152.40) incl	1.000 (25.4)	0	1.250 (31.8)			
ver 6.000 (152.40) to 9.000 (228.60) incl	1.250 (31.8)	0	1.500 (38.1)	iQ		
ver 9.000 (228.60) to 12.000 (304.8) incl	1.500 (38.1)	0	2.000 (50.8)	0		

GENERAL NOTE: The order should specify random lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specified lengths are ordered, Table 10 or Table 11 shall apply.

### NOTE:

(1) The maximum width of bar flats is 10 in. (254.00 mm).

TABLE 11
PERMISSIBLE VARIATIONS IN LENGTH OF HOT-FINISHED OR COLD-FINISHED BARS MACHINE CUT AFTER
MACHINE STRAIGHTENING

Specified Size of Rounds, Squares, Hexagons,	For Lengths (3,658 m		For Lengths Over 12 (3,658 mm) to 25 ft (7,620 mm) Incl	
and Octagons and Widths of Flats, [Note (1)]	0ver	Under	0ver	Under
To 3.000 (76.20) incl	0.125 (3.2)	0	0.063 (4.8)	0
Over 3.000 (76.20) to 6.000 (152.40) incl	0.063 (4.8)	0	0.250 (6.4)	0
Over 6.000 (152.40) to 9.000 (228.60) incl	0.250 (6.4)	0	0.188 (7.9)	0
Over 9.000 (228.60) to 12.000 (304.80) incl	0.500 (12.7)	0	0.500 (12.7)	0

GENERAL NOTE: The order should specify random lengths or specific lengths. When random lengths are ordered, the length tolerance is not less than 24 in. (609.60 mm). When specific lengths are ordered, Table 10 or Table 11 shall apply.

### NOTE:

(1) The maximum width of bar flats is 10 in. (254.00 mm).

### TABLE 12 PERMISSIBLE VARIATIONS IN STRAIGHTNESS OF MACHINE STRAIGHTENED HOT-FINISHED OR COLDFINISHED BARS

Measurement is taken on the concave side of the bar with a straightedge. Unless otherwise specified, hot-finished or cold-finished bars for machining purposes are furnished machine straightened to the following tolerances:

### Hot finished

0.125 in. (3.2 mm) in any 5 ft (1,524 mm), but may not exceed
0.125 in. x [length in feet (mm)]/[5 ft (1,524 mm)]
Cold finish:

0.063 in. (1.6 mm) in any 5 ft (1,524 mm), but may not exceed 0.063 in. x [length in feet (mm)]/[5 ft (1,524 mm)]

... A REQUIREMENTS

... dement may be made a requirement when the pure.

... est

... margarular curvasion test. Specimens taken in the as-supplied condition, sensitize, and in accordance with Practice C of Practices A 262 shall exhibit a corrosion rangonia.
... ath (165 mg/dm² day).

### SPECIFICATION FOR UNS N08925, UNS N08354, AND UNS N08926 WELDED PIPE SB-673 (Identical with ASTM Specification B673-05(2016) except that certification and test reports have been also as the second of the second



ASMENORANDOC. COM. Click to View the Full Poly (Identical with ASTM Specification B673-05(2016) except that certification and test reports have been made mandatory.)

### Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Pipe

### 1. Scope

- 1.1 This specification covers UNS N08925, UNS N08354, and UNS N08926 welded pipe for general corrosion applications.
- 1.2 This specification covers pipe sizes in schedules shown in Table 1.
- 1.3 ASTM International has adopted definitions whereby some grades, such as UNS N08904, previously in this specification were recognized as stainless steels, because those grades have iron as the largest element by mass percent. Such grades are under the oversight of ASTM Committee A01 and its subcommittees. The products of N08904 previously covered in this specification are now covered by Specification A312/A312M.
- 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

2.1 ASTM Standards:

A312/A312M Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes

B775 Specification for General Requirements for Nickel and Nickel Alloy Welded Pipe

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ANSI Standards:

B2.1 Pipe Threads

B31.10 Power Riping

B36.10 Welded and Seamless Wrought Steel Pipe

B36.19 Stainless Steel Pipe

### 3. Classification

- 3.1 Class I—Welded, cold worked, solution treated and nondestructively tested in accordance with 8.3.1.
- 3.2 Class 2—Welded, cold worked, solution freated, and nondestructively tested in accordance with 8.3.2
- 3.3 Class 3—As welded, solution treated, and nondestructively tested in accordance with 8.3.1.

### 4. General Requirement

4.1 Material furnished under this specification shall conform to the applicable requirements of Specification B775 unless otherwise provided herein.

### 5. Ordering Information

- 5.1 Orders for material under this specification should include the following information:
  - 5.1.1 Allow name or UNS number,
  - 5.1.2 *Class*,
  - 5.13 Quantity (feet or number of lengths),
- 5.1.4 Size (nominal size or outside diameter and schedule number or average wall thickness),
  - 5.1.5 Length—Specify cut length or random,
- 5.1.6 Certification—Certification and a report of test results are required,
- 5.1.7 *Purchaser Inspection*—State which tests or inspections are to be witnessed,
- 5.1.8 *Ends*—Plain ends cut and deburred will be furnished, unless otherwise specified, and
- 5.1.9 Samples for Product (Check) Analysis—State whether samples shall be furnished.

### **TABLE 1 Dimensions of Welded Pipe**

Note 1—The following table is a partial reprint of Table 1 of ANSI B36.19.

Note 2—The decimal thicknesses listed for the respective pipe sizes represent their nominal wall dimensions.

Note 3—1 in. = 25.4 mm.

Nominal							Nominal Wall 7	Thickness,	in.			
Pipe Size, in.	Outside	Diameter	Schedule	5S ^A	Schedule	10S ^A	Schedule	40S	Schedule	80S	Schedule	160S
1/8	0.405	10.29			0.049	1.25	0.068	1.73	0.095	2.41		0
1/4	0.540	13.72			0.065	1.65	0.088	2.24	0.119	3.02		
3/8	0.675	17.15			0.065	1.65	0.091	2.31	0.126	3.20		
1/2	0.840	21.34	0.065	1.65	0.083	2.11	0.109	2.77	0.147	3.73	0.187	4.75
3/4	1.050	26.67	0.065	1.65	0.083	2.11	0.113	2.87	0.154	3.91	0.218	5.54
1	1.315	33.40	0.065	1.65	0.109	2.77	0.133	3.38	0.179	4.46	0.250	6.35
11/4	1.660	42.16	0.065	1.65	0.109	2.77	0.140	3.56	0.191	4.85	0.250	6.35
11/2	1.900	48.26	0.065	1.65	0.109	2.77	0.145	3.68	0.200	5.08	0.281	7.14
2	2.375	60.33	0.065	1.65	0.109	2.77	0.154	3.91	0.218	5.54	0.343	8.71
21/2	2.875	73.03	0.083	2.11	0.120	3.05	0.203	5.16	0.276	7.01	0.375	9.52
3	3.500	88.90	0.083	2.11	0.120	3.05	0.216	5.49	0.300	7.62	0.438	11.12
31/2	4.000	101.60	0.083	2.11	0.120	3.05	0.226	5.74	0.318	8.08		
4	4.500	114.30	0.083	2.11	0.120	3.05	0.237	6.02	0.337	8.56	0.581	13.41
5	5.563	141.30	0.109	2.77	0.134	3.40	0.258	6.55	0.375	9.52	0.625	15.88
6	6.625	168.30	0.109	2.77	0.134	3.40	0.280	7.11	0.432	10.97	0.718	18.24
8	8.625	219.07	0.109	2.77	0.148	3.76	0.322	8.18	0.500	12.70	0.906	23.01
10	10.750	273.05	0.134	3.40	0.165	4.19	0.365	9.27	0.500 ^B	12.70 ^B	1.125	28.58
12	12.75	323.85	0.156	3.96	0.180	4.57	0.375	9.52	0.500 ^B	12.70 ^B	1.312	33.32
14	14.00	355.60	0.156 ^C	3.96	0.188	4.78	0.375	9.52	0.500	12.70		
16	16.00	406.40	0.165 ^C	4.19	0.188	4.78	0.375	9.52	0.500	12.70		
18	18.00	457.20	0.165 ^C	4.19	0.188	4.78	0.375	9.52	0.500	12.70		
20	20.00	508.00	0.188 ^C	4.78	0.218 ^C	5.54	0.375	9.52	0.500	12.70		
22	22.00	558.80	0.188 ^C	4.78	0.218 ^C	5.54	0.375	9.52	0.500	12.70		
24	24.00	609.60	0.218 ^C	5.54	0.250	6.35	0.375	9.52	0.500	12.70		
30	30.00	762.00	0.250 ^C	6.35	0.312	7.92	0.375	9.52	0.500	12.70		

^A Schedule 5S and 10S wall thicknesses do not permit threading in accordance with ANSI B2.1.

### 6. Materials and Manufacture

6.1 Pipe shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and before final solution treatment, Class 1 and Class 2 material shall be cold worked either in both weld and base metal or in weld metal only.

Note 1—The recommended heat treatment shall consist of heating to a temperature of 1975 to 2150°F (1080 to 1180°C) for UNS N08354, or 2010 to 2100°F (1100 to 1150°C) for UNS N08925 and UNS N08926, followed by quenching in water or rapid cooling by other means.

6.2 Pipe shall be furnished with oxide removed. When solution treatment is performed in a protective atmosphere, descaling is not necessary.

NOTE 2—Pipe produced with the addition of filler metal is available. The manufacturer must be consulted for applicable requirements.

### 7. Chemical Composition

7. The material shall conform to the requirements as to chemical composition prescribed in Table 2.

7.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations prescribed in Specification B775.

### 8. Mechanical Properties and Other Requirements

8.1 *Tension Test*—The tensile properties of the material at room temperature shall conform to those shown in Table 3.

**TABLE 2 Chemical Requirements** 

	UNS	UN	UNS
Element	N08925	N08354	N08926
Carbon, max	0.020	0.030	0.020
Manganese, max	1.0	1.00	2.00
Phosphorus, max	0.045	0.030	0.03
Sulfur, max	0.030	0.010	0.01
Silicon, max	0.50	1.00	0.5
Nickel	24.0 to 26.0	34.0 to 36.0	24.00 to 26.00
Chromium	19.0 to 21.0	22.0 to 24.0	19.00 to 21.00
Molybdenum	6.0 to 7.0	7.0 to 8.0	6.0 to 7.0
Copper	0.8 to 1.5		0.5 to 1.5
Nitrogen	0.1 to 0.2	0.17 to 0.24	0.15 to 0.25
Iron ^A	balance	balance	balance

^A Iron shall be determined arithmetically by difference.

**TABLE 3 Mechanical Properties** 

Alloy	Temper	Tensile Strength, min, ksi(MPa)	Yield Strength, 0.2 % offset, min, ksi†(MPa)	Elongation in 2 in. or 50 mm, (or 4D), min, %
UNS N08925	solution annealed	87 (600)	43 (300)	40
UNS N08354	solution annealed	93 (640)	43 (295)	40
UNS N08926	solution annealed	94 (650)	43 (295)	35

- 8.1.1 One tension test shall be made on each lot of pipe.
- 8.2 Flattening Test—One flattening test shall be made on a specimen from one end of one pipe from each lot.

^B These do not conform to ANSI B31.10.

^C These do not conform to ANSI for Welded and Seamless Wrought Steel Pipe (ANSI B36.10)

anations

A nominal wall thickness shall contained prescribed in Specification prescribed in Specification (1992); UNS NO8354; UNS NO8926; weder part of the part

# JC Section II part B) 202 SB-674 (Identical with ASTM Specification B674-05 except for editorial changes in paras. 4.1 and 7.1. Certification and test reports made mandatory by reference to SB-751.) (Identical with ASTM Specification B674-05 except for editorial changes in paras. 4.1 and 7.1. Certification and test reports made mandatory by reference to SB-751.)



### Standard Specification for UNS N08925, UNS N08354, and UNS N08926 Welded Tube

### 1. Scope

- 1.1 This specification covers UNS N08925, UNS N08354, and UNS N08926 welded tube for general corrosion applications.
- 1.2 This specification covers outside diameter and nominal wall tube.
- 1.2.1 The tube sizes covered by this specification are  $\frac{1}{8}$  to 5 in. (3.2 to 127 mm) in outside diameter and 0.015 to 0.320 in. (0.38 to 8.13 mm), inclusive, in wall thickness.
- 1.3 ASTM International has adopted definitions whereby some grades, such as UNS N08904, previously in this specification were recognized as stainless steels, because those grades have iron as the largest element by mass percent. Such grades are under the oversight of ASTM Committee A01 and its subcommittees. The products of N08904 previously covered in this specification are now covered by Specification A249/ A249M.
- 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material SINEMORINDOC. COM. Citck to view the as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of

- A249/A249M Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser
- B751 Specification for General Requirements for Nickel and Nickel Alloy Welded Tube
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

### 3. Ordering Information

- 3.1 Orders for material to this specification should include the following information:
  - 3.1.1 Quantity (feet or number of lengths),
  - 3.1.2 UNS number,
- 3.1.3 Size (outsize diameter, minimum or average wall thickness),
  - 3.1.4 Length (random or specific),
  - 3.1.5 Class, and
  - 3.1.6 ASTM designation.
  - 3.1.7 Product Analysis—State if required.
  - 3.1.8 DELETED
- 32.9 Purchaser Inspection—State which tests or inspections are to be witnessed, if any (see Tables 1 and 2).

### 4. Materials and Manufacture

- 4.1 Tube shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final annealing, the material shall be cold-worked in either the weld metal only or both weld and base metal.
- Note 1—The recommended heat treatment shall consist of heating to a temperature of 1975 to 2150°F (1080 to 1180°C) for UNS N08354 or 2010 to 2100°F (1100 to 1150°C) for UNS N08925 and UNS N08926, followed by quenching in water or rapid cooling by other means.
- 4.2 Tube shall be furnished with oxide removed. When bright annealing is used, descaling is not necessary.

### 5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 1. One test is required for each lot as defined in Specification SB-751.

**TABLE 1 Chemical Requirements** 

Element	UNS N08925	UNS N08354	UNS N08926
	0100 11000325	0100 11000004	0113 1100320
Carbon, max	0.020	0.030	0.020
Manganese, max	1.00	1.00	2.00
Phosphorus, max	0.045	0.030	0.03
Sulfur, max	0.030	0.010	0.01
Silicon, max	0.50	1.00	0.5
Nickel	24.0 to 26.0	34.0 to 36.0	24.00 to 26.00
Chromium	19.0 to 21.0	22.0 to 24.0	19.00 to 21.00
Molybdenum	6.0 to 7.0	7.0 to 8.0	6.0 to 7.0
Copper	0.8 to 1.5		0.5 to 1.5
Nitrogen	0.1 to 0.2	0.17 to 0.24	0.15 to 0.25
Iron	balance	balance	balance

**TABLE 2 Mechanical Properties** 

Alloy	Temper	Tensile Strength, min, psi (MPa)	Yield Strength, 0.2 % offset, min, psi (MPa)	Elongation in 2 in. or 50 mm (or 4D), min, %
UNS N08925	solution annealed	87 (600)	43 (295)	40
UNS N08354	solution annealed	93 (640)	43 (295)	40
UNS N08926	solution annealed	94 (650)	43 (295)	35

5.2 If a product analysis is performed, it shall meet the chemistry limits prescribed in Table 1, subject to the analysis tolerances of Specification SB-751.

### 6. Mechanical and Other Properties

- 6.1 *Mechanical Properties*—The material shall conform to the mechanical property requirements specified in Table 2. One test is required for each lot as defined in Specification SB-751.
- 6.2 Flattening Test—A flattening test shall be made on each end of one tube per lot. Superficial ruptures resulting from surface imperfections shall not be cause for rejection.
- 6.3 Flange Test—A flange test shall be made on each end of one tube per lot.
  - 6.4 Nondestructive Test Requirements:
- 6.4.1 Class I—Each piece in each lot shall be subject to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.

- 6.4.2 Class 2—Bach piece in each lot shall be subjected to a leak test and an electric test as follows:
- 6.4.2.1 Lak Test—Hydrostatic or pneumatic (air underwater).
- 6.4.2.2 *Electric Test*—Eddy current or ultrasonic.
- 6.5 The manufacturer shall have the option to test to Class 1 or 2 and select the nondestructive test methods, if not specified by the purchaser.

### 7. General Requirements

7.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification SB-751 unless otherwise provided herein.

### 8. Keywords

8.1 UNS N08925; UNS N08354; UNS N08926; welded tube

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
### SB-675 SB-675 (Identical with ASTM Specification B676-02/2013) except certification is mandatory.) Asta for the formatting the SPECIFICATION FOR UNS N08367 WELDED PIPE



### SPECIFICATION FOR UNS N08367 WELDED PIPE



### **SB-675**

[Identical with ASTM Specification B 675-02(2013) except certification is mandatory.]

### Scope

- 1.1 This specification covers UNS N08367 welded pipe for general corrosion applications.
- **1.2** Specification B 775 lists the dimensions of welded stainless steel pipe as shown in ANSI B36.19. Pipe having other dimensions may be furnished provided such pipe complies with all other requirements of this specification.
- **1.3** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- **1.4** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/ material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### **Referenced Documents**

- **2.1** ASTM Standards:
- B 775 Specification for General Requirements for Nickel and Nickel Alloy Welded Pipe
- B 899 Terminology Relating to Non-ferrous Metals and Alloys

### **Terminology** 3.

**3.1** Terms defined in Terminology B 899 shall apply unless otherwise defined in this standard.

### General Requirement

Material furnished in accordance with this specification shall conform to the applicable requirements of the current edition of Specification B 775 unless otherwise provided herein.

### 5. Classification

- Zection II Part B 20% **5.1** Class 1 — Welded, cold worked, solution treated, and each piece of each lot subjected to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.
- **5.2** Class 2 Welded, cold worked, solution treated, and each piece of each lot leak tested (hydrostatic or pneumatic) plus electric tested (eddy current or ultrasonic).

### Ordering Information

- **6.1** It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
  - **6.1.1** Alloy name or UNS number,
  - **6.1.2** ASTM designation and year of issue,
  - **6.1.3** Dimensions:
    - **6.1.3.1** Pipe size,
    - **6.1.3.2** Length (specific or random),
  - **6.1.4** Class (see Section 5),
  - **6.1.5** Quantity (feet or number of pieces),
  - **6.1.6** Certification Certification is required,
- **6.1.7** Samples for Product (Check) Analysis State whether samples for product (check) analysis should be furnished, and
- **6.1.8** *Purchaser Inspection* If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

### Material and Manufacture

7.1 Pipe shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final solution treatment, Class 1 and Class 2 material shall be cold worked either in both weld and base metal or in weld metal only.

NOTE 1 — The recommended heat treatment shall consist of heating to a minimum temperature of 2025°F (1105°C) for UNS N08367 and quenching in water or rapidly cooling by other means.

**7.2** Pipe shall be furnished with oxide removed. When solution treatment is performed in a protective atmosphere, descaling is not necessary.

### 8. Chemical Composition

- **8.1** The material shall conform to the requirements as to chemical composition prescribed in Table 1. One test is required for each lot as defined in Specification B 775.
- **8.2** If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations specified in Specification B 775.

### 9. Mechanical Properties and Other Requirements

**9.1** *Mechanical Properties* — The material shall conform to the mechanical properties prescribed in Table 2. One test is required for each lot as defined in Specification B 775.

### **9.2** Flattening Test Requirements:

- **9.2.1** Flattening test specimens shall show no cracks or breaks on the inside, outside, or end surfaces during the first step of the test.
- **9.2.2** Evidence of laminated or unsound material or of incomplete weld that is revealed during the entire flattening test shall be cause for rejection.
- **9.2.3** Surface imperfections not evident in the test specimens before flattening, but revealed during the first step of the flattening test, shall be judged in accordance with the finish requirements.
- 9.2.4 Superficial ruptures resulting from surface imperfections shall not be cause for rejection.

TABLE 1
CHEMICAL REQUIREMENTS

Element	Composition Limits, %, N08367
Carbon	0.030 max
Manganese	2.00 max <b></b>
Phosphorus	0.040 max
Sulfur	0.030 max
Silicon	1,00 max
Chromium	20.00–22.00
Nickel	23.50–25.50
Molybdenum	6.00–7.00
Nitrogen	0.18–0.25
Iron ^A	balance
Copper	0.75 max

^A Iron shall be determined arithmetically by difference.

### TABLE 2 MECHANICAL PROPERTIES

Type	Gage	Tensile Strength, min, ksi (MPa)	Yield Strength, (0.2% Offset), min, ksi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i> ), min, %
N08367	$\leq \frac{3}{16}$	100 (690)	45 (310)	30
	$> \frac{3}{16}$	95 (655)	45 (310)	30

### **9.3** *Nondestructive Test Requirements:*

**9.3.1** Pipe shall be subjected to a pressure test or nondestructive electric test in accordance with Specification B 775.

### 10. Keywords

**10.1** UNS N08367; welded pipe

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
### SB-676 SB-676 SB-676 (Identical with ASTM Specification B676-03(20)34) except that certification has been made mandatory.) STANDARD SPECIFICATION FOR UNS NO8367 WELDED TUBE SB-676 (Identical with ASTM Specification B676-03(2014) except that certification has been made mandatoms)



### STANDARD SPECIFICATION FOR UNS N08367 WELDED TUBE



### **SB-676**

[Identical with ASTM Specification B 676-03(2014) except certification has been made mandatory.]

### 1. Scope

- **1.1** This specification covers UNS N08367 welded tube for general corrosion applications.
- **1.2** This specification covers outside diameter and nominal wall tube.
- **1.2.1** The tube sizes covered by this specification are  $\frac{1}{8}$  to 5 in. (3.2 to 127 mm) in outside diameter and 0.015 to 0.320 in. (0.38 to 8.13 mm), inclusive, in wall thickness.
- **1.3** The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### 2. Referenced Documents

- **2.1** ASTM Standards:
- A 1016/A 1016M Specification for General Requirements for Ferritic Alloy Steel, Austentic Alloy Steel, and Stainless Steel Tubes
- B 751 Specification for General Requirements for Nickel and Nickel Alloy Welded Tube
- B 899 Terminology Relating to Non-ferrous Metals and Allovs

### Terminology

**3.1** Terms defined in Terminology B 899 shall apply unless otherwise defined in this standard.

### 4. General Requirement

**4.1** Material furnished in accordance with this specification shall conform to the applicable requirements of Specification B 751 unless otherwise provided herein.

### 5. Classification <

- **5.1** Class 1 Welded, cold worked, solution treated, and each piece of each lot subjected to one of the following four tests: hydrostatic, pneumatic (air underwater), eddy current, or ultrasonic.
- **5.2** Class 2 Welded, cold worked, solution treated, and each piece of each lot leak tested (hydrostatic or pneumatic) plus electric tested (eddy current or ultrasonic).

### 6. Ordering Information

- **6.1** It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
  - **6.1.1** Alloy name or UNS number,
  - **6.1.2** ASTM designation and year of issue,
  - **6.1.3** Dimensions:
- **6.1.3.1** Outside diameter and nominal wall thicknesses,

NOTE 1 — Tube produced to outside diameter and minimum wall thickness may be furnished upon agreement between the manufacturer and the purchaser.

- **6.1.3.2** Length (specific or random),
- **6.1.4** Class (Section 5),
- **6.1.5** Quantity (feet or number of pieces),
- **6.1.6** Certification— Certification is required,

TABLE 1
CHEMICAL REQUIREMENTS

	Composition Limits, %
Element	N08367
Carbon	0.030 max
Manganese	2.00 max
Silicon	1.00 max
Phosphorus	0.040 max
Sulfur	0.030 max
Chromium	20.00 to 22.00
Nickel	23.50 to 25.50
Molybdenum	6.00 to 7.00
Nitrogen	0.18 to 0.25
Iron ^A	Remainder
Copper	0.75 max

⁴ Iron shall be determined arithmetically by difference.

- **6.1.7** Samples for Product (Check) Analysis— State whether samples for product (check) analysis should be furnished, and
- **6.1.8** *Purchaser Inspection* If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state indicating which tests or inspections are to be witnessed.

### 7. Material and Manufacture

- **7.1** Tube shall be made from flat-rolled alloy by an automatic welding process with no addition of filler metal. Subsequent to welding and prior to final solution treatment Class 1 and Class 2 material shall be cold worked either in both weld and base metal or in weld metal only.
- NOTE 2 The recommended heat treatment shall consist of heating to a minimum temperature of 2025°F (1105°C) for Type N08367 and quenching in water or rapidly cooling by other means.
- **7.2** Tube shall be furnished with oxide removed. When solution treatment is performed in a protective atmosphere descaling is not necessary.

### 8. Chemical Composition

**8.1** The material shall conform to the requirements as to chemical composition prescribed in Table 1. One test is required for each lot as defined in Specification B 751.

**8.2** If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations specified in Specification B 751 Table 2.

### 9. Mechanical Properties and Other Requirements

- **9.1** *Mechanical Properties* The material shall conform to the mechanical properties prescribed in Table 2. One test is required for each lot as defined in Specification B 751.
  - **9.2** Flattening Test Requirements:
- **9.2.1** One flattening test per lot shall be performed in accordance with Specification B 751.
  - 9.3 Flange Test Requirements
- **9.3.1** Flange test specimens shall show no cracking or flaws.
- **9.3.2** For tube less than 0.093 in. (2.36 mm) in inside diameter and tube having a wall thickness equal to or greater than the inside diameter, the flange test shall not be required.
  - **9.4** Reverse-Bend Requirements:
- **9.3.1** One reverse-bend test as defined in Specification A 1016/A 1016M shall be performed on each lot of tubing.
- **9.4.2** Reverse-bend test specimens shall show no evidence of cracks or lack of penetration in the weld, or of overlaps resulting from the reduction in thickness of the weld areas by cold working.
- **9.4.3** The reverse-bend test is not applicable when the specified wall is 10% or more of the specified outside diameter, or the wall thickness is 0.134 in. [3.4 mm] or greater, or the outside diameter size is less than 0.375 in. [9.5 mm]. Under these conditions the reverse flattening test of Specification A 1016/A 1016M shall apply.
- **9.4.4** The lot definition for the reverse-bend test shall be 1500 ft [450 m] of finished tubing.
  - **9.5** *Nondestructive Test Requirements:*
- **9.5.1** Tube shall be subjected to a pressure test or nondestructive electric test in accordance with Specification B 751.

TABLE 2
MECHANICAL PROPERTIES

Туре	Condition (Temper)	Gage	Tensile Strength, min, ksi (MPa)	Yield Strength, 0.2% Offset, min, ksi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i> ), min, %
N08367	Solution treated (Class 1 and Class 2)	$\leq \frac{3}{16}$ > $\frac{3}{16}$	100 (690) 95 (655)	45 (310) 45 (310)	30 30

Sentander and oc. com. chek to her the full poly of a sent above. He has he had been a sent and oc. com. chek to her the full poly of a sent above.

## SPECIFICATION FOR NICKEL-IRON-OF CHROMIUM-MOLYBDENUM AND IRON-NICKEL-CHROMIUM-MOLYBDENUM-COPPER SEAMLESS PIPE AND TUBE



SB-677

**(23**)

(Identical with ASTM Specification 8677-21 except the compositions of Ni and Cr for alloy N08354 have been corrected.)

### Specification for Nickel-Iron-Chromium-Molybdenum and Iron-Nickel-**Chromium-Molybdenum-Copper Seamless Pipe and Tube**

### 1. Scope

- 1.1 This specification covers UNS N08925, UNS N08354, and UNS N08926 seamless, cold-worked or hot-finished pipe and tube intended for general corrosive service.
- 1.2 ASTM International has adopted definitions whereby some grades, such as UNS N08904 previously in this specification, were recognized as stainless steels, because those grades have iron as the largest element by mass percent. Such grades are under the oversight of ASTM Committee A01 and its subcommittees. The products of N08904 previously covered in this specification are now covered by Specifications A269 and A312/A312M.
- 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability
- Jin DS) ft ver, to es. val practices, aimitations prior international stana n internationally recog. established in the Decis copment of International Standations issued by the World Tradarriers to Trade (TBT) Committee. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical

### 2. Referenced Documents

2.1 ASTM Standards:

stion II part B 202 A269 Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service

A312/A312M Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes

B829 Specification for General Requirements for Nickel and Nickel Alloys Seamless Pipe and Tube

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

### 3. Terminology

- 3.1 average diameter, n—the average of the maximum and minimum outside diameters as determined at any one cross section of the tube or pipe.
- 3.2 pipe, h—seamless tube conforming to the particular dimensions commercially known as standard pipe sizes.
- 3.3 tube, n—a hollow product of round or any other cross section having a continuous periphery.

### 4. General Requirements

4.1 Material furnished under this specification shall conform to the requirements of Specification B829 unless otherwise provided herein. In the case of conflict, the requirements of this specification shall take precedence.

### 5. Ordering Information

- 5.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
  - 5.1.1 Alloy name or UNS number.
  - 5.1.2 ASTM designation and year of issue.
  - 5.1.3 Finish.

TABLE 1 Chemical Requirements

Element	UNS N08925	UNS N08926	UNS N08354
Carbon, max	0.020	0.020	0.030
Manganese, max	1.0	2.00	1.00
Phosphorus, max	0.045	0.03	0.030
Sulfur, max	0.030	0.01	0.010
Silicon, max	0.50	0.5	1.00
Nickel	24.0 to 26.0	24.00 to 26.00	34.0 to 36.0
Chromium	19.0 to 21.0	19.00 to 21.00	22.0 to 24.0
Molybdenum	6.0 to 7.0	6.0 to 7.0	7.0 to 8.0
Copper	0.8 to 1.5	0.5 to 1.5	
Nitrogen	0.1 to 0.2	0.15 to 0.25	0.17 to 0.24
Iron	balance	balance	balance

### **TABLE 2 Mechanical Properties of Pipe and Tube**

Alloy	Temper	Tensile Strength, min, ksi (MPa)	Yield Strength, 0.2 % offset, min, ksi (MPa)	Elongation in 2 in. or 50 mm (or 4 <i>D</i> ), min, %
UNS N08925	solution annealed	87 (600)	43 (300)	40
UNS N08354	solution annealed	93 (640)	43 (295)	40
UNS N08926	solution annealed	94 (650)	43 (295)	35
-				

- 5.1.4 Dimensions:
- 5.1.4.1 *Tube*—Outside diameter and the average or minimum wall thickness.
  - 5.1.4.2 *Pipe*—Standard pipe size and schedule.
  - 5.1.4.3 *Length* (cut to length or random).
  - 5.1.5 Quantity (feet or number of pieces).
  - 5.1.6 Nondestructive Testing (see 8.2):
- 5.1.6.1 *Pressure Requirements*—Test pressure if other than required by 8.2.1.
  - 5.1.6.2 Specify if an electric test is to be performed.
- 5.1.7 *Ends*—Plain ends cut and deburred will be furnished. If threaded ends or ends beveled for welding are desired, give details.
  - 5.1.8 Certification—State if certification is required.
- 5.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished (see 7.2).
- 5.1.10 *Purchaser Inspection*—If the purchaser wishes to witness tests or inspection of material at the place of manufacture, the purchase order must so state, indicating which tests or inspections are to be witnessed.

### 6. Materials and Manufacture

6.1 The material shall be supplied in the solution-treated condition.

Note 1—The recommended heat treatment shall consist of heating to a temperature of 2010 to 2100°F (1100 to 1150°C) for UNS N08925 and UNS N08926, followed by quenching in water or rapid cooling by other means.

### 7. Chemical Composition

- 7.1 The material shall conform to the requirements as to chemical composition prescribed in Table 1. One test is required for each lot as defined in Specification B829.
- 7.2 If a product (check) analysis is performed by the purchaser, the material shall conform to the product (check) analysis variations per Specification B829.

### 8. Mechanical Properties and Other Requirements

- 8.1 *Mechanical Properties*—The material shall conform to the mechanical properties prescribed in Table 2. One test is required for each lot as defined in Specification B829.
- 8.2 *Nondestructive Tests*—Each pipe and tube shall be subjected to either a hydrostatic test or a nondestructive electric test as described in Specification B829. The purchaser may specify which test is to be used.
- 8.2.1 *Hydrostatic Test*—The fiber stress for the purpose of calculating the hydrostatic test pressure shall be 20 000 psi (138 MPa).

### 9. Dimensions and Permissible Variations

9.1 The permissible variations in dimensions set forth in Specification B829 shall apply.

### 10. Keywords

10.1 N08354; N08925; N08926; seamless pipe; seamless tube

INTENTIONALLY CERT, HE ASHIE BENCE SOCIETY IN THE THE POP OF CHARGE IN 
### SPECIFICATION FOR CHROMIUM-NICKEL-MOLYBDENUM-IRON (UNS N08366 AND UNS N08367) PLATE, SHEET, AND STRIP



**SB-688** 

(Identical with ASTM Specification B688-96(20)4) except certification has been made mandatory, and heat treatment has been specified.)

has been specified.)

click to rearrange the specified of 
### SPECIFICATION FOR CHROMIUM-NICKELtion II Part B 20 MOLYBDENUM-IRON (UNS N08366 AND UNS N08367) PLATE, SHEET, AND STRIP



### **SB-688**

[Identical with ASTM Specification B 688-96(2014), except certification has been made mandatory, and heat treatment has been specified.]

### 1. Scope

- 1.1 This specification covers chromium-nickel-molybdenum-iron UNS N08366 and UNS N08367 plate, sheet, and strip for use in corrosive service and heat-resisting applications.
- 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
- **1.3** This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

### **Referenced Documents**

- **2.1** ASTM Standards:
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 10 Test Method for Brinell Hardness of Metallic Mate-
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys
- E 140 Hardness Conversion Tables for Metals
- E 354 Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

### Terminology

- **3.1** Descriptions of Terms Specific to This Standard:
- **3.1.1** sheet material under  $\frac{3}{16}$  in. (5 mm) in thickness and 24 in. (610 mm) and over in width.
- **3.1.2** strip material under  $\frac{3}{16}$  in. (5 mm) in thickness and under 24 in. (610 mm) in width.
- **3.1.3** plate material  $\frac{3}{16}$  in. (5 mm) and over in thickness and over 10 in. (254 mm) in width.

### **Ordering Information**

- **4.1** Orders for material under this specification shall include the following information, as required:
  - **4.1.1** Quantity (feet, metres, or number of pieces),
  - **4.1.2** Alloy name or UNS number,
  - **4.1.3** Finish (hot-rolled or cold-rolled),
- **4.1.4** Dimensions (thickness, width, and length if cut-length),
  - 4.1.5 Certification,
  - **4.1.6** Purchaser's inspection, if required,
  - **4.1.7** ASTM designation and year of issue, and
  - **4.1.8** Samples for product analysis, if required.

### Chemical Composition

- **5.1** The material shall conform to the composition limits specified in Table 1.
- **5.2** If a product (check) analysis is made by the purchaser, the material shall conform to the permissible variations for product (check) analysis in Table 1.

TABLE 1
CHEMICAL REQUIREMENTS

	Compositio	n Limits, %	Product (Check) Analysis Variations, under min or over max, of the Specified Limit
Element	N08366	N08367	of Element, %
Carbon	0.035 max	0.030 max	0.005
Manganese	2.00 max	2.00 max	0.04
Silicon	1.00 max	1.00 max	0.05
Phosphorus	0.040 max	0.040 max	0.005
Sulfur	0.030 max	0.030 max	0.005
Chromium	20.00 to 22.00	20.00 to 22.00	0.25
Nickel	23.50 to 25.50	23.50 to 25.50	0.20
Molybdenum	6.00 to 7.00	6.00 to 7.00	0.15
Nitrogen		0.18 to 0.25	0.01
$Iron^A$	Remainder	Remainder	
Copper		0.75 max	0.04

⁴ Iron shall be determined arithmetically by difference.

TABLE 2
MECHANICAL PROPERTIES FOR PLATE, SHEET, AND STRIP

•		
	N08366	N08367
Yield strength, 0.2% offset, min, ksi (MPa)	35 (240)	45 (310)
Tensile strength, min, ksi (MPa) $\leq \frac{3}{16}$ in. (4.8 mm), thick	75 (515)	100 (690)
> ³ / ₁₆ III. (4.8 IIIII), triick	75 (515) 75 (515)	95 (655)
Elongation in 2 in. or 50 mm or 4 <i>D</i> , min, %	30 ^A	Q 30 ^A
Hardness, ^B max	(1)	
$\leq \frac{3}{16}$ in. (4.8 mm) thick	95 HRB	100 HRB
> ³ / ₁₆ (4.8 mm)	212 HBN	240 HBN

⁴ Not applicable for thickness under 0.015 in. (0.40 mm).

### 6. Mechanical Properties and Other Requirements

- **6.1** The material shall conform to the mechanical property requirements specified in Table 2.
- **6.2** Material shall be annealed at 2025°F (1105°C) minimum and rapidly cooled.

### 7. Dimensions and Permissible Variations

- **7.1** Sheet Material shall conform to the variations specified in Tables 3 to 9, inclusive. There will be no flatness requirements for non-stretcher leveled sheet.
- **7.2** Strip Material shall conform to the variations specified in Tables 10 to 13, inclusive. Note that strip of

TABLE 3
PERMISSIBLE VARIATIONS IN THICKNESS FOR HOTROLLED SHEETS IN CUT LENGTHS, COLD-ROLLED
SHEETS IN CUT LENGTHS, AND COILS

	Permissible Variations, Plus and Minus	
Specified Thickness, A in. (mm)	in.	mm
Over 0.145 (3.68) to less than ${}^{3}\!_{16}$ (4.76) Over 0.130 (3.30) to 0.145 (3.68), incl Over 0.114 (2.90) to 0.130 (3.30), incl Over 0.098 (2.49) to 0.114 (2.90), incl Over 0.083 (2.11) to 0.098 (2.49), incl Over 0.072 (1.83) to 0.083 (2.11), incl Over 0.058 (1.47) to 0.072 (1.83), incl Over 0.040 (1.02) to 0.058 (1.47), incl Over 0.026 (0.66) to 0.040 (1.02), incl Over 0.016 (0.41) to 0.026 (0.66), incl Over 0.007 (0.18) to 0.016 (0.41), incl	0.014 0.012 0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002	0.36 0.30 0.25 0.23 0.20 0.18 0.15 0.13 0.10 0.08
Over 0.005 (0.13) to 0.007 (0.18), incl 0.005 (0.13)	0.0015 0.001	0.04

 $^{^{4}\,\}rm Thickness$  measurements are taken at least  $_{8}^{3}$  in. (9.52 mm) from the edge of the sheet.

TABLE 4
PERMISSIBLE VARIATIONS IN WIDTH AND LENGTH
FOR HOT-ROLLED AND COLD-ROLLED RESQUARED
SHEETS (STRETCHER LEVELED STANDARD OF
FLATNESS)

	Tolerances		
	Plus		
Specified Dimensions, in. (mm)	in.	mm	Minus
For thickness under 0.131 (3.33):			
Widths up to 48 (1219) excl	1/16	2	0
Widths 48 (1219) and over	1/8	3	0
Lengths up to 120 (3048) excl	1/16	2	0
Lengths 120 (3048) and over	1/8	3	0
For thicknesess 0.131 (3.33) and over:			
All widths and lengths	1/4	6	0

TABLE 5
PERMISSIBLE VARIATIONS IN WIDTH FOR HOTROLLED AND COLD-ROLLED SHEETS NOT RESQUARED
AND COLD-ROLLED COILS

	Tolerances for Speci in. (mm)		
Specified Thickness, in. (mm)	24 (610) to 48 (1219), excl	48 (1219) and Over	
Less than $\frac{3}{16}$ (4.76)	¹/ ₁₆ (2) plus 0 Minus	½ (3) plus 0 Minus	

^B Hardness values (Brinell, Rockwell, or equivalent) are informative only and are not to be construed as the basis for acceptance or rejection.