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NOTICE

All Performance Test Codes must adhere to the requirements of ASME PTC 1, General Instructions. The following infor-
mation isbasedon thatdocumentand is includedhere foremphasisand for theconvenienceof theuserof theSupplement.
It is expected that the Code user is fully cognizant of Sections 1 and 3 of ASME PTC 1 and has read them prior to applying
this Supplement.

ASME Performance Test Codes provide test procedures that yield results of the highest level of accuracy consistent with
the best engineering knowledge and practice currently available. They were developed by balanced committees rep-
resenting all concerned interests and specify procedures, instrumentation, equipment-operating requirements, calcula-
tion methods, and uncertainty analysis.

When tests are run in accordance with a code, the test results themselves, without adjustment for uncertainty, yield the
best available indication of the actual performance of the tested equipment. ASMEPerformanceTest Codes donot specify
means to compare those resultswith contractual guarantees. Therefore, it is recommended that the parties to a commer-
cial test agree before starting the test and preferably before signing the contract on themethod to be used for comparing
the test results with the contractual guarantees. It is beyond the scope of any code to determine or interpret how such
comparisons shall be made.
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FOREWORD

InMarch1979, the PerformanceTest Codes SupervisoryCommittee activated thePTC19.1 Committee to revise a 1969
draft of the document PTC 19.1, General Considerations. The PTC 19.1 Committee proceeded to develop a Performance
Test Code Instruments andApparatus Supplement published in 1985 as PTC 19.1-1985,Measurement Uncertainty. This,
along with its subsequent editions, was intended to provide a means to standardize nomenclature, symbols, and meth-
odology of measurement uncertainty in ASME Performance Test Codes.
Work on the revision of the original 1985 edition began in 1991with the two-fold objective of improving its usefulness

to the reader through greater clarity, conciseness, and technical treatment of the evolving subject matter; and harmo-
nizing with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM). ASME published PTC
19.1-1998 as Test Uncertainty, the new title reflecting the appropriate orientation of the document.
The effort to update the 1998 revision began immediately upon completion of that document. The 2005 revision was

notable for the following significant departures from the 1998 text:
(a) ASME PTC 19.1-2005 adopted nomenclature more consistent with ISO/IEC Guide 98-3. Uncertainties remained

conceptualized as “systematic” (estimate of the effects of fixed error not observed in the data) and “random” (estimate of
the limits of the error observed from the scatter of the test data). Both types of uncertainty were defined at the standard-
deviation level as “standard uncertainties.” The determination of an uncertainty at some level of confidencewas based on
the root-sum-squareof the systematic andrandomstandarduncertaintiesmultipliedby theappropriate expansion factor
for the desired level of confidence (usually “2” for 95%). This same approach was used in the 1998 revision, but the
characterizationof uncertainties at the standard-uncertainty level (“standarddeviation”)wasnot as explicitly stated. The
new nomenclature was expected to render ASME PTC 19.1-2005 and subsequent revisions more acceptable to an inter-
national audience.
(b) There was greater discussion of the determination of systematic uncertainties.
(c) Text was added on a simplified approach to determine the uncertainty of straight-line regression.
For this 2018revision, the significant changesare theadditionof theMonteCarlomethod forpropagatinguncertainties

and the use of multiple test results to obtain an estimate of the random uncertainty of the result. A detailed example that
illustratesall aspects ofuncertaintyanalysis is includedasa separate section in thedocument. This sectionshowsboth the
Taylor seriesmethod and theMonte Carlomethod for propagating uncertainties. This new section replaces the examples
section that was included in previous versions of the document.
This Standard is available for public review on a continuing basis. This provides an opportunity for additional public-

review input from industry, academia, regulatory agencies, and the public-at-large.
ASME PTC 19.1-2018 was approved by the PTC Standards Committee on March 28, 2018, and was approved as an

American National Standard by the ANSI Board of Standards Review on September 20, 2018.
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CORRESPONDENCE WITH THE PTC COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned
interests. As such, users of this Codemay interact with the Committee by requesting interpretations, proposing revisions
or a case, and attending Committee meetings. Correspondence should be addressed to:

Secretary, PTC Standards Committee
The American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016-5990
http://go.asme.org/Inquiry

Proposing Revisions. Revisions are made periodically to the Code to incorporate changes that appear necessary or
desirable, as demonstrated by the experience gained from the application of the Code. Approved revisions will be
published periodically.
The Committee welcomes proposals for revisions to this Code. Such proposals should be as specific as possible, citing

the paragraphnumber(s), the proposedwording, and adetaileddescription of the reasons for the proposal, including any
pertinent documentation.

Proposing a Case. Casesmay be issued to provide alternative rules when justified, to permit early implementation of
an approved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effective
immediately upon ASME approval and shall be posted on the ASME Committee web page.
Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the

Code and the paragraph, figure, or table number(s), and bewritten as aQuestion andReply in the same format as existing
Cases. Requests for Cases should also indicate the applicable edition(s) of the Code to which the proposed Case applies.

Interpretations. Upon request, the PTC Standards Committeewill render an interpretation of any requirement of the
Code. Interpretations can only be rendered in response to a written request sent to the Secretary of the PTC Standards
Committee.
Requests for interpretation should preferably be submitted through the online Interpretation Submittal Form. The

form is accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive an
automatic e-mail confirming receipt.
If the Inquirer is unable to use the online form, he/she may mail the request to the Secretary of the PTC Standards

Committee at the above address. The request for an interpretation should be clear and unambiguous. It is further rec-
ommended that the Inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry in one or two words.
Edition: Cite the applicable edition of the Code for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for

general understanding and use, not as a request for an approval of a proprietary design or
situation. Please provide a condensed andprecise question, composed in such away that a
“yes” or “no” reply is acceptable.

Proposed Reply(ies): Provide a proposed reply(ies) in the form of “Yes” or “No,” with explanation as needed. If
entering replies to more than one question, please number the questions and replies.

Background Information: Provide the Committee with any background information that will assist the Committee in
understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or
information.

Requests that arenot in the format describedabovemaybe rewritten in the appropriate formatby theCommitteeprior
to being answered, which may inadvertently change the intent of the original request.
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Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or
understandingof theCoderequirements. If, basedon the inquiry informationsubmitted, it is theopinionof theCommittee
that the Inquirer should seek assistance, the inquiry will be returned with the recommendation that such assistance be
obtained.
ASMEprocedures provide for reconsideration of any interpretationwhen or if additional information thatmight affect

an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary
device, or activity.

Attending Committee Meetings. The PTC Standards Committee regularly holds meetings and/or telephone confer-
ences that are open to the public. Personswishing to attend anymeeting and/or telephone conference should contact the
Secretaryof thePTCStandardsCommittee. FutureCommitteemeetingdates and locations canbe foundon theCommittee
Page at http://go.asme.org/PTCcommittee.
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INTRODUCTION

Most sections in this revision of ASME PTC 19.1-2013 [1] have been rewritten to add to the available technology for
uncertainty analysis and tomake it easier for thepracticing engineer to use. The intent is to provide a standard that canbe
used easily by engineers and scientists with interest in the objective assessment of measured-parameter data quality
using test uncertainty analysis.
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Section 1
Object and Scope

1-1 OBJECT

The object of this Standard is to define, describe, and
illustrate the terms and methods used to provide mean-
ingful estimates of the uncertainty in test measurements,
parameters, and methods, and the effects of those uncer-
tainties on derived test results.

1-1.1 Objectives

An uncertainty analysis of test measurements, para-
meters, and methods is useful because it
(a) provides an objective estimate of the quality of test

data and results
(b) facilitates communication regarding measurement

and test results
(c) fosters an understanding of potential error sources

in a measurement system, and the effects of those poten-
tial error sources on test results
(d) guides the decision-making process for selecting

appropriate and cost-effective measurement systems
and methods
(e) reduces the risk of making erroneous decisions

based on test results
(f) documents uncertainty for assessing compliance

with test requirements
(g) substantiates the test uncertainty budget
When an uncertainty analysis is completed, a numerical

characterization of the quality of test results is available
with an appropriate level of confidence, typically 95%.

1-2 SCOPE

The scope of this Standard is to specify procedures for
(a) evaluation of uncertainties in test measurements,

parameters, and methods
(b) propagation of those uncertainties into the uncer-

tainty of a test result
Depending on the application, uncertainty sources may

be classified either by the presumed effect (systematic or
random) on the measurement or test result, or by the
process in which theymay be quantified or their pedigree
(Type A or Type B).

1-2.1 Uncertainty Propagation Methods

This Standard incorporates two internationally
accepted methods of propagating uncertainties in
measured parameters to a derived test result.

1-2.1.1 Taylor Series Method (TSM). This method of
propagation is consistent with ISO/IEC Guide 98-3
(GUM) [2]. The TSM requires the determination of sensi-
tivity coefficients for each input variable (how the result is
affected by variations in the input variables) and standard
uncertainties for each error source.

1-2.1.2 The Monte Carlo Method (MCM). This method
of propagation is consistent with JCGM 101 [3]. The MCM
requires estimation of probability distributions and stan-
dard uncertainties (standard deviations) for each error
source.
The distribution determined as the output of an MCM

analysis allows direct determination of the lower and
upper limitsof a coverage interval that containsaspecified
percentage of the distribution. Thus there are no addi-
tional assumptions required to arrive at an “expansion
factor,” as is necessary in the TSM approach, to obtain
a confidence interval estimate.

1-2.2 Uncertainty Propagation Classifications

This Standard uses two major classifications for errors
and uncertainties: systematic and random. The ISO GUM
uses adifferent classification foruncertainties: TypeAand
Type B.

1-2.2.1 Systematic. Systematic errors, whose effects
are estimated with “systematic standard uncertainties,”
do not cause scatter in test data.

1-2.2.2 Random. Random errors, whose effects are
estimated with “random standard uncertainties,” cause
scatter in test data.

1-2.2.3 ISO GUM Classification. The ISO GUM uses a
different classification:TypeAuncertainties are evaluated
with statisticalmethodsandTypeBuncertainties areeval-
uated using othermeans, such asmodels or judgment. The
terms identify the pedigree of the error sources.
The uncertainty of a test result is independent of

whether the elemental uncertainties are classified as
systematic or random, or as Type A or Type B. Regardless
of the uncertainty classification used, the calculated
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uncertainty of the result will be the same. While this Stan-
dard utilizes systematic and random terms, there may be
situations where it is useful to classify elemental uncer-
tainties by effect, source, or both.

1-3 APPLICATIONS

This Standard is intended to serve as a reference to
other supplements in the ASME PTC 19 Series and to
ASME performance test codes and standards in

general. In addition, it is applicable for all knownmeasure-
ment and test uncertainty analyses.
NOTE: The nominal values for the parameters and the uncer-
tainty levels used throughout this Standard are for illustrative
purposes only and are not intended to be typical of standard
tests. Values and uncertainty levels shall be evaluated for the
specific test and measurement system used.
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Section 2
Nomenclature and Glossary

2-1 NOMENCLATURE

2-1.1 Symbols

The following symbols are used in this Code:
BXk

= 95% confidence level estimate of the limits
associated with the kth elemental systematic
error source

bR = systematic standard uncertainty component
of a result

bX = systematic standard uncertainty component
of a measurand

bXk
= systematic standard uncertainty associated
with the kth elemental error source for a
measurand

bXns
= systematic standard uncertainty for nonsym-
metrical systematic error

bXY = covariance of the systematic errors in X and Y
N = sample size
sR = random standard uncertainty of a result
sX = standard deviation of a data sample of a

measurand; estimate of the standard devia-
tion of the population σx

sX
= random standard uncertainty of the mean of
N observations of a measurand

SEE = standard error of estimate of a least-squares
regression or curve fit

t = Student’s t value at a specified confidence
level with v degrees of freedom, i.e., t95,v

U = expanded uncertainty
U+, U− = upperandlower values of the nonsymmetrical

expanded uncertainty
u = combined standard uncertainty
X = individual observation in a data sample of a

measurand
X = sample mean; average of a set of N individual

observations of a measurand
β = true systematic error (unknown); fixed or

constant component of δ
βk = elemental systematic error
δ = total error (unknown); difference between

the assigned value of a parameter or a test
result and the true value

ε = true random error (unknown); random
component of δ

θ = absolute sensitivity
θ′ = relative sensitivity

μ = true average of a population (unknown)
ν = number of degrees of freedom
σ = true standard deviation of a population

(unknown)
σ2 = true variance of a population (unknown)

2-1.2 Indices
I = total number of variables
i = counter for variables
J = total number of sensors
j = counter for individual observations of a

measurand
K = total number of sources of elemental errors and

uncertainties
k = counter for sourcesof elemental errors anduncer-

tainties
L = total number of correlated sources of systematic

error
l = counter for correlated sources of systematic error
M = total number of multiple results
m = counter for multiple results
N = total number of observations of a measurand

2-2 GLOSSARY
calibration: the process of comparing the response of an
instrument to that of a standard instrument over some
measurement range.
calibration hierarchy: the established pedigree for a
measurement based on the chain of calibrations that
links or traces a measuring instrument to a primary stan-
dard.
combined standard uncertainty (u): the root-sum-square
combination of systematic and random standard uncer-
tainties for a measurement or result.
confidence level: the probability that the true value falls
within the specified limits.
degrees of freedom (ν): the number of independent obser-
vations used to calculate a statistic.
elemental random error source: an identifiable source of
random error that is a subcomponent of total random
error.
elemental random standard uncertainty (sXk

): an estimate
of the standard deviation of the mean of the kth elemental
random error source.
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elemental systematic error source (βk): an identifiable
source of systematic error that is a subcomponent of
the total systematic error.
elemental systematic standard uncertainty (bXk): a
constant value that estimates standard deviation of the
kth elemental systematic error source.
error: the difference between the observed value of the
measurand and its corresponding true value.
expanded uncertainty (U UorX R ): an estimate of the limits
of total error, with a defined level of confidence (usually
95%).
influence coefficient: see sensitivity.
mean (X): the arithmetic average of N readings of a
measurand.
measurand: the particular quantity that is beingmeasured
or estimated.
measurement uncertainty: the uncertainty associatedwith
a measurand. It is an estimate of the expected limits of
measurement error.
parameter: a quantity that can be measured from the best
available information—such as temperature, pressure,
stress, or specific heat—to determine a result. The
value used is called the assigned value.
population: the set of all possible values of a parameter.
population mean (μ): the average of the set of all popula-
tion values of a parameter.
population standard deviation (σ): a value that quantifies
the dispersion of a population.
quantity: the property of a phenomenon, body, or
substance that has a magnitude that can be expressed
as a number.
random error (ε): the portion of total error that varies
randomly in repeated measurements of the true value
throughout a test process.
random standard uncertainty of the sample mean (sX): a
value that quantifies the dispersion of a sample mean as
given by eq. (3-3-3).
result (R):a value calculated fromanumberof parameters.
sample size (N): the number of observations or values
available for a single measurand.
sample standard deviation (sX): a value that quantifies the
dispersion of a sample of measurements as given by
eq. (3-3-2). It is an estimate of the standard deviation
of the population σx.

sensitivity (θ): the rate of change in a result due to a change
in a variable evaluated at a desired test operating point.
standard error of estimate (SEE): the measure of disper-
sion of the dependent variable around a least-squares
regression or curve.
statistic: any numerical quantity derived from the sample
data. X and sX are statistics.
Student’s t value (t): the coverage factor to calculate
expandeduncertainty from the combined standarduncer-
tainty at a specified level of confidence with v degrees of
freedom, i.e., t95,v
systematic error (β): the portion of total error that remains
constant in repeated measurements of the true value
throughout a test process. It is a fixed or constant compo-
nent of δ (unknown).
systematic standard uncertainty (bX): a value that quan-
tifies the dispersion of a systematic error associated with
the mean.
test uncertainty: the uncertainty of a test result.
total error (δ): the unknown difference between the
measurement of a parameter or test result and its true
value.
traceability: see calibration hierarchy.
true value: the unknown, error-free value of a measurand
or test result.
Type A uncertainty: a class of uncertainties that use
measured data to calculate a standard deviation for
use in estimating the uncertainty.
Type B uncertainty: a class of uncertainties that do not use
measured data to calculate a standard deviation, thus
requiring the uncertainty to be estimated by other
methods.
uncertainty: the limits of errorwithinwhich the true value
lies.
uncertainty interval: an interval around a measurand or
test result that is expected to contain the true value with a
prescribed level of confidence.
variable: a quantity that can be assigned different values
that canbemeasuredorcounted. Itmaybecalculated from
a number of measurands.
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Section 3
Fundamental Concepts

3-1 ASSUMPTIONS

The assumptions inherent in test uncertainty analysis
include the following:
(a) the test objectives are specified
(b) the test process, including the measurement

process and the data reduction process, is defined
(c) the test process, with respect to the conditions of

the item under test and the measurement system
employed for the test, is controlled for the duration of
the test
(d) the measurement system is calibrated and all

appropriate calibration corrections are applied to the
resulting test data
(e) all appropriate engineering corrections are applied

to the test data as part of the data reduction and/or results
analysis process
In this Standard, there is a careful distinction between

the terms “error” and “uncertainty.” Error, discussed in
subsection 3-2, is the difference between a particular
quantity that is being measured or estimated, called
the “measurand,” and its corresponding true value. The
actual error of a measurement cannot be known but
its effect may be estimated. This estimate is called the
uncertainty. Uncertainty is an interval around a measure-
ment inwhich the true value of themeasurand is expected
to lie.
Uncertainty is not the error of the measurement but an

expression of the expected limits for the measurement
error at a chosen level of confidence. For expanded uncer-
tainty, 95% level of confidence has been used throughout
thisdocument inaccordancewithacceptedpractice.Other
confidence levels may be used, if required (see
Nonmandatory Appendix B).

3-2 MEASUREMENT ERROR

Everymeasurement has error, which results in a differ-
ence between the measured value, X, and the true value.
As Figure 3-2-1 illustrates, the difference between the
measured value and the true value is the total error, δ.
Since the true value is unknown, total error cannot be
known and therefore only its expected limits can be esti-
mated. Total error consists of two components: random
error and systematic error (see Figure 3-2-1). Reducing
measurement error requires reducing random and/or

systematic errors. The effect of controlling these error
components is highlighted in Figure 3-2-2.

3-2.1 Random Error

Random error, ε, is the portion of the total error that
varies in repeated measurements at a set test condition.
The total random error in a measurement is the combina-
tion of the contributions of several elemental random
error sources. Elemental random errors may arise
from uncontrolled test conditions and nonrepeatability
in the measurement system, measurement methods, en-
vironmental conditions, data reduction techniques, etc.
Random errors always cause variability (i.e., scatter) in
test data.

3-2.2 Systematic Error

Systematic error, β, is the portion of the total error that
remains constant in repeated measurements at a set test
condition. The total systematic error in a measurement is
the sum of the contributions of several elemental
systematic errors. Elemental systematic errors may
arise from imperfect calibration corrections, measure-
ment methods, environmental conditions, data reduction
techniques, etc. Systematic errors are always constant at a
set test condition and affect the measurand by the same
amount, so their effect cannot be seen in test data.

3-3 MEASUREMENT UNCERTAINTY

There is an inherent uncertainty in the use of measure-
ments to represent the true value. Measurement uncer-
tainty refers to the estimated effects of error. The
combined uncertainty in a measurement is the combina-
tion of uncertainty due to random error and uncertainty
due to systematic error. When these uncertainties are
evaluated at a standard deviation level, they are called
“standard” uncertainties.

3-3.1 Random Standard Uncertainty of a
Measurand

Any single measurement of a measurand is influenced
bymultiple elemental random error sources, εj. In succes-
sive measurements of a measurand, the values of these
elemental random errors change, resulting in the
scatter observed in successive measurements. If an
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infinite number of measurements of a measurand were to
be takenwith the defined test process, the resulting popu-
lation of measurements could be described statistically in
terms of the population mean, μ, the population standard
deviation, σ, and the frequency distribution of the popula-
tion. These terms are illustrated in Figure 3-3.1-1 for a
population of measurements that is normally distributed.
For measurements with zero systematic error (see
para. 3-2.2), the population mean is equal to the true
value of the measurand and the population standard
deviation is a measure of the scatter of the individual
measurements about the population mean. For a
normaldistribution, the intervalμ±σwill includeapproxi-
mately 68% of the population, and the interval μ ± 2σwill
include approximately 95% of the population.
Since at a set test condition only a finite number of

measurements are acquired, the population’s true
mean, μ, and true standard deviation, σ, are unknown
but can be estimated from sample statistics. The
sample mean, X , is only an estimate of the population
mean and is given by

= =
X

X

N
j

N
j

1
(3-3-1)

where
Ν = the number of measurements in the sample
Xj = the value of each individual measurement in the

sample

The sample standard deviation, sX, is only an estimate of
the population standard deviation and is given by

=
=

( )
s

X X

N 1X
j

N j

1

2
(3-3-2)

For a distributionofmeasurements, the standarddevia-
tion of the sample mean, SX , can be used to define the
probable interval around the sample mean that is
expected to contain the population mean. The standard
deviationof the samplemean is related to the sample stan-
dard deviation and is called the random standard uncer-
tainty:

=s
s

NX
X (3-3-3)

In general, increasing the number of measurements
collected at a set test condition is beneficial because
(a) it improves the sample mean as an estimator of the

true population mean
(b) it improves the sample standard deviation as an

estimator of the true population standard deviation
(c) it reduces the value of the random standard uncer-

tainty of the sample mean

Figure 3-2-1 Illustration of Measurement Errors
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Figure 3-2-2 Measurement Error Components

Figure 3-3.1-1 Population Distribution
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3-3.2 Systematic Standard Uncertainty of a
Measurand

Everymeasurement is influencedbymultiple elemental
systematic error sources, βk. In successive measurements
of a measurand at a set test condition, the values of these
elemental systematic errors do not change. They are
constant and therefore cannot be observed in collected
test data. If an infinite number of measurements of a
measurand were to be taken with the defined test
process, the resulting population mean would still be
in error due to the influence of these constant elemental
systematic errors. For measurements with zero random
error (seepara. 3-2.1), every successivemeasurementwill
be exactly the same but all will be in error by the sum total
of the elemental systematic errors that affect that
measurement.
Each elemental systematic error contributes to every

measurement affected by it in the same way at a set
test condition. Since these errors are constant for the
test, the error each imparts to an individual measurement
is equivalent to the error imparted to the average value of
successivemeasurements, X [as given by eq. (3-3-1)]. βXk
represents each elemental systematic error affecting the
average measurement where k denotes a specific
elemental error source. While βXk

is unknown, it can
be postulated to come from a population of possible
error values from which a single sample (error value)
is drawn and imparted as an unknown and constant
error to all the measurements and therefore to the
average measurement of each elemental measurand at
the test condition. Assuming or estimating the frequency
distribution and standard deviation of this population of
possible errors permits estimating the uncertainty of the
test measurement average due to this single sample
elemental systematic error. The elemental systematic
standard uncertainty, bXk, is defined as a constant
value that estimates the dispersion of the population
of possible βXk

values at the standard deviation level.
All of the elemental systematic errors affecting a

measurement combine to yield the total systematic
error, βX , in the measurement’s average. The total
systematic standard uncertainty, bX , is defined as a
constant value (at a set test condition) that estimates
the dispersion of the population of possible βX values
at the standard deviation level.
Typically, total systematic standard uncertainty is

quantified by
(a) identifying all significant elemental sources of

systematic error for the measurement
(b) evaluating elemental systematic standard uncer-

tainties as the standard deviations of the possible
systematic error distributions
(c) for the TSM, combining the elemental systematic

standard uncertainties into an estimate of the total
systematic standard uncertainty for the measurement

In general, reducing the total systematic uncertainty is
beneficial because
(a) it improves the sample mean as an estimator of the

true value
(b) it reduces the risk of significant shifts in sample

means from test to test if systematic errors change
(e.g., when equipment is changed out for alternate equip-
ment or is recalibrated)

3-3.2.1 Identifying Elemental Sources of Systematic
Error. Attempting to identify all of the significant
elemental sources of systematic error for a measurement
is an important step in an uncertainty analysis. Failure to
identify any significant sourceof systematic errorwill lead
to an underestimate of measurand uncertainty.
Attempting to identify all significant elemental sources
of systematic error requires a thorough understanding
of the test objectives and test process.

3-3.2.2 Evaluating Elemental Systematic Standard
Uncertainties. Once all significant elemental sources of
systematic error are identified, elemental systematic stan-
dard uncertainties for each source must be evaluated.
Since the elemental systematic standard uncertainty is
both constant and unknown at a given test condition,
successive measurements do not provide data for
direct computation of it using the standard deviation
described in para 3-3.1. Therefore, the evaluation of an
elemental systematic standard uncertainty requires
that a standard deviation be estimated from published
information, special data, or engineering judgment.
Note that the systematic and random errors in a cali-

bration result are systematic as to their effect on test data.
This is called “fossilization.” This allows the calibration
standard uncertainty to be one term in the combination
of the test systematic standard uncertainties. (The
random components in the calibration also become
systematic terms in the test process, as these error
sources do not add scatter to the test data as they did
to the calibration data.)

3-3.2.2.1 Published Information. For some
elemental systematic error sources, published informa-
tion from calibration reports, instrument specifications,
and other technical references may provide quantitative
information regarding the dispersion of errors for an
elemental systematic error source. The systematic uncer-
tainty may be described in terms of a confidence interval,
an ISO expanded uncertainty statement, or a multiple of a
standard deviation.
If the published information is presented as a confi-

dence interval (limits of error at a defined level of confi-
dence), then the elemental systematic standard
uncertainty is estimated as the confidence interval
divided by a statistic that is appropriate for the frequency
distribution of the error population. The specific value of
this statistic must be selected on the basis of the defined
confidence level and degrees of freedom associated with
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the confidence interval. For a normal distribution, the
Student’s t statistic is used. For a 95% confidence level
and large degrees of freedom, the value of the Student’s
t statistic is approximated as 2, and eq. (3-3-4) would
apply.

=b
B

2X
X

k
k (3-3-4)

where
BXk

= the published uncertainty assumed to be repre-
sented by normally distributed errors at a 95%
confidence level

bXk
= the systematic standard uncertainty in X for
source k

Refer to Nonmandatory Appendix B for values of the
Student’s t statistic at other confidence levels and
degrees of freedom. For situations in which the frequency
distribution and degrees of freedom are unspecified, a
uniform distribution and large degrees of freedom are
often assumed. For situations involving other frequency
distributions, refer to an appropriate statistics textbook.
If the published information is presented as an ISO

expanded uncertainty at a defined coverage factor,
then the elemental systematic standard uncertainty is
estimated as the expanded uncertainty divided by the
coverage factor.
If the published information is presented as a multiple

of a standard deviation (e.g., “2-sigma” or “3-sigma”), then
the elemental systematic standard uncertainty is esti-
mated as the multiple of the standard deviation
divided by the multiplier.

3-3.2.2.2 Special Test Data. Sometimes a separate,
special test is needed to estimate the systematic error
caused by a given source. An example is a nonuniform
flow effect on the determination of the average velocity
at a given location in a test article. In this case, the deter-
mination of the average velocity from a distribution of
measurements at that location can be used to estimate
the error when a smaller (probably more realistic)
number of measurements is used to determine the
average velocity at that location. Another example is
the determination of an average temperature of a
surface with a limited number of probes. If the surface
temperature is almost uniform at the test location,
then the average from the separate measurements will
approximate the true average. If the temperature is
not uniform due to heat conduction effects, then a
two- or three-dimensional heat conduction analysis
can be performed to estimate the error.

3-3.2.2.3 Engineering Judgment. It is often neces-
sary to rely upon engineering judgment to quantify the
dispersion of errors associated with an elemental error
source. In these situations, it is customary to use engi-
neering analyses and experience to estimate the limits

of the elemental systematic error. A population of possible
Xkvalues is chosenby theanalyst. The standarddeviation
of this population is the estimate of systematic standard
uncertainty for that error source.
In certain situations, knowledge of the physics of the

measurement system will lead the analyst to believe
that the limits of error are nonsymmetric (likely to be
larger in either the positive or negative direction). For
treatment of nonsymmetric systematic uncertainty, see
subsection 7-2.

3-3.2.3 Combining Elemental Systematic Standard
Uncertainties. Once evaluated, all of the elemental
systematic standard uncertainties influencing a measure-
ment are combined into an estimate of the total systematic
standard uncertainty for the measurement bX . Provided
all elemental systematic standard uncertainties are eval-
uated in terms of their influence on the measurand and in
the units of the measurand, these elemental systematic
s t a n d a r d u n c e r t a i n t i e s a r e c omb i n e d p e r
subsection 5-2 (using the TSM). Otherwise, these
elemental systematic standard uncertainties are
combined per subsection 6-4. In some cases, elemental
systematic standard uncertainties may arise from the
same elemental error source and are therefore correlated.
See subsection 7-1 for a detailed discussion.

3-3.3 Combined Standard Uncertainty and
Expanded Uncertainty

As previously discussed, the combined standard uncer-
tainty in ameasurement is the combination of uncertainty
due to random error and uncertainty due to systematic
error. The combined standarduncertainty of themeasure-
ment mean is calculated as follows (for TSM):

= +u b s( ) ( )X X X
2 2 (3-3-5)

where
bX = the systematic standard uncertainty of the

measurand
sX = the random standard uncertainty of the

measurand mean

The expanded uncertainty of the measurement mean is
the total uncertainty at a defined level of confidence. For
applications in which a 95% confidence level is appro-
priate, the expanded uncertainty is calculated as
follows (for TSM):

=U u2X X (3-3-6)

where the assumptions required for this simple equation
are presented in subsection 5-4.
Expanded uncertainty is used to establish a confidence

interval about the measurement mean that is expected to
contain the true value. Thus, the interval ±X UX is
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expected to contain the true value with a 95% level of
confidence, as seen in Figure 3-3.3-1.
Note that when using the MCM to determine an uncer-

tainty, the randomandsystematic errordistributionswith
the appropriate standard deviations (standard uncertain-
ties) are used to determine the combined distribution for
themeasurementor result. Thecombinedstandarduncer-
tainty is then the calculated standard deviation of that
distribution and the expanded uncertainty at a given
level of confidence determined from a coverage interval
of the distribution (see para. 6-4.3).

3-4 PRETEST AND POST-TEST UNCERTAINTY
ANALYSES

Although the analyst may be tempted to conduct an
uncertainty analysis only once, there are benefits to
conducting it both before and after the test, and then
comparing the two results.

3-4.1 Pretest Uncertainty Analysis

The objective of a pretest analysis is to establish the
expected uncertainty interval for a test result prior to
the conduct of a test. A pretest uncertainty analysis is
based on data and information that exist before the
test, such as calibration histories, previous tests with

similar instrumentation, prior measurement uncertainty
analyses, expert opinions, and, if necessary, special tests.
A pretest uncertainty analysis should be considered

because it allows preventive action to be taken prior
to expending resources to conduct a test. The benefits
of this proactive effort would be to make modifications
to the test process to decrease the expected uncertainty
to a level consistent with the overall test objectives, or to
reduce the cost of the test while still acceptably attaining
the objectives. Possible preventive actions include
(a) selecting alternative testingmethods that rely upon

different analysis procedures, testing under different
conditions, and/ormeasurement of different measurands
(b) selecting alternative measurement methods by

changing test instrumentation (type and/or quantity),
calibration techniques, installation methods, and/or
measurement locations
(c) changing sample sizes by changing sampling

frequencies, changing test duration, and/or changing
the number of repeat tests
(d) adjusting or substantiating test requirements
(e) reevaluating the test objectives
Additionally, a pretest uncertainty analysis facilitates

communication between all parties to the test about
the expected quality of the test. This can be essential
to establishing agreement on any deviations from

Figure 3-3.3-1 Uncertainty Interval
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applicable test code requirements and canhelp reduce the
risk that disagreements will surface after conducting the
test.

3-4.2 Post-test Uncertainty Analysis

The objective of a post-test analysis is to establish the
uncertainty interval for a test result after conducting a
test. In addition to the data and information used to
conduct the pretest uncertainty analysis, a post-test
uncertainty analysis is based upon the additional data
and information gathered for the test, including all test
measurements, pretest and post-test instrument calibra-
tion data, etc. A post-test uncertainty analysis is recom-
mended as it serves to
(a) validate the quality of the test result by demon-

strating compliance with test requirements

(b) facilitate communication of the quality of the test
result to all parties to the test
(c) facilitate interpretation of the quality of the test by

those using the test result
Additionally, a post-test uncertainty analysis serves to

validate thegoodnessof thepretestuncertaintyanalysis. If
the post-test uncertainty results are much larger than the
pretest uncertainty results, this may highlight an over-
sight of importance or a problemwith one ormore instru-
mentsor test processes. If thepost-test uncertainty results
aremuch smaller than the pretest uncertainty results, this
may highlight far too much conservatism in one or more
elements of the pretest analysis information. At a
minimum, disparities of significance deserve somediscus-
sion. There may be sound technical and/or business
reasons to further evaluate the differences and then
possibly take corrective action for future tests.

ASME PTC 19.1-2018

11

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME PTC 19
.1 

20
18

https://asmenormdoc.com/api2/?name=ASME PTC 19.1 2018.pdf


Section 4
Defining the Measurement Process

4-1 OVERVIEW

The first step in a test uncertainty analysis is to clearly
define the desired result and acceptable level of uncer-
tainty for the result. Typically, the result is determined
from multiple measured variables using a data reduction
equation (DRE). Considerationmust be given to the selec-
tion of the appropriate “true value” of eachmeasured vari-
able and the time interval for classifying errors as
systematic or random. This Section provides an overview
of how the measurement process should be defined.

4-2 SELECTION OF THE APPROPRIATE “TRUE
VALUE”

Depending on the user’s perspective, several measure-
ment objectives or goals and hence corresponding “true
values” (measurements with ideal zero error) of a
measurand may exist simultaneously in a measurement
process. For example, when analyzing a thermocouple
measurement in a gas stream, several starting points
or “true values” can be selected. The starting point for
the analysis could be the “true value” defined as the
metal temperature of the thermocouple junction, the
gas stagnation temperature or junction temperature
corrected for probe effects, or the mass flow-weighted
average of the gas temperature at the plane of the instru-
mentation. Any of the above “true values” may be appro-
priate. The selection of the “true value” for the uncertainty
analysis must be consistent with the goal of the measure-
ment [4].

4-3 IDENTIFICATION OF ERROR SOURCES

Once the true value for a measurand has been defined,
the errors associated with estimating the true value shall
be identified. Examples of error sources include imperfect
calibration corrections, uncontrolled test conditions,
measurement methods, environmental conditions, and
data reduction techniques. Estimates to quantify the
limits of these errors are represented as uncertainties.
These uncertainties in the measurement process can
be grouped by source.
(a) calibration uncertainty
(b) uncertainty due to test article and/or instrumenta-

tion installation
(c) data acquisition uncertainty

(d) data reduction uncertainty
(e) uncertainty due to methods and other effects

4-3.1 Calibration Uncertainty

Each measurement instrument may introduce random
and systematic uncertainties. The main purpose of the
calibrationprocess is to eliminate large, knownsystematic
errors and thus reduce the measurement uncertainty to
some “acceptable” level. Having decided on the “accept-
able” level, the calibration process achieves that goal by
exchanging the large systematic errors of an uncalibrated
or poorly calibrated instrument for the smaller combina-
tion of systematic errors of the standard instrument and
the random errors of the calibration. Calibrations are also
used to provide traceability to known reference standards
or physical constants, or both.
Requirements of military and commercial contracts

have led to the establishment of extensive hierarchies
of standards laboratories. In some countries, a national
standards laboratory is at the apex of these hierarchies,
providing the ultimate reference for every standards lab-
oratory. As shown in Figure 4-3.1-1, each additional level
in the calibration hierarchy adds uncertainty in the
measurement process.

4-3.2 Uncertainty Due to Test Article and/or
Instrumentation Installation

Test uncertainty can also arise from interactions
between either the test instrumentation and the test
media or the test article and the test facility.
(a) Interactions between the test instrumentation and

the test media
(1) Installation of sensors in the test media may

cause intrusive disturbance effects. An example is the
measurement of airflow in an air conditioning duct.
Depending on the design, the pitot static probe may
affect the measured total and static pressure and thus
the calculated airflow.

(2) Environmental effects on sensors/instrumenta-
tion may exist when the sensors experience environmen-
tal effects different from those observed during
calibration. These may include conduction, convection,
and radiation on a sensor when installed in a gas turbine.
(b) Interactions between the test article and the test

facility
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(1) Test facility limitations can affect uncertainty. An
example is an air conditioner bench tested in a laboratory
but used in an automotive mechanics shop. The effect of
the oily air can influence the quoted rating of the unit. A
second example is the testing of a gas turbine aircraft
engine in an altitude facility. The facility simulates altitude
by lowering the ambient pressure at the test article
exhaust and simulates forward speed by raising the
inlet pressure at the engine inlet above ambient pressure.
The facility inlet duct is of necessity significantly longer
than the normal aircraft flight intake and so its boundary
layer characteristics are significantly different. The engine
performance test results must be corrected to account for
this differencebetween the inlet duct in the facility and the
intake on the aircraft.

(2) Facility limitations for testingmay require extra-
polations to other conditions. An example is the testing of
an automotive engine. Although the fuel consumption of
an automotive engine changes with altitude and speed, an
automotive test facilitymayonlybeable to test at specified
altitudes and speeds. Effects at other altitude conditions
may need to be extrapolated.

4-3.3 Data Acquisition Uncertainty

Uncertainty in data acquisition systems can arise from
errors in the signal conditioning, the sensors, the
recording devices, etc. The best approach to minimizing
the effects of many of these error sources is to perform
overall system calibrations. By comparing known input
values with their measured results, estimates of the
data acquisition system uncertainty can be obtained.
However, it is not always possible to do this. In these

cases, it is necessary to evaluate each of the elemental
uncertainties and to combine them to predict the
overall uncertainty.

4-3.4 Data Reduction Uncertainty

Computations on raw data are often done to produce
output (data) in a formatmore easily used in results calcu-
lations or application of calibration corrections. Typical
error sources in this category stem from curve fits and
computational resolution. With the recent advances in
computer systems, the computational resolution error
sources are often negligible; however, curve fit error
canbesignificant.Otherexamplesofdata reductionuncer-
tainty include
(a) the assumptions or constants contained in the

calculation routines
(b) using approximating engineering relationships or

violating their assumptions
(c) using an empirically-derived correlation such as

empirical fluid properties
These additional uncertainties may be of either a

systematic or a random nature, depending on their
effect on the measurement.

4-3.5 Uncertainty Due to Methods and Other
Effects

Uncertainties due tomethods are defined as those addi-
tional uncertainty sources that originate from the techni-
ques or methods inherent in the measurement process.
These uncertainty sources—beyond those contained in
calibration, installation sources, data acquisition, and
data reduction—may significantly affect the uncertainty

Figure 4-3.1-1 Generic Measurement Calibration Hierarchy
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of the final results. An example is the determination of an
average value of a variable in an environment character-
ized by nonuniform conditions.
Measurement requirements for a performance test

oftendemandanaveragemeasurementof individualpara-
meters. Most instrumentation, however, yields a point
measurement of a parameter rather than an average
measurement. While this point characteristic may be
useful for other purposes, it raises a problem in deter-
mining performance level. Inmany instances, the quantity
measured varies in space, making the point measurement
inadequate. Thus, it often is necessary to install several
measurement sensors at different spatial locations to
account for spatial variations of the parameter being
measured. Spatial variation effects are considered
errors of method.
If an area-averaged value is desired, such as the average

fluidvelocity in apipeat a cross section, then thedefinition
of the average velocity is given by

=V
A

V x y dA
1

( , )

and this is actually approximated using Nmeasured velo-
city values Vi as

=
V

A
V A

1
( )

i

N

i i
1

The average velocity is first determined using a reason-
ably large number of measurement locations for N, and
then for test operation conditions a smaller number of
locations is used. The error incurred due to method is
the difference in the values of average velocity given
by the two determinations.

4-4 CATEGORIZATION OF UNCERTAINTIES

This Standard delineates uncertainties by the effect of
the error (i.e., systematic and random). This categoriza-
tion approach supports the identification, understanding,
and management of test uncertainties. If the nature of an
elemental error is fixed over the duration of the defined
measurement process, then the error contributes to the
systematic uncertainty. If the error source tends to cause
scatter in repeated observations of the defined measure-
ment process, then the source contributes to the random
uncertainty.
Becausemeasurement uncertainties are categorized by

the effect of the error, the time interval and duration of the
measurement process can be important considerations
and so must be clearly stated. The significance of this
is discussed in para. 4-4.2. In addition, the objective of
the test may affect the categorization, as discussed in
para. 4-4.3.

4-4.1 Alternate Categorization Approach

An alternate approach, which is used in the ISO GUM,
categorizes the uncertainties based on themethod used to
estimate them. Those evaluated with statistical methods
are classified as Type A, while those evaluated by other
means are classified asTypeB. Depending on the selection
of the defined measurement process, there may be no
simple correspondence between random or systematic
and Type A or Type B.

4-4.2 Time Interval Effects

Errors thatmaybe fixedover a short timeperiodmaybe
variable over a longer time period. For example, calibra-
tion corrections, which are assumed fixed over the life of
the calibration interval, can be considered variable if the
process consists of a time interval encompassing several
different calibrations. The time interval must be clearly
specified to classify an error, and it may not always be
the same interval as the test duration. For example,
when comparing results among various laboratories, it
may be more appropriate to classify an error as
random rather than systematic even though that error
may have been constant for the duration of any single test.
The effects of a time interval may also be important

when considering the stability and control of a test
process. The stability of a measurement method is a
generic concept related to the closeness of agreement
between test results. Process stability is estimated
from observations of scatter within a data set and is
treated as a random error. Variability in independent
test results obtained under different test conditions,
varying experimental setups, or configuration changes
allow for additional between-test random errors.

4-4.3 Test Objective

The classification andnumber of error sources are often
affectedby the test objective. Forexample, if the test objec-
tive is to measure the average gas mileage of model “XYZ”
cars, the variability among or between cars of the same
model must be considered.
Random error obtained in a test from a given car would

not include car-to-car variations and thus would not
represent all random error sources. To observe the
effect of the random error associated with car-to-car
variability, the experiment would need to be run again
using a random selection of different cars within the
same model (see Figure 4-4.3-1). The total variation in
the test result is greater than that observed from a
test of a single given car. This variation would be more
representative of the total random error associated
with determining gas mileage for the fleet of model
“XYZ” cars. Of course, if the data of interest is gas
mileage of a given single car, then the estimated variation
with testing the representative given car is an appropriate
estimate for the random error. The same short-term and
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long-term effects must be applied for other variables
affecting gas mileage (temperature, altitude, humidity,
road conditions, driver variations, etc.).

4-5 COMPARATIVE TESTING

The objective of a comparative test (also known as a
back-to-back test) is to determine, with the smallest
test uncertainty possible, the net effect of a design
and/or performance change. The first test is run with
the standard or baseline facility configuration. The
second test is then run in the same facility with the
design and/or performance change and, ideally, with
instruments, setups, and calibrations identical to those
used in the first test. The difference between the
results of these tests is an indication of the effect of
the design and/or performance change. Depending on
whether common instrumentation, setups, and calibra-
tions are used between comparative tests, the effects
of correlated errors (see subsection 7-1) may cause
the resulting test uncertainty of the difference between
the test results tobe less than theuncertaintyof each sepa-
rate test result. An example of back-to-back uncertainty
analysis is shown in the example in para. 7-1.1.
A controlled back-to-back test is the ideal case of a

comparative test wherein the same instrumentation is
used for both tests. This assumes that there is no

change in instrument performance due to damage or
other factors between the pre-change test and post-
change tests. This also assumes that the tests are
performed within a reasonable time of each other such
that the initial instrument calibrations are not voided.
In this case, all instruments are perfectly correlated
and systematic uncertainty for the combined result is
significantly reduced. The random uncertainties of the
two test results then will be important for determining
the uncertainty in the comparison.
Another common form of the comparative test, known

as an uncontrolled back-to-back test, uses the same test
methods for both thepre-change test andpost-change test
butdoesnotuseall of the same instrumentsbetween tests.
Use of different instruments could be the result ofmultiple
causes, including damage to instruments between tests,
lapse of instrument calibration during the time
between the pre-change and post-change tests, or engi-
neering judgment. In this case, replacement instruments
chosen should be similar in accuracy and specifications to
the original instruments so that the effects of correlated
errors (see subsection 7-1) may reduce the systematic
uncertainty of the difference between the test results.

Figure 4-4.3-1 “Within” and “Between” Sources of Data Scatter
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Section 5
Uncertainty of a Measurement

5-1 RANDOM STANDARD UNCERTAINTY OF THE
MEAN

5-1.1 General Case

For X determined as the average of N measurements,
theappropriate randomstandarduncertaintyof themean,
sX , is given by eq. (3-3-3). This type of estimate is an ISO
Type A estimate.
In a sample of measurements, the degrees of freedom is

the sample size, N. When a statistic is calculated from the
sample, the degrees of freedom associated with the
statistic is reduced by one for every estimated parameter
used in calculating the statistic. For example, from a
sample of size N, X is calculated by eq. (3-3-1). The
sample standard deviation, sX, and the random standard
uncertainty of the mean, s X , are calculated from
eqs. (3-3-2) and (3-3-3), respectively, and each has N −
1 degrees of freedom, υ:

= N 1 (5-1-1)

because X (based on the same sample of data) is used in
the calculations of both quantities.

5-1.2 Using Previous Values of sX
In some test situations, the measurement of a variable

may be only a single measurement or an average of
measurements taken over a short time frame, as with
a computer-based data acquisition system. In this
latter case, the time frame over which the measurements
are takenmaybeon theorderofmillisecondsor less,while
the random variations in the process may be on the order
of seconds orminutes or evendays. This “short time frame
averaged” value should then be handled in the same
manner as a single measurement.
The random standard uncertainty for a singlemeasure-

ment must be estimated from historical or previous data
taken over similar test conditions. This protocol is typi-
cally followed when performing a pretest measurement-
uncertainty estimate.
Estimating the random standard uncertainty of a single

measurement must be done by evaluating previous
measurements of the parameter taken over similar test
conditions. For example, taking multiple measurements
as a function of time while holding all other conditions
constant would identify the random variation associated

with themeasurement systemand the unsteadiness of the
test condition. If the sample standarddeviationof the vari-
able beingmeasured is also expected to be representative
of other possible random variations in the measurement
(e.g., repeatability of test conditions, variation in test
configuration, etc.), then these additional error sources
will have to be varied while the multiple data measure-
ments are taken to determine the standard deviation.
Another situation where previous values of a variable

would be useful is when a small sample size, N, is used to
calculate the mean value, X , of a measurement. If a much
larger set of previous measurements of the same test
conditions is available, then it could be used to calculate
a more appropriate standard deviation for the current
measurement [5]. Typically, these larger data sets are
taken in the early phases of an experiment program.
Once the random variation of the test variables is under-
stood, then this information can be used to streamline the
test procedures by reducing thenumberormeasurements
taken in the later phases of the test.
WhenNppreviousvalues,XPj, areknown for thequantity

being measured, the sample standard deviation for the
variable can be calculated as
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1

p

j
(5-1-3)

The appropriate random standard uncertainty of the
mean for the current measurement, X , is then

=s s
NX
X (5-1-4)

where
N = the number of current measurements averaged to

determine X

Thenumberof degreesof freedom for this randomstan-
dard uncertainty of the mean, sX , is
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= N 1p (5-1-5)

This estimate of the random standard uncertainty is an
ISOTypeAestimate since it is obtained fromdata. Thecase
where the current data sample is only a single measure-
ment is handled with N = 1 in eq. (5-1-4).

5-1.3 Using Elemental Random Error Sources

Another method of estimating the random standard
uncertainty of the mean for a measurement is from infor-
mation about the elemental random error sources in the
entire measurement process. If all the random standard
uncertainties areexpressed in termsof their contributions
to the measurement, then the random standard uncer-
tainty for the measurement mean is the root-sum-
square of the elemental random standard uncertainties
of the mean from all sources divided by the square
root of the number of current readings, N, averaged to
determine X :
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(5-1-6)

where
K = the total number of random error (or uncertainty)

sources.

Each of the elemental random standard uncertainties of
themean, sXk

, is calculatedusing themethodsdescribed in
para. 5-1.1 or para. 5-1.2, depending on which is appro-
priate. If in each of the Nmeasurements of the variable X,
the output of an elemental component is averaged Nk
times to obtain sXk

, then the method in para. 5-1.2
would apply.
The degrees of freedom for the estimated random stan-

dard uncertainty of the mean, sX, is dependent on the
information used to determine each of the elemental
random standard uncertainties of the mean and is calcu-
lated as
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(5-1-7)

where
υk = the appropriate degrees of freedom for sXk

and is
obtained from eq. (5-1-1) or eq. (5-1-5), as appro-
priate

When all error sources have large sample sizes, the
calculation of υ is unnecessary. However, for small
samples, when combining elemental random standard

uncertainties of the mean by the root-sum-square
method [eq. (5-1-6)], the degrees of freedom, υ, associated
with the combined random standard uncertainty is calcu-
lated using the Welch-Satterthwaite formula [6],
eq. (5-1-7).

5-1.4 Using Estimates of Sample Standard
Deviation

In a pretest uncertainty analysis, previous information
might not be available to estimate the sample standard
deviation as discussed in para 5-1.2 or para. 5-1.3. In
this case, an estimate of the sample standard deviation,
sX, would be made using engineering judgment and the
best available information. This type of uncertainty esti-
mate would be an ISO Type B estimate.

5-2 SYSTEMATIC STANDARD UNCERTAINTY OF A
MEASUREMENT

The systematic standard uncertainty, bX , of ameasure-
ment was defined in para. 3-3.2 as a value that quantifies
the dispersion of the systematic error associated with the
mean. The true systematic error,β, is the unknown, but bX
is the evaluated so that it represents an estimate of the
standard deviation of the distribution for the possible β
values. It should be noted that while bX is an estimate of
the dispersion of the systematic errors in a measurement,
the systematic error that is present in specific measure-
ment is a fixed single value of β.
The systematic standard uncertainty of the measure-

ment is the root-sum-square of the elemental systematic
standard uncertainties, bXk, for all sources (TSM).
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where
bXk

= each estimateof the standarddeviationof thekth
elemental error source

K = the total number of systematic error sources

Note that in eq. (5-2-1), all of the elemental systematic
standard uncertainties are expressed in terms of their
contributions to the measurement.
For each systematic error source in the measurement,

the elemental systematic standard uncertainty must be
estimated from the best available information. Usually
these estimates are made using engineering judgment
(and are therefore ISO Type B estimates). Sometimes
previous data are available to make estimates of uncer-
tainties that remain fixed during a test (and are therefore
ISO Type A estimates). If any of the elemental systematic
uncertainties are nonsymmetrical, then the method given
in para. 7-2.1 should be used to determine the systematic
standard uncertainty of the measurement.
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There can be many sources of systematic error in
measurement, such as the calibration process, instrument
systematic errors, transducer errors, and fixed errors of
method. Also, environmental effects, such as radiation
effects in a temperature measurement, can cause
systematic errors of method. There usually will be
some elemental systematic standard uncertainties that
will be dominant. Because of the resulting effect of
combining the elemental uncertainties in a root-sum-
square manner, the larger or dominant ones will
control the systematic uncertainty in the measurement;
however, one should be very careful to identify all signif-
icant sources of fixed error in the measurement.

5-3 CLASSIFICATION OF UNCERTAINTY SOURCES

As discussed in para. 1-2.2.3, the ISO Guide classifies
uncertainties by source, as either Type A or Type B [2].
Type A uncertainties are the calculated standard devia-
tions obtained from data sets. Type B uncertainties are
those that are estimated or approximated rather than
calculated from data. Type B uncertainties are also
given as estimated standard deviations.
In this Code, uncertainties are classified by their effect

on the measurement, either random or systematic, rather
than by their source. This effect classification was chosen
since most test operators are concerned with how errors
in the test will affect the measurements.
Theremaybe situationswhen it is convenient to classify

elemental uncertainties by both effect and source. Such
classifications may be useful in international test
programs. This Code recommends the following nomen-
clature for dual classifications:
bX A,k

= elemental systematic standard uncertainty
calculated from data, as in a calibration
process

bX B,k
= elemental systematic standard uncertainty
estimated from the best available information

sX A,k
= elemental random standard uncertainty
calculated from data

sX B,k
= elemental random standard uncertainty esti-
mated from best available information

5-4 COMBINED STANDARD AND EXPANDED
UNCERTAINTY OF A MEASUREMENT

For simplicity of presentation, a single value is often
preferred to express the estimate of the error between
the mean value, X , and the true value with a defined
level of confidence. The interval

±X UX (5-4-1)

represents a band about X within which the true value is
expected to lie with a given level of confidence (see
Figure 3-3.3-1). The uncertainty interval is composed
of both the systematic and random uncertainty compo-
nents.

The general form of the expression for determining the
uncertainty of a measurement is the root-sum-square of
the systematic and random standard uncertainties for the
measurement, with this quantity defined as the combined
standard uncertainty, uX , (TSM) [2]:

= +u b s( ) ( )X X X
2 2 (5-4-2)

where
bX = the systematic standarduncertainty [eq. (5-2-1)]
sX = the random standard uncertainty of the mean

[eq. (3-3-3), eq. (5-1-4), or eq. (5-1-6) as appro-
priate]

In order to express the uncertainty at a specified confi-
dence level using the TSM, the combined standard uncer-
tainty must be multiplied by an expansion factor taken as
the appropriate Student’s t value for the required confi-
dence level (see Nonmandatory Appendix B). Depending
on the application, various confidence levels may be
appropriate. The Student’s t is chosen on the basis of
the level of confidence desired and the degrees of
freedom. The degrees of freedom used is a combined
degrees of freedom based on the separate degrees of
freedom for the random standard uncertainty and the
elemental systematic standard uncertainty (see
Nonmandatory Appendix B). A t value of 1.96 (usually
taken as 2) corresponds to large degrees of freedom
and defines an interval with a level of confidence of
approximately 95%. This expansion factor of 2 is used
for most engineering applications. For other confidence
l e v e l s o r f e w e r d e g r e e s o f f r e e d om , s e e
Nonmandatory Appendix B.
The expanded uncertainty for a 95% level of confidence

and large degrees of freedom (t = 2) is calculated per the
TSM:

=U u2X X (5-4-3)

where
uX = the combined standard uncertainty [eq. (5-4-2)]

The expression for the expanded uncertainty given in
eq. (5-4-3) applies only when the measurement X is the
desired result of the experiment. If several variables are
measured and used in a DRE, then the techniques in
Section 6 are used.
For theMCMpropagation of uncertainties, the coverage

interval is determined as described in para. 6-4.3.

5-4.1 Example

A digital thermometer is used to measure the average
temperature of a circulating water bath being used in an
experiment. The experiment lasts a total of 30 min.
Temperature measurements are collected every
minute, resulting in a total of 31 data points, as presented
in Table 5-4.1-1.
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(a) Uncertainty Due to Random Error. The uncertainty
due to the random error of the average temperature
measurement is evaluated using the steps herein.
(1) The samplemean, or average value, of the tempera-

ture measurements is determined using eq. (3-3-1).

= =
=

X
N

X1
85.04

j

N

j
1

(2) The sample standard deviation is determined using
eq. (3-3-2).

= = °
=

( )
s

X X

N 1
0.28 CX

j

N j

1

2

(3) The random standard uncertainty of the sample
mean is determined using eq. (3-3-3).

= = °s s
N

0.05 CX
X

(b) Uncertainty Due to Systematic Error. The uncer-
tainty due to the systematic error of the average circu-
lating water-bath temperature measurement is
evaluated by the steps herein.
(1) Identify all significant elemental sources of

systematic error for the measurement.
(2) Evaluate elemental systematic standard uncertain-

ties as the standard deviations of the possible systematic
standard error distributions.

(3) Combine the elemental systematic standard uncer-
tainties into an estimate of the total systematic standard
uncertainty for the measurement.
For the purpose of this example, a summary of this

evaluation is presented in Table 5-4.1-2. Refer to
para. 3-3.2 and subsection 5-2 for further discussion of
the process for identifying, evaluating, and combining
elemental systematic uncertainties.
The systematic standard uncertainty of the tempera-

ture is calculated using eq. (5-2-1).

= = °
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
b b( ) 0.07 CX

i

k

i
1

2
1/2

Note that because of the root-sum-square combination
of the elemental sources, only two of the five uncertainties
contribute meaning.
(c) Expanded Uncertainty (TSM). The expanded uncer-

tainty (TSM) of the average circulating water-bath
temperature measurement is evaluated using
eqs. (5-4-2) and (3-3-6).

= + = °U b s2 ( ) ( ) 0.22 CX X X
2 2

Therefore, the true average temperature of the circu-
lating bath during the experiment is expected to lie within
the following interval with 95% level of confidence:

± = ± °X U 85.4 0.22 CX

Table 5-4.1-1 Circulating Water-Bath Temperature Measurements (Example 5-4.1)

Elapsed
Time, min

Measured
Temperature,

°C
Elapsed
Time, min

Measured
Temperature,

°C
Elapsed
Time, Min

Measured
Temperature,

°C
0 85.11 11 85.28 21 85.23
1 84.89 12 85.11 22 85.12
2 85.07 13 84.80 23 85.43
3 84.77 14 84.79 24 84.50
4 85.24 15 85.22 25 85.22
5 84.72 16 85.05 26 85.39
6 85.00 17 84.58 27 84.74
7 85.39 18 85.20 28 85.35
8 84.72 19 85.14 29 84.75
9 85.50 20 85.05 30 84.56
10 85.18
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Table 5-4.1-2 Systematic Standard Uncertainty of Average Circulating Water-Bath Temperature Measurement
(Example 5-4.1)

Description of Systematic
Uncertainty Source

Elemental Systematic
Standard Uncertainty, °C ISO Types

Calibration of digital thermometer 0.05 B
Environmental influences (ambient temperature, humidity, etc.) on digital
thermometer

0.005 A

Effects of conduction heat transfer surroundings 0.0005 B
Uniformity of circulating water bath (spatial uncertainty) 0.05 A
Effects of radiation heat transfer Negligible B
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Section 6
Uncertainty of a Result Calculated From Multiple Parameters

6-1 RESULTS CALCULATED FROM MULTIPLE
PARAMETERS

Calculated results, such as the determination of effi-
ciency, are not usually measured directly. Instead,
more basic parameters, such as temperature and pres-
sure, are either measured or assigned values (such as
properties from tabulated values) and the required
result is calculated as a function of these parameters.
The random and systematic uncertainties in these
measurements or assigned values of the parameters
propagate through the functional relationship between
the results and the parameters.

= …R f X X X( , , , )i1 2 (6-1-1)

Thisproducesarandom, sR, and systematic,bR, standard
uncertainty in the calculated result.
In this Section, methods of calculating these uncertain-

ties in the resultwill bediscussed.Twomethods forpropa-
gating the uncertainties are presented, the Taylor series
method (TSM) and the Monte Carlo method (MCM).
There are two approaches to calculating sR, a direct

(multiple results) method and a propagation method.
The choice of approach depends on whether, at a
given test condition, multiple results are available or
only a single result is available. There is no equivalent
to the direct method for calculating bR, in the result, so
a propagation approach is always used.

6-1.1 Single and Repeated Tests

In some experimental situations, a set of parameters, Xi,
is measured and a single result, R, is calculated for some
given test condition. Examples are sample-to-sample type
tests in which the test sample is destroyed, e.g., deter-
mining the ultimate strength or the heating value of mate-
rial. In suchcases, someof theparametersmaybebasedon
single measurements and others may be the mean values
based onNi repetitions.Ni can be different for each Xi. The
result, R, is expressed in terms of the average or assigned
values of the independent parameters, Xi, that enter into
the result. That is,

= …R f X X X( , , , )i1 2 (6-1-2)

where the subscript i signifies the total number of para-
meters involved in R, and the average values of the inde-
pendent parameters are obtained as

=
=

X
N

X1
i

i j

N

i
1

i

j (6-1-3)

where
Ni = the number of measurements of Xi

In such cases, both sR andbRmust be determinedusing a
propagation method, since multiple results at a given test
condition are not available for a direct calculation of sR.

6-1.2 Multiple Results: Test With the Result
Calculated Multiple Times at a Given
Condition

If multiple results are calculated at a given test condi-
tion, then a sample distribution of results is obtained. This
typically occurs in oneof twoways. In the caseof a sample-
to-sample type of experiment, as in para. 6-1.1, repeated
tests onmultiple samples of the samematerial yield such a
sample of results. The other common case is the time-wise
type of experiment performed over a period of time, e.g., a
steady-state test for turbine efficiency. At a given test
condition, a set of parameters, Xi, is measured multiple
times and multiple results, Rm, can be calculated from
each set of measurements as

= [ … ]R R X X X( ) , ( ) , , ( )m m m i m1 2 (6-1-4)

In both sample-to-sample and time-wise experiments,
the average result is given by

= =R

R

M
m

M

m
1

(6-1-5)

where
M = the number of results at the given test condition

In such situations, values of sR can be determined from
both the direct method using an equation analogous to
eq. (3-3-2) and one or both of the TSM andMCM propaga-
tion methods. The multiple values of sR can be compared
with one another. The implications of this comparison in
identifying the presence of correlated behavior in the
random errors affecting multiple parameters is discussed
in para. 6-3.1.2.
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As mentioned previously, there is no equivalent to the
directmethod for calculating systematicuncertainty in the
result, so bR must be determined from a propagation
method.

6-1.3 Determining Uncertainties in Results
Calculated From Multiple Parameters

The following subsections present details of the tech-
niques used to determine the random and systematic
uncertainties in results calculated from multiple para-
meters. In subsection 6-2, the directmethod of calculating
the random uncertainty of a set of multiple results at a
given test condition is presented; this is applicable to
the cases described in para. 6-1.2.
In subsection 6-3, the TSM of propagation to determine

both the randomandsystematic uncertainties in a result is
presented; it is applicable in both single-result and
multiple-results cases. For the multiple-results cases
discussed in para. 6-1.2, two estimates of sR can thus
be made (using the direct and Taylor series methods)
and compared.
In subsection 6-4, theMCMof propagation to determine

both the random and the systematic uncertainties in a
result is presented; this also is applicable in both
single-result and multiple-results cases. For the
multiple-results cases discussed in para. 6-1.2, two esti-
mates of sR can thus be made (using the direct and Monte
Carlo methods) and compared.

6-2 DIRECT METHOD OF DETERMINING RANDOM
STANDARD UNCERTAINTY FROM A SAMPLE
OF MULTIPLE RESULTS

6-2.1 Direct Calculation of the Random Standard
Uncertainty From a Sample of Multiple
Results

Following eq. (3-3-2), the estimate of the standard
deviation of the distribution of M results at a given
test condition is

= =

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzzs
R R

M

( )

1R
m

M

m
1

2
1/2

(6-2-1)

The random standard uncertainty of the mean result is
estimated directly from the sample standard deviation
and is given by

=s s
MR
R (6-2-2)

6-2.2 Some Practical Consideration for Multiple
Results at a Given Test Condition

In time-wise type experiments, variations in a “steady
state” condition may lead to correlated variations in
different parameters. An example is a heat exchanger
test to determine heat rate at a constant flow rate condi-
tion, where an uncontrolled upward drift with time of the
inlet fluid temperature would likely result in an upward
drift with time of the outlet fluid temperature. Such corre-
lations caused by time-varying error sources that affect
the separate parameter measurements in the same
way are automatically taken into account in the direct
method of calculating the random standard uncertainty
of the result. This is not the case for calculations of the
random standard uncertainty of the result using either
the Taylor series or Monte Carlo propagation methods,
which require inclusion of special terms to account for
such correlations. In practice, the special correlation
terms have rarely been included in the analysis. This is
discussed in detail andwith an example in subsection 6-3.
When tests are repeated under similar operating condi-

tions, these generate multiple data sets for the measured
parameters. The statistics found by combining these
multiple data sets may be used to estimate the variations
in the result that might be due to the control of test oper-
ating conditions, or use of different test rigs, instrumen-
tation, or test location. Whereas these influences might
normallybeconsideredsystematic errorsduring repeated
tests, the duplicated tests can randomize these systematic
errors, providing error estimates from the statistical
variations in the combined data pool [7]. The overall
reported result will usually be combined to provide
the mean of the multiple results, R .
Careful consideration should be given to designing the

test series to average as many causes of variation as
possible within cost constraints. The test design should
be tailored to the specific situation. For example, if experi-
ence indicated that time-to-time and test apparatus-to-
apparatus variations are significant, a test design that
averages multiple test results on one rig or for only
one day may produce optimistic random uncertainty esti-
mates compared to testing several rigs, each monitored
several times over a period of several days. The list of test
variation causes aremany andmay include the above plus
environmental and test crew variations. Historic data are
invaluable for studying these effects. A statistical tech-
nique called analysis of variance (ANOVA) is useful for
partitioning the total variance by source [8].
When more than one test is conducted with the same

instrument package (i.e., repeated tests), the uncertainty
of the average test resultmaybe reduced from that for one
test because of the reduction in the randomuncertainty of
the average. However, systematic uncertainty will remain
the same as for a single test provided the measurement
systemand instrumentationdonot changeduring the test,
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and influences from environmental effects do not change
between tests.

6-3 TAYLOR SERIES METHOD (TSM) OF
PROPAGATION FOR DETERMINING RANDOM
AND SYSTEMATIC UNCERTAINTIES OF A
RESULT

6-3.1 Random Standard Uncertainty of a Result
(TSM)

The random standard uncertainty of a single test result
using the TSM is given by

= +
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
( )( )s s random error

correlation termR
i

l

i X
1

2
1/2

i
(6-3-1)

where

= R
Xi

i
(6-3-2)

is the sensitivity coefficient for the result R given by
eq. (6-1-1).
The relative random standard uncertainty is found by

nondimensionalizing eq. (6-3.1) by dividing by the result
so that the TSM gives
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i (6-3-3)

where the relative (nondimensional) sensitivity coeffi-
cient ( i ) is given by

= =
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(6-3-4)

6-3.1.1 Example: RandomUncertaintyDetermination
inVenturi DischargeCoefficient Calibration.As reported
by Hudson et. al [9] and shown in Figure 6-3.1-1, a venturi
meter was calibrated in a commercial facility using an
ASME nozzle as the flow standard.
Theventuri discharge coefficientdetermined in this test

is a function of the standard flow rate, Wstd; the venturi
inlet pressure, P1, and temperature, T1; the throat pres-
sure, P2; and the venturi inlet diameter, D1, and throat
diameter, D2. It can be represented as

=C f W P P T D D( , , , , , )d std 1 2 1 1 2

Values of the discharge coefficient, Cd, were determined
in a sequence of 11 different tests at chosen Mach and
Reynolds number conditions. The standard ASME
nozzle was choked at all conditions. At a given test condi-
tion, ten data scans were taken and average values of the
venturi pressures and temperatures calculated using
eq. (6-1-3). These average values were used to calculate
average Mach and Reynolds numbers, and used in
eq. (6-1-2) to calculate a value for Cd.
For each test condition, the random standard uncer-

tainty of the result, Cd, was determined using both the
TSM and eq. (6-3-1) with the correlated error terms
set to zero and the direct method and eqs. (6-1-4) and
(6-2-1). The comparison of the application of the two
methods is shown in Table 6-3.1-1.
The random uncertainties calculated by TSM propaga-

tionwere from2 to 51 times larger than those determined
with the direct method. The propagation method treated
the random uncertainties in the two venturi pressures as
independent. Figure 6-3.1-2 is a plot of these two pres-
suresnormalized to the critical flownozzle inlet total pres-
sure for a particular test that shows the variations of the
two pressures are not independent.
The same trendwas seen for all the test conditions. The

fact that the pressures varied was a function of the test
facility control. The variations in the pressure measure-
ments were not truly random; they were correlated. This

Figure 6-3.1-1 Venturi Calibration

GENERAL NOTE: From "Effect of Correlated Precision Errors on the Uncertainty of a Subsonic Venturi Calibration," by Hudson, Bordelon, and
Coleman [9]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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correlationwasnot considered in thepropagationmethod
but was taken into account automatically in the direct
method (even though the test operators were previously
totally unaware of the correlation).

6-3.1.2 Some Practical Considerations in Deter-
mining Random Standard Uncertainty of a Result.
The direct method is always preferred because it takes
into account any correlated random error effects in the
sample of results, whether these effects are recognized
or not. The only situation in which a propagation
method estimate of random uncertainty should be the
sole estimate made is one in which only a single test
result is determined and the direct method cannot be
applied. In all other situations, calculations of random
uncertainty by a propagation method can be compared
to that determined by the direct method, and the compar-
ison used as an indicator of the presence or absence of

correlated random error effects. Sometimes in time-
wise tests the correlated random errors are not
“random” but rather results from a drift with time of
multiple variables. All time-wise tests should be designed
so that multiple results can be calculated at each constant
test condition if at all possible.
Although the effect of correlated random errors in the

example inpara. 6-3.1.1 caused thepropagation technique
estimate to be greater than that of the direct method, the
opposite can also occur depending on the form of
eq. (6-1-1). This was illustrated by results from a full-
scale rocket engine ground test and also a laboratory-
scale cold flow facility [10].

6-3.2 Systematic Standard Uncertainty of a Result
(TSM)

The systematic standard uncertainty of a single test
result using the TSM is given by
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(6-3-5)

The relative systematic uncertainty of a result is
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The symbol bXi is the systematic standard uncertainty
of the measured parameter (see subsection 5-2).
The correlation terms ineqs. (6-3-5) and(6-3-6)will be

zero if all the systematic error sources for all the para-
meters used to determine R are totally independent.
However, in many cases, multiple parameters share a

Table 6-3.1-1 Comparison of TSM and Direct Method
Values of Random Standard Uncertainty in Cd
Test Mach Re × 10−6 TSM/Direct
1 0.20 1.0 17
2 0.19 1.0 39
3 0.20 1.1 51
4 0.20 2.9 30
5 0.20 6.0 19
6 0.50 1.0 7
7 0.50 3.0 14
8 0.49 5.8 2
9 0.70 1.5 2
10 0.70 3.0 8
11 0.68 5.9 3

Figure 6-3.1-2 Normalized Venturi Inlet and Throat Pressures for a Test

GENERAL NOTE: From "Effect of Correlated Precision Errors on the Uncertainty of a Subsonic Venturi Calibration," by Hudson, Bordelon, and
Coleman [9]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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common systematic error source, such as a calibration
standard error. An example would be two thermocouples
calibrated against the same standard. In this case, the
systematic error correlation terms would be nonzero.
Theirmagnitude can be calculated using themethodology
in para. 7-1.1.

6-3.3 Combined Standard Uncertainty and
Expanded Uncertainty of a Result (TSM)

The general form of the expression for determining the
combined standarduncertaintyof a result is the root-sum-
square of both the systematic and the random standard
uncertainty of the result:

= +
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑu b s( ) ( )R R R

2 2 1/2 (6-3-7)

where bR is obtained from eq. (6-3-5) and sR is obtained
from either eq. (6-3-1) for a single-test result or from
eq. (6-2-1) for a multiple-test result.
The expanded uncertainty in the result at approxi-

mately 95% confidence is given by
=U u2R R,95 (6-3-8)

where the use of the factor of 2 assumes sufficiently large
degrees of freedom for the 95% confidence level (i.e., t95 =
2). This factor can be modified as appropriate for other
confidence levels and small degrees of freedom, as
discussed in Nonmandatory Appendix B.
The intervalwithinwhich the true result should liewith

a 95% level of confidence is given as ±R UR ,95.
The methodologies for including correlated systematic

errors and nonsymmetric systematic uncertainties are
covered in subsections 7-1 and 7-2, respectively.

6-4 COMBINED STANDARD UNCERTAINTY AND
UNCERTAINTY COVERAGE INTERVAL FOR A
RESULT [MONTE CARLO METHOD OF
PROPAGATION (MCM)]

With high-speed computing capabilities, the MCM has
become popular for determining test result uncertainty
using test input variables and their associated uncertain-
ties [10]. The Joint Committee for Guides in Metrology
(JCGM) published a supplement [3] to the GUM [2]
presenting the MCM for uncertainty analysis. The
process is a random sampling from assumed distributions
for each error source to estimate the distribution of the
determined result.

6-4.1 Single Result at a Given Test Condition

Figure 6-4.1-1, drawn from Coleman and Steele [10],
presents the steps for aMonte Carlo process in a flowchart
format. The flowchart shows the process for a single test
result that is a function of two parameters, but the meth-
odology can be expanded to any number of input para-

meters. The DRE used can be an analytical expression,
a computer data reduction program, or a simulation.
For each input parameter, the measured average, X , is

used as an estimate of the true value of the variable. The
random standard uncertainty, sX , and the elemental
systematic standard uncertainties, bXk, are input for
each parameter along with an assumed distribution for
each error source. A Gaussian distribution is appropriate
for the random errors, unless the number of measure-
ments is small enough for a t distribution to be used.
For systematic errors, engineering judgment is used to
assume a distribution. If the possible systematic error
for an error source is likely to be zero but has an
equal probability to be positive or negative, then a Gaus-
sian distribution can be used. However, if the systematic
error is likely to be zero but has finite upper and lower
limits, then a triangular distribution would be appro-
priate. If the systematic error for a given source has
finite upper and lower bounds but is equally likely to
be a value between these limits, then a rectangular distri-
bution can be used.
Each error distribution is randomly sampled to obtain

an error value, and these are added to the estimated true
values to obtain current values of the parameters. The
results are then calculated. This sampling process is
repeated M times to obtain a distribution for the test
result. The standard deviation of this distribution,
sMCM, is theestimateof the combined standarduncertainty
of the result, uR. The number of the samples required,M, is
made on the convergence of sMCM. Periodic checks should
be made of the value of sMCM during the Monte Carlo
sampling process. Convergence is a matter or judgment,
but a value of sMCM that has converged to within 1% to 5%
is usually a good approximation of the combined standard
uncertainty of the result, uR.
Note that in Figure 6-4.1-1, the correlated systematic

errors are handled directly by assigning the same
error value for a common error source, β3, to each para-
meter for each iteration. This procedure canbeused for all
correlated systematic errors. If there are correlated
random errors, then the direct approach for multiple
results given herein should be used. The procedure
shown in Figure 6-4.1-1 can also be used to handle
nonsymmetric systematic errors. A distribution is
chosen that has the upper and lower standard uncertainty
limits as its bounds with zero at the appropriate place
between them.

6-4.2 Multiple Results at a Given Test Condition

Figure 6-4.2-1 from Coleman and Steele [10] presents
the flowchart for the Monte Carlo process when the
random standard uncertainty for the result is estimated
directly using eq. (6-2-1). A distribution is assumed for
this error source, and the Monte Carlo method follows
the same process as described for a single test result.
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Figure 6-4.1-1 Monte Carlo Method for Uncertainty Propagation for a Single Test Result

GENERAL NOTE: Reprinted by permission of W. Glenn Steele [10].
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Figure 6-4.2-1 Monte Carlo Method for Uncertainty Propagation for Multiple Results

GENERAL NOTE: Reprinted by permission of W. Glenn Steele [10].
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6-4.3 Coverage Interval at a Given Level of
Confidence

The result distributions from the MCM procedure
shown in Figures 6-4.1-1 and 6-4.2-1 are used to find
the upper and lower bounds for a 95% coverage interval.
TheM results are sorted from the lowest to highest values.
The bounds on the uncertainty interval are rlow and rhigh
where rlow is the 0.025M result value and rhigh is the
0.975M value (i.e., if M is 1000, then the bounds are
the 25th and 975th value). If the 0.025M and 0.975M
numbers are not integers, then 1∕2 is added to each and
the integer part of the number is used to determine
the coverage interval limits. If uncertainty limits are
desired, then the resulting nominal value can be used
with rlow and rhigh to determine Ur and +Ur as

= …U r X X X r( , , , )r J1 2 low

and

= …+U r r X X X( , , , )r Jhigh 1 2

This is illustrated in Figure 6-4.3-1.

For another level of coverage, different multiples of M
are used (i.e., at a 90% coverage, the result values 0.05M
and 0.95M are used for rlow and rhigh).

Figure 6-4.3-1 Probabilistically Symmetric Coverage
Interval

Reprinted by permission of W. Glenn Steele [10].
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Section 7
Additional Uncertainty Considerations

7-1 CORRELATED SYSTEMATIC ERRORS (USING
TSM PROPAGATION)

This Section documents how to calculate the uncer-
tainty considering correlated sources of error using
TSM propagation.

7-1.1 Correlated Systematic Errors

The expressions for the systematic standard uncer-
tainty of the result may assume that the systematic stan-
dard uncertainties in each measurand are independent of
one another. However, as indicated in para. 6-3.2, there
are many situations where the systematic errors in the
measurand quantities may not be independent. Examples
include calibrating different instruments against the same
standard or using the same instruments to make different
measurements. Someof these systematic errorsare said to
be correlated, and these nonindependent errors must be
considered in the determination of the systematic stan-
dard uncertainty of the result.
Consider a situation where the result, R, is determined

from three measurands ( X1, X2, X3) that have correlated
systematic errors. The result is calculated as

=R f X X X( , , )1 2 3 (7-1-1)

and the absolute systematic standard uncertainty of the
result is given as

= + +
+ + +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
( )( ) ( )b

b b b

b b b2 2 2
R

X X X

X X X X X X

1
2

2
2

3
2

1 2 1 3 2 3

1/2

1 2 3

1 2 1 3 2 3

(7-1-2)

The first three termsunder the square root ineq. (7-1-2)
do not account for correlation errors, and the last three
terms are those that account for the correlation among the
systematic standard errors in X1, X2, and X3. The terms
bX Xi k are the estimates of the covariance of the systematic
errors inXiandXk (seeNonmandatoryAppendixB). These
terms must be included when systematic standard errors
for separate measurands, Xi and Xk, are from the same
source, making them correlated; thus, their measurement
errors are no longer independent. The units of the corre-
lation terms (covariances), bX Xi k, are the product of the
units of Xi and Xk.

The covariance terms in eq. (7-1-2) must be properly
interpreted. Each bX Xi k term represents the sum of the
products of the portions of bXi and bXk that originate
from the same error source and are therefore perfectly
correlated [11]. For instance, if elemental systematic stan-
dard uncertainties 1 and 2 for measurands 2 and 3 were
from a common error source, then bX X2 3 would be deter-
mined as

= +b b b b bX X X X X X2 3 21 31 22 32
(7-1-4)

The example in eq. (7-1-2) can be expanded to any
number of measurands by including the term for each
pair of measurands that has correlated systematic errors.
Therefore, the general form of eq. (7-1-2) is

= +
= = = +

b b b( ) 2R
i

I

i i
i

I

k i

I

i k ik
2

1

2

1

1

1

(7-1-4)

where
bi = systematic standard uncertainty in the ith

measurand
bik = covariance between the systematic standard

uncertainties for the ith and kth measurands,
calculated as follows:

=
=

b b bik
l

L

i k
1

l l
(7-1-5)

I = an index
i = number of distinct measurands

i and k = indexes indicating the ith andkthmeasurands
L = number of common (correlated) error

sources
θ = sensitivity coefficients

7-1.2 Examples

7-1.2.1 Example 1. The use of back-to-back tests is an
excellent method to reduce the systematic standard
uncertainty when comparing two or more designs.
Thismethod is a special caseof correlatedsystematic stan-
dard uncertainties. Consider a burst test for an improved
container design. The improvement in the design can be
expressed as the fraction
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=R
P
P

n

b

where
Pb = the burst pressure of the original or base design
Pn = the burst pressure of the new design

Table 7-1.2-1 provides burst tests for two different
programs. In the first test program, different pressure
transducers were used in the tests on the two designs.
There were no correlated systematic standard uncertain-
ties common between these two transducers. In the
second program, the same pressure transducer was
used for both tests; therefore, the systematic error was
the same and was correlated for the two test measure-
ments.
This example demonstrates the strength of the back-to-

back testing technique using the same instrumentation.
Even though the pressure transducer in Program 2 had
a systematic standard uncertainty of more than twice
that of the transducers in Program 1, the systematic stan-
dard uncertainty of the result for program 2was less than
half of that for Program 1. In such cases, the random stan-
dard uncertainty of the result may be dominant and must
include all sources that vary between the improveddesign
and the base design cases.

7-1.2.2 Example 2. Consider the piping arrangement
shown in Figure 7-1.2-1, which has four flowmeters.
From conservation of mass, a balance check would yield

= =z m m m m 04 1 2 3

If the errors in the flow-rate measurements are predo-
minantly systematic, then for thebalance check tobe satis-
fied theabsolute valueof zmustbe less thanorequal to the
uncertainty in z:

z b2 z

Note that this relationship assumes the degrees of
freedom in bz is greater than or equal to 30.
Equation (7-1-4), repeated herein, may be used to

derive eq. (7-1-6) for calculating the systematic uncer-
tainty in the parameter z:

Table 7-1.2-1 Burst Pressures

Back-to-
Back Burst
Test Design

Base
Design,

Pb, 106 Pa

Improved
Design,

Pn, 106 Pa

Systematic
Standard

Uncertainty,
bP , 106 Pa

Program 1 [Note (1)]
Meter
#1

40.0 … 0.2

Meter
#2

… 52.0 0.2

Program 2 [Note (2)]
Meter
#3

42.0 54.7 0.5

NOTES:
(1) Program 1 (no correlated systematic standard uncertainties):

= =

= =

= =

=

+

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

( )
( )

( )

( )

R

b

1.30

0.0325 10 Pa

0.0250 10 Pa

( 0.0325) 10 Pa (0.2)(10 Pa)

(0.0250) 10 Pa (0.2)(10 Pa)

b
R

P

n
R
P

R

52.0
40.0

6 1

6 1

2 6 1 6
2

6 1 6
2

b

n

bR = 0.0082
(2) Program 2 (correlated systematic standard uncertainties):

= =

=

=

=

+

+

×

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

( )
( )

( )

( )

( ) ( )

R

b

1.30

0.0310 10 Pa

0.0238 10 Pa

( 0.0310) 10 Pa (0.5)(10 Pa)

(0.0238) 10 Pa (0.5)(10 Pa)

2( 0.0310) 10 Pa (0.0238) 10 Pa

(0.5)(10 Pa)(0.5)(10 Pa)

b

n

R

54.7
42.0

6 1

6 1

2 6 1 6
2

6 1 6
2

6 1 6 1

6 6

bR = 0.0036

Figure7-1.2-1PipingArrangementWithFourFlowmeters
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= +
=

= = +

( )b b

b

z
i

I

m m

i

I

k i

I

m m m m

2

1

2

1

1

1

i i

i k i k

(7-1-4 repeated)

= + +

+ +
+ +
+ +

+

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( )

( )

( ) ( )b b b b

b b b

b b b b

b b b b

b b

2

2 2

2 2

2

z m m m m m m

m m m m m m

m m m m m m m m

m m m m m m m m

m m m m

2 2 2

2

1/2

1 1 2 2 3 3

4 4 1 2 1 2

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

3 4 3 4

(7-1-6)

Note that for this example, the partial derivatives for
eq. (7-1-6) are

= = = 1m m m1 2 3

and
= 1m4

In order to illustrate the effect of correlated sources of
error, consider the following cases, where the dominant
systematic errors are from the calibration standard and
the calibration curve-fit. The calibration standard
systematic standard uncertainty for each of the three
small flowmeters is ±1.5 kg/h, and ±4.5 kg/h for the
large flowmeter. The curve-fit systematic standard uncer-
tainty for each meter is ±0.5 kg/h.

7-1.2.2.1 Case 1: Each Flowmeter Is Calibrated
Against a Different Standard. In Case 1, all sources of
systematic errors are uncorrelated. The systematic stan-
dard uncertainty for the three small flowmeters in
Figure 7-1.2-1 is determined as

= = ± +
= ±

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑb i( 1, 2, 3) (1.5 kg/h) (0.5 kg/h)

1.58 kg/h
m

2 2 1/2
i

and the systematic standard uncertainty for the large
flowmeter is calculated as

= ± + = ±
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑb (4.5 kg/h) (0.5 kg/h) 4.53 kg/hm

2 2 1/2
4

Having no correlated systematic errors causes the
covariance between systematic errors (bm1

bm2
, bm1

bm3
,

bm1
bm4

, bm2
bm3

, bm2
bm4

, and bm3
bm4

) to be zero. Using
eq. (7-1-6), the systematic standard uncertainty for z
then becomes as follows:

= ± + +

+

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

( )

( )

( ) ( )b b b b

b

z m m m m m m

m m

2 2 2

2 1/2

1 1 2 2 3 3

4 4

or

= ± + + +

= ±

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ( ) ( )( ) ( )b b b b b

5.29 kg/h

z m m m m
2 2 2 2 1/2

1 2 3 4

The condition of conservation of mass will be validated
provided the following is satisfied:

= ±z b2 10.6 kg/hz

7-1.2.2.2 Case 2: Flowmeters 1, 2, and 3 Are Cali-
brated Against the Same Standard, and Flowmeter 4 Is
Calibrated Against a Different Standard. In Case 2, the
three small flowmeters in Figure 7-1.2-1 are calibrated
against the same standard. This causes any systematic
error for this common standard to become correlated
for these three meters. The systematic standard uncer-
tainty from their curve-fits, however, is not correlated
because it is due to the random scatter in the calibration
line. The final standard uncertainty in z is obtained as

= = = ±b b b 1.58 kg/hm m m1 2 3

= ±b 4.53 kg/hm4

and
= = = ±b b b (1.5 kg/h)(1.5 kg/h)m m m m m m1 2 1 3 2 3

Using eq. (7-1-6) with three of four measurands having
correlated systematic errors causes the systematic stan-
dard uncertainty for z to become

= + +

+ +

+ +

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( )

( )

( ) ( )b b b b

b b

b b

2

2 2

z m m m m m m

m m m m m m

m m m m m m m m

2 2 2

2

1/2

1 1 2 2 3 3

4 4 1 2 1 2

1 3 1 3 2 3 2 3

or

= ± + + +

+ + +
= ±

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( ) ( )( ) ( )b b b b b

b b b

b

2 2 2

6.4 kg/h

z m m m m

m m m m m m

z

2 2 2 2

1/2

1 2 3 4

1 2 1 3 2 3

The condition of conservation of mass will be validated
provided the following is satisfied:
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= ±z b2 12.9 kg/hz

Note that in Case 2, the signs for all the correlated terms
are positive because all of the derivatives of zwith respect
tom1,m2, andm3 are negative. If flowmeters 1, 2, and3 are
calibrated against the same standard, and flowmeter 4 is
calibrated against a different standard, the systematic
standard uncertainty for z is larger than if all the
meters had been calibrated against different standards
(see Case 1).

7-1.2.2.3 Case 3: Flowmeters 1, 2, 3, and 4 Are Cali-
brated Against the Same Standard That Has an Uncer-
tainty Expressed as Percent of Reading. Example 2
began by stating the calibration standard systematic stan-
darduncertainty foreach flowmeterwas±1.5kg/h for the
three small meters and ± 4.5 kg/h for the large meter. In
Case 3, each of the four flowmeters in Figure 7-1.2-1 is
calibrated against the same standard that has specified
uncertainty as a percent of the flow rate.
The sketch of flowmeter arrangement for this example

shows that meters 1, 2, and 3 are parallel and sum to the
flow that is sensed by meter 4. This suggests that, ideally,
meters 1, 2, and 3 each provides about one-third of the
total flow that is sensed by meter 4. Notice that the
common systematic source of uncertainty for meters 1,
2, and 3 is given as 1.5, which is exactly one-third of
the common systematic source of uncertainty for
meter 4. This proportionality in the systematic uncertain-
ties for the four meters is a result of the systematic uncer-
tainty in the common standard that is used for all four
meters being expressed as a percent of reading.

= = = ±b b b 1.58 kg/hm m m1 2 3

and
= ±b 4.53 kg/hm4

with
= = = ±b b b (1.5 kg/h)(1.5 kg/h)m m m m m m1 2 1 3 2 3

and
= = = ±b b b (1.5 kg/h)(4.5 kg/h)m m m m m m1 4 2 4 3 4

Usingeq. (7-1-6)while considering that all fourmeasur-
ands have correlated systematic errors causes the
systematic standard uncertainty for z to then become

= + + +

+ +
+ +

+ +

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( ) ( )( ) ( )b b b b b

b b b b

b b b b

b b b b

2 2

2 2

2 2

z m m m m m m m m

m m m m m m m m

m m m m m m m m

m m m m m m m m

2 2 2 2

1/2

1 1 2 2 3 3 4 4

1 2 1 2 1 3 1 3

1 4 1 4 2 3 2 3

2 4 2 4 3 4 3 4

or

= ± + + +

+ + +

= ±

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( ) ( )( ) ( )b b b b b

b b b b

b b

b

2 2 2 2

2 2

1.0 kg/h

z m m m m

m m m m m m m m

m m m m

z

2 2 2 2

1/2

1 2 3 4

1 2 1 3 1 4 2 3

2 4 3 4

The condition of conservation of mass will be validated
provided the following is satisfied:

= ±z b2 2.0 kg/hz

Note the signs for each of the correlated terms.

7-1.2.2.4 Case 4: Flowmeters 1, 2, 3, and 4 Are Cali-
brated Against the Same Standard That Has an Uncer-
tainty Expressed as Percent of Full Scale. In Case 4,
each of the four flowmeters in Figure 7-1.2-1 is calibrated
against the same standard; however, the systematic stan-
dard uncertainty from the standard is a fixed value of ±4.5
kg/h across all flow rates. This implies that the calibration
standard systematic standard uncertainty is expressed as
apercentof full scale.Thesystematic standarduncertainty
for each flowmeter then becomes

= = = = ± +
= ±

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑb b b b (4.5) (0.5)

4.53 kg/h
m m m m

2 2 1/2
1 2 3 4

with
= = = = =
= ±

b b b b b b

(4.5 kg/h) (4.5 kg/h)
m m m m m m m m m m m m1 2 1 3 1 4 2 3 2 4 3 4

The systematic standard uncertainty in zper eq. (7-1-6)
is calculated as follows:

= + + +

+ +
+ +

+ +

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( ) ( )( ) ( )b b b b b

b b b b

b b b b

b b b b

2 2

2 2

2 2

z m m m m m m m m

m m m m m m m m

m m m m m m m m

m m m m m m m m

2 2 2 2

1/2

1 1 2 2 3 3 4 4

1 2 1 2 1 3 1 3

1 4 1 4 2 3 2 3

2 4 2 4 3 4 3 4

or

= ± + + +

+ + +

= ±

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( ) ( )( ) ( )b b b b b

b b b b

b b

b

2 2 2 2

2 2

9.06 kg/h

z m m m m

m m m m m m m m

m m m m

z

2 2 2 2

1/2

1 2 3 4

1 2 1 3 1 4 2 3

2 4 3 4

The condition of conservation of mass will be validated
provided the following is satisfied:

= ±z b2 18.1 kg/hz
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Note the signs for each of the correlated terms.
The following conclusions can be made from these four

cases:
(a) calibrating all flowmeters against a common stan-

dard that had a percent of reading systemic uncertainty
yielded a systematic standard uncertainty in the result (z)
that was less than the systematic standard uncertainty for
any give flowmeter (Case 3)
(b) correlated systematic errors between measurands

do not necessarily reduce the systematic uncertainty in
the result (Case 2 and Case 4)
In general, the ability of correlated systematic errors to

decrease, increase, or have no effect on the systematic
standard uncertainty of the result depends on the form
of the DRE and on which measurands have correlated
systematic errors.
Once again, the random standard uncertainty in z may

dominate the combined standard uncertainty andmust be
carefully determined and included in the expanded uncer-
tainty determination of z.

7-2 NONSYMMETRIC SYSTEMATICUNCERTAINTY
(TSM PROPAGATION)

In some experiments, physical models (e.g., radiative
heat transfer models for temperature measurement)
may be used to essentially replace the asymmetric uncer-
taintieswith symmetricuncertainties inadditional experi-
mental variables. If this can be done then it should be; if
not, then the method of para. 7-2.1 should be used.

7-2.1 Nonsymmetric Systematic Uncertainty
Interval for a True Value

This paragraph presents a method for determining
nonsymmetric uncertainty intervals using TSM propaga-
tion [10, 12].
If the distribution of the systematic error associated

with a variable is nonsymmetrical, then the overall uncer-
tainty interval for the unknown true value will not be
centered on the measured value of the variable. The
following procedure can be used to construct a nonsym-
metric uncertainty interval for the unknown true value of
the quantity being measured.
The procedure is based on first establishing a lower

limit (LL) and an upper limit (UL) for the possible
systematic error distribution. For instance, the measure-
ment of the temperature of a hot gas stream flowing in a
pipe may have an error due to radiative heat transfer
between the measurement transducer and the pipe
wall. An estimate of the effect of the radiation error
might be that the true temperature could be as much
as 2°C less than the transducer measurement (LL =
2°C)andcouldbeasmuchas20°Cabove themeasurement
(UL = 20°C).

The next step is to assign the distribution for the
possible nonsymmetric systematic errors. One approach,
as demonstrated in Figure 7-2.1-1, is to assume that X LL
and +X UL represent the plus andminus bounds for a 95%
confidence interval for a Gaussian distribution, with the
probable systematic error at the midpoint of the distribu-
tion (see Figure 7-2.1-1).
Another approach is to assume an equal probability of

occurrence for any error value between X LL and +X UL .
In this case, a rectangular error distribution would be
appropriate, as shown in Figure 7-2.1-2. A third approach
would allow for themost probable error to be at any value
between X LL and +X UL . In this case, a triangular distri-
bution would be used with a user-defined most probable
limit (MPL), as shown in Figure 7-2.1-3. Note that if the
most probable error is less than X , thenMPLwill be nega-
tive. For the temperature measurement example above, if
themost likely value of the true temperature is 18°C above
the measurement, then MPL = 18.
The following procedure gives the option of choosing a

Gaussian, rectangular, or triangular distribution for the
nonsymmetric error:
(a) specify the lower limit (LL), upper limit (UL), and, if

appropriate, most probable limit (MPL) for the nonsym-
metric error distribution.
(b) define the offset, q, as the difference between the

mean of the distribution specified in (a) and themeasured
value. The expressions for calculating the offset for each of
the three distribution types are given in Table 7-2.1-1.
Note that the expression for the Gaussian and rectangular
distributions are the same because the means are in the
centers of these two distributions.
Note that q canbe positive or negative depending on the

relative values of UL, LL, and MPL (where MPL can be
negative as described in this paragraph). If X is greater
than the mean of the distribution, q will be negative,
and if X is less than the mean of the distribution, q
will be positive.
(c) calculate bXns

, the systematic standard uncertainty
for the nonsymmetric error distribution, using the appro-
priate expression in Table 7-2.1-2.
(d) combine the systematic standard uncertainty with

the others for the measurement to obtain bX using
eq. (5-2-1).
(e) calculateuX, the combinedstandarduncertainty for

the measurement, using the standard formula

= +u b sX X X
2 2

(f) calculate U95, the expanded uncertainty for the
measurement, using

= = +U u b s2 2X X X95 2 2 (7-2-1)
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Figure 7-2.1-1 Gaussian Distribution for Nonsymmetric Systematic Errors

Figure 7-2.1-2 Rectangular Distribution for Nonsymmetric Systematic Errors

Figure 7-2.1-3 Triangular Distribution for Nonsymmetric Systematic Errors
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The calculation is based on the assumption that the
degrees of freedom of the combined standard uncertainty
are large . (For smal l degrees of freedom, see
Nonmandatory Appendix B.)
Note that if the nonsymmetric systematic uncertainty is

non-Gaussian and dominates the uncertainty determina-
tion, the Central Limit Theorem (see Nonmandatory
Appendix C) may not apply, and eq. (7-2-1) would not
be appropriate to determine the expanded uncertainty.
In this case, aMonteCarlo techniquewouldbeappropriate
to determine a 95% coverage interval [10]. The upper and
lower limits (based on +X q) of this nonsymmetrical
interval from the Monte Carlo technique would then be
combined with q as shown in (g) and (h) to determine
the nonsymmetric limits for X .
(g) calculate an approximate 95% confidence interval

for the true value using
[ + ] ±X q U95 (7-2-2)

(h) express the final result as anasymmetric95%confi-
dence interval for the true valuewith the lower limit given
by

= + =X X q U X Ulower limit 95 (7-2-3)

and the upper limit given by

= + + = + +X X q U X Uupper limit 95 (7-2-4)

where
U− = U95 − q
U+ = U95 + q

7-2.2 Example 1

Suppose a thermocouple is being used to measure the
temperature of a gas stream, but the user of the thermo-
couple believes there may be a tendency for the thermo-
couple to provide a temperature reading lower than the
actual gas temperature. Due to insufficient information
about the gas stream flowrate, the user is not able to prop-
erly correct the thermocouple reading for these effects,
but wishes to account for them in an uncertainty analysis.
The decision is made to account for heat transfer effects
through the use of a triangular distribution.
From a sample ofmore than 30 readings using the ther-

mocouple, the user finds that X = 534.7°C and sX = 2.4°C. If
the user believes that the true gas temperature may be
between 1°C lower and 10°C higher than X due to radia-
tion effects, then a nonsymmetric confidence interval
accounting for this nonsymmetric systematic uncertainty
may be computed as follows:
(a) specify an interval for the systematic error in ques-

tion. In this case, the user of the thermocouple believes
that the true gas temperature falls within a range of 1°C
lowerand10°Chigher than theaveragemeasuredwith the
thermocouple, X = 534.7°C, with the most likely true
temperature being 8°C higher. So for this example, a trian-
gular distribution is used with LL = 1°C, UL = 10°C, and
MPL = 8°C. This distribution is illustrated graphically in
Figure 7-2.2-1.
(b) determineq, thedifferencebetween themeanof the

distribution specified in (a) and the value measured with
the thermocouple. In this case

= + = °q 10 1 8
3

5.7 C

(c) calculate bXns
, the systematic standard uncertainty

for the nonsymmetric systematic error, as

= + + + +

= °

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

b

(10) (1) (8) (1)(10) (1)(8) (10)(8)
18

2.4 C

X

2 2 2 1/2
ns

Table 7-2.1-1 Expressions for q for the Gaussian,
Rectangular, and Triangular Distributions in

Figures 7-2.1-1 through 7-2.1-3

Distribution q
Gaussian UL LL

2
Rectangular UL LL

2
Triangular +UL LL MPL

3

Table 7-2.1-2 Systematic Standard Uncertainties, bxns , for the Gaussian, Rectanglar, and Triangular Distributions in
Figures 7-2.1-1 through 7-2.1-3

Distribution b Xns

Gaussian +UL LL
4

Rectangular +UL LL
2 3

Triangular
+ + + +

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

UL LL MPL (LL)(UL) (LL)(MPL) (UL)(MPL)
18

1/22 2 2
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(d) calculate bX, the systematic standard uncertainty
for the measurement. For the example, the nonsymmetric
systematic uncertainty is the dominant systematic uncer-
tainty, so

=b b .X Xns

(e) calculateuX , the combinedstandarduncertainty for
the measurement, using the standard formula:

= + = ° + ° = °u b s (2.4 C) (2.4 C) 3.4 CX X X
2 2 2 2

(f) calculate U95, the expanded uncertainty for the
measurement, using

= = °U u2 6.8 CX95

This calculation is based on the assumption that the
degreesof freedomfor thecombinedstandarduncertainty
are large . (For smal l degrees of freedom, see
Nonmandatory Appendix B.)
(g) calculate an approximate 95% confidence interval

for the true value using [ + ] ±X q U95 . In this case, this
95% confidence interval is given by

[ ° + ° ] ± °534.7 C 5.7 C 6.8 C

(h) calculate
= = ° ° = °U U q 6.8 C 5.7 C 1.1 C and95

= + = ° + ° = °+U U q 6.8 C 5.7 C 12.4 C95

Figure 7-2.2-1 charts the final result, which may be
expressed as an asymmetric 95% confidence interval
for the true value with the lower limit given by

= = ° ° = °X X U 534.7 C 1.1 C 533.6 Clower limit

and the upper limit given by

= + = ° + ° = °+X X U 534.7 C 12.4 C 547.1 Cupper limit

7-2.3 Nonsymmetric Systematic Uncertainty
Interval for a Derived Result

Anonsysmmetric systematic uncertainty in ameasured
variable may also result in a nonsysmmetric uncertainty
interval for a derived result. The following proceduremay
be employed for propagating the nonsymmetric uncer-
tainties in a set of measured variables to a derived result:
(a) determine Xi , uXi , and qi for each average Xi that

contributes to the determination of the derived result,
…r X X X( , , , )n1 2

(b) determine the offset, qr, which is defined as
= + + … + …q r X q X q X q r X X X( , , , ) ( , , , )r n n n1 1 2 2 1 2
(c) determine the sensitivity coefficient, θi, for each

average Xi that contributes to the derived result following
standard procedure. If a sensitivity coefficient depends on
the values of any averages, i.e., = …X X X( , , , )i i n1 2 , then
i t s h o u l d b e e v a l u a t e d a t t h e p o i n t

+ + … +X q X q X q( , , , )n n1 1 2 2
(d) calculate ur, the combined standard uncertainty for

the derived result, using that standard formula

= + + … +
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ( )( ) ( )u u u ur X X n X1

2
2

2 2
n1 2

(7-2-5)

Figure 7-2.2-1 Triangular Distribution of Temperatures
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(e) calculate U95,r, the expanded uncertainty for the
derived result at a 95% confidence level, as U95,r = 2μr.
This is based on the assumption that the degrees of the

freedom are large. For small degrees of freedom, see
Nonmandatory Appendix B.
(f) calculate an approximate 95% confidence interval

for the derived result using
+ + … + ±r X q X q X q U( , , , )n n r1 1 2 2 95, (7-2-6)

(g) express the confidence interval as an asymmetric
95% confidence interval for the derived result as follows:

… ± ±r X X X U q( , , , ) ( )n r r1 2 95, (7-2-7)

where the lower limit on this interval is given by

= …

=

r r X X X

U q r U

( , , , )

( )
n

r r r

lower limit 1 2

95,

(7-2-8)

and the upper limit on this interval is given by

= …

+ + = + +
r r X X X

U q r U

( , , , )

( )

n

r r r

upper limit 1 2

95,

(7-2-9)

with =U U qr r r95, and = ++U U qr r r95,

7-2.4 Example 2

Suppose the user of the thermocouple in Example 1 in
para. 7-2.2 wishes to use this gas temperature to estimate
the speed of sound for the gas using the following relation,
c = [kRT]1∕2, where k, the ratio of specific heats, and R, the
gas constant for the gas, are taken to be constant with
negligible uncertainty, and T is the measured value of
the absolute temperature in this thermocouple. The
uncertainty interval for c may be calculated as follows:
(a) determine T, uT and qT for themeasured variable T.

In this case, T = 807.9K, uT =3.4K, and qT = 5.7K
(b) determine the offset, qc, as follows:

= +

= [ ] [ ]
=

q c T q c T

kR kR K

kR K

( ) ( )

(813.6) (807.9 )

( ) (0.100 )

c T
1/2 1/2

1/2 1/2

(c) determine the sensitivity coefficient, θT, for the

measured variable T. In this case, = ( )( )T
kR
T

1
2

1/2
.

Since this sensitivity coefficient depends on T , it
should be evaluated as T + qT = 813.6K, so that here

= [ ] =i
k
jjj y

{
zzz

i
k
jjjj

y
{
zzzzkR K kR K

1
2

/(813.6 ) ( ) 0.0175T
1/2 1/2 1/2

(d) estimate the combined standarduncertainty for the
derived results uc. In this case,

{ }=

= [ ]

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

u kR K K

kR K

( ) (0.0175 )(3.4 )

(0.0596 )

c
1/2 1/2 2 1/2

1/2 1/2

(e) calculate U95,c, the expanded uncertainty for the
derived result c, at a 95% confidence level, as

= = [ ] = [ ]U u kR K kR K2 2 (0.0596 ) (0.119 )c c95,
1/2 1/2 1/2 1/2

This is based on the assumption that the degrees of
freedom are large. For small degrees of freedom, see
Nonmandatory Appendix B.
(f) compute a 95% confidence interval for the derived

result using c(T + qT) ± U95,c. In this case, this 95% confi-
dence interval is given by

±kR kR K( ) (813.6) ( ) (0.119 )1/2 1/2 1/2 1/2

(g) express the final result asanasymmetric95%confi-
dence interval using

± ±c T U q( ) ( )c c95,

In this case, this 95% confidence interval is given by

±

±
=

kR kR K

kR K

c kR K kR K

( ) (807.9) ( ) (0.119 )

( ) (0.100 )

( ) (28.42 ) ( ) (0.019 )

1/2 1/2 1/2 1/2

1/2 1/2

lower limit
1/2 1/2 1/2 1/2

and whose upper limit is equal to

= +c kR K kR K( ) (28.42 ) ( ) (0.219 )upper limit
1/2 1/2 1/2 1/2

In this example, the uncertainty interval for the speed of
sound of the gas extends from 0.07% below to 0.77%
above the value for the speed of sound assessed using
the measured value of the temperature.

7-3 REGRESSION UNCERTAINTY (TSM)

7-3.1 Linear Regression Analysis

Curve-fitting often is used in the calibration process, in
the data reduction program, and in the representation of
the final test results. Least-squares-regression analysis is
themostpopularmeansof curve-fitting. Inmanycases, the
anticipatedrepresentationof thedata is a straight line, ora
simple (first-order) linear regression. In someother cases,
the data to be curve-fit can be rectified, or transformed,
into linear coordinates [10, 13, 14].
Higher-order linear regressions and other regression

methodologies are discussed in detail in ISO/TR 7066-
2 and in textbooks [10, 15, 16, 17], as is regression uncer-
tainty when X and Y are functions of other variables [10,
17]. An overview of these topics is provided in
Nonmandatory Appendix D.
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The random standard uncertainty for the curve-fit will
be determined using standard least-squares analysis [10,
14, 16] where the assumption is made that there is no
random standard uncertainty in the X values and the
random standard uncertainty in the Y values is constant
over the range of the curve-fit.
In this Section, only a special case is considered for the

systematic standard uncertainty. This special case is
where the systematic standard uncertainty for the Y
values and/or the X values is a constant (i.e., percent
of full scale) and there are no correlated elemental
systematic errors between the X and Y values. A more
general approach to regression uncertainty is presented
in [10] and summarized in Nonmandatory Appendix D,
where themethodology applies for variable random stan-
darduncertainties inXandY, variable systematic standard
uncertainties in X and Y, and correlated systematic errors
between X and Y.

7-3.2 Least-Squares

For a straight-line, or simple linear regression, the
curve-fit expression is

= +Y mX c (7-3-1)

where for N data pairs, Xj, Yj, the slope m is determined
from

= = = =

= =

i

k

jjjjjjjjj

y

{

zzzzzzzzz

m

N X Y X Y

N X X( )

j

N

j j
j

N

j
j

N

j

j

N

j
j

N

j

1 1 1

1

2

1

2 (7-3-2)

and the intercept c is determined from

= = = = =

= =

i

k

jjjjjjjjj

y

{

zzzzzzzzz

c

X Y X X Y

N X X

( ) ( )

( )

j

N

j
j

N

j
j

N

j
j

N

j j

j

N

j
j

N

j

1

2

1 1 1

1

2

1

2 (7-3-3)

The least-squares process essentially provides an
average for the data so that the regression expression
in eq. (7-3-1) represents the relationship between the
mean value of Y and X . This means Ŷ is not the
average of the Yj data but the mean Y response from
the curve-fit for a given X. Once the slope and intercept
are calculated from eqs. (7-3-2) and (7-3-3), these
constants can be substituted into eq. (7-3-1) along
with several values of X and the resulting straight line
can be plotted over the Xj, Yj data. Since the Ŷ-versus-X
curve is a mean value for the data set, the curve
should be a good representation of the data if the
simple linear fit is appropriate.

7-3.3 Random Standard Uncertainty for Ŷ
Determined From Regression Equation

The statistic that defines the standard deviation for a
straight-line curve-fit is the standard error of estimate

= =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

( )Y mX c

N
SEE

2
j

N

j j
1

2
1/2

(7-3-4)

For a given value of X, the random standard uncertainty
associated with the Ŷ obtained from the curve-fit
[eq. (7-3-1)] is

= +

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
( )

s
N

X X

X X

 SEE
1 ( )

Y

j

N

j

2

1

2

1/2

(7-3-5)

where

=
=

X
N

X1

j

N

j
1

(7-3-6)

It is also assumed that the proper regression expression
for the data is a straight line and that the variation of the Y
values around the curve-fit results from the random error
in the Y measurements.
If there is no random standard uncertainty in the Xj data

or the new X values used in the regression equation, the
random standard uncertainty sŶ obtained from eq. (7-3-5)
is combined with the systematic standard uncertainty
(discussed in para. 7-3-4) using eq. (7-3-7) to obtain
the combined standard uncertainty for the Ŷ value
from the curve-fit. For random standard uncertainty in
the Xj or X values, the general approach in this Code or
Nonmandatory Appendix D should be used.

7-3.4 Systematic Standard Uncertainty for Ŷ
Determined From Regression Equation

There can be systematic standard uncertainty, bŶ
respectively, in the Yj and Xj data. There also can be
systematic standard uncertainty in the X value used in
the curve-fit to find a Ŷ value. This curve-fit X will be
called Xnew to distinguish it from the Xj data points,
and the systematic standard uncertainty for Xnew is
bXnew. It is very likely that most, and probably all, of the
elemental systematic standard uncertainties for each of
the Yj data points are from the same error sources,
and are, therefore, correlated. The same is true for the
Xj data points. There is also a possibility that the Xnew
values will have systematic standard uncertainties
from the same sources as the Xj data, causing these uncer-
tainties to be correlated.
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Only constant systematic standard uncertainties for Xj,
Yj, and X new are considered. All of the bYj uncertainties are
assumed to be completely correlatedwith each other, and
all of the bXj uncertainties are assumed to be completely
correlated with each other. It is assumed there are no
common uncertainty sources between Yj and Xj (no corre-
lation between the bYj and bXj systematic standard uncer-
tainties). Cases are considered where Xnew has systematic
standard uncertainty correlated with that in Xj and where
Xnew has systematic standard uncertainty not correlated
with that in Xj.

7-3.4.1 Systematic StandardUncertainty inYjData. If
each of the Yj data points had the same systematic stan-
dard uncertainty, bY, then the resulting elemental
systematic standard uncertainty for the mean Ŷ from
the curve-fit [10, 14, 17] is

=b bY Y1
(7-3-7)

7-3.4.2 Systematic Standard Uncertainty in Xj Data
With No Systematic Standard Uncertainty in Xnew. If
eachof theXjdatapointshas the samesystematic standard
uncertainty, bX, and Xnew has no systematic standard
uncertainty, then the resulting elemental systematic stan-
dard uncertainty for themeanŶ from the curve-fit [10, 17]
is determined as

=b mbY X2
(7-3-8)

This occurs when the regression equation from a set of
test data is used later in a designor analysis processwhere
Xnew might be taken as a value that has no uncertainty.

7-3.4.3 Systematic Standard Uncertainty in Xj Data
With Correlated Systematic Standard Uncertainty in
Xnew. If each of the Xj data points had the same systematic
standarduncertainty,bX, andXnewhas thesamesystematic
standard uncertainty (from the same sources), then the
resulting elemental systematic standard uncertainty for
the mean Ŷ from the curve-fit is zero [10]. This case
would occur if the same instruments are used to
measure Xnew as were used to measure Xj. Since all of
the systematic standard uncertainties for Xj and Xnew
are correlated, the systematic standard errors are all
the same. The effect on the curve-fit is to shift it to the
right or left depending on the sign of the errors (the
signs and magnitudes of the errors are unknown). This
shift has no effect on the value of Ŷ obtained from the
curve since the shift in Xnew is the same as the shift in Xj.

7-3.4.4 Systematic Standard Uncertainty in Xj Data
With Uncorrelated Systematic Standard Uncertainty
in Xnew. If each of the Xi data points had the same
systematic standard uncertainty, bX, but Xnew has a
different (no common systematic error sources)
systematic standard uncertainty, bXnew, then the resulting
elemental systematic standard uncertainty for the mean
Y from the curve-fit is

= +
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ( )b mb mb( )Y X X

2 2 1/2

3 new
(7-3-9)

This would occur if different instruments were used to
measure the Xj values and Xnew.

7-3.4.5 Systematic Standard Uncertainty for Ŷ. The
systematic standard uncertainty for the mean Ŷ from
the curve-fit will be the appropriate root-sum-square
of the bŶj elemental systematic standard uncertainties
defined herein and summarized in Table 7-3.4-1.
For systematic standard uncertainty in Yj only or

systematic standard uncertainty in Yj with correlated
systematic standard uncertainty between Xj and Xnew:

=b bY Y1
(7-3-10)

For systematic standard uncertainty in the Yj data and
theXjdata andno systematic standarduncertainty inXnew:

= +i
k
jjj y

{
zzzb b bY Y Y

2 2
1/2

1 2
(7-3-11)

For systematic standard uncertainty in the Yj data and
the Xj data and uncorrelated systematic standard uncer-
tainty in Xnew, the systematic standard uncertainty for the
curve-fit value of Ŷ is

= +i
k
jjj y

{
zzzb b bY Y Y

2 2
1/2

1 3
(7-3-12)

For no systematic standard uncertainty in the Yj data,
systematic standard uncertainty in the Xj data, and no
systematic standard uncertainty in Xnew:

=b bY Y2
(7-3-13)

For no systematic standard uncertainty in the Yj data,
systematic standard uncertainty in the Xj data, and uncor-
related systematic standard uncertainty in Xnew, the
systematic standard uncertainty for the curve-fit value
of Ŷ is

Table 7-3.4-1 Systematic Standard Uncertainty
Components forŶDeterminedFromRegressionEquation

Components Equation
Systematic standard uncertainty in Yj
data

=b bY Y1 1

Systematic standard uncertainty in Xj
data with no systematic standard
uncertainty in Xnew

=b mbY X2

Systematic standard uncertainty in Xj
data with correlated systematic
standard uncertainty in Xnew

0

Systematic standard uncertainty in Xj
data with uncorrelated systematic
standard uncertainty in Xnew

= +
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ( )b mb mb( )Y X X

2 2 1/2

3 new
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=b bY Y3 (7-3-14)

For no systematic standard uncertainty in the Yj data
and correlated systematic standard uncertainty between
Xj and Xnew:

=b 0Y (7-3-15)

7-3.5 Uncertainty for Ŷ From Regression Equation
The total uncertainty in the Ŷ obtained from the simple

linear regression expression, eq. (7-3-1), is given by
eqs. (6-3-7) and (6-3-8) for the case where the degrees
of freedom for Ŷ are sufficiently large so that t ≈ 2.

= +
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑU b s2Y Y Y

2 2
1/2 (7-3-16)

Note that the degrees of freedom for Ŷ is based on the
degreesof freedomfor sŶ,which isN−2, and thedegreesof
freedom for bŶ (see Nonmandatory Appendix B). The use
of the factor t ≈ 2 will be appropriate in most cases. The
uncertainty band UŶ in eq. (7-3-16) will vary with X (i.e.,
Xnew) because of the expression for sŶ from eq. (7-3.5). As
noted in para. 7-3.3, the uncertainty expression in
eq. (7-3-16) only applies if there is no random standard
uncertainty in X and if the systematic standard uncertain-
ties are percent of full-scale values or are fixed and do not
change across the range of the instrument.
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Section 8
A Comprehensive Example

This Section is derived from Coleman and Steele [10]
and is divided into the following parts to reflect the text-
book analysis:
Part 1 Overview
Part 2 Generic Calibration Analysis
Part 3 Determination of the Uncertainty of q for a Single Core

Design
Case A: No Shared Error Sources in Any Measurements

TSM
Analysis

MCM
Analysis

Case B: Possible Shared Error Sources in Temperature
Measurements
TSM
Analysis

MCM
Analysis

Part 4 Determinationof theUncertainty inΔq forTwoCoreDesigns
Tested Sequentially Using the Same Facility and
Instrumentation

TSM Analysis
No shared error sources among the T1,
T2, and T3 measurements within a
single test (as in Part 3, Case A)

Shared error sources for theT1,T2, and
T3 measurements within a single
test (as in Part 3, Case B)

MCM Analysis
No shared error sources among the T1,
T2, and T3 measurements within a
single test (as in Part 3, Case A)

Shared error sources for theT1,T2, and
T3 measurements within a single
test (as in Part 3, Case B)

8-1 PART 1: OVERVIEW

A heat exchanger test facility is used to test heat
exchanger cores using a hot air-cooling water configura-
tion, as indicated schematically in Figure 8-1-1.
The test facility where the core is installed contains all

required instrumentation; no new instrumentation is nec-
essary for testing different cores. There is one thermo-
couple probe (T1) in a well in the water inlet header.
There are two spatially separated wells, each with a ther-
mocouple probe (T2 and T3), in the water outlet header. A

turbine meter is used to determine water volumetric flow
rate, Q.
The result of interest is the rate of heat transfer to the

cooling water, which is determined for a given set point
using the DRE

=
+i

k
jjj y

{
zzzq Qc

T T
T

2
2 3

1

where
c = the constant pressure-specific heat of the

water at an average temperature
Q = the volumetric flow rate of the water
q = the rate of heat transfer from the hot air to the

cooling water
T1 = the water temperature in the inlet header as

measured by a single probe
T2, T3 = temperatures measured by two temperature

probesatdifferentpositions in a cross-section
in the water outlet header

ρ = the water density

Conceptually, this equation assumes a steady state with
T1 corresponding to the averaged water temperature at
the inlet plane of the test core and (T2 + T3)/2 corre-
sponding to the averaged water temperature at the
outlet plane of the test core.

Figure 8-1-1Heat ExchangerCoresUsingHotAir-Cooling
Water Configuration

ASME PTC 19.1-2018

41

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME PTC 19
.1 

20
18

https://asmenormdoc.com/api2/?name=ASME PTC 19.1 2018.pdf


8-1.1 Random Standard Uncertainty for the
Result, q

This is a well-established facility with a history that
allows use of prior test data to establish a large
sample estimate, sq, of the random standard uncertainty
in q for a single core tested multiple times at the same
nominal set point and with removal and reinstallation
between tests.

8-1.2 Systematic Standard Uncertainties

The systematic standard uncertainties are identified as
follows:

for c = a single elemental systematic error source
with systematic standard uncertainty, bc

for Q = a single elemental systematic error source
with systematic standard uncertainty, bQ

for T1 = two elemental systematic error sources with
elemental systematic standard uncertainties,
bT1,1 and bT1,2

for T2 = two elemental systematic error sources with
elemental systematic standard uncertainties,
bT2,1 and bT2,2

for T3 = two elemental systematic error sources with
elemental systematic standard uncertainties,
bT3,1 and bT3,2

for ρ = a single elemental systematic error source
with systematic standard uncertainty, bρ

This number of elemental error sources is necessary
and sufficient for illustrating all of the facets of this
example. In specific actual cases, the number of elemental
systematic error sourcesmay be greater, but no extension
of the approaches illustrated would be necessary other
than simply adding more terms to account for the addi-
tional sources.
For this example, it is postulated that the thermocouple

probes are calibrated in a “constant temperature” water
bath containing a rack of test tubes. For a given calibration
set point, the probes are placed in individual tubes and the
standard against which they are calibrated placed in a
separate test tube. In such a case it is stipulated that
the first of the elemental systematic error sources for
each temperature measurement is from the calibration
standard, and the associated elemental standard
systematic uncertainties are designated as

b b
b b
b b

T

T

T

1,1 std,1

2,1 std,2

3,1 std,3

For the most general case, the probes could be cali-
brated individually against different standards and this
nomenclature allows for that.

The second of the elemental systematic error sources
for each temperature measurement is due to the bath
nonuniformity. When the bath is held at a supposed
steady state at a calibration set point, it is not at a
uniform temperature. The “error” in this case will be
the difference between the temperature where the stan-
dard is located and the temperature where a probe is
located during calibration. While the bath is at a
steady-state calibration set point, traversing the standard
to different points in the bath and recording the tempera-
ture differences from some chosen reference position
yields a distribution of temperature differences, and
the standard deviation of this distribution is used as
the large sample estimate of bT1,2 = bT2,2 = bT3,2 =
bbath. Note that although the uncertainties are equal,
the errors in each probe due to the elemental source
are different if the probes are at different positions in
the bath during the calibration. For this reason, it is
useful to define

b b
b b
b b

T

T

T

1,2 bath,1

2,2 bath,2

3,2 bath,3

8-2 PART 2: GENERIC CALIBRATION ANALYSIS

Consider a generic thermocouple calibration case. The
thermocouple (tc) connected to a data acquisition system
(das) consisting of an electronic reference junction, signal
conditioning, an analog-to-digital converter, and a digital
voltmeter. The tc is exposed to some temperature, Ttrue,
that one wishes to measure and the system output is the
voltage, E, as shown in illustration (a) of Figure 8-2-1.
Suppose that the thermocouple is used as supplied and

is not individually calibrated. In that case, as shown in
illustration (b) of Figure 8-2-1, the voltage, E, is used
in a generic T-vs-E table for the particular type of thermo-
couple, and the corresponding temperature, T, is found.
This is the temperature that is said to be the “measured”
value of Ttrue.
The uncertainty in this value includes contributions

from the elemental systematic errors.
βa/d = the error fromthe analog todigital converter
βdvm = the error from the digital voltmeter

βref-junc = the error from the electronic reference junc-
tion

βs/c = the error from the signal conditioner
βtc = the amount this tc differs from the generic tc

in the table

Suppose the thermocouple is calibrated as shown in
illustration (a) of Figure 8-2-2, where the thermocouple
and the temperature standard, Tstd, are both exposed to
the same temperature, Ttrue. The voltage, E, output by the
thermocouple system (tc + das) and the temperature, Tstd,
indicated by the standard are entered as a data pair into
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the calibration table,which replaces thegeneric tableused
previously.
When the system is used to measure Ttrue, as shown in

illustration (b) of Figure 8-2-2, the voltage output, E, is
entered in the calibration table and the corresponding
temperature, T, retrieved is, in effect, what would be indi-
cated by the standard.
The uncertainty in this resulting temperature now

includes the contribution from the systematic error
βstd (the amount Tstd differs from Ttrue), which replaces
the contributions from the errors βtc, βref-junc, βs/c, βa/d,
and βdvm.
This shows that some systematic errors can be replaced

by (hopefully) smaller ones by careful application of the
calibration process.
NOTE: It is critical to identify exactly what is being calibrated.

If the tc and thedas that are calibrated together areused
in the test, then the error situation is as previously
described. However, if the das used in the calibration,
dascal, is replaced by another, dastest, for the actual
test, the systematic error βstd from the standard then
only replaces the error contribution βtc. The uncertainty
in the resulting measured temperature, T, now includes
contributions from the error in the standard, βstd; those
errors from the das used in the calibration (βref-junc, βs/c,
βa/d, βdvm)das-cal; and those errors from the das used in the
test (βref-junc, βs/c, βa/d, βdvm)das-test.
In the situation stipulated for this comprehensive

example, the same das is used during the calibration
and the tests, so there are not separate systematic
error sources for calibration and test data acquisition
systems.

8-3 PART 3: DETERMINATION OF THE
UNCERTAINTY IN q FOR A SINGLE CORE
DESIGN

8-3.1 Case A: No Shared Error Sources in Any
Measurements

This case could occur if there were no common calibra-
tion of the three thermocouple probes; for instance, if the
probeswere fromdifferent suppliers. For purposes of this
case, stipulate that there is only one significant error
source for each probe (e.g., the manufacturer’s accuracy
specification), so the corresponding systematic standard
uncertainties are bT1, bT2, and bT3.

8-3.1.1 TSM Analysis. The following illustrates the
TSM approach to Case A:

=
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8-3.1.2 MCM Analysis. Figure 8-3-1 illustrates the
Monte Carlo approach to Case A. First, a single “run” of
the experiment is constructed with a systematic error
drawn from each variable’s assumed error distribution,
having as its standard deviation the estimated systematic
uncertainty for that variable. This is shown inFigure8-3-1,
where uniform distributions are assumed for all
systematic error sources. (This assumption is made in
this example for the sake of simplicity — it is not neces-
sarily a general recommendation.)
For the ith run, for instance, a “measured” value of each

variable is calculated as

Figure 8-2-1 Measurement of a Generic Thermocouple Output
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Figure 8-2-2 Measurement of a Calibrated Thermocouple Output
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= +

= +
= +
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= +

( )
( )Q Q

c c

T T
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T T

( )
( ) ( )
( ) ( )
( ) ( )

i i

i Q i

i c i

i T i

i T i

i T i

true

true

true

1, 1 true 1

2, 2 true 2

3, 3 true 3

and the value of the result is calculated as

=
+

+
i
k
jjjj

y
{
zzzzq Q c

T T
T

2
( )i i i i

i i
i q i

2, 3,
1,

where the random error in the result, (εq)i, is drawn from
an assumed error distribution with standard deviation
equal to sq, the random standard uncertainty of q.
When this is repeatedM times, adistributionofMvalues

ofq is obtained. The standarddeviationof this distribution
is uq, the total standard uncertainty in q. A coverage
interval can be defined and calculated directly using
the M q values, with no assumption necessary about
the form of the distribution of the M values.

8-3.2 Case B: Possible Shared Error Sources in
Temperature Measurements

This is the situation prescribed in Section 8-1, with
temperature measurement elemental error sources
from the standard(s) and the bath nonuniformity.

8-3.2.1 TSM Analysis.
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Consider if the three thermocouple probes were cali-
bratedagainst different standardsandwereall indifferent
positions in the bath during calibration. This unlikely case
isworth considering inorder to see the logical progression
of the following analyses. Then there would be no shared
error sources and bT1T2 = bT1T3 = bT2T3 = 0.
If the three thermocouple probes were calibrated

against the same standard but were all in different posi-
tions in the bath during calibration, then

=
=
=

b b b
b b b
b b b

T T T T

T T T T

T T T T

1 2 std,1 std,2

1 3 std,1 std,3

2 3 std,2 std,3

If the three thermocouple probes were calibrated
against the same standard and were all in the same posi-
tion in the bath (but at a different location than the stan-
dard during calibration), then

= +
= +
= +

b b b b b
b b b b b
b b b b b

T T T T T T

T T T T T T

T T T T T T

1 2 std,1 std,2 bath,1 bath,2

1 3 std,1 std,3 bath,1 bath,2

2 3 std,2 std,3 bath,2 bath,3

The combined standarduncertainty inq is then givenby

= +u b sq q q
2 2 2

The derivatives with respect to ρ, Q, and c are functions
of the measured temperatures, but the derivatives with
respect to the temperatures are not functions of the
temperatures themselves, and the expression given
herein can be algebraically simplified. The derivatives
with respect to the temperatures are

=

= =

Qc

Qc

q
T

q
T

q
T

1
2

1

2 3

Figure 8-3-1 Monte Carlo Uncertainty Analysis
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Substituting for these derivatives, the equation for bq
can now be written as
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Thus two of the correlation terms are negative and one
is positive. This indicates the possibility of decreasing bq
by proper choice(s) of calibration, forcing correlation of
some error sources but not others.

8-3.2.2 MCMAnalysis.As in theMonte Carlo approach
shown in Case A, first a single “run” of the experiment is
constructed with a systematic error β drawn for each
elemental source from an assumed error distribution.
This has as its standard deviation the estimated
systematic standard uncertainty for that elemental
source. Figure 8-3.2-1 illustrates this with uniform distri-
butions assumed for all elemental systematic error
sources.
Consider if the three thermocouple probes were cali-

bratedagainstdifferent standards andwereall indifferent
positions in the bath during calibration. This is an unlikely
case, but worth considering in order to see the logical
progression of the analyses. Then there would be no

shared error sources and single errors β would be
drawn from each of the distributions in Figure 8-3.2-1.
This gives
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1, 1 true std,1 bath,1

2, 2 true std,2 bath,2

3,1 3 true std,3 bath,3

and the value of the result is calculated as
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where the random error in the result, (εq)i, is drawn from
an assumed error distribution with standard deviation
equal to sq, the random standard uncertainty of q.
If the three thermocouple probes were calibrated

against the same standard but were all in different posi-
tions in the bath during calibration, then the error from
elemental source 1 (the standard) would be exactly the
same for each of the three temperature measurements
during Monte Carlo iteration i. This is modeled by
drawing a single error βstd during iteration i from the
Tstd,1 error distribution and setting

= =( ) ( ) ( ) ( )
i i i istd,1 std,2 std,3 std

so that

= + +

= + +

= + +

( )
( )
( )

T T

T T

T T

( ) ( )

( ) ( )

( ) ( )

i i i

i i i

i i

1, 1 true std bath,1

2, 2 true std bath,2

3,1 3 true std bath,3

and the value of the result is again calculated as

Figure 8-3.2-1 Uniform Distributions for Elemental Systematic Error Sources
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where the random error in the result, (εq)i, is drawn from
an assumed error distribution with standard deviation
equal to sq, the random standard uncertainty of q.
If the three thermocouple probes were calibrated

against the same standard and were all at the same posi-
tion in the bath (but not necessarily the same position as
the standard) during calibration, then the error from
elemental source 1 (the standard) would be exactly
the same for each of the three temperaturemeasurements
during Monte Carlo iteration i, and also the error from
elemental source 2 (the bath nonuniformity) would be
exactly the same for each of the three temperature
measurements during Monte Carlo iteration i. This is
modeled by drawing a single error βstd during iteration
i from the Tstd,1 error distribution and setting

= =( ) ( ) ( ) ( )
i i i istd,1 std,2 std,3 std

and drawing a single error βbath during iteration i from the
Tbath,1 error distribution and setting

= =( ) ( ) ( ) ( )
i i i ibath,1 bath,2 bath,3 bath

so that
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and the value of the result is again calculated as
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where the random error in the result, (εq)i, is drawn from
an assumed error distribution with standard deviation
equal to sq, the random standard uncertainty of q.
When this is repeatedM times, adistributionofMvalues

ofq is obtained. The standarddeviationof this distribution
is uq, the total standard uncertainty in q. A coverage
interval can be defined and calculated directly using
the M q values, with no assumption necessary about
the form of the distribution of the M values.

8-4 PART 4: DETERMINATION OF THE
UNCERTAINTY INΔq FORTWOCOREDESIGNS
TESTED SEQUENTIALLY USING THE SAME
FACILITY AND INSTRUMENTATION

Labeling the first design as f and the second design as g,
the DRE for the difference in the rates of heat transfer
determined for the two designs is

=q q qf g
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8-4.1 Random Uncertainty for the Result Δq
For this example, assume that sq is a valid estimate for

both tests f and g, so that the TSM propagation equation is
used to estimate the random standard uncertainty of Δq:
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Since the partial derivatives are +1 and -1, this gives
=s s2q q

8-4.2 TSM Analysis: Systematic Standard
Uncertainty for the Result Δq

8-4.2.1 No shared error sources among the T1, T2, and
T3 measurements within a single test (as in Case A). If
there are no shared error sources among theT1, T2, andT3
measurements within a single test (as in Case A in
para. 8-3.1), the TSM gives
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Since the same instrumentation is used in tests f and g,
eachmeasuredvariable in fwill share error source(s)with
the corresponding measured variable in g.
The derivatives with respect to ρ, Q, and c are functions

of the measured temperatures, but the derivatives with
respect to the temperatures are not functions of the
temperatures themselves, and the expression herein
can be algebraically simplified. The derivatives with
respect to the temperatures are
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Substituting for these derivatives, the TSM expression
for bΔq can now be written as
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Eachmeasured temperature in test gwill have identical
error sources to that same temperaturemeasured in test f,
so that
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For the situation in which the two tests are run at iden-
tical set points,

Qc Qc Qc( ) ( ) ( )f g

and the final nine terms in the equation for bΔq become
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Therefore, for the stated conditions, the effects of the
temperature elemental systematic error sources from the
standard and the bath nonuniformity totally cancel out
and the equation for bΔq becomes
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8-4.2.2 Shared error sources for the T1, T2, and T3
measurements within a single test (as in Case B). If
there are shared error sources for the T1, T2, and T3
measurements within a single test (as in Case B in
para. 8-3.2), the TSM gives
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If all three temperature probes are calibrated against
the same standard so that

= =b b b bstd,1 std,2 std,3 std

and all three temperature probes are at the same position
in thebathduring calibration (so that the errordue tobath
nonuniformity is identical for all probes)

= =b b b bbath,1 bath,2 bath,3 bath

then each of the (bTi)2 and bTiTj factors is equal to

= +b b bT
2

std
2

bath
2

for the situation in which
Qc Qc Qc( ) ( )f g

Once again, the effects of the temperature elemental
systematic error sources from the standard and the
bath nonuniformity totally cancel out and the equation
for bΔq becomes
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8-4.3 MCM Analysis.

As in the Monte Carlo approach in para. 8-3.2.2, first a
single “run,” i, of the experimental determination of Δq is
constructed. Since for this example it is stipulated that
tests f and g are run “back-to-back” using identical instru-
mentation, the same errors will affect the measured vari-
ables in test fasaffect themeasuredvariables in testg. This
is modeled for run i with a single systematic error, β (the
value of which is used in both test f and test g), drawn for

each elemental source fromanassumederror distribution
having as its standard deviation the estimated systematic
standard uncertainty for that elemental source. This is
shown in Figure 8-3.2-1, assuming uniform distributions
for all elemental systematic error sources.

8-4.3.1 No shared error sources among theT1, T2, and
T3 measurements within a single test (as in Case A). If
there are no shared error sources among the T1, T2, and T3
measurements within a single test (as in Case A in
para. 8-3.1), the MCM analysis gives
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and the value of the result is calculated as
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where the random error in the result, (εΔq)i, is drawn from
an assumed error distribution with standard deviation
equal to sΔq, the random standard uncertainty of Δq.
When this is repeatedM times, adistributionofMvalues

of Δq is obtained. The standard deviation of this distribu-
tion isuΔq, the total standard uncertainty in Δq. A coverage
interval can be defined and calculated directly using theM
Δqvalues,withnoassumptionnecessary about the formof
the distribution of the M values.

8-4.3.2 Shared error sources for the T1, T2, and T3
measurements within a single test (as in Case B). If
there are shared error sources for the T1, T2, and T3
measurements within a single test (as in Case B in
para. 8-3.2), it is very simple to take these additional
effects into account in the MCM. If, for instance,
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temperature probes 2 and 3 are calibrated against the
same standard but temperature probe 1 is calibrated
against another standard, those elemental errors that
are shared are all set equal within MCM run i:

=( ) ( )i istd,2 std,3

and the equations for calculating T3,i,f and T3,i,g are modi-
fied to become

= + +

= + +

( ) ( )
( ) ( )

T T

T T

( )

( )

i f f i i

i g g i i

3, , 3 true, std,2 bath,3

3, , 3 true, std,2 bath,3

If the same standard is used for all three probes, then in
all of the temperature equations the error from the stan-
dard for run i will be exactly the same:

= =( ) ( ) ( ) ( )
i i i istd,1 std,2 std,3 std

Likewise, if all three probes are at the same position in
the bath during calibration, then in all of the temperature
equations the error from the bath nonuniformity for run i
will be exactly the same

= =( ) ( ) ( ) ( )
i i i ibath,1 bath,2 bath,3 bath

ASME PTC 19.1-2018

51

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME PTC 19
.1 

20
18

https://asmenormdoc.com/api2/?name=ASME PTC 19.1 2018.pdf

