
RAPPORT
TECHNIQUE

CEI
IEC

TECHNICAL
REPORT

TR 61282-3
First edition

2002-08

Fibre optic communication system
design guides –

Part 3:
Calculation of polarization mode dispersion

Guides de conception des systèmes
de communication à fibres optiques –

Partie 3:
Calcul de la dispersion en mode de polarisation

Numéro de référence
Reference number

CEI/IEC/TR 61282-3:2002

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 61

28
2-3

:20
02

https://iecnorm.com/api/?name=3e66bfdc8c9082360bb625eeeec7a553


Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables
you to search by a variety of criteria including text searches, technical
committees and date of publication. On-line information is also available on
recently issued publications, withdrawn and replaced publications, as well as
corrigenda.

• IEC Just Published
This summary of recently issued publications (www.iec.ch/JP.htm) is also
available by email. Please contact the Customer Service Centre (see below) for
further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 61

28
2-3

:20
02

http://www.iec.ch/
http://www.iec.ch/catlg-e.htm
http://www.iec.ch/JP.htm
mailto:custserv@iec.ch
https://iecnorm.com/api/?name=3e66bfdc8c9082360bb625eeeec7a553


RAPPORT
TECHNIQUE

CEI
IEC

TECHNICAL
REPORT

TR 61282-3
First edition

2002-08

Fibre optic communication system
design guides –

Part 3:
Calculation of polarization mode dispersion

Guides de conception des systèmes
de communication à fibres optiques –

Partie 3:
Calcul de la dispersion en mode de polarisation

  IEC 2002  Droits de reproduction réservés     Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé,
électronique ou mécanique, y compris la photocopie et les
microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any
form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from
the publisher.

International Electrotechnical Commission,  3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11  Telefax: +41 22 919 03 00  E-mail: inmail@iec.ch   Web: www.iec.ch

WCommission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия Pour prix, voir catalogue en vigueur

For price, see current catalogue

CODE PRIX
PRICE CODE

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 61

28
2-3

:20
02

https://iecnorm.com/api/?name=3e66bfdc8c9082360bb625eeeec7a553


– 2 – TR 61282-3   IEC:2002(E)

CONTENTS
FOREWORD .......................................................................................................................... 3
INTRODUCTION .................................................................................................................... 5

1 Scope and object ............................................................................................................. 6
2 Basic design models for total system PMD performance ................................................... 6

2.1 Notation .................................................................................................................. 6
2.2 Calculation of system PMD ..................................................................................... 7

2.2.1 System maximum PMD ............................................................................... 8
2.2.2 Calculation of system maximum DGD.......................................................... 8

3 Calculation of cabled fibre PMD.......................................................................................10
3.1 Method 1: Calculating PMDQ, the PMD link design value .........................................11

3.1.1 Determining the probability distribution of the link PMD coefficients ............11
3.1.2 Determining the value of PMDQ...................................................................13

3.2 Method 2: Calculating the probability of exceeding DGDmax...................................15
3.2.1 Combining link and Maxwell variations........................................................16
3.2.2 Convolution: Theory of method 2 ................................................................17

3.3 Equivalence of methods .........................................................................................18
3.3.1 Equivalence of the default specifications ....................................................19
3.3.2 Discussion regarding the basis of the default specifications

for method 2 ..............................................................................................20
3.3.3 Calculation of the parameters of figure 4 ....................................................20

4 Calculation of optical component PMD.............................................................................20
4.1 Calculation for random components .......................................................................21
4.2 Calculation for deterministic components ...............................................................21

4.2.1 Worse case calculation ..............................................................................21
4.2.2 Calculation for embedded deterministic components...................................22

5 Summary of acronyms and symbols ................................................................................22

Annex A (informative)  PMD concatenation fundamentals.......................................................24
A.1 Definitions ......................................................................................................................24
A.2 Concatenation – General ................................................................................................25
A.3 Application to random elements ......................................................................................25
A.4 Application to deterministic elements ..............................................................................26
Annex B (informative)  Combining Maxwell extrema from two populations ..............................28
B.1 Maxwell distribution definitions........................................................................................28
B.2 Convolution definition .....................................................................................................29
B.3 Convolution of optical fibre cable and random components .............................................29
B.4 Evaluation of the double convolution ...............................................................................30
Annex C (informative)  Worked example ................................................................................32
Annex D (informative)  Relationship of probability to system performance ..............................33
Annex E (informative)  Concatenation experiment ..................................................................34

Bibliography ..........................................................................................................................36

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 61

28
2-3

:20
02

https://iecnorm.com/api/?name=3e66bfdc8c9082360bb625eeeec7a553


TR 61282-3   IEC:2002(E) – 3 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDES –

Part 3: Calculation of polarization mode dispersion

FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of
patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example “state of the art”.

Technical reports do not necessarily have to be reviewed until the data they provide are
considered to be no longer valid or useful by the maintenance team.

IEC 61282-3, which is a technical report, has been prepared by subcommittee 86C: Fibre optic
systems and active devices, of IEC technical committee 86: Fibre optics.

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

86C/296/DTR 86C/346/RVC

Full information on the voting for the approval of this technical report can be found in the report
on voting indicated in the above table.

Annexes A, B, C, D and E are for information only.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

This document, which is purely informative, is not to be regarded as an International Standard.
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The committee has decided that the contents of this publication will remain unchanged until
2006 At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

A bilingual version of this publication may be issued at a later date.
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INTRODUCTION

Polarization mode dispersion (PMD) is usually described in terms of a differential group delay
(DGD), which is the time difference between the principal states of polarization of an optical
signal at a particular wavelength and time. PMD in cabled fibres and optical components
causes an optical pulse to spread in the time domain, which may impair the performance of
a fibre optic telecommunication system, as defined in IEC 61281-1.
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– 6 – TR 61282-3   IEC:2002(E)

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDES –

Part 3: Calculation of polarization mode dispersion

1 Scope

The purpose of this technical report is to provide guidelines for the calculation of polarization
mode dispersion (PMD) in fibre optic systems to accommodate the statistical variation of PMD
and differential group delay (DGD) in optical fibre cables and components.

This guideline describes methods for calculating PMD due to optical fibre cables and optical
components in an optical link. Example calculations are given to illustrate the methods for
calculating total optical link PMD from typical cable and optical component data. The
calculations include the statistics of concatenating individual optical fibre cables drawn from
a specified distribution. The calculations assume that all components have PMD equal to the
maximum specified value.

NOTE  The statistical specification of the distribution of the PMD of optical fibre cables is a current work item to
amend IEC 60794-3, in SC86A/WG3 [2]1. The agreements following the last ballot (86A/501/CD) are aligned with
the methods given in this technical report.

The calculations described cover first order PMD only. This study of PMD continues to evolve,
therefore the material in this technical report may be modified in the future. The following
subject areas are currently beyond the scope of this technical report, but remain under study:

– calculation of second and higher order PMD;
– accommodation of components with polarization dependent loss (PDL) – if it is assumed

that PDL is negligible in optical fibre cables;
– system impairments (power penalty) due to PMD;
– interaction with chromatic dispersion and other nonlinear effects.

Measurement of PMD is beyond the scope of this technical report. Guidelines on the
measurement of PMD of optical fibre and cable are given in IEC 61941. The measurement of
optical amplifier PMD will be documented in IEC 61290-11-12. The measurement of component
PMD will be documented in IEC 61300-3-323.

2 Basic design models for total system PMD performance

2.1 Notation

For cabled fibre and components with randomly varying DGD, the PMD frequency domain
measurement is based on averaging the individual DGD values for a range of wavelengths.
The probability density function of DGD values is known to be Maxwell for fibre, and is
assumed to be Maxwell for random components. The single parameter for the Maxwell
distribution scales with the PMD value.

___________
1 Figures in brackets refer to the bibliography.

2 To be published

3 To be published
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For long fibre and cable (typically longer than 500 m to 1000 m), the PMD value is divided by
the square root of the length to obtain the PMD coefficient. For components, the PMD value is
reported without normalization. The following terms and meanings will be used to distinguish
the various expressions:

– DGD value The differential group delay at a time and wavelength (ps)
– PMD value The wavelength average of DGD values (ps)
– PMD coefficient The length normalized PMD (ps/sqrt(km))
– DGD coefficient The length normalized DGD (ps/sqrt(km))
NOTE  The term “DGD coefficient” is used only in some of the calculations. The physical square root length
dependence of the PMD value does not apply to DGD.

Deterministic components are those for which the DGD may vary with wavelength, but not
appreciably with time. The variation in wavelength may be complex, depending on the number
and characteristics of the sub-components within. For these types of components, either the
maximum DGD is reported or the wavelength average is reported as the PMD value.

2.2 Calculation of system PMD

PMD values of randomly varying elements can be added in quadrature. Annex A shows the
basis of this, as well as one basis for concluding that the Maxwell distribution is appropriate to
describe the distribution of DGD values. Annex A describes the concatenation in terms of the
addition of rotated polarization dispersion vectors (pdv) which are, for randomly varying
components, assumed to be random in magnitude and direction over both time and
wavelength.

For deterministic components, the evolution of the pdv with wavelength may be quite complex,
but for each wavelength, there is a value that does not vary appreciably with time. Analysis of
the relationships in annex A shows that if all deterministic components are at the end of the
system and all their pdvs are aligned, the total contribution to the link DGD at a particular
wavelength is equal to the sum of the individual DGD values of each deterministic component.
The worst case contribution across all wavelengths is therefore the sum of maximum DGD
values.

For randomly varying components such as fibre, the statistics of DGD variation imply that there
is little wavelength dependence of the PMD value. This leads to an equivalence between PMD
measurement methods such as Jones Matrix Eigenanalysis (JME) and interferometric methods
(IT) where the wavelength ranges of the two are different. For deterministic elements, there
can be distinct dependence of both the DGD and PMD on the wavelength range. Therefore for
these elements, the wavelength range must be specified. When doing calculations which
combine both randomly varying and deterministic elements, the combined values are only
representative of the wavelength overlap.

The relationships of annex A also show an analysis for a more realistic assumption: the
deterministic components are embedded within the system and randomly aligned. For this
assumption, the DGD values are time randomized across the wavelengths by the downstream
fibre. Furthermore, the random alignment of these components with respect to the other
elements leads to the following conclusions for embedded deterministic components.

– The quadrature addition of PMD values can be used to calculate the contribution to system
PMD.

– The Maxwell distribution can conservatively be used to describe the variation in DGD
across time and wavelength.
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The following two subclauses provide equations to calculate: a) the maximum PMD value for
the system, b) the maximum DGD value for the system. In both cases, the maximum is defined
in terms of a probability level that takes into account the statistics of the concatenation of
individual cables drawn from a specified distribution of optical fibre cable. For maximum DGD,
these statistics are combined with the Maxwell statistics of DGD variation. Clause 3 provides
methods of calculating the relevant statistics for the contribution of optical fibre cable, which
are used in combination with the component values below.

2.2.1 System maximum PMD

The total maximum PMD value of a fibre optic system including optical fibre cable and other
optical components is given by one of the following, depending on the placement of
deterministic components:

∑∑ +











+=

j
Dj

i
CiQ PMDPMDPMDLPMD

2/1
22

linktot (1a)

last

2/1
222

linktot D
i j

DjCiQ PMDPMDPMDPMDLPMD +













++= ∑ ∑ (1b)

where
PMDtot is the total system PMD value (ps);

PMDQ is the link design value of the concatenated optical fibre cable (ps/√km);
Ll ink is the link length (km);
PMDCi is the PMD value of the ith randomly varying optical component (ps);
PMDDj is the PMD value of the jth deterministic optical component;
PMDDlast is the PMD value of the last non-embedded deterministic component.

The link design value, PMDQ, (see 3.1) defines a maximum in terms of the probability, Q, for
links with at least M individual cable sections.

NOTE  The PMDQ parameter is not related to the Q factor used in bit error ratio calculations.

The validity of these equations has been demonstrated empirically for systems composed of
concatenated optical fibre cables [2]. Equation (1a) is relevant assuming that all deterministic
components are at the end of the system. Equation (1b) is relevant assuming that most
deterministic components are embedded.

2.2.2 Calculation of system maximum DGD

The total maximum DGD value of a fibre optic system including optical fibre cable and other
optical components is given by one of the following, depending on the placement of
deterministic components:
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where

DGDmaxtot is the maximum system DGD (ps);
DGDmaxF is the maximum concatenated optical fibre cable DGD (ps) (see below);
S is the Maxwell adjustment factor (see below);
PMDCi is the PMD value of the ith random component (ps);
DGDmaxDj is the maximum DGD of the jth deterministic component (ps);
PMDDj is the PMD value of the jth embedded deterministic component (ps);
DGDmaxDlast is the maximum DGD of the last non-embedded deterministic component (ps).

The maximum DGD for optical fibre cable (see 3.2) is defined by a probability, PF, and
reference length. It is computed from the convolution of the distribution of the concatenated
link PMD distribution and the Maxwell distribution of DGD values.

For components, the S parameter relates to the probability, PC, that a random component DGD
value exceeds S⋅⋅⋅⋅PMDC, assuming the Maxwell distribution. The following table shows the
relationship of S to probability when the PMD value is defined as the wavelength average.

Table 1 – Probability based on wavelength average

S Probability

3,0 4,2E-05

3,1 2,0E-05

3,2 9,2E-06

3,3 4,1E-06

3,4 1,8E-06

3,5 7,7E-07

3,6 3,2E-07

3,7 1,3E-07

3,775 6,5E-08

3,8 5,1E-08

3,9 2,0E-08

4,0 7,4E-09

4,1 2,7E-09

4,2 9,6E-10

4,3 3,3E-10

4,4 1,1E-10

4,5 3,7E-11

Annex B shows that the probability that a system DGD value, DGDtot, exceeds DGDmaxtot is
bounded by the sum of the two probabilities as:

( ) CF PPDGDDGDP +≤> tottot max (3)

NOTE  The notation P( ) indicates a probability statement relative to the inequality within the parenthesis.

The above equations are applicable to all links with length less than the reference length. An
adjustment for longer lengths is included in 3.2. Equation (2a) is relevant for the assumption
that all deterministic components are aligned and at the end of the system. Equation (2b) is
relevant for the assumption that almost all deterministic components are randomly aligned and
embedded in the system. The multiplication of the deterministic PMD values with the
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S parameter treats these elements as though their DGD values are distributed as Maxwell –
a conservative assumption that allows the quadrature addition. Because the Maxwell
approximation for deterministic elements is conservative, if equation (2a) yields a DGDmaxtot
value less than equation (2b), then equation (2a) value should be used (see annex E and [10]).

NOTE 1  The assumption of quadrature addition of DGD values of cabled fibre and randomly varying optical
components is subject to experimental verification.

NOTE 2  While it is possible to combine the statistical distributions of random components with cabled fibre, it
would require access to information that may not be generally available to any single vendor or customer.

NOTE 3  The DGD specified for deterministic components is assumed to be the maximum across the relevant
wavelength range and environmental conditions

Equation (3) illustrates that the total probability of exceeding some overall maximum can be
bounded by an addition that does not depend on the relative magnitude of DGDmaxF and
S⋅⋅⋅⋅PMDC. Given an overall probability target, one approach is to allocate half the overall allowed
probability to fibre and half to components. Annex C provides a worked example for both
equations (2a) and (2b).

3 Calculation of cabled fibre PMD

PMD is a stochastic attribute that varies in magnitude randomly over time and wavelength. The
variation in the DGD value is described by a Maxwell probability density function that can be
characterized by a single parameter, the PMD value (see equation (15) in 3.2.1). This
parameter may be the average of the DGD values measured across a wavelength band, or it
may be the rms value of these DGD values, depending on the definition chosen. For mode
coupled fibre, the PMD coefficient is the PMD value divided by the square root of length.

In accordance with ballot 86A/501/CD, the PMD of cabled fibre should be
specified/characterized on a statistical basis, not on an individual fibre basis. Two methods for
this specification are proposed: method 1 can be used to obtain PMDQ, used in 2.2.1, and
method 2 can be used to obtain DGDmaxF and PF, used in 2.2.2. The method and specification
values chosen shall be agreed upon between the buyer and the cable manufacturer.
Paragraph 3.3 shows how specification values for each method can be selected so the two
methods are nearly equivalent.

Method 1 relies on the fact that the mean PMD coefficient of an optical link is the root mean
square (quadrature average) of the mean PMD coefficients of the cabled fibres comprising the
link. Method 2 assumes the same relationship.

Let xi and Li be the PMD coefficient (ps/√km) and length, respectively, of a fibre in the ith cable
in a concatenated link of N cables. The PMD coefficient, xN (ps/√km), of this link is:
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If one assumes that all cable section lengths are less than some common value, LCab, and
simultaneously reducing the number of assumed cable sections to M = LLink/LCab, then, for a link
comprised of equal-length cables, Li = Lcable, equation (4) becomes
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The variation in the concatenated link PMD coefficient, xM, will be less than the variation in the
individual cable sections, xi, because of the averaging of the concatenated fibres.

Method 1 should be used with equation (1) of 2.2.1. In method 1, the manufacturer supplies a
maximum PMD link design value, PMDQ, that serves as a statistical upper bound for the PMD
coefficient of the concatenated fibres comprising an optical cable link. For this case, the upper
bound for the PMD value of the concatenation of optical fibre cables, PMDFTot, in equation (1)
becomes:

LinkTot LPMDPMD QF = (6)

Unless otherwise specified in the detail specification, the PMD link design value shall be less
than 0,5 ps/√km, and the probability that a PMD coefficient of a link comprised of at least
20 cables will exceed the link design value shall be less than 10–4. The link design value shall
be computed using a method agreed upon between the buyer and cable manufacturer (see 3.1
for examples).

Because method 1 provides a statistical upper bound on the PMD of concatenated links,
approved PMD measurement methods can be used on installed cable links to determine
whether their PMD complies with the statistical upper bound stated by the manufacturer.
Furthermore, the upper bound can be used to compute the effect of the link PMD on
the performance of any type of transmission system and is a more realistic indication of the
maximum PMD likely to be encountered in a concatenated link than the value that would be
obtained using a worst-case PMD value.

Method 2 should be used with equations (2) and (3) of 2.2.2. Method 2 combines the PMD
density function of the concatenated links with the Maxwell probability density function of
DGD values to compute an estimate of the probability that the DGD of a concatenated link at
a given wavelength exceeds a specified value for a defined reference link.

The specification is that the probability that the DGD over the link exceeds a given value,
DGDmaxF, shall be less than some maximum, PF. One useful reference system consists of
a concatenated link of 400 km comprised of forty 10 km cable sections. For such a link, the
buyer and cable manufacturer may agree on specifying values such as DGDmaxF  = 25 ps for
PF ≤ 6,5 ⋅⋅⋅⋅ 10–8. The particular statistical methodology for their calculation shall be agreed
between the buyer and cable manufacturer (see 3.2).

NOTE  Subclause 3.3 shows conditions under which the specifications of the two methods are nearly equivalent.

3.1 Method 1: Calculating PMDQ, the PMD link design value

3.1.1 Determining the probability distribution of the link PMD coefficients

Equation (5) shows that the PMD coefficient, xM, of a particular concatenated link can be
derived from the PMD coefficients of the individual cable sections, xi, comprising that link. The
probability distribution of the link PMD coefficients depends on the distribution of the cable
PMD coefficients and the number of cable sections comprising the link.
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The following paragraphs describe three methods that can be used to estimate the distribution
of the link PMD coefficients. One method is numerical [1] and two are analytic [4]. Of the two
analytic methods, the first assumes a specific analytic function for the distribution of the cable
PMD coefficients, while the second method makes no such assumptions but invokes an
extension of the central limit theorem.

3.1.1.1 Monte Carlo numeric method [1]

The Monte Carlo method can be used to determine the probability density, fl ink, of the
concatenated link PMD coefficients without making any assumption about its functional form.
This method simulates the process of building links by sampling the measured cable population
repeatedly. PMD coefficients are measured on a sufficiently large number of cabled fibres so
as to characterize the underlying distribution. This data is then used to compute the PMD
coefficient for a single fibre-path in a concatenated link.

Computation of the link PMD coefficient is made by randomly selecting M values from the
measured cabled PMD coefficients, and adding them on an rms basis (in quadrature)
according to equation (5). The computed link PMD coefficient is placed in a table or a
histogram of values derived from other random samplings. The process is repeated until a
sufficient number of link PMD values has been computed to produce a high density
(0,001 ps/√km) histogram of the concatenated link PMD coefficient distribution. If used directly,
without any additional characterization, the number of resamples should be at least 100 000.

Because of the central limit theorem, the histogram of link PMD coefficients will tend to
converge to distributions that can be described with a minimum of two parameters. Hence, the
histogram can be fit to a parametric distribution that enables extrapolation to probability levels
that are smaller than what would be implied by the sample size. The two parameters will
invariably represent two aspects of the distributions: the central value and the variability about
the central value. A choice of probability distributions can be made on the basis of the shape of
the histogram. Typical distributions could include lognormal (the log of the link PMD
coefficients is Gaussian) or one that is derived from the Gamma distribution.

3.1.1.2 Gamma distribution analytic method [4]

The Gamma family of distributions can often be used to represent the distributions of both the
measured cable PMD coefficients and the link PMD coefficients. If one assumes that the
square of the measured cable PMD coefficients, xi, is distributed as a Gamma random variable,
the probability density of the cabled PMD coefficients is given by

( ) ( ) ( )2
12

cable exp2,; xxxf β
α

ββα
αα

−
Γ

=
−

(7)

where x is a possible value of the cable PMD coefficient, Γ( ) is the Gamma function, and the
two parameters α and β control the shape of the density. Standard fitting techniques, such as
the method of maximum likelihood, can be used to fit equation (7) to measured cable PMD
data to find values for α and β.

The probability density of the link PMD coefficients, xM, of M concatenated equal cable lengths
has the same form as equation (7), but with α and β replaced by Mα and Mβ:
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( ) ( )
( ) ( )2

12
Link exp2,,; xM

M
xMMxf

MM
β

α
ββα

αα
−

Γ
=

−
(8)

Consequently, the α and β parameters found by fitting equation (7) to the measured cable
PMD coefficients can be used in equation (8) to describe the probability density of the link PMD
coefficients.

3.1.1.3 Model-independent analytic method [4]

A more general alternative to the one described in 3.1.1.2 can be used that does not make any
assumptions regarding the form of the density function that describes the measured PMD
coefficients of the cabled fibre.

After measuring the PMD coefficients, xi, on N cabled fibres, compute the mean, variance and
third moment of their squares
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=
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i
ix

N 1
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i
ix

N 1

2
1

2
2 1

1 µµ    ( )∑
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−
−

=
N

i
ix

N 1

3
1

2
3 1

1 µµ   (9)

Let xM be a random variable representing the link PMD coefficient of a fibre-path formed from
the concatenation of M equal-length cables, and let u be a possible value of xM. Invoking the
extended central limit theorem [5], it can be shown that the distribution of the link PMD
coefficients is approximated by:

( ) ( )[ ] ( )[ ] ( )[ ]2
2/1Link 1; uzuz

M
tuzMuf −+Φ= φ (10)

where

( ) 
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

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
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2
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2
1 2zz
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φ     ( ) ( )∫
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dyyz φ  (10a)
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2
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−








= uMuz

2/3
2

3

6µ
µ

=t  (10b)

Differentiating equation (10) with respect to u provides an approximation to the link PMD
coefficient probability density function.

3.1.2 Determining the value of PMDQ

The density functions found for the link PMD coefficients using one of the three methods
described in 3.1.1 are now be used to compute the PMD link design value. For a concatenated
link comprised of M cables, the PMD link design value, PMDQ, is defined as the value that the
link PMD coefficient, xM, exceeds with probability Q:

( ) QPMDxP QM =>  (11a)

It follows, that for N > M, the probability that xN exceeds PMDQ is less than Q:

( ) QPMDxP QN <>  (11b)
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For discussion purposes, an assumption is made that N ≥ 20 (the link contains at least
20 cables) and that Q = 10–4 (the probability that the link PMD exceeds the PMD design value
is less than 0,0001). However, the actual values for M and Q shall be agreed upon between the
buyer and seller. The following subclauses discuss how PMDQ can be found using the cable
PMD density functions obtained in 3.1.1.

3.1.2.1 Determining the PMD link design value from
the Monte Carlo density of 3.1.1.1

To obtain probability levels of Q = 10–4 using a pure numeric approach requires Monte Carlo
simulations of at least 105 samples. Once this is complete, PMDQ can be interpolated from the
associated cumulative probability density function.

Alternatively, the histogram of the link PMD coefficients can be fit with a parametric distribution
to enable extrapolation to lower probability levels than the measurement resampling would
otherwise allow. A choice of probability distributions can be made on the basis of the shape of
the histogram. Typical distributions could include lognormal (the log of the link PMD
coefficients is Gaussian) or one that is derived from the Gamma distribution. After the function
is fit, the value for PMDQ at the Qth quantile can be computed.

3.1.2.2 Determining the PMD link design value from the Gamma density of 3.1.1.2

An excellent approximation for the link PMD coefficient, xQ, for M cables at the 10–4 quantile is
given by:

β
α

M
MPMDQ

975,0004,2 += (12)

where the α and β parameters were those found in 3.1.1.2.

For the 288 randomly selected scaled cabled fibres reported in [6], α = 0,979 and β = 48,6, and
PMDQ = 0,20 ps/√km.

3.1.2.3 Determining the PMD link design value using
the model-independent method of 3.1.1.3

The moments computed in 3.1.1.3 can be used to compute the link PMD coefficient, xQ. For a
link comprised of M cables, xQ at the Qth quantile can be approximated by [5]:
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where zQ is the Qth quantile of the standard normal distribution. For N > M = 20 cables and
Q=10–4, zQ = 3,72, the PMD design value becomes:
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For the 288 randomly selected scaled cabled fibres reported in [6],

2
1 102,2 −⋅=µ      4

2 1043,7 −⋅=µ     5
3 1026,8 −⋅=µ

and equation (14) produces PMDQ = 0,23 ps/√km.

3.2 Method 2: Calculating the probability of exceeding DGDmax

PMD induced impairment of an optical signal occurs when the DGD at the signal’s wavelength
is too high. Since DGD varies randomly with time and wavelength, some means of imposing an
upper limit, defined in terms of a low probability value, is necessary for system design. This
upper limit is usually associated with a receiver sensitivity penalty. The probability can be
associated with a potential PMD-induced impairment time (min/year/circuit). See annex D.

One means of calculating an upper limit on DGD is to multiply the upper limit on the PMD value
by a Maxwell adjustment factor, i.e. 3 (see table 1 of 2.2.2). This could also be done with the
upper limit represented by PMDQ. When this is done, one is in effect, assuming that the bulk of
the distribution is very close to the upper limit. In reality, the bulk of the distribution is usually
well away from the upper limit. Method 2 is intended to provide metrics and methods to take
this into account. Because method 2 takes into account the statistics of the individual optical
fibre cables and their concatenation, as well as the combined statistics of DGD variation, the
values calculated for system design (equation (2b)) are substantially reduced from the “worst-
case” values – both in the value of maximum DGD and the probability of exceeding it.

The following figure shows several distributions of concatenated link PMD coefficient. Each
distribution just passes the default criteria of M = 20, Q = 10–4, and PMDQ ≤ 0,5 ps/√km.
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NOTE  The above distributions are representative of the Gamma type distribution defined in 3.1.1.2.

Figure 1 – Various passing distributions

The leftmost distributions should provide better DGD performance than the rightmost
distribution. Method 2 assigns value to producing a distribution that is more to the left.
3.3 provides a means to link method 1 and method 2 so that, for most practical situations,
passing the default method 1 criterion will imply passing a default method 2 criterion.
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3.2.1 Combining link and Maxwell variations

DGD coefficient (ps/√km) values, XM, vary randomly with time and wavelength according to the
Maxwell probability density function:
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(15)

where xM is the PMD coefficient of a concatenated link comprised of M cables as given by
equations (4) or (5). The distribution of DGD values (over the length) is obtained by multiplying
the DGD coefficient values with the square root of the link length.

To combine the variations in the concatenated link PMD coefficient with the Maxwell variation
into a value to be used in a system design, a reference link is defined. Performance on the
reference link can then be generalized to other links. The reference link is defined with two
parameters, the overall link length, LREF, and the cable section length, LCab, which is assumed
to be constant for all cable sections.

Let fLink(xi) be the discretized probability density function (histogram) of the values of the
concatenated link PMD coefficient values defined by the analysis of the distribution of
the measured PMD coefficient values and equation (4). Any of the methods of 3.1.1 for
determining the probability density function of the concatenated link can be used.

Let Xmax be some DGD coefficient value (ps/√km) that is to be used in system design. The
probability, PF, of exceeding Xmax is:
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  (16)

NOTE  The rightmost integral is just the standard gamma function.

The maximum DGD over the link derived from optical fibre cable, DGDmaxF, is the product of
the square root of the reference link length and XMax:

REFMaxmax LXDGD F = (17)

For method 1, the probability is pre-set and the associated PMDQ value is calculated and
required to be less than a specified value. For method 2, DGDmaxF is pre-set and the
probability value, PF is calculated and required to be less than a specified value.

For link lengths less than the reference length, the DGD and probability relationship will be
conservative as long as either the installed lengths are less than LCab or the cable lengths
measured to obtain the distribution are less than LCab. The reduction in averaging because of
the reduced number of cable lengths is offset by the decrease in overall length.
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For link lengths greater than the reference length, the maximum DGD to optical fibre cable
should be adjusted as:

REF

Linkmaxadj
L
L

DGDDGD FF = (18)

3.2.2 Convolution: Theory of method 2

The calculation principle is derived from extending the worst case approach. With this
approach, the link PMD distribution is assumed to be a dirac function and the DGD distribution
is represented as a Maxwell distribution. The probability that the Maxwell distribution exceeds
DGDmaxF yields PF. These distributions are represented in figure 2.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 10 20 30 40

DGD/PMD link value

R
el

at
iv

e 
fre

qu
en

cy

Link PMD

Link DGD

IEC   1897/02

Figure 2 – Worst case approach assumption

NOTE  Though not shown, the dirac function illustrated in figure 2 extends to a relative frequency value of 1,0.

Suppose the link PMD distribution could be represented by two dirac functions, each with a
magnitude of 0,5. This would represent a situation where half the links were at one value and
the other half at another value. The DGD probability density function of the combined
distribution would be the weighted total of the two individual Maxwell distributions. Figure 3
illustrates this case.
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Figure 3 – Convolution of two diracs

NOTE  Though not shown, the two dirac functions representing PMD value distributions in figure 3 extend to
relative frequency values of 0,5.

In this example, the probability of DGD exceeding 30 ps is reduced by just a little less than a
factor of two, compared to the result associated with figure 2.

Full convolution extends this notion to a complete distribution of link PMD coefficients. For the
Monte Carlo technique, the histogram of link PMD coefficients may be thought of as a
collection of dirac functions. For the continuous models, the probability density function is
reduced to a histogram by integrating the curve over the region that is represented as a single
histogram bin. The probability that DGDmaxF is exceeded is calculated for each of the
histogram bins (using the bin maximum). The weighted total yields PF.

3.3 Equivalence of methods

Method 1 might be considered most practical for commercial specification because it can be
interpreted in terms of the defined measurements. Method 2 provides the most direct
information on the possible signal impairments. This subclause shows how the two methods
can be compared, and establishes near equivalence of the default specifications.

The method for determining equivalence of statistical criteria relies on a parametric model and
is based on the following.
– A process can be characterized by parameters relevant to an assumed parametric

distribution type.
– Given these parameters, any statistical criterion can be evaluated to determine whether the

process distribution is conforming or not.
– For each criterion, the mathematical space of all possible parameters can be segmented

into two regions: conforming and not.
– The boundary between the two regions will form a curve, or envelope, in at least two

dimensions. Parameter values falling on one side of the envelope are conforming. Those on
the other side are not.

– Processes that are on the conforming side of the envelopes of two criteria pass both
criteria. Processes that are on the non-conforming side of the envelopes of two criteria fail
both criteria.
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– Criteria that pass and/or fail the same process distributions are considered equivalent.
In this case, the two envelopes will overlay one another.

3.3.1 Equivalence of the default specifications

Figure 4 shows the envelopes for the default specifications for the two methods, based on the
Gamma distribution as defined in 3.1.1.2 and illustrated in figure 1. The x-axis represents
the quadrature average of the process ( βα /= ). The y-axis represents a sort of standard
deviation metric for the Gamma distribution.

The default criteria are:
Method 1 Method 2
M 20 LREF 400 km
Q 10–4 LCab  10 km

PMDQ ≤ 0,5 ps/√km DGDmaxF  25 ps

PF ≤ 6,5⋅⋅⋅⋅10–8

Each envelope of figure 4 is built by looping through the possible values of the overall process
quadrature average. For each possible value, the β parameter is varied to find the value that
just passes the relevant specification. A plot of the relationship of the overall process
quadrature average versus 1/2√β yields the envelope. Processes for which the parameters fall
below the envelope pass the specification. Processes for which the parameters fall above the
envelope fail.

For the region of most practical interest – where the overall process quadrature average is
less then 0,2 ps/√km – if the process passes the default method 1 specification, it is passing
the default method 2 criterion. Hence, the method 2 parameters can safely be used in the
formulas of 2.2.
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Figure 4 – Equivalence envelopes for method 1/2 defaults
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3.3.2 Discussion regarding the basis of the default specifications for method 2

Equation 3 of 2.2 shows that the overall probability that the combined DGD of optical fibre
cable and components exceeds DGDmaxTot is contained by the sum of the probabilities: PF

and PC. If these probabilities are both set to 6,5 ⋅⋅⋅⋅ 10–8, their sum is 1,3 ⋅⋅⋅⋅ 10–7, a value that
should provide an appropriately low potential PMD induced impairment time (see annex D).

The default specification for method 1 was agreed on the basis of a combination of factors
including an analysis of the draft ITU-T Recommendation G.6914.

The default specification for method 2 was derived so that:

•  The above probability objective was met,

•  Near equivalence with the default method 1 specification was achieved,

•  DGDmaxF is low enough to allow practical system designs. (See annex C for a worked
example.)

3.3.3 Calculation of the parameters of figure 4

This calculation for the parameters of the Gamma-type distribution defined in 3.1.1.2 is called
the method of moments. Because it is based on the assumption that Mα > 5, it is best to use it
in conjunction with the Monte Carlo method defined in 3.1.1.1.

Define xI to be one of N computed concatenated link PMD coefficient values based on M cables
per link. The quadrature average, v, is calculated as:
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The parameter relating to the standard deviation is calculated as:
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Multiplying the result of equation (20) by √M will yield the value to be plotted on the y-axis
of figure 4. One can also easily compute the individual values of α and β using the values of
equations (19) and (20). Since the result is based on the Monte Carlo, the assumption Mα > 5
can always be met by increasing M.

4 Calculation of optical component PMD

Optical components such as dispersion accommodation devices or optical fibre amplifiers also
have small PMD. These devices are characterized as random or deterministic. The distinction
is primarily based on the behavior of the curve of DGD versus wavelength and how this curve
varies with time.

For random components, small changes in temperature will produce random variations in the
DGD curve versus time. When the collection of DGD values are plotted with a histogram,
the histogram will follow the Maxwell distribution. Some dispersion accommodation devices
have been characterized as random [7].

___________
4 ITU-T Recommendation G.691 (10/2000), Optical interfaces for single-channel STM-64, STM-256 and other SDH

systems with optical amplifiers
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For deterministic components, small changes in temperature will not produce random
variations in the relationship of DGD versus wavelength. Some optical fibre amplifier devices
have been characterized as deterministic [8].

Some deterministic components are simple in that they typically include a few individual optical
elements and the DGD versus wavelength curve is either flat or has a simple sinusoidal shape.
Some deterministic components are complex in that they might be comprised of several
individual optical elements and the DGD curve versus wavelength is irregular. For these
components, a histogram of the DGD values will begin to approach a Maxwell distribution.

For both types of component, there are at least two metrics of particular interest:

− PMD value: the average of DGD values across a specified wavelength range;
− DGDmax: the maximum DGD across a specified wavelength range.

The usual form of specification is just a maximum value, although statistical treatments, such
as those defined for optical fibre cable, could be defined for component PMD. The number and
types of components would make standardization difficult.

The concatenation formulas are given in 2.2.1, equation (1), but are repeated here for
completeness.

4.1 Calculation for random components

The PMD values for n random components are given as ci. The calculated PMD value of the
concatenation, cTot is:
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The concatenated PMD value of the random components can be added to the overall PMD
value of optical fibre cable as a quadrature total.

Annex B shows that the maximum DGD (defined in terms of probability) of the concatenated
random components can be added to the maximum DGD of the optical fibre cable with
quadrature total. The combined probability that the total DGD exceeds the computed value is
less than the sum of the two probabilities. The maximum DGD for components can be
determined by multiplying cTot by an S value from table 1 of 2.2 using a specified probability.

For the purpose of design calculation, the specified maxima of several types of random
component can also be combined using equation (21).

4.2 Calculation for deterministic components

4.2.1 Worse case calculation

Annex A includes one formula as appropriate for worst case assumptions, which are as follows:

− the polarization dispersion vectors are aligned;
− the deterministic components are combined at the end of the link.
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For these assumptions, values of the maximum DGD of n components are defined as Di. The
total of the deterministic components, DTot is calculated as:

∑
=

=
n

i
iDD

1
Tot (22)

This value can be combined with the overall maximum DGD of optical fibre cable and random
components by linear addition. Since the values are given as fixed maximums, there is no
impact to probability.

Specified maximum DGD values can be substituted into equation (22).

4.2.2 Calculation for embedded deterministic components

This case is particularly suitable for complex components such as optical fibre amplifiers which
might consist of several internal optical elements. Annex A shows that the distribution of the
DGD values with wavelength approaches a Maxwell distribution. It also shows that when an
optical element such as an optical fibre cable follows the deterministic element, the polarization
dispersion vector, hence the DGD added by the component, is randomized.

The PMD values of embedded deterministic components can be combined with those of
random components according to the formulas of 4.1. Because of the multiplication of the
combination by the Maxwell adjustment factor, S, the result will be conservative. For non-
embedded deterministic values or for simple deterministic components, where Maxwell
variation of DGD with wavelength is not apparent, the linear addition of 4.2.1 can be used
without affecting the probability calculations.

Annex E shows an experiment for concatenating some deterministic components (optical fibre
amplifiers) with random components (optical fibre). For these experiments, the quadrature total
of the PMD values of the individuals is the most accurate predictor of the actual concatenated
PMD value.

5 Summary of acronyms and symbols

Table 2 contains a list of the acronyms and definitions used in the body of this technical report.
Table 3 contains a list of symbols and the clause in which they are defined.

Table 2 – Acronyms and definitions

Acronym Definition

PMD Polarization mode dispersion

DGD Differential group delay

pdv Polarization dispersion vector

PMDQ Link design value

DGDmaxF Maximum DGD induced by optical fibre cable

DGDmaxTot Maximum DGD of the link
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Table 3 – Symbols and clause of definition

Symbol Defining
clause

PMDTot 2.2.1

PMDQ 2.2.1

Q 2.2.1

LLink 2.2.1

PMDCi 2.2.1

PMDDj 2.2.1

PMDDlast 2.2.1

M 2.2.1

DGDmaxtot 2.2.2

DGDmaxF 2.2.2

DGDmaxDj 2.2.2

DGDmaxDlast 2.2.2

PF 2.2.2

PC 2.2.2

S 2.2.2

XN 3

XM 3

Li 3

LCab 3

PMDFTot 3

fcable 3.1.1.2

fLink 3.1.1.2

α , β, Γ 3.1.1.2

µ1, µ2, µ3, Φ, ϕ , z 3.1.1.3

XMax 3.2.1

DGDadjF 3.2.1

LREF 3.2.1

v 3.3.3

cTot 4.1

DTot 4.2.1
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Annex A 
(informative)

PMD concatenation fundamentals

This annex will describe the mathematics for concatenating fibre optic elements (fibre or
components) in terms of the polarization dispersion vector, as described by Foschini and Poole
[9]. The fundamental relationships are defined, followed by developments related to
concatenation of first random then deterministic elements.

A.1 Definitions

The polarization dispersion vector, Ω, and birefringence vector, W, are defined by the evolution
of the output stokes vector, s, as a function of position within the element, z, and optical
angular frequency, ω. For any position and frequency, there is a rotation matrix, R, also a
function of position and frequency, that maps an input stokes vector, s0, to the output as:

0Rss = (A.1)

Using the notation, RT, for the transpose (and inverse) of R, the derivatives of s with respect to
position and frequency, assuming that s0 does not depend on frequency, are given as:

sWsR
dz
dR

dz
ds T ×== (A.2)

 ssR
d
dR

d
ds T ×Ω==

ωω
(A.3)

These equations define W and Ω. The following additional relationships are useful:

 Ω×+=Ω W
d
dW

dz
d

ω
(A.4)

Ω=∆τ (A.5)

Equation (A.4) can be derived from equations (A.2) and (A.3). Equation (A.5) gives the DGD as
the length of the polarization dispersion vector.

For W fixed over position, the rotation matrix is defined in terms of a unit rotation vector, y, and
angular displacement, γ, as:

W
Wy =     Wz=γ  (A.6a)

( )( ) ( ) [ ] ( )γγγ sincoscos1 ×++−= yIyyR T  (A.6b)

where I is the identity matrix and [ ]×y  is the matrix that completes the cross product operation.
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Furthermore, for this case, the pdv can be written in terms of W and various cross products. Let

WWf ⋅=2     
ωd

dWWP ⋅=  (A.6c)

( )( ) ( )














 −+×−+=Ω PW

d
dWf

f
fz

d
dWWfzzPW

f ωω
2

2
sincos11  (A.6d)

A.2 Concatenation – General

The concatenation of two elements, A through B, can be given in terms of the initial and final
stokes vectors as:

0sRRs ABAB = (A.7)

The derivative of (A.7) is

00 s
d

dR
RsR

d
dR

d
ds A

BA
BAB

ωωω
+=  (A.8a)

00 sRRRR
d

dR
RsRRR

d
dR

AB
T
B

T
A

A
BAB

T
B

B
ωω

+=  (A.8b)

( ) AB
T
BABABB sRRs ×Ω+×Ω=  (A.8c)

( ) ABABB sR ×Ω+Ω=  (A.8d)

Since (A.8d) is in the form of the definition of the pdv, the pdv for AB, ΩAB, is:

ABBAB R Ω+Ω=Ω (A.9)

Equation (A.9) can be extended through an arbitrary number of optical elements by recursive
application of rotation on the last output and addition.

A.3 Application to random elements

Foschini and Poole [9] concluded that for long enough lengths of optical fibre over which mode
coupling is occurring, the contents of the polarization dispersion vector can be described as
Gaussian identically distributed independent random variables. Extension of equation A.9 leads
to the conclusion that the pdv of the concatenation will also have the same distribution, but with
increased variance due to the addition of several random vectors. (The random rotation of a
Gaussian random vector is a Gaussian random vector with the same variance.) In particular,
define the variance of the vector element values of the ith pdv as 3/2

iσ . The variance of the
vector element values of the concatenated pdv are given as:

∑=
i

i 3/22
tot σσ  (A.10)
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This is related to the PMD (rms) value as:

( )
2/1

22/12
tot

2/12/12
tot 3














==Ω•Ω=∆= ∑

i
iPMD σστ  (A.11)

The same relationship occurs on the individual sections with PMDi = σi so the quadrature
addition of the PMD values of individual random elements is justified for the concatenated PMD
value. If one assumes that the PMD of the several elements are equal and that their lengths
are also equal, (A11) yields the square root dependence of PMD on overall length – hence the
square root length normalization used for the PMD coefficient.

The DGD values are the length of the pdv. If the vector element values are Gaussian
independent identically distributed random values, the DGD is the square root of the sum of
squares of three Gaussians. This is the definition of the Maxwell distribution, which is also the
square root of a chi-square random variable with three degrees of freedom.

A.4 Application to deterministic elements

If the values of the birefringence vector, W, of several deterministic components are aligned
just right, the sum of the pdv of the concatenation will just be the linear sum of the individual
pdvs. In this case, the components are said to be aligned.

Analysis of equation (9) for the case of these components following a series of random
elements leads to adding the PMD of the random elements to the linear addition of the
deterministic components. Similarly, the worst case random DGD is added to the sum of worst
case deterministic DGD values.

When the pdvs of the deterministic elements are randomly aligned, the rotations will become
random and the length of the concatenated pdv will form a distribution. This distribution will be
representative of the DGD values across wavelengths and concatenations, but for a given
concatenation of deterministic elements, the particular values are not expected to change with
time. To evaluate this distribution, a series Monte Carlos were completed. The different Monte
Carlos each represent the concatenation of a different number of randomly oriented vectors of
a common length. The vector length, Lv, is given in terms of the number of vectors
concatenated, nv, as:

v
v

n
L 1=  (A.12)

The quadrature sum of the individual pdv values is therefore one and the worst case orientation
value is equal to √nv. This allows overlaying the distributions formed by adding different
numbers of components and a comparison with a Maxwell distribution from a random
component with a PMD value of one. Figure A.1 shows the result laid out as a series of
histograms. Figure A.2 shows the cumulative probability in the tail of the distributions.

For all but the Maxwell distribution, the cumulative probabilities are bounded by √nv, as
expected. In addition, for all cases, the Maxwell distribution extends to larger values than the
rotated vector result. This is the sense in which the Maxwell distribution is conservative with
regard to estimating the distribution of randomly oriented but fixed length vectors.
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Figure A.1 – Sum of randomly rotated elements
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Figure A.2 – Sum of randomly rotated elements

So the application of the Maxwell distribution in connection with the PMD value will yield a
maximum estimated DGD that is larger than actual for a concatenation of randomly oriented
deterministic elements of equal PMD. Since, for most link designs, the value of the
deterministic components is assumed to be the maximum specified value, this equal size
assumption is also conservative.

For a particular orientation on a particular link, the concatenation of deterministic components
will be the same over time and this might be a concern. Examination of equation (9) yields a
surprising result in this regard. If a deterministic element is followed by a fibre or other random
component, the rotation (RB) of that element is applied to the pdv of the deterministic
component. Since this rotation is random, the effect is to randomize the effect of the
deterministic element over both time and wavelength. The overall contribution is then not fixed
and it can be considered as just another random optical element – with the exception that the
probability estimates will be higher than actual.
For embedded deterministic components, the probability treatment that is applicable for
random components is therefore appropriate for deterministic components.
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Annex B 
(informative)

Combining Maxwell extrema from two populations

The purpose of this annex is to demonstrate the validity of equations (2a) and (3) of clause 2.
Equation (2a) combines the DGD extrema of two populations, optical fibre cable and random
components, to obtain a combined extreme value. The two populations are each characterized
by probability levels associated with the separate extrema. Inequality 3 asserts that the
probability that a DGD value of the concatenation of the two populations exceeds the combined
extreme value is bounded by the sum of the two separate probabilities.

The analysis shows that only two assumptions are needed:

•  The distribution of DGD is Maxwell-like in that only one parameter describes it.
•  The parameter of the concatenation is given as the quadrature total of the fibre and

component parameters.

This demonstration is done in four steps:

•  define the Maxwell distribution;
•  define a convolution;
•  define a double convolution;
•  valuate the characteristics of a double convolution.

B.1 Maxwell distribution definitions

The probability that a random DGD value, ∆τ, exceeds a given maximum DGD, D, depends on
the PMD value, d, according to:

( ) ( ) dx
d
xx

d
dDP

D


















−

Γ







−=>∆ ∫

222/3

0
2

4exp
2/3

421;
ππ

τ  (B.1a)

To simplify notation, a function, PMax(S), is defined as:

( ) ( ) dxxxSP
S






−
Γ








−= ∫ 2
22/3

0
Max

4exp
2/3

421
ππ

 (B.1b)

Then ( ) 






=>∆
d
DPdDP Max;τ  (B.1c)

NOTE  PMax(S) is monotonically decreasing in S.
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B.2 Convolution definition

This describes the convolution of the Maxwell distribution with a distribution of PMD values.
The resultant distribution is not Maxwell, but does have the characteristic of describing the
distribution of DGD values across all possible PMD values. The definition is done in terms of a
discretized distribution, or histogram, of PMD values for simplicity. Since the granularity of
the histogram is arbitrary and in practice, defined by the measurement resolution, the
simplification, relative to using integral expressions, is warranted.

The discretized distribution of PMD values is described in terms of a histogram with the “bin”
PMD values given as di and relative frequency given as pi for the ith bin. The combined
probability that a given maximum DGD value, D, is exceeded is:

( ) ∑ 







=>∆

i i
i d

DPpDP maxτ (B.2)

B.3 Convolution of optical fibre cable and random components

This clause outlines the notation for the double convolution of cables and random components.
For optical fibre cable, the distribution of PMD values is that of the concatenated link, as
derived from clause 3. For random components, a distributional notation will be maintained for
generality, but in practice, the specification values of all components will be combined in
quadrature to form one value. The component distribution is then a histogram with only one
non-zero bin.

Let fi and pfi represent the histogram of optical fibre cable PMD values. Let cj and pcj represent
the histogram of component PMD values. The two distributions are assumed to be
independent. Given a fibre PMD value, f, and a component PMD value, c, the PMD value of the
concatenation, d, is assumed to follow:

( ) 2/122 cfd += (B.3)

Further assume that the extreme values and probability limits are provided separately for
optical fibre cable and components as:

( ) F
i i

fi P
f
FPpFP <







=>∆ ∑ maxτ  for optical fibre cable  (B.4a)

( ) ∑ <









=>∆

j
C

j
cj P

c
CPpCP maxτ  for components  (B.4b)

The problem is to determine the probability limit, PD, for the concatenation of cable and
components relative to a maximum, D, given as:

( ) 2/122 CFD += (B.5)
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If there were access to the full distributions of both cable and components, this probability
could be calculated as:

( ) ( )
( )∑∑

















+

+=>∆=
i j ji

cjfiD
cf

CFPppDPP 2/122

2/122
maxτ (B.6)

Equation (B.6) is the double convolution of cable and components.

B.4 Evaluation of the double convolution

This subclause will demonstrate the following relationship for the problem defined in B.3.

DFD PPP +< (B.7)

The formulas and values for cables and components are given separately from equations
(B.4a) and (B.4b). These are combined and rewritten as:

∑∑∑∑ 





















+








=










+








≥+

i j ji
cjfi

j j
cj

i i
fiCF c

CP
f
FPpp

c
CPp

f
FPpPP maxmaxmaxmax (B.8)

The last expression in (B.8) is due to the definition of the histogram probabilities:

∑∑ ==
j

cj
i

fi pp1 .

The asserted inequality, (B.7), can now be written as:

( )
( ) CF

i j ji
cjfi

i j ji

cjfiD PP
c
CP

f
FPpp

cf

CFPppP +≤






















+








≤

















+

+= ∑∑∑∑ maxmax2/122

2/122
max  (B.9)

Inequality B.9 will be true if, for each i, j pair, the following is true:

( )
( ) 










+








≤

















+

+

ji
ji

c
CP

f
FP

cf

CFP maxmax2/122

2/122
max  (B.10)

Inequality (B.10) will be true if the left side is smaller than either of the terms on the right side.
Since Pmax(S) is decreasing in S, this will be true if either of the following two inequalities is true:

2

2

22

22

iji f
F

cf
CF ≥

+

+  (B.11a)

or
2

2

22

22

jji c
C

cf
CF ≥

+

+

 (B.11b)
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(B.11a) is true when:

( )
( ) 2

2

2

22

22

22

/1
/1

iijiji f
F

fc

FC
f
F

cf
CF ≥

+

+








=

+

+  (B.12)

which occurs when

( )
( ) 1

/1
/1

2

2
≥

+

+

ij fc
FC     =>    

ij f
F

c
C ≥  (B.13a)

Similarly, inequality (B.11b) is true when:

ij f
F

c
C ≤  (B.13b)

Since either (B.13a) is true or (B.13b) is true, then either (B.11a) is true or (B.11b) is true. This
implies that (B.10) is true for each instance of i and j. The inequality of (B.7) is therefore
verified.

In the context of equation (2a) from clause 2, the component distribution has only one non-zero
probability value, c, given as:

2/1
2













= ∑

i
CiPMDc     and    ScC =  (B.14)

This implies

( )SP
c
CPPC maxmax =






=  (B.15)

for optical fibre cable set F, in the above notation, to DGDmaxF that is used in clause 2. PF is
the same in this annex as in clause 2.
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