INTERNATIONAL ISO/IEC
STANDARD 14496-3

Third edition
2005-12-01

AMENDMENT 2
2006-03-15

Information technology — Coding of
audio-visual objects —

Part 3:
Audio

AMENDMENT2: Audio Lossless Coding
(ALS), new audio profiles and BSAC
extensions

Technolagies de l'information — Codage des objets audiovisuels —
Partie 3: Codage audio

AMENDEMENT 2: Codage audio sans perte (ALS), nouveaux profils
audio et extensions BSAC

Reference number
ISO/IEC 14496-3:2005/Amd.2:2006(E)

1SO|IEC
g g © ISO/IEC 2006

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In

bkl PRPTR ol ey PRI : ’ s o PRI~ PSRt ol : el
the u MACTYy TVCTIU UTdat a PTODICITT TTIallny tU U IS TOUTIU, PICdsT TTHTUNTTUIC UCTIU al oClITLAldl dU UTT aUUTToS UIVETT UTIUW.

© ISOHEE2666

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of

ISO or IEC participate in the development of International Standards through technical com
established by the respective organization to deal with particular fields of technical activity. 1ISO.an
technical committees collaborate in fields of mutual interest. Other international organizations, govern
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field jof 'infor
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

ittees

IEC
ental
ation

The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publicati
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this,document may be the subject of
rights. ISO and IEC shall not be held responsible for identifying any,er all such patent rights.

Amendment 2 to ISO/IEC 14496-3:2005 was prepared by \Joint Technical Committee ISO/IEC J
Information technology, Subcommittee SC 29, Coding ,ef_audio, picture, multimedia and hyperr
information.

This amendment specifies the Audio Lossless Coding (ALS) scheme. The amendment further defines 3
profile, the High Efficiency AAC v2 Profile, that ineorporates all the features of the High Efficiency AAC R

pn as

atent

TC 1,
nedia

new
rofile

and in addition the Parametric Stereo tool. The amendment also specifies the way in which the audio ¢bject

type ER BSAC is extended to support multi-chahnel format, providing backward compatibility.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Information technology — Coding of audio-visual objects —

Part 3:
- Audio

AMENDMENT 2: Audio Lossless Coding (ALS), new audio profiles
and BSAC extensions

In the Introduction, at the end of subclause "Lossless Audio Coding Tools", add:
MPEG-4 ALS (Audio Lossless Coding) provides lossless coding of digital‘audio signals. Input signals cgan be

integer PCM data with 8 to 32-bit word length or 32-bit IEEE floating-peint data. Up to 65536 channels are
supported.

In Part 3: Audio, Subpart 1, in subclause 1.3 Terms and Definitions, add:

ALS: Audio Lossless Coding

and increase the index-number of subsequent entries.

© ISO/IEC 2006 — All rights reserved 1

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In Part 3: Audio, Subpart 1, in subclause 1.5.1.1 Audio object type definition, replace table 1.1 with the table
below:

Table 1.1 — Audio Object Type definition based on Tools/Modules

IAddio Object
Type

quantisation&coding — TwinV@Q
quantisation&coding - BSAC
SSC (Transient, Sinusoid, Nolse)
Parametricétereo

frequency deomain prediction
AAC ER Tools

PNS

window shapes — AAC LD
MS

filterbank - standard
filterbank - SSR

TNS
quantisation&coding - AAC

window shapes - standard
upsampling filter tool

ER payload syntax
Silence Compression
HVXC

EP Tool 1)

CELP
HVXC 4kbit/s VR

SA tools

block switching
SASBF

gain control
LTP
intensity
coupling
SIAQ
FSS
MIDI
HILN
TTSI
SBR
Layer-1
Layer-2
Layer-3
DST
ALS
Remark

il
C main
CLC

C SSR X
CLTP
R X
C Scalable
invVQ

ELP X
XC X
served)
served)
TSI X
MAin X[x[x 3)
ynthetic
pvetable XX 4)
synthesis
15 |Ggneral MIDI X
16 [Alforithmic X
Synthesis and
Addio FX

17 ER AAC LC XX X X X X[X X X[XX
18 [(rdserved)
19 ER AACLTP XX X XXX X x X X
2OE(£AAC XX X X X XL XX XX X
sqalable

21 [ER TwinvQ XX
22 [ER BSAC XX
23 [ER AAC LD X
24 [ER CELP
25 [ER HVXC
26 [ER HILN

x

XX

XX XX
x
XX X|>x

XX X|>x
XX X[
XX X|>x
X|IX|X|>x
XX X|>
XX X|>x

XX
XX
P B
XX

ol|o|x|~|o o] |w[nv|=]of Object Type ID
Z

IO TZD[> [2][>

-
-

-
N

-
w
0

-
S

Gl

XX
XX

XXX

X|X[x
x
x

XXX
x

XX XXX X[>
XX XXX <[>
x
x

P4rametric
28 [S$C XX

30 [(r¢served)
31 |(epcape)
32 |Lgyer-1 X
33 |Lgyer-2 X
34 |Lgyer-3 X
35 [D$T X
36 |ALS X

37 -|(reserved)

In Part 3: Audio, Subpart 1, in subclause 1.5.1.2 Description, add:
1.5.1.2.30 ALS object type

The ALS object type is the counterpart of the Audio Lossless Coding (ALS) scheme and contains the
corresponding ALS tools.

2 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In Part 3: Audio, Subpart 1, replace Table 1.3 (Audio Profiles definition) with the following table:

Table 1.3 — Audio Profiles definition

. |High | Low Mobile | xc |High High
Object | Audio Object Xla".] Scal_able Spe_ech Synth_etl Quality | Delay NatL_JraI Audio profile | Efficiency | Efficiency
Type ID |Type ud|_o Audl_o Audl_o c Au_d|o Audio | Audio Audl_o Internet- rofile AAC AAC v2
Profile | Profile Profile | Profile)) Profile | working . .
Profile | Profile) Profile Profile
Profile
U Nt
1 AAC main X X
2 AAC LC X X X X X X X
3 AAC SSR X X
4 AAC LTP X X X X
5 SBR X X
6 AAC Scalable | X X X X
7 TwinvVQ X X X
8 CELP X X X X X X
9 HVXC X X X X X
10 (reserved)
11 (reserved)
12 TTSI X X X X X X
13 Main X X
synthetic
14 Wavetable
synthesis
15 General MIDI
16 Algorithmic
Synthesis and
Audio FX
17 ER AACLC X X X
18 (reserved)
19 ER AAC LTP X X
20 ER AAC X X X
Scalable
21 ER TwinvVQ X X
22 ER BSAC X X
23 ER AAC LD X X X
24 ER CELP X X X
25 ER HVXC X X
26 ER HILN X
27 ER X
Parametric
28 SSC
29 PS X
30 (reserved)
31 (escape)
32 Layer-1
33 Layer-2
34 Layers3
35 DST
36 ALS
In(Part 3: Audio, Subpart 1, subclause 1.5.2.3 (Levels within the profiles), add at the end:

e Levels tor the High Efficiency AAC vZ Protile

© ISO/IEC 2006 — All rights reserved 3

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Table 1.11A - Levels for the High Efficiency AAC v2 Profile

High
Notel
sam
the i
the 9
Notel
data
Note
than
Note

Level |Max. Max. AAC Max. AAC Max. SBR Max. PCU [Max. RCU |Max. PCU |Max. RCU
channels/ | sampling sampling sampling rate HQ/LP HQ/LP
object rate, SBR not [rate, SBR [kHz] (in/out) SBR SBR

present [kHz] | present [kHZz] (Note 5) (Note 5)
1 NA NA NA NA NA NA NA NA
2 2 48 24 24/48 (Note |9 10 9 10
1)
3 2 48 24/48 (Note |[48/48 (Note [15 10 15 10
3) 2)
4 5 48 24/48 (Note |[48/48 (Note |25 28 20 23
4) 2)
5 5 96 48 48/96 49 28 39 23
Note| 1: A level 2 HE AAC v2 Profile decoder implements the baseline version of the parametric stereo tool.

er level decoders shall not be limited to the baseline version of the parametric stereo tooh

2: For level 3 and level 4 decoders, it is mandatory to operate the SBR tool in downsampled mode if the
bling rate of the AAC core is higher than 24kHz. Hence, if the SBR tool operates on.a"48kHz AAC signal,
nternal sampling rate of the SBR tool will be 96kHz, however, the output signal-will be downsampled by
BR tool to 48kHz.

3: If Parametric Stereo data is present the maximum AAC sampling rate is:24kHz, if Parametric Stereo
is not present the maximum AAC sampling rate is 48kHz.

4: For one or two channels the maximum AAC sampling rate, with°"SBR present, is 48kHz. For more
two channels the maximum AAC sampling rate, with SBR present,‘is"24kHz.

5: The PCU/RCU number are given for a decoder operating the LP SBR tool whenever applicable.

A HEH

AAC v2 Profile decoder of a certain level shall operate the HQ SBR tool for streams containing

Parametric Stereo data. For streams not containing Parametric Stereo data, the HE AAC v2 Profile decoder

may

bperate the HQ SBR tool, or the LP SBR tool.

In Part 3: Audio, Subpart 1, subclause 1.5.2.4 (Table 1.12 - audioProfileLevellndication Values), replace the
row:
| 0x30-0x7F | reserved for 1SO use | - |

with:

0x28 AAC Profile L1

0x29 AAC Profile L2

0x2A AAC Profile L4

0x2B AAC Profile L5

0x2€ High Efficiency AAC Profile L2

0x2D High Efficiency AAC Profile L3

Ox2E High-EffieienreyAACProfile 4

Ox2F High Efficiency AAC Profile L5

0x30 High Efficiency AAC v2 Profile L2

0x31 High Efficiency AAC v2 Profile L3

0x32 High Efficiency AAC v2 Profile L4

0x33 High Efficiency AAC v2 Profile LS

0x34-0x7F reserved for ISO use -
4 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, replace table 1.13 with the table below:

Table 1.13 — Syntax of AudioSpecificConfig()

Syntax

No. of bits Mnemonic

AudioSpecificConfig ()

{
audioObjectType = GetAudioObjectType();

Dalllp:;llUFl cqucn\.-y:lldC/\,

if (samplingFrequencyindex == 0xf) {
samplingFrequency;

}

channelConfiguration;

sbrPresentFlag = -1;
psPresentFlag = -1;
if (audioObjectType ==5|
audioObjectType == 29) {
extensionAudioObjectType = 5;
sbrPresentFlag = 1;
if (audioObjectType ==29) {
psPresentFlag = 1;
}

extensionSamplingFrequencylindex;
if (extensionSamplingFrequencylndex == 0xf) {

extensionSamplingFrequency;

}

audioObjectType = GetAudioObjectType();
}
else {

extensionAudioObjectType = 0;

}

switch (audioObjectType) {

case 1:

case 2:

case 3:

case 4.

case 6:

case 7:

case 17:

case 19:

case 20:

case 21:

case 22:

case 23:
GASpecificConfig();
break:

case 8:
CelpSpecificConfig();

Ih
a8
<3
[«'}

24 uimshif

4 uimsbf

24 uimsbf

break;

case 9:
HvxcSpecificConfig();
break:

case 12:
TTSSpecificConfig();
break;

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

case 13:

case 14

case 15:

case 16:
StructuredAudioSpecificConfig();
break;

case 24:
ErrorResilientCelpSpecificConfig();

et

case 25:
ErrorResilientHvxcSpecificConfig();
break;

case 26:

case 27:

ParametricSpecificConfig();
break;

case 28:

SSCSpecificConfig();
break;

case 32:

case 33:

case 34.

MPEG_1_2_SpecificConfig();
break;

case 35:

DSTSpecificConfig();
break;

case 36:
ALSSpecificConfig();
break;

default:

/* reserved */

}

switch (audioObjectType) {

case 17:

case 19:

case 20:

case 21:

case 22:

case 23:

case 24.

case 25:

case 26:

case 27:
epConfig; 2 bslbf
if(epConfig == 2 || epConfig == 3) {

ErrorProtectionSpecificConfig();

}
if (epConfig ==3) {

directMapping, T DSTDT
if (! directMapping) {

* thd */
}

}
}
if (extensionAudioObjectType !=5 && bits_to_decode() >=16) {
syncExtensionType; 11 bslbf
if (syncExtensionType == 0x2b7) {
extensionAudioObjectType = GetAudioObjectType();

6 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

if (extensionAudioObjectType ==5){

sbrPresentFlag; 1 uimsbf
if (sbrPresentFlag == 1) {
extensionSamplingFrequencylindex; 4 uimsbf
if (extensionSamplingFrequencylndex == 0xf) {
extensionSamplingFrequency; 24 uimsbf
}

if (bits_to_decode() >=12) {

SYTTCEXTENTSION TYPE, Tt bstof
if (syncExtensionType == 0x548) {
psPresentFlag; il uimsbf

}

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig) add:

1.6.2.1.12 ALSSpecificConfig

Defined in ISO/IEC 14496-3 subpart 11.

In Part 3: Audio, Subpart 1, in subclause 1.6.2:2:1 Overview, replace table 1.15 by the following table:

Table 1.15 — Audio Object Types

Audio Object Type Object definition of elementary stream Mapping of audio payloads to

Type ID* | payloads and detailed syntax access units and elementary
streams

AAC MAIN 1 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2

AAC LC 2 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2

AAC SSR 3 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2

AAC LTP 4 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2

SBR 5 ISO/IEC 14496-3 subpart 4

AAC scalable 6 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.3

TwinVQ 7 ISO/IEC 14496-3 subpart 4

CELR 8 ISO/IEC 14496-3 subpart 3

HVXE 9 ISO/IEC 14496-3 subpart 2

TISI 12 ISO/IEC 14496-3 subpart 6

Main synthetic 13 ISO/IEC 14496-3 subpart 5

Wavetable synthesis 14 ISO/IEC 14496-3 subpart 5

General MIDI 15 ISO/IEC 14496-3 subpart 5

Algorithmic Synthesis 16 ISO/IEC 14496-3 subpart 5

and Audio FX

ER AACLC 17 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4

ER AACLTP 19 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4

ER AAC scalable 20 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4

ER Twin VQ 21 ISO/IEC 14496-3 subpart 4

ER BSAC 22 ISO/IEC 14496-3 subpart 4

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

ER AAC LD 23 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4
ER CELP 24 ISO/IEC 14496-3 subpart 3

ER HVXC 25 ISO/IEC 14496-3 subpart 2

ER HILN 26 ISO/IEC 14496-3 subpart 7

ER Parametric 27 ISO/IEC 14496-3 subpart 2 and 7
SSC 28 ISO/IEC 14496-3 subpart 8

PS 29 ISO/IEC 14496-3 subpart 8
(reserved) 30

(escape) 31

Layqr-1 32 ISO/IEC 14496-3 subpart 9
Laygr-2 33 ISO/IEC 14496-3 subpart 9
Laygr-3 34 ISO/IEC 14496-3 subpart 9

DST 35 ISO/IEC 14496-3 subpart 10
ALS 36 ISO/IEC 14496-3 subpart 11

In Payt 3: Audio, Subpart 1, under 1.6.3 Semantics, after 1.6.3.13 extensionAudioObjectType add:

1.6.3{14 psPresentFlag

A ong bit field indicating the presence or absence of Parametric Stereo data. The value —1 indicates that the
psPre¢sentFlag was not conveyed in the AudioSpecificConfig(). In this case, a High Efficiency AAC v2 Profile
decodler shall support implicit signaling (see subclause 1.6.6).

In Payt 3: Audio, Subpart 1, after 1.6.5 Signaling of SBR, add the following subclause:

1.6.6 Signaling of Parametric Stereo (PS)

1.6.6{1 Generating and Signaling HE AAC + PS Content

The IPS tool in combination with the HE AAC coder enables good stereo quality at very low bitrates. At the
samg time it allows for compatibility with, existing HE AAC-only decoders. However, the output from a HE AAC
decoder will only be mono for a HE AAC v2 stream carrying PS data.

Thergfore, depending on the application, a content provider or content creator may want to choose between
the two alternatives given below. In general, the PS data is always embedded in the HE AAC stream in a HE
AAC [compatible way (in_the' sbr_extension element), and PS is a pure post processing step in the decoder.
Thergfore, compatibility.can be achieved. However, by means of different signaling the content creator can
select between the full-quality mode and the backward compatibility mode as outlined in 1.6.6.1.1 and

1.6.6{1.2.

For the hierarchical profiles, a profile higher in the profile hierarchy is of course able to decode the content of a
profile lowerin the profile hierarchy. In Figure 1.0A the hierarchical structure of the AAC, HE AAC and HE
AAC v2Profile is displayed. The figure shows that a HE AAC Profile decoder is fully capable of decoding any

AAC-

AAC Profile stream,. Similarly the HE AAC v2 decoder can handle all HE AAC Profile streams as well as all

AAC Profile streams.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

AAC SBR PS

AAC Profile

1.6.6.1.1 Ensuring Full Audio Quality of AAC+SBR+PS for the Listener

To ensure that listeners get the full audio quality of AAC+SBR+PS, the stream should indicate the HE A4
Profile and use the explicit, hierarchical signaling (signaling”2.A. as described below), so that it is play!
HE AAC v2 Profile decoders, i.e., PS capable decoders. With regard to HE AAC-only streams or AAC
streams, an HE AAC v2 Profile decoder will decoderallMHE AAC Profile streams and AAC Profile strea
the appropriate level, as the HE AAC v2 Profile is asuperset of the HE AAC Profile and the AAC Profile.

1.6.6.1.2 Achieving Backward Compatibility,with Existing HE AAC and AAC Decoders

The aim of this mode is to get all AAC-based and HE AAC-based decoders to play the stream, even if th
not support the PS tool. Compatible streams can be created using the following two signaling methods:

a)

High Efficiency AAC Profile
Y Y)

High Efficiency AAC v2 Profile

A

Figure 1.0A — Hierarchical structure of AAC, HE AAC and HE-AAC v2 Profile,
and compatibility between them.

indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, an
the explicit backward«¢ompatible signalling (2.B. as described below). This method is recomme
for all MPEG-4 based systems in which the length of the AudioSpecificConfig() is known i
decoder. As this\is”'not the case for LATM with audioMuxVersion==0 (see clause 1.7), this m
cannot be used-for LATM with audioMuxVersion==0. In explicit backward compatible signaling
specific cohfiguration data is added at the end of the AudioSpecificConfig(). Decoders that d
know about PS will ignore these parts, while HE AAC v2 Profile decoders will detect its presenc
configurethe decoder accordingly.

indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, an
implicit signalling. In this mode, there is no explicit indication of the presence of PS data. Instea
AAC v2 Profile decoders shall open two output channels for a stream containing SBR dat3
channelConfiguration==1, i.e., a mono stream using a single channel element, and chec

AC v2
bd by
-only
ms of

ey do

d use
nded
n the
ethod
, PS-
o not
e and

d use
H, HE

with
kK the

presence of PS data while decoding the stream and use the PS tool if PS data is found. T

his is

possible because PS can be decoded without PS-specific configuration data if a certain w

ay of

handling decoder number of output channels is obeyed, as described below for HE AAC v2 Profile

decoders.

Both methods lead to the result that, provided that the profile indication indicates a profile supported by the
decoder, the AAC+SBR part of an AAC+SBR+PS streams will be decoded by HE AAC-only decoders, and the
AAC part of an AAC+SBR+PS stream will be decoded by AAC-only decoders. HE AAC v2 decoders will
detect the presence of PS and decode the full quality AAC+SBR+PS stream.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

1.6.6.

2 Implicit and Explicit Signaling of Parametric Stereo

This subclause outlines the different signaling methods of PS, and the decoder behavior for different types of

signa

ling.

There are several ways to signal the presence of PS data:

1.

implicit signaling: If bs_extension_id equals EXTENSION ID _PS, PS data is present in the

For 4
num{
chan
prody

Tabld
or ex

decode implicitly signaled PS is mandatory for all High Efficiency AAC v2 Profile (HE AAC v2 Profile)
decoders.

explicit signaling: The presence of PS data is signaled explicitly by means of the PS Audig Object
Type and the psPresentFlag in the AudioSpecificConfig(). When explicit signaling of PSNis used,
implicit signaling of PS shall not occur. Two different types of explicit signaling are available:

P A hierarchical signaling: If the first audioObjectType (AOT) signaled is the) PS AOT, the
extensionAudioObjectType is set to SBR, and a second audio object type is sighaled which indicates
the underlying audio object type. This signaling method is not backward compatible. This method
may be needed in systems that do not convey the length of the AudioSpecificConfig(), such as LATM
with audioMuxVersion==0, and content authors are encouraged to use it\only when thus needed.

P.B.backward compatible signaling: If the extensionAudioObjectType SBR is signaled at the end of
the AudioSpecificConfig(), a psPresentFlag is transmitted at.the end of the backward compatible
explicit SBR signaling, indicating the presence or absence-of ‘PS data. This method shall only be
used in systems that convey the length of the AudioSpecific€onfig(). Hence, it shall not be used for
LATM with audioMuxVersion==0.

| types of parametric stereo signaling, the channelConfiguration in the audioSpecifcConfig indicates the
er of channels of the underlying AAC coded stream>Hence, if parametric stereo data is available, the
helConfiguration will be one, indicating a singlesehannel element, while the parametric stereo tool will
ce two output channels based on the single channel element and the parametric stereo data.

1.22A shows the decoder behavior depending on profile and audio object type indication when implicit
licit signaling is used.

10

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Table 1.22A - PS Signaling and Corresponding Decoder Behavior

Bitstream characteristics Decoder behavior
Profile PS signaling psPresent | raw_data_block HE AAC HE AAC v2
indication Flag Profile Profile
Decoders Decoders
High signaling 1, implicit -1 AAC+SBR Play AAC+SBR | Play AAC+SBR
Efficiency signaling (Note 1)
AAC Profile | _(first AOT != PS) AAC+SBR+PS | Play AAC+SBR | Play at least
AAC+SBR,
should-play
AAC+SBR+P$
(Note 1)
signaling 2.B, 0 AAC+SBR Play AAC+SBR | Play’/AAC+SBR
backwards (Note 2)
compatible explicit 1 AAC+SBR+PS | Play AAC+SBR\|' Play at least
signaling AAC+SBR,
(second AOT == should play
SBR) AAC+SBR+P$
(Note 3)
High signaling 2.A, non- 1 AAC+SBR+PS Undefined Play
Efficiency backwards AAC+SBR+P$
AAC v2 compatible (Note 3)
Profile signaling
(first AOT == PS)
signaling 2.B, 1 AAC#SBR+PS Undefined Play
backwards AAC+SBR+P$
compatible signling (Note 3)
(second AOT ==
SBR)
Note 1: Implicit signaling, assume the presence of PS data in the payload, giving two output channels
for a single channel element.
Note 2: Explicitly signals that there is.no PS data, hence no implicit signaling is present.
Note 3: Number of output channelsis two for a single channel element containing AAC+SBR+PS
data.

The upper part of Table 1.22A displays bitstream characteristics and decoder behavior if the profile indi
is the High Efficiency AAC-Profile. The lower part displays bitstream characteristics and decoder beha
the profile indication is'the High Efficiency AAC v2 Profile.

1.6.6.3 HE AACv2 Profile Decoder Behavior in Case of Implicit Signaling

If the presence of PS data is backward compatible implicitly signaled (signaling 1, in the list above) th

ation
vior if

b first

AudioObjeetType signaled is not the PS AOT, and the psPresentFlag is not read from the
AudieSpecificConfig(). Hence, the psPresentFlag is set to —1, indicating that implicit signaling of parametric

stereo may occur.

ream,

Since a received monao stream will result in a stereo output if Parametric Sterea data is present in the st

the HE AAC v2 Profile decoder shall assume that PS data is available and decide the number of output
channels to be two for a single channel element containing SBR data, and thus also possibly PS data. If no
PS data is found the mono output shall be mapped to the two opened channels for every single channel

element.

© ISO/IEC 2006 — All rights reserved

11

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

1.6.6.4 HE AAC v2 Profile Decoder Behavior in Case of Explicit Signaling

If the presence of PS data is explicitly signaled (signaling 2, in the list above) the presence of PS data is
backward compatible explicitly signaled (signaling 2.B) or non-backward compatible explicitly signaled
(signaling 2.A).

For the backward compatible explicit signaled (signaling 2.B) the extensionAudioObjectType signaled is the
SBR AOT. The explicit signaling of PS is done by means of the psPresentFlag that can be either zero or one.

If the| psPresentFlag is zero, this indicates that PS data is not present, and hence the HE AAC v2 Profilé
decodgler should not make assumptions on the number of output channels in anticipation of PS data (as in case
of implicit signaling of PS) and instead employ the original channelConfiguration. If the psPresentFlag is one,
PS data is present and the HE AAC v2 Profile decoder shall operate the PS Tool.

For the non-backward compatible explicit signaling of PS (signaling 2.A) the first AudioObjectType:signaled is
the PS AOT. The extensionAudioObjectType is assigned the SBR AOT. For this hierarchical €xplicit signaling,
the psPresentFlag is set to one if the first signaled AOT is the PS AOT. The psPresentFlag:is not transmitted
and hence it is not possible to explicitly signal the absence of implicit signaling. Hencé, for the hierarchical
expligit signaling of parametric stereo, PS data is always present and the HE AAC Vv2)Profile decoder shall
opergte the PS Tool.

In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio_.object type ER BSAC, replace table
4.33 psac_raw_data_block with the following table:

Table 4.33 — Syntax of bsac_raw. data_block()

e Syntax No. of bits Mnemonic

bsac_raw_data_block()
{
bsac_base_element();
layer=slayer_size;
while(data_available() && layer<(top_layer+slayer_size)) {
bsac_layer_element(layer);
layer++;
}
byte_alignment();

if (data_available()) {
zefo’ code 32 bslbf
~~syncword 8 bslIbf
" while(data_available())

éxtended_bsac_raw_data_block();
v '}

!

12 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio object type ER BSAC, after Table
4.43 Syntax of bsac_spectral_data, add the following two tables:

Table 4.35 — Syntax of extended_bsac_raw_data_block()

Syntax No. of bits Mnemonic
extended_bsac_raw_data_block()
{
extet |dcd_bsa\,_basc_c:C| T 't()-
layer=slayer_size;
while(data_available() && layer<(top_layer+slayer_size)) {
bsac_layer_element(layer);
layer++;
}
byte alignment();
}
Table 4.36 — Syntax of extended_bsac_base element()
Syntax No. of bits Mnemonic
extended_bsac_base_element()
{
element_length 11 uimbf
channel_configuration_index 3 uimbf
reserved_bit 1 uimbf
bsac_header();
general_header();
byte_alignment();
for (slayer = 0O; slayer < slayer_size; slayer++)
bsac_layer_element(slayer);
}

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace

bsac_raw_data_block with the following:

bsac_raw_data_block()

block of raw data that contains coded audio data, related informgtion
and other data. A bsac_raw_data_block() basically consists of
bsac_base element() and several bsac_layer_element(). There gexists
a module that determines whether the BSAC bitstream has an
extended part.

In Part) 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, | after

bsat_raw_data_ block, add the following:

zero_code

syncword

32-bit zero values in order to terminate the arithmetic decoding for the
stereo part.

a eight bit code that identifies the start of the extended part. The bit
string ‘1111 1111°.

© ISO/IEC 2006 — Al rights reserved 13

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace

header_length with the following:

header_length

the length of the headers including frame_length, bsac_header() and
general_header() in bytes. The actual length is (header_length+7)
bytes. However if header_length is 0, it represents that the actual
length is smaller than or equal to 7 bytes. And if header_length is 15,
it represents that the actual length is larger than or equal to (15+7)

bytes and should be calculated through the decoding of the headers.
In case of extended_bsac_base_element(), header_length includes
element_length, channel_configuration_index, reserved_bit,
bsac_header and general_header().

In Part 3: Audio, Subpart 4 under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, after
bsac| spectral _data, add the following:

extended_bsac_raw_data_block()

extended_bsac_base_element()

element_length

chanpel_configuration_index

block of raw data that contains coded audio data, related information
and other data for the extended part. A extended_bsac_raw_data
block() basically consists of extended bsac _base_ element() and
several bsac_layer_element().

syntactic element of the base layer.bitstream containing coded audio
data, related information and othér’data for the extended part of
BSAC.

the length of the extended “bsac_raw_data_block() in bytes. This is
used for proper arithmetic' decoding.

a three bit field that indicates the audio output channel configuration
in the extended part. Each index specifies the number of channels
given the channel to speaker mapping.

Table 4.68 =,channel_configuration_index

Index channel toispeaker mapping number of channels (nch)

0 center front speaker 1

left, right front speakers

rear surround speakers

front low frequency effects speaker

1
2
3 left surround, right surround rear speakers
4
5

left, right outside front speakers

NI=2IN[=(N

reserved -

resenved(bit

bit reserved for future use

In Part 3: Audio, Subpart 4, after subclause 4.5.2.6.2.2.13 Reconstruction of the decoded sample from bit-

sliced data, add the subclause below:

4.5.2.6.2.2.14 Decoding the extended part

The structure of the extended part of BSAC is a simple replica of mono or stereo BSAC bitstream. New
functions called extended bsac raw_data block and extended bsac base element are added for the

extended BSAC.

14

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

4.5.2.6.2.2.14.1 extended_bsac_raw_data_block

An extended_bsac_raw_data_block also has the layered structure as bsac_raw_data_block. In case where

data is still available after decoding the stereo part, zero_code and syncword are parsed. zero_code is
for the arithmetic termination of stereo part, and syncword is for the proper decoding of extended part.

4.5.2.6.2.2.14.2 extended_bsac_base_element

a h a¥la¥a on a a da ar\ve

bsac_header, general_header and bsac_layer_element. For the stereo part, the value of nch is obtained
channelConfiguration in Table 1.8 (Syntax of AudioSpecificConfig) and it is limited to either 1 or2-(le
right front speakers). For the extended part, the parameter, nch, is concerned with the rest of speakers
the exact value is determined by channel_configuration_index specified in Table 4.68. Each.index ind
the number of channels given the channel to speaker mapping.

In Part 3: Audio, Subpart 4, at the end of subclause 4.B.17.8 Payload transmitted‘aver Elementary Stean|
sliced data, add the following subclause:

4.B.17.8.1 The functionality of fine-grain scalability in extended or multi-channel data

When the BSAC data extends to multi-channel data, each ES consists of large-step layers for a certain
channel element. To provide the functionality of fine-grain scalability in the multi-channel data, one might
streamPriority specified in the ES descriptor in ISO/IEC 14496-1:2004. The values of streamPriority are
assigned to elementary streams according to the priority of channel elements. Different numbers of layer
channel element can be truncated, because the extended BSAC bitstream consists of separate channel

used

_bit,
from
t and
, and
cates

bit-

use

5 per

elements. The values of streamPriority and the number ©f layers to be truncated per channel element depend

on application scenarios.

In Part 3: Audio, Subpart 8, in clause 8.A.1, teplace:
The usage of this parametric stereo extension to HE AAC is signalled implicitly in the bitstream. Hence, if
with:
The usage of this parametric stereo extension to HE AAC is signalled either implicitly by the preser

parametric stereo data in the bitstream, or explicitly by signalling the corresponding AudioObjectType
audioSpecificConfig. Hence, implicit signalling requires that, if

ce of
n the

© ISO/IEC 2006 — All rights reserved

15

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/I

EC 14496-3:2005/Amd.2:2006(E)

Create Part 3: Audio, Subpart 11:

Subpart 11: Technical description of Audio Lossless Coding for
lossless coding of audio signals

1.1

Scope

This

codin
MPE
recor
32-bi

comp
differ

11.2

11.2.

The H

The i

subpart of ISO/IEC 14496-3 describes the MPEG-4 Audio Lossless Coding (ALS) algorithm for lossless
g of audio signals.

5-4 ALS is a lossless compression scheme for digital audio data, i.e. the decoded data is a hit-identical
struction of the original input data. Input signals can be integer PCM data with 8 to 32-bit word length or
IEEE floating-point data. MPEG-4 ALS provides a wide range of flexibility in terms of\ compression-

lexity trade-off, since the combination of several tools allows for the definition of compression levels with
bnt complexities.

Technical Overview

I Encoder and Decoder Structure

asic structure of the ALS encoder and decoder is shown in Figure \11.1.

Encoder Decoder —» Data
—>» Control
Input | Frame / Block ' |
Partition Entropy
l Decoding
(Short-Term) l
Prediction Joint Channel
l éﬂ 0 Decoding
Long-Term 5 Compressed . 5 l
Prediction = Bitstream =y
= = Long-Term
l E] = Prediction
. = g
Joint Channel 5
i a
Coding (Short-Term)
l Prediction
Entropy l
Coding Block / Frame
| Assembly Output

Figure 11.1 — Block diagram of the ALS encoder and decoder

hplUt‘audio data is partitioned into frames. Within a frame, each channel can be further subdivided into

blocks of audio samples for further processing (block switching, see subclause 11.6.2). For each block, a

predi
long-

ction residual is calculated using short-term prediction (see subclauses 11.6.3 and 11.6.5) and optionally
term prediction (LTP, see sublause 11.6.4). Inter-channel redundancy can be removed by joint channel

coding, using either difference coding of channel pairs (see subclause 11.6.7) or multi-channel coding (MCC,
see subclause 11.6.8). The remaining prediction residual is finally entropy coded (see subclause 11.6.6).

The encoder generates bitstream information allowing for random access at intervals of several frames. The
encoder can also provide a CRC checksum, which the decoder may use to verify the decoded data.

16

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.2.2 Floating-Point Extensions

In addition to integer audio signals, MPEG-4 ALS also supports lossless compression of audio signals in the
IEEE 32-bit floating-point format. The floating-point sequence is modeled by the sum of an integer sequence
multiplied by a constant (ACF: Approximate Common Factor) and a residual sequence. The integer sequence
is compressed using the basic ALS tools for integer data, while the residual sequence is separately
compressed by the masked Lempel-Ziv tool. A detailed description of the floating-point extensions can be

found in subclause 11.6.9.

11.3 Terms and Definitions

11.3.1 Definitions

The following definitions and abbreviations are used in this document.

Frame Segment of the audio signal (containing all channels).
Block Segment of one audio channel.
Sub-block Subpart of a block that uses the same entropy coding parameters.

Random Access Frame Frame that can be decoded without decoding previous frames.

Residual Prediction error, i.e. original minus predicted signal.

Predictor/Prediction FilterLinear FIR filter which computes”an estimate of the input signal using pre

samples.
Prediction order Order of the prediction filter (number of predictor coefficients).
LPC coefficients Coefficients of the direct form prediction filter.
Parcor coefficients Parcor representation of the predictor coefficients.

Quantized coefficients Quantized parcor coefficients.

LTP Long-term prediction.

Rice code Alsoe known as Golomb-Rice code. In this document the short form is used.
BGMC Block Gilbert-Moore Code (also known as Elias-Shannon-Fano code).
CRC Cyclic Redundancy Check.

LPC Linear Predictive Coding.

PCM Pulse Code Modulation.

Mantissa Fractional part of floating-point data

Exponent Exponential part of floating-point data

ACFC Approximate Common Factor Coding

Masked-LZ Masked Lempel-Ziv Coding

MCC Multi-Channel Coding

MSB Most significant bit

LSB Least significant bit

© ISO/IEC 2006 — All rights reserved

vious

17

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.3.2 Mnemonics

uimsbf Unsigned integer, most significant bit first

simsbf Signed integer, most significant bit first

bslbf Bit string, left bit first, where “left” is the order in which bits are written

IEEE32 {EEE-32-bitHeatingpeirt-data{4-bytesymestsighificant-bitfirst

The mnemonics Rice code and BGMC indicate that variable length codewords are used, which are described

in sulpclause 11.6.6.

11.3.
The f
INT64
long
short

If "un

B Data Types

bllowing data types are used in the pseudo code sections:

| 64-bit signed integer (two's complement)
32-bit signed integer (two's complement)
16-bit signed integer (two's complement)

5igned” is added in front of the data type, then the type is unsignediinstead of signed.

11.4| Syntax
11.4.1 Decoder Configuration
Table 11.1 — Syntax of ALSSpecificConfig
$yntax No. of bits Mnemonic
ALSSpecificConfig()
{
samp_freq; 32 uimsbf
samples; 32 uimsbf
channels; 16 uimsbf
file_type; 3 uimsbf
resolution; 3 uimsbf
floating; 1 uimsbf
msb_first; 1 uimsbf
frame_length; 16 uimsbf
randomhaccess; 8 uimsbf
ra_flags 2 uimsbf
adapt_order; 1 uimsbf
coef_table; 2 uimsbf
long term_ prediction; 1 uimsbf
max_order; 10 uimsbf
block_switching; 2 uimsbf
bgmc_mode; 1 uimsbf
sb_part; 1 uimsbf
joint_stereo; 1 uimsbf
mc_coding; 1 uimsbf
chan_config; 1 uimsbf
chan_sort; 1 uimsbf
crc_enabled; 1 uimsbf
RLSLMS 1 uimsbf
18 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

(reserved) 5
aux_data_enabled; 1 uimsbf
if (chan_config) {
chan_config_info; 16 uimsbf
}
if (chan_sort) {
for (c = 0; ¢ < channels; c++)
chan_posjc]; 1..16 uimsbf
]
J
byte_align;
header_size; 16 uimshbf
trailer_size; 16 uimsbf
orig_header[]; header_size * 8 |bslbf
orig_trailer[]; trailer_size * 8+ |"bsIbf
if (crc_enabled) {
crc; 32 uimsbf
}
if ((ra_flag == 2) && (random_access > 0)) {
for (f = 0; f < ((samples-1) / (frame_length+1)) + 1; f++) {
ra_unit_size[f] 32 uimsbf
}
}
if (aux_data_enabled) {
aux_size; 16 uimsbf
aux_datall; aux_size* 8 bslbf
}
}
11.4.2 Bitstream Payloads
Table 11.2 — Syntax of top level payload (frame_data)
Syntax No. of bits | Mnemonic
frame_data()
if ((ra_flag == 1) && (frame_id % random_access == 0)) {
ra_unit_size 32 uimsbf
}
if (mc_coding && joint_stereo) {
js_switeh; 1 uimsbf
byte)align;
if {{mc_coding || js_switch) {
for (c = 0; c < channels; c++) {
if (block_switching) {
bs_info; 8,16,32 uimsbf
}
if (inrlnnnndnnf he) {

for (b = 0; b < blocks; b++) {
block_data(c);
}
}

else{
for (b = 0; b < blocks; b++) {
block_data(c);
block_data(c+1);
}

Ct++;

© ISO/IEC 2006 — All rights reserved

19

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

No
ind¢

}
}
else{
if (block_switching) {
bs_info;

}
for (b = 0; b < blocks; b++) {
for (c = 0; c < channels; c++) {

8,16,32 uimsbf

}

hlack Haf:\(r\);
channel_data(c);

}

}

if (floating)
num_bytes_diff_float;

diff_float_data();
}

32 uimsbf

e: If joint_stereo is off, or if ¢ is the last channel, independent_bs is true by default. If joint_stereo is on,
ppendent_bs is false by default, but if block _switching is on as well, the independent_bs flag is explicitly

sigmaled as the first bit of a channel pair's bs_info field (see subclause 11.6.2)¥The frame_id field indicates
the consecutive frame number, starting at 0 for the(first frame.

20

Table 11.3 — Syntax of block_data

S$yntax No. of bits | Mnemonic
Rlock_data()
{
block_type; 1 uimsbf
if (block_type == 0) {
const_block; 1 uimsbf
js_block; 1 uimsbf
(reserved) 5
if (const_block == 1) {
if (resolution == 8) {
const_val; 8 simsbf
}
else if (resolution'== 16) {
constyval, 16 simsbf
else if (resolution == 24) {
const_val, 24 simsbf
i
else {
const_val, 32 simsbf
}
}
I
else {
js_block; 1 uimsbf
if ((bgmc_mode == 0) && (sb_part == 0) {
sub_blocks = 1;
}
else if ((bgmc_mode == 1) && (sb_part ==1) {
ec_sub; 2 uimsbf
sub_blocks = 1 << ec_sub;
}

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

else {
ec_sub; 1 uimsbf
sub_blocks = (ec_sub==1)?4:1;

}

if (bgmc_mode == 0) {
for (k = 0; k < sub_blocks; k++) {

s[K]; varies Rice code
}
1
J
else {
for (k = 0; k < sub_blocks; k++) {
s[k],sx[k]; varies Rice code

}
sb_length = block_length / sub_blocks;

shift_Isbs; 1 uimsbf
if (shift_Isbs == 1) {

shift_pos; 4 uimsbf
}

if {RLSLMS) {
if (adapt_order == 1) {

opt_order; 1..10 uimsbf
}
for (p = 0; p < opt_order; p++) {
quant_cof[p]; varies Rice code
}
}
if (long_term_prediction) {
LTPenable; 1 uimsbf
if (LTPenable) {
for (i=-2;i<=2; i++) {
LTPgain[i]; varies Rice code
LTPlag; 8,9,10 uimsbf
}
}
start = 0;

if (random_acecess” block) {
if (opt_order > 0) {
smp val[O]; varies Rice code

}
if(opt_order > 1) {

res[1]; varies Rice code
}
if (opt_order > 2) {

res[2]; varies Rice code

}
if (opt_order < 3) {
start = opt_order;

)
else {

start = 3;
}

}
if (bgmc_mode) {
for (n = start; n < sb_length; n++) {
msb[n]; varies BGMC
}

for (k=1; k < sub_blocks; k++) {

© ISO/IEC 2006 — Al rights reserved 21

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

22

for (n = k * sb_length; n < (k+1) * sb_length; n++) {
msb[n]; varies BGMC
}
}

for (n = start; n < sb_length; n++) {
if (msb[n] !=tail_code) {
Isb[n]; varies uimsbf

}

alca [
T
tail[n]; varies Rice code
}
}
for (k=1; k < sub_blocks; k++) {

for (n = k * sb_length; n < (k+1) * sb_length; n++) {
if (msb[n] != tail_code) {

Isb[n]; varies dimsbf
}
else {
tail[n]; varies Rice code
}
}
}
}
else
{
for (n = start; n < block_length; n++) {
res[n]; varies Rice code
}
}

}
if (RLSLMS) {

RLSLMS_extension_data()
}

Z\

lote: random_access_block is true if thecurrent block belongs to a random access frame (frame_id %

random_access == 0) andnis’the first (or only) block of a channel in this frame.

Table 11.4 — Syntax of channel_data

$yntax No. of bits | Mnemonic
ghannel_data(c)
{
for(;;) {
stop_flag; 1 uimsbf
if (stopflag == 1) {
break;
}
master_channel_index; 1..16 uimsbf
if (c != master_channel_index) {
time_difference_iTag 1 uimsbf
if (time_difference_flag == 0) {
weighting_factor [0] varies Rice code
weighting_factor [1] varies Rice code
weighting_factor [2] varies Rice code
}
else {
weighting_factor [0O] varies Rice code
weighting_factor [1] varies Rice code
weighting_factor [2] varies Rice code

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

weighting_factor [3] varies Rice code
weighting_factor [4] varies Rice code
weighting_factor [5] varies Rice code
time_difference_sign 1 uimsbf
time_difference_index 5,6,7 uimsbf
}
}
}
t
Table 11.5 — Syntax of RLSLMS_extension_data
Syntax No. of bitse.j*Mnemonic
RLSLMS_extension()
{
mono_block 1 uimsbf
ext_mode 1
if (ext_mode) {
extension_bits 3 uimsbf
if (extension_bits&0x01) {
RLS order 4 uimsbf
LMS_stage 3 uimsbf
for(i=0; i<LMS_stage;i++){
LMS_order]i] 5 uimsbf
}
}
if (extension_bits&0x02) {
if (RLS_order) {
RLS lambda 10 uimsbf
if (RA)
RLS lambda_ra 10 uimsbf
}
}
if (extension_hbits&04) {
for(i=0; i<LMS_stage;i++) {
LMS_muli] 5 uimsbf
}
LMS_stepsize 3
}
}
}
11.4.3_SPayloads for Floating-Point Data
Table 11.6 — Syntax of diff_float_data
(@dWI=Y 2o1V] NMNao—aof bitc MNMinaonaaonie
Syrtax Ne—efbits—Mnremonie
diff_float_data()
{
use_acf; 1 uimsbf
if (random_access_block) {
if (c=0; c < channels; c++) {
last_acf_mantissalc] = O;
last_shift_value[c] = O;
}
© ISO/IEC 2006 — All rights reserved

23

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

}

FlushDict();

for (c = 0; ¢ < channels; c++) {

if (use_acf==1){

}

acf_flag[c]; 1 uimsbf
if (acf_flag[c] == 1) {
acf_mantissalc]; 23 uimsbf
last_acf_mantissalc] = acf_mantissalc];
1
J
else {
acf_mantissalc] = last_acf_mantissa[c];
}
}
else {
acf_mantissajc] = last_acf_mantissalc] = 0;
}
highest_byte[c]; 2 dimsbf
shift_amp[c]; 1 uimsbf
partA_flag[c]; 1 uimsbf
if (shift_amp[c] == 1) {
shift_valuel[c]; 8 uimsbf
last_shift_value[c] = shift_value[c];
}
else {
shift_value[c] = last_shift_value[c];
}
diff_mantissa();
byte_align; 0.7 bslbf

Note; “byte align” stands for padding of bits to the next:byte boundary. "FlushDicf()" is the function that clears
andl initializes the dictionary and variables of the Masked-LZ decompression module (See section 11.6.9).

Table 11:7,— Syntax of diff_mantissa

$yntax No. of bits | Mnemonic
diff_mantissa()
{
if (partA_flag[c] != 0) {
compressed_flag{c]; 1 uimsbf
if (compressed. flag[c] == 0) {
for (n =-0;\n < frame_length; n++) {
if (int_zero[c][n]) {
float_data[c][n]; 32 IEEE32
}
}
+
else {
nchars = 0;
for (n = 0; n < frame_length; n++) {
if (int_zero[c][n])
nchars += 4;
}
Masked_LZ_ decompression(nchars);
}
}
if (highest_byte[c] = 0) {
compressed_flag[c]; 1 uimsbf

24 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

if (compressed_flag[c][n] == 0) {
for (n = 0; n < frame_length; n++) {
if (int_zero[c][n]) {
mantissa[c][n]; nbits[c][n] | uimsbf
}
}
}
else {
ncharg — n;
for (n = 0; n < frame_length; n++) {
if (int_zero[c][n]) {
nchars += (int)nbits[c][n]/8;
if ((nbits[c][n] % 8) > 0)
nchars++;
}
}
Masked_LZ_decompression(nchars);
}
}
}
Note: “int_zero” is true if the corresponding truncated integer is 0. “nbit” is.the necessary word length for the
difference of mantissa (see section 11.6:9).
Table 11.8 — Syntax of Masked_LZ.décompression
Syntax No. of bits | Mnemonic
Masked_LZ decompression(nchars)
for (dec_chars = 0; dec_chars < nchars;) {
string_code; 9.14 uimsbf
}
}
Note: “nchars” is the number ©f characters need to be decoded (see section 11.6.9).
11.5 Semantics
In the following, the general.elements are described. Additional elements related to floating-point audiq data
are described in chapter14.5.2.
11.5.1 General Semantics
11.5.1.1 ALSSpecificConfig
ALSSpecificConfig contains general configuration data. Optionally, the header and trailer of an original pudio
file can-be embedded in order to restore that information in addition to the actual audio data. The syntax of
ALSSpecificConfig is defined in Table 11.1, its elements are described in Table 11.9.
Table 11.9 — Elements of ALSSpecificConfig
Field #Bits Description / Values
samp_freq 32 Sampling frequency in Hz
samples 32 Number of samples (per channel)
channels 16 Number of channels-1
(0 = mono, 1 = stereo, ...)
file_type 3 000 = unknown / raw file
© ISO/IEC 2006 — All rights reserved 25

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

001 = wave file
010 = aiff file
011 = bwf file

(other values are reserved)

resolution

000 = 8-bit
001 = 16-bit

010 = 24-bit
011 = 32-bit

(other values are reserved)

floating

1 = IEEE 32-bit floating-point, 0 = integer

msb_first

Original byte order of the input audio data:
0 = least significant byte first (little-endian)
1 = most significant byte first (big-endian)

If resolution = 0 (8-bit data), msb_{first = 0 indicates
unsigned data (0...255), while msb_first=1
indicates signed data (-128..1427).

frame_length

16

Frame Length - 1 (e.g. frame_length = Ox1FFF
signals a frame lengthof N = 8192)

random_access

Distance between RA frames (in frames, 0...255).
If no RA is usedthe value is zero. If each frame is
an RA frame, the value is 1.

ra_flag

Indicatés’ where the size of random access units
(ra_unit) size) is stored:

00: not stored
01: stored at the beginning of frame_data()
10: stored at the end of ALSSpecificConfig()

adapt_order

Adaptive Order: 1 = on, 0 = off

coef_table

Table index (00, 01, or 10, see Table 11.20) of
Rice code parameters for entropy coding of
predictor coefficients, 11 = no entropy coding

long_term_prediction

Long term prediction (LTP): 1 = on, 0 = off

max_order

10

Maximum prediction order (0..1023)

block_switching

Number of block switching levels:
00 = no block switching

01 = up to 3 levels

10 =4 levels

11 =5 levels
bgmc_mode T BGMC Mode: T = on, 0 = off (Rice coding only)
sb_part 1 Sub-block partition for entropy coding of the

residual.

if bgmc_mode = 0:

0 = no partition, no ec_sub bit in block_data

1 = 1:4 partition, one ec_sub bit in block_data

if bgmc_mode = 1:

26

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

0 = 1:4 partition, one ec_sub bit in block_data

1 = 1:2:4:8 partition, two ec_sub bits in block_data

joint_stereo 1 Joint Stereo: 1 = on, 0 = off

If channels = 0 (mono), joint_stereo =0

mc_coding 1 Extended inter-channel coding: 1 = on, 0 = off

If channels = 0 (mono), mc_coding = 0

chan_config 1 Indicates that a chan_config_info field is present

chan_sort 1 Channel rearrangement: 1 = on, 0 = off

If channels = 0 (mono), chan_sort=0

crc_enabled 1 Indicates that the crc field is present

RLSLMS 1 Use RLS-LMS predictor: 1 = on, 0 =.off

(reserved) 5

aux_data_enabled 1 Indicates that auxiliary data.is present (fields

aux_size and aux_data)

chan_config_info 16 Mapping of channelsyto loudspeaker locations.
Each bit indicates*whether a channel for a
particular predefined location exists (see
subclause 1¥.6:45).

chan_pos]] (channels+1)*ChBits | If channelrearrangement is on (chan_sort = 1),
these Care” the original channel positions. The
number of bits per channel is

ChBits = ceil[log2(channels+1)] = 1..16

where channels+1 is the number of channels.

header_size 16 Header size of original audio file in bytes
trailer_size 16 Trailer size of original audio file in bytes
orig_header(] header\size*8 Header of original audio file

orig_trailer(] trailer_size*8 Trailer of original audio file

crc 32 32-bit CCITT-32 CRC checksum of the original

audio data bytes (polynomial: X2+ x4 x®+x2+

XC+xZHxT+x P+ +x + X+ X+ x+1).

ra_unit_size[] #frames*32 Distances (in bytes) between the random access
frames, i.e. the sizes of the random access units,
where the number of frames is

#frames = ((samples-1) / (frame_length+1)) +1

In ALSSpecificConfig(), this field appears only if

ra_flag = 1.
aux_size 16 Size of the aux_data field in bytes
aux_data aux_size*8 Auxiliary data (not required for decoding)

11.5.1.2 frame_data

This is the top level payload of ALS. If random_access > 0, the number of payloads mapped into one access
unit equals the value of random_access (1...255). In this case, the size of each access unit can be stored in
ra_unit_size. If random_access = 0, all payloads are mapped into the same access unit.

The bs_info field holds the block switching information for a channel or a channel pair (see subclause 11.6.2
for details). The syntax of frame_data is defined in Table 11.2, its elements are described in Table 11.10.

© ISO/IEC 2006 — All rights reserved 27

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Table 11.10 — Elements of frame_data

Field #Bits Description / Values

ra_unit_size 32 Distance (in bytes) to the next random
access frame, i.e the size of the random
access unit. In frame_data(), this field
appears only if ra_flag = 2.

bs_info 8, 16, 32 | Block switching information.

If block_switching = 0, no bs_info field is
transmitted, otherwise #Bits depends on the
value of block_switching:

block_switching = 1: 8 bits
block_switching = 2: 16 bits
block_switching = 3: 32 bits

js_switch 1 If js_switch = 1, Joint Stereo (channél
difference) is selected even if MCC
(mc_coding) is enabled.

num_bytes_diff_float | 32 Only present if floating = 1:

Number of bytes for diff_float_data

11.5.1.3 block_data

The block data specifies the type of block (normal, constant, silence) and basically contains the code indices,
the predictor order, the predictor coefficients and the codé€d residual values. The syntax of block_data is
defingd in Table 11.3, its elements are described in Table 41)11.

Table 11.11 — Elements of block_data

Field #Bits Description / Values

block_type 1 1 = normal block

0 = zero / constant block

const_block 1 Only if block_type = 0:
1 = constant block

0 = zero block (silence)

js_block 1 Block contains a joint stereo difference signal
const_val 8,16,24,32 Constant sample value of this block
ec_sub 0.2 Number of sub-blocks for entropy coding.

#Bits = bgmc_mode + sb_part
if #Bits = 0: 1 sub-block

if #Bits = 1:

0 = 1 sub-block
1 = 4 sub-blocks
if #Bits = 2

00 = 1 sub-block

01 = 2 sub-blocks
10 = 4 sub-blocks
11 = 8 sub-blocks

28 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

s[],sx{] varies Up to 8 Rice (s) or BGMC (s,sx) code indices
for entropy coding of sub-blocks (number is
given by ec_sub). The differential values are
Rice coded.

shift_lsbs 1 Indicates that all original input sample values
of this block have been shifted to the right
prior to further processing, in order to remove
empty LSBs

shift_pos 4 Number of positions-1 that the sample values
of this block have been shifted to the right:
0000 = 1 position
1111 = 16 positions

opt_order 1..10 Predictor order for this block (of length Ng):

#Bits = min{ceil(log2(max_order+1)),
max[ceil(log2((Ng >> 3)-1)),1]}

The number of bits is restricted by both the
maximum order (max_order) and the block
length Ng (see subclause”11.6.3.1)

quant_cof[] varies Rice coded quantized' coefficients. The Rice
coding scheme ,'is’ described in subclause
11.6.6.1

LTPenable 1 LTP switch:~t = on, 0 = off

LTPgain(] varies Rice coded gain values (5-tap)

LTPlag 8,9,10 L¥P lag values
Freq < 96000, range=0..255, bit=8
96000 <=Freq <192000, range=0..511, bit=9
Freq >=192000 range=0..1023, bit=10

smp_val[0] varies Rice coded sample value at the beginning of
a random access block (see Table 11.22)

res[] varies Rice coded residual values (see subclause
11.6.6.1)

msb[] varies BGMC-coded most significant bits of
residuals. For residuals outside the central
region, the special “tail_code” is transmitted.
The BGMC coding scheme is described in
subclause 11.6.6.2

Isb[] varies Directly transmitted least significant bits of
the residuals (see subclause 11.6.6.2)

tail[] varies Rice coded residual values outside the

central region (tails, see subclause 11.6.6.2)

© ISO/IEC 2006 — All rights reserved

29

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.5.1.4 channel_data

The syntax of channel_data is defined in Table 11.4, its elements are described in Table 11.12.

Table 11.12 — Elements of channel_data

Field

#Bits

Description / Values

stop_flag

1

0: _Continue _description _of _inter-channel

11.5.

The s

relationship

1: Stop description

master_channel_index

1..16

Index of master-channel.
#Bits = ceil[log2(channels+1)]

where channels+1 is the number of channels

time_difference_flag

0: 3-tap without time difference lag

1: 6-tap with time difference lag

weighting factor

varies

Indices of inter-channel weighting factor

time_difference_sign

1

0: positive, 1:negative; “Positive” means that
the reference channel is Idelayed relative to
the coding channel.

time_difference_value

5,6,7

Absolute value of titme.difference lag

Freq < 96000, range=3..34, #Bits=5

96000 <=Freg <192000, range=3..66, #Bits=6
Freq >=192000 range=3..130, #Bits=7

1.5 RLSLMS_extension_data

yntax of RLSLMS_extension_data is defined in Table 11.5, its elements are described in Table 11.13.

Table 11.13 —Elements of RLSLMS_extension_data

Field

#Bits

Description / Values

mono_block

1

mono_frame == 0: CPE coded with joint-
stereo RLS

mono_frame == 1: CPE coded with mono
RLS

exi \mode

RLS-LMS predictor parameters are updated
in extension block.

1 == extension block

0 == non-extension block

30

" : loidh
CALCTISIUN_UItS

[¢)

T DL O LA " .
r'ypc Ul NLOTLVIO PadidiTiTicls — Lallicu LA

extension block
xtension&01 == RLS-LMS predictors orders

extension&02 == RLS lambda and

RLS_lambda_ra

extension&04 =
LMS_stepsize

LMS_mu and

RLS order

RLS predictor order

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

LMS_stage 3 Number of LMS predictors in cascade

LMS_order[] 5*LMS_stage | LMS predictor order

RLS lambda 10 RLS predictor parameter lambda.

RLS_lambda_ra 10 RLS predictor parameter lambda for random
access frame

LMS_mu[] 5*LMS_stage | LMS predictor parameter mu

LMS_stepsize 3 LMS predictor parameter stepsize

11.5.2 Semantics for Floating-Point Data

11.5.2.1 diff_float_data

The syntax of diff_float_data is defined in Table 11.6, its elements are described in(Table 11.14.

Table 11.14 — Elements of diff_float_data

Field #Bits Description / Values

use_acf 1 1: acf_flag[c] is present

0: acf_flag[c]is\not present

acf_flagc] 1 1: acf_mantissa[c] is present

0: acf.mantissa[c] is not present

acf_mantissa[c] 23 Fall mantissa data of common multiplier
highest_byte|[c] 2 Highest nonzero bytes of mantissa in a frame
partA_flag|c] 1 1: Samples exist in Part-A

0: No sample exists or all zero in Part-A

shift_amp]c] 1 1: shift_value[c] is present

0: shift_value[c] is not present

shift_valuelc] 8 Shift value: This value is added to the
exponent of all floating-point values of
channel c after conversion of decoded
integer to floating-point values, and before
addition of integer and the difference data.

11.5.2.2 diffumantissa

The syntax of diff_mantissa is defined in Table 11.7, its elements are described in Table 11.15.

Table 11.15 — Elements of diff_mantissa

Field #Bits Description / Values

int_zero[c][n] (varies) int_zero for n-th sample and c-th channel
is set if the truncated integer equals “0”.
This value is not a syntactic element, but
can be determined from the associated
integer value which is available in both the
encoder and the decoder.

mantissa[c][n] nbits[c][n] Full mantissa data

© ISO/IEC 2006 — Al rights reserved 31

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

compresed_flag[c] 1 1: Samples are compressed

2: Samples are uncompressed

nchars (varies) Number of characters to be decoded
float_data[c][n] 32 32-bit IEEE floating-point value
nbits[c][n] This value is not a syntactic element. This

can be determined from the integer value,

11.5.

The s

11.6

In mq

acf mantissalc] and highest byte[c]

P.3 Masked_LZ_decompression

yntax of Masked_LZ_decompression is defined in Table 11.8, its elements are described in Table 11.16.

Table 11.16 — Elements of Masked_LZ_decompression

Field #Bits Description / Values
string_code code_bits Index code of the dictionary.
code_bits (varies) code_bits is varied from 9%i0 15 bits

depending on the number of entries stored
in the dictionary

ALS Tools

pst Jossy MPEG coding standards, only the decoder is*specified in detail. However, a lossless coding

scheime usually requires the specification of some (but fiot all) encoder portions. Since the encoding process

has t
be sp

BlocK

rest ¢
must

11.6.
11.6.

An e

b be perfectly reversible without loss of informatien, several parts of both encoder and decoder have to
ecified in a deterministic way.

diagrams of the lossless encoder and the-lossless decoder were already shown in Figure 11.1. In the

f this section, the decoding process will be described along with those elements of the encoder which
be specified exactly in order to ensure lossless decoding.

I Overview
1.1 Bitstream structure

ample for the gengral bitstream structure of a compressed M-channel file is shown in Figure 11.2.

32

|’““‘Cﬁhannell | Channel 2 |;77Channel3 | Channel 4 | | Ch nne1M|

[(Biock 1 [Block2] By [Biockd] ~ [Biocks]

|7 Code Indices | Order K | K coefficients | Rice or BGMC coded residual values” |

Figure 11.2 — General bitstream structure of a compressed audio file

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Each frame (frame_data) consists of B = 1...32 sample blocks (block data) for each channel. Besides general
information about the block (e.g. silence block, joint stereo difference block, etc.), each block typically contains
the code indices, the predictor order K, the predictor coefficients and the Rice- or BGMC-coded residual
values. Variations of this slightly simplified structure are treated in detail in the following sections. If joint
coding between channel pairs is used, the block partition is identical for both channels, and blocks are stored
in an interleaved fashion (see subclause 11.6.2, Figure 11.5). Otherwise, the block partition for each channel

is independent.

If the inr\ll’r is. flns\fing-r\ninf data _additional hitstream elements for differential mantissa values are ins

after the bitstream of every integer frame. Please refer to subclause 11.6.9 for a detailed description
floating-point extensions.

11.6.1.2 Decoding of ALSSpecificConfig

” oo« "«

ALSSpecificConfig contains information about the original data (e.g. “samp_freq”, “channels”, “resolutio

well as global parameters that do not change from frame to frame (e.g. “frame_length”, "max_order"
most important parameters (some of which are optional) are briefly described in the following:

e Sampling frequency: The sampling frequency of the original audio,data is stored, e.g. for
playback of a compressed file.

e Samples: Total number of audio samples per channel.
e Number of channels: 1 (mono), 2 (stereo), or more (multichannel).

e Resolution: 8-bit, 16-bit, 24-bit, or 32-bit. If the resalution of the original audio data is somewh
between (e.g. 20-bit), the higher resolution is used. for the sample representation.

¢ Floating-point: Indicates the format of audig data. If this flag is set, the audio data is in the IEEE
floating-point format, otherwise the audio‘data is integer.

o Byte order: Indicates the byte order of the original audio file, either most significant byte first (e.g
or least significant byte first (e.g:wave).

e Frame length: Number of samples in each frame (per channel).

erted
bf the

") as

. The

direct

Bre in

32-bit

. aiff)

e Random access: Distance (in frames) between those frames which can be decoded independently

from previous frames (random access frames). In front of each random access frame, there
field “ra_unit_sizeXwhich specifies this distance in bytes.

o Adaptive erder: Each block might have an individual predictor order.

e Coefficient table: A Table containing parameters that are used for entropy coding of pre
coefficients.

o —~Long-term-prediction: Long term prediction (LTP).

e Maximum order: Maximum order of the prediction filter. If “adapt_order” is turned off, this order is|

s the

dictor

used

10l Adll DIOCKS.

e Block Switching: Instead of one block per channel there might up to 32 shorter blocks. If
switching is not used, the block length is identical with the frame length.

block

e BGMC mode: Indicates the use of BGMC codes for the prediction residual. If this flag is set to 0, the

simpler Rice codes are used for the prediction residual.

e Sub-block partition: Sub-block partition for entropy coding of the residual.

© ISO/IEC 2006 — All rights reserved

33

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Joint stereo: In each block, a difference signal might be encoded instead of the left or the right
channel (or one of the two channels of a channel pair, accordingly)

Multi-channel coding: Extended inter-channel coding
Channel sort: Channel rearrangement, used for building dedicated channel pairs.

Channel positions: Original channel positions, used only if channel_sort is turned on.

11.6.

The 1

Header size: Size of the original audio file header, in bytes.

Trailer size: Size of trailing non-audio information in the original audio file, in bytes.
Original header: The embedded header of the original audio file.

Original trailer: The embedded trailer of the original audio file.

CRC: Cyclic redundancy checksum (CCITT-32) of the original audio data bytes.(i.e. in their original
order, including channel interleaving).

1.3 Number of Frames

umber of frames to decode depends on the actual frame length (N{= frame_length + 1) and the number

of samples. It can be determined as follows:

N

rg
if
{

—

If the
redud

11.6.

In or
chan
codin|

= frame_length + 1.

frames = samples / N;

bmainder = samples % N;
(rest)

frames++;
N_last = remainder;

se
N_last = N;

number of samples is not.a multiple of the frame length N, the length of the last frame is accordingly
ed (N_last = remainder).

1.4 Joint Channel Coding

jer to exploitwedundancy between channels, the encoder can use a simple approach, consisting of
hel pairs and-single channels. The two channels of a channel pair can be encoded using difference
g (see section 11.6.7), whereas single channels are encoded independently.

each

charnel is a single channel, and is therefore coded independently from other channels. If joint_stereo is

The greneral use of joint coding is signalled by the joint_stereo flag in the ALS header. If joint_stereo is off,

on, in each case two successive channels are regarded as a channel pair. It the number of channels is odd,

there

Defin

is one remaining single channel.

ing channel pairs does not mean that joint coding has to be essentially used. If joint stereo is set, the

decoder will treat combinations of two channels as channel pairs, even if the encoder did never actually use
joint coding (e.g. since the channels were not correlated). In this case, the decoder will simply never discover
a set js_block flag block_data.

34

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.6.1.5 Channel Configuration and Rearrangement

The chan_config_info field (if present) defines a channel-to-speaker mapping by indicating whether a channel
for a particular predefined location exists. Therefore, the existing channels have to be arranged in a
predefined order (see Table 11.17). If a particular channel is present, the corresponding bit in the
chan_config_info field is set.

Table 11.17 — Channel Configuration

Speaker location Abbreviation | Bit position in
chan_config_info

Left L 1

Right R 2

Left Rear Lr 3

Right Rear Rr 4

Left Side Ls 5

Right Side Rs 6

Center C 7

Center Rear / Surround S 8

Low Frequency Effects LFE 9

Left Downmix LO 10

Right Downmix RO 11

Mono Downmix M 12

(reserved) 13-16

If the channels are arranged differently;channel rearrangement can be used. For 5.1 surround materigl with
channel configuration L, R, Lr, Rr, Cy LFE, it is obvious that the first two channel pairs (L/R, Lr/Rr) might
benefit from joint coding, whereas the remaining channels (C, LFE) are more likely to be independent.|Even
so, if joint_coding is on, the encoder forms channel pairs simply by successively combining adjacent chamnels,
thus there are three channel pairs in this case.

However, if the channel:configuration is L, R, C, Lr, Rr, LFE, or L, Lr, C, Rr, R, LFE, the correlated channels
are no longer adjoining./ This problem can be addressed by a virtual rearrangement of channels prjor to
encoding, where correlated channels are grouped and successively arranged, such that they form chiannel
pairs. The information about this rearrangement is stored in the compressed file as the original channel
number in thefield chan_pos][]. The decision on which channels are grouped can be made automatically by
the encodefior manually by the user. If the channel configuration is indicated in the original file, the entoder
can make.a suitable rearrangement. If the file format has no default channel configuration, but the user Khows
the channel to speaker mapping in that particular case, he can instruct the encoder how to group the channels.

The’/decoder has to reverse a possible channel rearrangement (chan_sort flag), by assigning each channel its
griginal position as stored in chan_posJ].

11.6.1.6 Decoding of Frames
A frame constitutes the top level payload (frame_data), i.e. the basic unit of audio data (see Table 11.2 for

syntax and Table 11.10 for semantics). If block switching is used, each channel of a frame can be subdivided
into up to 32 blocks. Otherwise, a block consists of all samples of a frame's channel.

© ISO/IEC 2006 — All rights reserved 35

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/I

EC 14496-3:2005/Amd.2:2006(E)

11.6.1.7 Decoding of Blocks

The block_data() structure contains the information about a single block (i.e. a segment of audio data from
one channel). It specifies whether the block is a “normal” block (i.e. containing encoded audio samples), a
constant block (all audio samples are the same) or a silence block (all audio samples are zero). Furthermore,
the field “joint_stereo” indicates whether the block contains a difference signal (right minus left channel). Either
the left or the right channel can be substituted by that difference signal. This also holds in the case of block
switching, when the block length may be shorter than the frame length.

For “|l10rmal” blocks, as shown in Figure 11.2, the block data basically comprises

If the
and s

In ca
also

persi
mear
Thus
predi

the code indices,
the predictor order K,

the quantized and encoded predictor coefficients (or the RLS-LMS predictor parametérs'in the case of
RLSLMS mode)

the LTP parameters in case of LTP mode,
and the Rice- or BGMC-coded residual values.

block is further subdivided into sub-blocks for entropy coding (indicated by ec_sub), code parameters s
X are transmitted for each sub-block (see section 11.6.6 for furtherexplanations).

e of an adaptive predictor order (adapt_order), the order for'the block is indicated (opt_order). There is
h flag (shift_Isbs) specifying whether all audio samples in_the current block have some LSBs which are
btently zero. If this is the case, the number of empty’L.SBs is given in another field (shift_pos). This
s that the encoder has shifted all sample values to the right by shift_pos+1 positions prior to prediction.
the decoder has to shift the output sample values«o the left by shift_pos+1 positions after the inverse
Ction filter has been applied. If the prediction process uses samples from a previous block, a shifted

version of these samples has to be used as input of.both the prediction filter and the inverse prediction filter

(i.e. i
nece
predi

11.6.

Most
samp
interld
block|
befor

11.6.

If blo
(see

h both the encoder and the decoder), everYif the LSBs are not zero in the previous block. This is
bsary in order to align the amplitude range of the predictor's input samples with the samples to be
cted.

1.8 Interleaving

uncompressed audio file formats store the two channels of a stereo signal as a sequence of interleaved
les (L4, Ry, Ly, Ry, L3, Ray=..). For multichannel data with M channels, each sample step comprises M
pbaved samples, e.g. L% Ry, Lry, Rry, Cq, LFE4, Ly, ... in the case of 5.1 material. Since the encoder builds
5 of samples for each channel, the decoded samples of all channels may have to be interleaved again
b writing them tg_an output audio file.

P Block-Switching

Ck _switching is enabled, each channel of a frame can be hierarchically subdivided into up to 32 blocks
Figure 11.3).

36

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Samples

N

|
| N2
| N4

| | N/8

[I A ¢

LTI T L] w2

Figure 11.3 — Block switching hierarchy

Arbitrary combinations of blocks with Ng = N, N/2, N/4, N/8, N/16, and N/32 are possibleswithin a fram
long as each block results from a subdivision of a superordinate block of double length) Therefore, a pa
into N/4 + N/4 + N/2 is possible, whereas a partition into N/4 + N/2 + N/4 is not (Figureyt1.4).

| N | (0)000,000¢
| N/2 | N4 [N4 [01010000
| N4 [N4 N2 | (01100000
| N4 [Ng[Ng| N4 | N4 | (1110100
| N4 N2 ' N4 | notpossible
N8| N4 [N8]| ®4” | N4 | notpossible

Figure 11.4 — Block switching-examples and corresponding bs_info codes

The actual partition is signalled in an additional field bs_info (right column in Figure 11.4), whose |

depends on the number of block switching levels (see Table 11.18).

Table 11.18 — Block switching levels

Maximum #levels Minimum Ng #Bytes for bs_info
0 N 0
1 N/2 1
2 N/4 1
3 N/8 1
4 N/16 2
5 N/32 4

e, as
rtition

ength

The bs_info field consists of up to 4 bytes, where the mapping of bits with respect to the levels 1 to 5 is
[(0)1223333 44444444 55555555 55555555]. The first bit is only used to signal independent block switching
(independent_bs, see Table 11.2). In the example of Figure 11.4, there are three levels, thus the minimum
block length is Ng = N/8, and bs_info consists of one byte. Starting at the maximum block length Ng = N, the
bits of bs_info are set if a block is further subdivided. For the topmost example there is no subdivision at all,
thus the code is (0)0000000. The frame in the second row is subdivided ((0)1...), where only the second block
of length N/2 is further split ((0)101...) into two blocks of length N/4. If an N/4 block is split as in the fourth row,
it is indicated in the following bits ((0)111 0100).

© ISO/IEC 2006 — All rights reserved

37

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

In each frame, bs_info fields are transmitted for all channel pairs and all single channels respectively, enabling
independent block switching for different channels. While the frame length is identical for all channels, block
switching can be done individually for each channel. If difference coding is used, both channels of a channel
pair have to be switched synchronously, but other channel pairs can still use different block switching.

However, if the two channels of a channel pair are not correlated with each other, difference coding will not
pay off, and thus there will be no need to switch both channels synchronously. Instead, it may rather make
sense to switch the channels independently.

Typically, there will be a bs_info field for each channel pair and single channel in a frame, i.e. the two
channels of a channel pair are switched synchronously. If they are switched independently, the first bit\of
bs_info is set to 1, and the information applies to the channel pair's first channel. In this case, another bs |info
field for the second channel becomes necessary.

An example for a three-channel file is shown in Figure 11.5. Short blocks are only interleaved if they belong to
a chgnnel pair that uses difference coding and therefore synchronized block switching (Figute,\11.5, middle).
This [nterleaving is necessary since in a channel pair a block of one channel (e.g. block 1-2))may depend on
previpus blocks from both channels (e.g. blocks 1.1 and 2.1), so these previous blocks‘have to be available
prior fto the current one. For channels whose blocks are switched independently, channel data is arranged
separately (Figure 11.5, bottom).

Channel 1	Channel 2	'\V‘ Channel 2			
1.1	2.1	12	22	12 [22 ¥ A	3.2
1.1	12	12	2.1	3.1	3.2

-n

gure 11.5 — Frame Structure: No block switching)(top), synchronized block switching between
channels 1 and 2 (middle), independent block switching (bottom)

If joint_stereo is off, all channels are switched independently without explicit signalling. If joint_stereo is on, but
block| switching is off, there is only one block per-¢hannel, thus interleaving is not required (Figure 11.5, top).

11.6.8 Prediction

This ¢chapter describes the forward-adaptive prediction scheme. Block diagrams of the corresponding encoder
and decoder parts are shown in Figure 11.6 and Figure 11.7.

Values

Quantized Coding
Parcor Values

Encoder
fmmm e m AN e - .
1 1
Original i Residual | Entro
i Buffer _ : OpY
| i | Coding
1 H i
i Estimate |
; Predictor i I > @
1 1 .
' i Code Indices = _
: Y S | & | Bitstream
i | =
| Parcor ' =
1 1
H 1
: toHPE : =
’ x :
' Parcor | Entropy |
! !
1 1
1 1
1 1
H 1

__

Figure 11.6 — Encoder of the forward-adaptive prediction scheme

The encoder consists of several building blocks. A buffer stores one block of input samples, and an
appropriate set of parcor coefficients is calculated for each block. The number of coefficients, i.e. the order of

38 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

the predictor, can be adapted as well. The quantized parcor values are entropy coded for transmission

, and

converted to LPC coefficients for the prediction filter which calculates the prediction residual. The final entropy

coding of the residual is described in subclause 11.6.6.

A

Parcor i
Entropy | Values Parcor
Decoder to LPC

Decoder
1
Entropy Residual @ Lossless Reconstruction
& Decoder % "
B= vy
] 13} | Estimate .
Bitstream -V R —— Predictor <+—
=
g
5]
@)

1
1
1
1
1
1
1
1
!
Code Indices i
1
1
1
1
1
1
1
1
1
1

Figure 11.7 — Decoder of the forward-adaptive predition scheme

The decoder is significantly less complex than the encoder, since no adaptation has to be carried out
transmitted parcor values are decoded, converted to LPC coefficients, and are used by the inverse pred
filter to calculate the lossless reconstruction signal. The computationalyeffort of the decoder mainly dey

. The
iction
ends

on the predictor orders chosen by the encoder. Since the average order is typically well below the maximum

order, prediction with greater maximum orders does not necessarily Jead to a significant increase of de
complexity.

If the prediction order K is adaptively chosen (adapt_ordér= 1), the number of bits used for signalin
actual order (opt_order = K) in each block is restricted,” depending on both the global maximum
(max_order) and the block length Ng:

Bits = min{ceil[log2(max_order+1)], max[ceil(log2((Ng>>3)-1)), 11}

Therefore, also the maximum order K. = 28" 1 is restricted, depending on both the value of max_ords
the block length (see Table 11.19).

Table 11.19 — Maximum(prediction order depending on block length and max_order

coder

g the
order

r and

Ng max_ofder = 1023 max_order = 100

#Bits for opt_order Kmax #Bits for opt_order Kmax
> 4096 10 1023 7 100
> 2048 9 511 7 100
> 1024 8 255 7 100
>512 7 127 7 100
> 256 6 63 6 63
>128 5 31 5 31
> 64 4 15 4 15
>32 3 7 3 7
>16 2 3 2 3
>8 1 1 1 1

The basic (short-term) prediction can be combined with long-term prediction (LTP, see subclause 11.6.4). An

alternative prediction scheme based on backward-adaptive predictors is described in subclause 11.6.5.

© ISO/IEC 2006 — All rights reserved

39

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.6.3.1 Predictor Coefficients

The t

ransmission of the prediction filter coefficients is accomplished by using parcor coefficients vy, k=1...K

(where K is the order of the filter), which can be obtained e.g. by using the Levinson-Durbin algorithm.

11.6.3.1.1

Quantization and encoding of parcor coefficients

The first two parcor coefficients (y, and y, correspondingly) are quantized by using the following companding

functi

while

In all

Trans

whicH
and f
whers
codin|

alway

ons:

= | 64(-1427 +1) |

b, =] 64(-14425 +1) |

the remaining coefficients are quantized using simple 7-bit uniform quantizers:
1 =| 647, |; (k>2).

cases the resulting quantized values a, are restricted to the range [-64,63].
mission of the quantized coefficients g, is done by producing residual values
b, =a, —offset, ,

, in turn, are encoded by using Rice codes as described in section 11.6.6.1. The corresponding offsets
arameters of Rice codes used in this process can be globally chosen from one of the sets in Table 11.20,
b the table index (coef table) is indicated in ALSSpecificConfig. If coef table = 11, then no entropy
g is applied, and the quantized coefficients are-transmitted with 7 bits each. In this case, the offset is

s -64 in order to obtain unsigned values §(=a, + 64 that are restricted to [0,127].

Table 11.20 — Rice code parameters used for encoding of parcor coefficients

40

coef_table =00 coef_table = 01 coef_table = 10
Coefficient # Offset Rice Offset Rice Offset Rice
parameter parameter parameter
1 252 4 -58 3 -59 3
2 -29 5 -42 4 -45 5
3 -31 4 -46 4 -50 4
4 19 4 37 5 38 4
5 -16 4 -36 4 -39 4
6 12 3 29 4 32 4
7 -7 3 -29 4 -30 4
8 9 3 25 4 25 3
9 -5 3 -23 4 -23 3
10 6 3 20 4 20 3
11 -4 3 -17 4 -20 3
12 3 3 16 4 16 3
13 -3 2 -12 4 -13 3

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

14 3 2 12 3 10 3
15 -2 2 -10 4 -7 3
16 3 2 7 3 3 3
17 -1 2 -4 4 0 3
18 2 2 3 3 -1 3
19 -1 2 -1 3 2 3
20 2 2 1 3 -1 2
2k-1, 10<k<65 0 2 0 2 0 2
2k, 10<k<64 1 2 1 2 1 2
k>127 0 1 0 1 0 1

11.6.3.1.2 Reconstruction of the parcor coefficients

First, Rice-decoded residual values o, are combined with offsets (see Table 11.20) to produce quantized

indices of parcor coefficients a, :
a, =0, toffset, .
Then, the reconstruction of the first two coefficients is done.Using:

par, =L}?12QJ =I'(q);
par, :b;zzQJ =—r(a2);

where 2° represents a constant (@20) scale factor required for integer representation o

reconstructed coefficients, and F() is*a mapping described in the following table.

Table 11.21 - Indices i and corresponding scaled parcor values I'(i) for i = -64...63

f the

i IN0) i (i) i IN0) i IN0)

-64 1048544 | -32 -913376 |0 516064 |32 143392
-63 1048288 | -31 -904928 |1 499424 |33 168224
62 -1047776 |-30 896224 |2 482528 |34 193312
-84 -1047008 | -29 -887264 |3 -465376 |35 218656
=60 -1045984 | -28 -878048 |4 -447968 |36 244256
-59 -1044704 | -27 -868576 |5 430304 |37 270112
-20 -10451006 -Z0 -000040 ¢) -412564 90 290224
-57 -1041376 |-25 -848864 |7 -394208 |39 322592
-56 -1039328 | -24 -838624 |8 -375776 |40 349216
-55 -1037024 | -23 -828128 |9 -357088 |41 376096
54 -1034464 | -22 817376 |10 338144 |42 403232
-53 -1031648 | -21 -806368 |11 318944 |43 430624
-52 -1028576 | -20 795104 |12 299488 |44 458272

© ISO/IEC 2006 — All rights reserved

41

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

-51 -1025248 |-19 -783584 13 -279776 45 486176
-50 -1021664 |-18 -771808 14 -259808 46 514336
-49 -1017824 | -17 -759776 15 -239584 47 542752
-48 -1013728 |-16 -747488 16 -219104 48 571424
-47 -1009376 |-15 -734944 17 -198368 49 600352
-46 -1004768 |-14 -722144 18 -177376 50 629536
-45 -999904 -13 -709088 19 -156128 51 658976
-44 -994784 -12 -695776 20 -134624 52 688672
-43 -989408 -11 -682208 21 -112864 53 718624
-42 -983776 -10 -668384 22 -90848 54 748882
-41 -977888 -9 -654304 23 -68576 55 779296
-40 -971744 -8 -639968 24 -46048 56 810016
-39 -965344 -7 -625376 25 -23264 57 840992
-38 -958688 -6 -610528 26 -224 58 872224
-37 -951776 -5 -595424 27 23072 59 903712
-36 -944608 -4 -580064 28 46624 60 935456
-35 -937184 -3 -564448 29 70432 61 967456
-34 -929504 -2 -548576 30 94496 62 999712
-33 -921568 -1 -532448 31 118816 63 1032224

Recopstruction of the 3rd and higher order coefficients:is done using the formula
par, = L;?kZQJ =a,29°+2°7; (k>2).

11.6.8.1.3 Conversion of reconstructed’parcor coefficients into direct filter coefficients
The dcaled parcor coefficients are then-converted to LPC coefficients using the following algorithm:

short m, i, K, Q = 20;

Igng *cof, *par, corr = 1 << (Q - 1);
INT64 temp, temp2;

for (m =1; m <=K;m#*+)

for (i = 1, k<= m/2; i++)
{
temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q);
if (temp > LONG_MAX) || (temp < LONG_MIN)) /I Overflow: use different coefficients

return();

o) — Floa 1 0 ((AONTOo ANarlnal x o f0IN 1 e fa\t

LCIIIPL - \.aUIl_III IJ T \\\\II\IIU"‘}FMI LIIIJ \.’UILIJ} T \.:\.III/ \{},

if ((temp2 > LONG_MAX) || (temp2 < LONG_MIN))// Overflow: use different coefficients
return(1);

cof[m-i] = (long)temp2;
cof[i] = (long)temp;

cof[m] = par[m];

42 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Here, LONG_MAX = 2" — 1 and LONG_MIN = —(2%"). The resulting LPC coefficients cof are scaled by 2°° as
well. The scaling will be accounted for during the filtering process.

11.6.3.2 Prediction Filter

The calculation of the predicted signal has to be done in a deterministic way to enable identical calculation in
both the encoder and the decoder, hence we cannot use floating point coefficients. Instead we employ an
upscaled integer representation as shown in the last section. Since the coefficients are enlarged by a factor

2
Z = 2, also the predicted signal wilt be entarged by the same factor. 1hus, at the end of the Tiltering prgcess,
each sample of the predicted signal has to be scaled down.

11.6.3.2.1 Encoder

The following algorithm describes the calculation of the residual d for an input signal x, a predictor order K and
LPC coefficients cof:

© ISO/IEC 2006 — Al rights reserved 43

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

short n, N, k, K, Q = 20;

long *x, *d, *cof, corr =1 << (Q - 1);
INT64 y;

for (n=0; n < N; n++)

{

y = corr;
for (k = 1; k <= K; k++)
y += (INT64)cof[k-1] * x[n-K];

As c3
first ¢

If the
previ
parcd
recur
the fi
Pleag

s
Iq
I
fq

{

fq

) = xjn} -+ (ong)y->> Q)

n be seen from the code, the predictor uses the last K samples from the previous block to predict the
lample of the current block.

current block (or sub-block) is a channel’s first block in a random access frame, no samples from the
bus block may be used. In this case, prediction with progressive order is employed;.where the scaled
r coefficients par are converted progressively to LPC coefficients cof inside the prédiction filter. In each
5ion, the current residual value d(n) and a new set of n+1 LPC coefficients is calculated (first loop). After
Ist K residual values and all K coefficients are calculated, full-order prediction is used (second loop).
e note that the indices for par and cof start with 1 is this implementation.

hort m, n, N, i, k, K, Q = 20;

ng *x, *d, *cof, corr = 1 << (Q - 1);
NT64 y, temp, temp2;
r(n=0;n<K;n++)

y = corr;
for (k = 1; k <=n; k++)

y += (INT64)cof[k] * x[n-K];
d[n] = x[n] + (long)(y >> Q);

m=n+1;
for (i=1;i<=m/2; i++)
{

temp = cof[i] + ((((INT64)par[m] *eof[m-i]) + corr) >> Q);

if ((temp > LONG_MAX) || (temp’< LONG_MIN)) // Overflow: use different coefficients
return(1);

temp2 = cof[m-i] + ((((INT&4)par[m] * coffi]) + corr) >> Q);

if (temp2 > LONG_MAX) || (temp2 < LONG_MIN))// Overflow: use different coefficients
return(1);

cof[m-i] = (long)temp2;

cof[i] = (long)temp;

cof[m] = par[m];
r (n =K, <N; n++)

y(= corr;
fork = 1; k <= K; k++)

v — (INTENcoflld * yln_kl-
Y TN O4a GO T3

d[n] = x[n] + (long)(y >> Q);

Only the first sample x(0) is transmitted directly, using a Rice code with s = resolution — 4 (i.e. s = 12 for 16-bit
and s = 20 for 24-bit). The following two residual values d(1) and d(2) are coded with Rice codes which are
related to the block’s first Rice parameter s[0] (see section 11.6.1.7). Depending on the entropy coder, the
remaining residual values d(3) to d(K) are either Rice coded with s[0] or BGMC coded with s[0] and sx[0]. A
summary of all codes is given in Table 11.22.

44

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

Table 11.22 — Code parameters for different sample positions

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Sample / Residual Code Parameter
x(0) resolution — 4

d(1) s[0] + 3

d2) s[0] + 1

d@3) ... dK) s[0] (BGMC: sx[0])

11.6.3.2.2 Decoder

The algorithm for the calculation of the original signal in the decoder is nearly identicakwith the encoder’s

algorithm, except for the last instruction:

short n, N, k, K, Q = 20;
long *x, *d, corr =1 << (Q - 1);

INT64 vy;
for (n=0; n <N; n++)
{

y = cofrt;

for (k = 1; k <= K; k++)
y += (INT64)cof[k-1] * X[n-K];
x[n] = d[n] - (long)(y >> Q);

In the case of random access, prediction with progressive order is used. The algorithm for the calculatjon is

also nearly identical with the encoder’s algorithf, €xcept for the two lines where x is calculated. Agai

indices for par and cof start with 1.

short m, n, N, i, k, K, Q = 20;
long *x, *d, *cof, corr =1 << (Q - 1);
INT64 y, temp, temp2;
for (n =0; n <K; n++)
{
y = cofrt;
for (k = 1; k <= n;k++)
y += (INT64)cof[k] * x[n-k];
X[n] = d[n] +(long)(y >> Q);
m=n +/4,
for (i =254 <= m/2; i++)

{

temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q);
temp2 = cof[m-i] + ((((INT64)par[m] * cofi]) + corr) >> Q);

cof[m-i] = (long)temp2;
coffi] = (long)temp;
}

n, the

coflm] = par[m|;
}
for (n = K; n < N; n++)
{
y = corr;
for (k = 1; k <= K; k++)
y += (INT64)cof[k] * x[n-k];
X[n] = d[n] - (long)(y >> Q);

© ISO/IEC 2006 — All rights reserved

45

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

If joint channel coding has been used by the encoder, the decoded signal x might be a difference signal. In
this case further processing has to be done to obtain the original signal (see next section).

11.6.4 Long-term prediction (LTP)

11.6.4.1 LTP gain and lag

If LTPenable is on. 5-tap gain values p(i) and a lag value 7 are decoded. The gain values p(i) are
recor|structed from the Rice coded indices listed in Table 11.23, Table 11.24, and Table 11.25.
Table 11.23 — Reconstruction values and the Rice code for gain of p(O)
gain values | index prefix | sub-code
p(0)128
0 0 0 00
8 1 0 01
16 2 0 10
24 3 0 11
32 4 10 00
40 5 10 04
48 6 10 10
56 7 10 11
64 8 110 00
70 9 110 01
76 10 110 10
82 11 110 11
88 12 1110 00
92 13 1110 01
96 14 1110 10
100 15 1110 11
Table 11.24 — Reconstruction values and the Rice code for gain of p(i 1)
gain values | index prefix | sub-code
p(1)+128
0 0 0 00
-0 | V) Ul
8 2 0 10
-16 3 0 11
16 4 10 00
-24 5 10 01
24 6 10 10
-32 7 10 11

46 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

32 8 110 00
-40 9 110 01
40 10 110 10
-48 11 110 11
48 12 1110 00
-56 13 1110 01
56 14 1110 10
-64 15 1110 11

Table 11.25 — Reconstruction values and the Rice code for gain of p(i 2)

gain values | index prefix | sub-code
p(+2)128

0 0 0 0
-8 1 0 1
8 2 10 0
-16 3 10 1
16 4 110 0
24 5 110 1
24 6 1110 0
-32 T 1110 1
32 8 11110 |0
-40 9 11110 |1
40 10 111110 |0
-48 11 111110 |1

The transmitted relative lag value is the actual value minus the start lag value. It is directly coded by n
binary coding with 8 to 10 bits, depending on the sampling rates. Actual lag values are shown in Table 1

where “optP” denetes the actual prediction order for short-term prediction.

Table 11.26 — Search range of lag 7

atural
1.26,

search range of ’[(i) start end
Freq < 96 kHz optP+1 optP+256
Freq >= 96 kHz optP+1 optP+512
Freq >= 192 kHz optP+1 optP+1024

11.6.4.2 LTP synthesis procedure

Provided both lag and gain parameters are decoded, the following recursive filtering operation is carried out:

d(i)=d(i)+>

© ISO/IEC 2006 — All rights reserved

2

==

,P()d(i-

r+j)

47

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

For insuring perfect reconstruction, the process should be strictly defined. The pseudo-code for this filter at the
decoder is as follows:

INT64 u;
for (smpl=0 ;smpl<end; smpl++)

{
for (U=1<<6, tap=-2; tap<=2; tap++)

{

u+=(NTEeAN TPaainltapnl*dlsmnpl-lag+tanl:
\ 7 ~ L Ll | L L ~J L 1

}
d[smpl] += (long)(u>>7);

Here| d is the residual signal (which is subsequently fed in the short-term synthesis filter, see segtion 11.6.3),
LTPggain is the gain value p(i)*128, and lag is the lag value 7.

For simple combination with the adaptive block switching, all values of the residual signalyd(i) in the previous
block| are “0”. Associated with the synthesis filtering process above, there is a pseudo-code for the analysis
filtering process at the encoder. Note this process should also be normative forthe purpose of the perfect
recorjstruction. In this pseudo-code, the difference between the encoder and decoder appears in the last line:
Input{and output are common at the decoder, while they are different at the encoder.

INT64 u;

for (smpl=0 ;smpl<end; smpl++)
{
for (u=1<<6, tap=-2; tap<=2; tap++)
{

}
dout[smpl] = d[smpl]-(long)(u>>7);

u += (INT64)LTPgain[tap]*d[smpl-lag+tap];

Here| d is the residual of short-term prediction;, and dout is the LTP residual.

11.6.p RLS-LMS predictor mode

11.6.p.1 RLS-LMS predictor parameters

The parameters of . the’ RLS-LMS predictor are signaled in RLSLMS_extension() when ext mode = 1. The
values of the predictor parameters are listed in the following tables.

Table 11.27 — RLS predictor order

index RLS order
0 0

1 2

2 4

3 6

4 8

5 10

48 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

6 12
7 14
8 16
9 18
10 20
11 22
12 24
13 26
14 28
15 30

Table 11.28 — Number of LMS predictors in cascade

index LMS_stage
0 1

N

N|lo|loa|h~]|WI|N
O |IN|[O |G B> |WI|DN

Table 11.29 — LMS predictor order

index LMS_order
0 2
1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 12
10 14
11 16
12 18
13 20

© ISO/IEC 2006 — Al rights reserved 49

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

50

14 24
15 28
16 32
17 36
18 48
19 64
20 80
21 96
22 128
23 256
24 384
25 448
26 512
27 640
28 768
29 896
30 1024
31 reserved

Table 11.30 — LMS predictor stepsize

index LMS mu
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
12 13
13 14
14 15
15 16
16 18
17 20

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

18 22
19 24
20 26
21 28
22 30
23 35
24 40
25 45
26 50
27 55
28 60
29 70
30 80
31 100

When there is a change in the RLS or LMS filter order, the filter/state (history buffers, weights, and the
inverse auto-correlation matrix P) needs to be reset. The next-session describes how to reset and re-ini
the filter parameters. On detecting a filter order change, the,decoder will automatically re-initialize its filtef

When the parameters for RLS-LMS predictor are not sighalled, the parameters from the previous frame
used.

11.6.5.2 RLS-LMS predictors

11.6.5.2.1 Initialization of the RLS_LMS predictor

The RLS and LMS adaptive filters s initialized at the start of the encoding or decoding process, and a
the start of each Random Access(RA) frame. The following pseudo code illustrates the initialization rout
the RLS_LMS predictor.

#define PFACTOR 115292950460684

#define LONG_MAX OXZffffff

#define LONG_MIN.0x80000000

#define STEPSIZE16777 [/ in 8.24 format for 0.001
#define ROUNDZL(x) ((long)(x+8)>>4)

#define ROUND2(x) ((INT64) ((INT64) x + 1i64)>>1)

RLSfilter_weight: Weights of the RLS filter
FMS_filter_weight: Weights of the LMS filter
P Inverse auto-correlation matrix of the RLS filter

RLS
ialize
S.

vill be

so at
ne of

TOTAL_FILTER_LEN: Total buffer size = DPCM_order + RLS_order+ LMS_order + Combiner_order

void predict_init()

short i,j,ch;
for (i=0; i<rls_filter_len; i++)
{

RLS_filter_weight[i] = 0; // RLS filter weight initialized to O
}

© ISO/IEC 2006 — All rights reserved

51

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

for j=LMS_START;j<number of LMS_stages;j++)
{

for (i=0; i<filter_len[j]; i++)

{

}
}

for (i=0; i<number of filter stages; i++)

LMS_filter_weight[j][i] = O; // clear LMS filters weight to O

{
w_final[i] = (long) 1<<24; [/ 1.0in 7.24 format

~

Joint-stereo RLS init
for (i=0; i<rls_filter_len*rls_filter_len;i++)

P[rIslms_ptr->channel][i]=0;

}
for (i=0; i<rls_filter_len; i++)
{
Pli*ris_filter_len+i]=(INT64) (PFACTOR); // initialize to 0.0001 in 4.60 format
}

for(j=0;j<TOTAL_FILTER_LEN;j++) buf[j] = 0; // reset all Ims, rls, dpcm, and linear combiner buffers

11.6.p.2.2 Filtering operation in the RLS_LMS predictor

The

RLS-LMS predictor consists of a DPCM predictor, a RkS"“predictor, and various numbers of LMS

predictors. In each of these predictors, a prediction is generated for every input sample by linearly combining
the past samples. The DPCM predictor uses the previousisample x[n-1] as the prediction of the current
sample x[n]. The following pseudo code illustrates how {hevprediction of the current sample x[n] is generated
in anjorder-M LMS predictor.

INT64 vy;

/[Filter output
prediction = 0;
for (i=0;i<M;i++)
{

prediction += ((INT64) w[i]).¥ x{n-i]; // 8.24*24.0 ->32.24
prediction >>= 20; // charige‘y to 28.4 format

if|(prediction > Ox7ffffff) y'= Ox7ffffff; // clip to 24.4 format
iff (orediction < -Ox7ffffff) y = -Ox7ffffff;

The fpllowing psetido code illustrates how the prediction of the current sample x[n] is generated in an order-M
RLS predictor;

52

INT64. y;
/| Kilter output

prediction = 0;
for (i=0;i<M;i++)
{

}

prediction >>=12; // changey to 28.4 format

if (prediction > Ox7ffffff) y = Ox7ffffff; // clip to 24.4
if (prediction < -Ox7ffffff) y = -Ox7ffffff;

prediction += ((INT64) w[i]) * X[n-i]; // 14.16 * 24.0 -> 28.16

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

The linear combiner multiplies weight w_final[i] to the predictions of each predictor and the results are
summed up. The result of the summation, after rounded to integer, is the output prediction of the RLS-LMS
predictor. This prediction is subtracted from the current input sample to generate a prediction error. Note that
the predictors and prediction errors are computed in 24.4 fixed-point format.

short i;
INT64 y,e;
INT64 temp;
InnrJ \Amhnngo;
prediction_final = 0;
for (i=0; i<STAGE; i++)
prediction_final += (INT64) w_final[i]* prediction[i];
prediction_final >>= 24 ;
assert(y<LONG_MAX && y>LONG_MIN);
e = (x<<4) [*convert to 24.4 or 16.4*/- prediction_final;

For the DPCM and RLS predictors, the linear combiner weights w_final[i] are fixed at 0.001 (16777 il 8.24
format). The rest of the weights are updated using the following sign-sign LMS ‘algorithm

if (prediction[i]*e >0)
temp = w_finall[i];
if (temp<LONG_MAX) temp += STEPSIZE*LMS_stepsize;

w_final[i] = (long) temp;

else if (prediction[j]*e<0)

{
temp = w_finall[i];
if temp>LONG_MIN) temp -= STEPSIZE*LMS_ stepsize;
w_final[i] = (long) temp;

}

The linear combiner weights are clipped at values of LONG_MAX and LONG_MIN (0x7fffffff and 0x80000000
in 8.24 format, respectively).

In the encoder, the prediction”error is produced by subtracting the rounded (to 24.0 format) prediction
prediction_final from the input PCM sample x as follows:

residual = x — (long)((prediction_final+8)>>4);
where residual.is the prediction error which will be further coded by the entropy coder.
In the decoder, a reverse process is performed to restore the original PCM sample

x = résidual + (long)((prediction_final+8)>>4);

lnthe RLS-LMS predictor, the DPCM predictor has fixed order and weight of 1. The weights of the RLS and

—tivtSpredictorsareupdatedcontimuousty tntitthey areresetteddueto there s a RA frameorachangeof
filter parameters.

11.6.5.2.3 Joint-stereo RLS and mono RLS

A single channel element (SCE) is processed by the mono RLS predictor whose history buffer is updated from
samples within the channel.

A channel pair element (CPE) is processed by the joint-stereo RLS predictor which generates predictions of
each channel by using samples from both channels. Therefore, the history buffers of the predictor contain

© ISO/IEC 2006 — All rights reserved 53

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

interleaved past samples from both the left and the right channels. The joint-stereo RLS predictor maintains
two sets of P matrix and filter weights, one for each channel. If the Joint-Stereo flag is not set in the ALS
header, mono RLS is used for each independent channel. For a CPE, if both channels contain only constant
or zero, the prediction filter is bypassed for that frame.

When mono_block is set to 1 for a CPE, it is coded as two individual channels L and L-R, where the L channel
is coded as a SCE by the mono predictor (DPCM + mono_RLS + LMS), whereas samples of the L-R channel
are directly sent to the entropy coder.

11.6.p.2.4 Adaptation of RLS filter weights

The RLS filter weights are updated by the following pseudo code, which has three main stages: computing/the
gain yector K[i], updating the filter weight w{i], and updating the matrix P.

P: Inverse auto-correlation matrix
X: Input PCM sample

y: Prediction

w: Filter weights

M: Filter order

bufl: History buffer containing the past M input samples
lambdla: Forgetting factor

[* Rolitine to re-initialize the P matrix */
void feinit_P(INT64 *Pmatrix)

{
short i;
/| Joint-stereo RLS init
for (i=0; i<rls_filter_len*rls_filter_len;i++)
{
Pmatrix[i]=0;
}
for (i=0; i<rls_filter_len; i++)
{
Pmatrix[i*rls_filter_len+i]=(INT64) (PFAETOR); // initialize to 0.0001 in 4.60 format
}
}

void UpdateRLSFilter(long *x, long.y, W_TYPE *w, short M, long *bufl, P_TYPE *P)

short i,j,shift,vscale,dscalef

INT64 k[256];

INT64 wtemp,wtemp2;

INT64 htemp,ir,ltemps/htempl,htemp2;
lang vI[256];

UINT64 utempiltempl;

Igng Ir,e kscale,shifted_e;

=~

get theerror by substracting current sample x with the predictor y
=xy);

D

/I Stepl. Compute gain vector k
MulMtxVec(P, bufl, M, vl, &vscale); // (vl, vscale) = matrix P * matrix bufl

wtemp = MulVecVec(bufl, vl, M, &dscale); // wtemp = bufl
assert((vscale+dscale)<64);
i=0;

while(wtemp> LONG_MAX/4 && wtemp!=0) {wtemp>>=1;i++;}
i += vscale + dscale;

54 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

if (i<=60)
wtemp += (1i64<<(60-i));
else

{
}

wtemp2 = wtemp;
assert(i<90);

reinit_P(P); //in case P is round to zero, re-initialize P

if (wmmp —= n)

{
ir=1L<<30;

}
else if ((90-i)>62)
{

shift = 90-(i)-62;
ir = (1i64<<62)/ (wtemp2) ;
if (shift>32)
ir = 1L.<<30;
else if (shift>=0)
ir <<= shift;
}
else // i>28
if ((90-i)>32)
ir = (1i64<<(90-(i)))/(wtemp2);
}
Ir = (long) ir;
htempl = 0;
for (i=0; i<M; i++)
{

htemp = (INT64) vI[i] * Ir;
if (vscale>=12)

{
k[i] = htemp<<(vscale-12);
K[i] = ROUND2(K[i]);

}

else

{

k[i] = htemp>>(11-vscale);
K[i] = ROUND2(K[i]) ;

}
htemp1 |=-(k[i]>0 ? K[i]:-K[i]);

dscale = fast_bitcount(htempl); // count how many significant bit htemp1l has

if (dscale>30)

{
dscale -= 30;
for (i=0; i<M; i++)
{

Iz[i] >S— dcnnlo;

}

}

else

{
dscale = 0;

}

/I Step2. Update weight
shifted_e = e>>3;
for (i=0; i<M; i++)

© ISO/IEC 2006 — All rights reserved

55

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

{
htempl = (INT64) K[i] * shifted_e;
htemp = (htemp1>>(30-dscale));
wtemp = w[i] + ROUND2(htemp);
w[i] = (long) wtemp;

}

vscale += dscale;

// Step3 Illnrl:qm P_matrix

for (i=0; i<M; i++) /I Lower triangular
for (j=0; j<=i; j++)

{

htemp2 = (INT64) K[i] * vI[j];
wtemp = htemp2>>(14-vscale);
P[i*M+]] -= wtemp;
if (P[i*M+j]>=_164_MAX/2) { reinit_P(P); break; }
if (P[i*M+j]<=_164_MIN/2) { reinit_P(P); break; }
wtemp = P[i*M+j]/lambda;
P[i*M+j] += wtemp;
}
or (i=1; i<M; i++) /I Upper triangular
for (j=0; j<i; j++)
P[*M+i] = P[i*M+]];
Buffer update
uffer_update(*x>>4,bufl,M);
= (long) e;

—

* o =

The following routine multiplies an input vector x to the matrix P and generates an output vector yi, which is
normplized to 28.0 format with a scale factor vscale.

pid MulMtxVec(P_TYPE *P, long *x, short M,dong *yi, short *vscale)

~ <

P_TYPE *ptr;
short i,j,cc,pscale,nscale;
INT64 htemp,yh[256],ttemp,imax;htempl,PT[500],ya[256],ttempl;
UINT64 yl[256],ltemp,ltempl;
*vscale = 0;
imax = 0;
htempl = 0;
for(i=0;i<M;i++)
{
ptr = P;
ptr +=i*M;
for(j=0sj<=i;j++)

htempl |= (*ptr> 0 ? *ptr : - *ptr);
ptr++;

1
7

pscale = 63-fast_bitcount(htempl); // bit_count counts number of significant bits htemp1 has
ttempl = 0;
for (i=0; i<M; i++)
{
ptr = P;
ptr +=i*M;
ya[i]=0;
for (j=0; j<M; j++)
{

56 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

yali] += (INT64) (((*ptr++<<pscale)+0x0000000080000000i64)>>32) * X{jl;

}

ttemp1 |= (ya[i]>0 ? ya(i]:-yali]);
}
nscale = fast_bitcount(ttemp1l);
if (nscale>28)

}

{
nscale -= 28;
fnr(i—n;i<|\/|;i++)
{
ya[i]>>=nscale;
yili] = yali];
*yscale = nscale-pscale;
}
else
{
nscale -=28;
for(i=0;i<M;i++)
{
yi[i] = yal[i]; // & 0x00000000ffffffffi64;
}
*vscale = -pscale;
}

The following routine calculates the inner product of two vector x and y and normalizes the output valug z to
60.0 format with a scale factor scale.

INT64 MulVecVec(long *x, long *y, short Mjy.short *scale)

{

short i;

INT64 z,zh,temp;
*scale = 0;

zh =0;

for (i=0; i<M; i++)
{

}

temp = zh ;

temp = (temp>0 ? temp:-temp); // drop the sign
*scale = fast_bitcount(temp);

if (*scale>28)

{

zh += (INT64) yIi)* x[il;

*scale -= 28; // this is the amount of excess 64 bit
assert(*scale<32);
Z = (zh<<(32-(*scale-1)));
z = ROUND2(2);
1

else
z = (zh<<32); // shift to upper 32 bit

}
assert(z<_164_MAX/2 && z>_164_MIN/2);
return(z);

© ISO/IEC 2006 — All rights reserved

57

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.6.5.2.5 Adaptation of LMS filter weights

The LMS filter weights are updated by the normalized-LMS algorithm (NLMS). The pseudo code is given

below.
X: Input PCM sample
w: Filter weights
M: Filter order
buf: History buffer containing the past M input samples
mu: Stepsize
pow: | Power of the samples in the history buffer
/I NLMS weight update
void yipdate_predictor(long *x, long y, BUF_TYPE *buf, W_TYPE *w, short M, short mu, INT64 *pow)
{
short i,j;
INT64 fact;
INT64 wtemp,e,wtemp1l;
Igng temp;
/| Calculation of Prediction error
el= (*x-y); /lyis 24.4 format change x to 24.4
/| Weight update
wtempl = wtemp = ((INT64) mu * (*pow>>7));
iFO;
while(wtemp> LONG_MAX) {wtemp>>=1;i++;}
fact = ((INT64) e<<(29-))/(INT64)((wtempl + 1)>>i);
for (j=0; j<M; j++)
{
wlj] = w[j] + (long) (((INT64) buf[j]* (INT.64) fact + 0x8000)>>16);
}
/INLMS power update
temp = (*x)>>4; /I x is in 28 4format need to change to 28.0
*pow -= (INT64) buf[0] * (INT64):buf[0];
*pow += (INT64) temp * tempy
iff *pow>_l64_MAX) *pow =~ 164_MAX;
/| Buffer update — addin the current sample temp
buffer_update(temp,buf,M);
/| Predictor output
*x = (long).e; // overwrite the current sample with the error for next filter stage
}
11.6.5-3-Random-Access-in-RESLEMS-mode

In the Random Access (RA) frame, the predictor resets all its filters to their initial states to ensure
synchronized encoding and decoding. For a RA frame of length M, the first M/32 samples are not updated
into the LMS history buffer. The adaptation of the LMS filter weights starts only after the first M/32 samples. In
an RA frame, the RLS filter uses the forgetting factor RLS lambda_ra for the first 300 samples, after that, the

forgetting factor RLS lambda is used.

58

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.6.6 Coded Residual

There are two possible modes for transmission of the prediction residual: A fast encoding scheme empl
simple Rice codes (see subclause 11.6.6.1), and a more complex and efficient scheme using block G
Moore codes (BGMC, see subclause 11.6.6.2).

11.6.6.1 Rice Codes

oying
ilbert-

Wenthe-bgrrc—modeftagimthe AES SpecificConfigissetto O the Tesiduat-vatues—are entropy toded
Rice codes. The chosen syntax for codeword generation is specified in the following.

A Rice code is defined by a parameter s > 0. For a given value of s, each codeword consists of a’p-bit
and an s-bit sub-code. The prefix is signalled using p—1 “1”-bits and one “0”-bit, with p depending o

coded value. For a signal value x and s > 0, p—1 is calculated as follows (“+” means integer division w
remainder):

b1z x+2°1
(-x—1)=2""

forx>0

forx <0

For s = 0, we use a modified calculation:

2x forx>0
p-1=
—2x-1 forx<0

The sub-code for s > 0 is calculated as follows:

_ns-l _ s—1 >
sub=1* 27 (p 11)+2 forx >0
(—x-1)=-2""(p-1) forx<0

For s = 0 there is no sub-code but only the prefix, thus the prefix and the codeword are identical. Perr
values are s = 0...15 for a sample:résolution < 16 bits, and s = 0...31 for a sample resolution > 16 bits.

Table 11.31 and Table 11.32 'show examples for the Rice code with s = 4. Table 11.33 shows the specia
code with s = 0.

Table 41.31 — Rice code with s = 4. The xxxx bits contain the 4-bit sub-code sub

using

prefix
n the
thout

nitted

Rice

Values p Prefix Codeword
~8.:.+7 1 0 0xxxx
~16...-9; +8...+15 2 10 10xxxX
-24...-17; +16...+23 3 110 110xxXXX
-32...-25; +24...+31 4 1110 1110xxXX
-40...-33; +32...+39 |5 11110 11110xxxXX

Table 11.32 — Sub-codes of the Rice code with s = 4 for the first three prefixes

Values (p = 1) Values (p = 2) Values (p = 3) sub-code (xxxx)
-8 -16 -24 0111
-7 -15 -23 0110

© ISO/IEC 2006 —

All rights reserved

59

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

-6 —14 —22 0101
-5 13 21 0100
4 ~12 20 0011
-3 11 -19 0010
-2 -10 18 0001
_1 -9 17 0000
0 8 16 1000
1 9 17 1001
2 10 18 1010
3 11 19 1011
4 12 20 1100
5 13 21 1101
6 14 22 1110
7 15 23 1114

Table 11.33 — ”Special” Rice code with s = 0 (prefix and.codeword are identical)

Values p Prefix Codeword
0 1 0 0

-1 2 10 10

+1 3 MO 110

-2 4 1110 1110

+2 5 11110 11110

For gach block of residual values, eithér all values can be encoded using the same Rice code, or, if the
sb_part flag in the file header is set;:the block can be divided into four sub-blocks, each encoded with a

differ
are u

bnt Rice code. In the latter case; the ec_sub flag in the block header indicates whether one or four blocks
sed.

Whilg the parameter s[i =.0]\of the first sub-block is directly transmitted with either 4 bits (resolution < 16 bits)

or5
differ

bits (resolution > @6 bits), only the differences of following parameters s[i > 0] are transmitted. These
ences are additioenally encoded using appropriately chosen Rice codes again (see Table 11.34).

Table 11.34 — Coding of Rice code parameters s][i]

Code parameter Difference Rice code parameter
(i = sub-block index) used for differences
s[i] (i>0) si] - s[i-1] 0

There are different ways to determine the optimal index s for a given set of data. It is up to the encoder to
select suitable Rice codes depending on the statistics of the residual.

60

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

11.6.6.2 BGMC coding mode

When the bgmc_mode flag in the file header is set to 1, the residual values are split into MSB, LSB and tail
components, which are then encoded using block Gilbert-Moore, fixed-length, and Rice codes

correspondingly.

Furthermore, a different sub-block partition scheme is used. If the sb_part flag in the file header is set,

each

block can be divided in into 1, 2, 4, or 8 sub-blocks, where the actual number is indicated by a 2-bit ec_sub

field in the block header If sh rr_\nrf is_not cnfy each block can nnI\J/ be divided into 1 or 4 sub hlnr‘l(e’ an

actual number is indicated by a 1-bit ec_sub field.

The subsequent sections 11.6.6.2.1 — 11.6.6.2.4 describe details of the BGMC coding process.

11.6.6.2.1 Additional Parameters

In addition to the code parameter s (used to construct Rice codes), the BGMC encodér/decoder relies g
following quantities:

The number of lowest-significant bits (LSBs) k of residuals to be transmitted direetly:

e 0, if s<B
“|s—B, if s>B’

where s is the Rice parameter, and B is a parameter depending\on the sub-block size N:
B=([log, N|-3)>>1;

where 0 < B < 5 (values out of bounds are clipped to the bounds). The number of missing (in acce
frequency tables) bits delta:

delta=5-s+k,
and finally, the index of a frequency table sx to be used for encoding/decoding of MSBs.

The parameter sx is transmitted in addition to s for each sub-block, where the 'complete' BGMC para
can be represented as S.F '16-s + sx. Similar to the Rice coding mode, the first parameter is d

transmitted, while for subsequent parameters only encoded differences are transmitted (see Table 11.35).

Table 11.35 — Coding of BGMC code parameters S[i] = 16-s[i]+sx[i]

Code parameter (i = | Difference Rice code parameter
sub-block index) used for differences
S[i] (i=0) SJi] - S[i-1] 2

d the

n the

ssing

meter
rectly

11.6.6.2.2 Splitting Residual Values on MSBs, LSBs, and Tails

The process of obtaining sign-removed and clipped MSB values, LSBs or tails corresponding to the residual

samples (resfi]) can be described as follows:

for (i=1;i<=N; i++)
{
long msbi = res[i] >> k; I/l remove Isbs
if (msbi >= max_msb[sx][delta]) { /I positive talil
msb[l] = tail_code[sx][delta];
tail[i] = res]i] - (max_msb[sx][delta] << k);

© ISO/IEC 2006 — All rights reserved

61

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

} else

if (msbi <= -max_msb[sx][delta]) {
msb[l] = tail_code[sx][delta];
tail[i] = res]i] + ((max_msb[sx][delta] - 1) << k);

/I negative tail

}else { /l normal msb range
if (msbi >= 0) msbi = mshi * 2;
else msbi = -msbi *2 -1; // remove sign
if (msbi >= tail_code[sx][delta])
mshi ++: /L skip tail cade
msb[i] = msbi; /I msb and Isb values
Isbli] = res[i] & ((1<<k)-1); /l to encode
}
}
The maximum absolute values of MSBs and tail codes used in this algorithm (arrays ¢max_msb[] and
tail_cpde[] correspondingly) are specified in the following tables.
Table 11.36 — Maximum/minimum values of residual MSBs
delta 0 1 2 3 4 5
SX
0 +64 32 16 +8 4 +2
1 +64 +32 +16 +8 +4 +2
2 +64 +32 +16 +8 +4 +2
3 +96 48 124 12 6 +3
4 +96 48 124 +12 6 +3
5 +96 48 124 +12 6 +3
6 +96 48 +24 +12 +6 +3
7 +96 48 124 +12 6 +3
8 +96 48 124 +12 16 +3
9 +96 48 124 +12 6 +3
10 +96 48 124 +12 6 +3
11 +128 164 132 +16 +8 +4
12 +128 164 32 +16 +8 4
13 +128 164 +32 +16 +8 +4
14 +128 164 32 +16 +8 4
15 +128 164 132 +16 +8 4
Fable-H1-37—Tail-Codes:
delta 0 1 2 3 4 5
SX
0 74 44 25 13 7 3
1 68 42 24 13 7 3
2 58 39 23 13 7 3
3 126 70 37 19 10 5

62

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

4 132 70 37 20 10 5
5 124 70 38 20 10 5
6 120 69 37 20 11 5
7 116 67 37 20 11 5
8 108 66 36 20 10 5
9 102 62 36 20 10 5
10 88 58 34 19 10 5
11 162 89 49 25 13 7
12 156 87 49 26 14 7
13 150 86 47 26 14 7
14 142 84 47 26 14 7
15 131 79 46 26 14 7

The inverse (decoding) process, reconstructing the original residual samples (resfi]) based on their MISBs,

LSBs or tails can be described as follows:
for (i=1;i<=N;ji++)

if (msb[i] == tail_code[sx][delta]) {
if (tail[i] >= 0) /I positive tail
resli] = tail[i] + (abs_max_x) << k;
else /I negative tail
res[i] = tail[i] -(abs_max_x - 1) <<.k;
}else {
int mshi = msb[i];
if (msbi > tail_code[sx][delta])

msbi --; /I skip-tail code
if (mshi & 1)

msbi = (-msbi —1)/27//'remove sign
else

msbi = msbi/2;
res[i] = (msbi <<k) | Isb[i]; // add Isbs

11.6.6.2.3 _ Encoding and Decoding of MSBs

The clipped MSBs of the residual samples are block-coded using Gilbert-Moore codes constructed
distribution (cumulative frequency table) indexed by the parameter sx.

Theé encoding process consists of a) initialising the state of the block Gilbert-Moore (arithmetic) encod

coauantial anandina ~Af Al MOD yaliine 1n all cnih Whiaslkae and A\ fliiohina tha ofata Af tha ananday
Sroar SO oramr ooV Coat-Suo o roSThgthHe-Stote-orre—Ct u

for a

er, b)

sequentialen < ald db-blecks—and-e}-flushing code
C-language specifications of the corresponding functions of the encoder are given below.

#define FREQ_BITS 14 /I # bits used by freq. counters

#define VALUE_BITS 18 I # bits used to describe code range
#define TOP_VALUE Ox3FFFF// largest code value

#define FIRST_QTR 0x10000 // first quarter

#define HALF 0x20000 // first half

#define THIRD_QTR 0x30000 // third quarter

© ISO/IEC 2006 — All rights reserved

63

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

/I encoder state variables:
static unsigned long high, low, bits_to_follow;

I/ start encoding:
void bgmc_start_encoding (void)

high = TOP_VALUE;

low = Q;
bits_to_follow = 0;

)

sends a bit followed by a sequence of opposite bits:
pid put_bit_plus_follow (unsigned long bit)

~— <

put_bit (bit);

while (bits_to_follow) {
put_bit (bit ~ 1);
bits_to_follow --;

}

encodes a symbol using Gilbert-Moore code for
a distribution s_freq[] subsampled by delta bits:
pbid bgmc_encode (unsigned long symbol, long delta, unsigned long¥*s_freq)

-~ < =~

unsigned long range = high —low +1;
high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS);
low =low+((range*s_freq[(symbol+1)<< delta])>>FREQ/ BITS);

for (5:){

if (high < HALF) {
put_bit_plus_follow (0, p);

} else if (low >= HALF) {
put_bit_plus_follow (1, p);
low -= HALF;
high -= HALF;

} else if (low >= FIRST_QTR‘&& high < THIRD_QTR) {
bits_to_follow += 1;
low -= FIRST_QTR;
high -= FIRST_QTR;

} else
break;

low = 2 * low;

high = 2 #high + 1;

)

Finish the encoding:

atic void-hame finish encodina ()
J < \/

~~ N

bits_to_follow += 1,
if (low < FIRST_QTR) put_bit_plus_follow (0,p);
else put_bit_plus_follow (1,p);

}

C-language specifications of the corresponding functions of the block Gilbert-Moore decoder are given below.

64 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Il decoder state variables:
static unsigned long high, low, value;

/I start decoding:
void bgmc_start_decoding (void)

high = TOP_VALUE;
low = 0;

value = get hifc(\/AI UE RITQ);

}

/I decodes a symbol using Gilbert-Moore code for
/I a distribution s_freq[] subsampled by delta bits:
unsigned long bgmc_decode (long delta, unsigned long *s_freq)
{
unsigned long range, target, symbol;
range = high - low + 1;
target = (((value - low + 1) << FREQ_BITS) - 1) / range;
symbol = 0;
while (s_freq [(symbol+1) << delta] > target)
symbol ++;
high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS);
low =low+((range*s_freq[(symbol+1)<<delta])>>FREQ_BITS);
for () {
if (high < HALF) ;
else if (low >= HALF) {
value -= HALF;
low -=HALF;
high -= HALF;
} else if (low >= FIRST_QTR && high < FHIRD_QTR) {
value -= FIRST_QTR,;
low -=FIRST_QTR;
high -= FIRST_QTR;
} else
break;
low =2 *low;
high =2 * high + 1;
value = 2 * value + get-hit ();
}

return symbol;

}

/I Finish decoding:
void bgme_finish_decoding ()

s¢roll_bitstream_position_back(VALUE_BITS-2);
}

The cumulative freauencyv tables (s freall arravs) used bv the ahove alaaorithms for encodinal/decodi
< Y A 1T o7 Y))

g of

residual MSBs are listed below. The gppropriate (within each sub-block) table is selected using parameter sx.

© ISO/IEC 2006 — All rights reserved

65

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

Table 11.38 — Cumulative frequency tables used by the BGMC encoder/decoder

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16384 | 16384 |16384 | 16384 |16384 |16384 |16384 |16384 |16384 |16384 |16384 | 16384 |16384 |16384 |16384 | 16384

-

16066 | 16080 |[16092 |16104 |16116 |[16128 |16139 |16149 | 16159 |16169 |16177 |16187 |16195 |16203 |16210 |16218

2 15748 | 15776 |15801 |15825 |15849 |15872 |15894 |15915 |15934 |15954 15970 |15990 |16006 |16022 |16036 |16052
3 15431 | 15473 |[15510 | 15546 |15582 |[15617 |15649 |15681 |15709 |15739 |15764 |15793 |15817 |15842 |15863 |15886
4 +o4-H4—T4+o 40— 4524945268 H53+6— 536245405 H544F—4+548—45524——B558— 4550756 20— 45662 —+5696— 5726
5 14799 | 14868 |[14930 |14991 |15050 |[15107 |15162 |15214 |15261 |15310 |15353 |15401 |15441 |15482 |15517 | 15554
6 14485 | 14567 |14641 | 14714 | 14785 |14853 |14919 |14981 |15038 | 15096 |15148 |15205 |15253 |15302 |15344 | 15389
7 14173 | 14268 |14355 | 14439 |14521 |[14600 |14677 |14749 |14816 | 14883 |14944 |15009 |15065 |15122 |15172 |A5224
8 13861 | 13970 |[14069 |14164 |14257 |14347 |14435 |14517 | 14594 | 14670 | 14740 |14813 |14878 |14942 |45000 |15059

13552 | 13674 |[13785 |13891 |13995 |[14096 |14195 |14286 |14373 | 14458 |14537 |14618 |14692 |14763\ {14828 | 14895

10 13243 | 13378 |[13501 | 13620 |13734 |13846 |13955 |[14055 |14152 |14246 |14334 |14423 |[14506 |.14584 |14656 |14731

11 12939 | 13086 |[13219 | 13350 |13476 |[13597 |13717 |13827 |13933 |14035 |14132 |14230 |14321 |[A14406 |14485 |14567

12 12635 | 12794 [12938 |13081 |13218 |[13350 |13479 |13599 |13714 |13824 |13930 |14037 (14436 |14228 |14314 |14403

13 12336 | 12505 |[12661 |12815 |12963 |[13105 |13243 |13373 |13497 |13614 |13729 |13845-7)13952 |14051 |14145 |14240

14 12038 | 12218 |[12384 |12549 |12708 |12860 |13008 |13147 |13280 |13405 |13529 |}3653 |13768 |13874 |13976 |14077

15 11745 | 11936 |[12112 | 12287 | 12457 [12618 |12775 |12923 |13065 |13198 |13330 j 13463 |13585 |13698 |13808 |13915

16 11452 | 11654 |[11841 | 12025 |12206 |12376 |12542 |12699 |12850 |12991 [(\18131 |13273 |13402 |13522 |13640 |13753

17 11161 | 11373 [11571 | 11765 | 11956 |[12135 |12310 |[12476 |12636 | 1278512933 |13083 (13219 |13347 |13472 | 13591

18 10870 | 11092 |[11301 | 11505 |11706 |11894 |12079 |12253 |12422 [42579 |12735 |12894 |13037 |[13172 |13304 |13429

19 10586 | 10818 |[11037 |11250 |11460 |[11657 |11851 |12034 |12271 12376 |12539 |12706 |12857 |[12998 |13137 |13269

20 10303 | 10544 |[10773 | 10996 |11215 |[11421 |11623 | 11815 _+,12000 |12173 |12343 |12518 |12677 |12824 |12970 |13109

21 10027 | 10276 |[10514 |10746 |10975 |[11189 |11399 |11599 [11791 |11972 |12150 |12332 |12499 |12652 |12804 |12950

22 9751 10008 | 10256 |10497 |[10735 |10957 |11176 |14383 |11583 |[11772 | 11957 |[12146 |12321 |12480 |12639 |12791

23 9483 9749 10005 | 10254 |10500 |10730 |10986™|11171 |11378 |11574 |11766 |11962 |12144 |12310 (12475 |12633

24 9215 9490 9754 10011 | 10265 | 10503 {10737 |10959 (11173 |11377 | 11576 |[11778 |11967 |12140 |12312 | 12476

25 8953 9236 9508 9772 10034 | 102797110521 | 10750 | 10971 |[11182 |11388 |[11597 |11792 |11971 |12149 |12320

26 8692 8982 9263 9534 9803 10056 | 10305 | 10541 |10769 |10987 |11200 |11416 |[11617 |11803 |11987 |12164

27 8440 8737 9025 9303 9579 9838 10094 | 10337 |[10571 | 10795 |11015 |[11237 |11444 |11637 |11827 | 12009

28 8189 8492 8787 9072 9355 9620 9883 10133 | 10373 | 10603 | 10830 |11059 |[11271 |11471 |11667 |11854

29 7946 8256 8557 8848 9136 9407 9677 9933 10179 | 10414 |10647 |10882 |11100 |11307 |11508 |11701

30 7704 8020 |8327 8624 8917 9195 | 9471 9733 | 9985 10226 | 10465 | 10706 |10930 |11143 |[11349 |11548

31 7472 7792 8103 8406 8703 8987 9268 9536 9793 10040 | 10285 |10532 |[10762 |10980 (11192 |11396

32 7240 7564 (7879 8188 | 8489 8779 9065 |9339 |9601 9854 10105 | 10358 (10594 |10817 |11035 |11244

33 7008 7336 7655 7970 8275 8571 8862 9142 9409 9668 9925 10184 | 10426 |10654 |10878 |11092

34 6776 7108 | 7431 7752 | 8061 8363 | 8659 8945 9217 9482 | 9745 10010 | 10258 |10491 |10721 | 10940

35 6554 6888 7215 7539 7853 8159 8459 8751 9029 9299 9568 9838 10091 | 10330 |[10565 |10790

36 6333 6669 | 7000 7327 | 7645 | 7955 | 8260 8557 | 8842 9116 | 9391 9666 | 9925 10169 | 10410 | 10640

37 6122 6459 6792 7123 7444 7758 8067 8369 8658 8937 9218 9497 9761 10011 | 10257 | 10492

38 5912 6249 6585 |6919 |7244 7561 7874 8181 8475 | 8759 | 9045 9328 9598 |9853 10104 | 10344

39 5711 6050 6387 6724 7051 7371 7688 7998 8297 8585 8876 9163 9438 9697 9953 10198

40 5512 5852 6190 6529 | 6858 7182 | 7502 7816 | 8120 8411 8707 8999 19278 | 9542 9802 10052

41 5320 5660 5998 6339 6671 6997 7321 7638 7946 8241 8541 8837 9120 9389 9654 9908

42 5128 5468 | 5807 6150 | 6484 6812 7140 | 7460 7773 | 8071 8375 8675 |8963 9236 | 9506 9764

43 4947 5286 5625 5970 6305 6635 6965 7288 7604 7906 8213 8517 8809 9086 9359 9622

66 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

