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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

Amendment 2 to ISO/IEC 14496-3:2005 was prepared by Joint Technical Committee ISO/IEC JTC 1, 
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia 
information. 

This amendment specifies the Audio Lossless Coding (ALS) scheme. The amendment further defines a new 
profile, the High Efficiency AAC v2 Profile, that incorporates all the features of the High Efficiency AAC Profile 
and in addition the Parametric Stereo tool. The amendment also specifies the way in which the audio object 
type ER BSAC is extended to support multi-channel format, providing backward compatibility. 
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Information technology — Coding of audio-visual objects — 

Part 3: 
Audio 

AMENDMENT 2: Audio Lossless Coding (ALS), new audio profiles 
and BSAC extensions 

In the Introduction, at the end of subclause "Lossless Audio Coding Tools", add: 

MPEG-4 ALS (Audio Lossless Coding) provides lossless coding of digital audio signals. Input signals can be 
integer PCM data with 8 to 32-bit word length or 32-bit IEEE floating-point data. Up to 65536 channels are 
supported. 

 

In Part 3: Audio, Subpart 1, in subclause 1.3 Terms and Definitions, add: 

ALS: Audio Lossless Coding 

 

and increase the index-number of subsequent entries. 
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In Part 3: Audio, Subpart 1, in subclause 1.5.1.1 Audio object type definition, replace table 1.1 with the table 
below: 

Table 1.1 — Audio Object Type definition based on Tools/Modules 
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0 Null                                         
1 AAC main  X X  X  X  X X X X X    X                       2)
2 AAC LC  X X  X  X  X X  X X    X                        
3 AAC SSR X X X   X X  X X  X X    X                        
4 AAC LTP  X X  X  X X X X  X X    X                       2)
5 SBR                                X         
6 AAC Scalable  X X  X  X X X   X X X X X X                       6)
7 TwinVQ   X X  X  X X     X     X                       
8 CELP                       X                  
9 HVXC                         X                
10 (reserved)                                         
11 (reserved)                                         
12 TTSI                               X          
13 Main 

synthetic 
                          X X X           3)

14 Wavetable 
synthesis 

                           X X           4)

15 General MIDI                             X            
16 Algorithmic 

Synthesis and 
Audio FX 

                          X              

17 ER AAC LC  X X  X  X  X   X X    X   X X X                   
18 (reserved)                                         
19 ER AAC LTP  X X  X  X X X   X X    X   X X X                  5)
20 ER AAC 

scalable 
 X X  X  X  X   X X X X X X   X X X                  6)

21 ER TwinVQ  X X  X  X      X     X   X X                   
22 ER BSAC  X X  X  X  X   X X      X  X X                   
23 ER AAC LD    X X  X X X   X X    X   X X X                   
24 ER CELP                     X X X X                 
25 ER HVXC                     X X   X X               
26 ER HILN                     X X        X           
27 ER 

Parametric 
                    X X   X X    X           

28 SSC                                    X X    
29 PS                                X     X    
30 (reserved)                                         
31 (escape)                                         
32 Layer-1                                 X        
33 Layer-2                                  X       
34 Layer-3                                   X      
35 DST                                      X   
36 ALS                                       X  

37 - 
95 

(reserved)                                         

 

In Part 3: Audio, Subpart 1, in subclause 1.5.1.2 Description, add: 

1.5.1.2.30 ALS object type 

The ALS object type is the counterpart of the Audio Lossless Coding (ALS) scheme and contains the 
corresponding ALS tools. 
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In Part 3: Audio, Subpart 1, replace Table 1.3 (Audio Profiles definition) with the following table: 

Table 1.3 – Audio Profiles definition 

Object 
Type ID 

Audio Object 
Type 

Main 
Audio 
Profile 

Scalable 
Audio 
Profile 

Speech 
Audio 
Profile 

Syntheti
c Audio 
Profile 

High 
Quality 
Audio 
Profile 

Low 
Delay 
Audio 
Profile 

Natural 
Audio 
Profile 

Mobile 
Audio 
Internet-
working 
Profile 

 
AAC 
Profile 

High 
Efficiency 
AAC 
Profile 

High 
Efficiency 
AAC v2 
Profile 

0 Null            
1 AAC main X      X     
2 AAC LC X X   X  X  X X X 
3 AAC SSR X      X     
4 AAC LTP X X   X  X     
5 SBR          X X 
6 AAC Scalable X X   X  X     
7 TwinVQ  X X     X     
8 CELP X X X  X X X     
9 HVXC X X X   X X     
10 (reserved)            
11 (reserved)            
12 TTSI X X X X  X X     
13 Main 

synthetic 
X   X        

14 Wavetable 
synthesis 

           

15 General MIDI            
16 Algorithmic 

Synthesis and 
Audio FX 

           

17 ER AAC LC     X  X X    
18 (reserved)            
19 ER AAC LTP     X  X     
20 ER AAC 

Scalable 
    X  X X    

21 ER TwinVQ       X X    
22 ER BSAC       X X    
23 ER AAC LD      X X X    
24 ER CELP     X X X     
25 ER HVXC      X X     
26 ER HILN       X     
27 ER 

Parametric 
      X     

28 SSC            
29 PS           X 
30 (reserved)            
31 (escape)            
32 Layer-1            
33 Layer-2            
34 Layer-3            
35 DST            
36 ALS            

 

In Part 3: Audio, Subpart 1, subclause 1.5.2.3 (Levels within the profiles), add at the end: 

• Levels for the High Efficiency AAC v2 Profile IECNORM.C
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Table 1.11A - Levels for the High Efficiency AAC v2 Profile 

Level Max. 
channels/
object 

Max. AAC 
sampling 
rate, SBR not 
present [kHz]

Max. AAC 
sampling 
rate, SBR 
present [kHz] 

Max. SBR 
sampling rate 
[kHz] (in/out) 

Max. PCU Max. RCU Max. PCU 
HQ / LP 
SBR  
(Note 5) 

Max. RCU 
HQ / LP 
SBR 
(Note 5) 

1 NA NA NA NA NA NA NA NA 

2 2 48 24 24/48 (Note 
1) 

9 10 9 10 

3 2 48 24/48 (Note 
3) 

48/48 (Note 
2) 

15 10 15 10 

4 5 48 24/48 (Note 
4) 

48/48 (Note 
2) 

25 28 20 23 

5 5 96 48 48/96 49 28 39 23 
Note 1: A level 2 HE AAC v2 Profile decoder implements the baseline version of the parametric stereo tool. 
Higher level decoders shall not be limited to the baseline version of the parametric stereo tool. 
Note 2: For level 3 and level 4 decoders, it is mandatory to operate the SBR tool in downsampled mode if the 
sampling rate of the AAC core is higher than 24kHz. Hence, if the SBR tool operates on a 48kHz AAC signal, 
the internal sampling rate of the SBR tool will be 96kHz, however, the output signal will be downsampled by 
the SBR tool to 48kHz.  
Note 3: If Parametric Stereo data is present the maximum AAC sampling rate is 24kHz, if Parametric Stereo 
data is not present the maximum AAC sampling rate is 48kHz. 
Note 4: For one or two channels the maximum AAC sampling rate, with SBR present, is 48kHz. For more 
than two channels the maximum AAC sampling rate, with SBR present, is 24kHz. 
Note 5: The PCU/RCU number are given for a decoder operating the LP SBR tool whenever applicable. 

 

A HE AAC v2 Profile decoder of a certain level shall operate the HQ SBR tool for streams containing 
Parametric Stereo data. For streams not containing Parametric Stereo data, the HE AAC v2 Profile decoder 
may operate the HQ SBR tool, or the LP SBR tool. 

 

In Part 3: Audio, Subpart 1, subclause 1.5.2.4 (Table 1.12 - audioProfileLevelIndication Values), replace the 
row: 

0x30-0x7F reserved for ISO use - 
 

with: 

0x28 AAC Profile L1 
0x29 AAC Profile L2 
0x2A AAC Profile L4 
0x2B AAC Profile L5 
0x2C High Efficiency AAC Profile L2 
0x2D High Efficiency AAC Profile L3 
0x2E High Efficiency AAC Profile L4 
0x2F High Efficiency AAC Profile L5 
0x30 High Efficiency AAC v2 Profile L2 
0x31 High Efficiency AAC v2 Profile L3 
0x32 High Efficiency AAC v2 Profile L4 
0x33 High Efficiency AAC v2 Profile L5 
0x34-0x7F reserved for ISO use - 
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In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, replace table 1.13 with the table below: 

Table 1.13 — Syntax of AudioSpecificConfig() 

Syntax No. of bits Mnemonic 
AudioSpecificConfig ()   
{   
 audioObjectType = GetAudioObjectType();   
 samplingFrequencyIndex; 4 bslbf 
 if ( samplingFrequencyIndex == 0xf ) {   
  samplingFrequency; 24 uimsbf 
 }   
 channelConfiguration; 4 bslbf 
   
 sbrPresentFlag = -1;   
 psPresentFlag = -1;   
 if ( audioObjectType == 5 ||  
  audioObjectType == 29) { 

  

  extensionAudioObjectType = 5;   
  sbrPresentFlag = 1;   
  if ( audioObjectType == 29 ) {   
   psPresentFlag = 1;   
  }   
  extensionSamplingFrequencyIndex; 4 uimsbf 
  if ( extensionSamplingFrequencyIndex == 0xf ) {   
   extensionSamplingFrequency; 24 uimsbf 
  }   
  audioObjectType = GetAudioObjectType();   
 }   
 else {   
  extensionAudioObjectType = 0;   
 }   
 switch (audioObjectType) {   
 case 1: 
 case 2: 
 case 3: 
 case 4: 
 case 6: 
 case 7: 
 case 17: 
 case 19: 
 case 20: 
 case 21: 
 case 22: 
 case 23: 

   

  GASpecificConfig();   
  break:   
 case 8:   
  CelpSpecificConfig();   
  break;   
 case 9:   
  HvxcSpecificConfig();   
  break:   
 case 12:   
  TTSSpecificConfig();   
  break;   
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 case 13: 
 case 14: 
 case 15: 
 case 16: 

  

  StructuredAudioSpecificConfig();   
  break;   
 case 24:   
  ErrorResilientCelpSpecificConfig();   
  break;   
 case 25:   
  ErrorResilientHvxcSpecificConfig();   
  break;   
 case 26: 
 case 27: 

  

  ParametricSpecificConfig();   
  break;   
 case 28:   
  SSCSpecificConfig();   
  break;   
 case 32: 
 case 33: 
 case 34: 

  

  MPEG_1_2_SpecificConfig();   
  break;   
 case 35:   
  DSTSpecificConfig();   
  break;   
 case 36:   
  ALSSpecificConfig();   
  break;   
 default:   
  /* reserved */   
 }   
 switch (audioObjectType) {   
 case 17: 
 case 19: 
 case 20: 
 case 21: 
 case 22: 
 case 23: 
 case 24: 
 case 25: 
 case 26: 
 case 27: 

  

  epConfig; 2 bslbf 
  if ( epConfig == 2 || epConfig == 3 ) {   
   ErrorProtectionSpecificConfig();   
  }   
  if ( epConfig == 3 ) {   
   directMapping; 1 bslbf 
   if ( ! directMapping ) {   
    /* tbd */   
   }   
  }   
 }   
 if ( extensionAudioObjectType != 5 && bits_to_decode() >= 16 ) {   
  syncExtensionType; 11 bslbf 
  if (syncExtensionType == 0x2b7) {   
  extensionAudioObjectType = GetAudioObjectType();   
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   if ( extensionAudioObjectType == 5 ) {   
    sbrPresentFlag; 1 uimsbf 
    if (sbrPresentFlag == 1) {   
     extensionSamplingFrequencyIndex; 4 uimsbf 
     if ( extensionSamplingFrequencyIndex == 0xf ) {   
      extensionSamplingFrequency; 24 uimsbf 
     }   
     if ( bits_to_decode() >= 12 ) {   
      syncExtensionType; 11 bslbf 
      if (syncExtensionType == 0x548) {   
        psPresentFlag; 1 uimsbf 
      }   
     }   
    }   
   }   
  }   
 }   
}   

 

 

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, add: 

1.6.2.1.12 ALSSpecificConfig 

Defined in ISO/IEC 14496-3 subpart 11. 

 

In Part 3: Audio, Subpart 1, in subclause 1.6.2.2.1 Overview, replace table 1.15 by the following table: 

Table 1.15 – Audio Object Types 

Audio Object Type Object 
Type ID 

definition of elementary stream 
payloads and detailed syntax 

Mapping of audio payloads to 
access units and elementary 
streams 

AAC MAIN 1 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.2 
AAC LC 2 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.2 
AAC SSR 3 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.2 
AAC LTP 4 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.2 
SBR 5 ISO/IEC 14496-3 subpart 4  
AAC scalable 6 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.3 
TwinVQ 7 ISO/IEC 14496-3 subpart 4   
CELP 8 ISO/IEC 14496-3 subpart 3   
HVXC 9 ISO/IEC 14496-3 subpart 2   
TTSI 12 ISO/IEC 14496-3 subpart 6   
Main synthetic 13 ISO/IEC 14496-3 subpart 5   
Wavetable synthesis 14 ISO/IEC 14496-3 subpart 5   
General MIDI 15 ISO/IEC 14496-3 subpart 5   
Algorithmic Synthesis 
and Audio FX 

16 ISO/IEC 14496-3 subpart 5  

ER AAC LC 17 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.4 
ER AAC LTP 19 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.4 
ER AAC scalable 20 ISO/IEC 14496-3 subpart 4  see subclause 1.6.2.2.2.1.4 
ER Twin VQ 21 ISO/IEC 14496-3 subpart 4  
ER BSAC 22 ISO/IEC 14496-3 subpart 4  
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ER AAC LD 23 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4 
ER CELP 24 ISO/IEC 14496-3 subpart 3   
ER HVXC 25 ISO/IEC 14496-3 subpart 2   
ER HILN 26 ISO/IEC 14496-3 subpart 7  
ER Parametric 27 ISO/IEC 14496-3 subpart 2 and 7   
SSC 28 ISO/IEC 14496-3 subpart 8  
PS 29 ISO/IEC 14496-3 subpart 8  
(reserved) 30   
(escape) 31   
Layer-1 32 ISO/IEC 14496-3 subpart 9  
Layer-2 33 ISO/IEC 14496-3 subpart 9  
Layer-3 34 ISO/IEC 14496-3 subpart 9  
DST 35 ISO/IEC 14496-3 subpart 10  
ALS 36 ISO/IEC 14496-3 subpart 11  
    

 

In Part 3: Audio, Subpart 1, under 1.6.3 Semantics, after 1.6.3.13 extensionAudioObjectType add: 

1.6.3.14 psPresentFlag 

A one bit field indicating the presence or absence of Parametric Stereo data. The value –1 indicates that the 
psPresentFlag was not conveyed in the AudioSpecificConfig(). In this case, a High Efficiency AAC v2 Profile 
decoder shall support implicit signaling (see subclause 1.6.6). 

 

In Part 3: Audio, Subpart 1, after 1.6.5 Signaling of SBR, add the following subclause: 

1.6.6 Signaling of Parametric Stereo (PS) 

1.6.6.1 Generating and Signaling HE AAC + PS Content 

The PS tool in combination with the HE AAC coder enables good stereo quality at very low bitrates. At the 
same time it allows for compatibility with existing HE AAC-only decoders. However, the output from a HE AAC 
decoder will only be mono for a HE AAC v2 stream carrying PS data. 

Therefore, depending on the application, a content provider or content creator may want to choose between 
the two alternatives given below. In general, the PS data is always embedded in the HE AAC stream in a HE 
AAC compatible way (in the sbr_extension element), and PS is a pure post processing step in the decoder. 
Therefore, compatibility can be achieved. However, by means of different signaling the content creator can 
select between the full-quality mode and the backward compatibility mode as outlined in 1.6.6.1.1 and 
1.6.6.1.2. 

For the hierarchical profiles, a profile higher in the profile hierarchy is of course able to decode the content of a 
profile lower in the profile hierarchy. In Figure 1.0A the hierarchical structure of the AAC, HE AAC and HE 
AAC v2 Profile is displayed. The figure shows that a HE AAC Profile decoder is fully capable of decoding any 
AAC-Profile stream, given that the HE AAC Profile decoder is of the same or a higher level as indicated in the 
AAC Profile stream. Similarly the HE AAC v2 decoder can handle all HE AAC Profile streams as well as all 
AAC Profile streams. 
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High Efficiency AAC Profile

High Efficiency AAC v2 Profile

AAC SBR PS

AAC Profile

 

Figure 1.0A – Hierarchical structure of AAC, HE AAC and HE AAC v2 Profile, 
 and compatibility between them. 

 

1.6.6.1.1 Ensuring Full Audio Quality of AAC+SBR+PS for the Listener 

To ensure that listeners get the full audio quality of AAC+SBR+PS, the stream should indicate the HE AAC v2 
Profile and use the explicit, hierarchical signaling (signaling 2.A. as described below), so that it is played by 
HE AAC v2 Profile decoders, i.e., PS capable decoders. With regard to HE AAC-only streams or AAC-only 
streams, an HE AAC v2 Profile decoder will decode all HE AAC Profile streams and AAC Profile streams of 
the appropriate level, as the HE AAC v2 Profile is a superset of the HE AAC Profile and the AAC Profile.  

1.6.6.1.2 Achieving Backward Compatibility with Existing HE AAC and AAC Decoders 

The aim of this mode is to get all AAC-based and HE AAC-based decoders to play the stream, even if they do 
not support the PS tool. Compatible streams can be created using the following two signaling methods:  

a) indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, and use 
the explicit backward compatible signalling (2.B. as described below). This method is recommended 
for all MPEG-4 based systems in which the length of the AudioSpecificConfig() is known in the 
decoder. As this is not the case for LATM with audioMuxVersion==0 (see clause 1.7), this method 
cannot be used for LATM with audioMuxVersion==0. In explicit backward compatible signaling, PS-
specific configuration data is added at the end of the AudioSpecificConfig(). Decoders that do not 
know about PS will ignore these parts, while HE AAC v2 Profile decoders will detect its presence and 
configure the decoder accordingly. 

b) indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, and use 
implicit signalling. In this mode, there is no explicit indication of the presence of PS data. Instead, HE 
AAC v2 Profile decoders shall open two output channels for a stream containing SBR data with 
channelConfiguration==1, i.e., a mono stream using a single channel element, and check the 
presence of PS data while decoding the stream and use the PS tool if PS data is found. This is 
possible because PS can be decoded without PS-specific configuration data if a certain way of 
handling decoder number of output channels is obeyed, as described below for HE AAC v2 Profile 
decoders. 

Both methods lead to the result that, provided that the profile indication indicates a profile supported by the 
decoder, the AAC+SBR part of an AAC+SBR+PS streams will be decoded by HE AAC-only decoders, and the 
AAC part of an AAC+SBR+PS stream will be decoded by AAC-only decoders. HE AAC v2 decoders will 
detect the presence of PS and decode the full quality AAC+SBR+PS stream. 
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1.6.6.2 Implicit and Explicit Signaling of Parametric Stereo 

This subclause outlines the different signaling methods of PS, and the decoder behavior for different types of 
signaling. 

There are several ways to signal the presence of PS data: 

1. implicit signaling: If bs_extension_id equals EXTENSION_ID_PS, PS data is present in the 
sbr_extension element, and this implicitly signals the presence of PS data. The ability to detect and 
decode implicitly signaled PS is mandatory for all High Efficiency AAC v2 Profile (HE AAC v2 Profile) 
decoders. 

2. explicit signaling: The presence of PS data is signaled explicitly by means of the PS Audio Object 
Type and the psPresentFlag in the AudioSpecificConfig(). When explicit signaling of PS is used, 
implicit signaling of PS shall not occur. Two different types of explicit signaling are available: 

2.A. hierarchical signaling: If the first audioObjectType (AOT) signaled is the PS AOT, the 
extensionAudioObjectType is set to SBR, and a second audio object type is signaled which indicates 
the underlying audio object type. This signaling method is not backward compatible. This method 
may be needed in systems that do not convey the length of the AudioSpecificConfig(), such as LATM 
with audioMuxVersion==0, and content authors are encouraged to use it only when thus needed. 

2.B. backward compatible signaling: If the extensionAudioObjectType SBR is signaled at the end of 
the AudioSpecificConfig(), a psPresentFlag is transmitted at the end of the backward compatible 
explicit SBR signaling, indicating the presence or absence of PS data. This method shall only be 
used in systems that convey the length of the AudioSpecificConfig(). Hence, it shall not be used for 
LATM with audioMuxVersion==0. 

For all types of parametric stereo signaling, the channelConfiguration in the audioSpecifcConfig indicates the 
number of channels of the underlying AAC coded stream. Hence, if parametric stereo data is available, the 
channelConfiguration will be one, indicating a single channel element, while the parametric stereo tool will 
produce two output channels based on the single channel element and the parametric stereo data. 

Table 1.22A shows the decoder behavior depending on profile and audio object type indication when implicit 
or explicit signaling is used.  
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Table 1.22A – PS Signaling and Corresponding Decoder Behavior 

Bitstream characteristics Decoder behavior 
Profile 

indication 
PS signaling psPresent

Flag 
raw_data_block HE AAC 

Profile 
Decoders 

HE AAC v2 
Profile 

Decoders 
AAC+SBR Play AAC+SBR Play AAC+SBR

(Note 1) 
signaling 1, implicit 

signaling  
(first AOT != PS) 

-1 

AAC+SBR+PS Play AAC+SBR Play at least 
AAC+SBR, 
should play 

AAC+SBR+PS
(Note 1) 

0 AAC+SBR Play AAC+SBR Play AAC+SBR
(Note 2) 

High 
Efficiency 

AAC Profile 

signaling 2.B, 
backwards 

compatible explicit 
signaling 

(second AOT == 
SBR) 

1 AAC+SBR+PS Play AAC+SBR Play at least 
AAC+SBR, 
should play 

AAC+SBR+PS
(Note 3) 

signaling 2.A, non-
backwards 
compatible 
signaling 

(first AOT == PS) 

1 AAC+SBR+PS Undefined Play 
AAC+SBR+PS

(Note 3) 

High 
Efficiency 
AAC v2 
Profile 

 
signaling 2.B, 

backwards 
compatible signling 

(second AOT == 
SBR) 

1 AAC+SBR+PS Undefined  Play 
AAC+SBR+PS

(Note 3) 

Note 1: Implicit signaling, assume the presence of PS data in the payload, giving two output channels 
for a single channel element. 
Note 2: Explicitly signals that there is no PS data, hence no implicit signaling is present. 
Note 3: Number of output channels is two for a single channel element containing AAC+SBR+PS 
data. 

 

The upper part of Table 1.22A displays bitstream characteristics and decoder behavior if the profile indication 
is the High Efficiency AAC Profile. The lower part displays bitstream characteristics and decoder behavior if 
the profile indication is the High Efficiency AAC v2 Profile. 

1.6.6.3 HE AAC v2 Profile Decoder Behavior in Case of Implicit Signaling 

If the presence of PS data is backward compatible implicitly signaled (signaling 1, in the list above) the first 
AudioObjectType signaled is not the PS AOT, and the psPresentFlag is not read from the 
AudioSpecificConfig(). Hence, the psPresentFlag is set to –1, indicating that implicit signaling of parametric 
stereo may occur. 

Since a received mono stream will result in a stereo output if Parametric Stereo data is present in the stream, 
the HE AAC v2 Profile decoder shall assume that PS data is available and decide the number of output 
channels to be two for a single channel element containing SBR data, and thus also possibly PS data. If no 
PS data is found the mono output shall be mapped to the two opened channels for every single channel 
element. 
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1.6.6.4 HE AAC v2 Profile Decoder Behavior in Case of Explicit Signaling 

If the presence of PS data is explicitly signaled (signaling 2, in the list above) the presence of PS data is 
backward compatible explicitly signaled (signaling 2.B) or non-backward compatible explicitly signaled 
(signaling 2.A). 

For the backward compatible explicit signaled (signaling 2.B) the extensionAudioObjectType signaled is the 
SBR AOT. The explicit signaling of PS is done by means of the psPresentFlag that can be either zero or one. 

If the psPresentFlag is zero, this indicates that PS data is not present, and hence the HE AAC v2 Profile 
decoder should not make assumptions on the number of output channels in anticipation of PS data (as in case 
of implicit signaling of PS) and instead employ the original channelConfiguration. If the psPresentFlag is one, 
PS data is present and the HE AAC v2 Profile decoder shall operate the PS Tool. 

For the non-backward compatible explicit signaling of PS (signaling 2.A) the first AudioObjectType signaled is 
the PS AOT. The extensionAudioObjectType is assigned the SBR AOT. For this hierarchical explicit signaling, 
the psPresentFlag is set to one if the first signaled AOT is the PS AOT. The psPresentFlag is not transmitted 
and hence it is not possible to explicitly signal the absence of implicit signaling. Hence, for the hierarchical 
explicit signaling of parametric stereo, PS data is always present and the HE AAC v2 Profile decoder shall 
operate the PS Tool. 

 

In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio object type ER BSAC, replace table 
4.33 bsac_raw_data_block with the following table: 

Table 4.33 – Syntax of bsac_raw_data_block() 

• Syntax No. of bits Mnemonic 

bsac_raw_data_block()   
{   
  bsac_base_element();   
 layer=slayer_size;   
 while(data_available() && layer<(top_layer+slayer_size)) {   
       bsac_layer_element(layer);   
  layer++;   
 }   
 byte_alignment();   
   
      if (data_available()) {   
             zero_code 32 bslbf 
             syncword 8 bslbf 
             while( data_available() )   
extended_bsac_raw_data_block(); 
 } 
} 
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In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio object type ER BSAC, after Table 
4.43 Syntax of bsac_spectral_data, add the following two tables: 

Table 4.35 – Syntax of extended_bsac_raw_data_block() 

Syntax No. of bits Mnemonic 
extended_bsac_raw_data_block()   
{   
      extended_bsac_base_element();   
 layer=slayer_size;   
 while(data_available() && layer<(top_layer+slayer_size)) {   
  bsac_layer_element(layer);   
  layer++;   
 }   
 byte_alignment();   
}   

 

Table 4.36 – Syntax of extended_bsac_base_element() 

Syntax No. of bits Mnemonic 
extended_bsac_base_element()   
{   
 element_length 11 uimbf 
      channel_configuration_index 3 uimbf 
      reserved_bit 1 uimbf 
 bsac_header();   
 general_header();   
 byte_alignment();   
 for (slayer = 0; slayer < slayer_size; slayer++)    
  bsac_layer_element(slayer);   
}   

 

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace 
bsac_raw_data_block with the following: 

bsac_raw_data_block() block of raw data that contains coded audio data, related information 
and other data. A bsac_raw_data_block() basically consists of 
bsac_base_element() and several bsac_layer_element(). There exists 
a module that determines whether the BSAC bitstream has an 
extended part.  

 

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, after 
bsac_raw_data_block, add the following: 

 

zero_code  32-bit zero values in order to terminate the arithmetic decoding for the 
stereo part.  

syncword  a eight bit code that identifies the start of the extended part. The bit 
string ‘1111 1111’. 
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In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace 
header_length with the following: 
 

header_length  the length of the headers including frame_length, bsac_header() and 
general_header() in bytes. The actual length is (header_length+7) 
bytes. However if header_length is 0, it represents that the actual 
length is smaller than or equal to 7 bytes. And if header_length is 15, 
it represents that the actual length is larger than or equal to (15+7) 
bytes and should be calculated through the decoding of the headers. 
In case of extended_bsac_base_element(), header_length includes 
element_length, channel_configuration_index, reserved_bit,  
bsac_header  and general_header(). 

 

In Part 3: Audio, Subpart 4 under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, after 
bsac_spectral_data, add the following: 

extended_bsac_raw_data_block() block of raw data that contains coded audio data, related information 
and other data for the extended part. A extended_bsac_ raw_data 
_block() basically consists of extended_ bsac _base_ element() and 
several bsac_layer_element(). 

extended_bsac_base_element() syntactic element of the base layer bitstream containing coded audio 
data, related information and other data for the extended part of 
BSAC.  

element_length  the length of the extended_bsac_raw_data_block() in bytes. This is 
used for proper arithmetic decoding. 

channel_configuration_index a three bit field that indicates the audio output channel configuration 
in the extended part. Each index specifies the number of channels 
given the channel to speaker mapping. 

 

Table 4.68 – channel_configuration_index 

Index channel to speaker mapping number of channels (nch) 
0 center front speaker 1 
1 left, right front speakers 2 
2 rear surround speakers 1 
3 left surround, right surround rear speakers 2 
4 front low frequency effects speaker 1 
5 left, right outside front speakers 2 

6-7 reserved - 
 

reserved_bit  bit reserved for future use 
 
 
In Part 3: Audio, Subpart 4, after subclause 4.5.2.6.2.2.13 Reconstruction of the decoded sample from bit-
sliced data, add the subclause below:  
 
4.5.2.6.2.2.14 Decoding the extended part  

The structure of the extended part of BSAC is a simple replica of mono or stereo BSAC bitstream. New 
functions called extended_bsac_raw_data_block and extended_bsac_base_element are added for the 
extended BSAC. 
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4.5.2.6.2.2.14.1 extended_bsac_raw_data_block 

An extended_bsac_raw_data_block also has the layered structure as bsac_raw_data_block. In case where 
data is still available after decoding the stereo part, zero_code and syncword are parsed. zero_code is used 
for the arithmetic termination of stereo part, and syncword is for the proper decoding of extended part. 

4.5.2.6.2.2.14.2 extended_bsac_base_element 

An extended bsac_base_element consists of element_length, channel_configuration_index, reserved_bit, 
bsac_header, general_header and bsac_layer_element. For the stereo part, the value of nch is obtained from 
channelConfiguration in Table 1.8 (Syntax of AudioSpecificConfig) and it is limited to either 1 or 2 (left and 
right front speakers). For the extended part, the parameter, nch, is concerned with the rest of speakers, and 
the exact value is determined by channel_configuration_index specified in Table 4.68. Each index indicates 
the number of channels given the channel to speaker mapping. 

 
 
In Part 3: Audio, Subpart 4, at the end of subclause 4.B.17.8 Payload transmitted over Elementary Steam bit-
sliced data, add the following subclause: 
 
4.B.17.8.1 The functionality of fine-grain scalability in extended or multi-channel data  
 
When the BSAC data extends to multi-channel data, each ES consists of large-step layers for a certain 
channel element. To provide the functionality of fine-grain scalability in the multi-channel data, one might use 
streamPriority specified in the ES descriptor in ISO/IEC 14496-1:2004. The values of streamPriority are 
assigned to elementary streams according to the priority of channel elements. Different numbers of layers per 
channel element can be truncated, because the extended BSAC bitstream consists of separate channel 
elements. The values of streamPriority and the number of layers to be truncated per channel element depend 
on application scenarios. 
 

In Part 3: Audio, Subpart 8, in clause 8.A.1, replace: 

The usage of this parametric stereo extension to HE AAC is signalled implicitly in the bitstream. Hence, if 

with: 

The usage of this parametric stereo extension to HE AAC is signalled either implicitly by the presence of 
parametric stereo data in the bitstream, or explicitly by signalling the corresponding AudioObjectType in the 
audioSpecificConfig. Hence, implicit signalling requires that, if  
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Create Part 3: Audio, Subpart 11: 

Subpart 11: Technical description of Audio Lossless Coding for 
lossless coding of audio signals 

11.1 Scope 

This subpart of ISO/IEC 14496-3 describes the MPEG-4 Audio Lossless Coding (ALS) algorithm for lossless 
coding of audio signals. 

MPEG-4 ALS is a lossless compression scheme for digital audio data, i.e. the decoded data is a bit-identical 
reconstruction of the original input data. Input signals can be integer PCM data with 8 to 32-bit word length or 
32-bit IEEE floating-point data. MPEG-4 ALS provides a wide range of flexibility in terms of compression-
complexity trade-off, since the combination of several tools allows for the definition of compression levels with 
different complexities. 

11.2 Technical Overview 

11.2.1 Encoder and Decoder Structure 

The basic structure of the ALS encoder and decoder is shown in Figure 11.1. 
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Figure 11.1 – Block diagram of the ALS encoder and decoder 

The input audio data is partitioned into frames. Within a frame, each channel can be further subdivided into 
blocks of audio samples for further processing (block switching, see subclause 11.6.2). For each block, a 
prediction residual is calculated using short-term prediction (see subclauses 11.6.3 and 11.6.5) and optionally 
long-term prediction (LTP, see sublause 11.6.4). Inter-channel redundancy can be removed by joint channel 
coding, using either difference coding of channel pairs (see subclause 11.6.7) or multi-channel coding (MCC, 
see subclause 11.6.8). The remaining prediction residual is finally entropy coded (see subclause 11.6.6). 

The encoder generates bitstream information allowing for random access at intervals of several frames. The 
encoder can also provide a CRC checksum, which the decoder may use to verify the decoded data. 
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11.2.2 Floating-Point Extensions 

In addition to integer audio signals, MPEG-4 ALS also supports lossless compression of audio signals in the 
IEEE 32-bit floating-point format. The floating-point sequence is modeled by the sum of an integer sequence 
multiplied by a constant (ACF: Approximate Common Factor) and a residual sequence. The integer sequence 
is compressed using the basic ALS tools for integer data, while the residual sequence is separately 
compressed by the masked Lempel-Ziv tool. A detailed description of the floating-point extensions can be 
found in subclause 11.6.9. 

11.3 Terms and Definitions 

11.3.1 Definitions 

The following definitions and abbreviations are used in this document. 

Frame Segment of the audio signal (containing all channels). 

Block Segment of one audio channel. 

Sub-block  Subpart of a block that uses the same entropy coding parameters. 

Random Access Frame  Frame that can be decoded without decoding previous frames. 

Residual Prediction error, i.e. original minus predicted signal. 

Predictor/Prediction Filter Linear FIR filter which computes an estimate of the input signal using previous 
samples. 

Prediction order Order of the prediction filter (number of predictor coefficients). 

LPC coefficients Coefficients of the direct form prediction filter. 

Parcor coefficients Parcor representation of the predictor coefficients. 

Quantized coefficients Quantized parcor coefficients. 

LTP Long-term prediction. 

Rice code Also known as Golomb-Rice code. In this document the short form is used. 

BGMC Block Gilbert-Moore Code (also known as Elias-Shannon-Fano code). 

CRC Cyclic Redundancy Check. 

LPC Linear Predictive Coding. 

PCM Pulse Code Modulation. 

Mantissa Fractional part of floating-point data 

Exponent Exponential part of floating-point data 

ACFC Approximate Common Factor Coding 

Masked-LZ Masked Lempel-Ziv Coding 

MCC Multi-Channel Coding 

MSB Most significant bit 

LSB Least significant bit 
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11.3.2 Mnemonics 

uimsbf Unsigned integer, most significant bit first 

simsbf Signed integer, most significant bit first 

bslbf Bit string, left bit first, where “left” is the order in which bits are written 

IEEE32 IEEE 32-bit floating-point data (4 bytes), most significant bit first 

The mnemonics Rice code and BGMC indicate that variable length codewords are used, which are described 
in subclause 11.6.6. 

11.3.3 Data Types 

The following data types are used in the pseudo code sections: 

INT64 64-bit signed integer (two's complement) 

long 32-bit signed integer (two's complement) 

short 16-bit signed integer (two's complement) 

If "unsigned" is added in front of the data type, then the type is unsigned instead of signed. 

11.4 Syntax 

11.4.1 Decoder Configuration 

Table 11.1 – Syntax of ALSSpecificConfig 

Syntax No. of bits Mnemonic 
ALSSpecificConfig()   
{   
 samp_freq; 32 uimsbf 
 samples; 32 uimsbf 
 channels; 16 uimsbf 
 file_type; 3 uimsbf 
 resolution; 3 uimsbf 
 floating; 1 uimsbf 
 msb_first; 1 uimsbf 
 frame_length; 16 uimsbf 
 random_access; 8 uimsbf 
 ra_flag; 2 uimsbf 
 adapt_order; 1 uimsbf 
 coef_table; 2 uimsbf 
 long_term_prediction; 1 uimsbf 
 max_order; 10 uimsbf 
 block_switching; 2 uimsbf 
 bgmc_mode; 1 uimsbf 
 sb_part; 1 uimsbf 
 joint_stereo; 1 uimsbf 
 mc_coding; 1 uimsbf 
 chan_config; 1 uimsbf 
 chan_sort; 1 uimsbf 
 crc_enabled; 1 uimsbf 
 RLSLMS 1 uimsbf 
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 (reserved) 5  
 aux_data_enabled; 1 uimsbf 
 if (chan_config) {   
  chan_config_info; 16 uimsbf 
 }   
 if (chan_sort) {   
  for (c = 0; c < channels; c++)   
   chan_pos[c]; 1..16 uimsbf 
 }   
 byte_align;   
 header_size; 16 uimsbf 
 trailer_size; 16 uimsbf 
 orig_header[]; header_size * 8 bslbf 
 orig_trailer[]; trailer_size * 8 bslbf 
 if (crc_enabled) {   
  crc; 32 uimsbf 
 }   
 if ((ra_flag == 2) && (random_access > 0)) {   
  for (f = 0; f < ((samples-1) / (frame_length+1)) + 1; f++) {   
   ra_unit_size[f] 32 uimsbf 
  }   
 }   
 if (aux_data_enabled) {   
  aux_size; 16 uimsbf 
  aux_data[]; aux_size * 8 bslbf 
 }   
}   

 

11.4.2 Bitstream Payloads 

Table 11.2 – Syntax of top level payload (frame_data) 

Syntax No. of bits Mnemonic 
frame_data()   
{   
 if ((ra_flag == 1) && (frame_id % random_access == 0)) {   
  ra_unit_size 32 uimsbf 
 }   
 if (mc_coding && joint_stereo) {   
  js_switch; 1 uimsbf 
  byte_align;   
 }   
 if (!mc_coding || js_switch) {   
  for (c = 0; c < channels; c++) {   
   if (block_switching) {   
    bs_info; 8,16,32 uimsbf 
   }   
   if (independent_bs) {   
    for (b = 0; b < blocks; b++) {   
     block_data(c);   
    }   
   }   
   else{   
    for (b = 0; b < blocks; b++) {   
     block_data(c);   
     block_data(c+1);   
    }   
    c++;   
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   }   
  }   
 else{   
  if (block_switching) {   
   bs_info; 8,16,32 uimsbf 
  }   
  for (b = 0; b < blocks; b++) {   
   for (c = 0; c < channels; c++) {   
    block_data(c);   
    channel_data(c);   
   }   
  }   
 }   
 if (floating)   
 {   
  num_bytes_diff_float; 32 uimsbf 
  diff_float_data();   
 }   
}   

Note: If joint_stereo is off, or if c is the last channel, independent_bs is true by default. If joint_stereo is on, 
independent_bs is false by default, but if block_switching is on as well, the independent_bs flag is explicitly 
signaled as the first bit of a channel pair's bs_info field (see subclause 11.6.2). The frame_id field indicates 

the consecutive frame number, starting at 0 for the first frame. 

Table 11.3 – Syntax of block_data 

Syntax No. of bits Mnemonic 
block_data()   
{   
 block_type; 1 uimsbf 
 if (block_type == 0) {   
  const_block; 1 uimsbf 
  js_block; 1 uimsbf 
   (reserved) 5  
  if (const_block == 1) {   
  {   
   if (resolution == 8) {   
    const_val; 8 simsbf 
   }   
   else if (resolution == 16) {   
    const_val; 16 simsbf 
   }   
   else if (resolution == 24) {   
    const_val; 24 simsbf 
   }   
   else {   
    const_val; 32 simsbf 
   }   
  }   
 }   
 else {   
  js_block; 1 uimsbf 
  if ((bgmc_mode == 0) && (sb_part == 0) {   
   sub_blocks = 1;   
  }   
  else if ((bgmc_mode == 1) && (sb_part ==1) {   
   ec_sub; 2 uimsbf 
   sub_blocks = 1 << ec_sub;   
  }   

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538


ISO/IEC 14496-3:2005/Amd.2:2006(E) 

© ISO/IEC 2006 – All rights reserved 21

  else {   
   ec_sub; 1 uimsbf 
   sub_blocks = (ec_sub == 1) ? 4 : 1;   
  }   
  if (bgmc_mode == 0) {   
   for (k = 0; k < sub_blocks; k++) {   
    s[k]; varies Rice code 
   }   
  }   
  else {   
   for (k = 0; k < sub_blocks; k++) {   
    s[k],sx[k]; varies Rice code 
   }   
  }   
  sb_length = block_length / sub_blocks;   
  shift_lsbs; 1 uimsbf 
  if (shift_lsbs == 1) {   
   shift_pos; 4 uimsbf 
  }   
  if (!RLSLMS) {   
   if (adapt_order == 1) {   
    opt_order; 1..10 uimsbf 
   }   
   for (p = 0; p < opt_order; p++) {   
    quant_cof[p]; varies Rice code 
   }   
  }   
  if (long_term_prediction) {    
   LTPenable; 1 uimsbf 
   if (LTPenable) {   
    for (i = -2; i <= 2; i++) {   
     LTPgain[i]; varies Rice code 
    }   
    LTPlag; 8,9,10 uimsbf 
   }   
  }   
  start = 0;   
  if (random_access_block) {   
   if (opt_order > 0) {   
    smp_val[0]; varies Rice code 
   }   
   if (opt_order > 1) {   
    res[1]; varies Rice code 
   }   
   if (opt_order > 2) {   
    res[2]; varies Rice code 
   }   
   if (opt_order < 3) {   
    start = opt_order;   
   }   
   else {   
    start = 3;   
   }   
  }   
  if (bgmc_mode) {   
   for (n = start; n < sb_length; n++) {   
    msb[n]; varies BGMC 
   }   
   for (k=1; k < sub_blocks; k++) {   
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    for (n = k * sb_length; n < (k+1) * sb_length; n++) {   
     msb[n]; varies BGMC 
    }   
   }   
   for (n = start; n < sb_length; n++) {   
    if (msb[n] != tail_code) {   
     lsb[n]; varies uimsbf 
    }   
    else {   
     tail[n]; varies Rice code 
    }   
   }   
   for (k=1; k < sub_blocks; k++) {   
    for (n = k * sb_length; n < (k+1) * sb_length; n++) {   
     if (msb[n] != tail_code) {   
       lsb[n]; varies uimsbf 
     }   
     else {   
       tail[n]; varies Rice code 
     }   
    }   
   }   
  }   
  else   
  {   
   for (n = start; n < block_length; n++) {   
    res[n]; varies Rice code 
   }   
  }   
 }   
 if (RLSLMS) {   
              RLSLMS_extension_data()   
 }   
}   

Note: random_access_block is true if the current block belongs to a random access frame (frame_id % 
random_access == 0) and is the first (or only) block of a channel in this frame. 

Table 11.4 – Syntax of channel_data 

Syntax No. of bits Mnemonic 
channel_data(c)   
{   
 for(;;) {   
  stop_flag; 1 uimsbf 
  if (stop_flag == 1) {   
   break;   
  }   
  master_channel_index; 1..16 uimsbf 
  if (c != master_channel_index) {   
   time_difference_flag 1 uimsbf 
   if (time_difference_flag == 0) {   
                       weighting_factor [0] varies Rice code 
                       weighting_factor [1] varies Rice code 
                       weighting_factor [2] varies Rice code 
                  }   
                  else {   
                       weighting_factor [0] varies Rice code 
                       weighting_factor [1] varies Rice code 
                       weighting_factor [2] varies Rice code 
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                       weighting_factor [3] varies Rice code 
                       weighting_factor [4] varies Rice code 
                       weighting_factor [5] varies Rice code 
  time_difference_sign 1 uimsbf 
  time_difference_index 5,6,7 uimsbf 
   }   
  }   
 }   
}   

 

Table 11.5 – Syntax of RLSLMS_extension_data 

Syntax No. of bits Mnemonic 
RLSLMS_extension()   
{   
 mono_block 1 uimsbf 
 ext_mode 1  
 if (ext_mode) {   
  extension_bits 3 uimsbf 
  if (extension_bits&0x01) {   
   RLS_order 4 uimsbf 
   LMS_stage 3 uimsbf 
   for(i=0; i<LMS_stage;i++){   
    LMS_order[i] 5 uimsbf 
   }   
  }   
  if (extension_bits&0x02) {   
   if (RLS_order) {   
    RLS_lambda 10 uimsbf 
    if (RA)   
     RLS_lambda_ra 10 uimsbf 
   }   
  }   
  if (extension_bits&04) {   
   for(i=0; i<LMS_stage;i++) {   
    LMS_mu[i] 5 uimsbf 
   }   
   LMS_stepsize 3  
  }   
 }   
}   

 

11.4.3 Payloads for Floating-Point Data 

Table 11.6 – Syntax of diff_float_data 

Syntax No. of bits Mnemonic 
diff_float_data()   
{   
 use_acf; 1 uimsbf 
   
 if (random_access_block) {   
  if (c=0; c < channels; c++) {   
   last_acf_mantissa[c] = 0;   
 last_shift_value[c] = 0;   
  }   
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  FlushDict();   
 }   
 for (c = 0; c < channels; c++) {   
  if (use_acf == 1) {   
   acf_flag[c]; 1 uimsbf 
   if (acf_flag[c] == 1) {   
   acf_mantissa[c]; 23 uimsbf 
   last_acf_mantissa[c] = acf_mantissa[c];   
   }   
   else {   
   acf_mantissa[c] = last_acf_mantissa[c];   
   }   
  }   
  else {   
   acf_mantissa[c] = last_acf_mantissa[c] = 0;   
  }   
  highest_byte[c]; 2 uimsbf 
  shift_amp[c]; 1 uimsbf 
  partA_flag[c]; 1 uimsbf 
  if (shift_amp[c] == 1) {   
   shift_value[c]; 8 uimsbf 
   last_shift_value[c] = shift_value[c];   
  }   
  else {   
   shift_value[c] = last_shift_value[c];   
  }   
  diff_mantissa();   
  byte_align; 0..7 bslbf 
 }   
}   

Note: “byte_align” stands for padding of bits to the next byte boundary. "FlushDicf()" is the function that clears 
and initializes the dictionary and variables of the Masked-LZ decompression module (See section 11.6.9). 

Table 11.7 – Syntax of diff_mantissa 

Syntax No. of bits Mnemonic 
diff_mantissa()   
{   
 if (partA_flag[c] != 0) {   
  compressed_flag[c]; 1 uimsbf 
  if (compressed_flag[c] == 0) {   
   for (n = 0; n < frame_length; n++) {   
    if (int_zero[c][n]) {   
     float_data[c][n]; 32 IEEE32 
    }   
   }   
  }   
  else {   
   nchars = 0;   
   for (n = 0; n < frame_length; n++) {   
    if (int_zero[c][n])   
     nchars += 4;   
   }   
   Masked_LZ_decompression(nchars);   
  }   
 }   
   
 if (highest_byte[c] != 0) {   
  compressed_flag[c]; 1 uimsbf 
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  if (compressed_flag[c][n] == 0) {   
   for (n = 0; n < frame_length; n++) {   
    if (!int_zero[c][n]) {   
     mantissa[c][n]; nbits[c][n] uimsbf 
    }   
   }   
  }   
  else {   
   nchars = 0;   
   for (n = 0; n < frame_length; n++) {   
    if (!int_zero[c][n]) {   
     nchars += (int )nbits[c][n]/8;   
     if ((nbits[c][n] % 8) > 0)   
      nchars++;   
    }   
   }   
   Masked_LZ_decompression(nchars);   
  }   
 }   
}   

Note: “int_zero” is true if the corresponding truncated integer is 0. “nbit” is the necessary word length for the 
difference of mantissa (see section 11.6.9). 

Table 11.8 – Syntax of Masked_LZ_decompression 

Syntax No. of bits Mnemonic 
Masked_LZ_decompression(nchars)   
{   
 for (dec_chars = 0; dec_chars < nchars; ) {   
  string_code; 9..14 uimsbf 
 }   
}   

Note: “nchars” is the number of characters need to be decoded (see section 11.6.9).  

11.5 Semantics 

In the following, the general elements are described. Additional elements related to floating-point audio data 
are described in chapter 11.5.2. 

11.5.1 General Semantics 

11.5.1.1 ALSSpecificConfig 

ALSSpecificConfig contains general configuration data. Optionally, the header and trailer of an original audio 
file can be embedded in order to restore that information in addition to the actual audio data. The syntax of 
ALSSpecificConfig is defined in Table 11.1, its elements are described in Table 11.9. 

Table 11.9 – Elements of ALSSpecificConfig 

Field #Bits Description / Values 

samp_freq 32 Sampling frequency in Hz 

samples 32 Number of samples (per channel) 

channels 16 Number of channels-1 

(0 = mono, 1 = stereo, …) 

file_type 3 000 = unknown / raw file 
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001 = wave file 

010 = aiff file 

011 = bwf file 

(other values are reserved) 

resolution 3 000 = 8-bit 

001 = 16-bit 

010 = 24-bit 

011 = 32-bit 

(other values are reserved) 

floating 1 1 = IEEE 32-bit floating-point, 0 = integer  

msb_first 1 Original byte order of the input audio data: 

0 = least significant byte first (little-endian) 

1 = most significant byte first (big-endian) 

If resolution = 0 (8-bit data), msb_first = 0 indicates 
unsigned data (0…255), while msb_first = 1 
indicates signed data (-128…127). 

frame_length 16 Frame Length - 1 (e.g. frame_length = 0x1FFF  
signals a frame length of N = 8192) 

random_access 8 Distance between RA frames (in frames, 0…255). 
If no RA is used, the value is zero. If each frame is 
an RA frame, the value is 1. 

ra_flag 2 Indicates where the size of random access units 
(ra_unit_size) is stored: 

00: not stored 

01: stored at the beginning of frame_data() 

10: stored at the end of ALSSpecificConfig() 

adapt_order 1 Adaptive Order: 1 = on, 0 = off 

coef_table 2 Table index (00, 01, or 10, see Table 11.20) of 
Rice code parameters for entropy coding of 
predictor coefficients, 11 = no entropy coding 

long_term_prediction 1 Long term prediction (LTP): 1 = on, 0 = off 

max_order 10 Maximum prediction order (0..1023) 

block_switching 2 Number of block switching levels: 

00 = no block switching 

01 = up to 3 levels 

10 = 4 levels 

11 = 5 levels 

bgmc_mode 1 BGMC Mode: 1 = on, 0 = off (Rice coding only) 

sb_part 1 Sub-block partition for entropy coding of the 
residual. 

if bgmc_mode = 0: 

0 = no partition, no ec_sub bit in block_data 

1 = 1:4 partition, one ec_sub bit in block_data 

if bgmc_mode = 1: 
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0 = 1:4 partition, one ec_sub bit in block_data 

1 = 1:2:4:8 partition, two ec_sub bits in block_data 

joint_stereo 1 Joint Stereo: 1 = on, 0 = off 

If channels = 0 (mono), joint_stereo = 0 

mc_coding 1 Extended inter-channel coding: 1 = on, 0 = off 

If channels = 0 (mono), mc_coding = 0 

chan_config 1 Indicates that a chan_config_info field is present 

chan_sort 1 Channel rearrangement: 1 = on, 0 = off 

If channels = 0 (mono), chan_sort = 0 

crc_enabled 1 Indicates that the crc field is present 

RLSLMS 1 Use RLS-LMS predictor: 1 = on, 0 = off 

(reserved) 5  

aux_data_enabled 1 Indicates that auxiliary data is present (fields 
aux_size and aux_data) 

chan_config_info 16 Mapping of channels to loudspeaker locations. 
Each bit indicates whether a channel for a 
particular predefined location exists (see 
subclause 11.6.1.5). 

chan_pos[] (channels+1)*ChBits If channel rearrangement is on (chan_sort = 1), 
these are the original channel positions. The 
number of bits per channel is 

ChBits = ceil[log2(channels+1)] = 1..16 

where channels+1 is the number of channels. 

header_size 16 Header size of original audio file in bytes 

trailer_size 16 Trailer size of original audio file in bytes 

orig_header[] header_size*8 Header of original audio file 

orig_trailer[] trailer_size*8 Trailer of original audio file 

crc 32 32-bit CCITT-32 CRC checksum of the original 
audio data bytes (polynomial: x32 + x26 + x23 + x22 + 
x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1). 

ra_unit_size[] #frames*32  Distances (in bytes) between the random access 
frames, i.e. the sizes of the random access units, 
where the number of frames is 

#frames = ((samples-1) / (frame_length+1)) +1 

In ALSSpecificConfig(), this field appears only if 
ra_flag = 1. 

aux_size 16 Size of the aux_data field in bytes 

aux_data aux_size*8 Auxiliary data (not required for decoding) 
 

11.5.1.2 frame_data 

This is the top level payload of ALS. If random_access > 0, the number of payloads mapped into one access 
unit equals the value of random_access (1…255). In this case, the size of each access unit can be stored in 
ra_unit_size. If random_access = 0, all payloads are mapped into the same access unit. 

The bs_info field holds the block switching information for a channel or a channel pair (see subclause 11.6.2 
for details). The syntax of frame_data is defined in Table 11.2, its elements are described in Table 11.10. 
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Table 11.10 – Elements of frame_data 

Field #Bits Description / Values 

ra_unit_size 32 Distance (in bytes) to the next random 
access frame, i.e the size of the random 
access unit. In frame_data(), this field 
appears only if ra_flag = 2. 

bs_info 8, 16, 32 Block switching information. 

If block_switching = 0, no bs_info field is 
transmitted, otherwise #Bits depends on the 
value of block_switching: 

block_switching = 1: 8 bits 

block_switching = 2: 16 bits 

block_switching = 3: 32 bits 

js_switch 1 If  js_switch = 1, Joint Stereo (channel 
difference) is selected even if MCC 
(mc_coding) is enabled. 

num_bytes_diff_float 32 Only present if floating = 1: 

Number of bytes for diff_float_data  
 

11.5.1.3 block_data 

The block data specifies the type of block (normal, constant, silence) and basically contains the code indices, 
the predictor order, the predictor coefficients and the coded residual values. The syntax of block_data is 
defined in Table 11.3, its elements are described in Table 11.11. 

Table 11.11 – Elements of block_data 

Field #Bits Description / Values 

block_type 1 1 = normal block 

0 = zero / constant block 

const_block 1 Only if block_type = 0: 

1 = constant block 

0 = zero block (silence) 

js_block 1 Block contains a joint stereo difference signal 

const_val 8,16,24,32 Constant sample value of this block 

ec_sub 0..2 Number of  sub-blocks for entropy coding. 

#Bits = bgmc_mode + sb_part 

if #Bits = 0: 1 sub-block 

if #Bits = 1: 

0 = 1 sub-block 
1 = 4 sub-blocks 

if #Bits = 2 

00 = 1 sub-block 
01 = 2 sub-blocks 
10 = 4 sub-blocks 
11 = 8 sub-blocks 
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s[],sx[] varies Up to 8 Rice (s) or BGMC (s,sx) code indices 
for entropy coding of sub-blocks (number is 
given by ec_sub). The differential values are 
Rice coded. 

shift_lsbs 1 Indicates that all original input sample values 
of this block have been shifted to the right 
prior to further processing, in order to remove 
empty LSBs 

shift_pos 4 Number of positions-1 that the sample values 
of this block have been shifted to the right: 

0000 = 1 position 
… 
1111 = 16 positions 

opt_order 1..10 Predictor order for this block (of length NB): 

    #Bits = min{ceil(log2(max_order+1)), 

    max[ceil(log2((NB >> 3)-1)),1]} 

The number of bits is restricted by both the 
maximum order (max_order) and the block 
length NB (see subclause 11.6.3.1) 

quant_cof[] varies Rice coded quantized coefficients. The Rice 
coding scheme is described in subclause 
11.6.6.1 

LTPenable 1 LTP switch: 1 = on, 0 = off 

LTPgain[] varies Rice coded gain values (5-tap) 

LTPlag 8,9,10 LTP lag values 

Freq < 96000, range=0..255, bit=8 

96000 <=Freq <192000, range=0..511, bit=9 

Freq >=192000  range=0..1023, bit=10 

smp_val[0] varies Rice coded sample value at the beginning of 
a random access block (see Table 11.22) 

res[] varies Rice coded residual values (see subclause 
11.6.6.1) 

msb[] varies BGMC-coded most significant bits of 
residuals. For residuals outside the central 
region, the special “tail_code” is transmitted. 
The BGMC coding scheme is described in 
subclause 11.6.6.2 

lsb[] varies Directly transmitted least significant bits of 
the residuals (see subclause 11.6.6.2) 

tail[] varies Rice coded residual values outside the 
central region (tails, see subclause 11.6.6.2) 
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11.5.1.4 channel_data 

The syntax of channel_data is defined in Table 11.4, its elements are described in Table 11.12. 

Table 11.12 – Elements of channel_data 

Field #Bits Description / Values 

stop_flag 1 0: Continue description of inter-channel 
relationship 

1: Stop description 

master_channel_index 1..16 

 

Index of master-channel. 

#Bits = ceil[log2(channels+1)] 

where channels+1 is the number of channels 

time_difference_flag 1 0: 3-tap without time difference lag 

1: 6-tap with time difference lag 

weighting factor varies Indices of inter-channel weighting factor 

time_difference_sign 1 0: positive, 1:negative; “Positive” means that 
the reference channel is delayed relative to 
the coding channel. 

time_difference_value 5,6,7 Absolute value of time difference lag 

Freq < 96000, range=3..34, #Bits=5 

96000 <=Freq <192000, range=3..66, #Bits=6 

Freq >=192000  range=3..130, #Bits=7 
 

11.5.1.5 RLSLMS_extension_data 

The syntax of RLSLMS_extension_data is defined in Table 11.5, its elements are described in Table 11.13. 

Table 11.13 – Elements of RLSLMS_extension_data 

Field #Bits Description / Values 

mono_block 1 mono_frame == 0: CPE coded with joint-
stereo RLS  

mono_frame == 1: CPE coded with mono 
RLS 

ext_mode 1 RLS-LMS predictor parameters are updated 
in extension block.   

1 == extension block 

0 == non-extension block 

extension_bits 3 Type of RLS-LMS parameters carried in 
extension block 

xtension&01 == RLS-LMS predictors orders 

extension&02 == RLS_lambda and 
RLS_lambda_ra 

extension&04 == LMS_mu and 
LMS_stepsize 

RLS_order 4 RLS predictor order 
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LMS_stage 3 Number of LMS predictors in cascade 

LMS_order[] 5*LMS_stage LMS predictor order 

RLS_lambda 10 RLS predictor parameter lambda.   

RLS_lambda_ra 10 RLS predictor parameter lambda for random 
access frame 

LMS_mu[] 5*LMS_stage LMS predictor parameter mu 

LMS_stepsize 3 LMS predictor parameter stepsize 
 

11.5.2 Semantics for Floating-Point Data 

11.5.2.1 diff_float_data 

The syntax of diff_float_data is defined in Table 11.6, its elements are described in Table 11.14. 

Table 11.14 – Elements of diff_float_data 

Field #Bits Description / Values 

use_acf 1 1: acf_flag[c] is present 

0: acf_flag[c] is not present 

acf_flag[c] 1 1: acf_mantissa[c] is present 

0: acf_mantissa[c] is not present 

acf_mantissa[c] 23 Full mantissa data of common multiplier 

highest_byte[c] 2 Highest nonzero bytes of mantissa in a frame 

partA_flag[c] 1 1: Samples exist in Part-A 

0: No sample exists or all zero in Part-A 

shift_amp[c] 1 1: shift_value[c] is present 

0: shift_value[c] is not present 

shift_value[c] 8 Shift value: This value is added to the 
exponent of all floating-point values of 
channel c after conversion of decoded 
integer to floating-point values, and before 
addition of integer and the difference data. 

 

11.5.2.2 diff_mantissa 

The syntax of diff_mantissa is defined in Table 11.7, its elements are described in Table 11.15. 

Table 11.15 – Elements of diff_mantissa 

Field #Bits Description / Values 

int_zero[c][n] (varies) int_zero for n-th sample and c-th channel 
is set if the truncated integer equals “0”. 
This value is not a syntactic element, but 
can be determined from the associated 
integer value which is available in both the 
encoder and the decoder. 

mantissa[c][n] nbits[c][n] Full mantissa data 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538


ISO/IEC 14496-3:2005/Amd.2:2006(E) 

32 © ISO/IEC 2006 – All rights reserved
 

compresed_flag[c] 1 1: Samples are compressed 

2: Samples are uncompressed 

nchars (varies) Number of characters to be decoded 

float_data[c][n] 32 32-bit IEEE floating-point value 

nbits[c][n]  This value is not a syntactic element. This 
can be determined from the integer value, 
acf_mantissa[c] and highest_byte[c].  

 

11.5.2.3 Masked_LZ_decompression 

The syntax of Masked_LZ_decompression is defined in Table 11.8, its elements are described in Table 11.16. 

Table 11.16 – Elements of Masked_LZ_decompression 

Field #Bits Description / Values 

string_code code_bits Index code of the dictionary. 

code_bits (varies) code_bits is varied from 9 to 15 bits 
depending on the number of entries stored 
in the dictionary 

 

11.6 ALS Tools 

In most lossy MPEG coding standards, only the decoder is specified in detail. However, a lossless coding 
scheme usually requires the specification of some (but not all) encoder portions. Since the encoding process 
has to be perfectly reversible without loss of information, several parts of both encoder and decoder have to 
be specified in a deterministic way. 

Block diagrams of the lossless encoder and the lossless decoder were already shown in Figure 11.1. In the 
rest of this section, the decoding process will be described along with those elements of the encoder which 
must be specified exactly in order to ensure lossless decoding. 

11.6.1 Overview 

11.6.1.1 Bitstream structure 

An example for the general bitstream structure of a compressed M-channel file is shown in Figure 11.2. 

Frame i+1 Frame i+3 ...Frame i...

Code Indices K coefficientsOrder K Rice or BGMC coded residual values

Frame i-1 Frame i+2

Channel 1 Channel 2 Channel 3 Channel M...Channel 4

Block 1 Block 2 Block 3 Block B...Block 4

 

Figure 11.2 – General bitstream structure of a compressed audio file 
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Each frame (frame_data) consists of B = 1…32 sample blocks (block_data) for each channel. Besides general 
information about the block (e.g. silence block, joint stereo difference block, etc.), each block typically contains 
the code indices, the predictor order K, the predictor coefficients and the Rice- or BGMC-coded residual 
values. Variations of this slightly simplified structure are treated in detail in the following sections. If joint 
coding between channel pairs is used, the block partition is identical for both channels, and blocks are stored 
in an interleaved fashion (see subclause 11.6.2, Figure 11.5). Otherwise, the block partition for each channel 
is independent. 

If the input is floating-point data, additional bitstream elements for differential mantissa values are inserted 
after the bitstream of every integer frame. Please refer to subclause 11.6.9 for a detailed description of the 
floating-point extensions. 

11.6.1.2 Decoding of ALSSpecificConfig 

ALSSpecificConfig contains information about the original data (e.g. “samp_freq”, “channels”, “resolution”) as 
well as global parameters that do not change from frame to frame (e.g. “frame_length”, "max_order"). The 
most important parameters (some of which are optional) are briefly described in the following: 

• Sampling frequency: The sampling frequency of the original audio data is stored, e.g. for direct 
playback of a compressed file. 

• Samples: Total number of audio samples per channel. 

• Number of channels: 1 (mono), 2 (stereo), or more (multichannel). 

• Resolution: 8-bit, 16-bit, 24-bit, or 32-bit. If the resolution of the original audio data is somewhere in 
between (e.g. 20-bit), the higher resolution is used for the sample representation. 

• Floating-point: Indicates the format of audio data. If this flag is set, the audio data is in the IEEE 32-bit 
floating-point format, otherwise the audio data is integer. 

• Byte order: Indicates the byte order of the original audio file, either most significant byte first (e.g. aiff) 
or least significant byte first (e.g. wave). 

• Frame length: Number of samples in each frame (per channel). 

• Random access: Distance (in frames) between those frames which can be decoded independently 
from previous frames (random access frames). In front of each random access frame, there is the 
field “ra_unit_size” which specifies this distance in bytes.  

• Adaptive order: Each block might have an individual predictor order. 

• Coefficient table: A Table containing parameters that are used for entropy coding of predictor 
coefficients. 

• Long-term-prediction: Long term prediction (LTP). 

• Maximum order: Maximum order of the prediction filter. If “adapt_order” is turned off, this order is used 
for all blocks. 

• Block Switching: Instead of one block per channel there might up to 32 shorter blocks. If block 
switching is not used, the block length is identical with the frame length. 

• BGMC mode: Indicates the use of BGMC codes for the prediction residual. If this flag is set to 0, the 
simpler Rice codes are used for the prediction residual. 

• Sub-block partition: Sub-block partition for entropy coding of the residual. 
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• Joint stereo: In each block, a difference signal might be encoded instead of the left or the right 
channel (or one of the two channels of a channel pair, accordingly) 

• Multi-channel coding: Extended inter-channel coding 

• Channel sort: Channel rearrangement, used for building dedicated channel pairs. 

• Channel positions: Original channel positions, used only if channel_sort is turned on. 

• Header size: Size of the original audio file header, in bytes. 

• Trailer size: Size of trailing non-audio information in the original audio file, in bytes. 

• Original header: The embedded header of the original audio file. 

• Original trailer: The embedded trailer of the original audio file. 

• CRC: Cyclic redundancy checksum (CCITT-32) of the original audio data bytes (i.e. in their original 
order, including channel interleaving). 

11.6.1.3 Number of Frames 

The number of frames to decode depends on the actual frame length (N = frame_length + 1) and the number 
of samples. It can be determined as follows: 

 N = frame_length + 1.  
 frames = samples / N; 
 remainder = samples % N; 
 if (rest) 
 { 
  frames++; 
  N_last = remainder; 
 } 
 else 
  N_last = N; 
 

If the number of samples is not a multiple of the frame length N, the length of the last frame is accordingly 
reduced (N_last = remainder). 

11.6.1.4 Joint Channel Coding 

In order to exploit redundancy between channels, the encoder can use a simple approach, consisting of 
channel pairs and single channels. The two channels of a channel pair can be encoded using difference 
coding (see section 11.6.7), whereas single channels are encoded independently. 

The general use of joint coding is signalled by the joint_stereo flag in the ALS header. If joint_stereo is off, 
each channel is a single channel, and is therefore coded independently from other channels. If joint_stereo is 
on, in each case two successive channels are regarded as a channel pair. If the number of channels is odd, 
there is one remaining single channel. 

Defining channel pairs does not mean that joint coding has to be essentially used. If joint_stereo is set, the 
decoder will treat combinations of two channels as channel pairs, even if the encoder did never actually use 
joint coding (e.g. since the channels were not correlated). In this case, the decoder will simply never discover 
a set js_block flag block_data. 
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11.6.1.5 Channel Configuration and Rearrangement 

The chan_config_info field (if present) defines a channel-to-speaker mapping by indicating whether a channel 
for a particular predefined location exists. Therefore, the existing channels have to be arranged in a 
predefined order (see Table 11.17). If a particular channel is present, the corresponding bit in the 
chan_config_info field is set. 

Table 11.17 – Channel Configuration 

Speaker location Abbreviation Bit position in 
chan_config_info 

Left L 1 

Right R 2 

Left Rear Lr 3 

Right Rear Rr 4 

Left Side Ls 5 

Right Side Rs 6 

Center C 7 

Center Rear / Surround S 8 

Low Frequency Effects LFE 9 

Left Downmix L0 10 

Right Downmix R0 11 

Mono Downmix M 12 

(reserved)  13-16 
 

If the channels are arranged differently, channel rearrangement can be used. For 5.1 surround material with 
channel configuration L, R, Lr, Rr, C, LFE, it is obvious that the first two channel pairs (L/R, Lr/Rr) might 
benefit from joint coding, whereas the remaining channels (C, LFE) are more likely to be independent. Even 
so, if joint_coding is on, the encoder forms channel pairs simply by successively combining adjacent channels, 
thus there are three channel pairs in this case. 

However, if the channel configuration is L, R, C, Lr, Rr, LFE, or L, Lr, C, Rr, R, LFE, the correlated channels 
are no longer adjoining. This problem can be addressed by a virtual rearrangement of channels prior to 
encoding, where correlated channels are grouped and successively arranged, such that they form channel 
pairs. The information about this rearrangement is stored in the compressed file as the original channel 
number in the field chan_pos[]. The decision on which channels are grouped can be made automatically by 
the encoder or manually by the user. If the channel configuration is indicated in the original file, the encoder 
can make a suitable rearrangement. If the file format has no default channel configuration, but the user knows 
the channel to speaker mapping in that particular case, he can instruct the encoder how to group the channels. 

The decoder has to reverse a possible channel rearrangement (chan_sort flag), by assigning each channel its 
original position as stored in chan_pos[]. 

11.6.1.6 Decoding of Frames 

A frame constitutes the top level payload (frame_data), i.e. the basic unit of audio data (see Table 11.2 for 
syntax and Table 11.10 for semantics). If block switching is used, each channel of a frame can be subdivided 
into up to 32 blocks. Otherwise, a block consists of all samples of a frame's channel. 
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11.6.1.7 Decoding of Blocks 

The block_data() structure contains the information about a single block (i.e. a segment of audio data from 
one channel). It specifies whether the block is a “normal” block (i.e. containing encoded audio samples), a 
constant block (all audio samples are the same) or a silence block (all audio samples are zero). Furthermore, 
the field “joint_stereo” indicates whether the block contains a difference signal (right minus left channel). Either 
the left or the right channel can be substituted by that difference signal. This also holds in the case of block 
switching, when the block length may be shorter than the frame length. 

For “normal” blocks, as shown in Figure 11.2, the block data basically comprises 

• the code indices, 

• the predictor order K, 

• the quantized and encoded predictor coefficients (or the RLS-LMS predictor parameters in the case of 
RLSLMS mode) 

• the LTP parameters in case of LTP mode, 

• and the Rice- or BGMC-coded residual values. 

If the block is further subdivided into sub-blocks for entropy coding (indicated by ec_sub), code parameters s 
and sx are transmitted for each sub-block (see section 11.6.6 for further explanations). 

In case of an adaptive predictor order (adapt_order), the order for the block is indicated (opt_order). There is 
also a flag (shift_lsbs) specifying whether all audio samples in the current block have some LSBs which are 
persistently zero. If this is the case, the number of empty LSBs is given in another field (shift_pos). This 
means that the encoder has shifted all sample values to the right by shift_pos+1 positions prior to prediction. 
Thus, the decoder has to shift the output sample values to the left by shift_pos+1 positions after the inverse 
prediction filter has been applied. If the prediction process uses samples from a previous block, a shifted 
version of these samples has to be used as input of both the prediction filter and the inverse prediction filter 
(i.e. in both the encoder and the decoder), even if the LSBs are not zero in the previous block. This is 
necessary in order to align the amplitude range of the predictor's input samples with the samples to be 
predicted. 

11.6.1.8 Interleaving 

Most uncompressed audio file formats store the two channels of a stereo signal as a sequence of interleaved 
samples (L1, R1, L2, R2, L3, R3, …). For multichannel data with M channels, each sample step comprises M 
interleaved samples, e.g. L1, R1, Lr1, Rr1, C1, LFE1, L2, … in the case of 5.1 material. Since the encoder builds 
blocks of samples for each channel, the decoded samples of all channels may have to be interleaved again 
before writing them to an output audio file. 

11.6.2 Block Switching 

If block_switching is enabled, each channel of a frame can be hierarchically subdivided into up to 32 blocks 
(see Figure 11.3). IECNORM.C
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Figure 11.3 – Block switching hierarchy 

Arbitrary combinations of blocks with NB = N, N/2, N/4, N/8, N/16, and N/32 are possible within a frame, as 
long as each block results from a subdivision of a superordinate block of double length. Therefore, a partition 
into N/4 + N/4 + N/2 is possible, whereas a partition into N/4 + N/2 + N/4 is not (Figure 11.4). 

 

Figure 11.4 – Block switching examples and corresponding bs_info codes 

The actual partition is signalled in an additional field bs_info (right column in Figure 11.4), whose length 
depends on the number of block switching levels (see Table 11.18). 

Table 11.18 – Block switching levels 

Maximum #levels Minimum NB #Bytes for bs_info 

0 N 0 

1 N/2 1 

2 N/4 1 

3 N/8 1 

4 N/16 2 

5 N/32 4 
 

The bs_info field consists of up to 4 bytes, where the mapping of bits with respect to the levels 1 to 5 is 
[(0)1223333 44444444 55555555 55555555]. The first bit is only used to signal independent block switching 
(independent_bs, see Table 11.2). In the example of Figure 11.4, there are three levels, thus the minimum 
block length is NB = N/8, and bs_info consists of one byte. Starting at the maximum block length NB = N, the 
bits of bs_info are set if a block is further subdivided. For the topmost example there is no subdivision at all, 
thus the code is (0)0000000. The frame in the second row is subdivided ((0)1…), where only the second block 
of length N/2 is further split ((0)101…) into two blocks of length N/4. If an N/4 block is split as in the fourth row, 
it is indicated in the following bits ((0)111 0100). 
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In each frame, bs_info fields are transmitted for all channel pairs and all single channels respectively, enabling 
independent block switching for different channels. While the frame length is identical for all channels, block 
switching can be done individually for each channel. If difference coding is used, both channels of a channel 
pair have to be switched synchronously, but other channel pairs can still use different block switching. 

However, if the two channels of a channel pair are not correlated with each other, difference coding will not 
pay off, and thus there will be no need to switch both channels synchronously. Instead, it may rather make 
sense to switch the channels independently. 

Typically, there will be a bs_info field for each channel pair and single channel in a frame, i.e. the two 
channels of a channel pair are switched synchronously. If they are switched independently, the first bit of 
bs_info is set to 1, and the information applies to the channel pair's first channel. In this case, another bs_info 
field for the second channel becomes necessary. 

An example for a three-channel file is shown in Figure 11.5. Short blocks are only interleaved if they belong to 
a channel pair that uses difference coding and therefore synchronized block switching (Figure 11.5, middle). 
This interleaving is necessary since in a channel pair a block of one channel (e.g. block 1.2) may depend on 
previous blocks from both channels (e.g. blocks 1.1 and 2.1), so these previous blocks have to be available 
prior to the current one. For channels whose blocks are switched independently, channel data is arranged 
separately (Figure 11.5, bottom). 

 

Figure 11.5 – Frame Structure: No block switching (top), synchronized block switching between 
channels 1 and 2 (middle), independent block switching (bottom) 

If joint_stereo is off, all channels are switched independently without explicit signalling. If joint_stereo is on, but 
block_switching is off, there is only one block per channel, thus interleaving is not required (Figure 11.5, top). 

11.6.3 Prediction 

This chapter describes the forward-adaptive prediction scheme. Block diagrams of the corresponding encoder 
and decoder parts are shown in Figure 11.6 and Figure 11.7.  
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Figure 11.6 – Encoder of the forward-adaptive prediction scheme 

The encoder consists of several building blocks. A buffer stores one block of input samples, and an 
appropriate set of parcor coefficients is calculated for each block. The number of coefficients, i.e. the order of 
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the predictor, can be adapted as well. The quantized parcor values are entropy coded for transmission, and 
converted to LPC coefficients for the prediction filter which calculates the prediction residual. The final entropy 
coding of the residual is described in subclause 11.6.6. 
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Figure 11.7 – Decoder of the forward-adaptive predition scheme 

The decoder is significantly less complex than the encoder, since no adaptation has to be carried out. The 
transmitted parcor values are decoded, converted to LPC coefficients, and are used by the inverse prediction 
filter to calculate the lossless reconstruction signal. The computational effort of the decoder mainly depends 
on the predictor orders chosen by the encoder. Since the average order is typically well below the maximum 
order, prediction with greater maximum orders does not necessarily lead to a significant increase of decoder 
complexity. 

If the prediction order K is adaptively chosen (adapt_order = 1), the number of bits used for signaling the 
actual order (opt_order = K) in each block is restricted, depending on both the global maximum order 
(max_order) and the block length NB: 

Bits = min{ceil[log2(max_order+1)], max[ceil(log2((NB>>3)-1)), 1]} 

Therefore, also the maximum order Kmax = 2Bits - 1 is restricted, depending on both the value of max_order and 
the block length (see Table 11.19). 

Table 11.19 – Maximum prediction order depending on block length and max_order 

max_order = 1023 max_order = 100 NB 

#Bits for opt_order Kmax  #Bits for opt_order Kmax  

> 4096 10 1023 7 100 

> 2048 9 511 7 100 

> 1024 8 255 7 100 

> 512 7 127 7 100 

> 256 6 63 6 63 

> 128 5 31 5 31 

> 64 4 15 4 15 

> 32 3 7 3 7 

> 16 2 3 2 3 

> 8 1 1 1 1 
 

The basic (short-term) prediction can be combined with long-term prediction (LTP, see subclause 11.6.4). An 
alternative prediction scheme based on backward-adaptive predictors is described in subclause 11.6.5. 
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11.6.3.1 Predictor Coefficients 

The transmission of the prediction filter coefficients is accomplished by using parcor coefficients γk, k = 1…K 
(where K is the order of the filter), which can be obtained e.g. by using the Levinson-Durbin algorithm. 

11.6.3.1.1 Quantization and encoding of parcor coefficients 

The first two parcor coefficients ( 1γ  and 2γ correspondingly) are quantized by using the following companding 
functions: 

( )
( )

1 1

2 2

64 1 2 1 ;

64 1 2 1 ;

a

a

γ

γ

⎢ ⎥= − + +⎣ ⎦
⎢ ⎥= − + − +⎣ ⎦

 

while the remaining coefficients are quantized using simple 7-bit uniform quantizers: 

( )64 ; 2 .k ka kγ= >⎢ ⎥⎣ ⎦  

In all cases the resulting quantized values ka  are restricted to the range [-64,63].  

Transmission of the quantized coefficients ka is done by producing residual values 

offsetk k kaδ = − , 

which, in turn, are encoded by using Rice codes as described in section 11.6.6.1. The corresponding offsets 
and parameters of Rice codes used in this process can be globally chosen from one of the sets in Table 11.20, 
where the table index (coef_table) is indicated in ALSSpecificConfig. If coef_table = 11, then no entropy 
coding is applied, and the quantized coefficients are transmitted with 7 bits each. In this case, the offset is 
always -64 in order to obtain unsigned values 64+= kk aδ  that are restricted to [0,127]. 

Table 11.20 – Rice code parameters used for encoding of parcor coefficients 

 coef_table = 00 coef_table = 01 coef_table = 10 

Coefficient # Offset Rice 
parameter 

Offset Rice 
parameter 

Offset Rice 
parameter 

1 -52 4 -58 3 -59 3 

2 -29 5 -42 4 -45 5 

3 -31 4 -46 4 -50 4 

4 19 4 37 5 38 4 

5 -16 4 -36 4 -39 4 

6 12 3 29 4 32 4 

7 -7 3 -29 4 -30 4 

8 9 3 25 4 25 3 

9 -5 3 -23 4 -23 3 

10 6 3 20 4 20 3 

11 -4 3 -17 4 -20 3 

12 3 3 16 4 16 3 

13 -3 2 -12 4 -13 3 
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14 3 2 12 3 10 3 

15 -2 2 -10 4 -7 3 

16 3 2 7 3 3 3 

17 -1 2 -4 4 0 3 

18 2 2 3 3 -1 3 

19 -1 2 -1 3 2 3 

20 2 2 1 3 -1 2 

2k-1, 10<k<65 0 2 0 2 0 2 

2k, 10<k<64 1 2 1 2 1 2 

k>127 0 1 0 1 0 1 
 

11.6.3.1.2 Reconstruction of the parcor coefficients 

First, Rice-decoded residual values kδ are combined with offsets (see Table 11.20) to produce quantized 

indices of parcor coefficients ka : 

+offsetk k ka δ= . 

Then, the reconstruction of the first two coefficients is done using: 

( )
( )

1 1 1

2 2 2

ˆpar 2 ;

ˆpar 2 ;

Q

Q

a

a

γ

γ

⎢ ⎥= = Γ⎣ ⎦
⎢ ⎥= = −Γ⎣ ⎦

 

where 2Q  represents a constant ( 20Q = ) scale factor required for integer representation of the 

reconstructed coefficients, and ( ).Γ  is a mapping described in the following table. 

Table 11.21 – Indices i and corresponding scaled parcor values Γ(i) for i = -64…63 

i Γ(i) i Γ(i) i Γ(i) i Γ(i) 

-64 -1048544 -32 -913376 0 -516064 32 143392 

-63 -1048288 -31 -904928 1 -499424 33 168224 

-62 -1047776 -30 -896224 2 -482528 34 193312 

-61 -1047008 -29 -887264 3 -465376 35 218656 

-60 -1045984 -28 -878048 4 -447968 36 244256 

-59 -1044704 -27 -868576 5 -430304 37 270112 

-58 -1043168 -26 -858848 6 -412384 38 296224 

-57 -1041376 -25 -848864 7 -394208 39 322592 

-56 -1039328 -24 -838624 8 -375776 40 349216 

-55 -1037024 -23 -828128 9 -357088 41 376096 

-54 -1034464 -22 -817376 10 -338144 42 403232 

-53 -1031648 -21 -806368 11 -318944 43 430624 

-52 -1028576 -20 -795104 12 -299488 44 458272 
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-51 -1025248 -19 -783584 13 -279776 45 486176 

-50 -1021664 -18 -771808 14 -259808 46 514336 

-49 -1017824 -17 -759776 15 -239584 47 542752 

-48 -1013728 -16 -747488 16 -219104 48 571424 

-47 -1009376 -15 -734944 17 -198368 49 600352 

-46 -1004768 -14 -722144 18 -177376 50 629536 

-45 -999904 -13 -709088 19 -156128 51 658976 

-44 -994784 -12 -695776 20 -134624 52 688672 

-43 -989408 -11 -682208 21 -112864 53 718624 

-42 -983776 -10 -668384 22 -90848 54 748832 

-41 -977888 -9 -654304 23 -68576 55 779296 

-40 -971744 -8 -639968 24 -46048 56 810016 

-39 -965344 -7 -625376 25 -23264 57 840992 

-38 -958688 -6 -610528 26 -224 58 872224 

-37 -951776 -5 -595424 27 23072 59 903712 

-36 -944608 -4 -580064 28 46624 60 935456 

-35 -937184 -3 -564448 29 70432 61 967456 

-34 -929504 -2 -548576 30 94496 62 999712 

-33 -921568 -1 -532448 31 118816 63 1032224 
 

Reconstruction of the 3rd and higher order coefficients is done using the formula 

( )6 7ˆpar 2 2 2 ; 2 .Q Q Q
k k ka kγ − −⎢ ⎥= = + >⎣ ⎦  

11.6.3.1.3 Conversion of reconstructed parcor coefficients into direct filter coefficients 

The scaled parcor coefficients are then converted to LPC coefficients using the following algorithm: 

short m, i, K, Q = 20; 
long *cof, *par, corr = 1 << (Q - 1); 
INT64 temp, temp2; 
for (m = 1; m <= K; m++) 
{ 
 for (i = 1; i <= m/2; i++) 
 { 
  temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q); 
  if ((temp > LONG_MAX) || (temp < LONG_MIN)) // Overflow: use different coefficients 
   return(1); 
  temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q); 
  if ((temp2 > LONG_MAX) || (temp2 < LONG_MIN)) // Overflow: use different coefficients 
   return(1); 
  cof[m-i] = (long)temp2; 
  cof[i] = (long)temp; 
 } 
 cof[m] = par[m]; 
} 
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Here, LONG_MAX = 231 − 1 and LONG_MIN = −(231). The resulting LPC coefficients cof are scaled by 220 as 
well. The scaling will be accounted for during the filtering process. 

11.6.3.2 Prediction Filter 

The calculation of the predicted signal has to be done in a deterministic way to enable identical calculation in 
both the encoder and the decoder, hence we cannot use floating point coefficients. Instead we employ an 
upscaled integer representation as shown in the last section. Since the coefficients are enlarged by a factor 
2Q = 220, also the predicted signal will be enlarged by the same factor. Thus, at the end of the filtering process, 
each sample of the predicted signal has to be scaled down. 

11.6.3.2.1 Encoder 

The following algorithm describes the calculation of the residual d for an input signal x, a predictor order K and 
LPC coefficients cof: 
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short n, N, k, K, Q = 20; 
long *x, *d, *cof, corr = 1 << (Q - 1); 
INT64 y; 
for (n = 0; n < N; n++) 
{ 
 y = corr; 
 for (k = 1; k <= K; k++) 
  y += (INT64)cof[k-1] * x[n-k]; 
 d[n] = x[n] + (long)(y >> Q); 
} 

 

As can be seen from the code, the predictor uses the last K samples from the previous block to predict the 
first sample of the current block. 

If the current block (or sub-block) is a channel’s first block in a random access frame, no samples from the 
previous block may be used. In this case, prediction with progressive order is employed, where the scaled 
parcor coefficients par are converted progressively to LPC coefficients cof inside the prediction filter. In each 
recursion, the current residual value d(n) and a new set of  n+1 LPC coefficients is calculated (first loop). After 
the first K residual values and all K coefficients are calculated, full-order prediction is used (second loop). 
Please note that the indices for par and cof start with 1 is this implementation. 

short m, n, N, i, k, K, Q = 20; 
long *x, *d, *cof, corr = 1 << (Q - 1); 
INT64 y, temp, temp2; 
for (n = 0; n < K; n++) 
{ 
 y = corr; 
 for (k = 1; k <= n; k++) 
  y += (INT64)cof[k] * x[n-k];  
 d[n] = x[n] + (long)(y >> Q);  
 m = n + 1; 
 for (i = 1; i <= m/2; i++) 
 { 
  temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q); 
  if ((temp > LONG_MAX) || (temp < LONG_MIN)) // Overflow: use different coefficients 
   return(1); 
  temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q); 
  if ((temp2 > LONG_MAX) || (temp2 < LONG_MIN)) // Overflow: use different coefficients 
   return(1); 
  cof[m-i] = (long)temp2; 
  cof[i] = (long)temp; 
 } 
 cof[m] = par[m]; 
} 
for (n = K; n < N; n++) 
{ 
 y = corr; 
 for (k = 1; k <= K; k++) 
  y += (INT64)cof[k] * x[n-k]; 
 d[n] = x[n] + (long)(y >> Q); 
} 

 

Only the first sample x(0) is transmitted directly, using a Rice code with s = resolution − 4 (i.e. s = 12 for 16-bit 
and s = 20 for 24-bit). The following two residual values d(1) and d(2) are coded with Rice codes which are 
related to the block’s first Rice parameter s[0] (see section 11.6.1.7). Depending on the entropy coder, the 
remaining residual values d(3) to d(K) are either Rice coded with s[0] or BGMC coded with s[0] and sx[0]. A 
summary of all codes is given in Table 11.22. 
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Table 11.22 – Code parameters for different sample positions 

Sample / Residual Code Parameter 

x(0) resolution − 4 

d(1) s[0] + 3 

d(2) s[0] + 1 

d(3) … d(K) s[0] (BGMC: sx[0]) 

 

11.6.3.2.2 Decoder 

The algorithm for the calculation of the original signal in the decoder is nearly identical with the encoder’s 
algorithm, except for the last instruction: 

short n, N, k, K, Q = 20; 
long *x, *d, corr = 1 << (Q - 1); 
INT64 y; 
for (n = 0; n < N; n++) 
{ 
 y = corr; 
 for (k = 1; k <= K; k++) 
  y += (INT64)cof[k-1] * x[n-k]; 
 x[n] = d[n] - (long)(y >> Q); 
} 

 

In the case of random access, prediction with progressive order is used. The algorithm for the calculation is 
also nearly identical with the encoder’s algorithm, except for the two lines where x is calculated. Again, the 
indices for par and cof start with 1. 

short m, n, N, i, k, K, Q = 20; 
long *x, *d, *cof, corr = 1 << (Q - 1); 
INT64 y, temp, temp2; 
for (n = 0; n < K; n++) 
{ 
 y = corr; 
 for (k = 1; k <= n; k++) 
  y += (INT64)cof[k] * x[n-k];  
 x[n] = d[n] - (long)(y >> Q);  
 m = n + 1; 
 for (i = 1; i <= m/2; i++) 
 { 
  temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q); 
  temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q); 
  cof[m-i] = (long)temp2; 
  cof[i] = (long)temp; 
 } 
 cof[m] = par[m]; 
} 
for (n = K; n < N; n++) 
{ 
 y = corr; 
 for (k = 1; k <= K; k++) 
  y += (INT64)cof[k] * x[n-k]; 
 x[n] = d[n] - (long)(y >> Q); 
} 
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If joint channel coding has been used by the encoder, the decoded signal x might be a difference signal. In 
this case further processing has to be done to obtain the original signal (see next section). 

11.6.4 Long-term prediction (LTP) 

11.6.4.1 LTP gain and lag 

If LTPenable is on, 5-tap gain values ( )iρ  and a lag value τ  are decoded. The gain values ( )iρ  are 
reconstructed from the Rice coded indices listed in Table 11.23, Table 11.24, and Table 11.25. 

Table 11.23 – Reconstruction values and the Rice code for gain of ( )0ρ  

gain values  
( )0ρ *128 

index prefix sub-code 

0 0 0 00 

8 1 0 01 

16 2 0 10 

24 3 0 11 

32 4 10 00 

40 5 10 01 

48 6 10 10 

56 7 10 11 

64 8 110 00 

70 9 110 01 

76 10 110 10 

82 11 110 11 

88 12 1110 00 

92 13 1110 01 

96 14 1110 10 

100 15 1110 11 
 

Table 11.24 – Reconstruction values and the Rice code for gain of ( )1±ρ  

gain values  
( )1±ρ *128 

index prefix sub-code 

0 0 0 00 

-8 1 0 01 

8 2 0 10 

-16 3 0 11 

16 4 10 00 

-24 5 10 01 

24 6 10 10 

-32 7 10 11 
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32 8 110 00 

-40 9 110 01 

40 10 110 10 

-48 11 110 11 

48 12 1110 00 

-56 13 1110 01 

56 14 1110 10 

-64 15 1110 11 
 

Table 11.25 – Reconstruction values and the Rice code for gain of ( )2±ρ  

gain values  
( )2±ρ *128 

index prefix sub-code 

0 0 0 0 

-8 1 0 1 

8 2 10 0 

-16 3 10 1 

16 4 110 0 

-24 5 110 1 

24 6 1110 0 

-32 7 1110 1 

32 8 11110 0 

-40 9 11110 1 

40 10 111110 0 

-48 11 111110 1 
 

The transmitted relative lag value is the actual value minus the start lag value. It is directly coded by natural 
binary coding with 8 to 10 bits, depending on the sampling rates. Actual lag values are shown in Table 11.26, 
where “optP” denotes the actual prediction order for short-term prediction.  

Table 11.26 – Search range of lag τ  

search range of ( )iτ  start end 

Freq < 96 kHz optP+1 optP+256 

Freq >= 96 kHz optP+1 optP+512 

Freq >= 192 kHz optP+1 optP+1024 
 

11.6.4.2 LTP synthesis procedure 

Provided both lag and gain parameters are decoded, the following recursive filtering operation is carried out: 

( ) ( ) ( ) ( )jidjidid
j

+−+= ∑ −=
τρ2

2
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For insuring perfect reconstruction, the process should be strictly defined. The pseudo-code for this filter at the 
decoder is as follows:  

 INT64 u; 
 for (smpl=0 ;smpl<end; smpl++) 
 { 
  for (u=1<<6, tap=-2; tap<=2; tap++) 
  { 
   u += (INT64)LTPgain[tap]*d[smpl-lag+tap]; 
  } 
  d[smpl] += (long)(u>>7);  
 } 
 

Here, d is the residual signal (which is subsequently fed in the short-term synthesis filter, see section 11.6.3), 
LTPgain is the gain value ( )iρ *128, and lag is the lag value τ . 

For simple combination with the adaptive block switching, all values of the residual signal, d(i) in the previous 
block are “0”. Associated with the synthesis filtering process above, there is a pseudo-code for the analysis 
filtering process at the encoder. Note this process should also be normative for the purpose of the perfect 
reconstruction. In this pseudo-code, the difference between the encoder and decoder appears in the last line: 
Input and output are common at the decoder, while they are different at the encoder.   

 INT64 u; 
 for (smpl=0 ;smpl<end; smpl++) 
 { 
  for (u=1<<6, tap=-2; tap<=2; tap++) 
  { 
   u += (INT64)LTPgain[tap]*d[smpl-lag+tap]; 
  } 
  dout[smpl] = d[smpl]-(long)(u>>7);  
 } 
 

Here, d is the residual of short-term prediction, and dout is the LTP residual. 

 

11.6.5 RLS-LMS predictor mode 

11.6.5.1 RLS-LMS predictor parameters 

The parameters of the RLS-LMS predictor are signaled in RLSLMS_extension() when ext_mode = 1. The 
values of the predictor parameters are listed in the following tables. 

Table 11.27 – RLS predictor order 

index RLS_order 

0 0 

1 2 

2 4 

3 6 

4 8 

5 10 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538


ISO/IEC 14496-3:2005/Amd.2:2006(E) 

© ISO/IEC 2006 – All rights reserved 49

6 12 

7 14 

8  16 

9 18 

10 20 

11 22 

12 24 

13 26 

14 28 

15 30 

 

Table 11.28 – Number of LMS predictors in cascade 

index LMS_stage 

0 1 

1 2 

2 3 

3 4 

4 5 

5 6 

6 7 

7 8 

 

Table 11.29 – LMS predictor order 

index LMS_order 

0 2 

1 3 

2 4 

3 5 

4 6 

5 7 

6 8 

7 9 

8 10 

9 12 

10 14 

11 16 

12 18 

13 20 
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14 24 

15 28 

16 32 

17 36 

18 48 

19 64 

20 80 

21 96 

22 128 

23 256 

24 384 

25 448 

26 512 

27 640 

28 768 

29 896 

30 1024 

31 reserved 

 

Table 11.30 – LMS predictor stepsize 

index LMS_mu 

0 1 

1 2 

2 3 

3 4 

4 5 

5 6 

6 7 

7 8 

8 9 

9 10 

10 11 

11 12 

12 13 

13 14 

14 15 

15 16 

16 18 

17 20 
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18 22 

19 24 

20 26 

21 28 

22 30 

23 35 

24 40 

25 45 

26 50 

27 55 

28 60 

29 70 

30 80 

31 100 

 

When there is a change in the RLS or LMS filter order, the filter state (history buffers, weights, and the RLS 
inverse auto-correlation matrix P) needs to be reset. The next session describes how to reset and re-initialize 
the filter parameters. On detecting a filter order change, the decoder will automatically re-initialize its filters. 

When the parameters for RLS-LMS predictor are not signalled, the parameters from the previous frame will be 
used.  

11.6.5.2 RLS-LMS predictors 

11.6.5.2.1 Initialization of the RLS_LMS predictor 

The RLS and LMS adaptive filters is initialized at the start of the encoding or decoding process, and also at 
the start of each Random Access (RA) frame. The following pseudo code illustrates the initialization routine of 
the RLS_LMS predictor. 

#define PFACTOR 115292150460684 
#define LONG_MAX 0x7fffffff 
#define LONG_MIN 0x80000000 
#define STEPSIZE 16777   // in 8.24 format for 0.001 
#define ROUND1(x)  ((long)(x+8)>>4)  
#define ROUND2(x)  ((INT64) ( (INT64) x + 1i64 )>>1) 
 

RLS_filter_weight:  Weights of the RLS filter 
LMS_filter_weight:  Weights of the LMS filter 
P:      Inverse auto-correlation matrix of the RLS filter    
TOTAL_FILTER_LEN: Total buffer size = DPCM_order + RLS_order+ LMS_order + Combiner_order   

 
void predict_init() 
{ 
 short i,j,ch; 
 for (i=0; i<rls_filter_len; i++) 
 { 
  RLS_filter_weight[i] = 0;  // RLS filter weight initialized to 0  
 } 
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 for (j=LMS_START;j<number of LMS_stages;j++) 
 { 
  for (i=0; i<filter_len[j]; i++) 
  { 
   LMS_filter_weight[j][i] = 0; // clear LMS filters weight to 0 
  } 
 } 
 for (i=0; i<number of filter stages; i++) 
 { 
  w_final[i] = (long) 1<<24;     // 1.0 in 7.24 format 
 } 
 // Joint-stereo RLS init 
 for (i=0; i<rls_filter_len*rls_filter_len;i++) 
 { 
  P[rlslms_ptr->channel][i]=0; 
 } 
 for (i=0; i<rls_filter_len; i++) 
 { 
  P[i*rls_filter_len+i]=(INT64) (PFACTOR);  // initialize to 0.0001 in 4.60 format  
 } 
 for(j=0;j<TOTAL_FILTER_LEN;j++) buf[j] = 0; // reset all lms, rls, dpcm, and linear combiner buffers 
} 
 
 

11.6.5.2.2 Filtering operation in the RLS_LMS predictor 

The RLS-LMS predictor consists of a DPCM predictor, a RLS predictor, and various numbers of LMS 
predictors. In each of these predictors, a prediction is generated for every input sample by linearly combining 
the past samples. The DPCM predictor uses the previous sample x[n-1] as the prediction of the current 
sample x[n]. The following pseudo code illustrates how the prediction of the current sample x[n] is generated 
in an order-M LMS predictor.   

 INT64 y; 
 // Filter output 
 prediction = 0; 
 for (i=0;i<M;i++) 
 { 
  prediction += ((INT64) w[i]) *  x[n-i];  // 8.24 * 24.0  -> 32.24 
 } 
 prediction >>= 20;   // change y to 28.4 format  
 if (prediction > 0x7ffffff) y = 0x7ffffff;   // clip to 24.4 format 
 if (prediction < -0x7ffffff) y = -0x7ffffff;    
 

The following pseudo code illustrates how the prediction of the current sample x[n] is generated in an order-M 
RLS predictor. 

 INT64 y; 
 // Filter output 
 prediction = 0; 
 for (i=0;i<M;i++) 
 { 
  prediction += ((INT64) w[i]) *  x[n-i];  // 14.16 * 24.0  -> 28.16 
 } 
 prediction >>= 12;   // change y to 28.4 format  
 if (prediction > 0x7ffffff) y = 0x7ffffff;   // clip to 24.4 
 if (prediction < -0x7ffffff) y = -0x7ffffff;    
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The linear combiner multiplies weight w_final[i] to the predictions of each predictor and the results are 
summed up. The result of the summation, after rounded to integer, is the output prediction of the RLS-LMS 
predictor. This prediction is subtracted from the current input sample to generate a prediction error. Note that 
the predictors and prediction errors are computed in 24.4 fixed-point format. 

 short i; 
 INT64 y,e; 
 INT64 temp; 
 long wchange; 
      prediction_final = 0; 
 for (i=0; i<STAGE; i++) 
  prediction_final += (INT64) w_final[i]* prediction[i];  
 prediction_final >>= 24 ;                 
 assert(y<LONG_MAX && y>LONG_MIN); 
 e = (x<<4) /*convert to 24.4 or 16.4*/– prediction_final; 

 

For the DPCM and RLS predictors, the linear combiner weights w_final[i] are fixed at 0.001 (16777 in 8.24 
format). The rest of the weights are updated using the following sign-sign LMS algorithm 

 if (prediction[i]*e >0) 
 { 
  temp = w_final[i]; 
  if (temp<LONG_MAX) temp += STEPSIZE*LMS_stepsize; 
  w_final[i] = (long) temp; 
 } 
 else if (prediction[j]*e<0) 
 { 
  temp = w_final[i]; 
  if (temp>LONG_MIN) temp -= STEPSIZE*LMS_stepsize; 
  w_final[i] = (long) temp; 
 } 

 

The linear combiner weights are clipped at values of LONG_MAX and LONG_MIN (0x7fffffff and 0x80000000 
in 8.24 format, respectively). 

In the encoder, the prediction error is produced by subtracting the rounded (to 24.0 format) prediction 
prediction_final from the input PCM sample x as follows: 

residual = x – (long)((prediction_final+8)>>4); 

where residual is the prediction error which will be further coded by the entropy coder.  

In the decoder, a reverse process is performed to restore the original PCM sample  

x = residual + (long)((prediction_final+8)>>4); 
 
In the RLS-LMS predictor, the DPCM predictor has fixed order and weight of 1. The weights of the RLS and 
LMS predictors are updated continuously until they are resetted due to there is a RA frame or a change of 
filter parameters. 
 

11.6.5.2.3 Joint-stereo RLS and mono RLS 

A single channel element (SCE) is processed by the mono RLS predictor whose history buffer is updated from 
samples within the channel. 

A channel pair element (CPE) is processed by the joint-stereo RLS predictor which generates predictions of 
each channel by using samples from both channels. Therefore, the history buffers of the predictor contain 
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interleaved past samples from both the left and the right channels. The joint-stereo RLS predictor maintains 
two sets of P matrix and filter weights, one for each channel. If the Joint-Stereo flag is not set in the ALS 
header, mono RLS is used for each independent channel. For a CPE, if both channels contain only constant 
or zero, the prediction filter is bypassed for that frame. 

When mono_block is set to 1 for a CPE, it is coded as two individual channels L and L-R, where the L channel 
is coded as a SCE by the mono predictor (DPCM + mono_RLS + LMS), whereas samples of the L-R channel 
are directly sent to the entropy coder.   

11.6.5.2.4 Adaptation of RLS filter weights 

The RLS filter weights are updated by the following pseudo code, which has three main stages: computing the 
gain vector k[i], updating the filter weight w[i], and updating the matrix P. 

P: Inverse auto-correlation matrix 
x:  Input PCM sample 
y:  Prediction  
w:  Filter weights 
M:  Filter order 
bufl:  History buffer containing the past M input samples 
lambda: Forgetting factor  
 
/* Routine to re-initialize the P matrix */ 
void reinit_P(INT64 *Pmatrix) 
{ 
 short i; 
 // Joint-stereo RLS init 
 for (i=0; i<rls_filter_len*rls_filter_len;i++) 
 { 
  Pmatrix[i]=0; 
 } 
 for (i=0; i<rls_filter_len; i++) 
 { 
  Pmatrix[i*rls_filter_len+i]=(INT64) (PFACTOR); // initialize to 0.0001 in 4.60 format  
 }  
} 
 
void UpdateRLSFilter(long *x, long y, W_TYPE *w, short M, long *bufl, P_TYPE *P)  
{ 
 short i,j,shift,vscale,dscale; 
 INT64 k[256]; 
 INT64 wtemp,wtemp2; 
 INT64 htemp,ir,ltemp,htemp1,htemp2; 
 long vl[256]; 
 UINT64 utemp,ltemp1; 
 long lr,e,kscale,shifted_e; 
 
 // get the error by substracting current sample x with the predictor y 
 e = (*x-y);  
   
 // Step1. Compute gain vector k 
 MulMtxVec(P, bufl, M, vl, &vscale);  // (vl, vscale)  = matrix P * matrix bufl 
   
 wtemp = MulVecVec(bufl, vl, M, &dscale);  // wtemp = bufl  
 assert((vscale+dscale)<64); 
 i = 0; 
  
      while(wtemp> LONG_MAX/4 && wtemp!=0) {wtemp>>=1;i++;} 
 i += vscale + dscale; 
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 if (i<=60) 
  wtemp += (1i64<<(60-i)); 
 else 
 { 
  reinit_P(P);   // in case P is round to zero, re-initialize P  
 } 
 wtemp2 = wtemp; 
 assert(i<90); 
 if (wtemp == 0) 
 { 
  ir=1L<<30; 
 } 
 else if ((90-i)>62) 
 { 
  shift = 90-(i)-62; 
  ir = (1i64<<62)/ (wtemp2) ; 
  if (shift>32) 
   ir = 1L<<30; 
  else if (shift>=0) 
   ir <<= shift; 
 } 
 else // i>28 
 { 
  if ((90-i)>32) 
   ir = (1i64<<(90-(i)))/(wtemp2); 
 } 
 lr = (long) ir; 
 htemp1 = 0; 
 for (i=0; i<M; i++) 
 { 
  htemp = (INT64) vl[i] * lr; 
  if (vscale>=12) 
  { 
   k[i] = htemp<<(vscale-12); 
   k[i] = ROUND2(k[i]); 
  } 
  else     
  { 
   k[i] = htemp>>(11-vscale); 
   k[i] = ROUND2(k[i]) ; 
  } 
  htemp1 |= (k[i]>0 ? k[i]:-k[i]); 
 } 
 dscale = fast_bitcount(htemp1);  // count how many significant bit htemp1 has 
if (dscale>30) 
 { 
  dscale -= 30; 
  for (i=0; i<M; i++) 
  { 
   k[i] >>= dscale;  
  } 
 } 
 else 
 { 
  dscale = 0; 
 } 
 
 // Step2. Update weight 
 shifted_e = e>>3; 
 for (i=0; i<M; i++) 
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 { 
  htemp1 = (INT64) k[i] * shifted_e; 
  htemp = (htemp1>>(30-dscale)); 
  wtemp = w[i] + ROUND2(htemp); 
  w[i] = (long) wtemp; 
 } 
 vscale += dscale; 
 
 // Step3. Update P matrix 
 for (i=0; i<M; i++)      // Lower triangular 
  for (j=0; j<=i; j++) 
  { 
   htemp2 = (INT64) k[i] * vl[j]; 
   wtemp = htemp2>>(14-vscale); 
   P[i*M+j] -= wtemp; 
   if (P[i*M+j]>=_I64_MAX/2) { reinit_P(P); break; } 
   if (P[i*M+j]<=_I64_MIN/2) { reinit_P(P); break; } 
   wtemp = P[i*M+j]/lambda;  
   P[i*M+j] += wtemp; 
  } 
 for (i=1; i<M; i++)      // Upper triangular 
  for (j=0; j<i; j++) 
   P[j*M+i] = P[i*M+j]; 
 // Buffer update 
 buffer_update(*x>>4,bufl,M); 
 *x = (long) e; 
} 

 
The following routine multiplies an input vector x to the matrix P and generates an output vector yi, which is 
normalized to 28.0 format with a scale factor vscale. 

  
void MulMtxVec(P_TYPE *P, long *x, short M, long *yi, short *vscale) 
{ 
 P_TYPE *ptr; 
 short i,j,cc,pscale,nscale; 
 INT64 htemp,yh[256],ttemp,imax,htemp1,PT[500],ya[256],ttemp1; 
 UINT64 yl[256],ltemp,ltemp1; 
 *vscale = 0; 
 imax = 0; 
 htemp1 = 0; 
 for(i=0;i<M;i++) 
 { 
  ptr = P; 
  ptr += i*M; 
  for(j=0;j<=i;j++) 
  { 
   htemp1 |= (*ptr> 0 ? *ptr : - *ptr);  
   ptr++; 
  } 
 } 
 pscale = 63-fast_bitcount(htemp1); // bit_count counts number of significant bits htemp1 has 
 ttemp1 = 0; 
 for (i=0; i<M; i++) 
 { 
  ptr = P; 
  ptr += i*M; 
  ya[i]=0; 
  for (j=0; j<M; j++) 
  { 
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   ya[i] += (INT64) (((*ptr++<<pscale)+0x0000000080000000i64)>>32) * x[j]; 
  } 
  ttemp1 |= (ya[i]>0 ? ya[i]:-ya[i]); 
 } 
 nscale = fast_bitcount(ttemp1); 
 if (nscale>28) 
 { 
  nscale -= 28; 
  for(i=0;i<M;i++) 
  { 
   ya[i]>>=nscale;  
   yi[i] = ya[i];  
  } 
  *vscale = nscale-pscale; 
 } 
 else 
 { 
  nscale -=28; 
  for(i=0;i<M;i++) 
  { 
   yi[i] = ya[i]; // & 0x00000000ffffffffi64; 
  } 
  *vscale = -pscale; 
 } 
} 
 

The following routine calculates the inner product of two vector x and y and normalizes the output value z to 
60.0 format with a scale factor scale. 

 
INT64 MulVecVec(long *x, long *y, short M, short *scale) 
{ 
 short i; 
 INT64 z,zh,temp; 
 *scale = 0; 
 zh = 0; 
 for (i=0; i<M; i++) 
 { 
  zh += (INT64) (y[i])* x[i]; 
 } 
 temp = zh ; 
 temp = (temp>0 ? temp:-temp); // drop the sign 
 *scale = fast_bitcount(temp); 
 if (*scale>28) 
 { 
   *scale -= 28; // this is the amount of excess 64 bit 
   assert(*scale<32); 
   z = (zh<<(32-(*scale-1))); 
   z = ROUND2(z); 
 } 
 else 
 { 
  z = (zh<<32); // shift to upper 32 bit 
 } 
 assert(z<_I64_MAX/2 && z>_I64_MIN/2); 
 return(z); 
} 
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11.6.5.2.5 Adaptation of LMS filter weights 

The LMS filter weights are updated by the normalized-LMS algorithm (NLMS). The pseudo code is given 
below. 
 
x:   Input PCM sample 
w:   Filter weights 
M:   Filter order 
buf:  History buffer containing the past M input samples 
mu:  Stepsize 
pow:  Power of the samples in the history buffer 
 
// NLMS weight update 
void update_predictor(long *x, long y, BUF_TYPE *buf, W_TYPE *w, short M, short mu, INT64 *pow) 
{ 
 short i,j; 
 INT64 fact; 
 INT64 wtemp,e,wtemp1; 
 long temp; 
 
 // Calculation of Prediction error 
 e =  (*x - y);   // y is 24.4 format change x to 24.4 
 
 // Weight update 
 
 wtemp1 = wtemp = ((INT64) mu * (*pow>>7) ); 
 i = 0; 
 while(wtemp> LONG_MAX) {wtemp>>=1;i++;} 
 fact = ((INT64) e<<(29-i))/(INT64)((wtemp1 + 1)>>i); 
                    
 for (j=0; j<M; j++) 
 { 
  w[j] = w[j] + (long)  (((INT64) buf[j]* (INT64) fact + 0x8000)>>16); 
 } 
  
 // NLMS power update 
     temp = (*x)>>4;            // x is in 28.4 format need to change to 28.0 
 *pow -= (INT64) buf[0] * (INT64) buf[0]; 
 *pow += (INT64) temp * temp ; 
 if (*pow>_I64_MAX) *pow = _I64_MAX; 
  
 // Buffer update – add in the current sample temp 
 buffer_update(temp,buf,M); 
 
 // Predictor output 
 *x = (long) e ;  // overwrite the current sample with the error for next filter stage 
} 
 

11.6.5.3 Random Access in RLSLMS mode 

In the Random Access (RA) frame, the predictor resets all its filters to their initial states to ensure 
synchronized encoding and decoding.  For a RA frame of length M, the first M/32 samples are not updated 
into the LMS history buffer. The adaptation of the LMS filter weights starts only after the first M/32 samples.  In 
an RA frame, the RLS filter uses the  forgetting factor RLS_lambda_ra for the first 300 samples, after that, the 
forgetting factor RLS_lambda is used. 

 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538


ISO/IEC 14496-3:2005/Amd.2:2006(E) 

© ISO/IEC 2006 – All rights reserved 59

11.6.6 Coded Residual 

There are two possible modes for transmission of the prediction residual: A fast encoding scheme employing 
simple Rice codes (see subclause 11.6.6.1), and a more complex and efficient scheme using block Gilbert-
Moore codes (BGMC, see subclause 11.6.6.2). 

11.6.6.1 Rice Codes 

When the bgmc_mode flag in the ALSSpecificConfig is set to 0, the residual values are entropy coded using 
Rice codes. The chosen syntax for codeword generation is specified in the following. 

A Rice code is defined by a parameter s ≥ 0. For a given value of s, each codeword consists of a p-bit prefix 
and an s-bit sub-code. The prefix is signalled using p−1 “1”-bits and one “0”-bit, with p depending on the 
coded value. For a signal value x and s > 0, p−1 is calculated as follows (“÷” means integer division without 
remainder): 

 
⎩
⎨
⎧

<÷−−
≥÷

=−
−

−

0for 2)1(
0for 21 1

1

xx
xxp s

s
 

For s = 0, we use a modified calculation: 

 
⎩
⎨
⎧

<−−
≥

=−
0for 12
0for 2

1
xx
xx

p  

The sub-code for s > 0 is calculated as follows: 

 
⎩
⎨
⎧

<−−−−
≥+−−

=
−

−−

0for )1(2)1(
0for 2)1(2

1

11

xpx
xpxsub s

ss
 

For s = 0 there is no sub-code but only the prefix, thus the prefix and the codeword are identical. Permitted 
values are s = 0…15 for a sample resolution ≤ 16 bits, and s = 0…31 for a sample resolution > 16 bits. 

Table 11.31 and Table 11.32 show examples for the Rice code with s = 4. Table 11.33 shows the special Rice 
code with s =  0. 

Table 11.31 – Rice code with s = 4. The xxxx bits contain the 4-bit sub-code sub 

Values p Prefix Codeword 

−8…+7 1 0 0xxxx 

−16…−9; +8…+15 2 10 10xxxx 

−24…−17; +16…+23 3 110 110xxxx 

−32…−25; +24…+31 4 1110 1110xxxx 

−40…−33; +32…+39 5 11110 11110xxxx 

 

Table 11.32 – Sub-codes of the Rice code with s = 4 for the first three prefixes 

Values (p = 1) Values (p = 2) Values (p = 3) sub-code (xxxx) 

−8 −16 −24 0111 

−7 −15 −23 0110 
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−6 −14 −22 0101 

−5 −13 −21 0100 

−4 −12 −20 0011 

−3 −11 −19 0010 

−2 −10 −18 0001 

−1 −9 −17 0000 

0 8 16 1000 

1 9 17 1001 

2 10 18 1010 

3 11 19 1011 

4 12 20 1100 

5 13 21 1101 

6 14 22 1110 

7 15 23 1111 
 

Table 11.33 – ”Special” Rice code with s = 0 (prefix and codeword are identical) 

Values p Prefix Codeword 

0 1 0 0 

−1 2 10 10 

+1 3 110 110 

−2 4 1110 1110 

+2 5 11110 11110 
 

For each block of residual values, either all values can be encoded using the same Rice code, or, if the 
sb_part flag in the file header is set, the block can be divided into four sub-blocks, each encoded with a 
different Rice code. In the latter case, the ec_sub flag in the block header indicates whether one or four blocks 
are used. 

While the parameter s[i = 0] of the first sub-block is directly transmitted with either 4 bits (resolution ≤ 16 bits) 
or 5 bits (resolution > 16 bits), only the differences of following parameters s[i > 0] are transmitted. These 
differences are additionally encoded using appropriately chosen Rice codes again (see Table 11.34). 

Table 11.34 – Coding of Rice code parameters s[i] 

Code parameter  
(i = sub-block index) 

Difference Rice code parameter 
used for differences 

s[i] (i>0) s[i] - s[i-1] 0 
 

There are different ways to determine the optimal index s for a given set of data. It is up to the encoder to 
select suitable Rice codes depending on the statistics of the residual. 
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11.6.6.2 BGMC coding mode 

When the bgmc_mode flag in the file header is set to 1, the residual values are split into MSB, LSB and tail 
components, which are then encoded using block Gilbert-Moore, fixed-length, and Rice codes 
correspondingly. 

Furthermore, a different sub-block partition scheme is used. If the sb_part flag in the file header is set, each 
block can be divided in into 1, 2, 4, or 8 sub-blocks, where the actual number is indicated by a 2-bit ec_sub 
field in the block header. If sb_part is not set, each block can only be divided into 1 or 4 sub-blocks, and the 
actual number is indicated by a 1-bit ec_sub field. 

The subsequent sections 11.6.6.2.1 – 11.6.6.2.4 describe details of the BGMC coding process. 

11.6.6.2.1 Additional Parameters 

In addition to the code parameter s (used to construct Rice codes), the BGMC encoder/decoder relies on the 
following quantities: 

The number of lowest-significant bits (LSBs) k of residuals to be transmitted directly: 

0, if
, if

s
k

s s
≤ Β⎡

= ⎢ −Β > Β⎣
, 

where s is the Rice parameter, and B is a parameter depending on the sub-block size N: 

( )2log 3 1NΒ = − >>⎡ ⎤⎢ ⎥ ; 

where 0 ≤ B ≤ 5 (values out of bounds are clipped to the bounds). The number of missing (in accessing 
frequency tables) bits delta: 

5delta s k= − + , 

and finally, the index of a frequency table sx to be used for encoding/decoding of MSBs. 

The parameter sx is transmitted in addition to s for each sub-block, where the 'complete' BGMC parameter 
can be represented as S = 16⋅s + sx. Similar to the Rice coding mode, the first parameter is directly 
transmitted, while for subsequent parameters only encoded differences are transmitted (see Table 11.35). 

Table 11.35 – Coding of BGMC code parameters S[i] = 16⋅s[i]+sx[i] 

Code parameter (i = 
sub-block index) 

Difference Rice code parameter 
used for differences 

S[i] (i>0) S[i] - S[i-1] 2 
 

11.6.6.2.2 Splitting Residual Values on MSBs, LSBs, and Tails 

The process of obtaining sign-removed and clipped MSB values, LSBs or tails corresponding to the residual 
samples (res[i]) can be described as follows:  

 for (i = 1; i <= N; i++) 
 { 
  long msbi = res[i] >> k;     // remove lsbs 
  if (msbi >= max_msb[sx][delta]) {  // positive tail 
   msb[I] = tail_code[sx][delta];  
   tail[i] = res[i] - (max_msb[sx][delta] << k);  
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  } else 
  if (msbi <= -max_msb[sx][delta]) {  // negative tail 
   msb[I] = tail_code[sx][delta];  
   tail[i] = res[i] + ((max_msb[sx][delta] - 1) << k); 
  } else {      // normal msb range 
   if (msbi >= 0) msbi = msbi * 2; 
   else     msbi = -msbi * 2 –1; // remove sign 
   if (msbi >= tail_code[sx][delta]) 
    msbi ++;       // skip tail code  
   msb[i] = msbi;      // msb and lsb values 
   lsb[i] = res[i] & ((1<<k)-1);   // to encode   
  }  
 } 
 

The maximum absolute values of MSBs and tail codes used in this algorithm (arrays max_msb[] and 
tail_code[] correspondingly) are specified in the following tables.  

Table 11.36 – Maximum/minimum values of residual MSBs 

         delta 

      sx 

0 1 2  3 4 5 

0 ±64 ±32 ±16 ±8 ±4 ±2 

1 ±64 ±32 ±16 ±8 ±4 ±2 

2 ±64 ±32 ±16 ±8 ±4 ±2 

3 ±96 ±48 ±24 ±12 ±6 ±3 

4 ±96 ±48 ±24 ±12 ±6 ±3 

5 ±96 ±48 ±24 ±12 ±6 ±3 

6 ±96 ±48 ±24 ±12 ±6 ±3 

7 ±96 ±48 ±24 ±12 ±6 ±3 

8 ±96 ±48 ±24 ±12 ±6 ±3 

9 ±96 ±48 ±24 ±12 ±6 ±3 

10 ±96 ±48 ±24 ±12 ±6 ±3 

11 ±128 ±64 ±32 ±16 ±8 ±4 

12 ±128 ±64 ±32 ±16 ±8 ±4 

13 ±128 ±64 ±32 ±16 ±8 ±4 

14 ±128 ±64 ±32 ±16 ±8 ±4 

15 ±128 ±64 ±32 ±16 ±8  ±4 
 

Table 11.37 - Tail Codes. 

         delta 

     sx 

0 1 2  3 4 5 

0 74 44 25 13 7 3 

1 68 42 24 13 7 3 

2 58 39 23 13 7 3 

3 126 70 37 19 10 5 
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4 132 70 37 20 10 5 

5 124 70 38 20 10 5 

6 120 69 37 20 11 5 

7 116 67 37 20 11 5 

8 108 66 36 20 10 5 

9 102 62 36 20 10 5 

10 88 58 34 19 10 5 

11 162 89 49 25 13 7 

12 156 87 49 26 14 7 

13 150 86 47 26 14 7 

14 142 84 47 26 14 7 

15 131 79 46 26 14  7 
 

The inverse (decoding) process, reconstructing the original residual samples (res[i]) based on their MSBs, 
LSBs or tails can be described as follows:  

for (i = 1; i <= N; i++) 
{ 
 if (msb[i] == tail_code[sx][delta]) { 
  if (tail[i] >= 0)                // positive tail  
   res[i] = tail[i] + (abs_max_x) << k; 
  else                          // negative tail 
   res[i] = tail[i] -(abs_max_x - 1) << k; 
 } else { 
  int msbi = msb[i]; 
  if (msbi > tail_code[sx][delta]) 
   msbi --;               // skip tail code 
  if (msbi & 1) 
   msbi = (-msbi –1)/2; // remove sign 
  else 
   msbi = msbi/2; 
  res[i] = (msbi << k) | lsb[i]; // add lsbs 
 }  
} 

 

11.6.6.2.3 Encoding and Decoding of MSBs 

The clipped MSBs of the residual samples are block-coded using Gilbert-Moore codes constructed for a 
distribution (cumulative frequency table) indexed by the parameter sx.  

The encoding process consists of a) initialising the state of the block Gilbert-Moore (arithmetic) encoder, b) 
sequential encoding of all MSB values in all sub-blocks, and c) flushing the state of the encoder.  

C-language specifications of the corresponding functions of the encoder are given below.  

#define FREQ_BITS   14     // # bits used by freq. counters    
#define VALUE_BITS  18       // # bits used to describe code range  
#define TOP_VALUE   0x3FFFF // largest code value    
#define FIRST_QTR   0x10000   // first quarter    
#define HALF        0x20000   // first half         
#define THIRD_QTR   0x30000   // third quarter       
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// encoder state variables: 
static unsigned long high, low, bits_to_follow; 
 
// start encoding: 
void bgmc_start_encoding (void) 
{ 
    high = TOP_VALUE; 
    low = 0; 
    bits_to_follow = 0; 
} 
 
// sends a bit followed by a sequence of opposite bits: 
void put_bit_plus_follow (unsigned long bit) 
{ 
    put_bit (bit); 
    while (bits_to_follow) { 
        put_bit (bit ^ 1); 
        bits_to_follow --; 
    } 
} 
 
// encodes a symbol using Gilbert-Moore code for  
// a distribution s_freq[] subsampled by delta bits: 
void bgmc_encode (unsigned long symbol, long delta, unsigned long *s_freq) 
{ 
    unsigned long range = high –low +1; 
    high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS); 
    low =low+((range*s_freq[(symbol+1)<< delta])>>FREQ_BITS); 
     
    for ( ; ; ) { 
        if (high < HALF) { 
            put_bit_plus_follow (0, p);  
        } else if (low >= HALF) { 
            put_bit_plus_follow (1, p); 
            low -= HALF; 
            high -= HALF; 
        } else if (low >= FIRST_QTR && high < THIRD_QTR) {  
            bits_to_follow += 1;      
            low -= FIRST_QTR; 
            high -= FIRST_QTR; 
        } else 
            break; 
        low = 2 * low; 
        high = 2 * high + 1; 
    } 
} 
 
// Finish the encoding: 
static void bgmc_finish_encoding () 
{ 
    bits_to_follow += 1; 
    if (low < FIRST_QTR)  put_bit_plus_follow (0,p); 
    else          put_bit_plus_follow (1,p); 
} 

 

C-language specifications of the corresponding functions of the block Gilbert-Moore decoder are given below.  
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// decoder state variables: 
static unsigned long high, low, value; 
 
// start decoding: 
void bgmc_start_decoding (void) 
{ 
    high = TOP_VALUE; 
    low = 0; 
    value = get_bits(VALUE_BITS); 
} 
 
// decodes a symbol using Gilbert-Moore code for  
// a distribution s_freq[] subsampled by delta bits: 
unsigned long bgmc_decode (long delta, unsigned long *s_freq) 
{ 
    unsigned long range, target, symbol; 
    range = high - low + 1; 
    target = (((value - low + 1) << FREQ_BITS) - 1) / range; 
    symbol = 0; 
    while (s_freq [(symbol+1) << delta] > target) 
        symbol ++; 
    high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS); 
    low =low+((range*s_freq[(symbol+1)<<delta])>>FREQ_BITS); 
    for ( ; ; ) { 
        if (high < HALF) ; 
        else if (low >= HALF) { 
            value -= HALF; 
            low   -= HALF;     
            high  -= HALF; 
        } else if (low >= FIRST_QTR && high < THIRD_QTR) { 
            value -= FIRST_QTR; 
            low   -= FIRST_QTR; 
            high  -= FIRST_QTR; 
        } else 
            break;  
        low  = 2 * low; 
        high = 2 * high + 1; 
        value = 2 * value + get_bit (); 
    } 
    return symbol; 
} 
 
// Finish decoding: 
void bgmc_finish_decoding () 
{ 
    scroll_bitstream_position_back(VALUE_BITS-2); 
} 

 

The cumulative frequency tables (s_freq[] arrays) used by the above algorithms for encoding/decoding of 
residual MSBs are listed below. The appropriate (within each sub-block) table is selected using parameter sx. 
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Table 11.38 – Cumulative frequency tables used by the BGMC encoder/decoder 

# 0 1 2 3 4 5 6 7 8  9  10  11 12  13 14  15 

0 16384 16384   16384   16384   16384   16384   16384  16384  16384  16384  16384  16384  16384   16384   16384   16384  

1 16066 16080   16092   16104   16116   16128   16139  16149  16159  16169  16177  16187  16195   16203   16210   16218  

2 15748 15776   15801   15825   15849   15872   15894  15915  15934  15954  15970  15990  16006   16022   16036   16052  

3 15431 15473   15510   15546   15582   15617   15649  15681  15709  15739  15764  15793  15817   15842   15863   15886  

4 15114 15170   15219   15268   15316   15362   15405  15447  15485  15524  15558  15597  15629   15662   15690   15720  

5 14799 14868   14930   14991   15050   15107   15162  15214  15261  15310  15353  15401  15441   15482   15517   15554  

6 14485 14567   14641   14714   14785   14853   14919  14981  15038  15096  15148  15205  15253   15302   15344   15389  

7 14173 14268   14355   14439   14521   14600   14677  14749  14816  14883  14944  15009  15065   15122   15172   15224  

8 13861 13970   14069   14164   14257   14347   14435  14517  14594  14670  14740  14813  14878   14942   15000   15059  

9 13552 13674   13785   13891   13995   14096   14195  14286  14373  14458  14537  14618  14692   14763   14828   14895  

10 13243 13378   13501   13620   13734   13846   13955  14055  14152  14246  14334  14423  14506   14584   14656   14731  

11 12939 13086   13219   13350   13476   13597   13717  13827  13933  14035  14132  14230  14321   14406   14485   14567  

12 12635 12794   12938   13081   13218   13350   13479  13599  13714  13824  13930  14037  14136   14228   14314   14403  

13 12336 12505   12661   12815   12963   13105   13243  13373  13497  13614  13729  13845  13952   14051   14145   14240  

14 12038 12218   12384   12549   12708   12860   13008  13147  13280  13405  13529  13653  13768   13874   13976   14077  

15 11745 11936   12112   12287   12457   12618   12775  12923  13065  13198  13330  13463  13585   13698   13808   13915  

16 11452 11654   11841   12025   12206   12376   12542  12699  12850  12991  13131  13273  13402   13522   13640   13753  

17 11161 11373   11571   11765   11956   12135   12310  12476  12636  12785  12933  13083  13219   13347   13472   13591  

18 10870 11092   11301   11505   11706   11894   12079  12253  12422  12579  12735  12894  13037   13172   13304   13429  

19 10586 10818   11037   11250   11460   11657   11851  12034  12211  12376  12539  12706  12857   12998   13137   13269  

20 10303 10544   10773   10996   11215   11421   11623  11815  12000  12173  12343  12518  12677   12824   12970   13109  

21 10027 10276   10514   10746   10975   11189   11399  11599  11791  11972  12150  12332  12499   12652   12804   12950  

22 9751 10008   10256   10497   10735   10957   11176  11383  11583  11772  11957  12146  12321   12480   12639   12791  

23 9483 9749   10005   10254   10500   10730   10956  11171  11378  11574  11766  11962  12144   12310   12475   12633  

24 9215 9490   9754   10011   10265   10503   10737  10959  11173  11377  11576  11778  11967   12140   12312   12476  

25 8953 9236   9508   9772   10034   10279   10521  10750  10971  11182  11388  11597  11792   11971   12149   12320  

26 8692 8982   9263   9534   9803   10056   10305  10541  10769  10987  11200  11416  11617   11803   11987   12164  

27 8440 8737   9025   9303   9579   9838   10094  10337  10571  10795  11015  11237  11444   11637   11827   12009  

28 8189 8492   8787   9072   9355   9620   9883   10133  10373  10603  10830  11059  11271   11471   11667   11854  

29 7946 8256   8557   8848   9136   9407   9677   9933   10179  10414  10647  10882  11100   11307   11508   11701  

30 7704 8020   8327   8624   8917   9195   9471   9733   9985   10226  10465  10706  10930   11143   11349   11548  

31 7472 7792   8103   8406   8703   8987   9268   9536   9793   10040  10285  10532  10762   10980   11192   11396  

32 7240 7564   7879   8188   8489   8779   9065   9339   9601   9854   10105  10358  10594   10817   11035   11244  

33 7008 7336   7655   7970   8275   8571   8862   9142   9409   9668   9925   10184  10426   10654   10878   11092  

34 6776 7108   7431   7752   8061   8363   8659   8945   9217   9482   9745   10010  10258   10491   10721   10940  

35 6554 6888   7215   7539   7853   8159   8459   8751   9029   9299   9568   9838   10091   10330   10565   10790  

36 6333 6669   7000   7327   7645   7955   8260   8557   8842   9116   9391   9666   9925   10169   10410   10640  

37 6122 6459   6792   7123   7444   7758   8067   8369   8658   8937   9218   9497   9761   10011   10257   10492  

38 5912 6249   6585   6919   7244   7561   7874   8181   8475   8759   9045   9328   9598   9853   10104   10344  

39 5711 6050   6387   6724   7051   7371   7688   7998   8297   8585   8876   9163   9438   9697   9953   10198  

40 5512 5852   6190   6529   6858   7182   7502   7816   8120   8411   8707   8999   9278   9542   9802   10052  

41 5320 5660   5998   6339   6671   6997   7321   7638   7946   8241   8541   8837   9120   9389   9654   9908   

42 5128 5468   5807   6150   6484   6812   7140   7460   7773   8071   8375   8675   8963   9236   9506   9764   

43 4947 5286   5625   5970   6305   6635   6965   7288   7604   7906   8213   8517   8809   9086   9359   9622   
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