

Reference number
ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006

INTERNATIONAL
STANDARD

ISO/IEC
14496-3

Third edition
2005-12-01

AMENDMENT 2
2006-03-15

Information technology — Coding of
audio-visual objects —
Part 3:
Audio

AMENDMENT 2: Audio Lossless Coding
(ALS), new audio profiles and BSAC
extensions

Technologies de l'information — Codage des objets audiovisuels —

Partie 3: Codage audio

AMENDEMENT 2: Codage audio sans perte (ALS), nouveaux profils
audio et extensions BSAC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2006 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 2 to ISO/IEC 14496-3:2005 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

This amendment specifies the Audio Lossless Coding (ALS) scheme. The amendment further defines a new
profile, the High Efficiency AAC v2 Profile, that incorporates all the features of the High Efficiency AAC Profile
and in addition the Parametric Stereo tool. The amendment also specifies the way in which the audio object
type ER BSAC is extended to support multi-channel format, providing backward compatibility.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 3:
Audio

AMENDMENT 2: Audio Lossless Coding (ALS), new audio profiles
and BSAC extensions

In the Introduction, at the end of subclause "Lossless Audio Coding Tools", add:

MPEG-4 ALS (Audio Lossless Coding) provides lossless coding of digital audio signals. Input signals can be
integer PCM data with 8 to 32-bit word length or 32-bit IEEE floating-point data. Up to 65536 channels are
supported.

In Part 3: Audio, Subpart 1, in subclause 1.3 Terms and Definitions, add:

ALS: Audio Lossless Coding

and increase the index-number of subsequent entries.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

2 © ISO/IEC 2006 – All rights reserved

In Part 3: Audio, Subpart 1, in subclause 1.5.1.1 Audio object type definition, replace table 1.1 with the table
below:

Table 1.1 — Audio Object Type definition based on Tools/Modules

O
bj

ec
t T

yp
e

ID

Audio Object
Type

ga
in

 c
on

tro
l

bl
oc

k
sw

itc
hi

ng

w
in

do
w

 s
ha

pe
s

- s
ta

nd
ar

d
w

in
do

w
 s

ha
pe

s
–

A
A

C
 L

D

fil
te

rb
an

k
- s

ta
nd

ar
d

fil
te

rb
an

k
- S

S
R

TN

S

LT
P

in

te
ns

ity

co
up

lin
g

fre

qu
en

cy
 d

eo
m

ai
n

pr
ed

ic
tio

n

P
N

S

M
S

S

IA
Q

FS

S

up
sa

m
pl

in
g

fil
te

r t
oo

l
qu

an
tis

at
io

n&
co

di
ng

 -
A

A
C

qu

an
tis

at
io

n&
co

di
ng

 –
 T

w
in

V
Q

qu

an
tis

at
io

n&
co

di
ng

 -
B

S
A

C

A
A

C
 E

R
 T

oo
ls

E

R
 p

ay
lo

ad
 s

yn
ta

x
E

P
 T

oo
l 1

)
C

E
LP

S

ile
nc

e
C

om
pr

es
si

on

H
V

X
C

H

V
X

C
 4

kb
it/

s
V

R

S
A

 to
ol

s
S

A
S

B
F

M
ID

I
H

IL
N

TT

S
I

S
B

R

La
ye

r-
1

La
ye

r-
2

La
ye

r-
3

S
S

C
 (T

ra
ns

ie
nt

, S
in

us
oi

d,
 N

oi
se

)
P

ar
am

et
ric

 s
te

re
o

D
S

T
A

LS

R
em

ar
k

0 Null
1 AAC main X X X X X X X X X X 2)
2 AAC LC X X X X X X X X X
3 AAC SSR X X X X X X X X X X
4 AAC LTP X X X X X X X X X X 2)
5 SBR X
6 AAC Scalable X X X X X X X X X X X X 6)
7 TwinVQ X X X X X X X
8 CELP X
9 HVXC X
10 (reserved)
11 (reserved)
12 TTSI X
13 Main

synthetic
 X X X 3)

14 Wavetable
synthesis

 X X 4)

15 General MIDI X
16 Algorithmic

Synthesis and
Audio FX

 X

17 ER AAC LC X X X X X X X X X X X
18 (reserved)
19 ER AAC LTP X X X X X X X X X X X X 5)
20 ER AAC

scalable
 X X X X X X X X X X X X X X 6)

21 ER TwinVQ X X X X X X X X
22 ER BSAC X X X X X X X X X X
23 ER AAC LD X X X X X X X X X X X
24 ER CELP X X X X
25 ER HVXC X X X X
26 ER HILN X X X
27 ER

Parametric
 X X X X X

28 SSC X X
29 PS X X
30 (reserved)
31 (escape)
32 Layer-1 X
33 Layer-2 X
34 Layer-3 X
35 DST X
36 ALS X

37 -
95

(reserved)

In Part 3: Audio, Subpart 1, in subclause 1.5.1.2 Description, add:

1.5.1.2.30 ALS object type

The ALS object type is the counterpart of the Audio Lossless Coding (ALS) scheme and contains the
corresponding ALS tools.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 3

In Part 3: Audio, Subpart 1, replace Table 1.3 (Audio Profiles definition) with the following table:

Table 1.3 – Audio Profiles definition

Object
Type ID

Audio Object
Type

Main
Audio
Profile

Scalable
Audio
Profile

Speech
Audio
Profile

Syntheti
c Audio
Profile

High
Quality
Audio
Profile

Low
Delay
Audio
Profile

Natural
Audio
Profile

Mobile
Audio
Internet-
working
Profile

AAC
Profile

High
Efficiency
AAC
Profile

High
Efficiency
AAC v2
Profile

0 Null
1 AAC main X X
2 AAC LC X X X X X X X
3 AAC SSR X X
4 AAC LTP X X X X
5 SBR X X
6 AAC Scalable X X X X
7 TwinVQ X X X
8 CELP X X X X X X
9 HVXC X X X X X
10 (reserved)
11 (reserved)
12 TTSI X X X X X X
13 Main

synthetic
X X

14 Wavetable
synthesis

15 General MIDI
16 Algorithmic

Synthesis and
Audio FX

17 ER AAC LC X X X
18 (reserved)
19 ER AAC LTP X X
20 ER AAC

Scalable
 X X X

21 ER TwinVQ X X
22 ER BSAC X X
23 ER AAC LD X X X
24 ER CELP X X X
25 ER HVXC X X
26 ER HILN X
27 ER

Parametric
 X

28 SSC
29 PS X
30 (reserved)
31 (escape)
32 Layer-1
33 Layer-2
34 Layer-3
35 DST
36 ALS

In Part 3: Audio, Subpart 1, subclause 1.5.2.3 (Levels within the profiles), add at the end:

• Levels for the High Efficiency AAC v2 Profile IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

4 © ISO/IEC 2006 – All rights reserved

Table 1.11A - Levels for the High Efficiency AAC v2 Profile

Level Max.
channels/
object

Max. AAC
sampling
rate, SBR not
present [kHz]

Max. AAC
sampling
rate, SBR
present [kHz]

Max. SBR
sampling rate
[kHz] (in/out)

Max. PCU Max. RCU Max. PCU
HQ / LP
SBR
(Note 5)

Max. RCU
HQ / LP
SBR
(Note 5)

1 NA NA NA NA NA NA NA NA

2 2 48 24 24/48 (Note
1)

9 10 9 10

3 2 48 24/48 (Note
3)

48/48 (Note
2)

15 10 15 10

4 5 48 24/48 (Note
4)

48/48 (Note
2)

25 28 20 23

5 5 96 48 48/96 49 28 39 23
Note 1: A level 2 HE AAC v2 Profile decoder implements the baseline version of the parametric stereo tool.
Higher level decoders shall not be limited to the baseline version of the parametric stereo tool.
Note 2: For level 3 and level 4 decoders, it is mandatory to operate the SBR tool in downsampled mode if the
sampling rate of the AAC core is higher than 24kHz. Hence, if the SBR tool operates on a 48kHz AAC signal,
the internal sampling rate of the SBR tool will be 96kHz, however, the output signal will be downsampled by
the SBR tool to 48kHz.
Note 3: If Parametric Stereo data is present the maximum AAC sampling rate is 24kHz, if Parametric Stereo
data is not present the maximum AAC sampling rate is 48kHz.
Note 4: For one or two channels the maximum AAC sampling rate, with SBR present, is 48kHz. For more
than two channels the maximum AAC sampling rate, with SBR present, is 24kHz.
Note 5: The PCU/RCU number are given for a decoder operating the LP SBR tool whenever applicable.

A HE AAC v2 Profile decoder of a certain level shall operate the HQ SBR tool for streams containing
Parametric Stereo data. For streams not containing Parametric Stereo data, the HE AAC v2 Profile decoder
may operate the HQ SBR tool, or the LP SBR tool.

In Part 3: Audio, Subpart 1, subclause 1.5.2.4 (Table 1.12 - audioProfileLevelIndication Values), replace the
row:

0x30-0x7F reserved for ISO use -

with:

0x28 AAC Profile L1
0x29 AAC Profile L2
0x2A AAC Profile L4
0x2B AAC Profile L5
0x2C High Efficiency AAC Profile L2
0x2D High Efficiency AAC Profile L3
0x2E High Efficiency AAC Profile L4
0x2F High Efficiency AAC Profile L5
0x30 High Efficiency AAC v2 Profile L2
0x31 High Efficiency AAC v2 Profile L3
0x32 High Efficiency AAC v2 Profile L4
0x33 High Efficiency AAC v2 Profile L5
0x34-0x7F reserved for ISO use -

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 5

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, replace table 1.13 with the table below:

Table 1.13 — Syntax of AudioSpecificConfig()

Syntax No. of bits Mnemonic
AudioSpecificConfig ()
{
 audioObjectType = GetAudioObjectType();
 samplingFrequencyIndex; 4 bslbf
 if (samplingFrequencyIndex == 0xf) {
 samplingFrequency; 24 uimsbf
 }
 channelConfiguration; 4 bslbf

 sbrPresentFlag = -1;
 psPresentFlag = -1;
 if (audioObjectType == 5 ||
 audioObjectType == 29) {

 extensionAudioObjectType = 5;
 sbrPresentFlag = 1;
 if (audioObjectType == 29) {
 psPresentFlag = 1;
 }
 extensionSamplingFrequencyIndex; 4 uimsbf
 if (extensionSamplingFrequencyIndex == 0xf) {
 extensionSamplingFrequency; 24 uimsbf
 }
 audioObjectType = GetAudioObjectType();
 }
 else {
 extensionAudioObjectType = 0;
 }
 switch (audioObjectType) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 6:
 case 7:
 case 17:
 case 19:
 case 20:
 case 21:
 case 22:
 case 23:

 GASpecificConfig();
 break:
 case 8:
 CelpSpecificConfig();
 break;
 case 9:
 HvxcSpecificConfig();
 break:
 case 12:
 TTSSpecificConfig();
 break;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

6 © ISO/IEC 2006 – All rights reserved

 case 13:
 case 14:
 case 15:
 case 16:

 StructuredAudioSpecificConfig();
 break;
 case 24:
 ErrorResilientCelpSpecificConfig();
 break;
 case 25:
 ErrorResilientHvxcSpecificConfig();
 break;
 case 26:
 case 27:

 ParametricSpecificConfig();
 break;
 case 28:
 SSCSpecificConfig();
 break;
 case 32:
 case 33:
 case 34:

 MPEG_1_2_SpecificConfig();
 break;
 case 35:
 DSTSpecificConfig();
 break;
 case 36:
 ALSSpecificConfig();
 break;
 default:
 /* reserved */
 }
 switch (audioObjectType) {
 case 17:
 case 19:
 case 20:
 case 21:
 case 22:
 case 23:
 case 24:
 case 25:
 case 26:
 case 27:

 epConfig; 2 bslbf
 if (epConfig == 2 || epConfig == 3) {
 ErrorProtectionSpecificConfig();
 }
 if (epConfig == 3) {
 directMapping; 1 bslbf
 if (! directMapping) {
 /* tbd */
 }
 }
 }
 if (extensionAudioObjectType != 5 && bits_to_decode() >= 16) {
 syncExtensionType; 11 bslbf
 if (syncExtensionType == 0x2b7) {
 extensionAudioObjectType = GetAudioObjectType();

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 7

 if (extensionAudioObjectType == 5) {
 sbrPresentFlag; 1 uimsbf
 if (sbrPresentFlag == 1) {
 extensionSamplingFrequencyIndex; 4 uimsbf
 if (extensionSamplingFrequencyIndex == 0xf) {
 extensionSamplingFrequency; 24 uimsbf
 }
 if (bits_to_decode() >= 12) {
 syncExtensionType; 11 bslbf
 if (syncExtensionType == 0x548) {
 psPresentFlag; 1 uimsbf
 }
 }
 }
 }
 }
 }
}

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, add:

1.6.2.1.12 ALSSpecificConfig

Defined in ISO/IEC 14496-3 subpart 11.

In Part 3: Audio, Subpart 1, in subclause 1.6.2.2.1 Overview, replace table 1.15 by the following table:

Table 1.15 – Audio Object Types

Audio Object Type Object
Type ID

definition of elementary stream
payloads and detailed syntax

Mapping of audio payloads to
access units and elementary
streams

AAC MAIN 1 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2
AAC LC 2 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2
AAC SSR 3 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2
AAC LTP 4 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.2
SBR 5 ISO/IEC 14496-3 subpart 4
AAC scalable 6 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.3
TwinVQ 7 ISO/IEC 14496-3 subpart 4
CELP 8 ISO/IEC 14496-3 subpart 3
HVXC 9 ISO/IEC 14496-3 subpart 2
TTSI 12 ISO/IEC 14496-3 subpart 6
Main synthetic 13 ISO/IEC 14496-3 subpart 5
Wavetable synthesis 14 ISO/IEC 14496-3 subpart 5
General MIDI 15 ISO/IEC 14496-3 subpart 5
Algorithmic Synthesis
and Audio FX

16 ISO/IEC 14496-3 subpart 5

ER AAC LC 17 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4
ER AAC LTP 19 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4
ER AAC scalable 20 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4
ER Twin VQ 21 ISO/IEC 14496-3 subpart 4
ER BSAC 22 ISO/IEC 14496-3 subpart 4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

8 © ISO/IEC 2006 – All rights reserved

ER AAC LD 23 ISO/IEC 14496-3 subpart 4 see subclause 1.6.2.2.2.1.4
ER CELP 24 ISO/IEC 14496-3 subpart 3
ER HVXC 25 ISO/IEC 14496-3 subpart 2
ER HILN 26 ISO/IEC 14496-3 subpart 7
ER Parametric 27 ISO/IEC 14496-3 subpart 2 and 7
SSC 28 ISO/IEC 14496-3 subpart 8
PS 29 ISO/IEC 14496-3 subpart 8
(reserved) 30
(escape) 31
Layer-1 32 ISO/IEC 14496-3 subpart 9
Layer-2 33 ISO/IEC 14496-3 subpart 9
Layer-3 34 ISO/IEC 14496-3 subpart 9
DST 35 ISO/IEC 14496-3 subpart 10
ALS 36 ISO/IEC 14496-3 subpart 11

In Part 3: Audio, Subpart 1, under 1.6.3 Semantics, after 1.6.3.13 extensionAudioObjectType add:

1.6.3.14 psPresentFlag

A one bit field indicating the presence or absence of Parametric Stereo data. The value –1 indicates that the
psPresentFlag was not conveyed in the AudioSpecificConfig(). In this case, a High Efficiency AAC v2 Profile
decoder shall support implicit signaling (see subclause 1.6.6).

In Part 3: Audio, Subpart 1, after 1.6.5 Signaling of SBR, add the following subclause:

1.6.6 Signaling of Parametric Stereo (PS)

1.6.6.1 Generating and Signaling HE AAC + PS Content

The PS tool in combination with the HE AAC coder enables good stereo quality at very low bitrates. At the
same time it allows for compatibility with existing HE AAC-only decoders. However, the output from a HE AAC
decoder will only be mono for a HE AAC v2 stream carrying PS data.

Therefore, depending on the application, a content provider or content creator may want to choose between
the two alternatives given below. In general, the PS data is always embedded in the HE AAC stream in a HE
AAC compatible way (in the sbr_extension element), and PS is a pure post processing step in the decoder.
Therefore, compatibility can be achieved. However, by means of different signaling the content creator can
select between the full-quality mode and the backward compatibility mode as outlined in 1.6.6.1.1 and
1.6.6.1.2.

For the hierarchical profiles, a profile higher in the profile hierarchy is of course able to decode the content of a
profile lower in the profile hierarchy. In Figure 1.0A the hierarchical structure of the AAC, HE AAC and HE
AAC v2 Profile is displayed. The figure shows that a HE AAC Profile decoder is fully capable of decoding any
AAC-Profile stream, given that the HE AAC Profile decoder is of the same or a higher level as indicated in the
AAC Profile stream. Similarly the HE AAC v2 decoder can handle all HE AAC Profile streams as well as all
AAC Profile streams.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 9

High Efficiency AAC Profile

High Efficiency AAC v2 Profile

AAC SBR PS

AAC Profile

Figure 1.0A – Hierarchical structure of AAC, HE AAC and HE AAC v2 Profile,
 and compatibility between them.

1.6.6.1.1 Ensuring Full Audio Quality of AAC+SBR+PS for the Listener

To ensure that listeners get the full audio quality of AAC+SBR+PS, the stream should indicate the HE AAC v2
Profile and use the explicit, hierarchical signaling (signaling 2.A. as described below), so that it is played by
HE AAC v2 Profile decoders, i.e., PS capable decoders. With regard to HE AAC-only streams or AAC-only
streams, an HE AAC v2 Profile decoder will decode all HE AAC Profile streams and AAC Profile streams of
the appropriate level, as the HE AAC v2 Profile is a superset of the HE AAC Profile and the AAC Profile.

1.6.6.1.2 Achieving Backward Compatibility with Existing HE AAC and AAC Decoders

The aim of this mode is to get all AAC-based and HE AAC-based decoders to play the stream, even if they do
not support the PS tool. Compatible streams can be created using the following two signaling methods:

a) indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, and use
the explicit backward compatible signalling (2.B. as described below). This method is recommended
for all MPEG-4 based systems in which the length of the AudioSpecificConfig() is known in the
decoder. As this is not the case for LATM with audioMuxVersion==0 (see clause 1.7), this method
cannot be used for LATM with audioMuxVersion==0. In explicit backward compatible signaling, PS-
specific configuration data is added at the end of the AudioSpecificConfig(). Decoders that do not
know about PS will ignore these parts, while HE AAC v2 Profile decoders will detect its presence and
configure the decoder accordingly.

b) indicate a profile containing SBR (e.g. the HE AAC Profile), but not the HE AAC v2 Profile, and use
implicit signalling. In this mode, there is no explicit indication of the presence of PS data. Instead, HE
AAC v2 Profile decoders shall open two output channels for a stream containing SBR data with
channelConfiguration==1, i.e., a mono stream using a single channel element, and check the
presence of PS data while decoding the stream and use the PS tool if PS data is found. This is
possible because PS can be decoded without PS-specific configuration data if a certain way of
handling decoder number of output channels is obeyed, as described below for HE AAC v2 Profile
decoders.

Both methods lead to the result that, provided that the profile indication indicates a profile supported by the
decoder, the AAC+SBR part of an AAC+SBR+PS streams will be decoded by HE AAC-only decoders, and the
AAC part of an AAC+SBR+PS stream will be decoded by AAC-only decoders. HE AAC v2 decoders will
detect the presence of PS and decode the full quality AAC+SBR+PS stream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

10 © ISO/IEC 2006 – All rights reserved

1.6.6.2 Implicit and Explicit Signaling of Parametric Stereo

This subclause outlines the different signaling methods of PS, and the decoder behavior for different types of
signaling.

There are several ways to signal the presence of PS data:

1. implicit signaling: If bs_extension_id equals EXTENSION_ID_PS, PS data is present in the
sbr_extension element, and this implicitly signals the presence of PS data. The ability to detect and
decode implicitly signaled PS is mandatory for all High Efficiency AAC v2 Profile (HE AAC v2 Profile)
decoders.

2. explicit signaling: The presence of PS data is signaled explicitly by means of the PS Audio Object
Type and the psPresentFlag in the AudioSpecificConfig(). When explicit signaling of PS is used,
implicit signaling of PS shall not occur. Two different types of explicit signaling are available:

2.A. hierarchical signaling: If the first audioObjectType (AOT) signaled is the PS AOT, the
extensionAudioObjectType is set to SBR, and a second audio object type is signaled which indicates
the underlying audio object type. This signaling method is not backward compatible. This method
may be needed in systems that do not convey the length of the AudioSpecificConfig(), such as LATM
with audioMuxVersion==0, and content authors are encouraged to use it only when thus needed.

2.B. backward compatible signaling: If the extensionAudioObjectType SBR is signaled at the end of
the AudioSpecificConfig(), a psPresentFlag is transmitted at the end of the backward compatible
explicit SBR signaling, indicating the presence or absence of PS data. This method shall only be
used in systems that convey the length of the AudioSpecificConfig(). Hence, it shall not be used for
LATM with audioMuxVersion==0.

For all types of parametric stereo signaling, the channelConfiguration in the audioSpecifcConfig indicates the
number of channels of the underlying AAC coded stream. Hence, if parametric stereo data is available, the
channelConfiguration will be one, indicating a single channel element, while the parametric stereo tool will
produce two output channels based on the single channel element and the parametric stereo data.

Table 1.22A shows the decoder behavior depending on profile and audio object type indication when implicit
or explicit signaling is used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 11

Table 1.22A – PS Signaling and Corresponding Decoder Behavior

Bitstream characteristics Decoder behavior
Profile

indication
PS signaling psPresent

Flag
raw_data_block HE AAC

Profile
Decoders

HE AAC v2
Profile

Decoders
AAC+SBR Play AAC+SBR Play AAC+SBR

(Note 1)
signaling 1, implicit

signaling
(first AOT != PS)

-1

AAC+SBR+PS Play AAC+SBR Play at least
AAC+SBR,
should play

AAC+SBR+PS
(Note 1)

0 AAC+SBR Play AAC+SBR Play AAC+SBR
(Note 2)

High
Efficiency

AAC Profile

signaling 2.B,
backwards

compatible explicit
signaling

(second AOT ==
SBR)

1 AAC+SBR+PS Play AAC+SBR Play at least
AAC+SBR,
should play

AAC+SBR+PS
(Note 3)

signaling 2.A, non-
backwards
compatible
signaling

(first AOT == PS)

1 AAC+SBR+PS Undefined Play
AAC+SBR+PS

(Note 3)

High
Efficiency
AAC v2
Profile

signaling 2.B,

backwards
compatible signling

(second AOT ==
SBR)

1 AAC+SBR+PS Undefined Play
AAC+SBR+PS

(Note 3)

Note 1: Implicit signaling, assume the presence of PS data in the payload, giving two output channels
for a single channel element.
Note 2: Explicitly signals that there is no PS data, hence no implicit signaling is present.
Note 3: Number of output channels is two for a single channel element containing AAC+SBR+PS
data.

The upper part of Table 1.22A displays bitstream characteristics and decoder behavior if the profile indication
is the High Efficiency AAC Profile. The lower part displays bitstream characteristics and decoder behavior if
the profile indication is the High Efficiency AAC v2 Profile.

1.6.6.3 HE AAC v2 Profile Decoder Behavior in Case of Implicit Signaling

If the presence of PS data is backward compatible implicitly signaled (signaling 1, in the list above) the first
AudioObjectType signaled is not the PS AOT, and the psPresentFlag is not read from the
AudioSpecificConfig(). Hence, the psPresentFlag is set to –1, indicating that implicit signaling of parametric
stereo may occur.

Since a received mono stream will result in a stereo output if Parametric Stereo data is present in the stream,
the HE AAC v2 Profile decoder shall assume that PS data is available and decide the number of output
channels to be two for a single channel element containing SBR data, and thus also possibly PS data. If no
PS data is found the mono output shall be mapped to the two opened channels for every single channel
element.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

12 © ISO/IEC 2006 – All rights reserved

1.6.6.4 HE AAC v2 Profile Decoder Behavior in Case of Explicit Signaling

If the presence of PS data is explicitly signaled (signaling 2, in the list above) the presence of PS data is
backward compatible explicitly signaled (signaling 2.B) or non-backward compatible explicitly signaled
(signaling 2.A).

For the backward compatible explicit signaled (signaling 2.B) the extensionAudioObjectType signaled is the
SBR AOT. The explicit signaling of PS is done by means of the psPresentFlag that can be either zero or one.

If the psPresentFlag is zero, this indicates that PS data is not present, and hence the HE AAC v2 Profile
decoder should not make assumptions on the number of output channels in anticipation of PS data (as in case
of implicit signaling of PS) and instead employ the original channelConfiguration. If the psPresentFlag is one,
PS data is present and the HE AAC v2 Profile decoder shall operate the PS Tool.

For the non-backward compatible explicit signaling of PS (signaling 2.A) the first AudioObjectType signaled is
the PS AOT. The extensionAudioObjectType is assigned the SBR AOT. For this hierarchical explicit signaling,
the psPresentFlag is set to one if the first signaled AOT is the PS AOT. The psPresentFlag is not transmitted
and hence it is not possible to explicitly signal the absence of implicit signaling. Hence, for the hierarchical
explicit signaling of parametric stereo, PS data is always present and the HE AAC v2 Profile decoder shall
operate the PS Tool.

In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio object type ER BSAC, replace table
4.33 bsac_raw_data_block with the following table:

Table 4.33 – Syntax of bsac_raw_data_block()

• Syntax No. of bits Mnemonic

bsac_raw_data_block()
{
 bsac_base_element();
 layer=slayer_size;
 while(data_available() && layer<(top_layer+slayer_size)) {
 bsac_layer_element(layer);
 layer++;
 }
 byte_alignment();

 if (data_available()) {
 zero_code 32 bslbf
 syncword 8 bslbf
 while(data_available())
extended_bsac_raw_data_block();
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 13

In Part 3: Audio, Subpart 4, in subclause 4.4.2.6 Payloads for the audio object type ER BSAC, after Table
4.43 Syntax of bsac_spectral_data, add the following two tables:

Table 4.35 – Syntax of extended_bsac_raw_data_block()

Syntax No. of bits Mnemonic
extended_bsac_raw_data_block()
{
 extended_bsac_base_element();
 layer=slayer_size;
 while(data_available() && layer<(top_layer+slayer_size)) {
 bsac_layer_element(layer);
 layer++;
 }
 byte_alignment();
}

Table 4.36 – Syntax of extended_bsac_base_element()

Syntax No. of bits Mnemonic
extended_bsac_base_element()
{
 element_length 11 uimbf
 channel_configuration_index 3 uimbf
 reserved_bit 1 uimbf
 bsac_header();
 general_header();
 byte_alignment();
 for (slayer = 0; slayer < slayer_size; slayer++)
 bsac_layer_element(slayer);
}

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace
bsac_raw_data_block with the following:

bsac_raw_data_block() block of raw data that contains coded audio data, related information
and other data. A bsac_raw_data_block() basically consists of
bsac_base_element() and several bsac_layer_element(). There exists
a module that determines whether the BSAC bitstream has an
extended part.

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, after
bsac_raw_data_block, add the following:

zero_code 32-bit zero values in order to terminate the arithmetic decoding for the
stereo part.

syncword a eight bit code that identifies the start of the extended part. The bit
string ‘1111 1111’.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

14 © ISO/IEC 2006 – All rights reserved

In Part 3: Audio, Subpart 4, under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, replace
header_length with the following:

header_length the length of the headers including frame_length, bsac_header() and
general_header() in bytes. The actual length is (header_length+7)
bytes. However if header_length is 0, it represents that the actual
length is smaller than or equal to 7 bytes. And if header_length is 15,
it represents that the actual length is larger than or equal to (15+7)
bytes and should be calculated through the decoding of the headers.
In case of extended_bsac_base_element(), header_length includes
element_length, channel_configuration_index, reserved_bit,
bsac_header and general_header().

In Part 3: Audio, Subpart 4 under Bitstream elements in subclause 4.5.2.6.2.1 Definitions, after
bsac_spectral_data, add the following:

extended_bsac_raw_data_block() block of raw data that contains coded audio data, related information
and other data for the extended part. A extended_bsac_ raw_data
block() basically consists of extended bsac _base_ element() and
several bsac_layer_element().

extended_bsac_base_element() syntactic element of the base layer bitstream containing coded audio
data, related information and other data for the extended part of
BSAC.

element_length the length of the extended_bsac_raw_data_block() in bytes. This is
used for proper arithmetic decoding.

channel_configuration_index a three bit field that indicates the audio output channel configuration
in the extended part. Each index specifies the number of channels
given the channel to speaker mapping.

Table 4.68 – channel_configuration_index

Index channel to speaker mapping number of channels (nch)
0 center front speaker 1
1 left, right front speakers 2
2 rear surround speakers 1
3 left surround, right surround rear speakers 2
4 front low frequency effects speaker 1
5 left, right outside front speakers 2

6-7 reserved -

reserved_bit bit reserved for future use

In Part 3: Audio, Subpart 4, after subclause 4.5.2.6.2.2.13 Reconstruction of the decoded sample from bit-
sliced data, add the subclause below:

4.5.2.6.2.2.14 Decoding the extended part

The structure of the extended part of BSAC is a simple replica of mono or stereo BSAC bitstream. New
functions called extended_bsac_raw_data_block and extended_bsac_base_element are added for the
extended BSAC.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 15

4.5.2.6.2.2.14.1 extended_bsac_raw_data_block

An extended_bsac_raw_data_block also has the layered structure as bsac_raw_data_block. In case where
data is still available after decoding the stereo part, zero_code and syncword are parsed. zero_code is used
for the arithmetic termination of stereo part, and syncword is for the proper decoding of extended part.

4.5.2.6.2.2.14.2 extended_bsac_base_element

An extended bsac_base_element consists of element_length, channel_configuration_index, reserved_bit,
bsac_header, general_header and bsac_layer_element. For the stereo part, the value of nch is obtained from
channelConfiguration in Table 1.8 (Syntax of AudioSpecificConfig) and it is limited to either 1 or 2 (left and
right front speakers). For the extended part, the parameter, nch, is concerned with the rest of speakers, and
the exact value is determined by channel_configuration_index specified in Table 4.68. Each index indicates
the number of channels given the channel to speaker mapping.

In Part 3: Audio, Subpart 4, at the end of subclause 4.B.17.8 Payload transmitted over Elementary Steam bit-
sliced data, add the following subclause:

4.B.17.8.1 The functionality of fine-grain scalability in extended or multi-channel data

When the BSAC data extends to multi-channel data, each ES consists of large-step layers for a certain
channel element. To provide the functionality of fine-grain scalability in the multi-channel data, one might use
streamPriority specified in the ES descriptor in ISO/IEC 14496-1:2004. The values of streamPriority are
assigned to elementary streams according to the priority of channel elements. Different numbers of layers per
channel element can be truncated, because the extended BSAC bitstream consists of separate channel
elements. The values of streamPriority and the number of layers to be truncated per channel element depend
on application scenarios.

In Part 3: Audio, Subpart 8, in clause 8.A.1, replace:

The usage of this parametric stereo extension to HE AAC is signalled implicitly in the bitstream. Hence, if

with:

The usage of this parametric stereo extension to HE AAC is signalled either implicitly by the presence of
parametric stereo data in the bitstream, or explicitly by signalling the corresponding AudioObjectType in the
audioSpecificConfig. Hence, implicit signalling requires that, if

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

16 © ISO/IEC 2006 – All rights reserved

Create Part 3: Audio, Subpart 11:

Subpart 11: Technical description of Audio Lossless Coding for
lossless coding of audio signals

11.1 Scope

This subpart of ISO/IEC 14496-3 describes the MPEG-4 Audio Lossless Coding (ALS) algorithm for lossless
coding of audio signals.

MPEG-4 ALS is a lossless compression scheme for digital audio data, i.e. the decoded data is a bit-identical
reconstruction of the original input data. Input signals can be integer PCM data with 8 to 32-bit word length or
32-bit IEEE floating-point data. MPEG-4 ALS provides a wide range of flexibility in terms of compression-
complexity trade-off, since the combination of several tools allows for the definition of compression levels with
different complexities.

11.2 Technical Overview

11.2.1 Encoder and Decoder Structure

The basic structure of the ALS encoder and decoder is shown in Figure 11.1.

Input Frame / Block
Partition

(Short-Term)
Prediction

M
ul

tip
le

xi
ng

Compressed
Bitstream

Long-Term
Prediction

 Joint Channel
Coding

Entropy
Coding

D
em

ul
tip

le
xi

ng

Entropy
Decoding

 Joint Channel
Decoding

Long-Term
Prediction

(Short-Term)
Prediction

Block / Frame
Assembly Output

Encoder Decoder Data

Control

Figure 11.1 – Block diagram of the ALS encoder and decoder

The input audio data is partitioned into frames. Within a frame, each channel can be further subdivided into
blocks of audio samples for further processing (block switching, see subclause 11.6.2). For each block, a
prediction residual is calculated using short-term prediction (see subclauses 11.6.3 and 11.6.5) and optionally
long-term prediction (LTP, see sublause 11.6.4). Inter-channel redundancy can be removed by joint channel
coding, using either difference coding of channel pairs (see subclause 11.6.7) or multi-channel coding (MCC,
see subclause 11.6.8). The remaining prediction residual is finally entropy coded (see subclause 11.6.6).

The encoder generates bitstream information allowing for random access at intervals of several frames. The
encoder can also provide a CRC checksum, which the decoder may use to verify the decoded data.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 17

11.2.2 Floating-Point Extensions

In addition to integer audio signals, MPEG-4 ALS also supports lossless compression of audio signals in the
IEEE 32-bit floating-point format. The floating-point sequence is modeled by the sum of an integer sequence
multiplied by a constant (ACF: Approximate Common Factor) and a residual sequence. The integer sequence
is compressed using the basic ALS tools for integer data, while the residual sequence is separately
compressed by the masked Lempel-Ziv tool. A detailed description of the floating-point extensions can be
found in subclause 11.6.9.

11.3 Terms and Definitions

11.3.1 Definitions

The following definitions and abbreviations are used in this document.

Frame Segment of the audio signal (containing all channels).

Block Segment of one audio channel.

Sub-block Subpart of a block that uses the same entropy coding parameters.

Random Access Frame Frame that can be decoded without decoding previous frames.

Residual Prediction error, i.e. original minus predicted signal.

Predictor/Prediction Filter Linear FIR filter which computes an estimate of the input signal using previous
samples.

Prediction order Order of the prediction filter (number of predictor coefficients).

LPC coefficients Coefficients of the direct form prediction filter.

Parcor coefficients Parcor representation of the predictor coefficients.

Quantized coefficients Quantized parcor coefficients.

LTP Long-term prediction.

Rice code Also known as Golomb-Rice code. In this document the short form is used.

BGMC Block Gilbert-Moore Code (also known as Elias-Shannon-Fano code).

CRC Cyclic Redundancy Check.

LPC Linear Predictive Coding.

PCM Pulse Code Modulation.

Mantissa Fractional part of floating-point data

Exponent Exponential part of floating-point data

ACFC Approximate Common Factor Coding

Masked-LZ Masked Lempel-Ziv Coding

MCC Multi-Channel Coding

MSB Most significant bit

LSB Least significant bit

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

18 © ISO/IEC 2006 – All rights reserved

11.3.2 Mnemonics

uimsbf Unsigned integer, most significant bit first

simsbf Signed integer, most significant bit first

bslbf Bit string, left bit first, where “left” is the order in which bits are written

IEEE32 IEEE 32-bit floating-point data (4 bytes), most significant bit first

The mnemonics Rice code and BGMC indicate that variable length codewords are used, which are described
in subclause 11.6.6.

11.3.3 Data Types

The following data types are used in the pseudo code sections:

INT64 64-bit signed integer (two's complement)

long 32-bit signed integer (two's complement)

short 16-bit signed integer (two's complement)

If "unsigned" is added in front of the data type, then the type is unsigned instead of signed.

11.4 Syntax

11.4.1 Decoder Configuration

Table 11.1 – Syntax of ALSSpecificConfig

Syntax No. of bits Mnemonic
ALSSpecificConfig()
{
 samp_freq; 32 uimsbf
 samples; 32 uimsbf
 channels; 16 uimsbf
 file_type; 3 uimsbf
 resolution; 3 uimsbf
 floating; 1 uimsbf
 msb_first; 1 uimsbf
 frame_length; 16 uimsbf
 random_access; 8 uimsbf
 ra_flag; 2 uimsbf
 adapt_order; 1 uimsbf
 coef_table; 2 uimsbf
 long_term_prediction; 1 uimsbf
 max_order; 10 uimsbf
 block_switching; 2 uimsbf
 bgmc_mode; 1 uimsbf
 sb_part; 1 uimsbf
 joint_stereo; 1 uimsbf
 mc_coding; 1 uimsbf
 chan_config; 1 uimsbf
 chan_sort; 1 uimsbf
 crc_enabled; 1 uimsbf
 RLSLMS 1 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 19

 (reserved) 5
 aux_data_enabled; 1 uimsbf
 if (chan_config) {
 chan_config_info; 16 uimsbf
 }
 if (chan_sort) {
 for (c = 0; c < channels; c++)
 chan_pos[c]; 1..16 uimsbf
 }
 byte_align;
 header_size; 16 uimsbf
 trailer_size; 16 uimsbf
 orig_header[]; header_size * 8 bslbf
 orig_trailer[]; trailer_size * 8 bslbf
 if (crc_enabled) {
 crc; 32 uimsbf
 }
 if ((ra_flag == 2) && (random_access > 0)) {
 for (f = 0; f < ((samples-1) / (frame_length+1)) + 1; f++) {
 ra_unit_size[f] 32 uimsbf
 }
 }
 if (aux_data_enabled) {
 aux_size; 16 uimsbf
 aux_data[]; aux_size * 8 bslbf
 }
}

11.4.2 Bitstream Payloads

Table 11.2 – Syntax of top level payload (frame_data)

Syntax No. of bits Mnemonic
frame_data()
{
 if ((ra_flag == 1) && (frame_id % random_access == 0)) {
 ra_unit_size 32 uimsbf
 }
 if (mc_coding && joint_stereo) {
 js_switch; 1 uimsbf
 byte_align;
 }
 if (!mc_coding || js_switch) {
 for (c = 0; c < channels; c++) {
 if (block_switching) {
 bs_info; 8,16,32 uimsbf
 }
 if (independent_bs) {
 for (b = 0; b < blocks; b++) {
 block_data(c);
 }
 }
 else{
 for (b = 0; b < blocks; b++) {
 block_data(c);
 block_data(c+1);
 }
 c++;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

20 © ISO/IEC 2006 – All rights reserved

 }
 }
 else{
 if (block_switching) {
 bs_info; 8,16,32 uimsbf
 }
 for (b = 0; b < blocks; b++) {
 for (c = 0; c < channels; c++) {
 block_data(c);
 channel_data(c);
 }
 }
 }
 if (floating)
 {
 num_bytes_diff_float; 32 uimsbf
 diff_float_data();
 }
}

Note: If joint_stereo is off, or if c is the last channel, independent_bs is true by default. If joint_stereo is on,
independent_bs is false by default, but if block_switching is on as well, the independent_bs flag is explicitly
signaled as the first bit of a channel pair's bs_info field (see subclause 11.6.2). The frame_id field indicates

the consecutive frame number, starting at 0 for the first frame.

Table 11.3 – Syntax of block_data

Syntax No. of bits Mnemonic
block_data()
{
 block_type; 1 uimsbf
 if (block_type == 0) {
 const_block; 1 uimsbf
 js_block; 1 uimsbf
 (reserved) 5
 if (const_block == 1) {
 {
 if (resolution == 8) {
 const_val; 8 simsbf
 }
 else if (resolution == 16) {
 const_val; 16 simsbf
 }
 else if (resolution == 24) {
 const_val; 24 simsbf
 }
 else {
 const_val; 32 simsbf
 }
 }
 }
 else {
 js_block; 1 uimsbf
 if ((bgmc_mode == 0) && (sb_part == 0) {
 sub_blocks = 1;
 }
 else if ((bgmc_mode == 1) && (sb_part ==1) {
 ec_sub; 2 uimsbf
 sub_blocks = 1 << ec_sub;
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 21

 else {
 ec_sub; 1 uimsbf
 sub_blocks = (ec_sub == 1) ? 4 : 1;
 }
 if (bgmc_mode == 0) {
 for (k = 0; k < sub_blocks; k++) {
 s[k]; varies Rice code
 }
 }
 else {
 for (k = 0; k < sub_blocks; k++) {
 s[k],sx[k]; varies Rice code
 }
 }
 sb_length = block_length / sub_blocks;
 shift_lsbs; 1 uimsbf
 if (shift_lsbs == 1) {
 shift_pos; 4 uimsbf
 }
 if (!RLSLMS) {
 if (adapt_order == 1) {
 opt_order; 1..10 uimsbf
 }
 for (p = 0; p < opt_order; p++) {
 quant_cof[p]; varies Rice code
 }
 }
 if (long_term_prediction) {
 LTPenable; 1 uimsbf
 if (LTPenable) {
 for (i = -2; i <= 2; i++) {
 LTPgain[i]; varies Rice code
 }
 LTPlag; 8,9,10 uimsbf
 }
 }
 start = 0;
 if (random_access_block) {
 if (opt_order > 0) {
 smp_val[0]; varies Rice code
 }
 if (opt_order > 1) {
 res[1]; varies Rice code
 }
 if (opt_order > 2) {
 res[2]; varies Rice code
 }
 if (opt_order < 3) {
 start = opt_order;
 }
 else {
 start = 3;
 }
 }
 if (bgmc_mode) {
 for (n = start; n < sb_length; n++) {
 msb[n]; varies BGMC
 }
 for (k=1; k < sub_blocks; k++) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

22 © ISO/IEC 2006 – All rights reserved

 for (n = k * sb_length; n < (k+1) * sb_length; n++) {
 msb[n]; varies BGMC
 }
 }
 for (n = start; n < sb_length; n++) {
 if (msb[n] != tail_code) {
 lsb[n]; varies uimsbf
 }
 else {
 tail[n]; varies Rice code
 }
 }
 for (k=1; k < sub_blocks; k++) {
 for (n = k * sb_length; n < (k+1) * sb_length; n++) {
 if (msb[n] != tail_code) {
 lsb[n]; varies uimsbf
 }
 else {
 tail[n]; varies Rice code
 }
 }
 }
 }
 else
 {
 for (n = start; n < block_length; n++) {
 res[n]; varies Rice code
 }
 }
 }
 if (RLSLMS) {
 RLSLMS_extension_data()
 }
}

Note: random_access_block is true if the current block belongs to a random access frame (frame_id %
random_access == 0) and is the first (or only) block of a channel in this frame.

Table 11.4 – Syntax of channel_data

Syntax No. of bits Mnemonic
channel_data(c)
{
 for(;;) {
 stop_flag; 1 uimsbf
 if (stop_flag == 1) {
 break;
 }
 master_channel_index; 1..16 uimsbf
 if (c != master_channel_index) {
 time_difference_flag 1 uimsbf
 if (time_difference_flag == 0) {
 weighting_factor [0] varies Rice code
 weighting_factor [1] varies Rice code
 weighting_factor [2] varies Rice code
 }
 else {
 weighting_factor [0] varies Rice code
 weighting_factor [1] varies Rice code
 weighting_factor [2] varies Rice code

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 23

 weighting_factor [3] varies Rice code
 weighting_factor [4] varies Rice code
 weighting_factor [5] varies Rice code
 time_difference_sign 1 uimsbf
 time_difference_index 5,6,7 uimsbf
 }
 }
 }
}

Table 11.5 – Syntax of RLSLMS_extension_data

Syntax No. of bits Mnemonic
RLSLMS_extension()
{
 mono_block 1 uimsbf
 ext_mode 1
 if (ext_mode) {
 extension_bits 3 uimsbf
 if (extension_bits&0x01) {
 RLS_order 4 uimsbf
 LMS_stage 3 uimsbf
 for(i=0; i<LMS_stage;i++){
 LMS_order[i] 5 uimsbf
 }
 }
 if (extension_bits&0x02) {
 if (RLS_order) {
 RLS_lambda 10 uimsbf
 if (RA)
 RLS_lambda_ra 10 uimsbf
 }
 }
 if (extension_bits&04) {
 for(i=0; i<LMS_stage;i++) {
 LMS_mu[i] 5 uimsbf
 }
 LMS_stepsize 3
 }
 }
}

11.4.3 Payloads for Floating-Point Data

Table 11.6 – Syntax of diff_float_data

Syntax No. of bits Mnemonic
diff_float_data()
{
 use_acf; 1 uimsbf

 if (random_access_block) {
 if (c=0; c < channels; c++) {
 last_acf_mantissa[c] = 0;
 last_shift_value[c] = 0;
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

24 © ISO/IEC 2006 – All rights reserved

 FlushDict();
 }
 for (c = 0; c < channels; c++) {
 if (use_acf == 1) {
 acf_flag[c]; 1 uimsbf
 if (acf_flag[c] == 1) {
 acf_mantissa[c]; 23 uimsbf
 last_acf_mantissa[c] = acf_mantissa[c];
 }
 else {
 acf_mantissa[c] = last_acf_mantissa[c];
 }
 }
 else {
 acf_mantissa[c] = last_acf_mantissa[c] = 0;
 }
 highest_byte[c]; 2 uimsbf
 shift_amp[c]; 1 uimsbf
 partA_flag[c]; 1 uimsbf
 if (shift_amp[c] == 1) {
 shift_value[c]; 8 uimsbf
 last_shift_value[c] = shift_value[c];
 }
 else {
 shift_value[c] = last_shift_value[c];
 }
 diff_mantissa();
 byte_align; 0..7 bslbf
 }
}

Note: “byte_align” stands for padding of bits to the next byte boundary. "FlushDicf()" is the function that clears
and initializes the dictionary and variables of the Masked-LZ decompression module (See section 11.6.9).

Table 11.7 – Syntax of diff_mantissa

Syntax No. of bits Mnemonic
diff_mantissa()
{
 if (partA_flag[c] != 0) {
 compressed_flag[c]; 1 uimsbf
 if (compressed_flag[c] == 0) {
 for (n = 0; n < frame_length; n++) {
 if (int_zero[c][n]) {
 float_data[c][n]; 32 IEEE32
 }
 }
 }
 else {
 nchars = 0;
 for (n = 0; n < frame_length; n++) {
 if (int_zero[c][n])
 nchars += 4;
 }
 Masked_LZ_decompression(nchars);
 }
 }

 if (highest_byte[c] != 0) {
 compressed_flag[c]; 1 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 25

 if (compressed_flag[c][n] == 0) {
 for (n = 0; n < frame_length; n++) {
 if (!int_zero[c][n]) {
 mantissa[c][n]; nbits[c][n] uimsbf
 }
 }
 }
 else {
 nchars = 0;
 for (n = 0; n < frame_length; n++) {
 if (!int_zero[c][n]) {
 nchars += (int)nbits[c][n]/8;
 if ((nbits[c][n] % 8) > 0)
 nchars++;
 }
 }
 Masked_LZ_decompression(nchars);
 }
 }
}

Note: “int_zero” is true if the corresponding truncated integer is 0. “nbit” is the necessary word length for the
difference of mantissa (see section 11.6.9).

Table 11.8 – Syntax of Masked_LZ_decompression

Syntax No. of bits Mnemonic
Masked_LZ_decompression(nchars)
{
 for (dec_chars = 0; dec_chars < nchars;) {
 string_code; 9..14 uimsbf
 }
}

Note: “nchars” is the number of characters need to be decoded (see section 11.6.9).

11.5 Semantics

In the following, the general elements are described. Additional elements related to floating-point audio data
are described in chapter 11.5.2.

11.5.1 General Semantics

11.5.1.1 ALSSpecificConfig

ALSSpecificConfig contains general configuration data. Optionally, the header and trailer of an original audio
file can be embedded in order to restore that information in addition to the actual audio data. The syntax of
ALSSpecificConfig is defined in Table 11.1, its elements are described in Table 11.9.

Table 11.9 – Elements of ALSSpecificConfig

Field #Bits Description / Values

samp_freq 32 Sampling frequency in Hz

samples 32 Number of samples (per channel)

channels 16 Number of channels-1

(0 = mono, 1 = stereo, …)

file_type 3 000 = unknown / raw file

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

26 © ISO/IEC 2006 – All rights reserved

001 = wave file

010 = aiff file

011 = bwf file

(other values are reserved)

resolution 3 000 = 8-bit

001 = 16-bit

010 = 24-bit

011 = 32-bit

(other values are reserved)

floating 1 1 = IEEE 32-bit floating-point, 0 = integer

msb_first 1 Original byte order of the input audio data:

0 = least significant byte first (little-endian)

1 = most significant byte first (big-endian)

If resolution = 0 (8-bit data), msb_first = 0 indicates
unsigned data (0…255), while msb_first = 1
indicates signed data (-128…127).

frame_length 16 Frame Length - 1 (e.g. frame_length = 0x1FFF
signals a frame length of N = 8192)

random_access 8 Distance between RA frames (in frames, 0…255).
If no RA is used, the value is zero. If each frame is
an RA frame, the value is 1.

ra_flag 2 Indicates where the size of random access units
(ra_unit_size) is stored:

00: not stored

01: stored at the beginning of frame_data()

10: stored at the end of ALSSpecificConfig()

adapt_order 1 Adaptive Order: 1 = on, 0 = off

coef_table 2 Table index (00, 01, or 10, see Table 11.20) of
Rice code parameters for entropy coding of
predictor coefficients, 11 = no entropy coding

long_term_prediction 1 Long term prediction (LTP): 1 = on, 0 = off

max_order 10 Maximum prediction order (0..1023)

block_switching 2 Number of block switching levels:

00 = no block switching

01 = up to 3 levels

10 = 4 levels

11 = 5 levels

bgmc_mode 1 BGMC Mode: 1 = on, 0 = off (Rice coding only)

sb_part 1 Sub-block partition for entropy coding of the
residual.

if bgmc_mode = 0:

0 = no partition, no ec_sub bit in block_data

1 = 1:4 partition, one ec_sub bit in block_data

if bgmc_mode = 1:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 27

0 = 1:4 partition, one ec_sub bit in block_data

1 = 1:2:4:8 partition, two ec_sub bits in block_data

joint_stereo 1 Joint Stereo: 1 = on, 0 = off

If channels = 0 (mono), joint_stereo = 0

mc_coding 1 Extended inter-channel coding: 1 = on, 0 = off

If channels = 0 (mono), mc_coding = 0

chan_config 1 Indicates that a chan_config_info field is present

chan_sort 1 Channel rearrangement: 1 = on, 0 = off

If channels = 0 (mono), chan_sort = 0

crc_enabled 1 Indicates that the crc field is present

RLSLMS 1 Use RLS-LMS predictor: 1 = on, 0 = off

(reserved) 5

aux_data_enabled 1 Indicates that auxiliary data is present (fields
aux_size and aux_data)

chan_config_info 16 Mapping of channels to loudspeaker locations.
Each bit indicates whether a channel for a
particular predefined location exists (see
subclause 11.6.1.5).

chan_pos[] (channels+1)*ChBits If channel rearrangement is on (chan_sort = 1),
these are the original channel positions. The
number of bits per channel is

ChBits = ceil[log2(channels+1)] = 1..16

where channels+1 is the number of channels.

header_size 16 Header size of original audio file in bytes

trailer_size 16 Trailer size of original audio file in bytes

orig_header[] header_size*8 Header of original audio file

orig_trailer[] trailer_size*8 Trailer of original audio file

crc 32 32-bit CCITT-32 CRC checksum of the original
audio data bytes (polynomial: x32 + x26 + x23 + x22 +
x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1).

ra_unit_size[] #frames*32 Distances (in bytes) between the random access
frames, i.e. the sizes of the random access units,
where the number of frames is

#frames = ((samples-1) / (frame_length+1)) +1

In ALSSpecificConfig(), this field appears only if
ra_flag = 1.

aux_size 16 Size of the aux_data field in bytes

aux_data aux_size*8 Auxiliary data (not required for decoding)

11.5.1.2 frame_data

This is the top level payload of ALS. If random_access > 0, the number of payloads mapped into one access
unit equals the value of random_access (1…255). In this case, the size of each access unit can be stored in
ra_unit_size. If random_access = 0, all payloads are mapped into the same access unit.

The bs_info field holds the block switching information for a channel or a channel pair (see subclause 11.6.2
for details). The syntax of frame_data is defined in Table 11.2, its elements are described in Table 11.10.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

28 © ISO/IEC 2006 – All rights reserved

Table 11.10 – Elements of frame_data

Field #Bits Description / Values

ra_unit_size 32 Distance (in bytes) to the next random
access frame, i.e the size of the random
access unit. In frame_data(), this field
appears only if ra_flag = 2.

bs_info 8, 16, 32 Block switching information.

If block_switching = 0, no bs_info field is
transmitted, otherwise #Bits depends on the
value of block_switching:

block_switching = 1: 8 bits

block_switching = 2: 16 bits

block_switching = 3: 32 bits

js_switch 1 If js_switch = 1, Joint Stereo (channel
difference) is selected even if MCC
(mc_coding) is enabled.

num_bytes_diff_float 32 Only present if floating = 1:

Number of bytes for diff_float_data

11.5.1.3 block_data

The block data specifies the type of block (normal, constant, silence) and basically contains the code indices,
the predictor order, the predictor coefficients and the coded residual values. The syntax of block_data is
defined in Table 11.3, its elements are described in Table 11.11.

Table 11.11 – Elements of block_data

Field #Bits Description / Values

block_type 1 1 = normal block

0 = zero / constant block

const_block 1 Only if block_type = 0:

1 = constant block

0 = zero block (silence)

js_block 1 Block contains a joint stereo difference signal

const_val 8,16,24,32 Constant sample value of this block

ec_sub 0..2 Number of sub-blocks for entropy coding.

#Bits = bgmc_mode + sb_part

if #Bits = 0: 1 sub-block

if #Bits = 1:

0 = 1 sub-block
1 = 4 sub-blocks

if #Bits = 2

00 = 1 sub-block
01 = 2 sub-blocks
10 = 4 sub-blocks
11 = 8 sub-blocks

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 29

s[],sx[] varies Up to 8 Rice (s) or BGMC (s,sx) code indices
for entropy coding of sub-blocks (number is
given by ec_sub). The differential values are
Rice coded.

shift_lsbs 1 Indicates that all original input sample values
of this block have been shifted to the right
prior to further processing, in order to remove
empty LSBs

shift_pos 4 Number of positions-1 that the sample values
of this block have been shifted to the right:

0000 = 1 position
…
1111 = 16 positions

opt_order 1..10 Predictor order for this block (of length NB):

 #Bits = min{ceil(log2(max_order+1)),

 max[ceil(log2((NB >> 3)-1)),1]}

The number of bits is restricted by both the
maximum order (max_order) and the block
length NB (see subclause 11.6.3.1)

quant_cof[] varies Rice coded quantized coefficients. The Rice
coding scheme is described in subclause
11.6.6.1

LTPenable 1 LTP switch: 1 = on, 0 = off

LTPgain[] varies Rice coded gain values (5-tap)

LTPlag 8,9,10 LTP lag values

Freq < 96000, range=0..255, bit=8

96000 <=Freq <192000, range=0..511, bit=9

Freq >=192000 range=0..1023, bit=10

smp_val[0] varies Rice coded sample value at the beginning of
a random access block (see Table 11.22)

res[] varies Rice coded residual values (see subclause
11.6.6.1)

msb[] varies BGMC-coded most significant bits of
residuals. For residuals outside the central
region, the special “tail_code” is transmitted.
The BGMC coding scheme is described in
subclause 11.6.6.2

lsb[] varies Directly transmitted least significant bits of
the residuals (see subclause 11.6.6.2)

tail[] varies Rice coded residual values outside the
central region (tails, see subclause 11.6.6.2)

 IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

30 © ISO/IEC 2006 – All rights reserved

11.5.1.4 channel_data

The syntax of channel_data is defined in Table 11.4, its elements are described in Table 11.12.

Table 11.12 – Elements of channel_data

Field #Bits Description / Values

stop_flag 1 0: Continue description of inter-channel
relationship

1: Stop description

master_channel_index 1..16

Index of master-channel.

#Bits = ceil[log2(channels+1)]

where channels+1 is the number of channels

time_difference_flag 1 0: 3-tap without time difference lag

1: 6-tap with time difference lag

weighting factor varies Indices of inter-channel weighting factor

time_difference_sign 1 0: positive, 1:negative; “Positive” means that
the reference channel is delayed relative to
the coding channel.

time_difference_value 5,6,7 Absolute value of time difference lag

Freq < 96000, range=3..34, #Bits=5

96000 <=Freq <192000, range=3..66, #Bits=6

Freq >=192000 range=3..130, #Bits=7

11.5.1.5 RLSLMS_extension_data

The syntax of RLSLMS_extension_data is defined in Table 11.5, its elements are described in Table 11.13.

Table 11.13 – Elements of RLSLMS_extension_data

Field #Bits Description / Values

mono_block 1 mono_frame == 0: CPE coded with joint-
stereo RLS

mono_frame == 1: CPE coded with mono
RLS

ext_mode 1 RLS-LMS predictor parameters are updated
in extension block.

1 == extension block

0 == non-extension block

extension_bits 3 Type of RLS-LMS parameters carried in
extension block

xtension&01 == RLS-LMS predictors orders

extension&02 == RLS_lambda and
RLS_lambda_ra

extension&04 == LMS_mu and
LMS_stepsize

RLS_order 4 RLS predictor order

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 31

LMS_stage 3 Number of LMS predictors in cascade

LMS_order[] 5*LMS_stage LMS predictor order

RLS_lambda 10 RLS predictor parameter lambda.

RLS_lambda_ra 10 RLS predictor parameter lambda for random
access frame

LMS_mu[] 5*LMS_stage LMS predictor parameter mu

LMS_stepsize 3 LMS predictor parameter stepsize

11.5.2 Semantics for Floating-Point Data

11.5.2.1 diff_float_data

The syntax of diff_float_data is defined in Table 11.6, its elements are described in Table 11.14.

Table 11.14 – Elements of diff_float_data

Field #Bits Description / Values

use_acf 1 1: acf_flag[c] is present

0: acf_flag[c] is not present

acf_flag[c] 1 1: acf_mantissa[c] is present

0: acf_mantissa[c] is not present

acf_mantissa[c] 23 Full mantissa data of common multiplier

highest_byte[c] 2 Highest nonzero bytes of mantissa in a frame

partA_flag[c] 1 1: Samples exist in Part-A

0: No sample exists or all zero in Part-A

shift_amp[c] 1 1: shift_value[c] is present

0: shift_value[c] is not present

shift_value[c] 8 Shift value: This value is added to the
exponent of all floating-point values of
channel c after conversion of decoded
integer to floating-point values, and before
addition of integer and the difference data.

11.5.2.2 diff_mantissa

The syntax of diff_mantissa is defined in Table 11.7, its elements are described in Table 11.15.

Table 11.15 – Elements of diff_mantissa

Field #Bits Description / Values

int_zero[c][n] (varies) int_zero for n-th sample and c-th channel
is set if the truncated integer equals “0”.
This value is not a syntactic element, but
can be determined from the associated
integer value which is available in both the
encoder and the decoder.

mantissa[c][n] nbits[c][n] Full mantissa data

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

32 © ISO/IEC 2006 – All rights reserved

compresed_flag[c] 1 1: Samples are compressed

2: Samples are uncompressed

nchars (varies) Number of characters to be decoded

float_data[c][n] 32 32-bit IEEE floating-point value

nbits[c][n] This value is not a syntactic element. This
can be determined from the integer value,
acf_mantissa[c] and highest_byte[c].

11.5.2.3 Masked_LZ_decompression

The syntax of Masked_LZ_decompression is defined in Table 11.8, its elements are described in Table 11.16.

Table 11.16 – Elements of Masked_LZ_decompression

Field #Bits Description / Values

string_code code_bits Index code of the dictionary.

code_bits (varies) code_bits is varied from 9 to 15 bits
depending on the number of entries stored
in the dictionary

11.6 ALS Tools

In most lossy MPEG coding standards, only the decoder is specified in detail. However, a lossless coding
scheme usually requires the specification of some (but not all) encoder portions. Since the encoding process
has to be perfectly reversible without loss of information, several parts of both encoder and decoder have to
be specified in a deterministic way.

Block diagrams of the lossless encoder and the lossless decoder were already shown in Figure 11.1. In the
rest of this section, the decoding process will be described along with those elements of the encoder which
must be specified exactly in order to ensure lossless decoding.

11.6.1 Overview

11.6.1.1 Bitstream structure

An example for the general bitstream structure of a compressed M-channel file is shown in Figure 11.2.

Frame i+1 Frame i+3 ...Frame i...

Code Indices K coefficientsOrder K Rice or BGMC coded residual values

Frame i-1 Frame i+2

Channel 1 Channel 2 Channel 3 Channel M...Channel 4

Block 1 Block 2 Block 3 Block B...Block 4

Figure 11.2 – General bitstream structure of a compressed audio file

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 33

Each frame (frame_data) consists of B = 1…32 sample blocks (block_data) for each channel. Besides general
information about the block (e.g. silence block, joint stereo difference block, etc.), each block typically contains
the code indices, the predictor order K, the predictor coefficients and the Rice- or BGMC-coded residual
values. Variations of this slightly simplified structure are treated in detail in the following sections. If joint
coding between channel pairs is used, the block partition is identical for both channels, and blocks are stored
in an interleaved fashion (see subclause 11.6.2, Figure 11.5). Otherwise, the block partition for each channel
is independent.

If the input is floating-point data, additional bitstream elements for differential mantissa values are inserted
after the bitstream of every integer frame. Please refer to subclause 11.6.9 for a detailed description of the
floating-point extensions.

11.6.1.2 Decoding of ALSSpecificConfig

ALSSpecificConfig contains information about the original data (e.g. “samp_freq”, “channels”, “resolution”) as
well as global parameters that do not change from frame to frame (e.g. “frame_length”, "max_order"). The
most important parameters (some of which are optional) are briefly described in the following:

• Sampling frequency: The sampling frequency of the original audio data is stored, e.g. for direct
playback of a compressed file.

• Samples: Total number of audio samples per channel.

• Number of channels: 1 (mono), 2 (stereo), or more (multichannel).

• Resolution: 8-bit, 16-bit, 24-bit, or 32-bit. If the resolution of the original audio data is somewhere in
between (e.g. 20-bit), the higher resolution is used for the sample representation.

• Floating-point: Indicates the format of audio data. If this flag is set, the audio data is in the IEEE 32-bit
floating-point format, otherwise the audio data is integer.

• Byte order: Indicates the byte order of the original audio file, either most significant byte first (e.g. aiff)
or least significant byte first (e.g. wave).

• Frame length: Number of samples in each frame (per channel).

• Random access: Distance (in frames) between those frames which can be decoded independently
from previous frames (random access frames). In front of each random access frame, there is the
field “ra_unit_size” which specifies this distance in bytes.

• Adaptive order: Each block might have an individual predictor order.

• Coefficient table: A Table containing parameters that are used for entropy coding of predictor
coefficients.

• Long-term-prediction: Long term prediction (LTP).

• Maximum order: Maximum order of the prediction filter. If “adapt_order” is turned off, this order is used
for all blocks.

• Block Switching: Instead of one block per channel there might up to 32 shorter blocks. If block
switching is not used, the block length is identical with the frame length.

• BGMC mode: Indicates the use of BGMC codes for the prediction residual. If this flag is set to 0, the
simpler Rice codes are used for the prediction residual.

• Sub-block partition: Sub-block partition for entropy coding of the residual.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

34 © ISO/IEC 2006 – All rights reserved

• Joint stereo: In each block, a difference signal might be encoded instead of the left or the right
channel (or one of the two channels of a channel pair, accordingly)

• Multi-channel coding: Extended inter-channel coding

• Channel sort: Channel rearrangement, used for building dedicated channel pairs.

• Channel positions: Original channel positions, used only if channel_sort is turned on.

• Header size: Size of the original audio file header, in bytes.

• Trailer size: Size of trailing non-audio information in the original audio file, in bytes.

• Original header: The embedded header of the original audio file.

• Original trailer: The embedded trailer of the original audio file.

• CRC: Cyclic redundancy checksum (CCITT-32) of the original audio data bytes (i.e. in their original
order, including channel interleaving).

11.6.1.3 Number of Frames

The number of frames to decode depends on the actual frame length (N = frame_length + 1) and the number
of samples. It can be determined as follows:

 N = frame_length + 1.
 frames = samples / N;
 remainder = samples % N;
 if (rest)
 {
 frames++;
 N_last = remainder;
 }
 else
 N_last = N;

If the number of samples is not a multiple of the frame length N, the length of the last frame is accordingly
reduced (N_last = remainder).

11.6.1.4 Joint Channel Coding

In order to exploit redundancy between channels, the encoder can use a simple approach, consisting of
channel pairs and single channels. The two channels of a channel pair can be encoded using difference
coding (see section 11.6.7), whereas single channels are encoded independently.

The general use of joint coding is signalled by the joint_stereo flag in the ALS header. If joint_stereo is off,
each channel is a single channel, and is therefore coded independently from other channels. If joint_stereo is
on, in each case two successive channels are regarded as a channel pair. If the number of channels is odd,
there is one remaining single channel.

Defining channel pairs does not mean that joint coding has to be essentially used. If joint_stereo is set, the
decoder will treat combinations of two channels as channel pairs, even if the encoder did never actually use
joint coding (e.g. since the channels were not correlated). In this case, the decoder will simply never discover
a set js_block flag block_data.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 35

11.6.1.5 Channel Configuration and Rearrangement

The chan_config_info field (if present) defines a channel-to-speaker mapping by indicating whether a channel
for a particular predefined location exists. Therefore, the existing channels have to be arranged in a
predefined order (see Table 11.17). If a particular channel is present, the corresponding bit in the
chan_config_info field is set.

Table 11.17 – Channel Configuration

Speaker location Abbreviation Bit position in
chan_config_info

Left L 1

Right R 2

Left Rear Lr 3

Right Rear Rr 4

Left Side Ls 5

Right Side Rs 6

Center C 7

Center Rear / Surround S 8

Low Frequency Effects LFE 9

Left Downmix L0 10

Right Downmix R0 11

Mono Downmix M 12

(reserved) 13-16

If the channels are arranged differently, channel rearrangement can be used. For 5.1 surround material with
channel configuration L, R, Lr, Rr, C, LFE, it is obvious that the first two channel pairs (L/R, Lr/Rr) might
benefit from joint coding, whereas the remaining channels (C, LFE) are more likely to be independent. Even
so, if joint_coding is on, the encoder forms channel pairs simply by successively combining adjacent channels,
thus there are three channel pairs in this case.

However, if the channel configuration is L, R, C, Lr, Rr, LFE, or L, Lr, C, Rr, R, LFE, the correlated channels
are no longer adjoining. This problem can be addressed by a virtual rearrangement of channels prior to
encoding, where correlated channels are grouped and successively arranged, such that they form channel
pairs. The information about this rearrangement is stored in the compressed file as the original channel
number in the field chan_pos[]. The decision on which channels are grouped can be made automatically by
the encoder or manually by the user. If the channel configuration is indicated in the original file, the encoder
can make a suitable rearrangement. If the file format has no default channel configuration, but the user knows
the channel to speaker mapping in that particular case, he can instruct the encoder how to group the channels.

The decoder has to reverse a possible channel rearrangement (chan_sort flag), by assigning each channel its
original position as stored in chan_pos[].

11.6.1.6 Decoding of Frames

A frame constitutes the top level payload (frame_data), i.e. the basic unit of audio data (see Table 11.2 for
syntax and Table 11.10 for semantics). If block switching is used, each channel of a frame can be subdivided
into up to 32 blocks. Otherwise, a block consists of all samples of a frame's channel.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

36 © ISO/IEC 2006 – All rights reserved

11.6.1.7 Decoding of Blocks

The block_data() structure contains the information about a single block (i.e. a segment of audio data from
one channel). It specifies whether the block is a “normal” block (i.e. containing encoded audio samples), a
constant block (all audio samples are the same) or a silence block (all audio samples are zero). Furthermore,
the field “joint_stereo” indicates whether the block contains a difference signal (right minus left channel). Either
the left or the right channel can be substituted by that difference signal. This also holds in the case of block
switching, when the block length may be shorter than the frame length.

For “normal” blocks, as shown in Figure 11.2, the block data basically comprises

• the code indices,

• the predictor order K,

• the quantized and encoded predictor coefficients (or the RLS-LMS predictor parameters in the case of
RLSLMS mode)

• the LTP parameters in case of LTP mode,

• and the Rice- or BGMC-coded residual values.

If the block is further subdivided into sub-blocks for entropy coding (indicated by ec_sub), code parameters s
and sx are transmitted for each sub-block (see section 11.6.6 for further explanations).

In case of an adaptive predictor order (adapt_order), the order for the block is indicated (opt_order). There is
also a flag (shift_lsbs) specifying whether all audio samples in the current block have some LSBs which are
persistently zero. If this is the case, the number of empty LSBs is given in another field (shift_pos). This
means that the encoder has shifted all sample values to the right by shift_pos+1 positions prior to prediction.
Thus, the decoder has to shift the output sample values to the left by shift_pos+1 positions after the inverse
prediction filter has been applied. If the prediction process uses samples from a previous block, a shifted
version of these samples has to be used as input of both the prediction filter and the inverse prediction filter
(i.e. in both the encoder and the decoder), even if the LSBs are not zero in the previous block. This is
necessary in order to align the amplitude range of the predictor's input samples with the samples to be
predicted.

11.6.1.8 Interleaving

Most uncompressed audio file formats store the two channels of a stereo signal as a sequence of interleaved
samples (L1, R1, L2, R2, L3, R3, …). For multichannel data with M channels, each sample step comprises M
interleaved samples, e.g. L1, R1, Lr1, Rr1, C1, LFE1, L2, … in the case of 5.1 material. Since the encoder builds
blocks of samples for each channel, the decoded samples of all channels may have to be interleaved again
before writing them to an output audio file.

11.6.2 Block Switching

If block_switching is enabled, each channel of a frame can be hierarchically subdivided into up to 32 blocks
(see Figure 11.3). IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-3

:20
05

/AMD2:2
00

6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 37

Figure 11.3 – Block switching hierarchy

Arbitrary combinations of blocks with NB = N, N/2, N/4, N/8, N/16, and N/32 are possible within a frame, as
long as each block results from a subdivision of a superordinate block of double length. Therefore, a partition
into N/4 + N/4 + N/2 is possible, whereas a partition into N/4 + N/2 + N/4 is not (Figure 11.4).

Figure 11.4 – Block switching examples and corresponding bs_info codes

The actual partition is signalled in an additional field bs_info (right column in Figure 11.4), whose length
depends on the number of block switching levels (see Table 11.18).

Table 11.18 – Block switching levels

Maximum #levels Minimum NB #Bytes for bs_info

0 N 0

1 N/2 1

2 N/4 1

3 N/8 1

4 N/16 2

5 N/32 4

The bs_info field consists of up to 4 bytes, where the mapping of bits with respect to the levels 1 to 5 is
[(0)1223333 44444444 55555555 55555555]. The first bit is only used to signal independent block switching
(independent_bs, see Table 11.2). In the example of Figure 11.4, there are three levels, thus the minimum
block length is NB = N/8, and bs_info consists of one byte. Starting at the maximum block length NB = N, the
bits of bs_info are set if a block is further subdivided. For the topmost example there is no subdivision at all,
thus the code is (0)0000000. The frame in the second row is subdivided ((0)1…), where only the second block
of length N/2 is further split ((0)101…) into two blocks of length N/4. If an N/4 block is split as in the fourth row,
it is indicated in the following bits ((0)111 0100).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

38 © ISO/IEC 2006 – All rights reserved

In each frame, bs_info fields are transmitted for all channel pairs and all single channels respectively, enabling
independent block switching for different channels. While the frame length is identical for all channels, block
switching can be done individually for each channel. If difference coding is used, both channels of a channel
pair have to be switched synchronously, but other channel pairs can still use different block switching.

However, if the two channels of a channel pair are not correlated with each other, difference coding will not
pay off, and thus there will be no need to switch both channels synchronously. Instead, it may rather make
sense to switch the channels independently.

Typically, there will be a bs_info field for each channel pair and single channel in a frame, i.e. the two
channels of a channel pair are switched synchronously. If they are switched independently, the first bit of
bs_info is set to 1, and the information applies to the channel pair's first channel. In this case, another bs_info
field for the second channel becomes necessary.

An example for a three-channel file is shown in Figure 11.5. Short blocks are only interleaved if they belong to
a channel pair that uses difference coding and therefore synchronized block switching (Figure 11.5, middle).
This interleaving is necessary since in a channel pair a block of one channel (e.g. block 1.2) may depend on
previous blocks from both channels (e.g. blocks 1.1 and 2.1), so these previous blocks have to be available
prior to the current one. For channels whose blocks are switched independently, channel data is arranged
separately (Figure 11.5, bottom).

Figure 11.5 – Frame Structure: No block switching (top), synchronized block switching between
channels 1 and 2 (middle), independent block switching (bottom)

If joint_stereo is off, all channels are switched independently without explicit signalling. If joint_stereo is on, but
block_switching is off, there is only one block per channel, thus interleaving is not required (Figure 11.5, top).

11.6.3 Prediction

This chapter describes the forward-adaptive prediction scheme. Block diagrams of the corresponding encoder
and decoder parts are shown in Figure 11.6 and Figure 11.7.

M
ul

tip
le

xi
ng

Figure 11.6 – Encoder of the forward-adaptive prediction scheme

The encoder consists of several building blocks. A buffer stores one block of input samples, and an
appropriate set of parcor coefficients is calculated for each block. The number of coefficients, i.e. the order of

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 39

the predictor, can be adapted as well. The quantized parcor values are entropy coded for transmission, and
converted to LPC coefficients for the prediction filter which calculates the prediction residual. The final entropy
coding of the residual is described in subclause 11.6.6.

D
em

ul
tip

le
xi

ng

Figure 11.7 – Decoder of the forward-adaptive predition scheme

The decoder is significantly less complex than the encoder, since no adaptation has to be carried out. The
transmitted parcor values are decoded, converted to LPC coefficients, and are used by the inverse prediction
filter to calculate the lossless reconstruction signal. The computational effort of the decoder mainly depends
on the predictor orders chosen by the encoder. Since the average order is typically well below the maximum
order, prediction with greater maximum orders does not necessarily lead to a significant increase of decoder
complexity.

If the prediction order K is adaptively chosen (adapt_order = 1), the number of bits used for signaling the
actual order (opt_order = K) in each block is restricted, depending on both the global maximum order
(max_order) and the block length NB:

Bits = min{ceil[log2(max_order+1)], max[ceil(log2((NB>>3)-1)), 1]}

Therefore, also the maximum order Kmax = 2Bits - 1 is restricted, depending on both the value of max_order and
the block length (see Table 11.19).

Table 11.19 – Maximum prediction order depending on block length and max_order

max_order = 1023 max_order = 100 NB

#Bits for opt_order Kmax #Bits for opt_order Kmax

> 4096 10 1023 7 100

> 2048 9 511 7 100

> 1024 8 255 7 100

> 512 7 127 7 100

> 256 6 63 6 63

> 128 5 31 5 31

> 64 4 15 4 15

> 32 3 7 3 7

> 16 2 3 2 3

> 8 1 1 1 1

The basic (short-term) prediction can be combined with long-term prediction (LTP, see subclause 11.6.4). An
alternative prediction scheme based on backward-adaptive predictors is described in subclause 11.6.5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

40 © ISO/IEC 2006 – All rights reserved

11.6.3.1 Predictor Coefficients

The transmission of the prediction filter coefficients is accomplished by using parcor coefficients γk, k = 1…K
(where K is the order of the filter), which can be obtained e.g. by using the Levinson-Durbin algorithm.

11.6.3.1.1 Quantization and encoding of parcor coefficients

The first two parcor coefficients (1γ and 2γ correspondingly) are quantized by using the following companding
functions:

()
()

1 1

2 2

64 1 2 1 ;

64 1 2 1 ;

a

a

γ

γ

⎢ ⎥= − + +⎣ ⎦
⎢ ⎥= − + − +⎣ ⎦

while the remaining coefficients are quantized using simple 7-bit uniform quantizers:

()64 ; 2 .k ka kγ= >⎢ ⎥⎣ ⎦

In all cases the resulting quantized values ka are restricted to the range [-64,63].

Transmission of the quantized coefficients ka is done by producing residual values

offsetk k kaδ = − ,

which, in turn, are encoded by using Rice codes as described in section 11.6.6.1. The corresponding offsets
and parameters of Rice codes used in this process can be globally chosen from one of the sets in Table 11.20,
where the table index (coef_table) is indicated in ALSSpecificConfig. If coef_table = 11, then no entropy
coding is applied, and the quantized coefficients are transmitted with 7 bits each. In this case, the offset is
always -64 in order to obtain unsigned values 64+= kk aδ that are restricted to [0,127].

Table 11.20 – Rice code parameters used for encoding of parcor coefficients

 coef_table = 00 coef_table = 01 coef_table = 10

Coefficient # Offset Rice
parameter

Offset Rice
parameter

Offset Rice
parameter

1 -52 4 -58 3 -59 3

2 -29 5 -42 4 -45 5

3 -31 4 -46 4 -50 4

4 19 4 37 5 38 4

5 -16 4 -36 4 -39 4

6 12 3 29 4 32 4

7 -7 3 -29 4 -30 4

8 9 3 25 4 25 3

9 -5 3 -23 4 -23 3

10 6 3 20 4 20 3

11 -4 3 -17 4 -20 3

12 3 3 16 4 16 3

13 -3 2 -12 4 -13 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 41

14 3 2 12 3 10 3

15 -2 2 -10 4 -7 3

16 3 2 7 3 3 3

17 -1 2 -4 4 0 3

18 2 2 3 3 -1 3

19 -1 2 -1 3 2 3

20 2 2 1 3 -1 2

2k-1, 10<k<65 0 2 0 2 0 2

2k, 10<k<64 1 2 1 2 1 2

k>127 0 1 0 1 0 1

11.6.3.1.2 Reconstruction of the parcor coefficients

First, Rice-decoded residual values kδ are combined with offsets (see Table 11.20) to produce quantized

indices of parcor coefficients ka :

+offsetk k ka δ= .

Then, the reconstruction of the first two coefficients is done using:

()
()

1 1 1

2 2 2

ˆpar 2 ;

ˆpar 2 ;

Q

Q

a

a

γ

γ

⎢ ⎥= = Γ⎣ ⎦
⎢ ⎥= = −Γ⎣ ⎦

where 2Q represents a constant (20Q =) scale factor required for integer representation of the

reconstructed coefficients, and ().Γ is a mapping described in the following table.

Table 11.21 – Indices i and corresponding scaled parcor values Γ(i) for i = -64…63

i Γ(i) i Γ(i) i Γ(i) i Γ(i)

-64 -1048544 -32 -913376 0 -516064 32 143392

-63 -1048288 -31 -904928 1 -499424 33 168224

-62 -1047776 -30 -896224 2 -482528 34 193312

-61 -1047008 -29 -887264 3 -465376 35 218656

-60 -1045984 -28 -878048 4 -447968 36 244256

-59 -1044704 -27 -868576 5 -430304 37 270112

-58 -1043168 -26 -858848 6 -412384 38 296224

-57 -1041376 -25 -848864 7 -394208 39 322592

-56 -1039328 -24 -838624 8 -375776 40 349216

-55 -1037024 -23 -828128 9 -357088 41 376096

-54 -1034464 -22 -817376 10 -338144 42 403232

-53 -1031648 -21 -806368 11 -318944 43 430624

-52 -1028576 -20 -795104 12 -299488 44 458272

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

42 © ISO/IEC 2006 – All rights reserved

-51 -1025248 -19 -783584 13 -279776 45 486176

-50 -1021664 -18 -771808 14 -259808 46 514336

-49 -1017824 -17 -759776 15 -239584 47 542752

-48 -1013728 -16 -747488 16 -219104 48 571424

-47 -1009376 -15 -734944 17 -198368 49 600352

-46 -1004768 -14 -722144 18 -177376 50 629536

-45 -999904 -13 -709088 19 -156128 51 658976

-44 -994784 -12 -695776 20 -134624 52 688672

-43 -989408 -11 -682208 21 -112864 53 718624

-42 -983776 -10 -668384 22 -90848 54 748832

-41 -977888 -9 -654304 23 -68576 55 779296

-40 -971744 -8 -639968 24 -46048 56 810016

-39 -965344 -7 -625376 25 -23264 57 840992

-38 -958688 -6 -610528 26 -224 58 872224

-37 -951776 -5 -595424 27 23072 59 903712

-36 -944608 -4 -580064 28 46624 60 935456

-35 -937184 -3 -564448 29 70432 61 967456

-34 -929504 -2 -548576 30 94496 62 999712

-33 -921568 -1 -532448 31 118816 63 1032224

Reconstruction of the 3rd and higher order coefficients is done using the formula

()6 7ˆpar 2 2 2 ; 2 .Q Q Q
k k ka kγ − −⎢ ⎥= = + >⎣ ⎦

11.6.3.1.3 Conversion of reconstructed parcor coefficients into direct filter coefficients

The scaled parcor coefficients are then converted to LPC coefficients using the following algorithm:

short m, i, K, Q = 20;
long *cof, *par, corr = 1 << (Q - 1);
INT64 temp, temp2;
for (m = 1; m <= K; m++)
{
 for (i = 1; i <= m/2; i++)
 {
 temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q);
 if ((temp > LONG_MAX) || (temp < LONG_MIN)) // Overflow: use different coefficients
 return(1);
 temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q);
 if ((temp2 > LONG_MAX) || (temp2 < LONG_MIN)) // Overflow: use different coefficients
 return(1);
 cof[m-i] = (long)temp2;
 cof[i] = (long)temp;
 }
 cof[m] = par[m];
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 43

Here, LONG_MAX = 231 − 1 and LONG_MIN = −(231). The resulting LPC coefficients cof are scaled by 220 as
well. The scaling will be accounted for during the filtering process.

11.6.3.2 Prediction Filter

The calculation of the predicted signal has to be done in a deterministic way to enable identical calculation in
both the encoder and the decoder, hence we cannot use floating point coefficients. Instead we employ an
upscaled integer representation as shown in the last section. Since the coefficients are enlarged by a factor
2Q = 220, also the predicted signal will be enlarged by the same factor. Thus, at the end of the filtering process,
each sample of the predicted signal has to be scaled down.

11.6.3.2.1 Encoder

The following algorithm describes the calculation of the residual d for an input signal x, a predictor order K and
LPC coefficients cof:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

44 © ISO/IEC 2006 – All rights reserved

short n, N, k, K, Q = 20;
long *x, *d, *cof, corr = 1 << (Q - 1);
INT64 y;
for (n = 0; n < N; n++)
{
 y = corr;
 for (k = 1; k <= K; k++)
 y += (INT64)cof[k-1] * x[n-k];
 d[n] = x[n] + (long)(y >> Q);
}

As can be seen from the code, the predictor uses the last K samples from the previous block to predict the
first sample of the current block.

If the current block (or sub-block) is a channel’s first block in a random access frame, no samples from the
previous block may be used. In this case, prediction with progressive order is employed, where the scaled
parcor coefficients par are converted progressively to LPC coefficients cof inside the prediction filter. In each
recursion, the current residual value d(n) and a new set of n+1 LPC coefficients is calculated (first loop). After
the first K residual values and all K coefficients are calculated, full-order prediction is used (second loop).
Please note that the indices for par and cof start with 1 is this implementation.

short m, n, N, i, k, K, Q = 20;
long *x, *d, *cof, corr = 1 << (Q - 1);
INT64 y, temp, temp2;
for (n = 0; n < K; n++)
{
 y = corr;
 for (k = 1; k <= n; k++)
 y += (INT64)cof[k] * x[n-k];
 d[n] = x[n] + (long)(y >> Q);
 m = n + 1;
 for (i = 1; i <= m/2; i++)
 {
 temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q);
 if ((temp > LONG_MAX) || (temp < LONG_MIN)) // Overflow: use different coefficients
 return(1);
 temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q);
 if ((temp2 > LONG_MAX) || (temp2 < LONG_MIN)) // Overflow: use different coefficients
 return(1);
 cof[m-i] = (long)temp2;
 cof[i] = (long)temp;
 }
 cof[m] = par[m];
}
for (n = K; n < N; n++)
{
 y = corr;
 for (k = 1; k <= K; k++)
 y += (INT64)cof[k] * x[n-k];
 d[n] = x[n] + (long)(y >> Q);
}

Only the first sample x(0) is transmitted directly, using a Rice code with s = resolution − 4 (i.e. s = 12 for 16-bit
and s = 20 for 24-bit). The following two residual values d(1) and d(2) are coded with Rice codes which are
related to the block’s first Rice parameter s[0] (see section 11.6.1.7). Depending on the entropy coder, the
remaining residual values d(3) to d(K) are either Rice coded with s[0] or BGMC coded with s[0] and sx[0]. A
summary of all codes is given in Table 11.22.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 45

Table 11.22 – Code parameters for different sample positions

Sample / Residual Code Parameter

x(0) resolution − 4

d(1) s[0] + 3

d(2) s[0] + 1

d(3) … d(K) s[0] (BGMC: sx[0])

11.6.3.2.2 Decoder

The algorithm for the calculation of the original signal in the decoder is nearly identical with the encoder’s
algorithm, except for the last instruction:

short n, N, k, K, Q = 20;
long *x, *d, corr = 1 << (Q - 1);
INT64 y;
for (n = 0; n < N; n++)
{
 y = corr;
 for (k = 1; k <= K; k++)
 y += (INT64)cof[k-1] * x[n-k];
 x[n] = d[n] - (long)(y >> Q);
}

In the case of random access, prediction with progressive order is used. The algorithm for the calculation is
also nearly identical with the encoder’s algorithm, except for the two lines where x is calculated. Again, the
indices for par and cof start with 1.

short m, n, N, i, k, K, Q = 20;
long *x, *d, *cof, corr = 1 << (Q - 1);
INT64 y, temp, temp2;
for (n = 0; n < K; n++)
{
 y = corr;
 for (k = 1; k <= n; k++)
 y += (INT64)cof[k] * x[n-k];
 x[n] = d[n] - (long)(y >> Q);
 m = n + 1;
 for (i = 1; i <= m/2; i++)
 {
 temp = cof[i] + ((((INT64)par[m] * cof[m-i]) + corr) >> Q);
 temp2 = cof[m-i] + ((((INT64)par[m] * cof[i]) + corr) >> Q);
 cof[m-i] = (long)temp2;
 cof[i] = (long)temp;
 }
 cof[m] = par[m];
}
for (n = K; n < N; n++)
{
 y = corr;
 for (k = 1; k <= K; k++)
 y += (INT64)cof[k] * x[n-k];
 x[n] = d[n] - (long)(y >> Q);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

46 © ISO/IEC 2006 – All rights reserved

If joint channel coding has been used by the encoder, the decoded signal x might be a difference signal. In
this case further processing has to be done to obtain the original signal (see next section).

11.6.4 Long-term prediction (LTP)

11.6.4.1 LTP gain and lag

If LTPenable is on, 5-tap gain values ()iρ and a lag value τ are decoded. The gain values ()iρ are
reconstructed from the Rice coded indices listed in Table 11.23, Table 11.24, and Table 11.25.

Table 11.23 – Reconstruction values and the Rice code for gain of ()0ρ

gain values
()0ρ *128

index prefix sub-code

0 0 0 00

8 1 0 01

16 2 0 10

24 3 0 11

32 4 10 00

40 5 10 01

48 6 10 10

56 7 10 11

64 8 110 00

70 9 110 01

76 10 110 10

82 11 110 11

88 12 1110 00

92 13 1110 01

96 14 1110 10

100 15 1110 11

Table 11.24 – Reconstruction values and the Rice code for gain of ()1±ρ

gain values
()1±ρ *128

index prefix sub-code

0 0 0 00

-8 1 0 01

8 2 0 10

-16 3 0 11

16 4 10 00

-24 5 10 01

24 6 10 10

-32 7 10 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 47

32 8 110 00

-40 9 110 01

40 10 110 10

-48 11 110 11

48 12 1110 00

-56 13 1110 01

56 14 1110 10

-64 15 1110 11

Table 11.25 – Reconstruction values and the Rice code for gain of ()2±ρ

gain values
()2±ρ *128

index prefix sub-code

0 0 0 0

-8 1 0 1

8 2 10 0

-16 3 10 1

16 4 110 0

-24 5 110 1

24 6 1110 0

-32 7 1110 1

32 8 11110 0

-40 9 11110 1

40 10 111110 0

-48 11 111110 1

The transmitted relative lag value is the actual value minus the start lag value. It is directly coded by natural
binary coding with 8 to 10 bits, depending on the sampling rates. Actual lag values are shown in Table 11.26,
where “optP” denotes the actual prediction order for short-term prediction.

Table 11.26 – Search range of lag τ

search range of ()iτ start end

Freq < 96 kHz optP+1 optP+256

Freq >= 96 kHz optP+1 optP+512

Freq >= 192 kHz optP+1 optP+1024

11.6.4.2 LTP synthesis procedure

Provided both lag and gain parameters are decoded, the following recursive filtering operation is carried out:

() () () ()jidjidid
j

+−+= ∑ −=
τρ2

2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

48 © ISO/IEC 2006 – All rights reserved

For insuring perfect reconstruction, the process should be strictly defined. The pseudo-code for this filter at the
decoder is as follows:

 INT64 u;
 for (smpl=0 ;smpl<end; smpl++)
 {
 for (u=1<<6, tap=-2; tap<=2; tap++)
 {
 u += (INT64)LTPgain[tap]*d[smpl-lag+tap];
 }
 d[smpl] += (long)(u>>7);
 }

Here, d is the residual signal (which is subsequently fed in the short-term synthesis filter, see section 11.6.3),
LTPgain is the gain value ()iρ *128, and lag is the lag value τ .

For simple combination with the adaptive block switching, all values of the residual signal, d(i) in the previous
block are “0”. Associated with the synthesis filtering process above, there is a pseudo-code for the analysis
filtering process at the encoder. Note this process should also be normative for the purpose of the perfect
reconstruction. In this pseudo-code, the difference between the encoder and decoder appears in the last line:
Input and output are common at the decoder, while they are different at the encoder.

 INT64 u;
 for (smpl=0 ;smpl<end; smpl++)
 {
 for (u=1<<6, tap=-2; tap<=2; tap++)
 {
 u += (INT64)LTPgain[tap]*d[smpl-lag+tap];
 }
 dout[smpl] = d[smpl]-(long)(u>>7);
 }

Here, d is the residual of short-term prediction, and dout is the LTP residual.

11.6.5 RLS-LMS predictor mode

11.6.5.1 RLS-LMS predictor parameters

The parameters of the RLS-LMS predictor are signaled in RLSLMS_extension() when ext_mode = 1. The
values of the predictor parameters are listed in the following tables.

Table 11.27 – RLS predictor order

index RLS_order

0 0

1 2

2 4

3 6

4 8

5 10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 49

6 12

7 14

8 16

9 18

10 20

11 22

12 24

13 26

14 28

15 30

Table 11.28 – Number of LMS predictors in cascade

index LMS_stage

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

Table 11.29 – LMS predictor order

index LMS_order

0 2

1 3

2 4

3 5

4 6

5 7

6 8

7 9

8 10

9 12

10 14

11 16

12 18

13 20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

50 © ISO/IEC 2006 – All rights reserved

14 24

15 28

16 32

17 36

18 48

19 64

20 80

21 96

22 128

23 256

24 384

25 448

26 512

27 640

28 768

29 896

30 1024

31 reserved

Table 11.30 – LMS predictor stepsize

index LMS_mu

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 10

10 11

11 12

12 13

13 14

14 15

15 16

16 18

17 20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 51

18 22

19 24

20 26

21 28

22 30

23 35

24 40

25 45

26 50

27 55

28 60

29 70

30 80

31 100

When there is a change in the RLS or LMS filter order, the filter state (history buffers, weights, and the RLS
inverse auto-correlation matrix P) needs to be reset. The next session describes how to reset and re-initialize
the filter parameters. On detecting a filter order change, the decoder will automatically re-initialize its filters.

When the parameters for RLS-LMS predictor are not signalled, the parameters from the previous frame will be
used.

11.6.5.2 RLS-LMS predictors

11.6.5.2.1 Initialization of the RLS_LMS predictor

The RLS and LMS adaptive filters is initialized at the start of the encoding or decoding process, and also at
the start of each Random Access (RA) frame. The following pseudo code illustrates the initialization routine of
the RLS_LMS predictor.

#define PFACTOR 115292150460684
#define LONG_MAX 0x7fffffff
#define LONG_MIN 0x80000000
#define STEPSIZE 16777 // in 8.24 format for 0.001
#define ROUND1(x) ((long)(x+8)>>4)
#define ROUND2(x) ((INT64) ((INT64) x + 1i64)>>1)

RLS_filter_weight: Weights of the RLS filter
LMS_filter_weight: Weights of the LMS filter
P: Inverse auto-correlation matrix of the RLS filter
TOTAL_FILTER_LEN: Total buffer size = DPCM_order + RLS_order+ LMS_order + Combiner_order

void predict_init()
{
 short i,j,ch;
 for (i=0; i<rls_filter_len; i++)
 {
 RLS_filter_weight[i] = 0; // RLS filter weight initialized to 0
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

52 © ISO/IEC 2006 – All rights reserved

 for (j=LMS_START;j<number of LMS_stages;j++)
 {
 for (i=0; i<filter_len[j]; i++)
 {
 LMS_filter_weight[j][i] = 0; // clear LMS filters weight to 0
 }
 }
 for (i=0; i<number of filter stages; i++)
 {
 w_final[i] = (long) 1<<24; // 1.0 in 7.24 format
 }
 // Joint-stereo RLS init
 for (i=0; i<rls_filter_len*rls_filter_len;i++)
 {
 P[rlslms_ptr->channel][i]=0;
 }
 for (i=0; i<rls_filter_len; i++)
 {
 P[i*rls_filter_len+i]=(INT64) (PFACTOR); // initialize to 0.0001 in 4.60 format
 }
 for(j=0;j<TOTAL_FILTER_LEN;j++) buf[j] = 0; // reset all lms, rls, dpcm, and linear combiner buffers
}

11.6.5.2.2 Filtering operation in the RLS_LMS predictor

The RLS-LMS predictor consists of a DPCM predictor, a RLS predictor, and various numbers of LMS
predictors. In each of these predictors, a prediction is generated for every input sample by linearly combining
the past samples. The DPCM predictor uses the previous sample x[n-1] as the prediction of the current
sample x[n]. The following pseudo code illustrates how the prediction of the current sample x[n] is generated
in an order-M LMS predictor.

 INT64 y;
 // Filter output
 prediction = 0;
 for (i=0;i<M;i++)
 {
 prediction += ((INT64) w[i]) * x[n-i]; // 8.24 * 24.0 -> 32.24
 }
 prediction >>= 20; // change y to 28.4 format
 if (prediction > 0x7ffffff) y = 0x7ffffff; // clip to 24.4 format
 if (prediction < -0x7ffffff) y = -0x7ffffff;

The following pseudo code illustrates how the prediction of the current sample x[n] is generated in an order-M
RLS predictor.

 INT64 y;
 // Filter output
 prediction = 0;
 for (i=0;i<M;i++)
 {
 prediction += ((INT64) w[i]) * x[n-i]; // 14.16 * 24.0 -> 28.16
 }
 prediction >>= 12; // change y to 28.4 format
 if (prediction > 0x7ffffff) y = 0x7ffffff; // clip to 24.4
 if (prediction < -0x7ffffff) y = -0x7ffffff;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 53

The linear combiner multiplies weight w_final[i] to the predictions of each predictor and the results are
summed up. The result of the summation, after rounded to integer, is the output prediction of the RLS-LMS
predictor. This prediction is subtracted from the current input sample to generate a prediction error. Note that
the predictors and prediction errors are computed in 24.4 fixed-point format.

 short i;
 INT64 y,e;
 INT64 temp;
 long wchange;
 prediction_final = 0;
 for (i=0; i<STAGE; i++)
 prediction_final += (INT64) w_final[i]* prediction[i];
 prediction_final >>= 24 ;
 assert(y<LONG_MAX && y>LONG_MIN);
 e = (x<<4) /*convert to 24.4 or 16.4*/– prediction_final;

For the DPCM and RLS predictors, the linear combiner weights w_final[i] are fixed at 0.001 (16777 in 8.24
format). The rest of the weights are updated using the following sign-sign LMS algorithm

 if (prediction[i]*e >0)
 {
 temp = w_final[i];
 if (temp<LONG_MAX) temp += STEPSIZE*LMS_stepsize;
 w_final[i] = (long) temp;
 }
 else if (prediction[j]*e<0)
 {
 temp = w_final[i];
 if (temp>LONG_MIN) temp -= STEPSIZE*LMS_stepsize;
 w_final[i] = (long) temp;
 }

The linear combiner weights are clipped at values of LONG_MAX and LONG_MIN (0x7fffffff and 0x80000000
in 8.24 format, respectively).

In the encoder, the prediction error is produced by subtracting the rounded (to 24.0 format) prediction
prediction_final from the input PCM sample x as follows:

residual = x – (long)((prediction_final+8)>>4);

where residual is the prediction error which will be further coded by the entropy coder.

In the decoder, a reverse process is performed to restore the original PCM sample

x = residual + (long)((prediction_final+8)>>4);

In the RLS-LMS predictor, the DPCM predictor has fixed order and weight of 1. The weights of the RLS and
LMS predictors are updated continuously until they are resetted due to there is a RA frame or a change of
filter parameters.

11.6.5.2.3 Joint-stereo RLS and mono RLS

A single channel element (SCE) is processed by the mono RLS predictor whose history buffer is updated from
samples within the channel.

A channel pair element (CPE) is processed by the joint-stereo RLS predictor which generates predictions of
each channel by using samples from both channels. Therefore, the history buffers of the predictor contain

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

54 © ISO/IEC 2006 – All rights reserved

interleaved past samples from both the left and the right channels. The joint-stereo RLS predictor maintains
two sets of P matrix and filter weights, one for each channel. If the Joint-Stereo flag is not set in the ALS
header, mono RLS is used for each independent channel. For a CPE, if both channels contain only constant
or zero, the prediction filter is bypassed for that frame.

When mono_block is set to 1 for a CPE, it is coded as two individual channels L and L-R, where the L channel
is coded as a SCE by the mono predictor (DPCM + mono_RLS + LMS), whereas samples of the L-R channel
are directly sent to the entropy coder.

11.6.5.2.4 Adaptation of RLS filter weights

The RLS filter weights are updated by the following pseudo code, which has three main stages: computing the
gain vector k[i], updating the filter weight w[i], and updating the matrix P.

P: Inverse auto-correlation matrix
x: Input PCM sample
y: Prediction
w: Filter weights
M: Filter order
bufl: History buffer containing the past M input samples
lambda: Forgetting factor

/* Routine to re-initialize the P matrix */
void reinit_P(INT64 *Pmatrix)
{
 short i;
 // Joint-stereo RLS init
 for (i=0; i<rls_filter_len*rls_filter_len;i++)
 {
 Pmatrix[i]=0;
 }
 for (i=0; i<rls_filter_len; i++)
 {
 Pmatrix[i*rls_filter_len+i]=(INT64) (PFACTOR); // initialize to 0.0001 in 4.60 format
 }
}

void UpdateRLSFilter(long *x, long y, W_TYPE *w, short M, long *bufl, P_TYPE *P)
{
 short i,j,shift,vscale,dscale;
 INT64 k[256];
 INT64 wtemp,wtemp2;
 INT64 htemp,ir,ltemp,htemp1,htemp2;
 long vl[256];
 UINT64 utemp,ltemp1;
 long lr,e,kscale,shifted_e;

 // get the error by substracting current sample x with the predictor y
 e = (*x-y);

 // Step1. Compute gain vector k
 MulMtxVec(P, bufl, M, vl, &vscale); // (vl, vscale) = matrix P * matrix bufl

 wtemp = MulVecVec(bufl, vl, M, &dscale); // wtemp = bufl
 assert((vscale+dscale)<64);
 i = 0;

 while(wtemp> LONG_MAX/4 && wtemp!=0) {wtemp>>=1;i++;}
 i += vscale + dscale;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 55

 if (i<=60)
 wtemp += (1i64<<(60-i));
 else
 {
 reinit_P(P); // in case P is round to zero, re-initialize P
 }
 wtemp2 = wtemp;
 assert(i<90);
 if (wtemp == 0)
 {
 ir=1L<<30;
 }
 else if ((90-i)>62)
 {
 shift = 90-(i)-62;
 ir = (1i64<<62)/ (wtemp2) ;
 if (shift>32)
 ir = 1L<<30;
 else if (shift>=0)
 ir <<= shift;
 }
 else // i>28
 {
 if ((90-i)>32)
 ir = (1i64<<(90-(i)))/(wtemp2);
 }
 lr = (long) ir;
 htemp1 = 0;
 for (i=0; i<M; i++)
 {
 htemp = (INT64) vl[i] * lr;
 if (vscale>=12)
 {
 k[i] = htemp<<(vscale-12);
 k[i] = ROUND2(k[i]);
 }
 else
 {
 k[i] = htemp>>(11-vscale);
 k[i] = ROUND2(k[i]) ;
 }
 htemp1 |= (k[i]>0 ? k[i]:-k[i]);
 }
 dscale = fast_bitcount(htemp1); // count how many significant bit htemp1 has
if (dscale>30)
 {
 dscale -= 30;
 for (i=0; i<M; i++)
 {
 k[i] >>= dscale;
 }
 }
 else
 {
 dscale = 0;
 }

 // Step2. Update weight
 shifted_e = e>>3;
 for (i=0; i<M; i++)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

56 © ISO/IEC 2006 – All rights reserved

 {
 htemp1 = (INT64) k[i] * shifted_e;
 htemp = (htemp1>>(30-dscale));
 wtemp = w[i] + ROUND2(htemp);
 w[i] = (long) wtemp;
 }
 vscale += dscale;

 // Step3. Update P matrix
 for (i=0; i<M; i++) // Lower triangular
 for (j=0; j<=i; j++)
 {
 htemp2 = (INT64) k[i] * vl[j];
 wtemp = htemp2>>(14-vscale);
 P[i*M+j] -= wtemp;
 if (P[i*M+j]>=_I64_MAX/2) { reinit_P(P); break; }
 if (P[i*M+j]<=_I64_MIN/2) { reinit_P(P); break; }
 wtemp = P[i*M+j]/lambda;
 P[i*M+j] += wtemp;
 }
 for (i=1; i<M; i++) // Upper triangular
 for (j=0; j<i; j++)
 P[j*M+i] = P[i*M+j];
 // Buffer update
 buffer_update(*x>>4,bufl,M);
 *x = (long) e;
}

The following routine multiplies an input vector x to the matrix P and generates an output vector yi, which is
normalized to 28.0 format with a scale factor vscale.

void MulMtxVec(P_TYPE *P, long *x, short M, long *yi, short *vscale)
{
 P_TYPE *ptr;
 short i,j,cc,pscale,nscale;
 INT64 htemp,yh[256],ttemp,imax,htemp1,PT[500],ya[256],ttemp1;
 UINT64 yl[256],ltemp,ltemp1;
 *vscale = 0;
 imax = 0;
 htemp1 = 0;
 for(i=0;i<M;i++)
 {
 ptr = P;
 ptr += i*M;
 for(j=0;j<=i;j++)
 {
 htemp1 |= (*ptr> 0 ? *ptr : - *ptr);
 ptr++;
 }
 }
 pscale = 63-fast_bitcount(htemp1); // bit_count counts number of significant bits htemp1 has
 ttemp1 = 0;
 for (i=0; i<M; i++)
 {
 ptr = P;
 ptr += i*M;
 ya[i]=0;
 for (j=0; j<M; j++)
 {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 57

 ya[i] += (INT64) (((*ptr++<<pscale)+0x0000000080000000i64)>>32) * x[j];
 }
 ttemp1 |= (ya[i]>0 ? ya[i]:-ya[i]);
 }
 nscale = fast_bitcount(ttemp1);
 if (nscale>28)
 {
 nscale -= 28;
 for(i=0;i<M;i++)
 {
 ya[i]>>=nscale;
 yi[i] = ya[i];
 }
 *vscale = nscale-pscale;
 }
 else
 {
 nscale -=28;
 for(i=0;i<M;i++)
 {
 yi[i] = ya[i]; // & 0x00000000ffffffffi64;
 }
 *vscale = -pscale;
 }
}

The following routine calculates the inner product of two vector x and y and normalizes the output value z to
60.0 format with a scale factor scale.

INT64 MulVecVec(long *x, long *y, short M, short *scale)
{
 short i;
 INT64 z,zh,temp;
 *scale = 0;
 zh = 0;
 for (i=0; i<M; i++)
 {
 zh += (INT64) (y[i])* x[i];
 }
 temp = zh ;
 temp = (temp>0 ? temp:-temp); // drop the sign
 *scale = fast_bitcount(temp);
 if (*scale>28)
 {
 *scale -= 28; // this is the amount of excess 64 bit
 assert(*scale<32);
 z = (zh<<(32-(*scale-1)));
 z = ROUND2(z);
 }
 else
 {
 z = (zh<<32); // shift to upper 32 bit
 }
 assert(z<_I64_MAX/2 && z>_I64_MIN/2);
 return(z);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

58 © ISO/IEC 2006 – All rights reserved

11.6.5.2.5 Adaptation of LMS filter weights

The LMS filter weights are updated by the normalized-LMS algorithm (NLMS). The pseudo code is given
below.

x: Input PCM sample
w: Filter weights
M: Filter order
buf: History buffer containing the past M input samples
mu: Stepsize
pow: Power of the samples in the history buffer

// NLMS weight update
void update_predictor(long *x, long y, BUF_TYPE *buf, W_TYPE *w, short M, short mu, INT64 *pow)
{
 short i,j;
 INT64 fact;
 INT64 wtemp,e,wtemp1;
 long temp;

 // Calculation of Prediction error
 e = (*x - y); // y is 24.4 format change x to 24.4

 // Weight update

 wtemp1 = wtemp = ((INT64) mu * (*pow>>7));
 i = 0;
 while(wtemp> LONG_MAX) {wtemp>>=1;i++;}
 fact = ((INT64) e<<(29-i))/(INT64)((wtemp1 + 1)>>i);

 for (j=0; j<M; j++)
 {
 w[j] = w[j] + (long) (((INT64) buf[j]* (INT64) fact + 0x8000)>>16);
 }

 // NLMS power update
 temp = (*x)>>4; // x is in 28.4 format need to change to 28.0
 *pow -= (INT64) buf[0] * (INT64) buf[0];
 *pow += (INT64) temp * temp ;
 if (*pow>_I64_MAX) *pow = _I64_MAX;

 // Buffer update – add in the current sample temp
 buffer_update(temp,buf,M);

 // Predictor output
 *x = (long) e ; // overwrite the current sample with the error for next filter stage
}

11.6.5.3 Random Access in RLSLMS mode

In the Random Access (RA) frame, the predictor resets all its filters to their initial states to ensure
synchronized encoding and decoding. For a RA frame of length M, the first M/32 samples are not updated
into the LMS history buffer. The adaptation of the LMS filter weights starts only after the first M/32 samples. In
an RA frame, the RLS filter uses the forgetting factor RLS_lambda_ra for the first 300 samples, after that, the
forgetting factor RLS_lambda is used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 59

11.6.6 Coded Residual

There are two possible modes for transmission of the prediction residual: A fast encoding scheme employing
simple Rice codes (see subclause 11.6.6.1), and a more complex and efficient scheme using block Gilbert-
Moore codes (BGMC, see subclause 11.6.6.2).

11.6.6.1 Rice Codes

When the bgmc_mode flag in the ALSSpecificConfig is set to 0, the residual values are entropy coded using
Rice codes. The chosen syntax for codeword generation is specified in the following.

A Rice code is defined by a parameter s ≥ 0. For a given value of s, each codeword consists of a p-bit prefix
and an s-bit sub-code. The prefix is signalled using p−1 “1”-bits and one “0”-bit, with p depending on the
coded value. For a signal value x and s > 0, p−1 is calculated as follows (“÷” means integer division without
remainder):

⎩
⎨
⎧

<÷−−
≥÷

=−
−

−

0for 2)1(
0for 21 1

1

xx
xxp s

s

For s = 0, we use a modified calculation:

⎩
⎨
⎧

<−−
≥

=−
0for 12
0for 2

1
xx
xx

p

The sub-code for s > 0 is calculated as follows:

⎩
⎨
⎧

<−−−−
≥+−−

=
−

−−

0for)1(2)1(
0for 2)1(2

1

11

xpx
xpxsub s

ss

For s = 0 there is no sub-code but only the prefix, thus the prefix and the codeword are identical. Permitted
values are s = 0…15 for a sample resolution ≤ 16 bits, and s = 0…31 for a sample resolution > 16 bits.

Table 11.31 and Table 11.32 show examples for the Rice code with s = 4. Table 11.33 shows the special Rice
code with s = 0.

Table 11.31 – Rice code with s = 4. The xxxx bits contain the 4-bit sub-code sub

Values p Prefix Codeword

−8…+7 1 0 0xxxx

−16…−9; +8…+15 2 10 10xxxx

−24…−17; +16…+23 3 110 110xxxx

−32…−25; +24…+31 4 1110 1110xxxx

−40…−33; +32…+39 5 11110 11110xxxx

Table 11.32 – Sub-codes of the Rice code with s = 4 for the first three prefixes

Values (p = 1) Values (p = 2) Values (p = 3) sub-code (xxxx)

−8 −16 −24 0111

−7 −15 −23 0110

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

60 © ISO/IEC 2006 – All rights reserved

−6 −14 −22 0101

−5 −13 −21 0100

−4 −12 −20 0011

−3 −11 −19 0010

−2 −10 −18 0001

−1 −9 −17 0000

0 8 16 1000

1 9 17 1001

2 10 18 1010

3 11 19 1011

4 12 20 1100

5 13 21 1101

6 14 22 1110

7 15 23 1111

Table 11.33 – ”Special” Rice code with s = 0 (prefix and codeword are identical)

Values p Prefix Codeword

0 1 0 0

−1 2 10 10

+1 3 110 110

−2 4 1110 1110

+2 5 11110 11110

For each block of residual values, either all values can be encoded using the same Rice code, or, if the
sb_part flag in the file header is set, the block can be divided into four sub-blocks, each encoded with a
different Rice code. In the latter case, the ec_sub flag in the block header indicates whether one or four blocks
are used.

While the parameter s[i = 0] of the first sub-block is directly transmitted with either 4 bits (resolution ≤ 16 bits)
or 5 bits (resolution > 16 bits), only the differences of following parameters s[i > 0] are transmitted. These
differences are additionally encoded using appropriately chosen Rice codes again (see Table 11.34).

Table 11.34 – Coding of Rice code parameters s[i]

Code parameter
(i = sub-block index)

Difference Rice code parameter
used for differences

s[i] (i>0) s[i] - s[i-1] 0

There are different ways to determine the optimal index s for a given set of data. It is up to the encoder to
select suitable Rice codes depending on the statistics of the residual.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 61

11.6.6.2 BGMC coding mode

When the bgmc_mode flag in the file header is set to 1, the residual values are split into MSB, LSB and tail
components, which are then encoded using block Gilbert-Moore, fixed-length, and Rice codes
correspondingly.

Furthermore, a different sub-block partition scheme is used. If the sb_part flag in the file header is set, each
block can be divided in into 1, 2, 4, or 8 sub-blocks, where the actual number is indicated by a 2-bit ec_sub
field in the block header. If sb_part is not set, each block can only be divided into 1 or 4 sub-blocks, and the
actual number is indicated by a 1-bit ec_sub field.

The subsequent sections 11.6.6.2.1 – 11.6.6.2.4 describe details of the BGMC coding process.

11.6.6.2.1 Additional Parameters

In addition to the code parameter s (used to construct Rice codes), the BGMC encoder/decoder relies on the
following quantities:

The number of lowest-significant bits (LSBs) k of residuals to be transmitted directly:

0, if
, if

s
k

s s
≤ Β⎡

= ⎢ −Β > Β⎣
,

where s is the Rice parameter, and B is a parameter depending on the sub-block size N:

()2log 3 1NΒ = − >>⎡ ⎤⎢ ⎥ ;

where 0 ≤ B ≤ 5 (values out of bounds are clipped to the bounds). The number of missing (in accessing
frequency tables) bits delta:

5delta s k= − + ,

and finally, the index of a frequency table sx to be used for encoding/decoding of MSBs.

The parameter sx is transmitted in addition to s for each sub-block, where the 'complete' BGMC parameter
can be represented as S = 16⋅s + sx. Similar to the Rice coding mode, the first parameter is directly
transmitted, while for subsequent parameters only encoded differences are transmitted (see Table 11.35).

Table 11.35 – Coding of BGMC code parameters S[i] = 16⋅s[i]+sx[i]

Code parameter (i =
sub-block index)

Difference Rice code parameter
used for differences

S[i] (i>0) S[i] - S[i-1] 2

11.6.6.2.2 Splitting Residual Values on MSBs, LSBs, and Tails

The process of obtaining sign-removed and clipped MSB values, LSBs or tails corresponding to the residual
samples (res[i]) can be described as follows:

 for (i = 1; i <= N; i++)
 {
 long msbi = res[i] >> k; // remove lsbs
 if (msbi >= max_msb[sx][delta]) { // positive tail
 msb[I] = tail_code[sx][delta];
 tail[i] = res[i] - (max_msb[sx][delta] << k);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

62 © ISO/IEC 2006 – All rights reserved

 } else
 if (msbi <= -max_msb[sx][delta]) { // negative tail
 msb[I] = tail_code[sx][delta];
 tail[i] = res[i] + ((max_msb[sx][delta] - 1) << k);
 } else { // normal msb range
 if (msbi >= 0) msbi = msbi * 2;
 else msbi = -msbi * 2 –1; // remove sign
 if (msbi >= tail_code[sx][delta])
 msbi ++; // skip tail code
 msb[i] = msbi; // msb and lsb values
 lsb[i] = res[i] & ((1<<k)-1); // to encode
 }
 }

The maximum absolute values of MSBs and tail codes used in this algorithm (arrays max_msb[] and
tail_code[] correspondingly) are specified in the following tables.

Table 11.36 – Maximum/minimum values of residual MSBs

 delta

 sx

0 1 2 3 4 5

0 ±64 ±32 ±16 ±8 ±4 ±2

1 ±64 ±32 ±16 ±8 ±4 ±2

2 ±64 ±32 ±16 ±8 ±4 ±2

3 ±96 ±48 ±24 ±12 ±6 ±3

4 ±96 ±48 ±24 ±12 ±6 ±3

5 ±96 ±48 ±24 ±12 ±6 ±3

6 ±96 ±48 ±24 ±12 ±6 ±3

7 ±96 ±48 ±24 ±12 ±6 ±3

8 ±96 ±48 ±24 ±12 ±6 ±3

9 ±96 ±48 ±24 ±12 ±6 ±3

10 ±96 ±48 ±24 ±12 ±6 ±3

11 ±128 ±64 ±32 ±16 ±8 ±4

12 ±128 ±64 ±32 ±16 ±8 ±4

13 ±128 ±64 ±32 ±16 ±8 ±4

14 ±128 ±64 ±32 ±16 ±8 ±4

15 ±128 ±64 ±32 ±16 ±8 ±4

Table 11.37 - Tail Codes.

 delta

 sx

0 1 2 3 4 5

0 74 44 25 13 7 3

1 68 42 24 13 7 3

2 58 39 23 13 7 3

3 126 70 37 19 10 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 63

4 132 70 37 20 10 5

5 124 70 38 20 10 5

6 120 69 37 20 11 5

7 116 67 37 20 11 5

8 108 66 36 20 10 5

9 102 62 36 20 10 5

10 88 58 34 19 10 5

11 162 89 49 25 13 7

12 156 87 49 26 14 7

13 150 86 47 26 14 7

14 142 84 47 26 14 7

15 131 79 46 26 14 7

The inverse (decoding) process, reconstructing the original residual samples (res[i]) based on their MSBs,
LSBs or tails can be described as follows:

for (i = 1; i <= N; i++)
{
 if (msb[i] == tail_code[sx][delta]) {
 if (tail[i] >= 0) // positive tail
 res[i] = tail[i] + (abs_max_x) << k;
 else // negative tail
 res[i] = tail[i] -(abs_max_x - 1) << k;
 } else {
 int msbi = msb[i];
 if (msbi > tail_code[sx][delta])
 msbi --; // skip tail code
 if (msbi & 1)
 msbi = (-msbi –1)/2; // remove sign
 else
 msbi = msbi/2;
 res[i] = (msbi << k) | lsb[i]; // add lsbs
 }
}

11.6.6.2.3 Encoding and Decoding of MSBs

The clipped MSBs of the residual samples are block-coded using Gilbert-Moore codes constructed for a
distribution (cumulative frequency table) indexed by the parameter sx.

The encoding process consists of a) initialising the state of the block Gilbert-Moore (arithmetic) encoder, b)
sequential encoding of all MSB values in all sub-blocks, and c) flushing the state of the encoder.

C-language specifications of the corresponding functions of the encoder are given below.

#define FREQ_BITS 14 // # bits used by freq. counters
#define VALUE_BITS 18 // # bits used to describe code range
#define TOP_VALUE 0x3FFFF // largest code value
#define FIRST_QTR 0x10000 // first quarter
#define HALF 0x20000 // first half
#define THIRD_QTR 0x30000 // third quarter

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

64 © ISO/IEC 2006 – All rights reserved

// encoder state variables:
static unsigned long high, low, bits_to_follow;

// start encoding:
void bgmc_start_encoding (void)
{
 high = TOP_VALUE;
 low = 0;
 bits_to_follow = 0;
}

// sends a bit followed by a sequence of opposite bits:
void put_bit_plus_follow (unsigned long bit)
{
 put_bit (bit);
 while (bits_to_follow) {
 put_bit (bit ^ 1);
 bits_to_follow --;
 }
}

// encodes a symbol using Gilbert-Moore code for
// a distribution s_freq[] subsampled by delta bits:
void bgmc_encode (unsigned long symbol, long delta, unsigned long *s_freq)
{
 unsigned long range = high –low +1;
 high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS);
 low =low+((range*s_freq[(symbol+1)<< delta])>>FREQ_BITS);

 for (; ;) {
 if (high < HALF) {
 put_bit_plus_follow (0, p);
 } else if (low >= HALF) {
 put_bit_plus_follow (1, p);
 low -= HALF;
 high -= HALF;
 } else if (low >= FIRST_QTR && high < THIRD_QTR) {
 bits_to_follow += 1;
 low -= FIRST_QTR;
 high -= FIRST_QTR;
 } else
 break;
 low = 2 * low;
 high = 2 * high + 1;
 }
}

// Finish the encoding:
static void bgmc_finish_encoding ()
{
 bits_to_follow += 1;
 if (low < FIRST_QTR) put_bit_plus_follow (0,p);
 else put_bit_plus_follow (1,p);
}

C-language specifications of the corresponding functions of the block Gilbert-Moore decoder are given below.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 65

// decoder state variables:
static unsigned long high, low, value;

// start decoding:
void bgmc_start_decoding (void)
{
 high = TOP_VALUE;
 low = 0;
 value = get_bits(VALUE_BITS);
}

// decodes a symbol using Gilbert-Moore code for
// a distribution s_freq[] subsampled by delta bits:
unsigned long bgmc_decode (long delta, unsigned long *s_freq)
{
 unsigned long range, target, symbol;
 range = high - low + 1;
 target = (((value - low + 1) << FREQ_BITS) - 1) / range;
 symbol = 0;
 while (s_freq [(symbol+1) << delta] > target)
 symbol ++;
 high=low+((range*s_freq[symbol<<delta]-(1<<FREQ_BITS))>>FREQ_BITS);
 low =low+((range*s_freq[(symbol+1)<<delta])>>FREQ_BITS);
 for (; ;) {
 if (high < HALF) ;
 else if (low >= HALF) {
 value -= HALF;
 low -= HALF;
 high -= HALF;
 } else if (low >= FIRST_QTR && high < THIRD_QTR) {
 value -= FIRST_QTR;
 low -= FIRST_QTR;
 high -= FIRST_QTR;
 } else
 break;
 low = 2 * low;
 high = 2 * high + 1;
 value = 2 * value + get_bit ();
 }
 return symbol;
}

// Finish decoding:
void bgmc_finish_decoding ()
{
 scroll_bitstream_position_back(VALUE_BITS-2);
}

The cumulative frequency tables (s_freq[] arrays) used by the above algorithms for encoding/decoding of
residual MSBs are listed below. The appropriate (within each sub-block) table is selected using parameter sx.
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-3

:20
05

/AMD2:2
00

6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

ISO/IEC 14496-3:2005/Amd.2:2006(E)

66 © ISO/IEC 2006 – All rights reserved

Table 11.38 – Cumulative frequency tables used by the BGMC encoder/decoder

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384

1 16066 16080 16092 16104 16116 16128 16139 16149 16159 16169 16177 16187 16195 16203 16210 16218

2 15748 15776 15801 15825 15849 15872 15894 15915 15934 15954 15970 15990 16006 16022 16036 16052

3 15431 15473 15510 15546 15582 15617 15649 15681 15709 15739 15764 15793 15817 15842 15863 15886

4 15114 15170 15219 15268 15316 15362 15405 15447 15485 15524 15558 15597 15629 15662 15690 15720

5 14799 14868 14930 14991 15050 15107 15162 15214 15261 15310 15353 15401 15441 15482 15517 15554

6 14485 14567 14641 14714 14785 14853 14919 14981 15038 15096 15148 15205 15253 15302 15344 15389

7 14173 14268 14355 14439 14521 14600 14677 14749 14816 14883 14944 15009 15065 15122 15172 15224

8 13861 13970 14069 14164 14257 14347 14435 14517 14594 14670 14740 14813 14878 14942 15000 15059

9 13552 13674 13785 13891 13995 14096 14195 14286 14373 14458 14537 14618 14692 14763 14828 14895

10 13243 13378 13501 13620 13734 13846 13955 14055 14152 14246 14334 14423 14506 14584 14656 14731

11 12939 13086 13219 13350 13476 13597 13717 13827 13933 14035 14132 14230 14321 14406 14485 14567

12 12635 12794 12938 13081 13218 13350 13479 13599 13714 13824 13930 14037 14136 14228 14314 14403

13 12336 12505 12661 12815 12963 13105 13243 13373 13497 13614 13729 13845 13952 14051 14145 14240

14 12038 12218 12384 12549 12708 12860 13008 13147 13280 13405 13529 13653 13768 13874 13976 14077

15 11745 11936 12112 12287 12457 12618 12775 12923 13065 13198 13330 13463 13585 13698 13808 13915

16 11452 11654 11841 12025 12206 12376 12542 12699 12850 12991 13131 13273 13402 13522 13640 13753

17 11161 11373 11571 11765 11956 12135 12310 12476 12636 12785 12933 13083 13219 13347 13472 13591

18 10870 11092 11301 11505 11706 11894 12079 12253 12422 12579 12735 12894 13037 13172 13304 13429

19 10586 10818 11037 11250 11460 11657 11851 12034 12211 12376 12539 12706 12857 12998 13137 13269

20 10303 10544 10773 10996 11215 11421 11623 11815 12000 12173 12343 12518 12677 12824 12970 13109

21 10027 10276 10514 10746 10975 11189 11399 11599 11791 11972 12150 12332 12499 12652 12804 12950

22 9751 10008 10256 10497 10735 10957 11176 11383 11583 11772 11957 12146 12321 12480 12639 12791

23 9483 9749 10005 10254 10500 10730 10956 11171 11378 11574 11766 11962 12144 12310 12475 12633

24 9215 9490 9754 10011 10265 10503 10737 10959 11173 11377 11576 11778 11967 12140 12312 12476

25 8953 9236 9508 9772 10034 10279 10521 10750 10971 11182 11388 11597 11792 11971 12149 12320

26 8692 8982 9263 9534 9803 10056 10305 10541 10769 10987 11200 11416 11617 11803 11987 12164

27 8440 8737 9025 9303 9579 9838 10094 10337 10571 10795 11015 11237 11444 11637 11827 12009

28 8189 8492 8787 9072 9355 9620 9883 10133 10373 10603 10830 11059 11271 11471 11667 11854

29 7946 8256 8557 8848 9136 9407 9677 9933 10179 10414 10647 10882 11100 11307 11508 11701

30 7704 8020 8327 8624 8917 9195 9471 9733 9985 10226 10465 10706 10930 11143 11349 11548

31 7472 7792 8103 8406 8703 8987 9268 9536 9793 10040 10285 10532 10762 10980 11192 11396

32 7240 7564 7879 8188 8489 8779 9065 9339 9601 9854 10105 10358 10594 10817 11035 11244

33 7008 7336 7655 7970 8275 8571 8862 9142 9409 9668 9925 10184 10426 10654 10878 11092

34 6776 7108 7431 7752 8061 8363 8659 8945 9217 9482 9745 10010 10258 10491 10721 10940

35 6554 6888 7215 7539 7853 8159 8459 8751 9029 9299 9568 9838 10091 10330 10565 10790

36 6333 6669 7000 7327 7645 7955 8260 8557 8842 9116 9391 9666 9925 10169 10410 10640

37 6122 6459 6792 7123 7444 7758 8067 8369 8658 8937 9218 9497 9761 10011 10257 10492

38 5912 6249 6585 6919 7244 7561 7874 8181 8475 8759 9045 9328 9598 9853 10104 10344

39 5711 6050 6387 6724 7051 7371 7688 7998 8297 8585 8876 9163 9438 9697 9953 10198

40 5512 5852 6190 6529 6858 7182 7502 7816 8120 8411 8707 8999 9278 9542 9802 10052

41 5320 5660 5998 6339 6671 6997 7321 7638 7946 8241 8541 8837 9120 9389 9654 9908

42 5128 5468 5807 6150 6484 6812 7140 7460 7773 8071 8375 8675 8963 9236 9506 9764

43 4947 5286 5625 5970 6305 6635 6965 7288 7604 7906 8213 8517 8809 9086 9359 9622

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6

https://iecnorm.com/api/?name=d005693ed3c33de2846feeceea096538

