INTERNATIONAL ISO/IEC
STANDARD 15938-17

First edition
2022-08

Information technology —Multimedia
content description intérface —

Part 17:
Compression of neural networks for
multimedia content descriptionjand
analysis
Technologies de Finformation — Interface de description flu contenu
multimédia —

Partie 17: Cempression des réseaux neuronaux pour la degcription et
l'analysedu contenu multimédia

Reference number
ISO/IEC 15938-17:2022(E)

© ISO/IEC 2022

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2022 - All rights reserved

https://www.iso.org
https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Contents Page
0))70 o OO \'4
T 00 X6 0 Lot () 0000000000000 vi
1 SCOPI@ ... 1
2 NOIIMALIVE TEEGT@IICESooooooee e 1
3 Terms and definitIONS ... s 1
4 Abbreviated terms, conventions and symbols
4.1 (03 013 = T o
4.2 Abbreviated terms..
4.3 LISt Of SYINDOLS ..ot g
4.4 Number formats and computation CONVENtIONS ... e Nyrrsssssesnnes
4.5 Arithmetic operators
4.6 LOZICAl OPEIALOLS ..o e
4.7 Relational OPeIratorsS ... Sy i
4.8 Bit-wise operators......
49 Assignment operators.....
4.10 Range notation...............
411 Mathematical functions.
412 Array functions ...,
413 Order of operation PreCedeNCE ... o) s
4.14 Variables, syntax elements and tables
5 (017723 1074 T3 A
5.1 General ... SO
5.2 Compression tO0IS ... S
5.3 Creating encoding PiPelines .. i e
6 Syntax and SEMANTICS ... s e
6.1 Specification of syntax and SEMANTICS ...
6.1.1 Method of speecifying syntax in tabular form.
6.1.2 Bit Ordering ... e
6.1.3 Specification of syntax functions and data types.....
L7002 T Y<Y 11 = U0 0
6.2 General bitstream syntax elements.............
L0/ T 8 20 ' D T
6.2.2 (C Aggregate NNR UNIT ...
6.2.8. . Composition of NNR bitstream
6.3 NNR bitstream SYNtax ...
6.3.1 NNRunit syntax.....
6.3.2 NNR unit size syntax.........
6.3.3 NNR unit header SYNTaX. ...
6.34 NNR unit payload syntax
6.3.5 Byte aligNmMENnt SYNETAK ..o
6.4 Semantics
6.4.1
6.4.2
6.4.3
6.4.4
7 Decoding process
7.1 General
7.2 NNR decompressed data fOrmats ... 42
7.3 DECOAING METROAS oot 42
7205 75 R €13 1<) | T 42
7.3.2 Decoding method for NNR compressed payloads of type NNR_PT_INT 43
7.3.3 Decoding method for NNR compressed payloads of type NNR_PT_FLOAT... 43

© ISO/IEC 2022 - All rights reserved iii

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

7.3.4 Decoding method for NNR compressed payloads of type NNR_PT_RAW_

FLOAT e 43
7.3.5 Decoding method for NNR compressed payloads of type NNR_PT_BLOCK.......... 43
7.3.6 Decoding process for an integer Weight teNSOT ... 45
8 Parameter TEAUCTIONoooooee e
8.1 GEIIET AL ..o
8.2 METNOAS ..o

8.2.1 Sparsification using compressibility loss
8.2.2 Sparsification using micro-structured pruning

8.2.3 Combined pruning and sparsification.................
824‘ Fdl dlllCtCl Llllifibdtiull ..
8.2.5 Low rank/low displacement rank for convolutional and fully connected
LA ET'S . N e
8.2.6 Batchnorm folding ...
8.2.7 Local scaling adaptation.........
8.3 Syntax and SemMantiCs ...
8.3.1 Sparsification using compressibility 10SS.....c.ccosinnn,
8.3.2 Sparsification using micro-structured pruning o
8.3.3 Combined pruning and sparsifiCation ...l
8.3.4 Weight UnifiCation. ...t o et
8.3.5 Low rank/low displacement rank for convolutiomal ‘and fully connected
=) OSSN 5 et ..53
8.3.6 Batchnorm folding ... R s ..53
LS TS TN 10 Yo 1 05y 07 1 oY .3 SO .54
9 Pargmeter qUaANTIZation............ g N e .54
9.1 Methods .54
9.1.1 Uniform quantization method. ... 4 e .54
9.1.2 Codebook-based MEthod.Zy e .54
9.1.3 Dependent scalar quantizationumnethod .. .54
9.2 Syntax and semantics.........aihn, .54
9.2.1 Uniform quantization method... .54
9.2.2 Codebook-based method.........ccocee .55
9.2.3 Dependent scalar.quantization method55
10 ENEHOPY COMIIG ... e e
TOL| MEENOAS o
L1011 DEEPCABAR ..ot
10.2] Syntax and seMaNtics ...
10.2.1 DeepCABAC syntax
10.3| ENtropy B@COAING PrOCESS. ..ottt et
T0.3. L SBETNIETAL ..
10.3.2-Initialization process
100353 BIiNATIiZATION PIOCESS ...oooooiiiiiiiiieiesiieiesieees et
10:3.4 Decoding ProCesS flOW ...
Annex A (normative) Implementation for NNEF
Annex B (informative) Implementation for ONNX® ... 69
Annex C (informative) Implementation for PYTOrCh® ... 71
Annex D (informative) Implementation for TENSOTFIOW® ... 73
Annex E (informative) Recommendation for carriage of NNR bitstreams in other containers.....75
BIDIIOGIAPIY ... 77

iv © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

The
are
nee

described in the ISO/IEC Directives, Part 1. In particular, the different appro
ed for the different types of document should be noted. This document{was

aintenance
al criteria
drafted in

accofdance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.so!6rg/dlirectives or

.iec.ch/members_experts/refdocs).

list g

Any
cons

For
expr
the
WWY

htion is drawn to the possibility that some of the elements of this document may be
htent rights. ISO and IEC shall not be held responsible for identifying any or all

s. Details of any patent rights identified during the development of the document w
duction and/or on the ISO list of patent declarations received (séewww.iso.org/patent

the subject
such patent
ill be in the
5) or the IEC

f patent declarations received (see https://patents.iec.ch).

titute an endorsement.

hn explanation of the voluntary nature of standards, the meaning of ISO specific
essions related to conformity assessment, as<well as information about ISO's ac
World Trade Organization (WTO) principles in the Technical Barriers to Trade

This
Subd

A lis

Any

v.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

document was prepared by Joint Techinical Committee ISO/IEC JTC 1, Information
ommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

trade name used in this document is information given for'the convenience of users and does not

terms and
lherence to
(TBT) see

technology,

F of all parts in the ISO/IEC 15988 series can be found on the ISO website and IEC webs

A complete listing' of these bodies can be found at www.iso.org/membern

feedback or questions en\this document should be directed to the user’s national[standards
body.

es.

s.html and

www.iec.ch/national-committees.

© ISO/IEC 2022 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
http://www.iso.org/members.html
http://www.iec.ch/national-committees
https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Introduction

Artificial neural networks have been adopted for a broad range of tasks in multimedia analysis and
processing, media coding, data analytics and many other fields. Their recent success is based on the
feasibility of processing much larger and complex neural networks (deep neural networks, DNNs)
than in the past, and the availability of large-scale training data sets. As a consequence, trained neural
networks contain a large number of parameters and weights, resulting in a quite large size (e.g. several
hundred MBs). Many applications require the deployment of a particular trained network instance,
potentially to a larger number of devices, which may have limitations in terms of processing power and
memory (e.g. mobile devices or smart cameras), and also in terms of communication bandwidth. Any
use case, in which a trained neural network (or its updates) needs to be deployed to a number of deyices
thus benefits from a standard for the compressed representation of neural networks.

Considering the fact that compression of neural networks is likely to have a hardware dependent and
hardware idependent component, this document is designed as a toolbox of compression technoldgies.
Some of tHese technologies require specific representations in an exchange format (i.e. sparse
representatfions, adaptive quantization), and thus a normative specification for,representing oufputs
of these tedhnologies is defined. Others do not at all materialize in a serialized’ representation|(e.g.
pruning), hgwever, also for the latter ones required metadata is specified. This’document is indeper|dent
of a particular neural network exchange format, and interoperability with common formats is descijibed
in the anne¥es.

This documlent thus defines a high-level syntax that specifies required metadata elements and related
semantics. In cases where the structure of binary data is to be spec¢ified (e.g. decomposed matrices] this
document allso specifies the actual bitstream syntax of the respective block. Annexes to the document
specify the fequirements and constraints of compressed netiral network representations; as defingd in
this documg¢nt; and how they are applied.

specifies the implementation of this document with the Neural Network Exchange Format
(NNEF), defining the use of NNEF to representinetwork topologies in a compressed neural netyvork
bitstregm.

— Annex B provides recommendations for.the implementation of this document with the Open Ne¢ural
Network Exchange Format (ONNX®)#;defining the use of ONNX to represent network topologies in
a compressed neural network bitstream.

— Annex (provides recommendations for the implementation of this document with the PyTorch®?3)
format,| defining the referehce to PyTorch elements in the network topology description|of a
compressed neural netwiork bitstream.

— AnnexI) providesrecommendations for the implementation of this document with the Tensorfloy ®*%
format,| defining &he reference to Tensorflow elements in the network topology description| of a
compressed neural network bitstream.

— Annex E ¢rovides recommendations for the carriage of tensors compressed according to| this
documentin third party container formats

The compression tools described in this document have been selected and evaluated for neural
networks used in applications for multimedia description, analysis and processing. However, they may

1) NNEFisthetrademark ofaproduct owned by The Khronos® Group. This information is given for the convenience
of users of this document and does not constitute an endorsement by ISO/IEC of the product named.

2) ONNX s the trademark of a product owned by LF PROJECTS, LLC. This information is given for the convenience
of users of this document and does not constitute an endorsement by ISO/IEC of the product named.

3) PyTorch is the trademark of a product supplied by Facebook, Inc.. This information is given for the convenience
of users of this document and does not constitute an endorsement by ISO/IEC of the product named.

4) TensorFlow is the trademark of a product supplied by Google LLC. This information is given for the convenience
of users of this document and does not constitute an endorsement by ISO/IEC of the product named.

vi © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

be useful for the compression of neural networks used in other applications and applied to other types
of data.

The International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may
involve the use of patents.

[SO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO and IEC that he/she is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respeetthestatementof the holder of this patentrightis registered with 1SOQ and IEC-Information may
be obtained from the patent database available at www.iso.org/patents.

Attention is drawn to the possibility that some of the elements of this document may be|the subject
of patent rights other than those in the patent database. ISO and IEC shall not hé héld responsible for
identifying any or all such patent rights.

© ISO/IEC 2022 - All rights reserved vii

https://www.iso.org/patents
https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

INTERNATIONAL STANDARD

ISO/IEC 15938-17:2022(E)

Information technology — Multimedia content description
interface —

Part 17:
Compression of neural networks for multimedia content

de

1
This

7(":(‘
seription-and-analysis

hcope

parameters/weights of a trained neural network and a decoding process for the

repr
forn
resu

This
focu
proc
quar
spec
reco
inteq
docy

bsentation, complementing the description of the network topologyiin-existing (exchan
eural networks. It establishes a toolbox of compression methods,Specifying (where apj
ting elements of the compressed bitstream.

document does not specify a complete protocol for the-transmission of neural ne
bes on compression of network parameters. Only the syntaxformat, semantics, associat
ess requirements, parameter sparsification, paramieter transformation methods,
tization, entropy coding method and integration/signalling within existing exchange
ified, while other matters such as pre-processing; system signalling and multiplexi

very and post-processing are considered to be-outside the scope of this document. Addi
nal processing steps performed within a de¢oder are also considered to be outside the ;
ment; only the externally observable output behaviour is required to conform to the sp

oft

2

is document.

ormative references

document specifies Neural Network Coding (NNC) as a compresseddrepresentation of the

compressed
ge) formats
blicable) the

tworks, but
bd decoding
parameter
formats are
, data loss
ionally, the
cope of this
ecifications

The [following documents are xeferred to in the text in such a way that some or all of their content
consftitutes requirements of this document. For dated references, only the edition cited
undqted references, the latest edition of the referenced document (including any amendments) applies.

ISO/JEC 10646, Information technology — Universal coded character set (UCS)

ISO/JEC 60559, Information technology — Microprocessor Systems — Floating-Point arithmet|

IETH RFC 1950, ZLIB Compressed Data Format Specification version 3.3, 1996

NNEF-y1:0.3, Neural Network Exchange Format, The Khronos NNEF Working Group, Vg
2020-06-12 (https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.3.pdf)

applies. For

ic

rsion 1.0.3,

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and [EC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

© ISO/IEC 2022 - All rights reserved

https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.3.pdf
https://www.iso.org/obp
https://www.electropedia.org/
https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

3.1

aggregate NNR unit
NNR unit which carries multiple NNR units in its payload

3.2

compressed neural network representation

representat

3.3

ion of a neural network with model parameters encoded using compression tools

decomposition
transformation to express a tensor as product of two tensors

3.4
hyperpara
parameter \

3.5
layer
collection o

3.6
model parg
coefficients

3.7
NNR unit

meter
vhose value is used to control the learning process

F nodes operating together at a specific depth within a neural network

meter
of the neural network model such as weights and biases

data structyre for carrying (compressed or uncompressed) néural network data and related metadata

3.8
pruning
reduction o

3.9
sparsificat
increase of

f parameters in (a part of) the neural network

jon
he number of zero-valued entries of a tensor

3.10

tensor

multidimenfional structure grouping related model parameters

4 Abbreviated terms,’conventions and symbols

4.1 Gengral

This subclquse ‘contains the definition of operators, notations, functions, textual conventions

processes usedthroughout this document.

and

The mathematical operators used in this document are similar to those used in the C programming
language. However, the results of integer division and arithmetic shift operations are specified more
precisely, and additional operations are specified, such as exponentiation and real-valued division.
Numbering and counting conventions generally begin from 0, e.g. "the first" is equivalent to the 0-th,

"the second" is equivalent to the 1-th, etc.

4.2 Abbreviated terms

DeepCABAC Context-adaptive binary arithmetic coding for deep neural networks

LDR Low displacement rank

2 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

LPS Layer parameter set
LR Low-rank
LSB Least significant bit
MPS Model parameter set
MSB Most significant bit
NN Neural network
NNEF Neural network exchange format
NNC Neural network coding
NNR Compressed neural network representation
SVD Singular value decomposition
4.3 | List of symbols
This|[document defines the following symbols:
A Input tensor
B Output tensor
B}(l Block in superblock j of layer k
b Bias parameter
C; Number of input channel$.ef a convolutional layer
C, Number of output channels of a convolutional layer
C;f Number of channels of tensor in dimension j and in layer k
c}(' Derived number of channels of tensor in dimension j and in layer k
dj-(Depth'dimension of tensor at layer k
e Parameter of f-circulant matrix Z,
F Parameter tensor of a convolutional layer
f Parameter of {-circutant matrix Zf
Gy Left-hand side matrix of Low Rank decomposed representation of matrix W),
Hj, Right-hand side matrix of Low Rank decomposed representation of matrix W,
h}‘ Height dimension of tensor for layer k
K Dimension of a convolutional kernel
Loss function
L. Compressibility loss

© ISO/IEC 2022 - All rights reserved 3

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Ly Diversity loss

L Task loss

Ly Training loss

M Feature matrix

M, Pruning mask for layer k

m Sparsification hyperparameter

m; i-th row of feature matrix M

ni? Kernel size of tensor at layer k

nk Dimension resulting a product of njf

p Stochastic transition matrix

p Pruning ratio hyperparameter

Pij Elements of transition matrix P

q Sparsification ratio hyperparameter

S Importance of parameters for pruning
55_{ Superblock in layer k

S Local scaling factors

s? Size of superblock in layer k

u Unification ratio hyperparameter

w Parameter tensor

w, Weight tensor of [-th layer

W, Parameter tensprt of layer k

Wk Low Ramkapproximation of W),

w Parameter vector

V? Width dimension of tensor for layer k.
Wy Vector of weights for the i-th filter in the [-th layer
w' Vector of normalized weights for the i-th filter in the [-th layer
X Input to a batch-normalization layer
Z, f-circulant matrix

Zs f-circulant matrix

o Folded batch normalization parameter

4 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Combined value for folded batch normalization parameter and local scaling factors

Batch normalization parameter

Ye Compressibility loss multiplier

Y Batch normalization parameter

) Folded batch normalization parameter
€ Scalar close to zero to avoid division by zero in batch normalization
A Eigenvector

Ac Compressibility loss weight

A Diversity loss weight

H Batch normalization parameter

T Equilibrium probability of P

T Sparsification pruning threshold

¢ Smoothing factor

4.4 | Number formats and computation conventions

This|document defines the following number formats:

integer Integer number which may(be arbitrarily small or large. Integers are alsd referred to
as signed integers.

unsigned integer Unsigned integer that may be zero or arbitrarily large.
float Floating pointiiumber according to ISO/IEC 60559.

If not specified otherwise, utcomes of all operators and mathematical functions are mathematically
exact. Whenever an outceme shall be a float, it is explicitly specified.

4.5 | Arithmetic operators

The following arithmetic operators are defined:

+ Addition

- Subtraction{asatwoe-argument-operator)-ornegation{as-aunaryprefix operator)

* Multiplication, including matrix multiplication

° Element-wise multiplication of two transposed vectors or element-wise multiplication

of a transposed vector with rows of a matrix or Hadamard product of two matrices
with identical dimensions

X/ Exponentiation. Specifies x to the power of y. In other contexts, such notation is used
for superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7 / 4 and -7
/ =4 are truncated to 1 and -7 / 4 and 7 / -4 are truncated to -1.

© ISO/IEC 2022 - All rights reserved 5

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

< |

a0
" f()

Used to denote division in mathematical equations where no truncation or rounding
is intended.

Used to denote division in mathematical equations where no truncation or rounding is
intended, including element-wise division of two transposed vectors or element-wise
division of a transposed vector with rows of a matrix.

The summation of f(i) with i taking all integer values from x up to and including y.

The product of f(i) with i taking all integer values from x up to and including y.

i=x

x%y

4.6 Logic
The followi
x&&y

x|y

!

x?y:z

4.7 Relat
The followi

When a reld

Modulus. Remainder of x divided by y, defined only for integers x and y with&=Q and
y>0.

al operators

1g logical operators are defined:

Boolean logical "and" of x and y
Boolean logical "or" of x and y
Boolean logical "not"

If x is TRUE or not equal to 0, evaluates todhe value of y; otherwise, evaluates tp the
value of z.

ional operators

ng relational operators are defined as.follows:

Greater than

Greater than or equalto
Less than

Less than grequal to
Equal to

Notequal to

tional operator is applied to a syntax element or variable that has been assigned the yalue

"na" (not ap,

licdble), the value "na" is treated as a distinct value for the syntax element or variable[The

value "na" is considered not to be equal to any other value.

4.8 Bit-wise operators

The following bit-wise operators are defined as follows:

&

Bit-wise "and". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains
fewer bits than another argument, the shorter argument is extended by adding more
significant bits equal to 0.

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Bit-wise "or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains
fewer bits than another argument, the shorter argument is extended by adding more

significant bits equal to 0.

Bit-wise "exclusive or". When operating on integer arguments, operates on a two's
complement representation of the integer value. When operating on a binary argument
that contains fewer bits than another argument, the shorter argument is extended by

adding more significant bits equal to 0.

Arithmetic right shift of a two's complement integer representation of x

by y binary

x <<l

4.9 | Assignment operators

The following arithmetic operators are defined as follows:

4.1(0 Range notation

The following-notation is used to specify a range of values:

digits. This function is defined only for non-negative integer values ofy.
into the MSBs as a result of the right shift have a value equal to the M§B
the shift operation.

Arithmetic left shift of a two's complement integer representationof x by y by
This function is defined only for non-negative integer values,ef y. Bits shif
LSBs as a result of the left shift have a value equal to 0.

Bit-wise not operator returning 1 if applied to 0 and 0yif applied to 1.

Assignment operator

Increment, i.e., x++ is equivalent'to x = x + 1; when used in an array index,
the value of the variable prior,to the increment operation.

Decrement, i.e., x-- is equivalent to x = x - 1; when used in an array inde
to the value of the variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and
equivalent to x=x + (-3).

Decrement-by amount specified, i.e., x == 3 is equivalent to x = x — 3, and
equivalent to x = x - (-3).

Bits shifted
of x prior to

inary digits.
ted into the

bvaluates to

X, evaluates

x+=(-3) is

x-=(-3)is

eing integer

xX=y.z x takes on integer values starting from y to z, inclusive, with x, y, and z b
numbers and z being greater than y.
array|[x, y] a sub-array containing the elements of array comprised between position x and y in-

cluded. If x is greater than y, the resulting sub-array is empty.

4.11 Mathematical functions

The following mathematical functions are defined:

Ceil(x)
Floor(x)

Log2(x)

the smallest integer greater than or equal to x
the largest integer less than or equal to x

the base-2 logarithm of x

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

X;X <y
Min(x,y)=

y;x>y

X;X 2
Max(x,y):{ Y

yiX<y

4.12 Array functions

Size(arrayName(]) returns the number of elements contained in the array or tensor named arrayName.

If arrayNa

e[]is a tensor this corresponds to the product of all dimensions of the tensor.

Prod(array

TensorResh|
specified te

IndexToXY(

IVame|]) returns the product of all elements of array arrayName[].

hsorDimension[], without changing its data.

v, h, 1, bs) returns an array with two elements. The first element is an ®ceordinate an

second elenent is a y coordinate pointing into a 2D array of width w and height) x and y point t

position thg
are derived

A varia
A varia
Avaria
Avaria
A varia
A varia
A varia
Avaria
Avaria
A varia
The var
The var

Tensorlnde;
tensorDimel

t corresponds to scan index i when the block is scanned in blocks-of size bs times bs. x 4
as follows:

ble fullRowOfBlocks is set to w * bs

ble blockY is set to i / fullRowOfBlocks

ble iOff is set to i % fullRowOfBlocks

ble currBlockH is set to Min(bs, h — blockY * bs)
ble fullBlocks is set to bs * currBlockH

ble blockX is set to iOff / fullBlocks

ble blockOffis set to iOff % fullBlocks

ble currBlockW is set to Min{‘bs, w — blockX * bs)
ble posX is set to blockOff% currBlockW

ble posY is set to bloeckOff / currBlockW

iable x is set to blockX * bs + posX

iable y is-setto blockY * bs + posY

sions[] where the elements of the array are set to integer values so that the array c3

ape(arrayNamel], tensorDimension[]) returns the reshaped tensor array_namme[] with the

1 the
b the
ndy

K(tensorDimensions(], i, scan) returns an array with the same number of dimensions as

n be

used as an i

A | R 4] ol o 4 S s 3 £ Dy :] £11
IUTA PUlllLllls LU dIl CICTIIITIIU Ul d LCIISUTL VWILIT UIILITIISIUILLS CCTISUT ITTITTISTUTLS I_J dS 1TUITUVVS.

If variable scan is equal to 0:

The returned array points to the i-th element in row-major scan order of a tensor with
dimensions tensorDimensions[].

If variable scan is greater than 0:

A variable bs is set to 4 << scan_order.

A variable h is set to tensorDimensions[0].

A variable w is set to Prod(tensorDimensions) / h.

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Two variables x and y are set to the first and second element of the array that is returned by

calling IndexToXY(w, h, i, bs), respectively.

The returned array is TensorIndex(tensorDimensions, y * w + x, 0).

NOTE Variable scan usually corresponds to syntax element scan_order.

GetEntryPointldx(tensorDimensions[], i, scan) returns -1 if index i doesn’t point to the first position of
an entry point. If index i points to the first position of an entry point, it returns the entry point index
within the tensor. To determine the positions and indexes of entry points, the following applies:

Axis

A variable w is set to Prod(tensorDimensions) / tensorDimensions[0].

A variable epldx is settoi / (w* (4 << scan)) - 1.

fi>0andi% (w* (4 << scan)) is equal to 0, index i points to the first position.of an ent
he entry point index is equal to epldx.

Dtherwise, index i doesn’t point to the first position of an entry point.

Swap(inputTensor[], tensorDimensions[], numberOfDimensions, ,.axis0, axisl) returl

whigh is derived from inputTensor (with dimensions tensorDimensions and number of

as n
swa

Ten
by s

imberOfDimensions) and where values in the axis indexes akis and axisI of the inpt
ped.

rSplit(inputTensor([], splitindices, splitAxis) returns an array of tensors subTensors th{
litting tensor inputTensor into N = Size(splitindices)# 1 tensors using the provided arr4

splitfndices along the provided axis splitAxis as follows:

An array inputDims is set to the dimensions ofiténsor inputTensor.

An element with value 0 is inserted into-splitindices before the first element and an e
alue inputDims[splitAxis] is inserted inte splitindices after the last element.

[ensor subTensors[x] (with x being\an integer from 0 to N) is derived as follows:
An array subTensorDims.is set to inputDims.
Element subTensorDims|splitAxis] is replaced with value splitindices[x + 1] - splitind
The elements of sSubTensors[x] are set as follows:
for(i=(0y1'< Prod(subTensorDims); i++) {
subldx = TensorIndex(subTensorDims, i, 0)

inputldx = TensorIndex(inputDims, i, 0)

'y point and

1S a tensor
dimensions
tTensor are

it is derived
iy of indices

ement with

ces[x].

inputldx[splitAxis] += splitindices[x|

subTensors[subldx] = inputTensor[inputldx]

4.13 Order of operation precedence

When the order of precedence in an expression is not indicated explicitly by use of parentheses, the

follo

wing rules apply:

Operations of a higher precedence are evaluated before any operation of a lower precedence.

Operations of the same precedence are evaluated sequentially from left to right.

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table
indicates a higher precedence.

NOTE For those operators that are also used in the C programming language, the order of precedence used
in this document is the same as used in the C programming language.

Table 1 — Operation precedence from highest (at top of table) to lowest (at bottom of table).

operations (with operands x, y, and z)

IIX++II’ IIX__II

"Ix", "-x" (as a unary prefix operator)

T

"X *yll‘ llX /yll‘ llX + yll, n i Il’ "X % yll’ n ;')/:Xf(i) ll’ "X ° yll

"x+y","x —y" (as a two-argument operator), " z jl_xf(i) !

"X <<y"‘ "X >>y"

"X <y|l’ ”X Sy", "X >yl|’ "X Zyll

"X ==yll’ IIX !=yll

&y

|y

"X &&y"

"X | |yll

"X ?y : le

oy

"X :y"’ "X +=y"' "X _:y"
4.14 Varidbles, syntax elements and tables
Syntax elenﬁents in the bitstream are represented in bold type. Each syntax element is describgd by
its name (alll lower-case letters with underscore characters), and one data type for its method of cpded
representatiion. The decoding process-behaves according to the value of the syntax element and t¢ the
values of prjeviously decoded syntax elements. When a value of a syntax element is used in the syjntax
tables or th¢ text, it appears insregular (i.e., not bold) type.
In some cades, the syntax ‘tables may use the values of other variables derived from syntax elenjents
values. SucH variables appear in the syntax tables, or text, named by a mixture of lower case and upper-
case letter ond withodt-any underscore characters (camel case notation). Variables starting with an
upper-case |etter are-derived for the decoding of the current syntax structure and all depending syjntax
structures. [Variahles starting with an upper-case letter may be used in the decoding process for [ater
syntax strycfures without mentioning the originating syntax structure of the variable. Varigbles

starting withatower-case tetterare oy used withim the {subjctause imwhich they are derived:

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably
with their numerical values. Sometimes "mnemonic" names are used without any associated numerical
values. The association of values and names is specified in the text. The names are constructed from
one or more groups of letters separated by an underscore character. Each group starts with an upper-
case letter and may contain more upper case letters.

NOTE The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax
functions. These functions are specified in subclause 6.3 and assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the
bitstream. Syntax functions are described by their names, which are constructed as syntax element

10 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

names and end with left and right round parentheses including zero or more variable names (for
definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 4.11
and array functions specified in subclause 4.12) are described by their names, which start with an
upper case letter, contain a mixture of lower and upper case letters without any underscore character,
and end with left and right parentheses including zero or more variable names (for definition) or values
(for usage) separated by commas (if more than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix.
Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the

indegi ; ;

(vertical) index and the second subscript is used as a column (horizontal) index. The-in
is repersed when using square parentheses rather than subscripts for indexing. Thus,)dan ¢
matyix s at horizontal position x and vertical position y may be denoted either as/s[X][y]
single column of a matrix may be referred to as a list and denoted by omission of.the row
the dolumn of a matrix s at horizontal position x may be referred to as the list,5{x |.

A myplti-dimensional array is a variable with a number of dimensions)An element of
dimg¢nsional array is either indexed by specifying all required indexes like e.g. variabl
by a|single index variable that itself is a one-dimensional array specifying the indexes. H
varigble[i] with i being a one-dimensional array with elements Xy, z]. Multi-dimensional
for ekample, used to specify tensors.

A spEcification of values of the entries in rows and columng of an array may be denoted

ere each inner pair of brackets specifies the values of the elements within a row iy
mn order and the rows are ordered in increasingtew order. Thus, setting a matrix s eq
D } } specifies thats[0][0] issetequal to 1, s[1 [[0] issetequalto 6,s[0][1]isseteq
[1]issetequal to 9.

Binalry notation is indicated by enclosing the string of bit values by single quote marks. H
'010Pp0001" represents an eight-bit string having only its second and its last bits (counted fr
to thle least significant bit) equal to 1.

Hexa
bina
eigh
bit) ¢

decimal notation, indicated by prefixing the hexadecimal number by "0x", may be use
'y notation when the number of bits is an integer multiple of 4. For example, 0x41 re
-bit string having only jts'second and its last bits (counted from the most to the leas

pqual to 1.
Numlerical values not@hclosed in single quotes and not prefixed by "0x" are decimal values.

Ava
any

ue equal to Ovrepresents a FALSE condition in a test statement. The value TRUE is rep
ralue diffetent from zero.

5 OQOverview

d as a row
exing order
blement of a

or as §[yx. A
ndex. Thus,

the multi-
e[x][yl[z] or
or example,
arrays are,

by { {.} {.}

| increasing
halto{{16
hal to 4, and

or example,
m the most

d instead of
presents an
L significant

resented by

5.1 General

This clause provides an overview of the compression tools defined in this document and de
they can be combined to encoding.

5.2 Compression tools

This document contains the following groups of compression tools.

scribes how

Parameter reduction methods process a model to obtain a compact representation. Examples of such
methods include, parameter sparsification, parameter pruning, weight unification, and decomposition

methods.

© ISO/IEC 2022 - All rights reserved

11

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Sparsification processes parameters or group of parameters to produce a sparse representation of the
model (e.g. by replacing some weight values with zeros). The sparsification can generate additional
metadata (e.g. masks). The sparsification can be structured or unstructured. This document includes
methods for unstructured sparsification with compressibility loss (subclause 8.2.1), and structured
sparsification using micro-structured sparsification (subclause 8.2.2).

Unification processes the parameters to produce group of similar parameters. Unification does not
eliminate or constrain the weights to be zero, but it lowers the entropy of model parameters by making
them similar to each other. This document includes a method for weight unification (subclause 8.2.4).

Pruning reduces the number of parameters by eliminating parameters or group of parameters. The

procedure
model, e.g.,
method for

Decomposit

ESUItS T a deITSe TEPTESENtation WiTiTIT Tas Tess parameters i CoMmparisoI to thre ori

combined pruning and sparsification (subclause 8.2.3)

a model. Thlis document includes a method for low rank/low displacement rank for ¢efivolutiona

fully conneg

Along with
that are in
methods ar

The parame

Parameter
supported

inference. Tj
quantizatio

Entropy cg
includes De

5.3 Creaf

The comprg
the tools ar
while other

Figure 1 sh

ted layers (subclause 8.2.5).

the reduction methods mentioned above, this document includes decomposition met
roduced and tested as part of a parameter quantization technique. Examples of
e batchnorm folding (subclause 8.2.6) and local scaling adaptation (subclause 8.2.7).

ter reduction methods can be combined or applied in sequérice to produce a compact m

by the inference engine, the quantized representation can be used for more effi
his document includes methods for uniform quantization (subclause 9.1.1), codebook-b
h (subclause 9.1.2) and dependent scalar quantization (subclause 9.1.3).

EpCABAC (subclause 10.1.1) as entropy encoding method.

ling encoding pipelines

b alternatives for addressing neural network models with different types of characteri
tools are designed to work in sequence.

bws an overview(of encoding pipelines that can be assembled using the compression

in this docyiment. From the)group of parameter transformation tools, multiple tools can be ap

in sequence
transforma
quantizatio

. Parameter_quantization can be applied to source models as well as to the outpu
ion with parameter reduction methods. Entropy coding is usually applied to the outp
h. Raw-Qutputs of earlier steps without applying entropy coding can be serialized if nee

by removing some redundant convolution filters from the layers. This document include

quantization methods reduce the precision of/the representation of paramete;

ding methods encode the results of . parameter quantization methods. This docui

ssion tools in this documentican be combined to form different encoding pipelines. Soq]

pinal
saa

on performs a matrix decomposition operation to change the structure ofithe weights of

and

hods
such

pdel.

s. If
rient
hsed

ment

he of
stics,

Fools
blied
ks of
ut of
ded.

12

© ISO/IEC 2022 - All rights res

erved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

_—I

ISO/IEC 15938-17:2022(E)

Parameter quantization Entropy coding

I —— »

quantization

net

Uniform
L Parameter reduction J quantization Deep CABAC
Original MM Codebook

neural

=
»

Bit
stream

o _rer e
opdidiitduull

il

Dependent

The

This

6

6.1

&

Figure 1 — NNR encoding pi% es.
N\

following encoding pipelines are considered typicaleanles of using this document:
Dependent scalar quantization (subclause 9.1.3)QgepCABAC (subclause 10.1.1)

bparsification (subclause 8.2.1) - Depende\t}\calar quantization (subclause 9.1.3) -
[subclause 10.1.1) Q

DeepCABAC (subclause 10.1.1) A\Q)
Codebook-based quantization\@bclause 9.1.2) - DeepCABAC (subclause 10.1.1)

N
Unification (mbglﬂsﬁﬁéé’- DeepCABAC (subclause 10.1.1)

listis non-exhaust&’ .

O

Syntax an%;@fnantics

Spe@ation of syntax and semantics

S)

6.1.1

I %flethod of specifying syntax in tabular form

HWJ_Q"Q_’_

DeepCABAC

O
L.ow-rank decomposition (subglausgg.\ﬁﬁ) - Dependent scalar quantization (subclause 9.1.3)-

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on
the syntax may be specified, either directly or indirectly, in other clauses.

Table 2 lists examples of the syntax specification format. When syntax_element appears, it specifies

that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next
position beyond the syntax element in the bitstream parsing process.

Table 2 — Examples of the syntax specification format

Syntax Type/Clause
/* A statement can be a syntax element with an associated data type or can be an expression

used to specify conditions for the existence, type and quantity of syntax elements, as in the

following two examples */

© ISO/IEC 2022 - All rights reserved 13

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 2 (continued)

Syntax

Type/Clause

syntax_element

st(v)

conditioning statement

/*A group of
functionally

statements enclosed in curly brackets is a compound statement and is treated
as a single statement. */

{

statement

statemen

}

/* A "while"
uation ofa's

"/

structure specifies a test of whether a condition is true, and if true, specifies evaly
Fatement (or compound statement) repeatedly until the condition is no longer true

while(condition)

statemen

/*A"do .. W
whetherac
condition is

hile" structure specifies evaluation of a statement once, followed’by a test of
ndition is true, and if true, specifies repeated evaluation of the statement until the
ho longer true */

do

statemen

while(condition)

/*An"if...e
true, specifi

omitted if n

se" structure specifies a test of whethera'condition is true and, if the condition is
bs evaluation of a primary statement,etherwise, specifies evaluation of an alter-

native statement. The "else" part of the structure and the associated alternative statement is

alternative statement evaluation.is needed */

if(condition|

)

primary g

tatement

else

alternativ

e statement

/* A"for" st
tion, and if t

ucture spécifies evaluation of an initial statement, followed by a test of a condi-
he condition is true, specifies repeated evaluation of a primary statement followed

by a subseqyent statement until the condition is no longer true. */

for(initial s

afefnent; condition; subsequent statement)

primary statement

6.1.2 Bit

ordering

For bit-oriented delivery, the bit order of syntax fields in the syntax tables is specified to start with the

MSB and pr

oceed to the LSB.

6.1.3 Specification of syntax functions and data types

The functions presented here are used in the syntactical description. These functions are expressed
in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the
decoding process from the bitstream.

14

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

byte_

ISO/IEC 15938-1

aligned() is specified as follows:

first bitin a byte, the return value of byte_aligned() is equal to TRUE.

Otherwise, the return value of byte_aligned() is equal to FALSE.

7:2022(E)

[f the current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is the

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit
positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance
the bitstream pointer.

get_bit pointer() returns the position of the bitstream pointer relative to the beginning of the current

NN
poin
whe

set_bit_pointer(pos) sets the position of the bitstream pointer such that get_bit.pointer()

The

unit as unsigned integer value. get_bit_pointer() >> 3 points to the current byte ofrth
er. get_bit_pointer() & 7 points to the current bit in the current byte of the bitstre
e a value of 0 indicates the most significant bit.

following data types specify the parsing process of each syntax elemerit:

he(v): context-adaptive arithmetic entropy-coded syntax element/The parsing process
ype is specified in subclause 10.3.4.3.2.

ht(v) : arithmetic entropy-coded termination syntax. The'\parsing process for this ¢
bpecified in subclause 10.3.4.3.5.

ae(n): signed integer using n arithmetic entropy-coded bits using the bypass mode of
hs specified in subclause 10.3.4.3.4. The read bypass bins are interpreted as a two’s
nteger representation with most significant hit written first.

1lae(n): unsigned integer using n arithmeticentropy-coded bits using the bypass mode of
hs specified in subclause 10.3.4.3.4. The réad bypass bins are interpreted as a binary rep
bf an unsigned integer with most significant bit written first. When n=0, uae(n) does not
bins and returns O.

(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first.
brocess for this data type is'specified by the return value of the function read_bits(n).

(n): signed integer using/n bits. When n is “v” in the syntax table, the number of bits
manner dependent on the value of other syntax elements. The parsing process for th
s specified by thesreturn value of the function read_bits(n) interpreted as a two’s
nteger representation with most significant bit written first.

1(n): unsigned integer using n bits. When n is “v” in the syntax table, the number of bit
manner dépendent on the value of other syntax elements. The parsing process for this
bpecified by the return value of the function read_bits(n) interpreted as a binary repre
hn/unsigned integer with most significant bit written first.

e bitstream
am pointer

bquals pos.

For this data

lata type is

DeepCABAC
fomplement

DeepCABAC
resentation
decode any

The parsing

varies in a
s data type
fomplement

5 varies in a
data type is
sentation of

ue(k): unsigned integer k-th order Exp-Golomb-coded syntax element. The parsing pro
descriptor is according to the following pseudo-code with x as result:

x=0

bit=1

while(bit) {
bit=1-u(1)

x +=bit << k

k+=1

© ISO/IEC 2022 - All rights reserved

cess for this

15

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

}

k-=1

if(k>0)
x+=u(k)

— ie(k): signed integer k-th order Exp-Golomb-coded syntax element. The parsing process for this
descriptor is according to the following pseudo-code with x as result:

val =ue(k)
if((vdl&1)!=0)
x =[(val+1)>>1)

x = |- (val>>1)

— flt(n): Floating point value using n bits where n may be 32, 64, or 128 in (ittle-endian byte ordpr as
specifidd in ISO/IEC 60559 as binary32, binary64, or binary128, respettively.

— st(v): null-terminated string, which shall be encoded as UTF-8-characters in accordance with
ISO/IE(10646. The parsing process is specified as follows: st(v) begins at a byte-aligned positipn in
the bitgtream and reads and returns a series of bytes from the-bitstream, beginning at the cugrent
position and continuing up to but not including the next byté-aligned byte that is equal to 0x00} and
advances the bitstream pointer by (stringLength + 1) 8 bit positions, where stringLength is gqual
to the number of bytes returned.

NOTE The st(v) syntax descriptors is only usedsin this document when the current position ih the
bitstream is a byte-aligned position.

— bs(v): Byte-sequence specifies a sequencerof bytes of variable length, starting at byte-aligned
position. The length of the sequence is determined from the size of the NNR unit containing thefbyte
sequenge.

more_data_jn_nnr_unit() is specified:as follows:

— Ifmore|data follow in the current nnr_unit, i.e. the decoded data up to now in the current nnr_uhit is
less than numBytesInNNRUnit, the return value of more_data_in_nnr_unit() is equal to TRUE.

— Otherwfise, the return.value of more_data_in_nnr_unit() is equal to FALSE.

6.1.4 Semantics

Semantics dssociated with the syntax structures and with the syntax elements within each struqgture

are Specifierl inasubclause fn]]n‘Aring the subclause rnnf::ining the cynfnv structures

The following definitions apply to the semantics specification.

unspecified is used to specify some values of a particular syntax element to indicate that the values
have no specified meaning in this document and will not have a specified meaning in the future as an
integral part of future versions of this document.

reserved is used to specify that some values of a particular syntax element are for future use by ISO/
IEC and shall not be used in bitstreams conforming to this version of this document, but may be used in
bitstreams conforming to future extensions of this document by ISO/IEC.

nnr_reserved_zero_0bit shall be an element of length 0. Decoders shall ignore the value of nnr_
reserved_zero_0bit.

16 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

nnr_reserved_zero_1bit, when present, shall be equal to 0 in bitstreams conforming to this version
of this document. Other values for nnr_reserved_zero_1bit are reserved for future use by ISO/IEC.
Decoders shall ignore the value of nnr_reserved_zero_1bit.

nnr_reserved_zero_2bits, when present, shall be equal to 0 in bitstreams conforming to this version
of this document. Other values for nnr_reserved_zero_2bits are reserved for future use by ISO/IEC.
Decoders shall ignore the value of nnr_reserved_zero_2bits.

nnr_reserved_zero_3bits, when present, shall be equal to 0 in bitstreams conforming to this version
of this document. Other values for nnr_reserved_zero_3bits are reserved for future use by ISO/IEC.
Decoders shall ignore the value of nnr_reserved_zero_3bits.

nnr reserved_zero_5bits, when present, shall be equal to 0 in bitstreams conforming.to,this version
of tHis document. Other values for nnr_reserved_zero_5bits are reserved for future use by ISO/IEC.
Decaders shall ignore the value of nnr_reserved_zero_5bits.

nnr reserved_zero_7bits, when present, shall be equal to 0 in bitstreams conforming to fhis version
of tHis document. Other values for nnr_reserved_zero_7bits are reserved-forfuture use [by ISO/IEC.
Decaders shall ignore the value of nnr_reserved_zero_7bits.

6.2 | General bitstream syntax elements

6.2.1 NNR unit

NNR| unit is the data structure for carrying neural network data and related metadafa which is
compressed or represented using this document.

NNR| units carry compressed or uncompressed information about neural network metadata, topology
infofmation, complete or partial layer data, filters;’)kernels, biases, quantized weights, tensqrs or alike.

An NNR unit consists of the following data élements (shown in Figure 2):

— NNRunit size: This data element sighals the total byte size of the NNR unit, including the NNR unit
bize.

— NNR unit header: This data-element contains information about the NNR unit type [and related
metadata.

— NNR unit payload: This data element contains compressed or uncompressed data related to the
heural network.

NNR unit

NNR unit size NNR unit header NNR unit paylopd

Figure 2 — NNR Unit data structure

6.2.2 Aggregate NNR unit

An aggregate NNR unit is an NNR unit which carries multiple NNR units in its payload. Aggregate NNR
units provide a grouping mechanism for several NNR units which are related to each other and benefit
from aggregation under a single NNR unit (shown in Figure 3).

© ISO/IEC 2022 - All rights reserved 17

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Aggregate NNR unit
NNR unit size NNR unit header NNR unit payload
| |
[T T T T T T T T B !
NNR unit NNR unit NNR unit
NNR |[NNR unit NNR NNR | NNR unit NNR NNR | NNR unit NNR
unit header unit unit header unit unit header it
size payload size payload size payloafl

Figure 3 — Aggregate NNR unit data structure

6.2.3 Composition of NNR bitstream

NNR bitstrdam is composed of a sequence of NNR units (shown in Figure4).

NNR bitstiream

NNR unit NNR unit NNR unit NNR unit

Figure 4 — NNR bitstream data structure

In an NNR |bitstream; the following censtraints apply unless otherwise stated in this documer
defined by INNR profiles:

(NNR_STR,INNR_MPS, NNR_NDU,'NNR_LPS, NNR_TPL and NNR_QNT are NNR unit types as specifi
Table 3 of syibclause 6.4.3)

An NNR bitstream shall-start with an NNR start unit (NNR_STR) (subclause 6.4.3).

There shall be asirigle NNR model parameter set (NNR_MPS) (subclause 6.4.3) in an NNR bitstj

ht or

bd in

eam

) the

meter sets (the next NNR layer parameter set il

NNR layet para

topology_elem_id and topology_elem_id_index (subclause 6.4.3.7) values shall be unique in the

NNR bitstream.

NNR_TPL or NNR_QNT units; if present in the NNR bitstream; shall precede any NNR_NDUs
reference their data structures (e.g. topology_elem_id).

6.3 NNR bitstream syntax

6.3.1 NNR unit syntax

that

|nnr_unit()1 Descriptor

18

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

nnr_unit_size()

nnr_unit_header()

nnr_unit_payload()

}

6.3.2 NNR unit size syntax

nnr_unit_size() {

Descriptor

nnr_unit_size_flag

u(1)

nhr_unit_size

u(15 + nnr_unit(Sire_flag*16)

}

6.3.3 NNR unit header syntax

6.3.3.1 General

X\

%/
$e)
)
2

N
v

[unit_header() { ‘</\.)

nn

=

Descriptpr

npr_unit_type n\\v

u(6)

ilidependently_decodable_flag

u(1)

plartial_data_counter_present_flag . Q\

u(1)

if| partial_data_counter_present_flag) ‘<§<

partial_data_counter

u(8)

AN
(nnr_unit_type == NNR_MPS) S\Q\

—-
—-

nnr_model_parameter_set_unit_heade‘r{\@

fl nnr_unit_type == NNR_LPS) \Q\'

p—e

nnr_layer_parameter_set_unit_h\é@@er()

—

if nnr_unit_type == NNR_TPL kO

nnr_topology_unit_head‘e}@‘

if{ nnr_unit_type == NNR_QNT)

—

nnr_quantization J&ﬁt’_header()

—-
—

(nnr_unit_typefs@YNR_NDU)

nnr_comprg@g}d_data_unit_header()

—-
—

(nnr_unitCtype == NNR_STR)

nnr_@.&ﬂ!_unit_header()

iff pn¥_anit_type == NNR_AGG)

W agoregate unit header()
=55 (o] = = <J

}

6.3.3.2 NNR start unit header syntax

nnr_start_unit_header() {

Descriptor

general_profile_idc

u(8)

}

6.3.3.3 NNR model parameter set unit header syntax

|nnr_model_parameter_set_unit_header(){

Descriptor

© ISO/IEC 2022 - All rights reserved

19

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

nnr_reserved_zero_O0bit u(0)
}
6.3.3.4 NNRlayer parameter set unit header syntax
nnr_layer_parameter_set_unit_header() { Descriptor
Ips_self_contained_flag u(1)
nnr_reserved_zero_7_bits u(7)
}
6.3.3.5 NNR topology unit header syntax
nnr_topology_unit_header() { Descriptor
topology_storage_format u(8)
topology_compression_format u(8)
}
6.3.3.6 NNR quantization unit header syntax
nnr_quantigation_unit_header() { Descriptor
quantization_storage_format u(8)
quantization_compression_format u(8)
}
6.3.3.7 NNR compressed data unit header syntax
nnr_compressed_data_unit_header() { Descriptor
nnr_conjpressed_data_unit_payload.type u(5)
nnr_multiple_topology_elements_present_flag u(1)
nnr_decpmpressed_data_format_present_flag u(1)
input_parameters_presentiflag u(1)
if(nnr_nultiple_topology{elements_present_flag==1)
topology_elements_ids tist(mps_topology_indexed_reference_flag)
else {
if('mps_topology_indexed_reference_flag)
topplogy elem_id st(v)
else |
topology_elem_id_index ue(7)
}
if(nnr_compressed_data_unit_payload_type == NNR_PT_FLOAT ||
nnr_compressed_data_unit_payload_type == NNR_PT_BLOCK) {
codebook_present_flag u(1)

if(codebook_present_flag)

integer_codebook(CbZeroOffset, Codebook)

20

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

if(nnr_compressed_data_unit_payload_type == NNR_PT_INT ||

nnr_compressed_data_unit_payload_type == NNR_PT_FLOAT ||
nnr_compressed_data_unit_payload_type == NNR_PT_BLOCK)

dq_flag u(1)
if(nnr_decompressed_data_format_present_flag ==1)
nnr_decompressed_data_format u(7)
if(input_parameters_present_flag==1) {
tensor_dimensions_flag u(1)
cabac_unary length_flag u(1)
compressed_parameter_types u(4)
if((compressed_parameter_types & NNR_CPT_DC) !=0){) v
decomposition_rank ,\/\ ‘Je(3)
g_number_of_rows s ue(3)
} A
if(tensor_dimensions_flag==1) . N
tensor_dimension_list() \</>-)
if (nnr_compressed_data_unit_payload_type != NNR_PT_B@Q@R)
if(nnr_multiple_topology_elements_present_flag == 1&0'
topology_tensor_dimension_mapping() L O\
if(cabac_unary_length_flag==1) A(S(
cabac_unary_length_minus1 \\Y N u(8)
} O
if| nnr_compressed_data_unit_payload_ == NNR_PT_BLOCK &&
(compressed_parameter_types @ _CPT_DC)!=0&&
codebook_present_flag) X%
integer_codebook(CbZeroOffs?e\t*BEI, CodebookDC)
if count_tensor_dimensions le}\f
scan_order R\ u(4)
if(scan_order>0) {- V
for(j=0;j< N}H@}ockRowsMinusl; j++){
cabac_&o@\ef_list[il u(8)
if(dgflag)
_(dq_state_list[j | u(3)
CH(j==0){
< bit_offset_deltal ue(11)
BitOffsetList[j | = bit_offset_deltal
}
else {
bit_offset_delta2 ie(7)
BitOffsetList[j | = BitOffsetList[j-1 | + bit_offset_delta2
}

}

byte_alignment()

© ISO/IEC 2022 - All rights reserved

21

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

integer_codebook() is defined as follows:

integer_codebook(cbZeroOffset, integerCodebook) { Descriptor
codebook_egk u(4)
codebook_size ue(2)
codebook_centre_offset ie(2)
cbZeroOffset = (codebook_size >> 1) + codebook_centre_offset N

codeboqgk_zero_value

ie(7) OV
- ’V

integerCpdebook[cbZeroOffset | = codebook_zero_value

previougValue = integerCodebook[cbZeroOffset |

2

/

for(j = cbZeroOffset-1;j>=0;j-—-){ /0‘st
codeHook_delta_left ue[codebook_egk)
integerCodebook| j | = previousValue - codebook_delta_left - 1 (/(.)
previdusValue = integerCodebook] j] _\\\v
=

d
) K2)

previougValue = integerCodebook[cbZeroOffset | N

, O
for(j = cbZeroOffset + 1; j < codebook_size; j++) { (\<(

codebook_delta_right N QV

ue(codebook_egk)

integerCodebook| j] = previousValue + Codebooksg&?a_right +1

previdusValue = integerCodebooK] j] 7

} Q’Q

} \’\\@“

xO
&
tensor_dimg¢nsion_list() is defined @Q&{ows:

tensor_dimension _list(){ @

Descriptor

4 . . N
count_t nsor_dlmensan

ue(1)

for(j=0}j< count_tg\l\g&{_dimensions; j++)

tenso r_dimer}s@ﬁg [i]

ue(7)

} QA

S
N

topology_elements_ids_list(topologylndexedFlag) is defined as follows:

topology_elements_ids_list(topologylndexedFlag) {

Descriptor

count_topology_elements_minus2

ue(7)

if(topologylndexedFlag == 0)

byte_alignment()

for(j = 0;j < count_topology_elements_minus2 + 2; j++) {

if (topologylndexedFlag==0) {

topology_elem_id_list[j |

st(v)

22

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

else {
topology_elem_id_index_list[j] ue(7)

}
if (topologylndexedFlag==1)

byte_alignment()

}
topology_tensor_dimension_mapping() is defined as follows: Qq/q/
fa)
topalogy_tensor_dimension_mapping() { (D\ég{:ript pr
cpncatentation_axis_index Q_\/'\ u(8)
fqr(j = 0; j < count_topology_elements_minus2 + 1 ; j++) { /0‘st
split_index[j] N ue(7)
} <
fqr(k = 0; k < count_topology_elements_minus2 + 2 ; k++) { (_\\\v
number of_shifts[k | Koot ue(1)
for(i=0; i < number_of shifts[k] ;i++) { T
shift_index[k][i] ~~ ue(7)
shift_value[k][i] K ue(1)
} g‘\‘}\
} 2
} QS
.\@“
6.3.3.8 NNR aggregate unit hea%ﬁyntax
O
nnraggregate_unit_header(MQ\& Descriptpr
nnr_aggregate_unit_ty&\)v u(8)
e ntry_points_presa@_ flag u(1)
npr_reserved_zp@%bits u(7)
nhm_of_nnr‘@\i\t/s_minusz u(16)
if| entry_p@rt\s_present_flag)
forLi@{i < num_of_nnr_units_minus2 + 2; i++) {
\(ﬂ)-rfr_unit_type[i] u(6)
——— e
}
for(i=0;i<num_of nnr_units_minus2 + 2; i++) {
quant_bitdepth|[i] u(5)
if(mps_unification_flag || Ips_unification_flag){
ctu_scan_order| i u(1)
nnr_reserved_zero_2bits u(2)
}
else
nnr_reserved_zero_3bits u(3)

© ISO/IEC 2022 - All rights reserved 23

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

}

6.3.4 NNR unit payload syntax

6.3.4.1 General

nnr_unit_payload() { Descriptor
if(nnr_unit_type == NNR_MPS)
nnr_model_parameter_set_unit_payload()
if(nnr_upit_type == NNR_LPS) A(\‘llv
nnr_layer_parameter_set_unit_payload() /\",l/v
if(nnr_upit_type == NNR_TPL) n_"\)
nnr_tdpology_unit_payload() ({bv
if(nnr_upit_type == NNR_QNT) y\<f.)J
nnr_quantization_unit_payload() /‘C)
if(nnr_upit_type == NNR_NDU) ,\W
nnr_compressed_data_unit_payload() \O§J
if(nnr_upit_type == NNR_STR) r‘\\\'
nnr_sflart_unit_payload() A{(-
if(nnr_upit_type == NNR_AGG) N
nnr_aggregate_unit_payload() c\\})
} 2
NN
6.3.4.2 NNRstart unit payload syntax ®\$
N
nnr_start_ynit_payload() { xO Descriptor
nnr_res¢rved_zero_0bit e u(0)
} o
6.3.4.3 NNR model para(@ set unit payload syntax
)
nnr_model [parameter « Q&t_‘ﬁnit_payload(){ Descriptor
topology_carriqg%'ﬂ‘ag u(1)
mps_qursiﬁ@%n_ﬂag u(1)
mps_pnh{@z flag u(1)
mps_unitleatlon_tlag (1)
mps_decomposition_performance_map_flag u(1)
mps_quantization_method_flags u(3)
mps_topology_indexed_reference_flag u(1)
nnr_reserved_zero_7bits u(7)
if((mps_quantization_method_flags & NNR_QSU) == NNR_QSU ||
(mps_quantization_method_flags & NNR_QCB) == NNR_QCB) {
mps_qp_density u(3)
mps_quantization_parameter i(13)
}
24 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

if(mps_sparsification_flag==1)

sparsification_performance_map()

if(mps_pruning_flag==1)

pruning_performance_map()

if(mps_unification_flag==1)

unification_performance_map()

if(mps_decomposition_performance_map_flag==1)

decomposition_performance_map()

bjte_alignment() A
} (\(1/
Vv
(\ .
sparfpification_performance_map() is defined as follows: Os(b%,
Z.
spaysification_performance_map() { '\\0 Descriptpr
spm_count_thresholds Ve /(.) u(8)
fqr(i=0;i < (spm_count_thresholds-1); i++) { (_\\\v
sparsification_threshold[i] \%V f1t(32)
non_zero_ratio[i]) 6\) f1t(32)
spm_nn_accuracy][i] (\<(f1t(32)
spm_count_classes|i] \QV u(8)
spm_class_bitmask]i] g‘Q\\ ue(7)
for (j =0;j < spm_count_classes[i |; j++J)& .
spm_nn_class_accuracy[i][j] A\) f1t(32)
} R
} Q-
o
prunjing_performance_map(Jis defined as follows:
pru 1ing_perf0rmapc@?1ap(){ Descriptpr
ppm_count_gm}ﬁ’ng_ratios u(8)
far(i= O;}.\Q"b}:)m_count_pruning_ratios—l); i++){
pruning_ratio[i | flt(32)
P n _nn_accuracy| i | flt(32)
vppm_ccunt_classcs[H 83
ppm_class_bitmask] i | ue(7)
for(j=0;j < ppm_count_classes[i]; j++)
ppm_nn_class_accuracy[i][j] f1t(32)
}
}
unification_performance_map() is defined as follows:
unification_performance_map() { Descriptor

© ISO/IEC 2022 - All rights reserved 25

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

upm_count_thresholds u(8)
for(i=0;i< (upm_count_thresholds-1);i++){
count_reshaped_tensor_dimension ue(1)
for(j=0;j < (count_reshaped_tensor_dimension-1); j++)
reshaped_tensor_dimensions| j | ue(7)
byte_alignment()
count_super_block_dimension u(8)
for(j = 0;j < (count_super_block_dimension-1); j++)
super_block_dimensions| j | u(3) a
count] block_dimension u(8) (\‘],
for(j % 0;j < (count_block_dimension-1); j++) ,\}J/V
blork_dimensions| j | u ;
unifidation_threshold|i] A@Q32)
upm_hn_accuracy|i|] N@”flt[32)
upm_gount_classes| i | O . u(8)
upm_class_bitmask] i | RN\ ue(7)
for(j % 0; j <upm_count_classes[i]; j++) ‘ ")
upip_nn_class_accuracy[i][j] A -~ f1t(32)
} R
} QM
N
Decompositfion_performance_map() is defined asi@%vs:
decomposition_performance_map() { ‘\\Q\‘ Descriptor
dpm_count_thresholds s‘()\‘ u(8)
for(i=0}i< (dpm_count_thresholdp&l‘)'; i++) {
mse_threshold[i] (}\V f1t(32)
dpm_pn_accuracy[i] - f1t(32)
nn_reduction_ratio[JQ\\\ f1t(32)
dpm_ :ount_classeﬁ&i& u(16)
for(j30;j< dp@EI‘mt_classes[i];j++)
dpmp_nn _&L@s_accuracy[illijl] f1t(32)
} e
} N
6.3.4.4 NNRlayer parameter set unit payload syntax
nnr_layer_parameter_set_unit_payload() { Descriptor
nnr_reserved_zero_1bit u(1)
Ips_sparsification_flag u(1)
Ips_pruning_flag u(1)
Ips_unification_flag u(1)
Ips_quantization_method_flags u(3)
nnr_reserved_zero_1bit u(1)

26

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

if((Ips_quantization_method_flags & NNR_QCB) == NNR_QCB ||
(lps_quantization_method_flags & NNR_QSU) == NNR_QSU) {
Ips_qp_density u(3)
Ips_quantization_parameter i(13)
}
if(Ips_sparsification_flag==1)
sparsification_performance_map()
if(Ips_pruning_flag==1)
pruning-performance_map{j —
if(Ips_unification_flag==1) A
unification_performance_map() . q>‘)
byte_alignment() O
} o
6.3.4.5 NNR topology unit payload syntax '\Q‘)
O
nnr|topology_unit_payload() { AW Descriptpr
if| topology_storage_format == NNR_TPL_PRUN) \O)U
nnr_pruning_topology_container() _ h
else if(topology_storage_format == NNR_TPL_REF;]\Q‘ T
topology_elements_ids_list(0) Q\}
Y
topology_data ‘ AQ)\ bs(v)
} o
@
nnr_pruning_ topology_contalne(g\gspec1f1ed as follows:
nnr|pruning_ topology_con@er[) { Descriptpr
npr_rep_type \ . u(2)
prune_flag fo\‘ u(1)
order_flag \V u(1)
S)arse_ﬂ@ u(1)
nnr_reg&t)éd_zero}bits u(3)
if (priurte_flag == 1) {
ifnnr rep type == NNR_TPI, BMSK)
bit_mask()
else if (nnr_rep_type == NNR_TPL_DICT) {
count_ids ue(7)
if (!mps_topology_indexed_reference_flag) {
byte_alignment()
for (j = 0;j < count_ids; j++) {
element_id|[j] st(v)
}
}
else {

© ISO/IEC 2022 - All rights reserved

27

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

for (j=0;j < count_ids; j++) {
element_id_index| j | ue(7)
}
}
for (j = 0;j < count_ids; j++) {
count_dimsJj] ue(1)
for(k= 0; k < count_dims[j]; k++){
dim[j][k] ue(7)
} fa
} (\\Jq/
bytg_alignment() A ~‘.1/
\
} o
} 5
if (sparge_flag==1){ A -
bit_mgsk() G
) AN
} D)
—
< S
bit_mask() Is specified as follows: QQ
N\
bit_mask()}{ k\\}‘ Descriptor
count_bjts \,\\Q)) u(32)
for(j = 0}j < count_bits; j++) { A\
bit_mpsk_value[j] ‘\\Q\‘ u(1)
~
} xQ
byte_alignment() A
} o)
6.3.4.6 NNR quantizatio@ payload syntax
C,
nnr_quantigation_unit_payload() { Descriptor
. . N\
quantiz 1t10n_d§tg‘ bs(v)
\
) D
\U)
6.3.4.7 NNR ompressed data unit payload syntax
nnr_compressed_data_unit_payload() { Descriptor
if(nnr_compressed_data_unit_payload_type == NNR_PT_RAW_FLOAT)
for(i=0;i<Prod(TensorDimensions); i++)
raw_float32_parameter| TensorIndex(TensorDimensions,i, 0)] f1t(32)
decode_compressed_data_unit_payload()
}

decode_compressed_data_unit_payload() invokes the decoding process as specified in subclause 7.3.

28 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

6.3.4.8 NNR aggregate unit payload syntax

nnr_aggregate_unit_payload() {

Descriptor

for(i=0;i<num_of nnr_units_minus2 + 2; i++)

nnr_unit()

6.3.5 Byte alignment syntax

bytt _a}ig,luucut() { Pescriptpr
alignment_bit_equal_to_one /* equal to 1 */ f(1)
while('byte_aligned())
alignment_bit_equal_to_zero /* equal to 0 */ f(1)
}
6.4 | Semantics
6.4.1 General
Semantics associated with the syntax structures and elements within these structures are specified

in thiis subclause. When the semantics of a syntax element@re specified using a table or a s

et of tables,

any Values that are not specified in the table(s) shall notlbe present in the bitstream unless otherwise
speciified in this document.
6.4.2 NNR unit size semantics
nnr junit_size_flag specifies the number of bits used as the data type of the nnr_unit_size. [If this value
is 0, then nnr_unit_size is a 15 bits unsigned integer value, otherwise it is 31 bits unsigned inffteger value.
nnr funit_size specifies the size of the NNR unit, which is the sum of byte sizes of nnr_unit|size(), nnr_
unit)header() and nnr_unit_payload().
6.4.3 NNR unit header semantics
6.4.3.1 General
nnrjunit_type specifies the type of the NNR unit, as specified in Table 3.
Table 3 — NNR unit Types
npriunit_ |Identifier |[NNR unit Type Description
e
0 NNR_STR [NNR start unit Compressed neural network bitstream startindicator
1 NNR_MPS |NNR model parameter set data|Neural network global metadata and information
unit
2 NNR_LPS [NNRlayerparameter setdataunit| Metadata related to a partial representation of
neural network

3 NNR_TPL |NNR topology data unit Neural network topology information

4 NNR_QNT |[NNR quantization data unit Neural network quantization information

5 NNR_NDU [NNR compressed data unit Compressed neural network data

6 NNR_AGG [NNR aggregate unit NNR unit with payload containing multiple NNR units

7..31 NNR_RSVD [Reserved ISO/IEC-reserved range

© ISO/IEC 2022 - All rights reserved

29

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 3 (continued)

nnr_unit_ |Identifier |[NNR unit Type Description
type
32..63 NNR_UNSP |Unspecified Unspecified range

The values in the range NNR_RSVD are reserved for used in future versions of this or related
specifications. Encoders shall not use these values. Decoders conforming to this version of the
specification may ignore NNR units using these values. The values in the range NNR_UNSP are not
specified, their use is outside the scope of this specification. Decoders conforming to this version of the
specification may ignore NNR units using these values.

independently_decodable_flag specifies whether this compressed data unit is indepehdently
decodable. ;A value of 1 indicates an independently decodable NNR unit. A value of 0 indicates'that this
NNR unit i not independently decodable and its payload should be combined with other NNR yinits
for successfful decodability/decompressibility. The value of independently_decodable_flag'shall b¢ the
same for al] NNR units which refer to the same topology_elem_id or topology_elem Gd_index valijie or
the same topology_elem_id_list.

partial_data_counter_present_flag equal to 1 specifies that the syntax element partial_data_coynter
is present ih NNR unit header. partial_data_counter_present_flag equal to’0-specifies that the syjntax
element paiftial_data_counter is not present in NNR unit header.

partial_data_counter specifies the index of the partial data carrjed<n the payload of this NNR [data
unit with re¢spect to the whole data for a certain topology element. A value of 0 indicates no pdrtial
informatior] (i.e., the data in this NNR unit is all data associated to a topology element and it is complete),
a value bigger than 0 indicates the index of the partial infosmation (i.e., data in this NNR unit should
be concaterjated with the data in accompanying NNR units‘until partial_data_counter of an NNR|unit
reaches 1). [This counter counts backwards to indicate-initially the total number of partitions. If not
present, th¢ value of partial_data_counter is inferred>to be equal to 0. If the value of independently_
decodable_{fllag is equal to 0, the value of partial_data_counter_present_flag shall be equal to 1 andl the
value of partial_data_counter shall be greater than 0. If the value of independently_decodable_flag is
equal to 1, the values of partial_data_counter:present_flag and partial_data_counter are undefingd, in
this version|of this document.

NOTE If] future versions of this document, if the value of independently_decodable_flag is equal to 1 and

if partial_data_counter_present_flag is'equal to 1, partial_data_counter can have non-zero values, based oh the
assumption that multiple independently’decodable NNR units are combined to construct a model.

6.4.3.2 NNR start unit header semantics

general_prpfile_idc indicates a profile to which NNR bitstream conforms as specified in this docurpent.
futureuse.

6.4.3.3 NNR'model parameter set unit header semantics

Header elements of the model parameter set (reserved for future use).

6.4.3.4 NNR layer parameter set unit header semantics

Ips_self_contained_flag equal to 1 specifies that NNR units that refer to the layer parameter set are
a full or partial NN model and shall be successfully reconstructable with the NNR units. A value of 0
indicates that the NNR units that refer to the layer parameter set should be combined with NNR units
that refer to other layer parameter sets for successful reconstruction of a full or partial NN model.

6.4.3.5 NNR topology unit header semantics

topology_storage_format specifies the format of the stored neural network topology information, as
specified in Figure 4 and Table 4.

30 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 4 — Topology storage format identifiers

topology_storage_format |Identifier Description
value
0 NNR_TPL_UNREC |Unrecognized topology format
1 Topology format shall be represented as specified in Annex A.
2.4 See Annexes B to D for further information.
5 NNR_TPL_PRUN |Topology pruning information
6 NNR_TPL_REFLIST | Topology element reference list information
7127 NNR _TPI,_ RSVD ISO/IEC-reserved range
128..255 NNR_TPL_UNSP Unspecified range
The [value NNR_TPL_UNREC indicates that the topology format is unknown. Encoders may use this

valu
Decd

attempt to recognize the format by parsing the start of the topology payload.

The

spec
spec
spec
spec

topd
appl

e if the topology format used is not among the set of formats for which identifiers ar
ders conforming to this version of the specification may ignore NNR unitsising this v

values in the range NNR_TPL_RSVD are reserved for used in future versions of thi
ifications. Encoders shall not use these values. Decoders conféorming to this ver
ification may ignore NNR units using these values. The values\inthe range NNR_TPL_U
ified, their use is outside the scope of this specification. Decaders conforming to this ve
ification may ignore NNR units using these values.

logy_compression_format specifies that one of the compression formats defined i
ed on the stored topology data in topology_data.

Table 5 — Topology compression format identifiers

e specified.
alue or may

5 or related
sion of the
NSP are not
rsion of the

n Table 5 is

topology_compression_format Identifier Description

0x00 NNR_PT_RAW Uncompressed

0x01 NNR_DFL Deflate method, sh
plemented accord
RFC 1950

all be im-
ng to [ETF

0x02-0xFE Reserved

6.4.3

quantization_storage_format specifies the format of the stored neural network g

infor

.6 NNR quantization unit header semantics

mation, as specified in Table 6.

Table 6 — Quantization storage format identifiers

uantization

qua 1t1zatlon_s‘torage_format Identifier Description

vdliucT
0 NNR_QNT_UNREC |Unrecognized quantization format.
1 Quantisation format shall be represented as specified in

Annex A.
2.4 See Annexes B to D for further information.
5.127 NNR_QNT_RSVD |ISO/IEC-reserved range
128..255 NNR_QNT_UNSP |Unspecified range

The value NNR_QNT_UNREC indicates that the quantization format is unknown. Encoders may use this
value if the quantization format used is not among the set of formats for which identifiers are specified.
Decoders conforming to this version of the specification may ignore NNR units using this value or may
attempt to recognize the format by parsing the start of the topology payload.

© ISO/IEC 2022 - All rights reserved

31

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

The values in the range NNR_QNT_RSVD are reserved for used in future versions of this or related
specifications. Encoders shall not use these values. Decoders conforming to this version of the
specification may ignore NNR units using these values. The values in the range NNR_QNT_UNSP are not
specified, their use is outside the scope of this specification. Decoders conforming to this version of the
specification may ignore NNR units using these values.

quantization_compression_format specifies that one of the compression formats defined in Table 7 is
applied on the stored quantization data in quantization_data.

Table 7 — Quantization compression format identifiers

quarntization_compression_format Identifier Description
0x00 NNR_PT_RAW Uncompressed
0x01 NNR_DFL Deflate method, shall be ip-
plemented accerding to IE[T
RFC 1950
0x02-0xFF Reserved

6.4.3.7 NNR compressed data unit header semantics

nnr_compressed_data_unit_payload_type is as defined in Table 14 of subclause 7.3.

nnr_multiplle_topology_elements_present_flag specifies whetheéx” multiple topology units| are
present in the bitstream. In case there are multiple units, the lis€of their IDs is included. When [nnr_
compressed_data_unit_payload_type is set to NNR_PT_BLOCK,.this flag shall be set to 1 and topology_
elements_ids_list() in the NNR compressed data unit headershall list the topology elements or topglogy
element indexes of RecWeight, RecWeightG, RecWeightH, RecLS, RecBeta, RecGamma, RecMean, RgcVar
and RecBia$, in the given order and based on their présernce as indicated by the value of compredsed_
parameter_fype in the NNR compressed data unit header.

nnr_decompressed_data_format_present_flagispecifies whether the data format to be obtdined
after deconipression is present in the bitstreams

input_parameters_present_flag specifiesswhether the group of elements including tensor dimensfons,
DeepCABA(unary length and compressed parameter types is present in the bitstream.

topology_elem_id specifies a unique’ identifier for the topology element to which an NNR comprdssed
data unit refers. The semanticinterpretation of this field is context dependent.

topology_elem_id_index §pecifies a unique index value of a topology element which is signalgd in
topology information of.payload type NNR_TPL_REFLIST. The first index shall be 0 (i.e. 0-indexed)

count_topdlogy_elements_minus2 + 2 specifies the number of topology elements for which this NNR
compressed dataunit carries data in the payload.

codebook_présent_flag specifies whether codebooks are used. If codebook_present_flag is not
present, it is inferred to be 0.

dq_flag specifies whether the quantization method is dependent scalar quantization according to
subclause 9.1.3 or uniform quantization according to subclause 9.1.1. A dq_flag equal to 0 indicates
that the uniform quantization method is used. A dq_flag equal to 1 indicates that the dependent scalar
quantization method is used. If dq_flag is not present, it is inferred to be 0.

nnr_decompressed_data_format is defined in Table 13 of subclause 7.2.

tensor_dimensions_flag specifies whether the tensor dimensions are defined in the bitstream. If they
are not included in the bitstream, they shall be obtained from the model topology description.

cabac_unary_length_flag specifies whether the length of the unary partin the DeepCABAC binarization
is included in the bitstream.

32 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

compressed_parameter_types specifies the compressed parameter types present in the current
topology element to which an NNR compressed data unit refers. If multiple compressed parameter
types are specified, they are combined by OR. The compressed parameter types are defined in Table 8.

Table 8 — Compressed parameter type identifiers

Compressed parameter type Compressed parameter type |Bitin compressed_parameter_types
ID

Decomposition present NNR_CPT_DC 0x01

Local scaling present NNR_CPT_LS 0x02

Batdh morm parameters present NNR_CPT_BN 0x04

Bias|present NNR_CPT_BI 0x08

Whein decomposition is present, the tensors G and H represent the result of decomp0sing [the original
tenspr. If (compressed_parameter_types & NNR_CPT_DC) != 0 the variables TensorDimensionsG and
TengorDimensionsH are derived as follows:

— Variable TensorDimensionsG is set to [g_number_of _rows, decomposition_rank].

— Variable TensorDimensionsH is set to [decomposition_rank; hNumberOfColunins] where
nNumberOfColumns is defined as

count _tensor _dimensions—1 / . .
o tensor_dimensions|i]
1=l

hNumberOfColumns =
g_number _of {rows

If (compressed_parameter_types & NNR_CPT_DG) %= 0 and if nnr_compressed_data_unit_payload_
typel l= NNR_PT_BLOCK, the NNR unit contains.adecomposed tensor G and the next NNR unit in the
bitstfream contains the corresponding decomppsed tensor H.

A variable TensorDimensions is derived asfollows:

— |f an NNR unit contains a decomposed tensor G and nnr_compressed_data_unit_paylpad_type !=
NNR_PT_BLOCK, TensorDimensions is set to TensorDimensionsG.

— Ptherwise, ifan NNR unitcostains a decomposed tensor Hand nnr_compressed_data_urjit_payload_
ype != NNR_PT_BLOCK; . PensorDimensions is set to TensorDimensionsH.

— Ptherwise, TensorDimensions is set to tensor_dimensions.
A variable NumBleckRowsMinusl1 is defined as follows:
— If scan_order is equal to 0, NumBlockRowsMinus1 is set to 0.

— Ptherwise, if nnr_compressed_data_unit_payload_type == NNR_PT_BLOCK and (cpmpressed_

batameter_types & NNR_ CPT _DC) = 0, NumBlockRowsMinusl1 is set to ((TensorDlmer sionsG[0] +
rd o 1) L rdax\) o (T Do i cIIMNT L (4

L_l' o\,au Ul \JCIJ J.) \Ll ' o\,au Ul \JCI_}J l _ lCllDUl UllllUllOlUllDllLUJ ' _l' o\,au Ulu r) - 1) >> (2

+ scan_order)) - 2.

— Otherwise, NumBlockRowsMinusl is set to ((TensorDimensions[0] + (4 << scan_order) - 1) >> (2 +
scan_order)) - 1.

decomposition_rank specifies the rank of the low-rank decomposed weight tensor components
relative to tensor_dimensions.

g_number_of_rows specifies the number of rows of matrix G in the case where the reconstruction is
performed for decomposed tensors in an NNR unit of type NNR_PT_BLOCK

cabac_unary_length_minus1 specifies the length of the unary part in the DeepCABAC binarization
minus 1.

© ISO/IEC 2022 - All rights reserved 33

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

scan_order specifies the block scanning order for parameters with more than one dimension according
to the following table:

— 0: No block scanning
— 1: 8x8 blocks

— 2:16x16 blocks

— 3:32x32 blocks

— 4:64x64 blocks

cabac_offs¢t_list specifies a list of values to be used to initialize variable IvlOffset at the beginning of
entry points.

dq_state_list specifies a list of values to be used to initialize variable stateld at the beginhing of gntry
points.

bit_offset_deltal specifies the first element of list BitOffsetList.

bit_offset_dlelta2 specifies elements of list BitOffsetList except for the first element, as differenge to
the previouf element of list BitOffsetList.

Variable BifOffsetList is a list of bit offsets to be used to set the bitstream pointer position at the
beginning of entry points.

codebook_ggk specifies the Exp-Golomb parameter k for decoding of syntax elements codebjpok_
delta_left and codebook_delta_right.

codebook_gize specifies the number of elements in thé<codebook.

codebook_tentre_offset specifies an offset for aceessing elements in the codebook relative tg the
centre of the codebook. It is used for calculating variable CbZeroOffset.

codebook_gero_value specifies the value of‘the codebook at position CbZeroOffset. It is involved in
creating variable Codebook (the array representing the codebook).

codebook_delta_left specifies the-'difference between a codebook value and its right neighpour
minus 1 for| values left to the centre’position. It is involved in creating variable Codebook (the drray
representinig the codebook).

codebook_delta_right specifies the difference between a codebook value and its left neighpour
minus 1 for{values right to-the centre position. It is involved in creating variable Codebook (the drray
representinig the codebeok).

count_tenspr_difirensions specifies a counter of how many dimensions are specified. For example, for
a 4-dimensjonaltensor, count_tensor_dimensions is 4. If it is not included in the bitstream, it shall be
obtained from-the model topology description.

tensor_dimensions specifies an array or list of dimension values. For example, for a convolutional
layer, tensor_dimensions is an array or list of length 4. For NNR units carrying elements G or H of a
decomposed tensor, tensor_dimensions is set to the dimensions of the original tensor. The actual tensor
dimensions of G and H for the decoding methods are derived from tensor_dimensions, decomposition_
rank, and g_number_of_rows. If it is not included in the bitstream, it shall be obtained from the model
topology description.

topology_elem_id_list specifies a list of unique identifiers related to the topology element to which
an NNR compressed data unit refers. Elements of topology_elem_id_list are semantically equivalent to
syntax element topology_elem_id or the index of it when listed in topology payload of type NNR_TPL_
REFLIST. The semantic interpretation of this field is context dependent.

34 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

topology_elem_id_index_list specifies a list of unique indexes related to the topology elements listed
in topology information with payload type NNR_TPL_REFLIST. The first element in the topology shall
have the index value of 0.

concatentation_axis_index indicates the 0-based concatenation axis.

split_index[] indicates the tensor splitting index along the concatenation axis indicated by
concatentation_axis_index in order to generate each individual tensor which is concatenated.

number_of_shifts[] indicates how many left-shifting operations are to be performed.

shift_index[K][i] indicates the axis index of the kth topology element to be left-shifted.

shiff_value[K][i] indicates the amount of left-shift on the axis with index index[K][i].

6.4.3.8 NNR aggregate unit header semantics
nnr_aggregate_unit_type specifies the type of the aggregate NNR unit.

The NNR aggregate unit types are specified in Table 9.

Table 9 — NNR aggregate unit types

nnr|aggregate_unit_type |Identifier NNR Aggregate Unit|Description
Type
0 NNR_AGG_GEN Generic NNRdggregate | A set of NNR units
unit
1 NNR_AGG_SLF Self-contained NNR|When extracted and then cpncatenated
aggregate unit withan NNR_STR and NNR_NIPS,an NNR_

AGG_SLF shall be decodablefwithout any
need of additional information and a full
or partial NN model shall bejsuccessfully
reconstructable with it.

2.127 NNR_RSVD Reserved ISO/IEC-reserved range
128..255 NNR_UNSP Unspecified Unspecified range

The [values in the range NNR;*NNR_RSVD are reserved for uses in future versions of this or related
specifications. Encoders_shall not use these values. Decoders conforming to this verjsion of the
spedjfication may ignore'NNR units using these values. The values in the range NNR_UNSP are not
speciified, their use is‘eutside the scope of this specification. Decoders conforming to this version of the
specffication maysignore NNR units using these values.

entrny_points-present_flag specifies whether individual NNR unit entry points are present.

nunl_of Mnr_units_minus2 + 2 specifies the number of NNR units present in the NNR aggregate unit’s
paylpad

nnr_unit_type[i] specifies the NNR unit type of the NNR unit with index i. This value shall be the same
as the NNR unit type of the NNR unit at index i.

nnr_unit_entry_point[i] specifies the byte offset from the start of the NNR aggregate unit to the start
of the NNR unit in NNR aggregate unit’s payload and at index i. This value shall not be equal or greater
than the total byte size of the NNR aggregate unit. nnr_unit_entry_point values can be used for fast and
random access to NNR units inside the NNR aggregate unit payload.

quant_bitdepth| i] specify the max bit depth of quantized coefficients for each tensor in the NNR
aggregate unit.

ctu_scan_order(i] specify the CTU-wise scan order for each tensor in the NNR aggregate unit. Value
0 indicates that the CTU-wise scan order is raster scan order at horizontal direction, value 1 indicates
that the CTU-wise scan order is raster scan order at vertical direction.

© ISO/IEC 2022 - All rights reserved 35

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

6.4.4 NNR unit payload semantics

6.4.4.1 General

The following NNR unit payload types are specified:

6.4.4.2 NNR start unit payload semantics

Start unit payload (reserved for future use).

6443 N

Romodel st maviond :

topology_carriage_flag specifies whether the NNR bitstream carries the topology internall

externally.
“NNR_TPL".
NNR bitstre

mps_spars
compressed

mps_pruni
units thatu

mps_unifid
data units t

When set to 1, it specifies that topology is carried within one or more NNR units of
If 0, it specifies that topology is provided externally (i.e., out-of-band with\respect t
am).

fication_flag specifies whether sparsification is applied to the,~model in the
data units that utilize this model parameter set.

ng_flag specifies whether pruning is applied to the model in<the NNR compressed
[ilize this model parameter set.

ation_flag specifies whether unification is applied to‘the model in the NNR compre
hat utilize this model parameter set.

mps_decomposition_performance_map_flag equal to 1{specifies that tensor decomposition

applied to a

mps_quant
compressed
combined b

L least one layer of the model and a corresponding performance map is transmitted.

ization_method_flags specifies the quantization method(s) used for the model in the
data units that utilize this model parameter set. If multiple models are specified, the)
¥ OR. The methods are defined in Table 10.

Table 10 — Quantization method identifiers

y or

type
the

INNR

data

ssed

was

INNR
y are

Quantizatign method Quantization method ID Value

Scalar unifofm NNR_QSU 0x01

Codebook NNR_QCB 0x02

Reserved 0x04-0x07
mps_topolggy_indexed reference_flag specifies whether topology elements are referenced by urlique
index. When set to L-fopology elements are represented by their indexes in the topology data defined
by the topology payload of type NNR_TPL_REFLIST. If this flag is set to 0, then topology_data of NNR
topology unlit shall'contain the topology information.

mps_qp_density-specifiesdens ormationrofsyntaxeleme h the
NNR compressed data units that utilize this model parameter sets.

mps_quantization_parameter specifies the quantization parameter for scalar uniform quantization
of parameters of each layer of the neural network for arithmetic coding in the NNR compressed data
units that utilize this model parameter set.

sparsification_performance_map() specifies a mapping between different sparsification thresholds
and resulting NN inference accuracies. The resulting accuracies are provided separately for different
aspects or characteristics of the output of the NN. For a classifier NN, each sparsification threshold is
mapped to separate accuracies for each class, in addition to an overall accuracy which considers all
classes. Classes are ordered based on the neural network output order, i.e., the order specified during
training.

36 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

spm_count_thresholds specifies the number of sparsification thresholds. This number shall be non-
Zero.

sparsification_threshold specifies a list of thresholds where each threshold is applied to the weights
of the decoded neural network in order to set the weights to zero. l.e., the weights whose values are less
than the threshold are set to zero.

non_zero_ratio specifies a list of non-zero ratio values where each value is the non-zero ratio that is
achieved by applying the sparsification_threshold to sparsify the weights.

spm_nn_accuracy specifies a list of accuracy values where each value is the overall accuracy of the

NN ((ol {"]’)CCI"F]‘{"')"’I‘!'\“ aValalhhalaYahv4 h" I‘f\“(‘]‘r]ﬂ?‘i“" ’)]] r‘]accac\ nn]non CY\QV‘C;‘FI'F’)"’;I’\“ IICII“(T f]’\ﬂ r‘r\rres Ondin
g classificationaccurac v by considerin allclass s} when sparsification using the corresp g

threghold in sparsification_threshold is applied.

spm| count_classes specifies a list of number of classes where each such number|is’ thg number of
clasges for which separate accuracies are provided for each sparsification threshglds.

spm| class_bitmask specifies a subset of classes for which the accuracies are)signalled, when a certain
spargpification threshold is applied. The order of bits indicates the indexes)of classes, with the most
significant bit representing the presence of the smallest indexed class.

spm| nn_class_accuracy specifies a list of lists of class accuracies;\where each value is acfuracy for a
certain class, when a certain sparsification threshold is applied.

pruning_performance_map() specifies a mapping between different pruning ratios and resulting
NN Inference accuracies. The resulting accuracies are, provided separately for differentl aspects or
charpcteristics of the output of the NN. For a classifier\NN, each pruning ratio is mapped|to separate
accufracies for each class, in addition to an overalléaceuracy which considers all classes.|Classes are
ordered based on the neural network output ordetyi.e., the order specified during training.

ppnl_count_pruning_ratios specifies the number of pruning ratios. This number shall be mon-zero.
pruning_ratio specifies the pruning ratio:

ppn_nn_accuracy specifies a list of accuracy values where each value is the overall accuragy of the NN
(e.g.|classification accuracy by considering all classes) when pruning using the corresponding ratio in
prurling_ratio is applied.

ppm_class_bitmask: specifies a subset of classes for which corresponding accuracies aie signalled,
when a certain pruningratio is applied. The order of bits indicates the indexes of classes, wjth the most
signjficant bit represénting the presence of the smallest indexed class.

ppm_count_classes specifies a list of number of classes where each such number is thg number of
clasges for which-separate accuracies are provided for each pruning ratio.

ppm_nn_class_accuracy specifies a list of lists of class accuracies, where each value is acfuracy for a
certain‘class, when a certain pruning ratio is applied.

unification_performance_map() specifies a mapping between different unification thresholds and
resulting NN inference accuracies. The resulting accuracies are provided separately for different
aspects or characteristics of the output of the NN. For a classifier NN, each unification threshold is
mapped to separate accuracies for each class, in addition to an overall accuracy which considers all
classes. Classes are ordered based on the neural network output order, i.e., the order specified during
training.

upm_count_thresholds specifies the number of unification thresholds. This number shall be non-zero.

count_reshaped_tensor_dimensions specifies a counter of how many dimensions are specified for
reshaped tensor. For example, for a weight tensor reshaped to 3-dimensional tensor, count_reshaped_
tensor_dimensions is 3.

© ISO/IEC 2022 - All rights reserved 37

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

reshaped_tensor_dimensions specifies an array or list of dimension values. For example, for a
convolutional layer reshaped to 3-dimensional tensor, dim is an array or list of length 3.

count_super_block_dimensions specifies a counter of how many dimensions are specified. For
example, for a 3-dimensional superblock, count_super_block_dimensions is 3.

super_block_dimensions specifies an array or list of dimension values. For example, for a
3-dimensional superblock, dim is an array or list of length 3, i.e. [64, 64, kernel_size].

count_block_dimensions specifies a counter of how many dimensions are specified. For example, for a

3-dimensional block, count_block_dimensions is 3.

block_dimé
block, dim i

unification
absolute va

upm_nn_ag
all classes).

upm_counf_classes specifies number of classes for which separate accuraciées are provided for

unification

upm_class |
when a cert
the most sig

upm_nn_cl
is applied.

decomposi
thresholds

accuracies.
the output g
class, in adq
neural netw

dpm_count] thresholds specifies, the number of decomposition MSE thresholds. This number sha

non-zero.

bnsions specifies an array or list of dimension values. For example, for a 3-dimens
5 an array or list of length 3, i.e. [2, 2, 2].

| threshold specifies the threshold which is applied to tensor block in ordefti to unif}
ue of weights in this tensor block.

curacy specifies the overall accuracy of the NN (e.g. classification acctiracy by considg

hresholds.

bitmask specifies a subset of classes for which correspending accuracies are signdg
ain unification threshold is applied. The order of bits indicates the indexes of classes,
nificant bit representing the presence of the smallest indexed class.

hss_accuracy specifies the accuracy for a certairntclass, when a certain unification thres

fion_performance_map() specifies a mapping between different mean square error (1
between the decomposed tensors and their original version and resulting NN infer
The resulting accuracies are provideéd separately for different aspects or characteristi
fthe NN. For a classifier NN, each-MSE threshold is mapped to separate accuracies for

ork output order, i.e., the order specified during training.

mse_thres

different tet

dpm_nn_ac
all classes).

old specifies anjarray of MSE thresholds which are applied to derive the ranks o
sors of weights.

curacy (specifies the overall accuracy of the NN (e.g. classification accuracy by considg

nn_reductipniratio[i] specifies the ratio between the total number of parameters after tg

onal

 the

ring

each

lled,
with

hold

ISE)
ence
cs of
each

lition to an overall accuracy which considers all classes. Classes are ordered based on the

1l be

[the

ring

nsor

decomposition of the whole model and the number of parameters in the original model.

dpm_count_classes specifies number of classes for which separate accuracies are provided for each
decomposition thresholds.

dpm_nn_class_accuracy specifies an array of accuracies for a certain class, when a certain
decomposition threshold is applied.

6.4.4.4 NNR layer parameter set unit payload semantics

Ips_sparsification_flag specifies whether sparsification was applied to the model in the NNR
compressed data units that utilizes this layer parameter set.

38 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Ips_pruning_flag specifies whether pruning was applied to the model in the NNR compressed data
units that utilizes this layer parameter set.

Ips_unification_flag specifies whether unification was applied to the model in the NNR compressed
data units that utilizes this layer parameter set.

Ips_quantization_method_flags specifies the quantization method used for the data contained in the
NNR compressed data units to which this layer parameter set refers. If multiple models are specified,
they are combined by OR. The methods are defined in Table 11.

Table 11 — Quantization method identifiers

Quaptization method Quantization method ID Value
Scalar uniform NNR_QSU 0x01
Cod¢book NNR_QCB 0x02
Resqrved 0x04-0x07

Ips_gp_density specifies density information of syntax element lps_quantization_paranpeter in the
NNR|compressed data units that utilize this model parameter set.

Ips_quantization_parameter specifies the quantization parameter‘for scalar uniform qudntization of
parameters of each layer of the neural network for arithmetic coding in the NNR compressed data units
that|utilize this model parameter set.

The yariable QpDensity is derived as follows:
— |fan active NNR layer parameter set is present, the*variable QpDensity is set to Ips_gqp_Hensity.
— Dtherwise, the variable QpDensity is set to fiips_qp_density.
The yariable QuantizationParameter is derived as follows:

— |f an active NNR layer parameter sébis present, the variable QuantizationParameter ifs set to Ips_
juantization_parameter.

— Ptherwise, the variable QuantizationParameter is set to mps_quantization_parameter.

sparfpification_performance‘map() is as defined in subclause 6.4.4.3.

When Ips_sparsificatietizflag of a certain layer is equal to 1 and mps_sparsification_flag i$ equal to 0,
then| the informatignin sparsification_performance_map() of the layer parameter set is|valid when
perfprming sparsification only on that layer. More than one layer can have lps_sparsificatiop_flag equal
to 1 |n their layer\parameter set.

Whein both-mps_sparsification_flag and Ips_sparsification_flag are equal to 1, the following|shall apply:

— |f$parsification is applied on the whole model (i.e., all layers), then the information in sparsification_
erfOTTITance_Imapy) Of the IModel parameter Setis vaiid.

— If sparsification is applied on only one layer, and for that layer Ips_sparsification_flag is equal to 1,
then the information in sparsification_performance_map() of the layer parameter set of that layer
is valid.

pruning_performance_map() is as defined in subclause 6.4.4.3.

When lps_pruning_flag of a certain layer is equal to 1 and mps_pruning_flag is equal to 0, then the
information in pruning_performance_map() of the layer parameter set is valid when performing
pruning only on that layer. More than one layer can have lps_pruning_flag equal to 1 in their layer
parameter set.

© ISO/IEC 2022 - All rights reserved 39

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

When both mps_pruning_flag and Ips_pruning_flag are equal to 1, the following shall apply:

performance_map() of the model parameter set is valid.

information in pruning_performance_map() of the layer parameter set of that layer is valid.

unification_performance_map() is as defined in subclause 6.4.4.3.

If pruning is applied on the whole model (i.e., all layers), then the information in pruning_

If pruning is applied on only one layer, and for that layer Ips_pruning_flag is equal to 1, then the

When Ips_unification_flag of a certain layer is equal to 1 and mps_unification_flag is equal to 0, then

the inform

tion in unification performance map() of the laver parameter set is valid when perfor

ming

unification
parameter §

When both

If unifi
perforn

If unifiq
the infa

6445 N

topology_st
same NNR v

topology_d

bnly on that layer. More than one layer can have lps_unification_flag equal to 1 in their
et.

mps_unification_flag and lps_unification_flag are equal to 1, the following shall apply:

ation is applied on the whole model (i.e., all layers), then the information in unifica
nance_map() of the model parameter set is valid.

ation is applied on only one layer, and for that layer lps_unification_flag is equal to 1,
rmation in unification_performance_map() of the layer parameter-set of that layer is v

NR topology unit payload semantics

prage_format value is as signaled in the corresponding NNR topology unit header o
nit of type NNR_TPL.

ata is a byte sequence of length determined by the NNR unit size describing the n¢

network topology, in the format specified by topology_sterage_format.

If topology,

storage_format is set to NNR_TPL_UNREC, definition and identification of the sto

format of topology_data is out of scope of this document.

NOTE If}

topology_storage_format is set to NNR_TPL_UNREC, the (header) structure of topology_data c

used to identlify the format.

nnr_rep_ty
references (

pe specifies whether pruning information is represented as a bitmask or as a dictiona
f topology elements. Thepermitted values are specified in Table 12.

Table(12'— Pruning information representation types

ayer

rion_

then
hlid.

f the

bural

rage

hn be

ry of

nnr_rep_typewalue Identifier Description
0x00 NNR_TPL_BMSK Topology related informgtion
signaled as bitmask
0x01 NNR_TPL_DICT Topology related informgtion
signaled as dictionary of tgpol-
0gy elements
0x02-0x03 Reserved

prune_flag when set to 1 indicates that pruning step is used during parameter reduction and pruning
related topology information is present in the payload.

order_flag when set to 1 indicates that the bitmask should be processed row-major order; and column-

major other

wise.

sparse_flag when set to 1 indicates that sparsification step is used during parameter reduction and
related topology information is present in the payload.

count_ids specifies the number of element ids that are updated. When present, its value shall be greater

than zero.

40

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

element_id specifies the unique id that is used to reference a topology element

element_id_index specifies the unique index of the topology element which is present in the nnr_
topology_unit_payload() where topology_storage_format is equal to NNR_TPL_REFLIST.

count_dims specifies the number of dimensions. When present, its value shall be greater than zero.

dim specifies array of dimensions that contain the new dimensions for the specified element. When
present, its value shall be greater than zero.

bit_mask_value when set to 1 indicates that this specific neuron’s weight is pruned if pruning_flag is
set to 1 or is sparisfied (the weight value is 0) if sparse flagis setto 1.

count_bits specifies the number of bits present in the bit mask information. When pfesént, its value
shal] be greater than zero.

6.4.4.6 NNR quantization unit payload semantics

quantization_data is a byte sequence of length determined by the NNR unit'size describing the neural
network quantization information, in the format specified by quantization_storage_format

If qulantization_storage_format is set to NNR_QNT_UNREC, definitiofrand identification of|the storage
format of quantization_data is out of scope of this document.

NOTE If quantization_storage_format is set to NNR_QNT_UNREC, the (header) structure of quantization_
data fan be used to identify the format.

6.4.4.7 NNR compressed data unit payload semantics

raw]float32_parameter is a float parameter tensor.

6.4.4.8 NNR aggregate unit payload semantics

NNR| aggregate unit payload carries multiple NNR units. num_of_nnr_units_minus2 + 2 pprameter in
NNR|aggregate unit header shall specify how many NNR units are present in the NNR aggiegate unit’s
paylpad.

7 Decoding process

7.1 | General

A defoder that«complies with this document shall take an NNR bitstream, as specified in subclause 6.3,
as input and

— generate decompressed data which complies with an NNR decompressed data format (gs defined in
[able 13) or
===

— generate ASCII or compressed data outputs as indicated by using the NNR_TPL and NNR_QNT NNR
unit payloads (as described in subclause 6.3.3)

For the decoding process, the following conditions shall apply:

— Any information that is required for decoding an NNR unit of the NNR bitstream should be signaled
as part of the NNR bitstream. If such information is not part of the NNR bitstream, then it shall
be provided to the decoding process by other means (e.g. out-of-band topology information or
parameters required for decoding but not signaled or carried in the NNR bitstream)

— The decoding process shall be initiated with an NNR unit of type NNR_STR. With the reception
of the NNR_STR unit, the decoder shall reset its internal states and get ready to receive an NNR

© ISO/IEC 2022 - All rights reserved 41

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

bitstream. The presence and cardinality of preceding NNR units shall be as specified in the relevant
clauses and annexes of this document.

NOTE For example, a decoder can be further initialized via an NNR unit of type NNR_MPS in order set
global neural network model parameters.

A decoder that complies with this document shall output data structures which comply with the
decompressed NNR data formats as soon as it decompresses them. This allows low delay between
inputting NNR compressed data units and accessing decompressed data structures from its output.
How to establish the relationship between the input NNR units and NNR decompressed output data is
out of scope of this document and left to implementation.

7.2 NNR decompressed data formats

Depending [on the compression methods used to create a particular bitstream, the N\NR degoder
is expected to output different decompressed data formats as a result of decoding~an NNR |data
unit. Table I3 specifies these NNR decompressed data formats that result after decompressing [NNR
compressed data units.

Table 13 — NNR decompressed data formats

Parameter jdentifier | Parameter description nnr_decompressed]_
data_format

TENSOR_INT Tensor of integer values used for representing tensor-shaped |0
signed integer parameters of the model

TENSOR_FLPAT Tensor of float values used for representing.tensor-shaped 1
float parameters of the model

7.3 Decoding methods

7.3.1 General

This subclause specifies the decoding méthods of this document. Depending on the value of [nnr_
compressed_data_unit_payload_type, one of the subclauses as specified in Table 14 is invoked.

Table 14 = NNR compressed data payload types

Payload identifier Description nnr_compressed_data_ |Sub-
unit_payload_type clausge

NNR_PT_INT Mteger parameter tensor 0 7.3.2
NNR_PT_FLPAT float parameter tensor 1 7.3.3
NNR_PT_RAW_FLOAT uncompressed float parameter tensor 2 7.3.4
NNR_PT_BLPGCK float parameter tensors including a (optionally |3 7.3.5

dpr‘nmpncr—\d) v\mighf tensorand, npfinn:\llv

local scaling parameters, biases, and batch norm

parameters that form a block in the model archi-

tecture

If the payload identifier is NNR_PT_INT, NNR_PT_FLOAT, or NNR_PT_FLOAT_RAW and if multiple
topology elements are combined (as signaled in the NNR compressed data unit header via nnr_multiple_
topology_elements_present_flag), then NNR decompressed tensors shall be further split into multiple
tensors after the decoding process as follows:

— Tensor RecParam is split into multiple tensors by invoking TensorSplit(RecParam, split_index,
concatenation_axis_index).

— The output of function TensorSplit is the list of split output tensors associated with topology
elements as specified by array topology_elem_id_list.

42 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

dimension_mapping() by invoking AxisSwap().

7.3.2 Decoding method for NNR compressed payloads of type NNR_PT_INT

Inpu

t to this process are:

Output tensors are further processed by swapping their axis as signaled in topology_tensor_

One or more NNR compressed data units which are marked to be decompressed together by partial_

data_counter and nnr_compressed_data_unit_payload_type fields are setas NNR_PT_INT.

Output of this process is a variable RecParam of type TENSOR INT as spec1f1ed in Table 13. The

A sy
is de
spec

A sy
subgd

O
od NNR PT_ INT shall only produce Values for ReCParam that can be represented as 32
b in two’s complement representation.

hrithmetic coding engine and context models are initialized as specified in stibelause 1

pforming to

Y bit integer

).3.2.

coded from the bitstream and the initialization process for probabijlity“estimation pa
ified in subclause 10.3.2.2 is invoked.

ntax structure quant_tensor(TensorDimensions, cabac_unarydength_minusl, 0) a

Asy

7.3.3

htax structure terminate_cabac() according to subclause 10.2.1.2 is decoded from the k

Decoding method for NNR compressed payloads of type NNR_PT_FLOAT

Inpuft to this process are:

Outy
dimd

The

Subg
the @

Asy

Decd
that

Dne or more NNR compressed data unitswhich are marked to be decompressed togethe
Hata_counter and their nnr_compressed “data_unit_payload_type fields are set as NNR _

ut of this process is a variable RecParam of type TENSOR_FLOAT as specified in T4
nsions of RecParam are equal t0) TensorDimensions.

hrithmetic coding engine.and context models are initialized as specified in subclause 1

lause 10.2.1.4 is decoded from the bitstream and RecParam(is)set equal to QuantParani.

htax structure shift_parameter_ids(cabac_unary_length_minus1) accofding to subclause 10.2.1.6

rameters as

ccording to

itstream.

I by partial_
PT_FLOAT

ble 13. The

).3.2.

lause 7.3.6 is invoked with TensorDimensions, 0, and (codebook_present_flag ? 0 : -1) as
utput is assigned to-RecParam.

htax structure terminate_cabac() according to subclause 10.2.1.2 is decoded from the &

ding of a bitstream conforming to method NNR_PT_FLOAT shall only produce values fq
can bevepresented as float value without loss of precision.

inputs, and

itstream.

r RecParam

7.3.4

| . {Decoding method for NNR compressed payloads of type NNR_PT_RAW_FLOAT

Output of this process is a variable RecParam of type TENSOR_FLOAT as specified in Table 13. The
dimensions of RecParam are equal to TensorDimensions.

RecParam is set equal to raw_float32_parameter.

7.3.5 Decoding method for NNR compressed payloads of type NNR_PT_BLOCK

Inpu

ts to this process are:

One or more NNR compressed data units which are marked to be decompressed together by partial_

data_counter and their nnr_compressed_data_unit_payload_type fields are set as NNR_PT_BLOCK.

© ISO/IEC 2022 - All rights reserved

43

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Output of this process are one or more variables of type TENSOR_FLOAT as specified in Table 13
depending on the value of compressed_parameter_types as follows:

If (compressed_parameter_types & NNR_CPT_DC) == 0: RecWeight

If (compressed_parameter_types & NNR_CPT_DC) != 0: RecWeightG, RecWeightH

If (compressed_parameter_types & NNR_CPT_LS) != 0: RecLS

If (compressed_parameter_types & NNR_CPT_BN) != 0: RecBeta, RecGamma, RecMean, RecVar

If (compressed_parameter_types & NNR_CPT_BI) != 0: RecBias

If present, t
If present, t
If present, t

If present, t
length is eq

The arithmsg

If (compres
of RecLS, -1

If (compres:
RecBias,, -1,

If (compres
of RecBeta,

If (compres
of RecGamn

If (compres
of RecMean

If (compres
of RecVar, -1

If (compres

of RecWeiglhtt, 0, and (codebook_present_flag ? 0 : -1) as inputs, and the output is assigned to RecWe

If (compres

Subclau

he dimensions of RecWeight are equal to TensorDimensions.
he dimensions of RecWeightG are equal to TensorDimensionsG.
he dimensions of RecWeightH are equal to TensorDimensionsH.

he variables RecLS, RecBeta, RecGamma, RecMean, RecVar, and ReceBias are 1D and
hal to the first dimension of TensorDimensions.

tic coding engine and context models are initialized as specifiéd in subclause 10.3.2.

bed_parameter_types & NNR_CPT_LS) != 0, subclause 7.36-is’invoked with the dimens
and -1 as inputs, and the output is assigned to RecLS.

ed_parameter_types & NNR_CPT_BI) != 0, subclause{7.3.6 is invoked with the dimensio
and -1 as inputs, and the output is assigned to RecBias.

bed_parameter_types & NNR_CPT_BN) != Ogsubclause 7.3.6 is invoked with the dimens
L1, and -1 as inputs, and the output is assigned to RecBeta.

bed_parameter_types & NNR_CPT_BN),!= 0, subclause 7.3.6 is invoked with the dimens
1a, -1, and -1 as inputs, and the output is assigned to RecGamma.

bed_parameter_types & NNR_ERT_BN) != 0, subclause 7.3.6 is invoked with the dimens
-1, and -1 as inputs, and theoutput is assigned to RecMean.

bed_parameter_types & NNR_CPT_BN) != 0, subclause 7.3.6 is invoked with the dimens
,and -1 as inputs, and the output is assigned to RecVar.

bed_parameterstypes & NNR_CPT_DC) == 0, subclause 7.3.6 is invoked with the dimens

ed_parameter_types & NNR_CPT_DC) != 0, the following applies:

se_7.3:6 is invoked with TensorDimensionsG, 0, and (codebook_present_flag ? 0 : -

inputs,

their

ions

ns of

ions

ions

ions

ions

ions
ight.

1) as

hiid the output is assigned to RecWeightG.

Subclause 7.3.6 is invoked with TensorDimensionsH, (TensorDimensionsG[0] + (4 << scan_order) -

1) >> (2 + scan_order)) - 1, and (codebook_present_flag ? 1: -1) as inputs, and the output is assigned
to RecWeightH.

NOTE

RecWeight = TensorReshape (RecWeightG * RecWeightH, TensorDimensions)

From the decoded RecWeightG and RecWeightH, the variable RecWeight can be derived as follows:

A syntax structure terminate_cabac() according to subclause 10.2.1.2 is decoded from the bitstream.

44

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

7.3.6 Decoding process for an integer weight tensor

Inputs to this process are:
— Avariable tensorDims specifying the dimensions of the tensor to be decoded.

— Avariable entryPointOffset indicating whether entry points are present for decoding and, if entry
points are present, an entry point offset.

— Avariable codebookld indicating whether a codebook is applied and, if a codebook is applied, which
codebook shall be used.

Outgut of this process is a variable recParam of type TENSOR_FLOAT as specified in Zaple 13 with
dimg¢nsions equal to tensorDims.

A syntax structure quant_param(QpDensity) according to subclause 10.2.1.3.4s decodé¢d from the
bitstiream.

A syptax structure shift_parameter_ids(cabac_unary_length_minus1) according to subclause 10.2.1.6
is dgcoded from the bitstream and the initialization process for probability estimation pafameters as
spediified in subclause 10.3.2.2 is invoked.

A syntax structure quant_tensor(tensorDims, cabac_unary length_minusl, entryPgintOffset)
accofding to subclause 10.2.1.4 is decoded from the bitstream and’'recParam is set as followfs:

if(codebookld == -1)
recParam = QuantParam
elge {
for(i=0;i<Prod(tensorDims); i++) {
idx = TensorIndex(tensorDims, i)
if(codebookld == 0)
recParam[idx] = Codebook[QuantParam[idx] + CbZeroOffset]
else

recParam[idx}:= CodebookDC[QuantParam[idx] + CbZeroOffsetDC]

A variable stepSize is derived as follows:
s . } N ity)1-1))

shift = (gp_value + QuantizationParameter) >> QpDensity

stepSize = mul * 2shift - QpDensity
Variable recParam is updated as follows:
recParam = recParam * stepSize

NOTE Following from the above calculations, recParam can always be represented as binary fraction.

© ISO/IEC 2022 - All rights reserved 45

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

8 Parameter reduction

8.1 Gene

ral

This includes methods and techniques that process a model to obtain a compact representation.
Examples of such methods include, parameter sparsification, parameter pruning, weight unification, and
decomposition methods.

8.2 Methods

8.2.1 Spadrsification using compressibility loss

The method
(categorical
compressib

the compre
following lo

L =L

m is a hypel

hyperparameter.

The comprg

_m
C

L
w

where |w| g
flattening a

During this

After the dg
a single vec
threshold 7

starts from a pretrained neural network (input to the method) and calculates the-tasK
cross-entropy for image classification, MSE for image compression, €tc: and
lity loss on validation set and arranges the weight A, on the compressibility“loss such|

5sibility loss is m times the task loss. This A, is fixed during the entifeytraining ang
5s is minimized during neural network training:

i 2’c Lc

parameter of the method. Note that A is directly inferredffom m so it is not an addit

ssibility loss is defined as follows

w2

[wi

nd w are L; and L, norms of the vector w, respectively, and the vector w is obtaing
1 the tensors representing the leainable parameters of the neural network.

+ 7Y

2
1 . . w® 1w
data-dependent transformation 7, is arranged accordingly such that ﬁ :§u
w w
ta-dependent transformation is completed, the neural network parameters are flatten
tor, and pruned simply by setting the parameters that have smaller absolute values th

, to zero.

8.2.2 Sp

(pruning) t

1r
The metho

sification,using micro-structured pruning

starts.from a pretrained neural network (input to the method) and aims at chan
1e pfetrained parameters in a structured way.

loss
the
that

| the

onal

d by

bd to
an a

ging

For each

(g tha Lth laune) +ha ram

heral

5-dimensional (5D) tensor of size c{‘ xcé‘ xn
tensor A of size hf va xdf xcf, and the output of the layer is a 4D tensor B of size hé(><v§ xdf xc

When any of the sizes cf ,cé‘

n oa
oY €
14 =)

=Y

ThrC—7T ooy O J— o

ko k

1 Xy xné‘. The input of the layer is a 4-dimensional

k k k
Inl rnz In3

(4D)

k
2

,h{‘ ,vf ,df ,hé(,vé‘ ,dé‘ takes the value 1, the corresponding tensor

reduces to a lower dimension. hf,vf,d{((hé(,vé(,df) are the height, weight and depth of the input

tensor A (output tensor B). cf (cé‘) is the number of input (output) channel. nf, né‘, and né‘ are the size
of the convolution kernel corresponding to the height, weight and depth axes, respectively. The 5D

parametertensorisreshapedintoaSDtensorofsize(cf , cg ,nk),where c{(><c§ xnk :cf xcé(xnf ><n§ ><n§
. The size of the 3D tensor is defined as cf = cf, cé‘ :cé‘ ,nk :n{‘ xné‘ xné‘ :

46 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

The reshaped 3D parameter tensor is partitioned into super-blocks of size sf xsé(xn¥. Let S;-(denote a
super-block. Each super-block Sj-‘ is further partitioned into blocks of size bf xbé‘ xbé‘ . Let Bj-‘, denote
;(1 ,a prune distortion loss
L(B;-‘I) can be computed (e.g. as the Ly norm of the absolute value of the parameters in B;‘I). The prune

a block in S;(, parameters are pruned block-wise inside S;(. For each block B

distortion loss L (S;-‘) of the entire super-block S}(is computed by averaging L(Bj-(l) across all blocks in

S;-(, ie., L(S;-‘):averageBk L(Bj-(l). When selected to be pruned, all parameters in B;(I will be set to
Jjl

Zero

k

n Cq k

2
dary of the corresponding dimension will be smaller. When n* can not be fully divide

Whe

bour

cannot be fully divided by sf, or ¢, cannot be fully divided by 55 , the super=blocks along the
d by by, sk
ndary of the

blocks, and

canrtlot be fully divided by bf ,or 55 cannot be fully divided by bé(, the blocks aloehg the bou

corr

$kx

psponding dimension will be smaller. That is, bf Xbé‘ xbé‘ is the maximum size of the

k

S xn* is the maximum size of the super-blocks.

Givep the original task loss L;.,;, (categorical cross-entropy for\lmage classification, MSE for image

compression, etc.), this method iteratively takes the following twe’steps:

1. The blocks are ranked based on their loss L(Bﬁ-‘,) in,ascending order. Given a pruning ratio p as a

hyperparameter, the top p blocks are selected to Hé)pruned. And the parameters in sel¢cted blocks

The
part

used

8.2.3

8.2.3

The

spar

1.
2.
3.

hire set to be 0. A parameter pruning mask M, 1S maintained throughout the training
has the same shape as W), which records whether a corresponding weight coefficient j
hot.

[he parameters which are marked in M as being pruned are fixed, the remaining unf
roefficients of W, are updated through a neural network training process.

method will output an updated’model with the same model structure as the input m
or all of the parameters beihg structurally removed (pruned). The output model can
in the same way as the input model.

Combined pruning and sparsification

.1 General

methodconsists of three steps. Starting from a pre-trained neural network, pruning
sificationrratio g, this method takes the following steps:

process. M,
s pruned or

ixed weight

odel, where
be directly

ratio p and

Addlyse the network to identify the parameters suitable for pruning.

Remove the neurons with respect to the pruning ratio p.

Apply data dependent-based sparsification with regard to the sparsification ratio q. The
sparsification method can be any sparsification method which is defined as a parameter reductions

method in this document or a similar method.

Given a configuration setup, the steps 1 to 3 can be performed progressively or in one-shot until a
target compression ratio is achieved. In step 2, a sparsification operation may also be applied rather
than pruning. In step 3, only task loss may also be applied in order to improve the neural network
performance.

© ISO/IEC 2022 - All rights reserved 47

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

8.2.3.2 Estimating the importance of parameters for pruning

The neural network parameters are estimated based on a diffusion process over the layers. Example of
pruning of convolution filters is provided below, similar formulation applies to other type of layers and
to group of layers.

Each convol

ution layer consists of a parameter tensor Fe IR Cour XKXKXC

I, also denoted filter, where C, is

the number of output channels, K is the dimension of the convolution kernel, and C; is the number of

input chann

Under cons

els.

ant input the redundancvy in a laver output can be maodelled hy the internal redu

dant

information
channels, a

inside the filter. Thus, by considering an ergodic Markov process between the(oy
braph diffusion is employed to find the redundancy. To this end, given a convolutien filt

,a feature

Following

particular g
the equiliby
importance

S =exp

where ¢ is
the transiti

]

RCO xm

atrix Me is obtained where m=KxK xC;, via tensor reshape.

e ergodic Markov chain with each output channel as one state, the probability of reach

tate at the equilibrium is 7T =xT P where P is the stochastic transition matrix and
ium probability of P, corresponding to the left eigenvector A=1.\Under equilibrium
can be defined as

1
__)’
on
h smoothing factor, that can be equal to the number,of'output channels. The elements

bn matrix P are determined as

¢~ Dmi.m;)

where m; i

will indicat
output chan

8233 D

While any d
sparsificati
Cross-entro
diversity lo
weight 4; g
following loj

)

Coute—D(mi my)
z=1
the i-th row of M and D(-,-) is anydistance function of preference. The higher value

e more dissimilarity, importance ahd salience for output channel in comparison to the ¢
nels. To prune the filters, aftergomputing S, less salient channels are removed.

hta dependent-based sparsification

ata dependent sparsification from this document can be used, the following data depen

py for image classification, MSE for image compression, etc.), the compressibility loss
5s. The lossiterms are arranged with the weight A. on the compressibility loss ang

n the diversity loss, respectively. The A. and A4 are fixed during the entire training an
5s ismintimized during neural network training:

L =LA

tput
er F

ing a
T is
, the

.. of

of S
ther

dent

n is employed. A data-dependent approach which consists of the task loss (e.g. categarical

and
| the

1 the

F AL, —AgLy

The compressibility loss is defined as follows

L=
w

WZ

+7’cm

where |w| and w are L; and L, norms of the vector w, respectively, and the vector w is obtained by

flattening all the tensors representing the learnable parameters of the neural network.

The y, is chosen such that LA

48

2 1wl

[wi

© ISO/IEC 2022 - All rights res

erved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

The diversity loss term encourages the diversity between filters at each layer [/ for all the layers of a
network, L, that is

Ly =Y Div(W,)

leL

where W, is a tensor representing the learnable parameters of the I-th layer. The learnable parameters

of each i-th filter in the I-th layer are represented as a weight vector wy;. The diversity for the I-th layer
is then computed as

Div (W)=Y (1=|(w'y w'),

whe
The

weight vectors and a value near 1 means uncorrelated filters. The total diverSity over all {

used

8.2.4
The

(unif
For
size

an

cf,c

’

dime

tens

kernfel corresponding to the height, parameter and depth axes, respectively. The 5D parame

resh
the 3

The
supe

a bla

ij
e (-,-) is the dot product of vectors, w'; and w'j are the normalized w); and-wj;7 g

liversity term is bounded, 0 < 1 —|<W',,- W >| < 1. The value close to 0 indicates highl

as the diversity loss.

| Parameter unification

method starts from a pretrained neural network (input te,\the method) and aims
ying) the pretrained parameters in a structured way.

ko ko ko k

C1 XCy XNy XNy xné‘ . The input of the layer is a 4-diinensional (4D) tensor A of size hf b

I the output of the layer is a 4D tensor B\ of size h§XV§Xd§ ><c§. When any ¢

é‘,nf ,n§ ,né‘ ,hf ,vlf ,df ,hé‘ ,vé‘ ,dé‘ takes the value 1, the corresponding tensor reduce
nsion. hf ,wf ,df (hé(,v§ ,dg) are the height, parameter and depth of the input tensq

br B). c{‘ (cé‘) is the number of input{output) channel. n{‘, né‘, and né‘ are the size of the

k k' k ko ko ko k. k

hped into a 3D tensor of size (cf) cé‘ , 1K), where ¢1 Xcy xn" =cqf Xcy Xn{ Xny xn3
D tensor is defined as c{(= cf, cé(=c§ ,nk =nf xné‘ xné(.
Feshaped 3D parameter tensor is partitioned into super-blocks of size sf ><s§ xn¥. Let

r-block. Each sGper-block S}(is further partitioned into blocks of size bf xbé‘ Xbé‘ . Let

ck in Sj-‘ sparameter unification happens inside Sj-‘ blocks, there can be different w

parajmeter _eoefficients in Bj-(l . Given a parameter unifying method, the parameter unifig

parameters in B}‘I using the method with an associated unification distortion loss

spectively .
y correlated
he layers is

ht changing

ach network layer (e.g. the k-th layer), its parameters @), is a general 5-dmensional (5D) tensor of

k
1

f the sizes

vfxdfxc

5 to a lower
r A (output

convolution
ter tensoris
The size of

9;-‘ denote a
Bj-‘l denote
hy's to unify
r can unify

L(B%). The

. L
unification distortion loss LLbj) o1 the entire super-block 5

L

7 Is computed by averaging L

LB;-(,) across

all blocks in S}‘, ie., L(Sj-()=averageBk L(Bj'(l)- All parameters in B}(I can be set to have the same

jl

absolute value, while keeping the original signs. In such a case, the L, norm of the absolute of parameters
in B}(I can be used to measure L(Bj-(l).

When cf cannot be fully divided by sf, or c§ cannot be fully divided by sé(, the super-blocks along the

boundary of the corresponding dimension will be smaller. When n

cannot be fully divided by bf ,0r s

k

k
2

can not be fully divided by b¥, s

k
1

cannot be fully divided by bé(, the blocks along the boundary of the

corresponding dimension will be smaller. That is, bf xbé‘ xbé‘ is the maximum size of the blocks, and

$kx

k

So Xnk

is the maximum size of the super-blocks.

© ISO/IEC 2022 - All rights reserved

49

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Given the original task loss L¢ (categorical cross-entropy for image classification, MSE for image
compression, etc.), this method iteratively takes the following two steps:

The super-blocks are ranked based on their unification loss L(Sj-() in ascending order. Given a

unification ratio u as a hyperparameter, the top u super-blocks are selected to be unified. And the
parameter unifier unifies the blocks in the selected super-blocks. A parameter unifying mask M, is
maintained throughout the training process. M, has the same shape as W;, which records whether
a corresponding parameter coefficient is unified or not.

The parameter coefficients which are marked in M, as being unified are fixed, the remaining

1.
2.

unfixe
The methog

parameters of W, are updated througit a meural TetWworK tTaiTing process.

part or all ¢f the parameters being structurally changed (unified). The output model can be dir

used in the

8.2.5 Lov

This metho
using reduc

The paramg
are approxi

Z,and Zg a

bitstream u
parameters

In the same
W, = G

where G, i3
retaining th

8.2.6 Bat

When a ba
following re

that the combinatien-of a convolutional or fully-connected layer with the batch-normalization layer

be expresse

same way as the input model.

 rank/low displacement rank for convolutional and fully connected\layers

l aims at reducing the size of parameter tensors, while keeping the accuracy high. It en:
ed tensors at inference, involving less multiplication and memoty 1oad.

ter matrices of some fully connected and convolutional layers.of pretrained neural netw
mated as low rank or low displacement rank form. G, Hj afe transmitted in the bitstr

e chosen to be f-circulant operators, expressed as Zy =[

In—l
sing the value of ¢, f, as the structure of ARE known by the decoder. Finally, the rank

e and fhave to be transmitted in the bitstream.

*Hk

e first rj, singular values-and vectors.

chnorm folding

ch-normalization layer follows either a convolutional or fully-connected layer, ther
-parametrization (denoted batchnorm folding) of the parameters can be applied. It requ

d as

f]. They are coded i the

way, low rank approximations representan original matrix of parameters as a product:

a m X r, matrix and Hj. iSor, X n matrix that can be derived from an SVD Wk =uzv]

will output an updated model with the same model structure as the input modelywhere

pctly

hbles

orks
eam.

and

and

the
hires
can

W*X.1h_ 1

BN (X)

P
02+E

where X istheinput, BN(X) is the output, W is a weight tensor of the convolutional or fully-connected

layer (represented as 2D matrix), b is a bias parameter, and where the remaining parameters are batch-
normalization parameters. Note that b, u, o2, y,and B have the same shape as X and that X is

shaped as a

50

transposed vector. Parameter € is a scalar close to zero.

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

If batchnorm folding is applied, the above equation is expressed as

BN(X)=aoW*X+§

where o =

4

\/O'2+E

(b—pey

\IO'2+€

and where 6 =

B.

Parameter o can be present in NNR compressed payloads of type NNR_PT_BLOCK as output variable
RecLS and it is quantized using either uniform quantization or dependent scalar quantization.

Parameter 0 can be present in NNR compressed payloads of type NNR_PT_BLOCK as output variable

RecBias and it is quantized using either uniform quantization or dependent scalar quantizafion.

Notg that the four batchnorm parameters RecBeta, RecGamma, RecMean, and RecVar'cah he recreated
fron] RecLS and RecBias according to the following equations:

RecBeta = RecBias

Rec(amma = RecLS

RecNlean =0

RecVar = 1-€

In cgse the four batchnorm parameters have been recreated, RecBias is set to 0 and RecLS |s set to 1. If
RecBias and RecLsS are not required, they can simply be igniored.

8.2.7 Local scaling adaptation

This| method aims at increasing the capacity of'the neural network by introducing a mpltiplicative
scaling factor to each output element of the linear component of a convolutional or fully-connjected layer.
Thafis, in the case of fully-connected layers,'a unique scaling factor is multiplied to each oufput neuron
befofe the bias is added. Analogously, at convolutional layers each output feature map i assigned a

uniq

e scaling factor which is multiplied to all elements of the feature map, before the b

as is added

respgctively.

uantization
ers.

This|method allows to increase:the capacity of the network and thus, compensate for the g
errof induced by quantizing\tlie weight tensors of the convolutional and fully-connected lay

The pcaling factors s,-can'be present in NNR compressed payloads of type NNR_PT_BLO(K as output
varigble RecLS and they are quantized using either uniform quantization or dependent scalar
quarjtization.

When batchporm folding is applied together with local scaling adaptation, the scaling factors s are

merged with.parameter o of the batchnorm folding operation as follows:

‘Zoos

The resulting variable a' can be present in NNR compressed payloads of type NNR_PT_BLOCK as
output variable RecLS and it is quantized using either uniform quantization or dependent scalar
quantization.

Note that the decoder needs not to be aware of whether RecLS contains only folded batchnorm
parameters or only scaling factors or both.

The recommended usage of the scaling factors is to derive and add them after quantization of the weight
tensors has been performed. The scaling factors are initialized with the value of 1, and then adapted
by means of backpropagation so that the prediction performance of the quantized neural network is
increased. Notably, this particular manner of introducing and calculating the scaling factors requires
access to data. However, having access to only a small dataset usually suffices for attaining good results
with this method, comparable to the size of a typical validation set (approx. 5 % of the training set size).

© ISO/IEC 2022 - All rights reserved 51

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

8.3 Syntax and semantics

8.3.1 Sparsification using compressibility loss

The presence and semantics of syntax elements are specified in Table 15.

Table 15 — Syntax and semantics for sparsification using compressibility loss.

Syntax element

condition

semantics

tensor_dimensions

present

Dimension and shape of original tensors

8.3.2 Spe]rsification using micro-structured pruning

The presen

e and semantics of syntax elements are specified in Table 16.

Table 16 — Syntax and semantics for sparsification using miro-structured-pruning.
Syntax element condition semantics
count_tensof_dimension present counter of how many dimensions of reshpped

weight tensor

reshaped_tepnsor_dimensions]] present dimensions of reshaped weight tensor
count_super| block_dimension present counterof how many dimensions of superblock
super_block|dimensions|[] present dimensions of superblock
count_block| dimension present counter of how many dimensions of blpck
block_dimer}sions]] present dimensions of block

8.3.3 Combined pruning and sparsification

The preseng

e and semantics of syntax elements ate specified in Table 17.

Table 17 — Syntax and semantics for combined pruning and sparsification.

Syntax element and functions |condition semantics

nnr_rep_typge present The flag to indicate what type of outpjut is
produced

prune_flag present The flag to indicate pruning is applied

order_flag present The flag to indicate the order of procegsing
of information in row-major or column-major

sparse_flag present The flag to indicate sparsification is ap]I)Iied

count_ids

(prune_flag==1) && (nnr_rep_type
== NNR_TPL_ DICT)

The number of elements that are prunefl

1) Q. O [4

ThallD
T >4

element_id[]

(Pl uuc_flas == X TPy pl

== NNR_TPL_ DICT)

£l 1 fotlhot
D S OT e CTICTIICTITS trrat ar ¢ prorrc

count_dims[]

(prune_flag==1) && (nnr_rep_type
== NNR_TPL_ DICT)

The number of dimensions of each pruned

element

dim[][]

(prune_flag==1) && (nnr_rep_type
== NNR_TPL_ DICT)

The new dimensions of the pruned elements

52

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

Table 17 (continued)

ISO/IEC 15938-17:2022(E)

Syntax element and functions

condition

semantics

bit_mask()

sparse_flag ==

Abitmask to indicate which matrix elements
are preserved during sparsification. A bit
value of 1 shall indicate that the correspond-
ing element is preserved and a bit value of 0
shall indicate that the corresponding element
is sparsified

(prune_flag==1) && (nnr_rep_type
== NNR_TPL_BMSK)

Abitmask to indicate which matrix elements
or output channels are preserved during

prumning- A bit vatue of 13hait indicate that
the corresponding elements preserved and
a bit value of 0 shall indjcatethpt the corre-
sponding element is pruned
8.3.4 Weight unification
The presence and semantics of syntax elements are specified in Table 18.
Table 18 — Syntax and semantics for weight unification.
Syntax element condition semantics
counjt_tensor_dimension present counter of how many dimensions of re-
shaped weight tensor
reshpped_tensor_dimensions[] present dimensions of reshaped weight tensor
counjt_super_block_dimension present counter of how many dimernsions of su-
perblock
supgr_block_dimensions][] present dimensions of superblock
count_block_dimension present counter of how many dimensjions of block
block_dimensions|] present dimensions of block
8.3.3 Lowrank/low displacement rank for convolutional and fully connected layers
The presence and semantics of'syntax elements are specified in Table 19.
Table 19-—'Syntax and semantics for low rank/low displacement rank.
Syntax element condition semantics
compressed_patameter_types (compressed_parameter_types &&|One bitindicating whether ddcomposition
NNR_CPT_DC)!=0 is present
decdmpaosition_rank present rank
g_nymber_of_rows present rows of G
tensor_dimensions present dimensions of original tensor

8.3.6 Batchnorm folding

The presence and semantics of syntax elements are specified in Table 20.

Table 20 — Syntax and semantics for batchnorm folding.

Syntax element/Variable

condition

semantics

compressed_parameter_types

(compressed_parameter_types &&
NNR_CPT_BN) !=0

One bit indicating whether batchnorm

parameters are present

QpDensity

present

unsigned integer

© ISO/IEC 2022 - All rights reserved

53

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 20 (continued)
Syntax element/Variable condition semantics
QuantizationParameter present integer
gp_value present integer
dq_flag present flag

8.3.7 Local scaling

The presence and semantics of syntax elements are specified in Table 21.

Table 21 — Syntax and semantics for local scaling.

Syntax element/Variable condition semantics

compressed| parameter_types (compressed_parameter_types &&|One bitindicating whetheralocal scaling
NNR_CPT_LS) =0 parameter is present

QpDensity present unsigned integer:

QuantizatiopParameter present integer

qp_value present integer

dg_flag present flag

9 Paranjeter quantization

9.1 Methods

9.1.1 Uniform quantization method

Uniform qu
parameters
in subclausg
tensor are i

9.1.2 Cod

The paramg
shape as the
metadata p
is composeq

The reconst

antization is applied to the paraméter tensors using a fixed step size represente
mps_qp_density (or Ips_qp_density;-if present) and qp_value according to the specific:

7.3.3 and a flag, denoted as dqflag, equal to zero. The reconstructed values in the dec
hteger multiples of the step size.

ebook-based method

ter tensors are represented as a codebook and tensors of indices, the latter having the {
 original tensaofs,;“The size of the codebook is chosen at the encoder and is transmitted
irameter. Théindices have integer values, they will be further entropy coded. The code
| of integetvalues that are strictly monotonically increasing.

and the rec
size thatis

!

ructed-integer tensors are the values of codebook elements referred to by their index
nstructed tensors are derived by multiplying the reconstructed integer tensors with a
erived from parameters mps_qp_density (or Ips_gp_density, if present) and gp_value.

d by
ition
bded

ame
as a
book

ralue
step

9.1.3 Dependent scalar quantization method

Dependent scalar quantization is applied to the parameter tensors using a fixed stepsize represented by
parameters mps_qp_density (or Ips_qp_density, if present) and qp_value according to the specification
in subclause 7.3.3 and a state transition table of size 8, whenever a flag, denoted as dq_flag, is equal to
one. The reconstructed values in the decoded tensor are integer multiples of the step size.

9.2 Syntax and semantics

9.2.1 Uni

form quantization method

The presence and semantics of syntax elements are specified in Table 22.

54

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

Table 22 — Syntax and semantics for uniform quantization method.

Syntax element/Variable condition semantics
QpDensity present unsigned integer
QuantizationParameter present integer

qp_value present integer

dq_flag dg_flag==0 flag

9.2.2 Codebook-based method

The presence and semantics of syntax elements are specified in Table 23.

Table 23 — Syntax and semantics for codebook-based method.

Syntax element/Variable condition semantics

QpDEnsity present unsigned integer

QuantizationParameter present integer

qp_value present integer

coddbook_egk present unsigiied integer

codgbook_size present unsigned integer

codgbook_centre_offset present integer

coddbook_zero_value present integer

codgbook_delta_left present unsigned integer, multiple instances thereof
coddbook_delta_right present unsigned integer, multiple instalnces thereof

9.2.3 Dependent scalar quantization method

The presence and semantics of syntax elements are specified in Table 24.

Table 24 — Syntax and<seémantics for dependent scalar quantization method.

Syntax element condition semantics
QpDensity present unsigned integer
QuantizationParameter present integer

qp_value present integer

dq_flag dg_flag == flag

10 Entropy coding

10.1 Methods
10.1.1 DeepCABAC

10.1.1.1 Binarization

The encoding method scans the parameter tensor in a manner as defined by function TensorIndex().
Each quantized parameter level is encoded according to the following procedure employing an integer
parameter ‘maxNumNoRemMinus1”:

In the first step, a binary syntax element sig_flag is encoded for the quantized parameter level, which
specifies whether the corresponding level is equal to zero. If the sig_flag is equal to one, a further

© ISO/IEC 2022 - All rights reserved 55

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

binary syntax element sign_flag is encoded. The bin indicates if the current parameter level is positive
or negative. Next, a unary sequence of bins is encoded, followed by a fixed length sequence as follows:

Avariable kis initialized with zero and Xis initialized with 1 << k. A syntax element abs_level_greater_x/
x2 is encoded, which indicates, that the absolute value of the quantized parameter level is greater than
x. If abs_level_greater_x/x2 is equal to 1 and if x is greater than maxNumNoRemMinus1, the variable k
isincreased by 1. Afterwards, 1 << kis added to x and a further abs_level_greater_x/x2 is encoded. This
procedure is continued until an abs_level_greater_x/x2 is equal to 0. Now, it is clear that X must be one
of the values (x,x-1,..X-(1<<k)+1).Acode of length k is encoded, which points to the values in
the list which is absolute quantized parameter level.

10.1.1.2 C¢ntext modelling

Context mg
level_greatg

delling corresponds to associating the three type of flags sig_flag, sign_flagy and
r_x/x2 with context models. In this way, flags with similar statistical behavior shou

abs_
d be

associated yvith the same context model so that the probability estimator (inside of the context model)
can adapt tg the underlying statistics.
The contex modelling of the presented approach is as follows:
Twenty-fouf context models are distinguished for the sig_flag, depending”on the state value| and
whether thg neighbouring quantized parameter level to the left is zero, smaller, or larger than zerd.
If dq_flag is|0, only the first three context models are used.
Three other| context models are distinguished for the sign_flag depending on whether the neighboyring
quantized parameter level to the left is zero, smaller, or largefthan zero.
For the abs| level_greater_x/x2 flags, each x uses either-one or two separate context models. If [x <=
maxNumNdRemMinus1, two context models are distinguished depending on the sign_flag. Iff x >
maxNumNdRemMinus1, only one context model is nged.
10.2 Synt3x and semantics
10.2.1 Deg¢pCABAC syntax
10.2.1.1 General
This subclalise specifies the éntropy coding syntax as used by the decoding process of clause 7.
10.2.1.2 DpepCABACfermination syntax
terminate_fabacJy Descriptor

terminajting -one_bit at(v)

while(IHyte—atigneds

nesting_zero_bit f(1)

}
terminating_one_bit specifies a terminating bit equal to 1.

nesting_zero_bit is one bit set to 0.

10.2.1.3 Quantization parameter syntax

quant_param(gqpDensity) { Descriptor

56

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

qp_value

iae(6 + gpDensity)

gp_value is the quantization parameter.

10.2.1.4 Quantized tensor syntax

quant_tensor(dimensions, maxNumNoRemMinus1, entryPointOffset)

{

Descriptor

stateld =0

bJtPointer = get_bit_pointer()

I4stOffset =0

fqr(i=0;1i< Prod(dimensions); i++) {

idx = TensorIndex(dimensions, i, scan_order)

if(entryPointOffset != -1 &&
GetEntryPointldx(dimensions, i, scan_order) != -1 &&
scan_order >0) {

O
N4

j = entryPointOffset +
GetEntryPointldx(dimensions, i, scan_orde;&

O
IvlCurrRange = 256 \%
\ .

IvlOffset = cabac_offset_list[j] Q\)

if(dgq_flag) xR

stateld = dq_state_list[j] AQ)\

set_bit_pointer(bitPointer + lastqt&z + BitOffsetList[j])

lastOffset = BitOffsetList[j] .0
init_prob_est_param() (*‘

} N

10.2.1.5

int_param(idx, maxNyﬁi&ﬁRemMinusl, stateld)
. NS
if(dq_flag) { .

nextSt = Stattﬁ%ﬁsTab[stateld][QuantParam[idx] & 1]

if(QuantParam[idx] !=0) {

Qu%@fam[idx] = QuantParam[idx] << 1

i{@ﬁantParam[idx]<0)

B (‘?QuantParam[idx] +=stateld & 1

{Ovelse

QuantParam][idx | += - (stateld & 1)

}

stateld = nextSt

© ISO/IEC 2022 - All rights reserved

init_prob_est_param() invokes the initialization process specified in subclause 10.3.2.2.

57

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

The 2D integer array StateTransTab[][] specifies the state transition table for dependent scalar
quantization and is as follows:

StateTransTab[][] = {{0, 2}, {7, 5}, {1, 3}, {6, 4}, {2, 0}, {5, 7}, {3, 1}, {4, 6} }

10.2.1.5 Quantized parameter syntax

int_param(i, maxNumNoRemMinus1, stateld) { Descriptor
QuantParam[i] =0
sig_flag ae(v)

if(sig_flag) {
QuantParam[i]++

sign_flag ae(v)
j=-1
do {

j++

abq level_greater_x[j | ae(w)

QugntParam][i] += abs_level_greater_x][j |

} whilg(abs_level_greater_ x[j] ==1 &&j <

maxNumNoRemMinus1)

if(abg_level_greater x[j]==1){

RemBits =0
j=11
do {
i+
abs_level_greater_x2[j | ae(v)

—

(abs_level_greater_x2[j]){
QuantParam[i] += 1 << RemBits
RemBits++

} while(abs_level_greater_x2[j] &&j<30)
abs remainder uae(RemBits)

QudntParamf]+= abs_remainder

QuantParam|[i] = sign_flag ? ~QuantParam[i | : QuantParam][i |

sig_flag specifies whether the quantized weight QuantParam][i] is nonzero. A sig_flag equal to 0
indicates that QuantParam[i] is zero.

sign_flag specifies whether the quantized weight QuantParam[i] is positive or negative. A sign_flag
equal to 1 indicates that QuantParam[i] is negative.

abs_level_greater_x[j] indicates whether the absolute level of QuantParam([i] is greater j + 1.

abs_level_greater_x2[j] comprises the unary part of the exponential Golomb remainder.

58 © ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

abs_remainder indicates a fixed length remainder.

10.2.1.6 Shift parameter indices syntax

ISO/IEC 15938-17:2022(E)

shift_parameter_ids(maxNumNoRemMinus1) {

Descriptor

for(i=0;i< (dq_flag? 24:3); i++) {

shift_idx(i, ShiftParameterldsSigFlag)

}

for(i=0;i<3;i++){

shift_idx(i, ShiftParameterldsSignFlag)

far(i=0; i< 2*(maxNumNoRemMinus1+1); i++) {

shift_idx(i, ShiftParameterldsAbsGrX)

far(i=0;i<31;i++){

shift_idx(i, ShiftParameterldsAbsGrX2)

}

10.2.1.7 Shift parameter syntax

shiff_idx(ctxId, shiftParameterlds) {

Descriptpr

shiftParameterlds|[ctxld] =0

shift_idx_minus_1_present_flag ae(v)
if shift_idx_minus_1_present_flag) {
shift_idx_minus_1 uae(3)

shiftParameterlds[ctxId] +=§hift_idx_minus_1 + 1

shift_idx_minus_1\present_flag specifies whether the shift parameter index shiftParameterlds| ctxId
] is gresent. A shift: idx_minus_1_present_flag equal to zero indicates that shiftParameterlds[ctxld] is

Zero

shift_idx-minus_1 specifies the absolute value of the shift parameter index shiftParamet¢lds| ctxId]

minlrs one. The shift parameter index is shiftParamelds[ctxId | = shift_idx_minus_1 + 1

10.3 Entropy decoding process

10.3.1 General

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax

elements.
Output of this process is the value of the syntax element.

The parsing of syntax elements proceeds as follows:

For each requested value of a syntax element a binarization is derived as specified in subclause 10.3.3.

© ISO/IEC 2022 - All rights reserved

59

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

ISO/IEC 15938-17:2022(E)

The binarization for the syntax element and the sequence of parsed bins determines the decoding
process flow as described in subclause 10.3.4.

10.3.2 Init

ialization process

10.3.2.1 General

Outputs of t

The context

his process are initialized DeepCABAC internal variables.

variables of the arithmetic decoding engine are initialized as follows:

The initializ
The decodi
initialized

subclause 1

;Elg

ation process for context variables is invoked as specified in subclause 10.3.2.3.

engine registers IvlCurrRange and IvlOffset both in 16 bit register precision
invoking the initialization process for the arithmetic decoding engine as ‘specifig
3 3.2.4.

10.3.2.2 In

Outputs of t
and pStatel
abs_level_g

The 2D arra

CtxParameterList[][] =

1519}, {2, 6,

If dqg_flag is
context par
[1], pStateld
where i is t}

Otherwise,
context par
[1], pStateld
where i is th

For each of
is set to Ct

itialization process for probability estimation parameters

his process are the initialized probability estimation parameters shift0, shift1, pState
ix1 for each context model of syntax elements sig_flag, sign_fldg, abs_level_greater_x
reater_x2.

y CtxParameterList [][] is initialized as follows:

{{1,4,0,0}, {1, 4,-41,-654}, {1, 4, 95,1519}, {0, 5, 0, 0}, {2, 6, 30, 482}, {2, ¢
-21,-337},{3,5, 0, 0}, {3, 5, 30, 482}}

equal to 1, for each of the 24 context models of syntax element sig_flag, the assoc
hmeter shiftO is set to CtxParameterList[setld][0], shiftl is set to CtxParameterList[s
x0 is set to CtxParameterList[setld][2]and pStateldx1 is set to CtxParameterList[setlq
le index of the context model and where setld is equal to ShiftParameterldsSigFlag[i].

[dq_flag == 0), for each of the first 2'context models of syntax element sig_flag, the assoc
nmeter shift0 is set to CtxParameterList[setld][0], shift] is set to CtxParameterList[s
x0 is set to CtxParameterList[setld][2], and pStateldx1 is set to CtxParameterList[setld
le index of the context nfodel and where setld is equal to ShiftParameterldsSigFlag[i].

the 3 context models.of syntax element sign_flag, the associated context parameter s
kParameterList[setld][0], shiftl is set to CtxParameterList[setld][1], pStateldxO0 is s

CtxParamef]
the context

For each of
greater_x, t
to CtxParar

erList[setld][2},.and pStateldx1 is set to CtxParameterList[setld][3], where i is the ind
model and where setld is equal to ShiftParameterldsSignFlag]i].

the 2-*_(cabac_unary_length_minusl + 1) context models of syntax element abs_I
he associated context parameter shift0 is set to CtxParameterList[setld][0], shiftl i

are
d in

dx0,
and

) 95'

ated
etld]
1[3],

ated
etld]
1[3],

hift0
et to
ex of

pvel
5 set

neterLlst[setId][l] pStateIde is set to CtxParameterLlst[setld][2] and pStateldxl i

ShlftParameterIdsAbsGrX[1]

For each of the 31 context models of syntax element abs_level_greater_x2, the associated context
parameter shift0 is set to CtxParameterList[setld][0], shiftl is set to CtxParameterList[setld][1],
pStateldx0 is set to CtxParameterList[setld][2], and pStateldx1 is set to CtxParameterList[setld][3],
where i is the index of the context model and where setld is equal to ShiftParameterldsAbsGrX2[i].

10.3.2.3 Initialization process for context variables

Outputs of this process are the initialized DeepCABAC context variables distinguished by the associated
syntax element and by ctxIdx.

60

© ISO/IEC 2022 - All rights reserved

https://iecnorm.com/api/?name=5e12cca17539a267dcc27a65798e3131

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms, conventions and symbols
	4.1 General
	4.2 Abbreviated terms
	4.3 List of symbols
	4.4 Number formats and computation conventions
	4.5 Arithmetic operators
	4.6 Logical operators
	4.7 Relational operators
	4.8 Bit-wise operators
	4.9 Assignment operators
	4.10 Range notation
	4.11 Mathematical functions
	4.12 Array functions
	4.13 Order of operation precedence
	4.14 Variables, syntax elements and tables

	5 Overview
	5.1 General
	5.2 Compression tools
	5.3 Creating encoding pipelines

	6 Syntax and semantics
	6.1 Specification of syntax and semantics
	6.1.1 Method of specifying syntax in tabular form
	6.1.2 Bit ordering
	6.1.3 Specification of syntax functions and data types
	6.1.4 Semantics

	6.2 General bitstream syntax elements
	6.2.1 NNR unit
	6.2.2 Aggregate NNR unit
	6.2.3 Composition of NNR bitstream

	6.3 NNR bitstream syntax
	6.3.1 NNR unit syntax
	6.3.2 NNR unit size syntax
	6.3.3 NNR unit header syntax
	6.3.4 NNR unit payload syntax
	6.3.5 Byte alignment syntax

	6.4 Semantics
	6.4.1 General
	6.4.2 NNR unit size semantics
	6.4.3 NNR unit header semantics
	6.4.4 NNR unit payload semantics

	7 Decoding process
	7.1 General
	7.2 NNR decompressed data formats
	7.3 Decoding methods
	7.3.1 General
	7.3.2 Decoding method for NNR compressed payloads of type NNR_PT_INT
	7.3.3 Decoding method for NNR compressed payloads of type NNR_PT_FLOAT
	7.3.4 Decoding method for NNR compressed payloads of type NNR_PT_RAW_FLOAT
	7.3.5 Decoding method for NNR compressed payloads of type NNR_PT_BLOCK
	7.3.6 Decoding process for an integer weight tensor

	8 Parameter reduction
	8.1 General
	8.2 Methods
	8.2.1 Sparsification using compressibility loss
	8.2.2 Sparsification using micro-structured pruning
	8.2.3 Combined pruning and sparsification
	8.2.4 Parameter unification
	8.2.5 Low rank/low displacement rank for convolutional and fully connected layers
	8.2.6 Batchnorm folding
	8.2.7 Local scaling adaptation

	8.3 Syntax and semantics
	8.3.1 Sparsification using compressibility loss
	8.3.2 Sparsification using micro-structured pruning
	8.3.3 Combined pruning and sparsification
	8.3.4 Weight unification
	8.3.5 Low rank/low displacement rank for convolutional and fully connected layers
	8.3.6 Batchnorm folding
	8.3.7 Local scaling

	9 Parameter quantization
	9.1 Methods
	9.1.1 Uniform quantization method
	9.1.2 Codebook-based method
	9.1.3 Dependent scalar quantization method

	9.2 Syntax and semantics
	9.2.1 Uniform quantization method
	9.2.2 Codebook-based method
	9.2.3 Dependent scalar quantization method

	10 Entropy coding
	10.1 Methods
	10.1.1 DeepCABAC

	10.2 Syntax and semantics
	10.2.1 DeepCABAC syntax

	10.3 Entropy decoding process
	10.3.1 General
	10.3.2 Initialization process
	10.3.3 Binarization process
	10.3.4 Decoding process flow

	Annex A (normative) Implementation for NNEF
	Annex B (informative) Implementation for ONNX®
	Annex C (informative) Implementation for PyTorch®
	Annex D (informative) Implementation for TensorFlow®
	Annex E (informative) Recommendation for carriage of NNR bitstreams in other containers
	Bibliography

