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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
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Introduction

This document describes cryptographic algorithms and security mechanisms conformance testing

methods.

The purpose of this document is to address conformance testing methods of cryptographic algorithms
and security mechanisms implemented in a cryptographic module. This will allow a complete security
evaluation of both the cryptographic module and the implemented cryptographic algorithms and

security mechanisms.

This document is related to ISO/IEC 19790 and ISO/IEC 24759. ISO/IEC 19790 specifies the security

requirements
one approved
addresses thg
ISO/IEC 2475
conformance

testing.

forcryptographic modutes—Ata o, a cryptographic modute tmptenrents3at least
security function (i.e., cryptographic algorithm or security mechanism). ISO/IEG|24759
test requirements for each of the security requirements in ISO/IEC 19790y Hgwever,
D does not address test methods for cryptographic algorithms and security, mechqnisms

Vi
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Information technology — Security techniques —

Cryptographic algorithms and security mechanisms

conformance testing

1 Scope

This dpetunre g
testing methods.

conformance

Confoymance testing assures that an implementation of a cryptographic algorithmh or security

mechanism is correct whether implemented in hardware, software or firmware: It also
it rung correctly in a specific operating environment. Testing can consist gf known-ans
Carlo flesting, or a combination of test methods. Testing can be performed én'the actual inj
or modelled in a simulation environment.

This document does not include the efficiency of the algorithms,\or security mechar
intringic performance. This document focuses on the correctness-9f the implementation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of]
constifutes requirements of this document. For dated references, only the edition cite
undated references, the latest edition of the refetenced document (including any amendmnj

ISO/IEC 14888-3:2016, Information technology — Security techniques — Digital signatures

¢grms and definitions

For th
follow

e purposes of this'document, the terms and definitions given in ISO/IEC 19
ing apply.

ISO and [EC maintain terminological databases for use in standardization at the following

— IEC|Electrepedia: available at http://www.electropedia.org/

confirms that
wer or Monte
plementation

isms nor the

their content
d applies. For
ents) applies.

with appendix

piirements for

790 and the

addresses:

— 1SO|Online browsing platform: available at http://www.iso.org/obp

3.1
approval authority

any national or international organisation/authority mandated to approve and/or evaluate security

functions

Note 1 to entry: An approval authority in the context of this definition evaluates and approves security
functions based on their cryptographic or mathematical merits but is not the testing entity which would test for

conformance to this document.

[SOURCE: ISO/IEC 19790:2012, 3.4]
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3.2

approved mode of operation

set of services which includes non-security relevant services and at least one service that utilizes an
approved security function or process

Note 1 to entry: Not to be confused with a specific mode of an approved security function, e.g. Cipher Block
Chaining (CBC) mode.

Note 2 to entry: Non-approved security functions or processes are excluded.
[SOURCE: ISO/IEC 19790:2012, 3.7]

3.3
approved se¢urity function
security function (e.g. cryptographic algorithm) approved by an approval authority

34

black box
idealized medhanism that accepts inputs and produces outputs, but is designed such that an ohjserver
cannot see ingide the box or determine exactly what is happening inside that bpox

Note 1 to entry}: This term can be contrasted with glass box (3.12).
[SOURCE: ISOYIEC 18031:2011, 3.6]

3.5
critical security parameter
CSP
security-related information whose disclosure or modification can compromise the securitly of a
cryptographi¢ module

EXAMPLE Secret and private cryptographic keys, authentication data such as passwords, PINs, certfficates
or other trust gnchors.

[SOURCE: ISOYIEC 19790:2012, 3.18, modified]

3.6
cryptographjc algorithm
well-defined fomputational procedure that takes variable inputs, which may include cryptographic
keys, and profluces an output

[SOURCE: ISOYIEC 19790:2012/ 3.20]

3.7
cryptographjc algorithm boundary
boundary endompassing the complete cryptographic algorithm implementation

3.8
cryptographic boundary

explicitly defined continuous perimeter that establishes the physical and/or logical bounds of a
cryptographic module and contains all the hardware, software, and/or firmware components of a
cryptographic module

[SOURCE: ISO/IEC 19790:2012, 3.21, modified]

3.9

firmware

executable code of a cryptographic module that is stored in hardware within the cryptographic
boundary and cannot be dynamically written or modified during execution while operating in a non-
modifiable or limited operational environment

EXAMPLE Storage hardware can include but is not limited to PROM, EEPROM, FLASH, solid state memory,
hard drives, etc.

2 © ISO/IEC 2016 - All rights reserved
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[SOURCE: ISO/IEC 19790:2012, 3.45]

3.10
functional specification

high-level description of the ports and interfaces visible to the operator and high-level description of

the behaviour of the IUT

Note 1 to entry: Here, the IUT means a cryptographic algorithm implementation (see 3.13).
[SOURCE: ISO/IEC 19790:2012, 3.47, modified]

3.11

functienal fncfing
testing of the IUT functionality as defined by the functional specification (3.10)

[SOURLE: ISO/IEC 19790:2012, 3.48, modified]

3.12
glass
idealiZ
can se

()¢
ed mechanism that accepts inputs and produces outputs and is designed such tha
b inside and determine exactly what is going on

Note 1 fo entry: This term can be contrasted with black box (3.4).

[SOURLE: ISO/IEC 18031:2011, 3.14]

3.13
imple
IUT
implen
mechanism standard

mentation under test

3.14
independent verification test
test verifying the conformance fef)algorithms where their outputs are non-dete
randomized) for defined input yéctors in an independent way, instead of literally
algorithm steps

Note 1|to entry: The signatuxe generation function of DSA involves per-message secret number
therefore, the resultant sjgnature cannot be derived from the input vectors in a deterministic w
knowlddge of per-message'secret number. Here, the signature verification function can be used to ve
betwedn the public key, imessage and resultant signature, without knowing the per-message secret

t an observer

hentation which is tested for conformance to the selected cryptographic algorithm or security

rministic (or
following the

internally, and
ay without the
Fify the relation
humber.

Everse function

to verify the

egxpected values

Note 3 toent

in advance.

EXAMPLE Applying Miller-Rabin primality test to verifying prime number generation functions, independent
of the implementation details of the IUT.

3.15

key agreement

process of establishing a shared secret key between entities in such a way that neither of them can

predetermine the value of that key

[SOURCE: ISO/IEC 11770-3:2015, 3.18, modified]
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key derivation function

KDF

function that outputs one or more shared secrets, for use as keys, given shared secrets and other
mutually known parameters as input

[SOURCE: ISO/IEC 11770-3:2015, 3.22]

3.17

key derivation key
key that is used as input to the key expansion function to derive other keys

3.18
key establiskh
process of m
agreement a

[SOURCE: ISO

3.19
key expansic
function whig
which gives a
property that
the secret inp|

3.20
key extractig
function whic
output a MA(Q
that it is com]
input or the s

3.21
keying matel
data necessar

EXAMPLE
[SOURCE: ISO
3.22

it

ment
ing available a shared secret key to one or more entities, where the process.incluc
key transport

IEC 11770-3:2015, 3.23]

n function

h takes as input a number of parameters, at least one of whichyis'a MAC algorithm k
s output keys appropriate for the intended algorithm and-application, and which [
it is computationally infeasible to deduce either the output without prior knowlg
ut or the secret input from the output

n function

h takes as input a number of parameters, dtleast one of which is secret, which g
algorithm key for use as input to a key expansion function, and which has the pr
putationally infeasible to deduce either the output without prior knowledge of the
pcret input from the output

rial
v to establish and maintain-¢ryptographic keying relationships

Keys, initialization values.

IEC 11770-1:2010,2.27]

key manage

administratign and\use of the generation, registration, certification, deregistration, distri
installation, sforage, archiving, revocation, derivation and destruction of keying material in acco
with a securify.policy

ent

es key

by, and
jas the
dge of

ves as
pperty
secret

bution,
rdance

[SOURCE: ISO/IEC 19790:2012, 3.64]

3.23

key transport

process of tra

nsferring a key from one entity to another entity, suitably protected

[SOURCE: ISO/IEC 11770-3:2015, 3.25]
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known-answer test

KAT

method of testing a deterministic mechanism where a given input is processed by the mechanism and
the resulting output is then compared to a corresponding known value

Note 1 to entry: The known-answer tests are designed to test the conformance of the implementation under test
(IUT) to the various specifications of the referenced cryptographic algorithm.

Note 2 to entry: A known-answer test is considered as a kind of black box testing.

[SOURCE: ISO/IEC 18031:2011, 3.21, modified]

3.25
Monte
MCT
subset]
output
that c4

Note 1

probleins, insufficient allocation of space, improper error handling and inecorrect behaviour of the

3.26
multi-
MMT
set of
will re|

3.27
publid
PSP

securi
cryptd

EXAMH
passwi

[SOUR
3.28

randojm bit generator

RBG
device
unbiag

Carlo test

result, designed to pseudo exhaust the presence of flaws by exercising the entire 1U
nnot be detected with the controlled input vectors

to entry: The types of implementation flaws which can be detected by ,Monte Carlo tests

block message test
fests designed to test the ability of the implementation to process multi-block mg
quire the chaining of information from one block'to the next
security parameter

[y-related public information iwhose modification can compromise the s
graphic module

LE Public cryptographickeys, public key certificates, self-signed certificates, trust an
rds associated with a counterand internally held date and time.

CE: ISO/IEC 19790:2012, 3.99, modified]

ed

of known-answer test utilising randomly generated input vectors and the corresp¢nding known

T in a manner

nclude pointer
IUT.

ssages which

bcurity of a

thors, one-time

or algotrithm that outputs a sequence of bits that appears to be statistically independent and

[SOUR

CEMSO/IEC 18031:2011, 3.29]

3.29
salt

random data item produced by the signing entity during the generation of message representative

Note 1 to entry: Also known as the randomizer in ISO/IEC 14888-3.

Note 2 to entry: Also known as the per-message secret number in Reference [16].

©150/1
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3.30

security function

cryptographic algorithms together with modes of operation, such as block ciphers, stream ciphers,
symmetric or asymmetric key algorithms, message authentication codes, hash functions or other
security functions, random bit generators, entity authentication and SSP generation and establishment
all approved either by ISO/IEC or an approval authority

[SOURCE: ISO/IEC 19790:2012, 3.106]

3.31

sensitive security parameter

SSpP

critical security parameter (CSP) or public security parameter (PSP)

3.32
shared secret key
key which is ghared with all the active entities via a key establishment mechanism for\multiple eptities

Note 1 to entry: Also known as “shared secret.”
[SOURCE: ISOYIEC 11770-5:2011, 3.28, modified]

3.33
simulation

exercise of spurce code (e.g. VHDL code) prior to physical entry (into the module (e.g. an FFGA or
custom ASIC)

Note 1 to entry: The behaviour of the source code within the simulator can be logically identical when|placed
into the module or instantiated into logic gates. However, manyrother variables exist that can alter thq actual
behaviour (e.g|, path delays, transformation errors, noise, environmental, etc.). It is not guaranteed that the
actual behaviofir of the IUT is identical, as many other variables cannot be identified with certainty.

3.34
zeroisation
method of degtruction of stored data and unprotected SSPs to prevent retrieval and reuse

[SOURCE: ISOfIEC 19790:2012, 3.134]

4 Symbols and abbreviated terms

AES advanced. encryption standard

ASN.1 abstrac¢t syntax notation one

CBC cipher block chaining mode of operation

CCM counter mode with cipher block chaining-message authentication code
CFB cipher feedback mode of operation

CMAC cipher-based message authentication code

CSp critical security parameter

DER distinguished encoding rules

DRBG deterministic random bit generator

DSA digital signature algorithm

6 © ISO/IEC 2016 - All rights reserved
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EAL evaluation assurance level

ECB electronic codebook mode of operation

ECDSA elliptic-curve digital signature algorithm

FFC finite field cryptography

GCM galois/counter mode

GMAC GCM message authentication code

HMAC Reyed-hash message authentication code

IUT implementation under test

KAS key agreement scheme

KAT known-answer test

KC key confirmation

KDF key derivation function

MAC message authentication code

MCT Monte Carlo test

MMT multi-block message test

OFB output feedback mode of operation

PKCS public key cryptography Standards

PSS probabilistic signaturé scheme

RBG random bit generator

RSA algorithmdeveloped by Rivest, Shamir and Adleman

SHA securehash algorithm

TDEA triple data encryption algorithm

[X—I ceiling: the smallest integer greater than or equal to X. For example, (S_I =5land [5.3_' =6
XPY bItWISe exclusive-or (also bitwise addition mod ZJ of two bit strings X and Y of the same length
XY concatenation of two bit strings X and Y in that order

xmod n unique remainder r, 0 < r < n-1, when integer x is divided by n. For example, 23 mod 7 = 2

5 Objectives

The requirements specified in this document are derived from the following objectives for cryptographic
algorithm implementations to

— provide assurance that the cryptographic algorithm implementation adheres to the specifications
detailed in the associated cryptographic standard, and

© ISO/IEC 2016 - All rights reserved 7
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— detect implementation non-conformities made by implementers by testing the algorithm’s
specifications, components, features and/or functionality for correctness and completeness.

6 Types of cryptographic algorithms and security mechanisms from a
conformance testing perspective

6.1 General

This document will address approved security functions from a conformance testing point perspective.
In particular, this document will address those defined in Clause 2. It will include within its scope the
associated segurity—mechanisms—of-the—eryptographicalgorithms—er—the—seeurityreechanisms. The

considered injplementations can be software, firmware, hardware or a combination thereof.

6.2 Asymmetric key algorithms
This subclausg describes the different types of asymmetric key algorithms.

Asymmetric key algorithms consist of asymmetric key cryptographic primitive(s) and supgorting
functions. Sothe of asymmetric key algorithms are non-deterministic, due tosalt or internally generated
random numiers. The implementation of asymmetric key algorithms wduld contain more condjitional
branches thap symmetric key algorithms. In considering these aspects©f asymmetric key algogithms,
the known-answer test (see 7.2.2) and/or independent verification test (see 3.14) are applicable.

In addition to[these testing methodologies, other conformance<esting methodologies (e.g. sourde code
inspection) atfe also applicable.

6.3 Digital signature
This subclausg describes the different types of digital signature algorithms.

The same perfpective as asymmetric key algorithms is still applicable to digital signature algorifhms.

6.4 Digital[signature with message recovery
This subclausg describes the differenttypes of digital signature with message recovery algorithins.

The same pergpective as asymmetric key algorithms is still applicable to digital signature with message
recovery.

6.5 Hashing algorithms

This subclausg describes the different types of hashing algorithms.

Hashlng algo ;thllla \AY ;}} bC dcdl\.atcd haoh fuu\.tiuuo, fuu\,tiuuo baocd UIl b}U\,}\ LlthCl a}sul ltllms Or
functions based on modular arithmetic. In considering the nature of hashing algorithms, the known-
answer test (see 7.2.2) and Monte Carlo test (see 7.2.4) are applicable. Other conformance testing
methodologies (e.g. source code inspection) are also applicable.

6.6 Key establishment mechanisms
This subclause describes the different types of key establishment mechanisms.

Key establishment mechanisms consist of asymmetric/symmetric key cryptographic primitive(s)
and supporting functions. Supporting functions can be hashing algorithms, random bit generation,
asymmetric key pair generation function, and public key validation function.

In considering the complex nature of key establishment mechanisms, the known-answer test (see
7.2.2) and independent verification test (see 3.14) are applicable. As a prerequisite for this conformance

8 © ISO/IEC 2016 - All rights reserved
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testing, underlying algorithm implementations have passed the conformance testing elsewhere in this
document.

Note that some input parameters are transmitted through a communication channel. It should be tested
through the conformance testing that an IUT has an ability to distinguish valid parameters with invalid
parameters.

In addition to these testing methodologies, other conformance testing methodologies (e.g. source code
inspection) are also applicable.

6.7 Lightweight cryptography

This syibclause describes the different types of lightweight cryptography algorithms.

Lightweight cryptography includes asymmetric key algorithms, block ciphers andystream ciphers. So,
the applicable perspective is the same as one for asymmetric key algorithms, block'ciphefs and stream
cipherg.
6.8 I/lessage authentication algorithms

This stibclause describes the different types of message authentication algorithms.

Message authentication algorithms can consist of underlying.algerithms (e.g. block ciphér algorithms,
hash a]gorithms).

In conpidering this aspect of message authentication algorithms, the known-answer tesf (see 7.2.2) is
applicable. As a prerequisite for this conformance testing, underlying algorithm implemgntations have
passed the conformance testing elsewhere in this document.

In addjtion to this testing methodology, other conformance testing methodologies (e.g. source code
inspedtion) are applicable.

6.9 Random bit generator algorithms

6.9.1 | Deterministic randombit generator algorithms
This s@ibclause describes the different types of deterministic random bit generator algorifthms.

Deterthinistic random-bit'generators can consist of underlying algorithms (e.g. block ciphgr algorithms,
hash a]gorithms).

In confpideringthis aspect of deterministic random bit generator, the known-answer tesf (see 7.2.2) is
applicable. Assaprerequisite for this conformance testing, underlying algorithm implemgntations have
passed thel conformance testing elsewhere in this document.

In additt =¢. source code

inspection) are also appliable.

6.9.2 Non-deterministic random bit generator algorithms
This subclause describes the different types of non-deterministic random bit generator algorithms.

Currently, there is no standard specification of NRBG in [SO/IEC 18031, so the associated conformance
testing methodologies are not specified in this document.
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6.10 Symmetric key algorithms

6.10.1 Block cipher symmetric key algorithms
This subclause describes the different types of block cipher symmetric key algorithms.

Block cipher symmetric key algorithms support fixed input block and multiple input blocks with block
cipher modes of operation. Block cipher symmetric key algorithms are used for various purposes and,
therefore, the correctness of the algorithm implementations is important. In considering these aspects,
known-answer tests (see 7.2.2), multi-block message test (see 7.2.3) and Monte Carlo test (see 7.2.4) are
applicable. In addition to these testing methodologies, other conformance testing methodologies are

also applicabl

o

6.10.2
This subclaus

Stream ciphet
structures.

In considering
test (see 7.2.4)

StreaL- cipher symmetric key algorithms

e describes the different types of stream cipher symmetric key algorithms:

symmetric key algorithms are similar to block cipher symmetric key-algorithms i

b this aspect of stream cipher algorithms, known-answer tests\(see 7.2.2) and Mont
are applicable.

n their

b Carlo

In addition fo these testing methodologies, other conformance-testing methodologies are also
applicable.
7 Conformance testing methodologies

7.1 Overview

For cryptogra
and multi-blo
generated rarj

EXAMPLE

Note that ne
independent
be applied.

Conformance
and implemet]
handling and
to assistin the

phic algorithms which do not introdtice randomness, known-answer test(s), Mont
ck message tests shall be applied. For cryptographic algorithms which utilize intg
dom numbers to generate output, independent verification test(s) shall be applied.

Digital signature scheme(2 in'ISO/IEC 9796-2.

ither the known-answer test, Monte Carlo test, multi-block message test, n
rerification test i§ universal. In order to complement these tests, source code revie

e Carlo
brnally

pr the
W may

testing ptovides tests to determine the correctness of the algorithm impleme
itation-errors including pointer problems, insufficient allocation of space, imprope
incorrect behaviour of the algorithm implementation. The validation tests are de
e detection of acc1dental 1mplementat10n errors and are not de51gned to detect inte

attempts to h

itation
error
signed
tional

or endorsement of overall product securlty Conformance testmg shall utilize statistical sampllng (i.e.
only a small number of the possible cases are tested); hence, the successful conformance testing of a
device does not imply 100 % correctness of conformance.

NOTE1 Imp

NOTE 2

lementation errors in hardware implementations include timing delay.

allocation of space, improper error handling and incorrect behaviour of the algorithm implementation.

The different

10

types of testing methodologies are described in 7.2 and 7.3.

Implementation errors in software/firmware implementations include pointer problems, insufficient
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7.2 Black box testing

7.2.1 General

Black box validation testing is where the functionality of an implementation is examined without
peering into the implementation’s actual code or internal workings. The given inputs exercise the
implementation to assure the specifications of the standard are implemented correctly. This is
determined by comparing the output produced by the implementation under test (IUT) with the
expected outputs. Black box testing can be used when a reference implementation or simulator is
available.

7.2.2 [ KnOwn-answer test vectors

The khown-answer tests are designed to verify the individual components of(the ppecifications
of the|cryptographic algorithm. The tests exercise each bit of every component of the algorithm
implerhentation. Known-answer tests use specific pre-determined inputctest vecfors and the
computation of the expected results to target the specific functionality of a seeurity function.

7.2.3 | Multi-block message testing

The Multi-block message test (MMT) is designed to test the ability of an implementatipn to process
multi-block messages, which may require chaining of informationfrom one block to the next.

7.2.4 | Monte Carlo or statistical testing

Monte|Carlo testing is a statistical method which isidesigned to exercise the entire implpmentation of
the cryptographic algorithm being implemented. The purpose is to detect the presence ¢f flaws in the
IUT thiat were not detected with the controlled Gnput of the known-answer test. The Monte Carlo test
does npt guarantee ultimate reliability of the TUT that implements the algorithm (e.g. harflware failure,
softwdre corruption, etc.). A predeterminedihumber of pseudorandom values are used af input values
to tesflthe algorithmic implementation, Using these values, the IUT is exercised throughf the complete
implerhentation. The results are then compared with the expected values.

7.3 Glass box or white box testing
7.3.1 | Source code inspection

7.3.1.1 Overview

In confrast to black box testing such as KAT, source code inspection is capable of wide appljication, which
will bg usefulin verifying the internal behaviour and rare case handling. However, it needs knowledge
of desqriptioh language and reviewing time. So, the source code inspection should be complementary to
other festing approaches.

7.3.2 Binary analysis

Even if the source code itself is consistent with the specification of a selected algorithm, the behaviour
of resultant binary (or executable code) might be different from the original source code, e.g. due to
the software building tools. In such a case, binary analysis should be performed in order to ensure
the conformance. In the case of software or firmware implementations, this can be performed by
inspecting the generated assembly output to assure it is consistent with the original source code (e.g. in
Mixed Mode).

EXAMPLE Compiler, code interpreter.
NOTE Some cryptographic algorithm specifications include a step to zeroise secret information. However,

such zeroisation steps might be deleted from the resultant binary due to the optimization or decision made by a
compiler.
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8 Levels of conformance testing

8.1

The overview

Introduction

of two levels of conformance testing is described in 8.2 and 8.3.

8.2 Level of basic conformance testing

In this level, the conformity is tested by exercising [UTs from outside the cryptographic algorithm
boundary. This level will commensurate with security level 1 in ISO/IEC 19790 or EAL3 in
ISO/IEC 15408.

The tester is 1

8.3 Level d

This level enh
the conformit
with focus on
3in ISO/IEC 1

NOTE The
applied. Howey

9 Conforry
9.1 Geners

9.1.1
The tester shd
a) tested pld
EXAMPLE 1

EXAMPLE 2
parameters for

The vendor sh

b) reference

equired to test the IUT by considering implementation errors listed in 7.1.

f moderate conformance

ances the level of basic conformance by enforcing informal security-policy. In thi

the security policy enforcement. This level will commensurate/with security levels
9790 or EAL4 in ISO/IEC 15408.

re can exist a level of conformance in which the formal security policy or formal verific
er, this document does not define conformance tests coveringthis level.

hance testing guidelines

1l guidelines

Identjification

1l identify the following information on the IUT:
tform or configuration;
Operational environment for software, including test harness.

When the virtualization technology is used for the operational environment, config
the virtual machine:

all identify,the following information on the IUT:

to the-specification of cryptographic algorithm implemented;

c)

5 level,

y is tested by inspecting the IUTs also from inside the cryptographicalgorithm boundary

2 and

htion is

iration

security []unction(s) ;

EXAMPLE
EXAMPLE
EXAMPLE
d)
EXAMPLE 6
EXAMPLE 7
EXAMPLE 8

EXAMPLE 9

12

3 Digital signature generation function.
4 Encryption function of block ciphers.
5 Two-step key derivation function.

supporting functions;

Hash functions in digital signatures.
Entropy conditioning functions in random bit generators.
Public key validation function in key establishment scheme.

Key derivation functions in key establishment scheme.

© ISO/IEC 2016 - All rights reserved


https://iecnorm.com/api/?name=6300e89d2379f259ee0386e16a2d27d3

f)

EXAMRLE 14 Most significant octet first.

EXAMRLE 15 Point compression of elliptic curve points.

g)

ISO/IEC 18367:2016(E)

1) If the conformance testing for the supporting function is available, the tester shall verify that
the supporting function implementation has passed the conformance testing.

supported parameters range;

EXAMPLE 10 Bit length of key of block cipher.

EXAMPLE 11 Bit length of key of MAC.

EXAMPLE 12 Bit length of input message for hash functions.

EXAMPEESS Bittengtirofinmputmressagetobeencryptedusingasymmretricciptrers:

ddta types and representation of parameters;

1)| The data types and format of input and output parametersshall be precise.

architecture or functional decomposition.

EXAMRLE 16 A digital signature algorithm implementation’ using a hashing algorithm ithplemented in

firmwdre and a modular arithmetic coprocessor implemented.in hardware.

EXAMRLE 17 An AES implementation using cryptographic supporting instructions.

9.1.2 | Guidelines for black box testing

Some ¢ryptographic algorithms use multiple-precision integer. Assuming that the multjiple-precision
integer is represented by octets, the carry bit handling will occur normally once in 256 test vectors.
This allso applies to the implementation of a counter. For such an implementation, at |east 512 test

vectorp should be used to performblack box testing.
9.1.3 | Guidelines for white.box testing
9.1.3.1 Guidelines(for'source code inspection

9.1.3.1.1 General

Under[the conhdition that the IUT is tested by black box testing and found to be functionally conformant,

sourcq code inspection may be applied to claim conformance of one level higher.

Source code inspection should be used to check the following aspects:

a)

security feature which cannot be tested easily from external;

1) zeroisation,

EXAMPLE Zeroisation of shared secret key, ephemeral key, or subkeys
2) call of underlying cryptographic algorithm(s),

NOTE1 SHA can be an underlying algorithm of HMAC.

NOTE2 Random number generation becomes an underlying algorithm for DSA, ECDSA, and RSASSA-PSS
signature generation function.
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NOTE 3

67:2016(E)

If the IUT includes two or more implementations of the same cryptographic algorithm, it
would be difficult to identify which implementation is used by black box testing from external. If such
implementations are used as underlying algorithms, source code inspection enables us to identify which
implementation is used. This also assures the chain of tested algorithm implementations.

3) health tests,

Health tests are also called self-tests (see ISO/IEC 19790:2012, 3.108).

There are health test requirements in ISO/IEC 18031.

branch condition;

NOTE 4
NOTE 5
b)
c) statusou

d) source co

The tester shq
examples are
should apply
algorithm sp4d

Some IUTs su
than that of
and/or functi
inspection by
correct embo

In the source

variables in tle cryptographic algorithm specification and'variables in the source code.

9.1.3.1.2 Se

9.1.3.1.2.1

In general, th
of critical sec

The tester shd
a) when the
b) when the

In order to pe
on which any

put;
de which is rarely executed, but security relevant.

uld review the selected cryptographic algorithm specification to check whether thg
pplicable to the IUT or not. If one or more examples are found to be applicable, the
bource code inspection to verify that the IUT is conformant to the sélected cryptog
cification. The tester shall not be misguided by source code annotation, if any.

pport only limited input parameters range and/or limited functions, which are na
he original cryptographic algorithm specification. Such limited input parameters
bns shall be recognised by the validation authority. Thé tester shall perform sourd
considering the claimed input parameters range, and-verify that the source cods
liment of the cryptographic algorithm.

code, many variables will be introduced. The tester should identify conversion beg

curity features which cannot be tested easily

/eroisation

bre are several types of memory to which IUTs access, and IUTs can generate some
irity parameters and/or-their derivatives in the course of their operations.

1l verify that all of the instances of CSPs and their derivatives are zeroised in both
cryptographic@lgorithm is completed successfully if they are no longer used, and

cryptographic algorithm terminates with an error indicator.

above
tester
raphic

‘rower
range
e code
is the

tween

copies

Cases

rform.sotrce code inspection for zeroisation, the tester should identify types of

registers, var

ables, data structures, objects and/or pieces of memory which store any CSP.

mory

copies of critical security parameters or its derivatives reside. The tester should idlentify

i

EXAMPLE 1
EXAMPLE 2

NOTE 1

Registers, cache and RAM.

The internal state of RBG.

for security level 2 and higher.

In ISO/IEC 19790:2012, 7.9.7, it is required to zeroise temporary SSPs when they are no longer needed,

The tester shall identify applied zeroisation techniques to the IUT. If the IUT is to be used in a
cryptographic module, the tester shall verify that the applied zeroisation techniques meet sensitive
security parameter zeroisation requirements in ISO/IEC 19790:2012, 7.9.7.

NOTE2 The

14

zeroisation requirements differ by security levels in ISO/IEC 19790.
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9.1.3.1.2.2 Call of underlying cryptographic algorithms

Some cryptographic algorithm specifications need underlying algorithms. The tester shall identify
the underlying cryptographic algorithms by reviewing the cryptographic algorithm specification.
The tester shall also identify the underlying cryptographic algorithm implementations by reviewing
the source code. The tester shall verify, by performing source code inspection, that the underlying
cryptographic algorithms implementation utilized meets the requirements of the cryptographic
algorithm specification.

9.1.3.1.2.3 Health tests

alth tests.

The tdster shall identify health test requirements from the selected specificationand perform the
sourcd code inspection, in order to verify that the required health tests are really implemented. Some
of the |health test requirements can be purposely designed to test a) a specifi¢'part of ¢ryptographic
algorithm and/or b) a specific ability. Through the identification of selected @ryptographic algorithms
using guidelines in Clause 9, the tester shall verify that the heath test requirements are njet in contrast
to thoge selected cryptographic algorithm configurations.

However, the invocation of heath tests might not be a matter of [UTs; but the matter of ¢ryptographic
modules (see ISO/IEC 19790:2012, 7.10.3.2) or of security architecture under ISO/IEC 15408 (see ADV_
ARC.1{5 in ISO/IEC 18045). For the latter case, through the eryptographic module testing, the tester
should confirm that those heath tests are really invoked a§)specified in the selected ¢ryptographic
algorithm specification.

9.1.3.1.3 Branch condition

There |will be branch conditions in cryptographic algorithm specifications. The tester|shall identify
targeted branch conditions by reviewing not'only the cryptographic algorithm specifichtion but also
the sotirce code.

NOTE 1 IUTs can include implementation-dependent branch conditions which are not idéntified in the
cryptographic algorithm specification,

EXAMBLE Carry bit handling:

The bijanch condition will'be expressed using a comparison operator. Note that the branch condition
is not|always directly (franslated into source code. The tester shall verify that the spurce code is
arithmetically equivalent to the identified branch condition.

NOTE 2 Branch/éonditions are not always directly translated into source code. For example, if the statement is
expresfed as (A(>127) by integer A, another statement (A = 128) is arithmetically equivalent.

9.1.3.1.4 Status output

Some cryptographic algorithms define one or more status output values, e.g. composite or probably
prime for primality test. However, such status output might not be observed in the black box testing.
The tester should perform source code inspection to verify that each distinct status output in the
specification is mapped to the different value in the [UT.

NOTE1 ADV_FSP.4-8inISO/IEC 18045.
NOTE2  ADV_TDS.3-10 in ISO/IEC 18045.

NOTE3  ADV_IMP.1-3 in ISO/IEC 18045.

9.1.3.1.5 Source code rarely executed

Currently, there are no dedicated guidelines for source code that is rarely executed. However, guidelines
in 9.1.3.1.4 should be followed if a status output is included in the source code that is rarely executed.

© ISO/IEC 2016 - All rights reserved 15


https://iecnorm.com/api/?name=6300e89d2379f259ee0386e16a2d27d3

ISO/IEC 18367:2016(E)

9.1.3.2 Guidelines for binary analysis

Under the condition that the source code of the IUT is inspected to be conformant, binary analysis
should be performed to confirm that the final implementation representation corresponds to the
original source code.

9.2 Guidelines specific to encryption algorithms

9.2.1

9.2.1.1

Identification of encryption algorithms

Identification of block ciphers

In addition to
on the IUT:

a) bitlength
b) bitlength

In many caseq
in order to pr

If the IUT sup
on the IUT:

the identification information in 9.1.1, the vendor shall identify the following irifor1

of key supported;
of input block supported.

, implementations of symmetric key algorithms support a blogkdipher mode of opg
bcess multiple blocks.

borts a block cipher mode of operation, the vendor shallddentify the following infor}

a) block ciplher mode of operation;

b) bitlength

of initialization vector;

¢) maximunp number of blocks supported.

If a counter m|

d) how the g

9.2.1.2 Ide

The vendor sh

a)
b) bitlength

reference

c) bitlength

pde is supported by the IUT, the vendor shall identify the following information on t

ounter is constructed, includingits format

htification of stream ciphers

all identify the following information on the implementation of stream cipher:
to the specification of stream cipher;

of key suppaorted;

of initialization vector, if any.

htification of asymmetric ciphers

mation

ration

nation

ne [UT:

In addition to the identification information in 9.1.1, the vendor shall identify the following information

9.2.1.3 Ide
on the IUT:
a)

consistency between security function, supporting functions and supported parameters;

b) bitlength of each public key component;

c) Dbitlength of each private key component.

16
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9.2.2 Selecting a set of conformance test items

9.2.2.1 Block ciphers

A block cipher sometimes becomes the underlying algorithm of higher-level algorithms, e.g. MAC and
RBG. In this sense, implementations of symmetric key algorithms should be extensively tested.

Taking into account the above situation, the following five basic black box test items can be applicable
to block ciphers:

a) KAT-Text, which supplies various plaintexts (or ciphertexts) to the IUT and tests if the resultant
ciphertexts (or plaintexts) match the expected values, while using a fixed key;

b) K.LT—Key, which uses various keys in the IUT and tests if the resultant ciphertexts (Ior plaintexts)
match the expected values, while using fixed plaintexts (or ciphertexts);

c) KAT-Sbox, which utilizes all of the entries in the Sbox and tests if the resultant c|phertexts (or
plaintexts) match the expected values;

d) MMT
e) M(T.

In add]tion to the above test items, the following optional white box tests can be applicable{to symmetric
key algorithms:

f) sojrce code inspection;

g) bipary analysis.

9.2.2.2 Stream ciphers

The construction of stream cipher algorithms will be different from that of block ciphers;|therefore, the
same flest items as block ciphers cannot always be applicable to stream ciphers.

Taking into account the above situation, the following two basic black box test items can|be applicable
to strefam ciphers:

a) KAT-Key, which uses_various keys in the IUT and tests if the resultant ciphertexts (or plaintexts)
match the expected values, while using fixed plaintexts (or ciphertexts);

b) M(T.

In addjtion to the above test items, the following optional white box tests can be applicable[to symmetric
key algorithms:

c) source’code inspection;

d) binary analysis.

9.2.2.3 Asymmetric ciphers

Before selecting a set of conformance test items, the tester shall verify that the conformance to the
underlying algorithms in asymmetric ciphers is already met. Therefore, it is assumed that the
underlying algorithms are extensively tested. The following KAT or independent verification test
should be selected:

a) Random test, which uses various information needed by the IUT and tests:

1) if the resultant ciphertext matches the expected value for the encryption function, or that the
resultant ciphertext can be decrypted by a reference implementation,
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2) ifthe

resultant plaintext matches the expected plaintext for the decryption function.

In addition to the above test items, the following optional white box tests can be applicable to

asymmetric ¢

a)

source co

iphers:

de inspection;

b) binary analysis.

9.2.3 Guidelines for each conformance test item

9.2.3.1 Gui

elines for black box testing

9.2.3.1.1 Guidelines for KAT-Text

In the KAT-Te
resultant ciph

Let n be the number of bits of plaintext (or ciphertext) block; the tester shall supply at least n di

plaintexts (or
EXAMPLE

For example,

et PTj be the jth entry in plaintexts supplied to the IUT-and let (by, b, ..., by) be the
PTj from leftnpost to rightmost. The set of plaintexts constructed based on the following rules wi
the guidelineg:
L[ 1et2..
i \0(ie{j+1,...,n})

9.2.3.1.2 Gtiidelines for KAT-Key

In the KAT-K¢
plaintexts) m

Let k be the n

times, by chamging every single bit.in the key.

NOTE For
bits in the key.

For example,
leftmost to rig

xt, the tester shall supply various plaintexts (or ciphertexts) to the IUT ‘and tes
ertexts (or plaintexts) match the expected values, while using a fixed key:.

ciphertexts) to the IUT by changing every single bit in the one block.
128 plaintexts for 128-bit block ciphers.

by, the tester shall send variou§)keys to the IUT and test if the resultant cipherte
htch the expected values, while using fixed plaintext (or ciphertext) values.
imber of significant bits of key. The tester shall supply different keys to the IUT at

TDEA, the numberof bits of key is not equal to the number of significant bits of key, due td

et Kj bethejth entry in keys sent to the IUT, and let (by, b2, ..., bg) be the bits of }

1,204, j})

if the

fferent

bits of
I meet

Kkts (or
least k
parity

j from

rthtmost. The set of keys constructed based on the following rules will meet the guidelines:

| 1(i e
bl’_{O(ie{J

FI,. K}

9.2.3.1.3 Guidelines for KAT-Sbox

In the KAT-Sbox, the tester shall supply the sets of test vectors and demonstrate that all of the entries in
Sbox are used in processing these test vectors.

Let m be the number of entries in Sbox. The tester shall supply m sets of test vectors for KAT-Sbox.

9.2.3.1.4 Guidelines for MMT

In the MMT, the tester shall supply various plaintexts (or ciphertexts) to the IUT and test if the resultant
ciphertexts (or plaintexts) match the expected values.

The variable and function used in the description of MMT are:

18
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nb The maximum number of blocks supported by the [UT.
min(4, B) A function that returns either A or B, whichever is less.

Except when the IUT supports only one block processing or the block cipher mode of operation is ECB,
or CTR, the tester shall supply up to min(10, nb) blocks of plaintexts (or ciphertexts) to the IUT and test
if the resultant ciphertexts (or plaintexts) match the expected values using a reference implementation.

In ISO/IEC 10116, the generation of counter block is based on an incremented counter [i.e. x « (x + 1)
mod 27, where n is the number of bits of plaintext (or ciphertext) per block]. Therefore, the above MMT
can be applied to the IUT which supports ISO/IEC 10116 compliant CTR mode.

Modes[of operation for an n-bit block cipher specified in ISO/IEC T0T16 only use exclusivé-or and is not
as conjplex; therefore, extensive testing is not needed.

9.2.3.1.5 Guidelines for MCT

9.2.3.1.5.1 General

In the|MCT, the tester shall choose one set of initial values for keys{ plaintexts (or ciphertexts) and
initialjzation vectors, randomly. The variables and functions used inythe description of M( T are:

CT, CT, A ciphertext at each iteration .

CTR; A counter used in CTR mode.

Dk The decryption function with key K.

Ex The encryption function with key<K.

g Temporary integers.

i A temporary value used.as a loop counter.
INIT_CIr An intermediate valte for OFB mode.
INIT _P[T An intermediatévalue for OFB mode.

inner_lpops  The nuniber of inner loops.
v Andnitialization vector.

NOTE In ISO/IEC 10116, this variable is called the “starting variable.”

1V; An initialization vector at each iteration i in CFB mode.

j A temporary value used as a loop counter.

K The key used to encrypt or decrypt.

K1, K2, K3 The three keys for TDEA.

Len(x) A function that returns the number of bits in input string x.

LSBs(x) The bit string consisting of the s least significant bits of the bit string x.
MSBg(x) The bit string consisting of the s most significant bits of the bit string x.
n The number of bits of plaintext (or ciphertext) per block of block cipher.
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outer_loops The number of outer loops. This is identical to the number of resultant ciphertexts
or plaintexts.

PT, PT; A plaintext at each iteration j.
PTo The initial plaintext for j-loop.
s The number of bits of plaintext (or ciphertext) block for CFB mode.

Truncate(bits, in_len, out_len) A function that inputs a bit string bits of in_Ilen bits, returning a string consisting
of the leftmost out_len bits of input. If in_len < out_len, the input string is padded
on the right with (out_len - in_Ilen) zeroes, and the result is returned.

X,y Intermediate values.

9.2.3.1.5.2 MCT for encryption function
The general ffamework of MCT for encryption function is described in the following'steps.
a) Assign ar] initial value for the initial key, plaintext and initialization vectorV.
NOTE 1 |[For CTR mode, the initialization vector will be replaced with counten
b) Fori=1 to outer_loops, do:
1) Prepare intermediate values for next i-value.
NOTE 2 | This step will be tailored based on the block ciphermode of operation.
2) ForjE 1toinner_loops, do:
i) Hrepare intermediate values for next j-value.
ii) (enerate ciphertext CTj using key K,plaintext PT and initialization vector IV.
iii) Update plaintext PT, and initialization vector IV, by using the ciphertext CTj obtained.

NOTE 3 | This step will be tailored based on the nature of the block cipher algorithm and the mode of
operation fested.

NOTE 4 |Updating PT and [} ¢€an be done by applying bitwise exclusive-or and/or concatenation.
3) Outpft ciphertext (T
4) Updage key K byusing ciphertexts {CTj}.

NOTES5 | Thisstep will be tailored based on the nature of block cipher algorithm.

NOTE 6 [Updating the key can be done by applying bitwise exclusive-or and/or concatenation.

From the above steps, outer._loops sets of ciphertexts are obtained.

9.2.3.1.5.3 Tailoring MCT for encryption function
The tailored steps in 9.2.3.1.5.2 are listed in Tables 1 to 5, for each block cipher mode of operation.

NOTE1 In the tailoring, Reference [17] is considered for TDEA, and Reference [18] is considered for the other
block ciphers listed in ISO/IEC 18033-3.

NOTE 2 In the tailoring, it is considered that only 128-bit key is used in 64-bit block ciphers listed in
ISO/IEC 18033-3, except for TDEA.
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Table 1 — Tailored steps in MCT for ECB mode encryption

Step number

Tailored steps for ECB mode encryption

For 128-bit block ciphers For 64-bit block ciphers For TDEA
other than TDEA
b)-1) no operation « «—
b)-2)-1) no operation — «—
b) - 2) - ii) CTj=Eg(PT).2 “— «
b) - 2) - iii) PT =CT;. « “—
b) - 4) If (Len (K) = 128), then K=K ® (CT(inner loops-1) )K1=K1 P
K=K&® CTinner_Ioops I CTinner_IoopS)- CT(in er_loops-2),
Else if (Len(K) = 192 ), then iy K=K, P
K=K® (LSBG4(CT(inner_Ioops—l)) I CTinner_Ioops) CT(in er_loops-1)
Else if (Len(K) = 256), then iii) K3 =|K3 @
K=K @ (CT(inner loops-1) || CTinner loops) CTinnkr loops-
Else terminate MCT.

a  This step corresponds to ECB mode encryption.

Table 2 — Tailored steps in MCT for CBC mode encryption

nlfl:jli))el'

Tailored steps for CBE mode encryption

For 128-bit block ciphers For 64-bit block ci- For TDEA
phers other than TDEA
b)-1) no operation “« «
b)-2)fi) |no operation « «
b) - 2)}ii) |CTj=Eg(PT @ IV).2 « —
b) - 2) piii) |I) If (j=1), then « -
PT=1V
Else
PT=CT(j-1
1) 1V = CT;.
b) - 4) If (Len (K).=2 128), then K=K (CT(inner_loops-1) |1) K1 =K1 D
K=K®D CTinner loops [| CTinner loops)- CT(innef loops-2),
Elselif (Len(K) = 192), then ii) K =K1 P
K=K ® LSBe4(CT(inner_loops-1)) || CTinner loops CT(innet loops-1),
Else if (Len(K) = 256), then iii) K3 = Kk @

K=K® (CT(inner_loops-l) I CTinner_loops)
Else terminate MCT.

CTinner_Ioops-

a  This step corresponds to CBC mode encryption.

© ISO/IEC 2016 - All rights reserved
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Table 3 — Tailored steps in MCT for CFB mode encryption

Step Tailored steps for CFB mode encryption
number For 128-bit block ciphers For 64-bit For TDEA
block ciphers
other than
TDEA
b)-1) no operation « “—
b)-2)-i) |IV=1V; « no operation
b)-2)-ii) |[)y=Eg(IV).ab « «
1IN CT;= PT B MSB,(y).abc
b) - 2) -iii) |If (s =n), then « [) PT=MSB,(1V).
{ 1) IV = LSBy.s( 1V ){|€T}. 2
If (j=1), then
PT=1V,
Else
PT=CT(j - 1)-
IV =CT;.2
}
Hlse
{

IV = LSBp.5(IV) || CT}.

If (] < [n/s—l),then
PT = MSB,(IV)),
Else

PT=CT, 1))

b) - 4)

—

i) f= {Len (K)/ s—|. i) f= [192/5—‘_
ij) C= CT(inner.doopsf + 1) [ ...l CTinner loops- ii) € = CT(inner_loops-f + DIl - |l

i CT; loops-
ifi) K = K DESBLen( 1)(C). ii) ;ner_zzopje LSB4(C)
1=1K1 64 .

iy)g= (Le" (IV,-) / S—l ii) K2 = K2 @ Truncate(l}SB12g
v) Wii's 1) = (©), 128, 64)
LSBn(CT(inner_loops—g +1) -1l CTinner_Ioops)- iii) K3 = K3 © MSBe4(C).

a  This step constitutes a part of CFB mode encryption.

b NIST/SP 800-38A[19] uses the different variable name, 0j, instead of y.

¢ PTand CTjare assumed to be s bits in length.
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Table 4 — Tailored steps in MCT for OFB mode encryption

K=K® (CT(inner_Ioops—l) I CTinner_Ioops)
Else terminate MCT.

Step Tailored steps for OFB mode encryption
number For 128-bit block ciphers For 64-bit block ciphers For TDEA
other than TDEA
b)-1) no operation INIT_PT =PTy
b)-2)-1) no operation -
b)-2)-ii) |[)y=Ek(IV).ab -
II) CT;j=PT @ y.ab
b) - 2) -iii) |I) If (j=1), then ) PT=1V.
PT=1V M IV=y2b
Else
PT=CT(j - 1).
) IV=y.ab
b) - 4) i) If (Len (K) = 128), then i) K=K ® (CT(inner loops-1) |1) K1 =K1 &P
K=K ® CTinner loops | CTinger 1o0ps)- CT(inner loops-2),
Else if (Len(K) = 192), then ii) 1V = CTinnér 1oops- ii) K2 =K> b
K=K @ LSBs4(CT(inner_loops-1)) || CTinner loops CT(iner_loops-1),
Else if (Len(K) = 256), then iii) K3 = K3|D

CTin her_loops.
iv) PTo=PTo D

K=K® (CT(inner_loops—l) Il CTinner_Ioops)
Else terminate MCT.

ii) IV = CTinner_loops- INIT| PT
a  Thjs step constitutes a part of OFB mode encryptigh.
b NI$T/SP 800-38A[19] uses the different variabletrame, 0j, instead of y.
Table 5 — Tailored steps in MCT for CTR mode encryption
Step Tailored steps for CTR mode encryption
number For 128-bitblock ciphers For 64-bit block ciphers Foiy TDEA
other than TDEA
b)-1) no operation —
b) - 2) 1) no operatien «
b) - 2)pii) |I) yZEK(CTR)).ab «
H)-CT;= PT @ y.ab
b) - 2) (- iii)(_|I) CTR; = (CTR; + 1) mod 2n. ¢ «—
1IN PT=CT;
b) - 4) If (Len (K) = 128), then K=K® (CT(inner_Ioaps-l) [[|1) K1=K1 D
K=K ® CTinner loops CTinner_oops)- CT (inner-loops-2)»
Else if (Len(K) = 192), then ii)K2 =K, @
K=K® LSB64(CT(inner_Ioops—1)) Il CTinner_Ioops CT(inner_Ioops—l],
Else if (Len(K) = 256), then iii) K3 = K3 @

CTinner_Ioops.

a  This step constitutes a part of CTR mode encryption.
b NIST/SP 800-38A[19] uses the different variable name, 0j, instead of y.

¢ This step corresponds to the counter generation.
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9.2.3.1.5.4

MCT for decryption function

The general framework of MCT for the decryption function is described by the following steps:

a) Assign initial value for initial key, ciphertext and initialization vector IV.

NOTE 1

For CTR mode, the initialization vector will be replaced with counter.

b) Fori=1to outer_loops, do:

1) Prepare intermediate values for next i-value.

NOTE 2

2) Forj

This step will be tailored based on the block cipher mode of operation.

= 1 to inner_loops, do:

i) Hrepare intermediate values for the next j-value.

ii) (enerate plaintext PTj using key K, ciphertext CT, and initialization vecton1V.

iii) U

NOTE 3
tested.

NOTE 4

3) Outp

Updating PTjand IV can be done by applying bitwise exclusive-or and/or concatenation.

it plaintext PTj.

4) Updage key K by using plaintexts {PTj}.

NOTE 5

NOTE 6

This step will be tailored based on the naturé’ef block cipher algorithm.

Updating the key can be done by applying bitwise exclusive-or and/or concatenation.

From the aboye steps, the output consists of outer_loops plaintexts.

9.2.3.1.5.5

lailoring MCT for decryption function

The tailored dteps in 9.2.3.1.5.4 are listed in Tables 6 to 10, for each block cipher mode of operati

NOTE1l Int

block ciphers listed in ISO/IEC 18033-3.

pdate ciphertext CT, and initialization vector IV, by using the plaintext PT; obtaineql.

This step will be tailored based on the nature of block cipher algorithm and mode of opgration

D1,

he tailoring, Referénce [17] is considered for TDEA, and Reference [18] is considered for the other

NOTE 2 In the tailoringit is considered that only 128-bit key is used in 64-bit block ciphers lifted in

ISO/IEC 18033
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Table 6 — Tailored steps in MCT for ECB mode decryption

Step Tailored steps for ECB mode decryption
number For 128-bit block ciphers For 64-bit block ci- For TDEA
phers other than TDEA
b)-1) no operation

b)-2)-1) no operation
b) -2)-ii) |PTj=Dg(CT).2
b) - 2) -iii) |CT = PT;.

b) - 4) If (Len (K) = 128), then K=K @® (PT(nner loops1) |1) K1 = Ki @
K=K ® PTinner loops [| PTinner. loops)- PTinnen loops-2),
Else if (Len(K) = 192), then i) Ko =K
K = K @ LSB64(PT(inner_loops-1)) |l PT(innet loops-1) »

PTinner_Ioops
Else if (Len(K) = 256), then

K=K® (PT(inner_loops-l) || PTinner_Ioops)
Else terminate MCT.

a  This step corresponds to ECB mode decryption.

iif) K3 = K3

PTinner_ loops.

Table 7 — Tailored steps in MCT for CBC mode decryption

St¢p Tailored steps for’'CBC mode decryption
number For 128-bit block ciphers For 64-bit block ci- For|TDEA
phers other than TDEA
b)-1) no operation « «
b) - 2) 1) no operation « «
b)-2)}ii) |PTj=Dg(CT) D IV.2 « -
b) - 2) }iii) [If(j=1), then « IV=CT,a
y=CT,a CT = PT;.
CT=1V,
IV=y,a
Else
IV=\ET, 2
6T =PT(j - 1).
b) - 4) If(Len (K) = 128), then K =K@ (PT(inner loops-1) |1) K1 =K1 D
K=K @ PTinner loops | PTinner loops)- PT{(inney- loops-2)»
Else if (Len(K) = 192), then ii)K2 =K, P
K=K @ LSBs4(PT(inner _loops-1)) || PTinner loops PT(innerloops-1),
Else if (Len(K) = 256), then iii) K3 = K3 @
K=K ® (PT(inner loops-1) || PTinner loops) PTinner loops.
Else terminate MCT.
a  This step corresponds to CBC mode decryption.
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Table 8 — Tailored steps in MCT for CFB mode decryption

Step Tailored steps for CFB mode decryption
number For 128-bit block ciphers For 64-bit For TDEA
block ciphers
other than
TDEA
b)-1) no operation “« «
b)-2)-1i) no operation « no operation
b)-2)-ii) |)y=Eg(V).ab « «
IN PT;= CT @ MSBy(y). abc
b) - 2) -iii) |If (s =n), then « [)IV=LSBy.s(IV) || CT.2
{ II) CT = MSBy(y).
If (j = 1), then
x=1V,
IV =_CT,
CT=x,
Else
IV=CT.2
CT=PT(-1).
}
Hise
{
IV =LSB,.s(IV) || CT.2
If, then
CT = MSB(1V}),
Else
C=PT )
}
b) - 4) A [Len(K)/SW_ < 0f=[192/s].
i) P = PTgnrter_loops-f+ 1) || -+ || PTinner_loops- E%P = PT(inner_toops-f + 1)l - I
ifi) K S K@ LSBLen( k(P). inner_loops:

. ,‘l ii) K1 = K1 @ LSBe4(P).
iv)g:|l,énuvl.)/5|. i) K2 = K, ®
VIIViv1)= Truncate(LSB;2g (C), 128, 64)

LSBy(PT(inner loops-g + 1) || -+ || PTinner loops)- iii) K3 = K3 @ MSBe4(C).

a  This step constitutes a part of CFB mode decryption.
b NIST/SP 800-38A[19] uses the different variable name, 0j, instead of y.
¢ PTjand CT are assumed to be s bits in length.

26

© ISO/IEC 2016 - All rights reserved


https://iecnorm.com/api/?name=6300e89d2379f259ee0386e16a2d27d3

ISO/IEC 18367:2016(E)

Table 9 — Tailored steps in MCT for OFB mode decryption

Step Tailored steps for OFB mode decryption
number For 128-bit block ciphers For 64-bit block ci- For TDEA
phers other than TDEA
b)-1) no operation — INIT CT=CTy
b)-2)-1) no operation « -
b)-2)-ii) |)y=Eg(V).ab « -
II) PTj=CT @ y.ab
b) - 2) -iii) |I) If (j = 1), then « ) CT=1V.
CT=1V I 1V=yab
Else
CT=PT(-1).
) IV=y.ab
b) - 4) i) If (Len (K) = 128), then i) K=K® (PT(inner loops-1) |1) K1 = K1 D
K=K ® PTinner loops || PTinrer 1o0ps)- PT{(innet loops-2),
Else if (Len(K) = 192), then ii) 1V = PTinnér lpops- ii)Kr =K, @
K=K @ LSBs4(PT(inner loops-1)) || PTinner loops PT (innef loops-1),
Else if (Len(K) = 256), then iii) K3 = K3 b

K=K® (PT(inner_Ioops—l) ” PTinner_Ioops)
Else terminate MCT.

i) IV = PTinner_loops-

PTinner_ loops.
iv) CTo=CTp D
INIT CT

a  Thjs step constitutes a part of OFB mode decryptign.
b NI$T/SP 800-38A[19] uses the different variabletrame, 0j, instead of y.

Table 10 — Tailored steps in MCT for CTR mode decryption

K=K® [PT(inner_Ioops—l) ” PTinner_Ioops),
Else terminate MCT.

St¢p Tailored steps for CTR mode decryption
number For 128-bitblock ciphers For 64-bit block ciphers For|TDEA
other than TDEA
b)-1) no operatiofi — —
b) - 2) 1) no operation « «
b) - 2)pii) |I)yZEx(CTR)).ab «— «
H)PT;=CT @ y.ab
b) - 2) (iii)(_|1) CTR; = (CTR; + 1) mod 2n. ¢ « «
1) CT = PT;
b) - 4) If (Len (K) = 128), then K=K@® (PT(inner ioops-1) |1) K1 =K1 D
K=K&® PTinner_Ioops: I PTinner_Ioops)- PT(inner_Ioops-Z]-
Else if (Len(K) = 192), then ii)K2 =K, @
K=K® LSB64(PT(inner_Ioops—1]) I PTinner_Ioops; PT(inner_Ioops—l]-
Else if (Len(K) = 256), then iii) K3 = K3 @

PTinner_Ioops.

a  This step constitutes a part of CTR mode decryption.
b NIST/SP 800-38A[19] uses the different variable name, 0, instead of y.

¢ This step corresponds to the counter generation.
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9.2.3.1.6 Guidelines for random test

For asymmetric ciphers specified in ISO/IEC 18033-2, an encryption algorithm takes as input a) a
public key, b) a label, c) a plaintext and d) an encryption option, as well as outputs a ciphertext. Also, a
decryption algorithm takes as input a) a private key, b) a label and c) a ciphertext, as well as outputs a
plaintext.

In the random test, the tester shall supply random data to the [UT and test if the resultant data match
the expected data. The tester should select plaintexts, by considering the upper limit of plaintext length.

Some asymmetric ciphers involve the random value or salt. If the salt length is not zero, the tester
shall request the IUT to generate ciphertexts using only a single public key pair, and a single message,

and then sha
insertion of th
number from
resultant cipH

9.2.3.1.7 R«

For block cip}
some stream

of test vector}
endian or foll

EXAMPLE 1
EXAMPLE 2

For asymmet]
multiple-prec

An elliptic cu|
ISO/IEC 1803

9.2.3.2 Gui

le random value is allowed by the IUT’s implementation, the tester may insert the'y
outside the cryptographic algorithm boundary, and the tester shall verify th
ertext matches the expected ciphertext.

:presentation of test vectors

er algorithms, test vectors should be represented in natural order, from left to rig

. For such algorithms, the representation of test vectors should either be represent
bw the endianness in the specification.

Big-endian for SNOW 2.0 (see ISO/IEC 18033-4).

Little-endian for Rabbit (see ISO/IEC 18033-4).

ision integers should be represented withthe most significant bit first.

Ir've point should be represented as-an octet strings using the uncompressed for
B-2:2006, 5.4.2 and 5.4.3).

elines for white box testing

9.2.3.2.1 Gtiidelines for source code inspection

9.2.3.2.1.1

Beyond the lg
imposed by s
can reside on
the IUT zeroi
inspection to

9.2.3.2.1.2

General guidelines

vel of functional conformance, vendors may claim additional security features wh
ecurity pelicy or designed to mitigate attacks. For symmetric key algorithms, s
RAM-rcache. In order to minimise the risk to disclose subkeys, vendors may clai
ses subkeys. If such a security feature is claimed, the tester shall perform sourd

If the
hndom
at the

ht. For

fipher algorithms, octet/bit order or endianness has to be considered in the representation

ed big-

ric ciphers, bit strings should be represented in natural order, from left to right, and

 (see

ch are
bkeys

that
e code

verify that the IUT zeroises subkeys.

Source code inspection for CTR mode in symmetric algorithms

It is a requirement of the Counter Mode that only a unique counter block can be used for each plaintext
block that is ever encrypted with a given key, across all messages. If the IUT derives counter values
internally, a source code inspection of the implementation of the counter mechanism shall be conducted
to ensure that it provides unique counter block values.

9.2.3.2.2 Guidelines for binary analysis

Beyond the level of functional conformance, vendors may claim additional security features which are
imposed by security policy or in order to mitigate attack. Even if the source code itself implements
security features, it is not clear that the final implementation representation really implements the
security feature, as a result of optimisation of building tools.
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9.3 Guidelines specific to digital signature algorithms

9.3.1

Identification of digital signature algorithms

In addition to the identified information in 9.1.1, the vendor shall identify the following information on
the IUT:

a)

b) bitlength of each public key component;

c) Dbitlength of each private key component.

consistency between security function, supporting functions and supported parameters;

9.3.2

Digita
crypta
compo
will be

The ra
test w
insertg

Selecting a set of conformance test items

signature algorithms are considered as high-level mechanisms compareq
graphic algorithms, such as hashing algorithms. Digital signature algérithms in
nents (e.g. modular arithmetic, hashing algorithm and random numbet” generator
difficult to apply systematic conformance tests. So, the random test should be sele

hen salt is used and cannot be inserted, or b) a KAT when.no salt is used or wh
bd for conformance testing purpose.

The random test for the signature verification function beComies a KAT.

9.3.3

9.3.3.1

9.3.3.1

Signat
signat
applie
IUT to

EXAMH

In the
match
times

Some
signat

Guidelines for each conformance test item
Guidelines for black box testing

.1 Guidelines for KAT for signature generation function

ire generation functions invélve parameters such as private key, message §
ire. For the non-randomizedi{or deterministic) signature scheme, the known-answ
1. For the randomized sighature scheme, the known-answer test may be applied
use tool supplied values-for salt.

LE Digital sigmatiire schemes 1 and 3 in ISO/IEC 9796-2.

KAT, the tester shall supply various messages to the IUT and test if each of the resultj
bs the expected values, while using a fixed private key. The tester should run th
by chaining the private keys.

with other
volve several
; therefore, it
cted.

ndom test for the signature generation function becomes either a) an independent verification

bn salt can be

ind resultant
er test can be
by forcing the

int signatures
s test several

bf the messages should be purposely selected so that the most significant octet of

the expected

hrgbecomes zero, in order to verify that the integer to octet strings conversion is injplemented as

specifi

ed (see A.T).

9.3.3.1.2 Guidelines for the independent verification test for the signature generation function

For the randomized signature scheme, the independent verification test should be applied.

EXAMPLE

Digital signature scheme 2 in ISO/IEC 9796-2.

In the independent verification test, the tester shall supply various messages and private keys to the
IUT and test if each of the resultant signatures is successfully verified by the testing tool using the
corresponding public key.
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9.3.3.1.3 Guidelines for KAT for signature verification function

The signature verification functions involve parameters such as public key, message, signature and the

result of verification.

In the KAT, the tester shall supply various public keys, messages, signatures, and test if each of the

results of the verification matches the expected result.

This KAT should include signatures whose length is not conforming to the standard, in order to verify

that the step is implemented to reject non-conforming signatures as specified (see A.1).

9.3.3.1.4 Representation of test vectors

For digital signature algorithms, test vectors should be represented in the order where\th¢ most

significant ocfet is on the left and the least significant octet is on the right.

For some digital signature algorithms, the signature can be divided into two parts, efg,r and s fpr DSA
and ECDSA. Fpr such algorithms, each part should be separately represented or the)representatipn (r ||

s) should be uped.
9.3.3.2 Guifelines for white box testing

9.3.3.2.1 Gtiidelines for source code inspection

For the signdture generation function, the tester should perferm source code inspection to

verify

that the integer to octet strings conversion is implemented<asvspecified (see A.1). For the sighature
generation fupction, the tester should perform source code iispection to verify that the non-conf¢grming

signatures ar¢ rejected as specified (see A.1).

The randomized signature generation function involwes the random value or salt. Therefore, the tester

should perforjm source code inspection so that the-5alt is zeroised (see 9.1.3.1.2.1).

In some stanfards, it is required that the randomizer or salt is generated in a conforming yay to

the selected gtandard. The tester should perform source code inspection following the guidel

9.1.3.1.2.2.

In some standlards, it is required to avoid the signature value zero by generating a new value

nes in

for the

salt. The testgr should perform asource code inspection so that the branch condition is implemented as

specified (see9.1.3.1.3).

9.3.3.2.2 Gtiidelines for:binary analysis

Guidelines in P.1.3.2.should be applied.

9.4 Guidelines specific to hashing algorithms

9.4.1 Identification of hashing algorithms

In addition to the identification information in 9.1.1, the vendor shall identify the following information

on the IUT:
a) Dbitlength of message digest;
b) bitlength of input block;

c) maximum bit length of input message;

d) whether the IUT is an octet-oriented implementation, or a bit-oriented implementation.
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Hashing algorithms do not involve any cryptographic keys themselves. However, if the IUT is to be used
in processing any CSPs, the vendor should identify the following information on the IUT.

e) policy to zeroise messages, which can be considered as CSPs.

9.4.2 Selecting a set of conformance test items

A hashing algorithm can be an underlying algorithm of higher-level algorithms, e.g. MAC, RBG, key
derivation function and prime number generation. In this sense, implementations of hashing algorithms
should be extensively tested.

Taking into account the above situation, the following three basic black box test items can be applicable
to hashing algorithms:

a) shjort message test, which supplies short messages to the IUT and tests if each\resultant message
digest matches the expected value;

NOTE1 The word “short” means that the length of message is shorter thanthe input Block size after
splitting (see ISO/IEC 10118-1:2000, 6.1.2).

b) selected long message test, which supplies long messages to the/JUT and tests if gach resultant
message digest matches the expected value;

NOTE2 The word “long” means that the length of message“s longer than the input Hlock size after
splitting (see ISO/IEC 10118-1:2000, 6.1.2).

c) MCLT.
NOTE3 The MCT is sometimes called the “pseudorandoimly generated messages test.”

In addjtion to the above test items, the following-optional white box tests can be applicable to hashing
algorifhms:

a) source code inspection;

b) bipary analysis.
9.4.3 | Guidelines for each conformance test item
9.4.3.1 Guidelines for black box testing

9.4.3.1.1 Guidelines for short message test

In the[shortunessage test, the tester shall supply short messages to the IUT and test if|the resultant
message digests match the expected values.

L o ) Joadel el £l - delal 1 Ll 1 h - 1 .
et m peTtie oIt ICIIg LT U LT I PUl UTUCK UT LT TIAS TS dTgUT I,

For octet-oriented implementations, at least (m / 8 + 1) messages should be supplied to the IUT, whose
lengths are {0, 8, 16, ..., m }. Their values, except for length, should be random.

For bit-oriented implementations, at least (m + 1) messages should be supplied to the IUT, whose lengths
range from 0 to m. Their values, except for length, should be random.

NOTE m is identical to L1 in ISO/IEC 10118-1:2000, 4.1.

9.4.3.1.2 Guidelines for selected long message test

In the selected long message test, the tester shall supply long messages to the IUT and test if the
resultant message digests match the expected values.
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The variables and function used in the description of the selected long message test are:

m The bit length of input block of the hashing algorithm.

D The message.

|D[max The maximum bit length of message supported by the IUT.
min(4, B) A function that returns either 4 or B, whichever is less.

Bit lengths of selected long messages should cover the range of [2* m, min(100*m, |D|max)]-

o 1 P £ 1 e Lo JON Lol d 1o Licd oo a1l I11m
For octet-orignted Hprenrentatons;,atrreast(1117 o messages—sotrt—oe—supprica—to—the 10T, whose

lengths are typically selected according to Formula (1):
m+8*99*i [1<i<(m/8)] @)}

For bit-oriented implementations, at least m messages should be supplied to the IUT,whose lengths are
typically sele¢ted according to Formula (2):

m+99*j, (1<ism) (2)

The values of messages, except for their lengths, should be random.

9.4.3.1.3 Glidelines for selected MCT

In the MCT, thie tester shall choose one initial message of message digest length, randomly. The vafiables
and the functfon used in the description of the MCT are;

D The message.
h The hashing algorithm.
i A temporary value used as:aloop counter.

inner_loops | The number of inner loops.

j A temporary valuewused as a loop counter.

k A temporary.value used as a loop counter.

MD; The ithresultant message digest.

N Thle number of concatenated message digests to create each input message in the MCT.

outer_loops —TheTumber of OUter toops- 1 IS 15 Taermtical to the muImber of TesSuttant mMmessage digests.
seed The initial message whose bit length is identical to the bit length of a message digest.
TMD; The ith temporary message digest.

Here, N should be selected so that the bit length of message D becomes greater than or equal to the bit
length of input block.

NOTE N = 3 is used in Reference [20].
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The general framework of MCT for encryption function is described by the following steps:

1) Fori=1to outer loops do:

9.4.3.1

For ha
9.4.3.2

9.4.3.7

If the
be ap

applie
9.4.3.7
Guidel

9.5

9.5.1

In add
on the

a)
b)
)
d)

1.1 Fork=0to (N - 1), do:

1.1.1 TMDy = seed.

1.2 Forj= N to (inner_loops + N - 1), do:

1.2.1 Dj=TMDjyl|| ... || TMDj- || TMDj-1.
1.2.2 TMD; = h(D).

14

.3 MD; = TMD(inner loops + N - 1)-

.5 Output MD;.

| seed = MD;.

.4 Representation of test vectors

Khing algorithms, test vectors should be represented in natyral order, from left to 1|
Guidelines for white box testing

.1 Guidelines for source code inspection

urj

Jllied. If the IUT is to be used in the processing of any CSPs, the guidelines in 9.1.3.1

aximum bit length of the input message isenforced in the IUT, the guidelines in 9,

.

.2 Guidelines for binary analysis

ines in 9.1.3.2 should be applied.
Huidelines specific to-MAC algorithms

Identification. eaf MAC algorithms

ight.

1.3.1.3 should
2.1 should be

tion to the jdentification information in 9.1.1, the vendor shall identify the followinjg information

IUT:

derlying algorithm;

bi

lerigth of MAC;

maximum bit length of input message;

supported range of bit length of key.

NOTE
Reference [21].

The defined range of bit length of key in MAC Algorithm 2, known as HMAC, is different from that in
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9.5.2 Selecting a set of conformance test items

A MAC algorithm can become the underlying algorithm of higher-level algorithms, e.g. RBG, and key
derivation function. However, if the complexity introduced is considered very little, then the following
KAT should be selected.

a) Random test, which uses various keys and supplies random keys, messages and any additional

informati

If a more exte

on needed to the IUT and tests if each resultant MAC matches the expected value.

nsive test is needed, the tester may select conformance test items listed in 9.4.2.

9.5.3 Guidelines for each conformance test item

9.5.3.1 Gui

9.5.3.1.1 Gnuidelines for random test

In the randor

randomly.

Here, the test
defined rangs

a)
b)

supporte
supporte

If there is any
be selected to

9.5.3.1.2 R¢
For MAC algo

9.5.3.2 Gui

9.5.3.2.1 Gtiidelines for source code inspection

Beyond the 1
are imposed
intermediate

subkeys, vendlorsymay claim that the IUT zeroises these secret values. If such a security fea

felines for black box testing

br shall perform the random test by carefully selecting theffellowing, so that they fi
of MAC algorithm:

l range of bit length of key;
l range of bit length of additional information.

branch condition in the cryptographic algerithm specification, above parameters
cover the branched source codes.

ppresentation of test vectors

rithms, test vectors should be represented in natural order, from left to right.

elines for white box testing

evel of functional conformance, vendors may claim additional security features
by security-policy or in order to mitigate attacks. For MAC algorithms, there
ecret vallles related to subkeys or derived keys. In order to minimize the risk to d

h test, the tester shall supply random messages and any additionahinformation peeded
to the IUT and test if each resultant MAC matches the expected value, while{changing the key

value

in the

should

which
ran be
jsclose
fure is
ues.

claimed, the t

pstershall perform source code inspection to verify that the IUT zeroises secret va

NOTE For

CMAC, see the secret string S in ISO/IEC 9797-1:2011, 6.2.3.

Some cryptographic algorithm standards allow the truncation of MAC. In response to the truncation,
only truncated MAC values might be used in the health tests as known-answers. If the IUT is able to
output full MAC values, the health tests cannot detect errors in bits truncated (i.e. bits not compared).
The tester should perform source code inspection of the health tests so that there is no such problem.

9.5.3.2.2 Guidelines for binary analysis

Guidelines in 9.1.3.2 should be applied.
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9.6 Guidelines specific to RBG algorithms

9.6.1 Identification of RBG algorithms

An RBG can be categorized into either non-deterministic RBG (NRBG) or deterministic RBG (DRBG) (see
ISO/IEC 18031:2011, Figure 2). Currently, there is no standard specification of NRBG in ISO/IEC 18031.
So, guidelines in 9.6 focus only on the DRBG algorithms.

NOTE For example, the AIS 20/31[22] defines comprehensive testing for non-deterministic as well as for
deterministic RBGs; however, it is open for debate, how much of this belongs to correctness testing as opposed to
vulnerability analysis. Of course, statistical tests can be made in the same way for all types of RBGs but statistical
tests do not prove unpredictability of random numbers. The latter can only be concluded from analysing the
design of the RBG, which is probably beyond the scope of correctness testing.

In addjtion to the identification information in 9.1.1, the vendor shall identify the followinlg information
on the|lUT:

a) urderlying algorithm;
b) biflength of output block;
EXAMPLE Bitlength of hashing algorithm for hash-based RBGs.

c¢) maximum bit length of random bits;

d) supported range of entropy input;

e) supported range of nonce;

f) supported range of personalization string;

g) supported range of additional input;

h) repeed interval;

i)  whether the IUT supports reseed.eapability;

j)  whether the IUT enables prediction resistance;

k) whether the IUT uses a.derivation function.

9.6.2 | Selecting a setof conformance test items

Beford selectingla-set of conformance test items, the tester shall verify that the confoymance to the
underlying algorithms in RBG is already met. Therefore, it is assumed that the underlyihg algorithms
are exfensively tested. The following KAT should be selected.

Rando hich ri information n he IUT an if h random bit matches
the expected value.

9.6.3 Guidelines for each conformance test item
9.6.3.1 Guidelines for black box testing

9.6.3.1.1 Guidelines for random test

In the random test, the tester shall supply random data needed to the IUT and test if each resultant
pseudorandom bit matches the expected value.
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In order to verify the output generation function generating two or more blocks of pseudorandom bits
correctly, the tester shall perform the random test by carefully selecting the following:

a) requested number of bits.
If a counter is introduced in the specification for selected RBG, at least 512 test vectors should be used.
EXAMPLE Hash_DRBG, and CTR_DRBG.

In ISO/IEC 19790:2012, 7.8.2.3 and in ISO/IEC 18031:2011, 9.8.8, the continuous random bit generator
test is required, and the first block or the first 80 bits cannot be output. Considering this requirement,
the tester may omit the first one or several blocks from the expected value.

9.6.3.1.2 Re¢presentation of test vectors

For RBG algotfithms, test vectors should be represented in natural order, from left to right.

9.6.3.2 Guifelines for white box testing

9.6.3.2.1 Gtidelines for source code inspection

The tester shall perform source code inspection to verify that the documented reseed interval i really
used in the IUT. Guidelines in 9.1.3.1.3 should be followed.

There are hdalth test requirements in ISO/IEC 18031 or its ¢emparable standards. Guidelines in
9.1.3.1.2.3 shquld be followed.

ISO/IEC 1803|L and ISO/IEC 19790 request IUTs to inhibit,outputting random bits while health tefts are
being performed or the IUT is in an error state. However,'the output inhibition might not be a matter
of IUTs, but fhe matter of cryptographic modules (see ISO/IEC 19790:2012, 7.10.3.2) or of sg¢curity
architecture yinder ISO/IEC 15408 (see ADV_ARC.1-5 in ISO/IEC 18045). For the latter case, throygh the
cryptographi¢ module testing, the tester should.vérify that output inhibition is enforced as specffied in
the selected sfandard.

9.6.3.2.2 Gtiidelines for binary analysis

Guidelines in P.1.3.2 should be applied.
9.7 Guidelfnes specific to key establishment mechanisms

9.7.1 Identjification.6fKkey establishment mechanisms

In addition tofthe identification information in 9.1.1, the vendor shall identify the following information
on the IUT:

a) supported scheme;

b) consistency between security function, supporting functions, and supported parameters.

9.7.2 Selecting a set of conformance test items

Key establishment mechanisms are considered high-level mechanisms compared with other
cryptographic algorithms, such as hashing algorithms. Key establishment mechanisms involve at least
two entities and can include an error condition which results in not sharing any key. In order to test such
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error handling ability, the following two black box test items can be applicable to key establishment

mecha

nisms:

a) independent verification test, where the IUT plays the role of one entity and the testing tool plays
the role of another entity, which verifies the shared secret key generated by the IUT with the testing
tool independently;

b) validity test, which tests the ability of the IUT to recognize valid and invalid results received from
the testing tool.

In addition to the above test items, the following optional white box tests can be applicable to key
establishment mechanisms:

a) so

b) bi

9.7.3

9.7.3.1

9.7.3.1

Key e

urce code inspection;

hary analysis.
Guidelines for each conformance test item
Guidelines for black box testing

.1 Guidelines for independent verification test

btablishment mechanisms involve at least two entifies. In order to test key

mech

isms, it is assumed that the IUT plays the role of.exe (or supported) entity, and tH

tool plpys the role of another entity.

Also,

ey establishment mechanisms can involve:generating either ephemeral key pai

and verifying public key(s) sent by another entity, Therefore, the resultant secret key or
key cajnnot always be determined in advance.Ih this sense, the independent verificatio

the se
verific

‘ret key or shared secret key by thetesting tool independent of the IUT. Also, thg
ption test enables the conformancetest for key establishment mechanism as a wholg

key palir generation and public key validation.

The in
correc

a) da

b) (e
pa

Hependent verification testshall supply several sets of the following and test if the
t shared secret keys:

main parameter which passes domain parameter validation, if any;

bhemeral or static) public key(s), which passes public key validation in conjunction
rameter a),sent by the other entity;

c) OtherInfolopits components, if any;

d) ng

nce 'sent by the other entity, if any.

bstablishment
at the testing

(s) or nonce,
shared secret
h test verifies
e independent
,1.e.including

UT generates

with domain

The independent verification test should verily that resultant shared secret keys are mutually different
if the IUT is capable of generating ephemeral key(s) or nonce.

The independent verification test should supply several sets of the following and test if the IUT responds
as specified in the selected standard:

a) domain parameter which passes domain parameter validation, if any;

b) static public key(s), which passes public key validation in conjunction with domain parameter a),
sent by the other entity, if any;

c) ephemeral public key(s), which fails public key validation in conjunction with domain parameter a),
sent by the other entity, if any;

d) Otherlnfo or its components, if any;
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e) nonce sent by the other entity, if any.

9.7.3.1.2 Guidelines for validity test

The purpose of the validity test is to test the ability of the IUT to recognize valid and invalid results

received from the testing tool. The validity test involves the following parameters:
a) domain parameter which passes domain parameter validation, if any;
b) (ephemeral or static) private key(s);

c) (ephemeral or static) public key(s);

d) shared s€cret key;
e) OtherInfq or its components, if any;
f) nonce sent by the other entity, if any;

g) secret key (or derived keying material), if any.

Incorrect vaIJ:les are generated by the testing tool by inserting errors in\pafameters except
eter. In order for the IUT not to include the common mistake in A.1, the validity test

domain para

should includg the invalid octet representation of shared secret key Z;‘otherwise, this aspect shg

or the

uld be

verified by soprce code inspection.

9.7.3.1.3 Representation of test vectors

For key establjshment mechanisms, octet strings which areiconverted from integers should be reprejsented

in the order that the most significant octet on the left and:the least significant octet on the right.

The other parfameters should be represented in natural order, from left to right.

9.7.3.2 Guifelines for white box testing

9.7.3.2.1 GIidelines for source code inispection

The tester sh
is implementédd as specified (see\A1).

uld perform sourcewcode inspection to verify that the integer to octet strings conyersion

In some key eptablishmentimechanisms, weak values, e.g. shared secret key Z = 1, are handled specially

in the specifidations. Forsuch key establishment mechanisms, guidelines in 9.1.3.1.3 t0 9.1.3.1.4

be followed tq verify that the weak values are handled as specified.

should

In some key establishment mechanisms, ephemeral keys are used. The key establishment mechgnisms

only using static.keys sometimes involve random value or salt. Therefore, the tester should p

brform

source code iIlSpE‘CthIl so that ephemeral keys, salt and thelr derivatives including shared secret keys

are zeroised.

In some standards, it is required that ephemeral keys are generated in a conformable way to the
selected standard. It is required to generate the salt in the same way. The tester should perform source

code inspection following guidelines in 9.1.3.1.2.2.

9.7.3.2.2 Guidelines for binary analysis
Guidelines in 9.1.3.2 should be applied.
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9.8 Guidelines specific to key derivation function

9.8.1 Identification of key derivation function

In addition to the identification information in 9.1.1, the vendor shall identify the following information
on the IUT:

a) underlying algorithm(s)
EXAMPLE1 Hashing algorithms.

EXAMPLE 2  MAC algorithms.

9.8.2 | Selecting a set of conformance test items

A key dlerivation function becomes the underlying algorithm of key establishment mé&chanfjsm. However,
if the domplexity introduced is considered little, then the following KAT shouldbe selecte(d:

a) Rgndom test, which uses various key derivation key, and any additional information needed to the
[U[T and tests if each key matches the expected value.

If f more extensive test is needed, the tester may select confoymance test items listed in 9.4.2.

b) Squrce code inspection.

c) Bipary analysis.
9.8.3 | Guidelines for each conformance test item
9.8.3.1 Guidelines for black box testing

9.8.3.1.1 Guidelines for random test

In the fandom test, the tester shall stpply a random key derivation key and any additiondl information
needed to the IUT and test if eachresultant key matches the expected value.

Some key derivation functionsuse ASN.1 DER encoding. Correct encoding of the length fjeld should be
verifigd by inputting varieus lengths of key derivation keys or any additional information|

9.8.3.1.2 Representdtion of test vectors

For kel derivatioh functions, test vectors should be represented in natural order, from lefft to right.

9.8.3.2 Guidelines for white box testing

9.8.3.2.1 Guidelines for source code inspection

In order to complement the black box test, the tester should perform source code inspection that ASN.1
DER encoding is performed correctly. As the inputs are considered CSPs, guidelines in 9.1.3.1.2.1 should
be applied.

Key derivation functions are generally iterating underlying hashing algorithms or pseudorandom
functions. Each call to underlying algorithm results in partial or intermediate key value. Some
cryptographic algorithm specifications request IUTs to inhibit the outputting of the intermediate key
value before the generation of the entire key value (see Reference [23]). The tester should perform
source code inspection to verify that outputting the intermediate key values is inhibited.

However, the output inhibition might not be a matter of IUTs, but a matter of cryptographic modules
(see ISO/IEC 19790:2012, 7.10.3.2) or of security architecture under ISO/IEC 15408 (see ADV_ARC.1-5 in
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ISO/IEC 18045). For the latter case, through the cryptographic module testing, the tester should verify
that output inhibition is enforced as specified in the selected cryptographic algorithm specification.

9.8.3.2.2 Guidelines for binary analysis

Guidelines in 9.1.3.2 should be applied.

9.9 Guidelines specific to prime number generation

9.9.1 Identification of prime number generation

In addition to[the identification information in 9.1.T, the vendor shall identify the following information
on the IUT:
a) prime number generation method;
EXAMPLE|1 Using probabilistic primality test, such as Miller-Rabin primality test
EXAMPLE|2 Using deterministic methods, such as Shawe-Taylor’s algorithm,
b) underlyirjg algorithm(s);
EXAMPLE|3 Random bit generators.
EXAMPLE|4 Hashing algorithms.
c) supportefl bit length of prime;
d) error propability for probabilistic primality test.
NOTE Required error probability or resultant risk might vary depending on the context of prime usdge (see

Annex F of Ref{

9.9.2 Selec

Prime numbsg
cryptographi
prime numbe
In order to te
generation m

a) independ
independ

NOTE 1
methods.

rence [16]).

fing a set of conformance test items

r generation methods arecconsidered as high-level mechanisms compared with
C algorithms, such as hashing algorithms. In ISO/IEC 18032, there are two categd
" generation methods, either using probabilistic primality test or using determinist

pthods:

ent  verification test, where the testing tool uses probabilistic primality
ently fronithe IUT to verify that the candidate number is probable prime;

Thisindependent verification test can be applied to prime number generation using deterr

other
ries of
ic test.

5t two categories, fellowing two black box test items can be applicable to prime number

esting

hinistic

b) KAT, where the testing tool supplies intermediate values to the IUT which will lead to the resultant
prime, which tests if the resultant number matches the expected value.

NOTE 2  Some of the deterministic methods continue a set of steps until the prime is constructed. For such an
implementation, a testing interface would be needed to insert intermediate values supplied by the testing tool.

Prime number generation methods are complex compared with other algorithms. In addition to the
above test items, the following optional white box tests can be applicable to prime number generation:

a) source co

de inspection;

b) binary analysis.

40
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Guidelines for each conformance test item

9.9.3.1 Guidelines for black box testing

9.9.3.1.1 Guidelines for independent verification test for prime number generation

In ISO/IEC 18032:2005, 8.1, the error probability has to be at most 2-100, Based on the worst-case error
estimate, the tester shall apply the Miller-Rabin test with 50 iterations of the generated candidate
numbers to verify that they are probably prime.

NOTE

Annex A-

50 is based on the worst case error estimate for the Miller-Rabin Primality test in ISO/IEC 18032:2005,

In ord
generd

9.9.3.1

If the
the coj

9.9.3.1

For pr
in the

The ot
9.9.3.%

9.9.3.7

Care s
standd
e.g. pr
numbd

There
cryptd
(see 9.
9.1.3.1
has to
requir

br to verify that generated candidate numbers are random, the tester shall exerc
te at least 10 candidate numbers and verify that they are mutually independeént.

.2 Guidelines for KAT for deterministic prime number generation

UT implements a deterministic prime number generation methdd; a KAT can be
1formance by inserting intermediate values from the testing teel.

.3 Representation of test vectors

me number generation, octet strings which are conyerted from integers should b
brder of the most significant octet on the left and the'least significant octet on the 1

her parameters should be represented in natural order, from left to right.
Guidelines for white box testing

.1 Guidelines for source code inspection

rd. There are some differences between standards for specific prime number gener
me number generation(using Miller-Rabin primality test. So, the identification of s
r generation method is quite important.

are many error{conditions in prime number generation methods compared W
graphic algorithms. The tester should verify that error conditions are implemente
1.3.1.3). Also,'the tester should verify that status outputs are implemented as
4). The Miller-Rabin primality test involves a random integer or random bits. The r3
be genéerated in the specific way (or using an approved RBG) in some standards. If {
ement; guidelines in 9.1.3.1.2.2 should be followed.

se the IUT to

ised to verify

P represented
ight.

hould be taken when claiming.conformance to prime number generation based dn the specific

ption method,
elected prime

ith the other
d as specified
specified (see
ndom integer
here is such a

9.9.3.2.2 Guidelines for binary analysis

Guidelines in 9.1.3.2 should be applied.

10 Conformance testing

10.1 Level of conformance testing

For each type of algorithm in Clause 6, this document will recommend an evaluation and test method
and the relevant criteria from Clause 7 for conformance testing. Different levels of evaluation (EAL
type) can be taken into consideration to be associated with ISO/IEC 15408 Evaluation Assurance level
(EAL) and ISO/IEC 19790 security levels.

© ISO/IEC 2016 - All rights reserved 41


https://iecnorm.com/api/?name=6300e89d2379f259ee0386e16a2d27d3

ISO/IEC 18367:2016(E)

10.2 Symmetric key cryptographic algorithms

10.2.1 n-bit block cipher

10.2.1.1 General

10.2.1.1.1 Block cipher algorithms in ISO/IEC 18033-3

ISO/IEC 18033-3 specifies four 64-bit block ciphers:

a) TDEA;

b) MISTY1;

c) CAST-12§;

d) HIGHT.

TDEA uses a
other than T[}

ISO/IEC 1803
e) AES;

f) Camellia;
g) SEED.

128-bit block
bits. SEED use

10.2.1.1.2 B]

Conformance
mode of opery

a) Electroni
b) Cipher Bl
c) Cipher Fe
d) Output Fe

e) Counter

B-tuple of 64-bit keys, each of which has the property of odd-parity. 64-bit block ¢
EA use a 128-bit key.

B-3 specifies three 128-bit block ciphers:

ciphers other than SEED use a key, and thié bit length of the key is either 128, 192
s a 128-bit key.

ock cipher modes of operationin‘ISO/IEC 10116

testing for n-bit block cipher(testing can be performed together with that for block
ition. ISO/IEC 10116 specifies five modes of operation:

 Codebook (ECB);
pck Chaining (CBC);
edback (CEB);
edback(OFB);
CTR):

iphers

or 256

cipher

All of the above modes can be combined with the block cipher algorithms listed in ISO/IEC 18033-3.

10.2.1.2 Black box testing

10.2.1.2.1 Known-answer tests

For encryption and decryption, there are at least three types of known-answer tests which shall be

performed:

a) KAT-Text

(see9.2.3.1.1);

b) KAT-Key (see 9.2.3.1.2);

c) KAT-Sbox (see 9.2.3.1.3).
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In addition to these known-answer tests, other known-answer tests may be employed and performed

to test

specific parts of block cipher algorithm.

EXAMPLE1 Permutation Operation KAT (see Reference [17]).

EXAMPLE 2 Inverse Permutation KAT (see Reference [17]).

EXAMPLE 3  Initial Permutation KAT (see Reference [17]).

10.2.1

.2.2 MMT

The tester shall follow guidelines in 9.2.3.1.4.

10.2.1

The te
in 9.2.]

a) in
N(
b) ou

NOTE 2

10.2.1
Guidel

.2.3 MCT

ster shall follow guidelines in 9.2.3.1.5. The quantitative parameters, innen {oops ar
B.1.5.1 shall meet the following:

per_loops 21 000;

TE1 InReference [17], inner_loops is selected as 10 000.

ter_loops = 100;

In Reference [17], outer_loops is selected as 400.

.3 White box testing

ines in 9.2.3.2 should be followed.

10.3 Asymmetric key cryptographic algorithms

10.3.1

10.3.1
In DSA
a) Si
b) Si

Digital Signature Algorithm (DSA)

L1 General
, there are the following two security functions specified:
rnature Generationy

bnature Verification.

In reldtion to DSA, the following three security parameter generation and establishmen

define

c) D

:

main Parameter Generation;

d) Domain Parameter Verification;

e) Key Pair Generation.

d outer_loops,

methods are

The black box testing is defined for each of the above. The variables and function commonly used in the
black box testing are:
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counter The counter value that results from the domain parameter generation process when the
domain parameter seed is used to generate DSA domain parameters.

NOTE
b) Nppshall

c) The teste
counter)
implemer

10.3.1.2.2 W

The source co

FIPS 186l16] uses the different variable name, domain_parameter_seed, instead of SEED.
be greater than or equal to 10.

r shall test if the-resultant domain parameters and their associated values (SE!
can be verified” using the domain parameter verification function of the ref]
tation.

hite-box testing

g One of the DSA domain parameters; g is a generator of the g-order cyclic group of GF(p)*,
that is, an element of order g in the multiplicative group of GF(p).
Ngp The number of test records.
inhlen The input block length of the underlying hashing algorithm, in bits.
p One of the DSA domain parameters; a prime number that defines the Galois Field GF(p) and
is used as a modulus in the operations of GF(p).
q One of the DSA domain parameters; a prime factor of p - 1.
r (One component of a DSA digital signature.
s (One component of a DSA digital signature.
SEED A seed used for the generation of domain parameters.
X The DSA private key.
y The DSA public key.
10.3.1.2 Domain Parameter Generation Test
10.3.1.2.1 Black box testing
The following or equivalent steps shall be taken to perform black box testing.
a) For each pupported domain parameter size,@nd supported generation algorithm, the testdr shall
request the IUT to generate Npp sets of domain parameters p, q and g, together with SEED and
counter a$ specified in ISO/IEC 14888-3:2016, Annex D.

'D and
erence

de.inspection shall be applied to verify that

a) the selected primality test is implemented and used as specified in the selected cryptographic
algorithm standard (see 9.9), and

b) the tested implementation of the hashing algorithm is used.
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10.3.1.3 Domain Parameter Verification Test

10.3.1.3.1 Black box testing
The following or equivalent steps shall be taken to perform black box testing.

a) For each supported domain parameter size, and supported generation algorithm, the tester shall
generate Npp sets of domain parameter p and g, together with SEED and counter as specified in
[SO/IEC 14888-3:2016, Annex D, using a reference implementation.

1) Npgg shall be greater than or equal to 10.
2) € tester snall modily approximately one half of Ngg Sets randomly so that ejther (i) SEED

does not produce g, (ii) q is not prime, (iii) SEED and counter do not produce-p, (iv) p is not
prime, or (v) g does not divide p -1; the rest of Npp sets shall remain unmogdified.

b) The tester shall obtain a set of Ngg PASS or FAIL values resulting from the lHT’s domain parameter
verification method.

c) Ifthe verifiable generation of g is claimed,

1)| the tester shall generate additional Ngg sets of domain parameter p, g and g, fogether with
SEED and index, using a reference implementation,

2)| the tester shall modify three of the g values, and

3)[ the tester shall supply the five sets of domain’ parameter to the IUT and tgst if the IUT
determines unmodified g values as valid, and modified g values as invalid.

10.3.1.3.2 White box testing

The tefter should inspect the source code toverify that the selected primality test is really[implemented.
10.3.14 Key Pair Generation Test

10.3.1,4.1 Black box testing
The following or equivalentsteps shall be taken to perform black box testing.

a) Fdr each supportéd domain parameter size, the tester shall generate one set of domain parameter
p, g and g, using:a-reference implementation.

b) THhe tester shall request the IUT to generate Ngp sets of private/public key pair (x] y), using the
ddmainparameter.

1)| “VgB shall be greater than or equal to 10.

c) To determine correctness, the tester shall verify that the equality (y = g*¥ mod p) holds for each
generated key pair (x, y), by using the domain parameter.

10.3.1.4.2 White box testing
The source code inspection should be applied to verify that

a) the private key is generated using the RBG which meets the requirements on the selected
cryptographic algorithm standard, and

b) the private key value resides in the range of the selected cryptographic algorithm standard.
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10.3.1.5 Signature Generation Test

10.3.1.5.1 Black box testing

The following or equivalent steps shall be taken to perform black box testing.

a)

b)

c)

For each supported domain parameter size and underlying hashing algorithm pair, the tester shall
generate (i) a single set of domain parameter p, g and g, and (ii) Ngp sets of long messages.

1) Nppg shall be greater than or equal to 10. If the tester focuses on the black box testing more, at
least 512 sets of test vectors should be supplied to the IUT (see 9.1.2).

2) The Igngth of messages should be selected by considering the underlying hashing algorithms.

EXAMPLE| By introducing the variable inhlen for the input block length of the underlying hashinig algprithm,
Npp sets of long messages are selected by generating (Ngg/2) messages of the length, (2 * inhlen)sand (Ngp/2)
messages pf the length, (2 * inhlen + k), where k is less than the input block length.

The testqr shall supply values generated in the previous step to the IUT,and obtain, for each
message, [a public key and the resulting signature value (r, s).

The testqr shall test if the resultant signatures can be verified using the signature verifjcation
function ¢f the reference implementation.

Note that if the insertion of a per-message secret number is allowed\by the IUT, this black box festing
becomes det¢rministic. If not, this independent verification test still works without the int¢rnally

generated per-message secret number.

10.3.1.5.2 Wihite box testing

The source cgde inspection shall be applied to verify'that

a)
b)

c)

10.3.1.6 Signature Verification Test

46

the randgm bit generator is called each time.to generate the per-message secret number,
the salt ig zeroised, and

integer td octet string conversion is.cohformant to the selected standard while considering cqmmon
mistakes|in A.1.

nerate
ture (r,

s) tuples.

1) Npp shall be greater than or equal to 15.

2) The length of messages should be selected by considering the underlying hashing algorithms.
EXAMPLE By introducing the variable inhlen for the input block length of the underlying hashing algorithm,
Npgp sets of long messages are selected by generating (Ngg/2) messages of the length, (2 * inhlen), and (Ngg/2)
messages of the length, (2 * inhlen + k), where k is less than the input block length.

3) The tester shall select approximately one half of Ngg sets randomly, and shall modify one of the
values (message, public key, r or s) in the tuples; the rest of Ngp sets shall remain unmodified.
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4) Considering common mistakes in A.1, signatures with non-conformant lengths should be
included in the black box testing.

The tester shall supply values generated in the previous step to the IUT, and obtain in response a
set of Ngg PASS or FAIL values.

The tester shall verify that PASS results correspond to the unmodified sets and FAIL results
correspond to modified sets.

10.3.1.6.2 White box testing

The source code inspection should be applied to verify that

a)

10.3.2 RSA

10.3.2l1 Introduction

In RSA, there are the following security functions specified:

a)
b)

signatures with non-conformant lengths are rejected by the IUT.

Signature Generation;

Signature Verification.

NOTE ISO/IEC 14888-2 includes RSA and RW schemes which'can be made identical to RSASSA{PSS algorithm.

The blpack box testing is defined for each of the abowe. The variables commonly used in|the black box

testing are:

e The public verification exponent of an RSA public key.
Nggp The number of test records:
inhlen The input block lengthlof the underlying hashing algorithm, in bits.

10.3.2,2 Signature Generation Test

10.3.2.2.1 Black box-testing

The following or eguivalent steps shall be taken to perform black box testing.

a)

b)

Far each supported modulus size and underlying hashing algorithm pair, the tester ghall generate
Ngg sefs,of long messages and per-message secret number, and generate one RSA key|pair.

1) A’r\B shall he nrnafnr than or nnna] to10 Ifthe tester focuses an-the hlack haox tel tlng more, at
least 512 sets of test vectors should be supplied to the IUT (see 9.1.2).

2) The length of messages should be selected by considering the underlying hashing algorithms.

EXAMPLE By introducing the variable inhlen for the input block length of the underlying hashing algorithm,
Npgg sets of long messages are selected by generating (Ngg/2) messages of the length, (2 * inhlen), and (Ngg/2)
messages of the length, (2 * inhlen + k), where k is less than the input block length.

The tester shall supply values generated in step a) to the IUT, and obtain Npp sets of signatures
from the IUT.

The tester shall test if the resultant signatures can be verified using the signature verification
function of the reference implementation.
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Note that if the insertion of the per-message secret number is allowed to the IUT, this black box testing
becomes deterministic. If not, this independent verification test still works without the internally
generated per-message secret number.

10.3.2.2.2 White box testing
The source code inspection shall be applied to verify that
a) therandom bit generator is called each time to generate salt,

b) the saltis zeroised, and

c) the integfTt0O OCtEt SITINE CONVETSION 15 CONMfOTTAaNt to the sefected standard wittte considering

common mistakes in A.1.
10.3.2.3 Sigmature Verification Test

10.3.2.3.1 Black box testing
The following or equivalent steps shall be taken to perform black box testing:

a) For each pupported modulus size and underlying hashing algorithm pair, the tester shall ggnerate
Npp sets ¢f messages, public key and signature.

1) Npp ghall be greater than or equal to 15. If the tester focuses on the black box testing more, at
least[512 sets of test vectors should be supplied to the-lUT (see 9.1.2).

2) The length of messages should be selected by considering the underlying hashing algorithms.

EXAMPLE| By introducing the variable inhlen for the inpuit block length of the underlying hashing algprithm,
Npp sets of long messages are selected by generating (Ngg/2) messages of the length, (2 * inhlen), and (Ngp/2)
messages pf the length, (2 * inhlen + k), where k isless than the input block length.

3) The gester shall select approximately, one half of Ngg sets and shall modify one of the [values
(message, public key exponent e or signature) in the sets.

4) Consldering common mistaKes in A.1, signatures with non-conformant lengths shopuld be
inclugled in the black box testing.

5) Somd standards have specific requirements on the public key exponent e (see Referenc¢ [16]),
so thp tester should\nodify the public key exponent e, in order to test if the IUT rejects such
invalld public keyzexponent e.

b) The testerl shall supply the Ngp sets to the IUT and obtain in response a set of Ngg PASS or FAIL yalues.

c) The testdr Shall verify that PASS results correspond to the unmodified sets and FAIL fesults
correspohdto modified sets

10.3.2.3.2 White box testing

The source code inspection should be applied to verify that

a) signatures with non-conformant lengths are rejected by the IUT,
b) invalid public key exponent e is rejected by the IUT, and

c) specified encoding rules are verified by the IUT.
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10.3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

10.3.3.1 General

In ECDSA, there are the following two security functions specified:
a) Signature Generation;

b) Signature Verification.

In relation to ECDSA, the following two security parameter generation and establishment methods are
defined:

a) Kdqy Pair Generation;
b) Pyblic Key Validation.

The black box testing is defined for each of the above. The variables and functien commonjly used in the
black hox testing are:

Npp The number of test records.

inhlen The input block length of the underlying hashing algotrithm, in bits.
r One component of an ECDSA digital signature,

s One component of an ECDSA digital signature.

10.3.32 Key Pair Generation Test

10.3.3.2.1 Black box testing
The following or equivalent steps shall be taken to perform black box testing.

a) Fdreach selected domain parameter, the tester shall request the IUT to generate Ngp private/public
kely pairs.

1)| Npgg shall be greater than or equal to 10.

b) Tq determine corréctness, the tester shall verify that the generated key pairs pass the public key
verification (PKV)-function of a reference implementation.

10.3.3{2.2 White box testing

The souree.code inspection should be applied to verify that
a) the private Key 1s generated using the RBG which meets the requirements on the selected

cryptographic algorithm standard, and

b) the private key value resides in the range of the selected cryptographic algorithm standard.

10.3.3.3 Public Key Validation
The following or equivalent steps shall be taken to perform black box testing.

a) For each selected domain parameter, the tester shall generate Ngg private/public key pairs using
the key generation function of a reference implementation.

1) Npggshall be greater than or equal to 10.
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b)

2) The tester shall modify approximately one half of Ngg sets so that public keys are invalid,
leaving the rest of Ngg sets unmodified (i.e. valid).

The tester shall supply values generated in the previous step to the IUT, and obtain in response a
set of Ngg PASS or FAIL values.

The tester shall verify that PASS results correspond to the unmodified sets and FAIL results
correspond to modified sets.

10.3.3.4 Signature Generation Test

10.3.3.4.1 Blackboxtesting

The following or equivalent steps shall be taken to perform black box testing.

a)

b)

10.3.3.4.2 White box testing

The source cdde inspection should be applied to verify that

a)
b)

10.3.3.5 Sigmature Verification Test

The following or equivalent steps shall be taken to perform black box testing.

a)

b)

50

For each|selected domain parameter and underlying hashing algorithm pair,.the testel shall
generate |Vgp sets of long messages.

1) Npp ghall be greater than or equal to 10. If the tester focuses on the blackbox testing more, at
least|512 sets of test vectors should be supplied to the IUT (see 9.1.2Y:

2) The length of messages should be selected by considering the underlying hashing algorithms.

EXAMPLE| By introducing the variable inhlen for the input block length¢ofthe underlying hashing algprithm,
Npg sets of long messages are selected by generating (Ngg/2) messages-of the length, (2 * inhlen), and (Ngp/2)
messages pf the length, (2 * inhlen + k), where k is less than the input block length.

The testqr shall supply values generated in the previeus step to the IUT, and obtain, for each
message, [a public key and the resulting signature valueXr, s).

To deterthine correctness, the tester shall use the signature verification function of a reference
implemenjtation.

the randgm bit generator is called each time to generate salt, and

the salt i zeroised.

For each|seélected domain parameter and underlying hashing algorithm pair, the testel shall

I re o C Llial 3 o L S AU |
generate VBB SEtSormessage;, puorrc Reyana sigiratutre {75 tuptres:

1) Nppshall be greater than or equal to 15.

2) The length of messages should be selected by considering the underlying hashing algorithms.

EXAMPLE By introducing the variable inhlen for the input block length of the underlying hashing algorithm,
Npgp sets of long messages are selected by generating (Ngg/2) messages of the length, (2 * inhlen), and (Ngp
/2) messages of the length, (2 * inhlen + k), where k is less than the input block length.

3) The tester shall select approximately one half of Ngg sets randomly and shall modify one of
the values (message, public key or signature) in the tuples; the rest of Ngp sets shall remain
unmodified.

The tester shall supply values generated in the previous step to the IUT, and obtain in response a
set of Ngg PASS or FAIL values.
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c) The tester and shall verify that PASS results correspond to the unmodified sets and FAIL results
correspond to modified sets.

10.4 Dedicated hashing algorithms

10.4.1

General

The IUTs may be either octet-oriented implementations, or bit-oriented implementations. The former
implementations hash messages that are an integral number of octets in length, i.e. the length (in bits) of
the message to be hashed is divisible by 8. The latter implementations hash messages of arbitrary length.

10.4.2

10.4.2

For ea
apply §

10.4.2

For ea

10.4.2
For ea

apply §
greate

10.4.3

Black box testing

L1 Short message test

ch hashing algorithm implementation, the tester shall follow guidelin€s-in 9.4.3.1
ruidelines, the values of m are listed in Table 11.

Table 11 — Values of m for dedicated hashingalgorithms

Name of hashing algorithm |Value of m in9.4.3.1.1.

SHA-1 512

SHA-224 512
SHA-256 512
SHA-384 1024
SHA-512 1024
SHA-512/224 1024
SHA-512/256 1024

.2 Selected long message test

Ch hashing algorithm implementation, the tester shall follow guidelines in 9.4.3.1.2,

.3 Monte Carlo test

ch hashing algorithm implementation, the tester shall follow guidelines in 9.4.3.1
buidelines, the value of inner._loops shall be greater than or equal to 1 000, and outer]
I than equdlto 100.

White box testing

1. In order to

3. In order to
loops shall be

For ea

Ch hasning algorithm implementation, the tester shall Tollow guidelines 1n 7.4.5.4.

10.5 Message Authentication Codes (MAC)

10.5.1

10.5.1

Black box testing

.1 MAC generation function

The following or equivalent steps shall be taken to perform black box testing.

a) For each supported bit length or range of bit lengths of the cryptographic key, the tester shall

ra

1)

©150/1

ndomly generate Npg sets of cryptographic key and message.

For dedicated hashing algorithms, several length of keys shall be included.

EC 2016 - All rights reserved

51


https://iecnorm.com/api/?name=6300e89d2379f259ee0386e16a2d27d3

ISO/IEC 18367:2016(E)

b)

10.5.1.2 MAC verification function

The following or equivalent steps shall be taken to perform black boxtesting.

a)

b)

NOTE1 In MAC Algorithm 2 of ISO/IEC 9797-2, the key size k in bits is defined to be at least Lz, where L3 is
the bit length of the message digest, and at most L bits, where L1 in ISO/IEC 10118-1:2000, 4.1, i.e. Ly < k < L.

NOTE 2  In Reference [21], the key size k in bits is divided into three cases: (i) k < L1, (ii) k=L1 and (iii) L1 < k.

2) Several lengths of messages shall be included.

EXAMPLE 1 Message of zero length, if supported.

EXAMPLE 2 Message, length of which is not a multiple of length of block size of underlying block
cipher algorithm (see Reference [24]).

EXAMPLE 3 Message of length up to 216 octets (see Reference [24]).

EXAMPLE4 For MACs using dedicated hashing algorithms, guidelines in 9.4.3.1 can be applicpble.

The testqr shall supply values generated in the previous step to the IUT, and obtain, for each
message, [the resulting MAC T.

The testdr shall test if the resultant MACs can be verified using the MAC verification funcftion of
reference implementation.

For each [supported bit length or range of bit lengths of thie’ cryptographic key, the tester shall
randomlyf generate Ngpg sets of cryptographic key, messagejand corresponding MAC.

1) For dedicated hashing algorithms, several lengths.0f key shall be included.

NOTE1 [InMAC Algorithm 2 of ISO/IEC 9797-2, the Key'size k in bits is defined to be atleast Ly, whdre L; is
the bit length of the message digest, and at most L bits; where L1 in ISO/IEC 10118-1:2000, 4.1,i.e. Ly § k< L1.

NOTE 2 |In Reference [21], the key size k in bitsis divided into three cases: (i) k < Ly, (ii) k=L1 and (iii) L1 < k.

2) The deveral lengths of messages shal be included.

EXAMPLE|1 Message of zerotength, if supported.

EXAMPLE|2 Message, lefigth of which is not a multiple of length of block size of underlying block
cipher algprithm (see Reference|24]).

EXAMPLE|3 Message of length up to 216 octets (see Reference [24]).

EXAMPLE|4 For MACs using dedicated hashing algorithms, guidelines in 9.4.3.1 can be applicpble.

3) The tpster-shall select approximately one half of Ngg sets randomly, and shall modify ong of the
valugs.feryptographic key, message, or MAC) in the tuples.

The tester shall supply the Npp sets to the IUT and obtain in response a set of Ngg PASS or FAIL values.

The tester and shall verify that PASS results correspond to the unmodified sets and FAIL results
correspond to modified sets.

10.5.2 White box testing

The source code inspection shall be applied to verify that

a)
b)

52

intermediate secret values related to subkeys or derived keys are zeroised, and

for the MAC verification function, the final step of comparing generated MAC with supplied MAC is
included in the boundary of the IUT.
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10.6 Authenticated encryption

10.6.1

10.6.1.

Black box testing

1 Generation-encryption function

The following or equivalent steps shall be taken to perform black box testing.

a) For each supported bit length of the cryptographic key and supported MAC tag length, the tester
shall generate Npp sets of the following information:

1)

acruntogranhic kev K-
A S o I o8 Yty

2)

N(
3)

N(
4)
N(
N(

N(

vafiables, but has to obtain starting variables generated by the IUT (see Reference [28]).

N(
b) Ny
c) T}

1)

2)
d) T

a message;
i) Several lengths of messages shall be included.
TE1 This case is called the “variable payload test” in Reference [25].
an additional authentication data, 4;
i) Several lengths of additional authentication data shallbe included.
TE2  This case is called the “variable associated data test” in"Reference [25].
a starting variable, S, for CCM and GCM.
TE3  The starting variable S is also known as the fionce in CCM (see Reference [26]).
TE4  The starting variable S is also known as‘the initialization vector in GCM (see Refel

TE5  If the IUT itself generates the starting variable S, the tester does not have to ge

i) The supported lengths ofthe starting variable shall be included.
TE 6  This case is called the yariable nonce test in Reference [25].
B shall be greater than or'equal to 15.
e tester shall supply-values generated in the previous step to the IUT, and obtain, for

a ciphertext.and a MAC tag, which are either concatenated into single octet array
provided)and

a starting variable, S, for GCM, if the IUT itself generates the starting variable S.

ence [27]).

herate starting

each message

or separately

etester shall test if the resultant ciphertexts and MAC tags can be verified using th

e decryption-

ve

10.6.1.

ITICAation runction or rererence mmplementation.

2 Decryption-verification function

The following or equivalent steps shall be taken to perform black box testing.

a) For each supported bit length of the cryptographic key and supported MAC tag length, the tester
shall randomly generate Ngp sets of the following information:

1)

a cryptographic key, K;
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2) amessage;
i) Several lengths of messages shall be included.
3) an additional authentication data, 4;
i) Several lengths of additional authentication data shall be included.
4) astarting variable, S, for CCM and GCM;
NOTE1 The starting variable S is also known as the nonce in CCM (see Reference [26]).

NOTE 2  The starting variable S is also known as the initialization vector in GCM (see Reference [27]).

i) he supported lengths of the starting variable shall be included.
5) corrgsponding ciphertext and MAC tag.
b) Nppshallbe greater than or equal to 15.

c) The testdr shall select approximately one half of Ngg sets randomly and/shall modify one|of the
values (aglditional authentication data, starting variable, ciphertext or MAC tag) in the tuples; the
rest of Ngg sets shall remain unmodified.

d) The testef shall supply values generated in the previous step to theJJUT, and obtain
1) Ngp gets of PASS or FAIL values, and
2) decrypted message for each PASS case.

e) The testgr shall verify that PASS results correspond’to the unmodified sets and FAIL fesults
correspond to modified sets.

f) The testef shall verify that the decrypted message matches the original message for each PASS case.

10.6.2 White box testing
The source cdde inspection shall be applied to verify that

a) intermedjate secret values are zeroised.
10.7 Deterministic Random Bit Generation algorithms
10.7.1 DRBG based enISO/IEC 18031

10.7.1.1 Blagkbbox testing

10.7.1.1.1 General

In ISO/IEC 18031, the reseed function and prediction resistance request parameter are defined.
The prediction resistance request parameter makes sense for IlUTs which support reseed function.
Therefore, IUTs based on ISO/IEC 18031 will be categorized into the following three cases:

a) DRBG with reseed capability and with capability of processing prediction resistance request;

b) DRBG with reseed capability, but without capability of processing prediction resistance request;

c) DRBG without reseed capability.

The black box testing for cases a), b) and c) are defined in 10.7.1.1.2,10.7.1.1.3,and 10.7.1.1.4, respectively.

The variables and function commonly used in the black box testing are:
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