
Information technology — Guidance 
for the use of database language 
SQL —
Part 5: 
Row pattern recognition
Technologies de l'information — Recommandations pour l'utilisation 
du langage de base de données SQL —
Partie 5: Reconnaissance de formes de lignes

© ISO/IEC 2021

INTERNATIONAL 
STANDARD

ISO/IEC
19075-5

Reference number
ISO/IEC 19075-5:2021(E)

First edition
2021-08

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


﻿

ISO/IEC 19075-5:2021(E)
﻿

ii� © ISO/IEC 2021 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

©  ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may 
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting 
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address 
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Contents Page

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Normative references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Terms and definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Row pattern recognition: FROM clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.1 Context of row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Introduction to the FROM clause in row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Example of ONE ROW PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.4 Example of ALL ROWS PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Summary of the syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.6 The row pattern input table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6.1 Introduction to the row pattern input table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6.2 The row pattern input name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6.3 The row pattern input declared column list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 MATCH_RECOGNIZE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 PARTITION BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9 ORDER BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.10 Row pattern variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.11 MEASURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.12.1 Introduction to use of ROWS PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.12.2 Handling empty matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.12.3 Handling unmatched rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 AFTER MATCH SKIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14 PATTERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.14.1 Introduction to the PATTERN syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.14.2 PERMUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.14.3 Excluding portions of the pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.15 SUBSET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.16 DEFINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.17 The row pattern output table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.17.1 Introduction to the row pattern output table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.17.2 Row pattern output name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.17.3 Row pattern output declared column list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.18 Prohibited nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.18.1 Introduction to prohibited nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.18.2 Row pattern recognition nested within another row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . 30

© ISO/IEC 2021 – All rights reserved iii

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.18.3 Outer references within a row pattern recognition query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.18.4 Conventional query nested within row pattern recognition query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.18.5 Recursion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.18.6 Concatenated row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Expressions in MEASURES and DEFINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Introduction to the use of expressions in MEASURES and DEFINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Row pattern column references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Running vs. final semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 RUNNING vs.FINAL keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Row pattern navigation operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.1 The four operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.2 PREV and NEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.3 FIRST and LAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.4 Nesting FIRST and LAST within PREV or NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Ordinary row pattern column references reconsidered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 MATCH_NUMBER function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 CLASSIFIER function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Row pattern recognition: WINDOW clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Introduction to the WINDOW clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Example of row pattern recognition in a window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Summary of the syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Syntax components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Syntactic comparison to windows without row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Syntactic comparison to MATCH_RECOGNIZE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Row pattern input table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Row pattern variables and other range variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Windows defined on windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.7 PARTITION BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.8 ORDER BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9 MEASURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10 Full window frame and reduced window frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10.1 Introduction to window framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10.2 ROWS BETWEEN CURRENT ROW AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.10.3 EXCLUDE NO OTHERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.11 AFTER MATCH SKIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12 INITIAL vs SEEK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.13 PATTERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.14 SUBSET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.15 DEFINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.16 Empty matches and empty reduced window frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.17 Prohibited nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.17.1 Restrictions on nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.17.2 Row pattern recognition nested within another row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . 60
6.17.3 Outer references within a row pattern recognition query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.17.4 Conventional query nested within row pattern recognition query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.17.5 Recursion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iv © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


6.17.6 Concatenated row pattern recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Pattern matching rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 Regular expression engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Parenthesized language and preferment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.1 Introduction to parenthesized language and preferment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Alternation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.3 Concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.4 Quantification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.5 Exclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.6 Anchors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.7 The empty pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.8 Infinite repetitions of empty matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Pattern matching in theory and practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

© ISO/IEC 2021 – All rights reserved v

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Tables

Table Page

1 Sample data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Results of ONE ROW PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Results of ALL ROWS PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Row pattern recognition syntax summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Analysis of sample data permitting empty matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Result of query permitting empty matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 Results of query using SHOW EMPTY ROWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Results of query using OMIT EMPTY ROWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 Results of ALL ROWS PER MATCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 Original and renamed column names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11 Ordered row pattern partition of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12 RUNNING and FINAL in MEASURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13 Ordered row pattern partition of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Ordered row pattern partition of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
15 Example data set and mappings for FIRST and LAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
16 Data set and mappings for nesting example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
17 Window example query results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
18 Row pattern recognition in windows — syntax summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
19 Results for empty match and no match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
20 Computation of matches and window function results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
21 Input data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
22 Mapping of first element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
23 Mapping of second element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
24 Mapping of third element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISOand IEC technical committees collaborate infieldsofmutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This documentwas drafted in accordancewith the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/mem-
bers_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not beheld responsible for identifying anyor all suchpatent rights. Details
of anypatent rights identifiedduring thedevelopment of the documentwill be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents), or the IEC list of patent
declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanationof the voluntarynature of standards, themeaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO’s adherence to the World Trade
Organization (WTO)principles in theTechnical Barriers toTrade (TBT) seewww.iso.org/iso/fore-
word.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 32, Data management and interchange.

This first edition of ISO/IEC 19075-5 cancels and replaces ISO/IEC TR 19075-5:2016.

This document is intended to be used in conjunctionwith the following editions of the parts of the ISO/IEC
9075 series:

— ISO/IEC 9075-1, sixth edition or later;

— ISO/IEC 9075-2, sixth edition or later;

— ISO/IEC 9075-3, sixth edition or later;

— ISO/IEC 9075-4, seventh edition or later;

— ISO/IEC 9075-9, fifth edition or later;

— ISO/IEC 9075-10, fifth edition or later;

— ISO/IEC 9075-11, fifth edition or later;

— ISO/IEC 9075-13, fifth edition or later;

— ISO/IEC 9075-14, sixth edition or later;

— ISO/IEC 9075-15, second edition or later;

— ISO/IEC 9075-16, first edition or later.

© ISO/IEC 2021 – All rights reserved vii

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iec.ch/members_experts/refdocs
www.iso.org/patents
patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


A list of all parts in the ISO/IEC 19075 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/-
national-committees.

viii © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Introduction

This document discusses the syntax and semantics for recognizing patterns in rows of a table, as defined
in ISO/IEC 9075-2.

The organization of this document is as follows:

1) Clause 1, “Scope”, specifies the scope of this document.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this
document, constitute provisions of this document.

3) Clause 3, “Terms and definitions”, defines the terms and definitions used in this document.

4) Clause 4, “Rowpattern recognition: FROMclause”, discusses FeatureR010, “Rowpattern recognition:
FROM clause”.

5) Clause 5, “Expressions inMEASURES andDEFINE”, discusses scalar expression syntax in rowpattern
matching.

6) Clause 6, “Row pattern recognition: WINDOW clause”, discusses Feature R020, “Row pattern recog-
nition: WINDOW clause”. Clause 6, “Row pattern recognition: WINDOW clause”, does not duplicate
material already presented in Clause 4, “Row pattern recognition: FROM clause” and Clause 5,
“Expressions in MEASURES and DEFINE”, which should be read even if the reader is only interested
in Feature R020, “Row pattern recognition: WINDOW clause”.

7) Clause 7, “Pattern matching rules”, discusses the formal rules of pattern matching.

© ISO/IEC 2021 – All rights reserved ix

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


INTERNATIONAL STANDARD ISO/IEC 19075-5:2021(E)

Information technology—Guidance for the use of database language SQL—

Part 5:
Row pattern recognition

1 Scope

This document discusses the syntax and semantics for recognizing patterns in rows of a table, as defined
in ISO/IEC 9075-2, commonly called “SQL/RPR”.

SQL/RPR defines two features regarding row pattern recognition:

— Feature R010, “Row pattern recognition: FROM clause”

— Feature R020, “Row pattern recognition: WINDOW clause”

These two features have considerable syntax and semantics in common, the principle difference being
whether the syntax is placed in the FROM clause or in the WINDOW clause.

© ISO/IEC 2021 – All rights reserved 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


2 Normative references

The following documents are referred to in the text in such a way that some or all of their content consti-
tutes requirements of this document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9075-1, Information technology— Database languages — SQL— Part 1: Framework
(SQL/Framework)

ISO/IEC 9075-2, Information technology— Database languages — SQL— Part 2: Foundation
(SQL/Foundation)

2 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9075-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

© ISO/IEC 2021 – All rights reserved 3

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

http://www.electropedia.org/
http://www.iso.org/obp
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4 Row pattern recognition: FROM clause

4.1 Context of row pattern recognition

The requirements for the material discussed in this document shall be as specified in ISO/IEC 9075-1
and ISO/IEC 9075-2.

4.2 Introduction to the FROM clause in row pattern recognition

Feature R010, “Row pattern recognition: FROM clause” of SQL/RPR enhances the capability of the FROM
clause with a MATCH_RECOGNIZE clause to specify a row pattern. The syntax and semantics of a row
pattern is discussed through examples presented throughout this Clause of this document.

There are two principal variants of the MATCH_RECOGNIZE clause:

1) ONE ROW PER MATCH, which returns a single summary row for each match of the pattern (the
default).

2) ALL ROWS PER MATCH, which returns one row for each row of each match. There are three subop-
tions, to control whether to also return empty matches or unmatched rows.

4.3 Example of ONE ROW PERMATCH

The following example illustratesMATCH_RECOGNIZEwith theONEROWPERMATCHoption. Let Ticker
(Symbol, Tradeday, Price) be a table with three columns representing historical stock prices. Symbol is
a character column, Tradeday is a date column, and Price is a numeric column.

NOTE 1— All examples in this document use mixed-case identifiers for the names of tables, columns, etc., whereas SQL
key words are shown in uppercase. Unquoted identifiers are actually equivalent to uppercase, so the column headings of
sample results will be shown with the identifiers converted to uppercase.

It is desired to partition the data by Symbol, sort it into increasing Tradeday order, and then detect
maximal “V” patterns in Price: a strictly falling price, followed by a strictly increasing price. For each
match to a V pattern, it is desired to report the starting price, the price at the bottom of the V, the ending
price, and the average price across the entire pattern.

The following query may be used to solve this pattern matching problem:

SELECT M.Symbol, /* ticker symbol */
       M.Matchno, /* sequential match number */
       M.Startp, /* starting price */
       M.Bottomp, /* bottom price */
       M.Endp, /* ending price */
       M.Avgp /* average price */
FROM Ticker

MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

4 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


                  A.Price AS Startp,
LAST (B.Price) AS Bottomp,
LAST (C.Price) AS Endp,
AVG (U.Price) AS Avgp

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Price < PREV (B.Price),
                C AS C.Price > PREV (C.Price)
       ) AS M

In the example above, the principal syntactic elements of MATCH_RECOGNIZE are presented on separate
lines. In this example:

— Ticker is the name of the row pattern input table. In this example, the row pattern input table is a
table or view. The row pattern input table may also be a derived table (in-line view).

— MATCH_RECOGNIZE introduces the syntax for row pattern recognition.

— PARTITION BY specifies how to partition the row pattern input table. The PARTITION BY clause is
a list of columns of the row pattern input table. This clause is optional; if omitted, there are no row
pattern partitioning columns, and the entire row pattern input table constitutes a single row pattern
partition.

— ORDER BY specifies how to order the rows within row pattern partitions. The ORDER BY clause is
a list of columns of the row pattern input table. This clause is optional; if omitted, the order of rows
in rowpattern partitions is completely non-deterministic. However, since non-deterministic ordering
will defeat thepurposeofmost rowpattern recognition, theORDERBYclausewill usually be specified.

— MEASURES specifies row pattern measure columns, whose values are calculated by evaluating
expressions related to the match. The first row pattern measure column in this example uses the
special nullary functionMATCH_NUMBER(), whose value is the sequential number of amatchwithin
a row pattern partition. The third and fourth row pattern measure columns in this example use the
LAST operation, which obtains the value of an expression in the last row that is mapped by a row
pattern match to a row pattern variable. LAST is one of the row pattern navigation operations
introduced by SQL/RPR, discussed in Subclause 5.6, “Row pattern navigation operations”.

The result of the MATCH_RECOGNIZE clause is called the row pattern output table. When ONE ROW
PER MATCH is specified, as in this example, the row pattern output table has one column for each
row pattern partitioning column and one column for each row pattern measure column.

— ONE ROW PER MATCH specifies that the row pattern output table will have a single row for each
match that is found in the row pattern input table.

— AFTER MATCH SKIP clause specifies where to resume looking for the next row pattern match after
successfully finding a match. In this example, AFTER MATCH SKIP PAST LAST ROW specifies that
pattern matching will resume after the last row of a successful match.

— PATTERN specifies the row pattern that is sought in the row pattern input table. A row pattern is a
regular expression using primary row pattern variables. In this example, the row pattern has three
primary row pattern variables (A, B, and C).

— SUBSET defines the union row pattern variable U as the union of the primary row pattern variables
A, B, and C.

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row shall
satisfy the Boolean condition in order to be mapped to a particular primary row pattern variable.
This example uses PREV, a row pattern navigation operation that evaluates an expression in the
previous row. If a primary rowpattern variable is not defined in theDEFINE clause, then thedefinition

© ISO/IEC 2021 – All rights reserved 5

ISO/IEC 19075-5:2021(E)
4.3 Example of ONE ROW PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


defaults to a condition that is always true, meaning that any row can be mapped to the primary row
pattern variable.

— AS M defines the range variable M to associate with the row pattern output table. This clause is
optional; if omitted, then an implementation-dependent range variable is used. Since an implemen-
tation-dependent range variable is unknowable to the query writer, the AS clause should not be
omitted if there are any other tables in the FROM clause aside from the MATCH_RECOGNIZE.

The processing of MATCH_RECOGNIZE is as follows:

1) The row pattern input table is partitioned according to the PARTITION BY clause. Each row pattern
partition consists of the set of rows of the row pattern input table that are equal (more precisely,
not distinct) on the row pattern partitioning columns.

2) Each row pattern partition is ordered according to the ORDER BY clause.

3) Each ordered row pattern partition is searched for matches to the PATTERN.

4) Pattern matching operates by seeking the match at the earliest row, considering the rows in a row
pattern partition in the order specified by the ORDER BY. When there is more than one match at a
row, then the most preferred match is taken. The precise rules of pattern matching are discussed in
Clause 7, “Pattern matching rules”.

5) After a match is found, row pattern matching calculates the row pattern measure columns, which
are expressions defined by the MEASURES clause.

6) Using ONE ROW PER MATCH, as shown in the example, row pattern recognition generates one row
for each match that is found.

7) The AFTER MATCH SKIP clause determines where row pattern matching resumes within a row
pattern partition after a non-empty match has been found. In the example above, row pattern
matching resumes at the next row after the rows mapped by a match (AFTER MATCH SKIP PAST
LAST ROW).

Table 1, “Sample data”, illustrates sample data for one row pattern partition of Ticker, shown sorted
according to the ORDER BY clause. The sample data contains two matches to the pattern, indicated by
arrows showing the mapping to primary row pattern variables in each match.

6 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.3 Example of ONE ROW PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Table 1— Sample data

PRICETRADEDAYSYMBOL

502009-06-08XYZ

⎫→ A602009-06-09XYZ

⎪→ B492009-06-10XYZ

⎬ first match→ B402009-06-11XYZ

⎪→ B352009-06-12XYZ

⎭→ C452009-06-15XYZ

452009-06-16XYZ

⎫→ A452009-06-17XYZ

⎪→ B432009-06-18XYZ

⎬ second match→ C472009-06-19XYZ

⎪→ C522009-06-22XYZ

⎭→ C702009-06-23XYZ

602009-06-24XYZ

The result of the example for this row pattern partition is shown in Table 2, “Results of ONE ROW PER
MATCH”.

Table 2— Results of ONE ROW PERMATCH

AVGPENDPBOTTOMPSTARTPMATCHNOSYMBOL

45.84535601XYZ

51.47043452XYZ

4.4 Example of ALL ROWS PERMATCH

The previous example can be modified slightly to illustrate ALL ROWS PER MATCH, as follows:

SELECT M.Symbol, /* ticker symbol */
       M.Matchno, /* sequential match number */
       M.Tradeday, /* day of trading */
       M.Price, /* price on day of trading */
       M.Classy, /* classifier */
       M.Startp, /* starting price */
       M.Bottomp, /* bottom price */

© ISO/IEC 2021 – All rights reserved 7

ISO/IEC 19075-5:2021(E)
4.3 Example of ONE ROW PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


       M.Endp, /* ending price */
       M.Avgp /* average price */
FROM Ticker

MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

CLASSIFIER() AS Classy,
                  A.Price AS Startp,

FINAL LAST (B.Price) AS Bottomp,
FINAL LAST (C.Price) AS Endp,
FINAL AVG (U.Price) AS Avgp

ALL ROWS PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Price < PREV (B.Price),
                C AS C.Price > PREV (C.Price)
       ) AS M

Note that the second row pattern measure column in this example shows the use of the special function
CLASSIFIER(), which returns the nameof the rowpattern variable towhich a row ismapped. CLASSIFIER
is discussed in Subclause 5.9, “CLASSIFIER function”.

The result of this query on the sample data is shown in Table 3, “Results of ALL ROWS PER MATCH”.

Table 3— Results of ALL ROWS PERMATCH

AVGPENDPBOT
TOMP

STAR
TP

CLAS
SY

PRICETRADEDAYMA
TC
HN
O

SYM
BOL

45.8453560A602009-06-091XYZ

45.8453560B492009-06-101XYZ

45.8453560B402009-06-111XYZ

45.8453560B352009-06-121XYZ

45.8453560C452009-06-151XYZ

51.4704345A452009-06-172XYZ

51.4704345B432009-06-182XYZ

51.4704345C472009-06-192XYZ

51.4704345C522009-06-222XYZ

51.4704345C702009-06-232XYZ

ALL ROWS PER MATCH differs from ONE ROW PER MATCH in the following respects:

1) ALL ROWS PER MATCH returns one row for each row of each match of the pattern.

8 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.4 Example of ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


2) The row pattern output table has a column corresponding to every column of the row pattern input
table, not just the row pattern partitioning columns. (Note the column M.Price in the SELECT list.
This is a column of the row pattern input table, not a row pattern measure column.)

3) The MEASURES clause supports two semantics for expression evaluation, running semantics and
final semantics, indicated by the keywords RUNNING and FINAL.

4) ALLROWSPERMATCHprovides three suboptions for handling emptymatches andunmatched rows.
These options are not illustrated in this example; see Subclause 4.12.2, “Handling empty matches”,
and Subclause 4.12.3, “Handling unmatched rows”, for examples of these options.

4.5 Summary of the syntax

The complete syntax for row pattern recognition in the FROM clause involves the components shown in
Table 4, “Row pattern recognition syntax summary”.

Table 4— Row pattern recognition syntax summary

Cross referenceDefaultOptional?Syntactic component

Subclause 4.6, “The row pat-
tern input table”

—norow pattern input table

Subclause 4.6.2, “The row
pattern input name”

implementation-dependentyesrow pattern input name

Subclause 4.6.3, “The row
pattern input declared col-
umn list”

noneyesrow pattern input declared
column list

Subclause4.7, “MATCH_REC-
OGNIZE”

—noMATCH_RECOGNIZE

Subclause 4.8, “PARTITION
BY”

row pattern input table con-
stitutes one rowpattern par-
tition

yesPARTITION BY

Subclause 4.9, “ORDER BY”non-deterministic ordering
in each rowpattern partition

yesORDER BY

Subclause4.11, “MEASURES”noneyesMEASURES

Subclause 4.12, “ONE ROW
PER MATCH vs ALL ROWS
PER MATCH ”

ONE ROW PER MATCHyesONE ROW PER MATCH or
ALL ROWS PER MATCH

Subclause 4.13, “AFTER
MATCH SKIP”

AFTER MATCH SKIP PAST
LAST ROW

yesAFTER MATCH SKIP

Subclause 4.14, “PATTERN”—noPATTERN

Subclause 4.15, “SUBSET”no explicit union rowpattern
variables

yesSUBSET

© ISO/IEC 2021 – All rights reserved 9

ISO/IEC 19075-5:2021(E)
4.4 Example of ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Cross referenceDefaultOptional?Syntactic component

Subclause 4.16, “DEFINE”—noDEFINE

Subclause 4.17.2, “Row pat-
tern output name”

implementation-dependentyesrow pattern output name

Subclause 4.17.3, “Row pat-
tern output declared column
list”

noneyesrow pattern output declared
column list

4.6 The row pattern input table

4.6.1 Introduction to the row pattern input table

The row pattern input table is the input argument to MATCH_RECOGNIZE. In the examples above, the
row pattern input table was Ticker, which is a table or view, or perhaps a named query (defined in a
WITH clause). The row pattern input table can also be a derived table (also known as in-line view). For
example:

FROM ( SELECT S.Name, T.Tradeday, T.Price
FROM Ticker T, SymbolNames S
WHERE T.Symbol = S.Symbol )

MATCH_RECOGNIZE ( ... ) AS M

The row pattern input table shall not be a <joined table>. Thework-around is to use a derived table, such
as:

FROM ( SELECT * FROM A LEFT OUTER JOIN B ON (A.X = B.Y) )
MATCH_RECOGNIZE (...) AS M

Note that column names in the row pattern input table are unambiguous, since it is impossible to use
range variables within the MATCH_RECOGNIZE clause to disambiguate. If the row pattern input table is
a base table or a view, this is not a problem, since SQL does not allow ambiguous column names in a base
table or view. This is only an issue when the row pattern input table is a derived table.

For example, consider a join of two tables, Emp and Dept, each of which has a column called Name. The
following is a syntax error:

FROM ( SELECT D.Name, E.Name, E.Empno, E.Salary
FROM Dept D, Emp E
WHERE D.Deptno = E.Deptno )

MATCH_RECOGNIZE (
PARTITION BY D.Name

       ... )

The preceding example is an error because the range variable D is not visible within theMATCH_RECOG-
NIZE (the scope of D is just the derived table). Rewriting like this is no help:

FROM ( SELECT D.Name, E.Name, E.Empno, E.Salary
FROM Dept D, Emp E
WHERE D.Deptno = E.Deptno )

MATCH_RECOGNIZE (

10 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.5 Summary of the syntax

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


PARTITION BY Name
       ... )

This rewrite eliminates the use of the range variable D within the MATCH_RECOGNIZE. However, now
the error is that Name is ambiguous, because there are two columns of the derived table called Name.
The way to handle this is to disambiguate the column names within the derived table itself, like this:

FROM ( SELECT D.Name AS DName, E.Name AS EName,
              E.Empno, E.Salary

FROM Dept D, Emp E
WHERE D.Deptno = E.Deptno )

MATCH_RECOGNIZE (
PARTITION BY DName

       ... )

4.6.2 The row pattern input name

Optionally, a correlation name for the row pattern input table may be declared, as in this example
(equivalent to the example in Subclause 4.3, “Example of ONE ROW PER MATCH”):

SELECT M.Symbol,      /* ticker symbol */
       M.Matchno,     /* sequential match number */
       M.Startp,      /* starting price */
       M.Bottomp,     /* bottom price */
       M.Endp,        /* ending price */
       M.Avgp         /* average price */
FROM Ticker AS T

MATCH_RECOGNIZE (
PARTITION BY T.Symbol
ORDER BY T.Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

                  A.Price AS Startp,
                  LAST (B.Price) AS Bottomp,
                  LAST (C.Price) AS Endp,
                  AVG (U.Price) AS Avgp

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Price < PREV (B.Price),
                C AS C.Price > PREV (C.Price)
       ) AS M

The row pattern input name in this example is T, as defined by the syntax “Ticker AS T”. It is also possible
to omit the noise word AS, like this: “Ticker T”.

Specifying the rowpattern input name is optional. The examples in Subclause 4.3, “Example of ONEROW
PERMATCH”, andSubclause4.4, “Example ofALLROWSPERMATCH”, donot showanexplicit rowpattern
input name.

When the row pattern input name is not specified, the following defaults apply:

1) If the row pattern input table is a base table, view, or query name (the name of a query defined in a
WITH clause), then the table name, view name or query name is the default row pattern input name.

2) Otherwise, an implementation-dependent row pattern input name, different from any other range
variable in the query, is implicit. In practice, this means that the row pattern input name is
unknowable and cannot be referenced elsewhere in the query.

© ISO/IEC 2021 – All rights reserved 11

ISO/IEC 19075-5:2021(E)
4.6 The row pattern input table

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


The scope of the row pattern input name is the PARTITION BY and ORDER BY clauses of the
MATCH_RECOGNIZE clause. This means that the row pattern input name can be used in the following
contexts:

1) To qualify column names in the PARTITION BY clause.

2) To qualify column names in the ORDER BY clause.

The example above illustrates both of these uses.

The row pattern input name cannot be referenced in the MEASURES or DEFINE clauses, nor elsewhere
in the query, such as the WHERE clause or the SELECT list.

4.6.3 The row pattern input declared column list

If an explicit row pattern input name is specified, it may be followed by a parenthesized list of column
names, as in this example:

SELECT M.Sym,        /* ticker symbol */
       M.Matchno,    /* sequential match number */
       M.Startp,     /* starting price */
       M.Bottomp,    /* bottom price */
       M.Endp,       /* ending price */
       M.Avgp        /* average price */
FROM Ticker AS T (Sym, Td, Pr)

MATCH_RECOGNIZE (
PARTITION BY T.Sym
ORDER BY T.Td
MEASURES MATCH_NUMBER() AS Matchno,

                  A.Pr AS Startp,
LAST (B.Pr) AS Bottomp,
LAST (C.Pr) AS Endp,
AVG (U.Pr) AS Avgp

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Pr < PREV (B.Pr),
                C AS C.Pr > PREV (C.Pr)
       ) AS M

The parenthesized list of column names (Sym, Td, Pr) is called the row pattern input declared column
list. The row pattern input declared column list may be used to change the names of the columns of the
row pattern input table. There shall be exactly the same number of column names in the list as there are
columns in the row pattern input table. In this example, Symbol has been renamed to Sym, Tradeday has
been renamed to Td, and Price has been renamed to Pr. Consequently, the columns cannot be referenced
as Symbol, Tradeday, or Price within the MATCH_RECOGNIZE; instead, they are referenced by their new
names, Sym, Td, and Pr. Note that this also changes the default names of the columns in the row pattern
output table. Thus, in the SELECT list, the first item is M.Sym, because the input column names Symbol
was renamed to Sym, which becomes the name of the corresponding output column.

12 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.6 The row pattern input table

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.7 MATCH_RECOGNIZE

MATCH_RECOGNIZE is the keyword that introduces the syntax for row pattern recognition in the FROM
clause. Syntactically, MATCH_RECOGNIZE is a postfix operator following the row pattern input table. The
MATCH_RECOGNIZEkeyword is followedby a parenthesized list of syntactic components that collectively
describe the row pattern recognition operation.

4.8 PARTITION BY

PARTITION BY is used to specify that the rows of the row pattern input table are to be partitioned by
one ormore columns. Note that the column names in the PARTITION BYmay be unqualified, or theymay
be qualified by the row pattern input name. See the examples in Subclause 4.6.2, “The row pattern input
name”.

If there is no PARTITION BY, then all rows of the row pattern input table constitute a single row pattern
partition.

4.9 ORDER BY

ORDER BY is used to specify the order of rows within a row pattern partition. The ORDER BY clause of
a MATCH_RECOGNIZE is similar to the ORDER BY clause of a cursor. As with the PARTITION BY clause,
column names may be unqualified, or they may be qualified by the row pattern input name. See the
examples in Subclause 4.6.2, “The row pattern input name”.

If the order of two rows in a row pattern partition is not determined by the ORDER BY, then the result
of MATCH_RECOGNIZE is non-deterministic.

NOTE 2— Syntactically, the row pattern output table is always regarded as non-deterministic because there is no way for
the query engine to deduce at compile time whether the ordering is total. This means that MATCH_RECOGNIZE cannot be
used in contexts that are required to be deterministic, such as check constraints and assertions. However, the query author
can use ORDER BY to insure that the query is sufficiently deterministic for the author’s intended purpose.

4.10 Row pattern variables

Row pattern variables are range variables whose scope is limited to a MATCH_RECOGNIZE clause. As
range variables, row pattern variables are used to qualify column references, in either the scalar
expression of a row pattern measure column, or the Boolean condition of a DEFINE.

There are two kinds of row pattern variables:

1) Primary row pattern variables, which are declared in the PATTERN and defined by an associated
Boolean condition specified in the DEFINE clause.

2) Union row pattern variables, which are declared in the SUBSET clause as a union of a list of primary
row pattern variables. The primary row pattern variables are called components of the union row
pattern variable.

A rowpattern variable shall not be both a primary rowpattern variable and a union rowpattern variable.
This means that a row pattern variable that is declared in PATTERN shall not also be declared on the left
hand side of a SUBSET.

© ISO/IEC 2021 – All rights reserved 13

ISO/IEC 19075-5:2021(E)
4.7 MATCH_RECOGNIZE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Informally, a match consists of a set of contiguous rows in a row pattern partition of the row pattern
input table. (For amore formal treatment, see Clause 7, “Patternmatching rules”.) Each row of thematch
is mapped to a primary row pattern variable. The mapping of rows to primary row pattern variables
conforms to the regular expression in the PATTERN clause, and is further constrained to insure that all
Boolean conditions in the DEFINE clause are true.

Thus rows are mapped to row pattern variables. Conversely, each row pattern variable RPV has a set of
rows that are mapped to RPV. For example, given:

PATTERN (A+ (B+ | C+) D)
SUBSET S = (B, D)

Suppose that consecutive rows R3, R4, R5, R6, and R7 are mapped as follows:

R3 → A

R4 → A

R5 → B

R6 → B

R7 → D

Then:

— the set of rows mapped to A is { R3, R4 },

— the set of rows mapped to B is { R5, R6 },

— the set or rows mapped to C is empty, and

— the set of rows mapped to D is { R7 }.

The set of rows mapped to a union row pattern variable URPV can be obtained as the set union of rows
mapped to each component of URPV. In this example:

— the set of rows mapped to S is { R5, R6 } ∪ { R7 } = { R5, R6, R7 }.

There is always one implicit union rowpattern variable, called theuniversal rowpattern variable, defined
as the union of all primary row pattern variables. Thus, every row of a match is mapped to the universal
row pattern variable. The universal row pattern variable is used to implicitly qualify unqualified column
reference within the MEASURES or DEFINE clauses. There is no syntax available to the user to denote
the universal row pattern variable. The query writer may, of course, define an explicit union row pattern
variable that is the union of all primary row pattern variables. (The example in Subclause 4.3, “Example
of ONE ROW PER MATCH”, illustrates this technique.)

4.11 MEASURES

The MEASURES clause defines row pattern measure columns, which are columns of the row pattern
output table whose value is computed by evaluating an expression related to a particular match. Note
that SQL/RPR extends the scalar expression syntax of ISO/IEC 9075-2, and provides special semantics
for evaluating scalar expressions in the context of a row pattern match. This is discussed in Clause 5,
“Expressions in MEASURES and DEFINE”.

NOTE 3— The MEASURES clause in a window definition does not define columns; instead, it defines named expressions
which are accessed using a variant of the window function syntax, called row pattern measure functions. “Row pattern

14 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.10 Row pattern variables

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


measure” is the generic term for row pattern measure columns and row pattern measure functions, whose values are
computed using the same rules.

4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

4.12.1 Introduction to use of ROWS PERMATCH

ONE ROW PER MATCH indicates that the result has one row for each match. Columns of this row are
defined by the PARTITION and MEASURES clauses. This is the default.

ALL ROWS PER MATCH indicates that the result has one row for each row of each match. (It is possible
to exclude some rows using the exclusion syntax {- -} in the PATTERN; see Subclause 4.14.3, “Excluding
portions of the pattern”.)

ALL ROWS PER MATCH has three suboptions:

— ALL ROWS PER MATCH SHOW EMPTY MATCHES

— ALL ROWS PER MATCH OMIT EMPTY MATCHES

— ALL ROWS PER MATCHWITH UNMATCHED ROWS

These options are explained in the following subsections.

4.12.2Handling empty matches

Some patterns permit empty matches. For example:

PATTERN (A*)

can be matched by zero or more rows that are mapped to A.

An emptymatch does notmap any rows to primary row pattern variables; nevertheless, an emptymatch
has a starting row. For example, there can be an empty match at the first row of a row pattern partition,
an emptymatch at the second rowof a rowpatternpartition, etc. An emptymatch is assigned a sequential
match number, based on the ordinal position of its starting row, the same as any other match.

When using ONE ROW PER MATCH, an empty match results in one row of the row pattern output table.
The row pattern measures for an empty match are computed as follows:

— The value of MATCH_NUMBER() is the sequential match number of the empty match.

— Any COUNT is 0.

— Any other aggregate, row pattern navigation operation, or ordinary row pattern column reference
is null.

For example, the example in Subclause 4.3, “Example of ONE ROW PER MATCH”, can be modified to
permit empty matches, as follows:

SELECT M.Symbol, /* ticker symbol */
       M.Matchno, /* sequential match number */
       M.Firstp,  /* starting price */
       M.Lastp    /* ending price */
FROM Ticker

© ISO/IEC 2021 – All rights reserved 15

ISO/IEC 19075-5:2021(E)
4.11 MEASURES

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

FIRST A.Price AS Firstp,
LAST (A.Price) AS Lastp

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A*)
DEFINE

                A AS A.Price > PREV (A.Price)
       ) AS M

Here the pattern has been changed to A*, and is used to detect runs of increasing prices. The sample data
is now analyzed as shown in Table 5, “Analysis of sample data permitting empty matches”.

Table 5— Analysis of sample data permitting empty matches

PRICETRADEDAYSYMBOL

match#1 (empty)502009-06-08XYZ

match #2→ A602009-06-09XYZ

match#3 (empty)492009-06-10XYZ

match#4 (empty)402009-06-11XYZ

match#5 (empty)352009-06-12XYZ

match #6→ A452009-06-15XYZ

match#7 (empty)452009-06-16XYZ

match#8 (empty)452009-06-17XYZ

match#9 (empty)432009-06-18XYZ

⎫→ A472009-06-19XYZ

⎬match #10→ A522009-06-22XYZ

⎭→ A702009-06-23XYZ

match #11
(empty)

602009-06-24XYZ

The result of the preceding query on the sample row pattern partition is illustrated in Table 6, “Result
of query permitting empty matches”.

Table 6— Result of query permitting empty matches

LASTPFIRSTPMATCHNOSYMBOL

1XYZ

60602XYZ

16 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


LASTPFIRSTPMATCHNOSYMBOL

3XYZ

4XYZ

5XYZ

45456XYZ

7XYZ

8XYZ

9XYZ

704710XYZ

11XYZ

In the preceding result, note how the row pattern measures other than the match number are null for
empty matches.

As for ALL ROWS PER MATCH, the question arises of whether to generate a row of output for an empty
match, seeing that there are no rows in the empty match. To govern this, there are two options:

1) ALL ROWS PER MATCH SHOW EMPTY MATCHES: with this option, any empty match generates a
single row in the row pattern output table.

2) ALL ROWS PER MATCH OMIT EMPTY MATCHES: with this option, an empty match is omitted from
the row pattern output table. (This may cause gaps in the sequential match numbering.)

ALLROWSPERMATCHdefaults to SHOWEMPTYMATCHES.Using this option, an emptymatch generates
one row in the row pattern output table. In this row:

— The value of a classifier function is null.

— The value of MATCH_NUMBER() is the sequential match number of the empty match.

— The value of any ordinary row pattern column reference is null.

— The value of any aggregate or row pattern navigation operation is computed using an empty set of
rows (so any COUNT is 0, and all other aggregates and row pattern navigation operations are null).

— The value of any column corresponding to a column of the row pattern input table is the same as the
corresponding column in the starting row of the empty match.

The followingexample alters theprecedingexample slightly, to useALLROWSPERMATCHSHOWEMPTY
MATCHES:

SELECT M.Symbol,   /* ticker symbol */
       M.Matchno,   /* sequential match number */
       M.Tradeday,  /* day of trading */
       M.Price,     /* price on day of trading */
       M.Classy,    /* classifier */
       M.Firstp,    /* starting price */
       M.Lastp      /* ending price */
FROM Ticker

MATCH_RECOGNIZE (

© ISO/IEC 2021 – All rights reserved 17

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

                  CLASSIFIER AS Classy,
FINAL FIRST (A.Price) AS Firstp,
FINAL LAST (A.Price) AS Lastp

ALL ROWS PER MATCH SHOW EMPTY MATCHES
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A*)
DEFINE A AS A.Price > PREV (A.Price)

       ) AS M

The result of the preceding query on the sample row pattern partition is shown in Table 7, “Results of
query using SHOW EMPTY ROWS”.

Table 7— Results of query using SHOW EMPTY ROWS

LASTPFIRSTPCLASSYPRICETRADEDAYMATCH
NO

SYMBOL

502009-06-081XYZ

6060A602009-06-092XYZ

492009-06-103XYZ

402009-06-114XYZ

352009-06-125XYZ

4545A452009-06-156XYZ

452009-06-167XYZ

452009-06-178XYZ

432009-06-189XYZ

7047A472009-06-1910XYZ

7047A522009-06-2210XYZ

7047A702009-06-2310XYZ

602009-06-2411XYZ

If, instead, ALL ROWS PER MATCH OMIT EMPTY MATCHES were used, the result would lack the rows
for the empty matches, like illustrated in Table 8, “Results of query using OMIT EMPTY ROWS”.

Table 8— Results of query using OMIT EMPTY ROWS

LASTPFIRSTPCLASSYPRICETRADEDAYMATCH
NO

SYMBOL

6060A602009-06-092XYZ

4545A452009-06-156XYZ

18 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


LASTPFIRSTPCLASSYPRICETRADEDAYMATCH
NO

SYMBOL

7047A472009-06-1910XYZ

7047A522009-06-2210XYZ

7047A702009-06-2310XYZ

Note the gaps in thematch numbering; also, the final emptymatch (number 11) is undetectable because
there are no non-empty matches following it.

4.12.3Handling unmatched rows

Some rows of the rowpattern input tablemaybe neither the starting rowof an emptymatch, normapped
by a non-empty match. Such rows are called unmatched rows.

TheoptionALLROWSPERMATCHWITHUNMATCHEDROWSshowsbothemptymatches andunmatched
rows. Empty matches are handled the same as with SHOW EMPTY MATCHES. When displaying an
unmatched row, all row pattern measures are null, somewhat analogous to the null-extended side of an
outer join. Thus COUNT and MATCH_NUMBERmay be used to distinguish an unmatched row from the
starting row of an empty match. The exclusion syntax {- -} is prohibited as contrary to the spirit of
WITH UNMATCHED ROWS.

The example in Subclause 4.4, “Example of ALL ROWS PER MATCH”, can be used to illustrate WITH
UNMATCHED ROWS. The change in the query syntax is:

SELECT M.Symbol,   /* ticker symbol */
       M.Matchno,  /* sequential match number */
       M.Tradeday, /* day of trading */
       M.Price,    /* price on day of trading */
       M.Classy,   /* classifier */
       M.Startp,   /* starting price */
       M.Bottomp,  /* bottom price */
       M.Endp,     /* ending price */
       M.Avgp      /* average price */
FROM Ticker

MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,

                  CLASSIFIER AS Classy,
                  A.Price AS Startp,

FINAL LAST (B.Price) AS Bottomp,
FINAL LAST (C.Price) AS Endp,
FINAL AVG (U.Price) AS Avgp

ALL ROWS PER MATCH WITH UNMATCHED ROWS
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Price < PREV (B.Price),
                C AS C.Price > PREV (C.Price)
       ) AS M

© ISO/IEC 2021 – All rights reserved 19

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


and the result on the data in the sample row pattern partition is shown in Table 9, “Results of ALL ROWS
PER MATCH”.

Table 9— Results of ALL ROWS PERMATCH

AVGPENDPBOT
TOMP

STAR
TP

CLAS
SY

PRICETRADEDAYMA
TC
HN
O

SYM
BOL

502009-06-08XYZ

45.8453560A602009-06-091XYZ

45.8453560B492009-06-101XYZ

45.8453560B402009-06-111XYZ

45.8453560B352009-06-121XYZ

45.8453560C452009-06-151XYZ

452009-06-16XYZ

51.4704345A452009-06-172XYZ

51.4704345B432009-06-182XYZ

51.4704345C472009-06-192XYZ

51.4704345C522009-06-222XYZ

51.4704345C702009-06-232XYZ

602009-06-24XYZ

In the sample output, note the rows in which the row pattern measures are null. These rows correspond
to unmatched rows in the row pattern input table.

It is not possible for a pattern to permit empty matches and also have unmatched rows. The reason is
that if a row of the row pattern input table cannot be mapped to a primary row pattern variable, then
that rowcan still be the starting rowof an emptymatch, andwill not be regarded as unmatched, assuming
that the pattern permits emptymatches. Thus, if a pattern permits emptymatches, then the output using
ALL ROWS PERMATCH SHOWEMPTYMATCHES is the same as the output using ALL ROWS PERMATCH
WITH UNMATCHED ROWS. Thus WITH UNMATCHED ROWS is primarily intended for use with patterns
that do not permit empty matches. However, the user may prefer to specify WITH UNMATCHED ROWS
if the user is uncertain whether a pattern may have empty matches or unmatched rows.

Note that if ALLROWSPERMATCHWITHUNMATCHEDROWS is usedwith the default skipping behavior
(AFTERMATCH SKIP PAST LAST ROW), then every row of the row pattern input tablewill appear exactly
once in the output (as the location of an empty match, as a row that is mapped by a non-empty match,
or as an unmatched row).

Other skipping behaviors are permitted usingWITH UNMATCHED ROWS, in which case it becomes pos-
sible for a row to bemapped bymore than onematch and appear in the rowpattern output tablemultiple
times. Unmatched rows will appear in the output only once.

20 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PERMATCH vs ALL ROWS PERMATCH

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.13 AFTERMATCH SKIP

The AFTER MATCH SKIP clause determines the point to resume pattern matching after a non-empty
match has been found. The default for the clause is AFTER MATCH SKIP PAST LAST ROW. The options
are as follows (RPV denotes a row pattern variable):

— AFTER MATCH SKIP TO NEXT ROW: resume pattern matching at the row after the first row of the
current match.

— AFTER MATCH SKIP PAST LAST ROW: resume pattern matching at the next row after the last row
of the current match.

— AFTER MATCH SKIP TO FIRST RPV: resume pattern matching at the first row that is mapped to the
row pattern variable RPV.

— AFTER MATCH SKIP TO LAST RPV: resume pattern matching at the last row that is mapped to the
row pattern variable RPV.

— AFTER MATCH SKIP TO RPV: same as AFTER MATCH SKIP TO LAST RPV.

When using AFTER MATCH SKIP TO FIRST or AFTER MATCH SKIP TO [LAST], it is possible that no row
is mapped to the <row pattern variable name>. For example, the row pattern variable A in

AFTER MATCH SKIP TO A
PATTERN (X A* X),

might have no rows mapped to A. If there is no rowmapped to A, then there is no row to skip to, so a
run-time exception is generated.

Another aberrant condition is that AFTERMATCH SKIP may try to resume pattern matching at the same
row that the last match started. For example,

AFTER MATCH SKIP TO X
PATTERN (X Y+ Z),

In this example, AFTER MATCH SKIP TO X tries to resume pattern matching at the same row where the
previous match was found. This would result in an infinite loop; consequently a run-time exception is
generated for this scenario.

Note that the AFTERMATCH SKIP syntax only determines the point to resume scanning for amatch after
a non-empty match. When an empty match is found, one row is skipped (as if SKIP TO NEXT ROW had
been specified). Thus an empty match never causes one of these exceptions.

A query that gets one of these exceptions should be rewritten. For example,

AFTER MATCH SKIP TO A
PATTERN (X (A | B) Y)

will cause a run-time error if alternative A does notmatch. Instead of this example, perhaps the following
will serve the user’s needs:

AFTER MATCH SKIP TO C
PATTERN (X (A | B) Y)
SUBSET C = (A, B)

In the revised example, no run-time error is possible, whether A or B is matched.

As another example:

AFTER MATCH SKIP TO FIRST A
PATTERN (A* X)

© ISO/IEC 2021 – All rights reserved 21

ISO/IEC 19075-5:2021(E)
4.13 AFTERMATCH SKIP

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


This example will always get an exception after the first match, either for skipping to the first row of the
match (if A* matches) or for skipping to a non-existent row (if A* does not match). In this example, SKIP
TO NEXT ROWmight be a better choice.

When using ALL ROWS PER MATCH together with skip options other than AFTER MATCH SKIP PAST
LAST ROW, it is possible for consecutive matches to overlap, in which case a row R of the row pattern
input table might occur in more than one match. In that case, the row pattern output table will have one
row for each match in which R participates. The MATCH_NUMBER function may be used to distinguish
between the multiple matches in which a row of the row pattern input table participates. When a row
participates in more than one match, its classifier may be different in each match as well.

4.14 PATTERN

4.14.1 Introduction to the PATTERN syntax

The PATTERN clause is used to specify a regular expression. The regular expression is enclosed in
parentheses. It is built from primary row pattern variables, and may use the following operators:

— concatenation: indicated by the absence of any operator sign between two successive items in a
pattern. Note that whitespace is required to delimit two successive primary row pattern variables.

— quantifiers: quantifiers are postfix operators with the following choices:

* — 0 or more iterations

+— 1 or more iterations

? — 0 or 1 iterations

{ n } — exactly n iterations (n > 0)

{ n, } — n or more iterations (n ≥ 0)

{ n,m } — between n andm (inclusive) iterations (0 ≤ n ≤m, 0 <m)

{ ,m } — between 0 andm (inclusive) iterations (m > 0)

reluctant quantifiers, indicated by an additional question mark (*?, +?, ??, {n}?, {n,}?, { n,m }?,
{,m}?). See below for the difference between reluctant and non-reluctant quantifiers.

— alternation: indicated by a vertical bar ( | ). Alternatives are preferred in the order in which they are
specified.

— grouping: indicated by parentheses.

— PERMUTE: see Subclause 4.14.2, “PERMUTE”.

— exclusion: parts of the pattern to be excluded from the output of ALLROWSPERMATCHare enclosed
between {- and -}. See Subclause 4.14.3, “Excluding portions of the pattern”.

— anchors (not permitted with row pattern matching in windows):

^: matches the beginning of a row pattern partition

$: matches the end of a row pattern partition

— ( ): empty pattern, matches an empty set of rows

22 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.13 AFTERMATCH SKIP

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


The difference between non-reluctant (or “greedy”) and reluctant quantifiers appended to a single row
pattern variable is illustrated as follows: A* tries to map as many rows as possible to A (consistent with
mapping the entire pattern), whereas A*? tries to map as few rows as possible to A (consistent with
mapping the entire pattern). The semantics of quantifiers on complex regular expressions, such as (A |
B)*, cannot be expressed succinctly; see Subclause 7.2.4, “Quantification”,

The precedence of the operators in a regular expression, in decreasing order, is as follows:

— primaries: primary row pattern variables, anchors, PERMUTE, parenthetic expressions, exclusion
syntax, empty pattern

— quantifier; a primary may have zero or one quantifier

— concatenation

— alternation

Precedence of alternation is illustrated by this example:

PATTERN (A B | C D)

which is equivalent to

PATTERN ((A B) | (C D))

and is not equivalent to

PATTERN (A (B | C) D)

Precedence of quantifiers is illustrated by this example:

PATTERN (A B *)

which is equivalent to

PATTERN (A (B*))

and is not equivalent to

PATTERN ((A B)*)

A quantifier shall not immediately follow another quantifier. For example

PATTERN (A**)

is prohibited, whereas

PATTERN ((A*)*)

is permitted (though the latter pattern is no more powerful than just A*).

It is permitted for a primary row pattern variable to occur more than once in a pattern. For example

PATTERN (X Y X)

4.14.2 PERMUTE

The PERMUTE syntax may be used to express a pattern that is a permutation of simpler patterns. For
example,

© ISO/IEC 2021 – All rights reserved 23

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


PATTERN (PERMUTE (A, B, C))

is equivalent to an alternation of all permutations of three row pattern variables A, B and C, like this:

PATTERN (A B C | A C B | B A C | B C A | C A B | C B A)

Note that PERMUTE is expanded lexicographically. (In this example, since the three rowpattern variables
A, B, and C are listed in alphabetic order, it follows from lexicographic expansion that the expanded
possibilities are also listed in alphabetic order.) This is significant because alternatives are attempted in
the order written in the expansion. Thus a match to (A B C) will be attempted before a match to (A C B),
etc.; the first attempt that succeeds is the “winner”.

As another example:

PATTERN (PERMUTE ( X{3}, B C?, D))

is equivalent to

PATTERN (   ( X{3} B C? D )
          | ( X{3} D B C? )
          | ( B C? X{3} D )
          | ( B C? D X{3} )
          | ( D X{3} B C? )
          | ( D B C? X{3} ) )

4.14.3 Excluding portions of the pattern

When using ALL ROWS PERMATCHwith either the OMIT EMPTYMATCHES or SHOWEMPTYMATCHES
suboptions, rows matching a portion of the PATTERNmay be excluded from the row pattern output
table. The excluded portion is bracketed between {- and -} in the PATTERN clause.

For example, the following example finds the longest periods of increasing prices that start with a price
no less than 10.

SELECT M.Symbol,    /* row’s symbol */
       M.Tradeday,  /* row’s trade day */
       M.Price,     /* row’s price */
       M.Avgp,      /* average price */
       M.Matchno    /* row’s match number */
FROM Ticker

MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES FINAL AVG (S.Price) AS Avgp,
MATCH_NUMBER() AS Matchno
ALL ROWS PER MATCH
AFTER MATCH SKIP TO LAST B
PATTERN ( {- A -} B+ {- C -} )
SUBSET S = (A, B)
DEFINE A AS A.Price >= 10

                B AS B.Price > PREV (B.Price),
                C AS C.Price <= PREV (C.Price)
       ) AS M;

The row pattern output table will only have rows that are mapped to B; the rowsmapped to A and C will
be excluded from the output.

24 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Although the excluded rows do not appear in the row pattern output table, they are not excluded from
thedefinitions of union rowpattern variables, nor from the calculationof scalar expressions in theDEFINE
orMEASURES. For example, see thedefinitions of theprimary rowpattern variablesA andC, the definition
of union row pattern variable S, or the Avgp row pattern measure in the example above.

Also, excluded rows do not alter the behavior of AFTERMATCH SKIP. That is, excluded rows are still used
in deciding where to resume looking for the next match. For example, in the example above, suppose the
AFTER MATCH SKIP clause were changed to

AFTER MATCH SKIP PAST LAST ROW

while leaving the pattern the same:

PATTERN ( {- A -} B+ {- C -} )

In that case, a match to the pattern maps a row to the row pattern variable C, and the skip will be to the
next row after the last row of the match; that is, after the row that is mapped to C, even though the row
that is mapped to C is excluded from the output.

The exclusion syntax is not permitted with ALL ROWS PER MATCHWITH UNMATCHED ROWS.

The exclusion syntax is permitted with ONE ROW PER MATCH, though it has no effect since in this case
there is only a single summary row per match.

4.15 SUBSET

The SUBSET clause is optional. It is used to declare union row pattern variables. For example:

FROM Ticker
MATCH_RECOGNIZE

    ( ORDER BY Tradeday
MEASURES FIRST (X.time) AS x_firsttime,
LAST (Y.time) AS y_lasttime,
AVG (S.Price) AS xy_avgprice
PATTERN (X+ Y+)
SUBSET S = (X, Y)
DEFINE X AS X.Price > PREV (X.Price),

             Y AS Y.Price < PREV (Y.Price)
    )

This example declares a union row pattern variable, S, and defines it as the union of the rows mapped to
X and the rows mapped to Y. See Subclause 4.10, “Row pattern variables”, for an example of how such
unions are formed.

There can be multiple union row pattern variables. For example:

PATTERN (W+ X+ Y+ Z+ )
SUBSET A = (X, Y),
       B = (W, Z)

The right hand side of a SUBSET item is a parenthesized, comma-separated list of distinct primary row
pattern variables. This defines the union row pattern variable (on the left hand side) as the union of the
primary row pattern variables (on the right hand side).

Note that the list of row pattern variables on the right hand side cannot include any union row pattern
variables (there are no unions of unions).

© ISO/IEC 2021 – All rights reserved 25

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.16 DEFINE

DEFINE is a mandatory clause, used to specify the Boolean condition that defines a primary row pattern
variable. In the example,

DEFINE X AS X.Price > PREV (X.Price),
       Y AS Y.Price < PREV (Y.Price)

X is defined by the condition X.Price > PREV (X.Price), and Y is defined by the condition Y.Price < PREV
(Y.Price). (PREV is a row pattern navigation operation which evaluates an expression in the previous
row; see Subclause 5.6, “Row pattern navigation operations”, regarding the complete set of row pattern
navigation operations.)

A primary row pattern variable does not require a definition; if there is no definition, the default is a
predicate that is always true. Any row can be mapped to such a primary row pattern variable.

A union row pattern variable cannot be defined by DEFINE, but may appear in the Boolean condition of
a primary row pattern variable.

The Boolean condition of a primary row pattern variable RPVmay reference RPV, or other primary or
union row pattern variables. For example:

FROM Ticker
MATCH_RECOGNIZE

    ( PARTITION BY Symbol
ORDER BY Tradeday
MEASURES FIRST (A.Tradeday) AS A_Firstday,
LAST (D.Tradeday) AS D_Lastday,
AVG (B.Price) AS B_Avgprice,
AVG (D.Price) AS D_Avgprice
PATTERN ( A B+ C+ D )
SUBSET BC = (B, C)
DEFINE A AS Price > 100,

             B AS B.Price > A.Price,
             C AS C.Price < AVG (B.Price),
             D AS D.Price > MAX (BC.Price)
    ) AS M

In this example:

— Thedefinitionof A implicitly references theuniversal rowpattern variable (becauseof the unqualified
column reference Price).

— The definition of B references the primary row pattern variable A.

— The definition of C references the primary row pattern variable B.

— The definition of D references the union row pattern variable BC.

The Boolean conditions are evaluated on successive rows of a row pattern partition in a trial match, with
the current row being tentatively mapped to a primary row pattern variable PRPV as permitted by the
pattern. To be successfully mapped to PRPV, the Boolean condition that defines PRPV shall evaluate to
True.

In the preceding example:

A AS Price > 100

Here Price is an unqualified column reference, so it is implicitly qualified by the universal row pattern
variable. All rows that are already mapped, including the current row, are mapped to the universal

26 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.16 DEFINE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


row pattern variable. Also, Price is an ordinary row pattern column reference, so it is evaluated in the
last row mapped to the universal row pattern variable, i.e.,, the current row. Thus this condition is
equivalent to A AS A.Price > 100.

B AS B.Price > A.Price

Here B.Price and A.Price are ordinary row pattern column references. B.Price refers to the current
row (sinceB is beingdefined),whereasA.Price refers to the last rowmapped toA. In viewof thepattern,
the only row mapped to A is the first row to be mapped.

C AS C.Price < AVG (B.Price)

Here C.Price refers to the Price in the current row, since C is being defined. The aggregate AVG (B.Price)
is computed as the average of all rows that are alreadymapped to B (but not to any rows that might
be mapped to B later).

D AS D.Price > MAX (BC.Price)

This example is similar to the preceding, though it illustrates the use of a union row pattern variable
in the Boolean condition.

The semantics of Boolean conditions are discussed inmore detail in Clause 5, “Expressions inMEASURES
and DEFINE”.

4.17 The row pattern output table

4.17.1 Introduction to the row pattern output table

The result of MATCH_RECOGNIZE is called the row pattern output table. The shape (row type) of the row
pattern output table depends on the choice of ONE ROW PER MATCH or ALL ROWS PER MATCH:

— If ONE ROW PER MATCH is specified or implied, then the columns of the row pattern output table
are the row pattern partitioning columns in their order of declaration, followed by the row pattern
measure columns in their order of declaration. Since a table is required to have at least one column,
this implies that there shall be at least one row pattern partitioning column or one row pattern
measure column.

— If ALL ROWS PER MATCH is specified, then the columns of the row pattern output table are the row
pattern partitioning columns in their order of declaration, the ordering columns in their order of
declaration, the rowpatternmeasure columns in their order of declaration, andfinally any remaining
columns of the row pattern input table, in the order they occur in the row pattern input table.

The order of columns in the row pattern output table is only significant when using SELECT *. The order
of columns is designed to facilitate comparing the output when the query is toggled between ONE ROW
PER MATCH and ALL ROWS PER MATCH.

The names and declared types of the row pattern measure columns are determined by the MEASURES
clause. The names and declared types of the non-measure columns are inherited from the corresponding
columns of the row pattern input table.

© ISO/IEC 2021 – All rights reserved 27

ISO/IEC 19075-5:2021(E)
4.16 DEFINE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.17.2Row pattern output name

Optionally, a correlation name may be assigned to the row pattern output table, like this:

SELECT T.Matchno
FROM Ticker

MATCH_RECOGNIZE ( ...
MEASURES MATCH_NUMBER () AS Matchno

         ...
       ) AS T

In the preceding example, M is the correlation name assigned to the row pattern output table. The noise
word AS is optional.

The benefit to assigning a correlationname is that the correlationnamemaybeused to qualify the column
names of the row pattern output table, as in M.Matchno in the preceding example. This is especially
important to resolve ambiguous column names if there are other tables in the FROM clause. For example,
suppose Matchmaker is a table with a column named Matchno, to be joined with the row pattern recog-
nition shown above. In that case the query might be written:

SELECT T.Matchno, M.Matchno
FROM Ticker

MATCH_RECOGNIZE ( ...
MEASURES MATCH_NUMBER () AS Matchno

         ...
       ) AS T, Matchmaker AS M
WHERE ...

4.17.3Row pattern output declared column list

Optionally, the rowpattern output namemay be followed by a parenthesized list of column names, called
the row pattern output declared column list. The row pattern output declared column list may be used
to rename the columns of the rowpattern output table. There shall be the samenumber of columnnames
in the list as there are columns in the row pattern output table. The column names in the list are in one-
to-one correspondence with the columns of the row pattern output table.

For example, the following is a modification of the example in Subclause 4.6.3, “The row pattern input
declared column list”:

SELECT M.Cym,          /* ticker symbol */
       M.Mno,          /* sequential match number */
       M.Startprice,   /* starting price */
       M.Bottomprice,  /* bottom price */
       M.Endprice,     /* ending price */
       M.Avgprice      /* average price */
FROM Ticker AS T (Sym, Td, Pr)

MATCH_RECOGNIZE (
PARTITION BY T.Sym
ORDER BY T.Td
MEASURES MATCH_NUMBER() AS Matchno,

         A.Pr AS Startp,
LAST (B.Pr) AS Bottomp,
LAST (C.Pr) AS Endp,
AVG (U.Pr) AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)

28 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.17 The row pattern output table

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

                B AS B.Pr < PREV (B.Pr),
                C AS C.Pr > PREV (C.Pr)
       ) AS M (Cym, Mno, Startprice, Bottomprice, Endprice, Avgprice)

The preceding example uses ONE ROW PER MATCH, so the columns of the row pattern output table are
the rowpattern partitioning columnSym, followedby the rowpatternmeasure columnsMatchno, Startp,
Bottomp, Endp, andAvgp, for a total of six columns. The rowpattern output declared column list renames
these columns to Cym, Mno, Startprice, Bottomprice, Endprice, and Avgprice, respectively. Note that the
SELECT list uses the column names of the row pattern output declared column list, since those are the
final names of the columns.

In all, the preceding example has the originally defined column names and their renames as shown in
Table 10, “Original and renamed column names”.

Table 10—Original and renamed column names

row pattern output tablerow pattern input table

renamed
column name

original column
name

renamed
column name

original column
name

CymSymSymSymbol

TdTradeday

PrPrice

MnoMatchno

StartpriceStartp

BottompriceBottomp

EndpriceEndp

AvgpriceAvgp

4.18 Prohibited nesting

4.18.1 Introduction to prohibited nesting

The following kinds of nesting are prohibited by SQL/RPR:

1) Nesting one row pattern recognition within another is prohibited.

2) Outer references inMEASURES or DEFINE are prohibited. Thismeans that a rowpattern recognition
cannot reference any table in an outer query block except the row pattern input table. (The row
pattern input table is referenced using row pattern variables, not range variables defined outside
the MATCH_RECOGNIZE.)

3) Subqueries in MEASURES or DEFINE cannot reference row pattern variables.

© ISO/IEC 2021 – All rights reserved 29

ISO/IEC 19075-5:2021(E)
4.17 The row pattern output table

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4) Row pattern recognition cannot be used in recursive queries.

These restrictions are illustrated in the following Subclauses.

4.18.2Row pattern recognition nested within another row pattern recognition

Nesting one row pattern recognition within another is prohibited. For example, the following is a syntax
error:

SELECT ...
FROM Ticker

MATCH_RECOGNIZE (
         ...

DEFINE A AS EXISTS ( SELECT *
FROM Stock2

MATCH_RECOGNIZE (...) )
     )

Apossibleworkaround is to relegate thenested rowpattern recognition to a viewor SQL-invoked function.

4.18.3Outer references within a row pattern recognition query

Here is an example of row pattern recognition nested within an outer query. Note the underlined range
variables T:

SELECT ( SELECT M.Avg_Price
FROM Ticker

MATCH_RECOGNIZE (
ORDER BY Tradeday
MEASURES AVG (T.Price) AS Avg_Price
PATTERN (T+)
DEFINE T AS T.Price >= AVG (T.Price)

                  ) AS M
       )
FROM Toast AS T

In this example, T is both the range variable for Toast in the outer query, and also a row pattern variable
in the scalar subquery.

SQL uses static scoping rules. This means that a range variable declared in an inner scope occludes a
range variable of the same name declared in an outer scope. In the preceding example, there are two
range variables named T. The row pattern variable T is declared in the PATTERN clause and visible in
the DEFINE and MEASURES clauses, occluding the range variable T of the outer query block. Therefore,
the scalar subquery (the row pattern recognition query) is not correlated with the outer query, the
overall result will have one row for each row of Toast, and all rows will be identical.

This example is permitted because there are no outer references in the MATCH_RECOGNIZE. However,
while legal, havingmultiple range variables with the same name can be confusing, so this examplemight
be better written by changing one of the range variables. For example, changing the row pattern variable
from T to X gives the equivalent query:

SELECT ( SELECT M.Avg_Price
FROM Ticker

MATCH_RECOGNIZE (
ORDER BY Tradeday

30 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.18 Prohibited nesting

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


MEASURES AVG (X.Price) AS Avg_Price
PATTERN (X+)
DEFINE X AS X.Price >= AVG (X.Price)

                ) AS M
       )
FROM Toast AS T

On the other hand, the following is a syntax error:

SELECT ( SELECT M.Avg_Price
FROM Ticker

MATCH_RECOGNIZE (
ORDER BY Tradeday
MEASURES AVG (X.Price) AS Avg_Price
PATTERN (X+)
DEFINE X AS T.Price >= AVG (X.Price)

                ) AS M
       )
FROM Toast AS T

In the preceding example, the column reference T.Price in the DEFINE clause is an outer reference to the
range variable T defined in the outer block; therefore, this example is a syntax error.

Itmaybepossible towork around this limitationbyplacing the rowpattern recognition in an SQL-invoked
routine, passing as arguments the values that are prohibited as outer references.

4.18.4 Conventional query nested within row pattern recognition query

A subquery can be nested in an expression in MEASURES or DEFINE. Subqueries are permitted if they
donot perform rowpattern recognition themselves, and if they donot reference the rowpattern variables
of the outer query. Here is an example of the latter (note underlined A):

SELECT Firstday
FROM Ticker

MATCH_RECOGNIZE (
ORDER BY Tradeday
MEASURES A.Tradeday AS Firstday
PATTERN (A B+)
DEFINE A AS A.Price > 100,

                B AS B.Price <
                  ( SELECT AVG (S.Price)

FROM Ticker S
WHERE S.Tradeday BETWEEN

A.Tradeday - INTERVAL '1' YEAR
AND A.Tradeday )

       )

In this example, the definition of B involves a subquery that is correlated with the row pattern variable
A (note underlining). This is a syntax error, since subqueries of row pattern matching cannot reference
row pattern variables.

It may be possible to work around this limitation by placing the correlated subquery in an SQL-invoked
routine, passing as arguments the values that are prohibited as outer references.

© ISO/IEC 2021 – All rights reserved 31

ISO/IEC 19075-5:2021(E)
4.18 Prohibited nesting

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


4.18.5Recursion

Row pattern matching is prohibited in recursive queries. For example, the following is a syntax error:

CREATE RECURSIVE VIEW Problem (Kolo, Xoro) AS
SELECT Kolo, Xoro
FROM T

UNION
SELECT Kolo + 1, Xoro
FROM Problem

MATCH_RECOGNIZE (
ORDER BY Kolo
MEASURES MATCH_NUMBER () AS Xoro
ALL ROWS PER MATCH
PATTERN (A+)
DEFINE A AS A.Xoro > PREV (A.Xoro)

              )

4.18.6 Concatenated row pattern recognition

Note that it is not prohibited to feed the output of one row pattern recognition into the input of another,
as in this example:

SELECT ...
FROM ( SELECT *

FROM Ticker
MATCH_RECOGNIZE (...) )

MATCH_RECOGNIZE (...)

In this example, the first MATCH_RECOGNIZE is in a derived table, which then provides the input to the
second MATCH_RECOGNIZE.

32 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
4.18 Prohibited nesting

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


5 Expressions in MEASURES and DEFINE

5.1 Introduction to the use of expressions in MEASURES and DEFINE

Scalar expression syntax as defined in ISO/IEC9075-2 is available in rowpatternmatching. This provides
such familiar capabilities as arithmetic and aggregates. Note though that scalar expressions have special
semantics in MEASURES and DEFINE; this is the subject of this Subclause.

In addition, SQL/RPR provides the following scalar expressions that are unique to rowpatternmatching:

— The COUNT aggregate has special syntax and semantics to count rows that are mapped to a row
pattern variable by the current row pattern match.

— Row pattern navigation operations, using the functions PREV, NEXT, FIRST, and LAST. Row pattern
navigation operations are discussed in Subclause 5.6, “Row pattern navigation operations”.

— TheMATCH_NUMBER function, which returns the sequential number of a row patternmatch within
its row pattern partition, discussed in Subclause 5.8, “MATCH_NUMBER function”.

— The CLASSIFIER function, which returns the name of the primary row pattern variable to which a
row is mapped, discussed in Subclause 5.9, “CLASSIFIER function”.

Expressions in MEASURES and DEFINE clauses have the same syntax and semantics, with the following
exceptions:

1) DEFINE clause only supports running semantics; MEASURES defaults to running semantics, but also
supports final semantics. This distinction is discussed in Subclause 5.3, “Running vs.final semantics”.

2) In DEFINE, the CLASSIFIER function does not return the classifier of rows after the current row,
whereas in MEASURES, the CLASSIFIER function does return the classifier of rows after the current
row. (This is only an issuewhenCLASSIFIER function is nestedwithin theNEXTrowpatternnavigation
operation; see Subclause 5.9, “CLASSIFIER function”.)

5.2 Row pattern column references

A column reference is a column name qualified by an explicit or implicit range variable, such as

A.Price

Acolumnnamewithnoqualifier, such as Price, is implicitly qualifiedby theuniversal rowpattern variable,
which references the set of all rows in a match.

Column references may in general be nested within other syntactic elements, notably aggregates and
subqueries. (However, nesting in rowpatternmatching is subject to limitationsdescribed in Subclause4.18,
“Prohibited nesting”, for the FROM clause and Subclause 6.17, “Prohibited nesting”, for the WINDOW
clause.)

A column reference that is qualified by an explicit or implicit row pattern variable is called a row pattern
column reference. Row pattern column references are classified as follows:

— Nested within an aggregate, such as SUM: aggregated row pattern column reference.

© ISO/IEC 2021 – All rights reserved 33

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


— Nested within a row pattern navigation operation (PREV, NEXT, FIRST, and LAST): a navigated row
pattern column reference.

— Otherwise: an ordinary row pattern column reference.

All row pattern column references in an aggregate or row pattern navigation operation are qualified by
the same row pattern variable. For example

PATTERN (A+ B+)
DEFINE B AS AVG (A.Price + B.Tax) > 1000

The preceding example is a syntax error, because A and B are two different row pattern variables.
Aggregate semantics require a single set of rows; there is no way to form a single set of rows on which
to evaluate A.Price + B.Tax. On the other hand, this is acceptable:

DEFINE B AS AVG (B.Price + B.Tax) > 1000

In the preceding example, all row pattern column references in the aggregate are qualified by B.

An unqualified column reference is implicitly qualified by the universal row pattern variable, which ref-
erences the set of all rows in a match. For example

DEFINE B AS AVG (Price + B.Tax) > 1000

The preceding example is a syntax error, because the unqualified column reference Price is implicitly
qualified by the universal row pattern variable, whereas B.Tax is explicitly qualified by B. On the other
hand, this is acceptable:

DEFINE B AS AVG (Price + Tax) > 1000

In the preceding example, both Price andTax are implicitly qualifiedby the universal rowpattern variable.

5.3 Running vs. final semantics

Pattern matching in a sequence of rows is usually envisioned as an incremental process, with one row
after another examined to see if it fits the pattern. With this incremental processing model, at any step
until the complete pattern has been recognized, there is only a partial match and it is not known what
rowsmight be added in the future, nor what variables those future rowsmight be mapped to. Therefore,
in SQL/RPR, a row pattern column reference in the Boolean condition of a DEFINE clause has “running”
semantics. This means that a row pattern variable represents the set of rows that have already been
mapped to the row pattern variable, up to and including the current row, but not any future rows.

After the complete match has been established, it is possible to talk about “final” semantics. Final
semantics is the same as running semantics on the last row of a successful match. Final semantics is only
available in MEASURES, since in DEFINE there is uncertainty about whether a complete match has been
achieved.

The keywords RUNNING and FINAL are used to indicate running or final semantics, respectively; the
rules for these keywords are discussed in Subclause 5.4, “RUNNING vs.FINAL keywords”.

The fundamental rule for expression evaluation in MEASURES and DEFINE is as follows:

1) When an expression involving a row pattern variable RPV is computed on a group of rows, then the
set of rows SR that ismapped toRPV is used. If SR is empty, then COUNT is 0 and any other expression
involving RPV is null.

2) When an expression requires evaluation in a single row, then the latest row of SR is used. If SR is
empty, then the expression is null.

34 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.2 Row pattern column references

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


For example:

SELECT M.Symbol, M.Tradeday, M.Price, M.RunningAvg, M.FinalAvg
FROM TICKER

MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES RUNNING AVG (A.Price) AS RunningAvg,
FINAL AVG (A.Price) AS FinalAvg
ALL ROWS PER MATCH
PATTERN (A+)
DEFINE A AS A.Price >= AVG (A.Price)

       ) AS M

Consider the ordered row pattern partition of data shown in Table 11, “Ordered row pattern partition
of data”.

Table 11—Ordered row pattern partition of data

PRICETRADEDAYSYMBOLRow

102009-06-09XYZR1

162009-06-10XYZR2

132009-06-11XYZR3

92009-06-12XYZR4

The following logic can be used to find a match:

1) On the first row of the row pattern partition, tentatively map row R = R1 to row pattern variable A.
At this point SR = { R1 }. To confirm whether this mapping is successful, evaluate the predicate

A.Price >= AVG (A.Price)

On the left hand side, A.Price shall be evaluated in a single row, which is the last row of SR using
running semantics. The last row of SR is R1; therefore A.Price is 10.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is 10/1 = 10.

Thus the predicate asks if 10 ≥ 10. The answer is yes, so the mapping is successful. However, the
pattern A+ is “greedy”, so the engine tries to match more rows if possible.

2) On the second row of the row pattern partition, tentatively map R = R2 to row pattern variable A. At
this point there are two rows mapped to A, so SR = { R1, R2 }. Confirm whether the mapping is suc-
cessful by evaluating the predicate

A.Price >= AVG (A.Price)

On the left hand side, A.Price is evaluated in a single row, which is the last row of SR using running
semantics. The last row of SR is R2; therefore A.Price is 16.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is (10+16)/2 = 13.

© ISO/IEC 2021 – All rights reserved 35

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Thus the predicate asks if 16 ≥ 13. The answer is yes, so the mapping is successful.

3) On the third row of the row pattern partition, tentatively map R = R3 to row pattern variable A. Now
there are three rows mapped to A, so SR = { R1, R2, R3 }. Confirm whether the mapping is successful
by evaluating the predicate

A.Price >= AVG (A.Price)

On the left hand side, A.Price is evaluated in R3; therefore A.Price is 13.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is (10+16+13)/3 = 13.

Thus the predicate asks if 13 ≥ 13. The answer is yes, so the mapping is successful.

4) On the fourth row of the row pattern partition, tentatively map R = R4 to row pattern variable A. At
this point SR= {R1,R2,R3,R4 }. Confirmwhether themapping is successful by evaluating thepredicate

A.Price >= AVG (A.Price)

On the left hand side, A.Price is evaluated in R4; therefore A.Price is 9.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is (10+16+13+9)/4 = 12.

Thus the predicate asks if 9 ≥ 12. The answer is no, so the mapping is not successful.

R4 did not satisfy the definition of A, so the longest match to A+ is { R1, R2, R3 }. Since A+ has a greedy
quantifier, this is the preferred match.

The averages computed in the DEFINE are always running averages. In MEASURES, especially with ALL
ROWSPERMATCH, it is possible todistinguishfinal and runningaggregates.Notice theuseof thekeywords
RUNNING and FINAL in the MEASURES clause. The distinction can be observed in the result of the
example, as shown in Table 12, “RUNNING and FINAL in MEASURES”.

Table 12— RUNNING and FINAL in MEASURES

FINALAVGRUNNINGAVGPRICETRADEDAYSYMBOL

1310102009-06-09XYZ

1313162009-06-10XYZ

1313132009-06-11XYZ

It is possible that the set of rows SRmapped to a row pattern variable RPV is empty. When evaluating
over an empty set:

1) COUNT is 0.

2) Any other aggregate, row pattern navigation operation, or ordinary row pattern column reference
is null.

For example:

PATTERN ( A? B+ )
DEFINE A AS A.Price > 100,
       B AS B.Price > COUNT (A.*) * 50

36 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


With the preceding example, consider the ordered row pattern partition of data illustrated in Table 13,
“Ordered row pattern partition of data”.

Table 13—Ordered row pattern partition of data

PRICERow

60R1

70R2

40R3

A match can be found in this data as follows:

1) Tentatively map R = R1 to row pattern variable A. (The quantifier ? means to try first for a single
match to A; if that fails, then an empty match is taken as matching A?). To see if the mapping is suc-
cessful, the predicate

A.Price > 100

is evaluated. A.Price is 60; therefore the predicate is false and the mapping to A does not succeed.

2) Since the mapping to A failed, the empty match is taken as matching A?.

3) Tentatively map R = R1 to B. The predicate to check for this mapping is

B.Price > COUNT (A.*) * 50

No rows aremapped toA, therefore COUNT (A.*) is 0. SinceB.Price = 60 is greater than0, themapping
is successful.

4) Similarly, rows R2 and R3 can be successfully mapped to B. Since there are no more rows, this is the
complete match: no rows mapped A, { R1, R2, R3 } mapped to B.

A row pattern variable can make a forward reference; that is, a reference to a row pattern variable that
has not been matched yet. For example,

PATTERN (X+ Y+)
DEFINE X AS COUNT (Y.*) > 3,
       Y AS Y.Price > 10

is legal syntax. However, this example will never be matched since, at the time that a row is mapped to
X, no row has yet been mapped to Y. Thus, COUNT (Y.*) is 0 and can never be greater than 3. This is true
even if there are four future rows that might be successfully mapped to Y. Consider the data set provided
in Table 14, “Ordered row pattern partition of data”.

Table 14—Ordered row pattern partition of data

PRICERow

2R1

11R2

12R3

© ISO/IEC 2021 – All rights reserved 37

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


PRICERow

13R4

14R5

Mapping {R2,R3,R4,R5 } to Ywould be successful, since all four of these rows satisfy theBoolean condition
defined for Y. In that case, one might think that one could map R1 to X and have a complete successful
match. However, the rules of SQL/RPR will not find this match, because, according to the pattern X+ Y+,
at least one row shall be mapped to X before any rows are mapped to Y.

5.4 RUNNING vs.FINAL keywords

RUNNING and FINAL are keywords used to indicate whether running or final semantics are desired.
RUNNING and FINAL are available for use with aggregates and the row pattern navigation operations
FIRST and LAST.

Aggregates, FIRST, and LAST can occur in the following places in a row pattern matching query:

1) In theDEFINEclause.Whenprocessing theDEFINEclause, the engine is still in themidst of recognizing
a match; therefore, the only supported semantics is running.

2) In theMEASURES clause.Whenprocessing theMEASURES clause, the enginehasfinished recognizing
a match; therefore, it becomes possible to consider final semantics. There are two subcases:

a) If ONE ROW PER MATCH is specified, or if row pattern matching is done in a window, then the
engine is conceptually positioned on the last row of the match, and there is no real difference
between running vs. final semantics.

b) If ALL ROWS PER MATCH is specified, then the row pattern output table will have one row for
each row of the match. In this circumstance, the user may wish to see both running and final
values, so SQL/RPR provides the RUNNING and FINAL keywords to support that distinction.

Based on this analysis, SQL/RPR specifies the following:

1) In MEASURES, the keywords RUNNING and FINAL may be used to indicate the desired semantics
for an aggregate, FIRST, or LAST. The keyword is written before the operator, for example, RUNNING
COUNT (A.*) or FINAL SUM (B.Price).

2) In both MEASURES and DEFINE, the default is RUNNING.

3) In DEFINE, FINAL is not permitted; RUNNING may be used for added clarity if desired.

4) In MEASURES with ONE ROW PER MATCH or in windows, all aggregates, FIRST, and LAST are com-
puted after the last row of the match has been recognized, so that the default RUNNING semantics
is actually no different from FINAL semantics. The usermay prefer to think of expressions defaulting
to FINAL in these cases. Alternatively, the user may choose to write FINAL for added clarity.

5) Ordinary column references always have running semantics. (To get final semantics in MEASURES,
use the FINAL LAST row pattern navigation operation instead of an ordinary column reference.)

38 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


5.5 Aggregates

Aggregates (COUNT, SUM, AVG, etc.)may be used in both theMEASURES andDEFINE clauses.When used
in row patternmatching, aggregates operate on a set of rows that aremapped to a particular row pattern
variable, using either running or final semantics. For example:

MEASURES SUM (A.Price)      AS RunningSumOverA,
FINAL SUM(A.Price) AS FinalSumOverA

ALL ROWS PER MATCH

In this example, A is a row pattern variable. The first row pattern measure, RunningSumOverA, does not
specify either RUNNING or FINAL, so it defaults to RUNNING. This means that it is computed as the sum
of Price in those rows that are mapped to A by the current match, up to and including the current row.
The second row pattern measure, FinalSumOverA, computes the sum of Price over all rows that are
mapped toAby the currentmatch, including rows thatmaybe later than the current row. Final aggregates
are only available in MEASURES, not in DEFINE.

An unqualified column reference contained in an aggregate is implicitly qualified by the universal row
pattern variable, which references all rows of the current row pattern match. For example:

SUM (Price)

computes the running sum of Price over all rows of the current row pattern match.

All column references contained in an aggregate shall be qualified by the same row pattern variable. For
example:

SUM (Price + A.Tax)

is a syntax error, because Price is implicitly qualified by the universal row pattern variable, whereas
A.Tax is explicitly qualified by A.

The COUNT aggregate has special syntax for row patternmatching, so that COUNT(A.*)may be specified.
COUNT(A.*) is the number of rows that are mapped to the row pattern variable A by the current row
pattern match, using running or final semantics as appropriate. As for COUNT(*), the * is implicitly
qualified by the universal row pattern variable, so that COUNT(*) is the number of rows in the current
row pattern match, with running or final semantics as appropriate.

5.6 Row pattern navigation operations

5.6.1 The four operations

There are four functions—PREV,NEXT, FIRST, andLAST—that enable navigationwithin the rowpattern
by either physical or logical offsets.

5.6.2 PREV and NEXT

The PREV functionmay be used to access columns of the previous row of a row pattern variable. If there
is no previous row, the null value is returned. For example:

DEFINE A AS PREV (A.Price) > 100

© ISO/IEC 2021 – All rights reserved 39

ISO/IEC 19075-5:2021(E)
5.5 Aggregates

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


The preceding example says that a row Rn can be mapped to A if the preceding row Rn-1 has a price
greater than 100. If the preceding row does not exist (i.e.,, Rn is the first row of a row pattern partition),
then PREV(A.Price) is null, so the Boolean condition is not True, and therefore the first row cannot be
mapped to A.

The PREV function can accept an optional non-negative integer argument indicating the physical offset
to the previous rows. Thus:

— PREV (A.Price, 0) is equivalent to A.Price

— PREV (A.price, 1) is equivalent to PREV (A.Price). (Note: 1 is the default offset.)

— PREV (A.Price, 2) is the value of Price in the row two rowsprior to the rowdenoted byAwith running
semantics. (If no row is mapped to A, or if there is no row two rows prior, then PREV (A.Price, 2) is
null.)

The offset is required to be a run-time constant (literal, embedded variable, and the like, but not a column
or a subquery). There is an exception if the value of the offset is negative or null.

The NEXT function may be used to reference rows in the forward direction in the row pattern partition
using a physical offset. The syntax is the same as for PREV, except for the name of the function. For
example,

DEFINE A AS NEXT (A.Price) > 100

The preceding example looks forward one row in the row pattern partition. Note that SQL/RPR does not
support aggregates that look past the current row during DEFINE, because of the difficulty of predicting
what rowwill be mapped to what row pattern variable in the future. The NEXT function does not violate
this principle, since it navigates to “future” rows on the basis of a physical offset, which does not require
knowing the future mapping of rows.

For example, to find an isolated row that is more than twice the average of the two rows before and two
rows after it: using NEXT, this can be expressed:

PATTERN ( X )
DEFINE X AS X.Price > 2 * ( PREV (X.Price, 2)
                          + PREV (X.Price, 1)
                          + NEXT (X.Price, 1)
                          + NEXT (X.Price, 2) ) / 4

This query can also be expressed:

PATTERN ( {- Y Y -} X {- Y Z -} )
SUBSET W = (Y, Z)
DEFINE Z AS X.Price > 2 * AVG (W.Price)

The second formulation (without NEXT) requires the use of exclusion syntax using {- -} and the non-
intuitive definition of Z in terms of row pattern variables X andW. The row X is never really defined at
all, though that is the only row of interest. The first formulation (using NEXT) avoids these issues.

Note that the row in which PREV or NEXT is evaluated is not necessarily mapped to the row pattern
variable in the argument. For example, in thefirst formulationof the example, PREV (X.Price, 2) is evaluated
in a row that is not even part of the match. The purpose of the row pattern variable is to identify the row
from which to offset, not the row that is ultimately reached. This point is discussed further in
Subclause 5.6.4, “Nesting FIRST and LAST within PREV or NEXT ”.

PREV and NEXT may be used with more than one column reference; for example:

DEFINE A AS PREV (A.Price + A.Tax) < 100

40 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


When using a complex expression as the first argument of PREV or NEXT, all qualifiers shall be the same
row pattern variable (in this example, A).

The first argument of PREV and NEXT shall have at least one column reference or CLASSIFIER function.
For example, this is a syntax error:

PREV (1)

Thepreceding example is a syntax error because there is no rowpattern column reference or CLASSIFIER
function. Without a column reference or CLASSIFIER function, there is no way to determine the row that
is the starting point for offsetting. (The use of CLASSIFIER function within PREV or NEXT is discussed in
Subclause 5.9, “CLASSIFIER function”.)

PREV andNEXT always have running semantics; the keywords RUNNING and FINAL cannot be usedwith
PREV or NEXT. To obtain final semantics, use, e.g.,, PREV (FINAL LAST (A.Price)) as explained in
Subclause 5.6.4, “Nesting FIRST and LAST within PREV or NEXT ”.

5.6.3 FIRST and LAST

FIRST returns the value of an expression evaluated in the first row of the group of rowsmapped to a row
pattern variable. For example:

FIRST (A.Price)

The preceding example evaluates A.Price in the first row that is mapped to A. If there is no rowmapped
to A, then the value is null.

Similarly, LAST returns the value of an expression evaluated in the last row of the group of rowsmapped
to a row pattern variable. For example:

LAST (A.Price)

The preceding example evaluates A.Price in the last row that ismapped to A (null if there is no such row).

The FIRST and LAST operators can accept an optional non-negative integer argument indicating a logical
offset within the set of rows mapped to the row pattern variable. For example:

FIRST (A.Price, 1)

evaluates Price in the second row that is mapped to A. Consider the data set and mappings shown in
Table 15, “Example data set and mappings for FIRST and LAST”.

Table 15— Example data set and mappings for FIRST and LAST

mappingPRICERow

→ A10R1

→ B20R2

→ A30R3

→ C40R4

→ A50R5

© ISO/IEC 2021 – All rights reserved 41

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Thus:

— FIRST (A.Price) = FIRST (A.Price, 0) = LAST (A.Price, 2) = 10

— FIRST (A.Price, 1) = LAST (A.Price, 1) = 30

— FIRST (A.Price, 2) = LAST (A.Price, 0) = LAST (A.Price) = 50

— FIRST (A.Price, 3) is null, as is LAST (A.Price, 3)

Note that the offset is a logical offset, moving within the set of rows { R1, R3, R5 } that are mapped to the
row pattern variable A. It is not a physical offset, as with PREV or NEXT.

The optional integer argument is required to be a run-time constant (literal, embedded variable, and the
like, but not a column or subquery). There is an exception if the value of the offset is negative or null.

The first argument of FIRST or LAST shall have at least one row pattern column reference or CLASSIFIER
function. (Theuseof CLASSIFIER functionwithinFIRSTorLAST is discussed in Subclause5.9, “CLASSIFIER
function”.) Thus FIRST(1) is a syntax error.

The first argument of FIRST or LAST is permitted to have more than one row pattern column reference,
in which case all qualifiers shall be the same row pattern variable. For example:

FIRST (A.Price + B.Tax)

is a syntax error, but

FIRST (A.Price + A.Tax)

is acceptable.

FIRSTandLAST support both running andfinal semantics. RUNNING is thedefault, and theonly supported
option in DEFINE. Final semantics may be accessed in the MEASURES by using the keyword FINAL
(particularly with ALL ROWS PER MATCH), as in:

MEASURES FINAL LAST (A.Price) AS FinalPrice
ALL ROWS PER MATCH

5.6.4 Nesting FIRST and LAST within PREV or NEXT

FIRST and LAST provide navigation within the set of rows already mapped to a particular row pattern
variable; PREV and NEXT provide navigation using a physical offset from a particular row. These kinds
of navigationmaybe combinedby nesting FIRST or LASTwithin PREVorNEXT. This permits expressions
such as the following:

PREV (LAST (A.Price + A.Tax, 1), 3)

In this example, A is required to be a row pattern variable. It is required to have a row pattern column
reference or CLASSIFIER function, and all row pattern variables in the compound operator shall be
equivalent (A, in this example). The use of CLASSIFIER function nested within row pattern navigation
operations is discussed in Subclause 5.9, “CLASSIFIER function”.

This compound operator is evaluated as follows:

1) The inner operator, LAST, operates on the set of rows that are mapped to the row pattern variable
A. In this set, find the row that is “the last minus 1”. (If there is no such row, the result is null.)

2) The outer operator, PREV, starts from the row found in step 1 and backs up 3 rows in the rowpattern
partition. (If there is no such row, the result is null.)

42 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


3) Let R be an implementation-dependent range variable that references the row found by step 2. In
the expression A.Price + A.Tax, replace every occurrence of the row pattern variable A with R. The
resulting expressionR.Price+R.Tax is evaluated anddetermines the valueof the compoundnavigation
operation.

For example, consider the data set and mappings illustrated in Table 16, “Data set and mappings for
nesting example”.

Table 16—Data set andmappings for nesting example

mappingTAXPRICERow

110R1

→ A220R2

→ B330R3

→ A440R4

→ C550R5

→ A660R6

To evaluate

PREV (LAST (A.Price + A.Tax, 1), 3)

the following steps may be used:

1) The set of rows mapped to A is { R2, R4, R6 }. LAST operates on this set, offsetting from the end to
arrive at row R4.

2) PREV performs a physical offset, 3 rows prior to R4, arriving at R1.

3) Let R be a range variable pointing at R1. R.Price + R.Tax is evaluated, giving 10+1 = 11.

Note that this nesting is not defined as a typical evaluation of nested functions. The inner operator LAST
does not actually evaluate the expression A.Price + A.Tax; it merely uses this expression to designate a
row pattern variable (A) and then navigate within the rows mapped to that variable. The outer operator
PREV performs a further physical navigation on rows. The expression A.Price + A.Tax is not actually
evaluated as such, since the row that is eventually reached is not necessarily mapped to the row pattern
variable A. In this example, R1 is not mapped to any row pattern variable.

5.7 Ordinary row pattern column references reconsidered

An ordinary row pattern column reference is one that is neither aggregated nor navigated. For example:

A.Price

Subclause5.4, “RUNNING vs.FINALkeywords”, stated that ordinary rowpattern column references always
have running semantics. This means:

© ISO/IEC 2021 – All rights reserved 43

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


1) In DEFINE, an ordinary column reference references the last row that is mapped to the row pattern
variable, up to and including the current row. If there is no such row, then the value is null.

2) In MEASURES, there are two subcases:

a) If ALL ROWS PER MATCH is specified, then there is also a notion of current row, and the
semantics are the same as in DEFINE.

b) If ONE ROW PERMATCH is specified, then conceptually the engine is positioned on the last row
of the match. An ordinary column reference references the last row that is mapped to the row
pattern variable, anywhere in the pattern. If the variable is not mapped to any row, then the
value is null.

These semantics are the same as the LAST operator, with the implicit RUNNING default. Consequently,
an ordinary column reference such as:

X.Price

is equivalent to:

RUNNING LAST (X.Price)

5.8 MATCH_NUMBER function

Matches within a row pattern partition are numbered sequentially starting with 1 in the order they are
found. Note that match numbering starts over again at 1 in each row pattern partition, since there is no
inherent ordering between row pattern partitions. MATCH_NUMBER () is a nullary function that returns
an exact numeric value with scale 0 (zero) whose value is the sequential number of thematch within the
row pattern partition.

All previous examples of MATCH_NUMBER () have shown it used in MEASURES. It is also possible to use
MATCH_NUMBER () in DEFINE, where it can be used to define conditions that depend upon the match
number. For example:

PATTERN ( (A+ | B+) )
DEFINE A AS ( MOD (MATCH_NUMBER (), 2) = 1)

AND A.Price > PREV (A.Price) ),
       B AS ( MOD (MATCH_NUMBER (), 2) = 0)

AND B.Price < PREV (B.Price) )

The condition for A can only be true on odd-numberedmatches, and the condition for B can only be true
on even-numbered matches. Thus, the matches will alternate between A+ and B+.

MATCH_NUMBER () is not permitted except in MEASURES and DEFINE. For example, the following is a
syntax error:

SELECT MATCH_NUMBER ()
FROM Ticker

5.9 CLASSIFIER function

The classifier of a row is the primary row pattern variable to which the row is mapped by a row pattern
match. The classifier of a row that is not mapped by a row pattern match is null.

44 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.7 Ordinary row pattern column references reconsidered

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


TheCLASSIFIER function returns a character stringwhose value is the classifier of a row. TheCLASSIFIER
function has one optional argument, a row pattern variable, defaulting to the universal row pattern
variable.

The simplest usage of CLASSIFIER iswith no argument, as seen in the example in Subclause 4.4, “Example
of ALL ROWS PER MATCH”:

MEASURES ...
CLASSIFIER () AS Classy, ...
ALL ROWS PER MATCH

In this example, the CLASSIFIER () function returns the classifier of the current row, which is assigned
as the value of the row pattern measure Classy. Subclause 4.4, “Example of ALL ROWS PER MATCH”,
shows the result of the example query on the sample data, illustrating how the CLASSIFIER function
returns the classifier of each row of a row pattern match.

The classifier of the starting row of an empty match is the null value. This can be seen in the example in
Subclause 4.12.2, “Handling empty matches”, of a query using ALL ROWS PER MATCH SHOW EMPTY
MATCHES.

Optionally, the CLASSIFIER function may take a single argument, a row pattern variable RPV; the default
is the universal row pattern variable. The argument is used to specify a set of rows using running
semantics, namely, the set of rows up to and including the current row that are mapped to RPV.

The argument will typically be a union row pattern variable; the value returned tells which primary row
pattern variable among the components of the union row pattern variable to which a row was mapped.
For example:

MEASURES CLASSIFIER (AB) AS AorB
...
PATTERN (A | B | C)+
SUBSET AB = (A, B)

In this example, AB is a union row pattern variable. The value of the row pattern measure AorB is either
A or B, whichever is the classifier of the last row that mapped to A or B. If no rowmapped to A or B, the
value is null.

The CLASSIFIER function may be used in an aggregate. For example:

ORDER BY Tradeday
MEASURES ARRAY_AGG (CLASSIFIER () ORDER BY Tradeday)

AS ClassifierArray
ONE ROW PER MATCH

In the preceding example, one row is created for each row pattern match RPM, with a single row pattern
measure, which is an array of character strings. The elements of the array are the classifiers of the rows
in RPM, with one array element for each row of the row pattern input table that is mapped by RPM. Note
that the array is ordered using the same ordering as the row pattern partition. This technique can be
used to obtain a value reflecting the precise pattern thatwas detected,while usingONEROWPERMATCH
instead of ALL ROWS PER MATCH.

The CLASSIFIER function may be nested within a row pattern navigation operation. For example:

PREV (CLASSIFIER ())

The preceding example returns the classifier of the preceding row. This might be used in DEFINE so that
the definition of one row pattern variable might depend on the classifier of a previously matched row.
For example:

PATTERN ( (A | B) C )

© ISO/IEC 2021 – All rights reserved 45

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


DEFINE A AS ...,
       B AS ...,
       C AS CASE

WHEN PREV (CLASSIFIER ()) = 'A' AND Price > 100
THEN 1

WHEN PREV (CLASSIFIER ()) = 'B' AND Price < 100
THEN 1

ELSE 0
END = 1

In this example, the first rowmight be mapped to either A or B. The definition of C can test PREV (CLAS-
SIFIER ()) to learn to which row pattern variable the first rowmapped. If the first rowmapped to A, then
C will be true if Price > 100; if the first row mapped to B, then C will be true if Price < 100.

This particular example would be more easily written as:

PATTERN ( (A AC | B BC) )
DEFINE A AS ...,
       B AS ...,
       AC AS Price > 100,
       BC AS Price < 100

However, the example does illustrate a general technique thatmight be useful formore complex patterns
that want to inquire about the mapping chosen in earlier rows.

When nesting CLASSIFIER within NEXT, there is an important distinction between MEASURES and
DEFINE. Consider, for example:

NEXT (CLASSIFIER ())

which asks for the classifier of the next row. This expression, used in DEFINE, will return null, because
thenext rowhasnot beenmappedyetwhen consideringhow tomap the current row.Used inMEASURES,
the entire pattern has beenmapped, and the preceding example is able to return the classifier of the row
after the current row. (If the current row is the last row that is mapped, the result is null.)

Here is an example of the CLASSIFIER function nested in a compound row pattern navigation operation:

NEXT (RUNNING LAST (CLASSIFIER (U), 2) 3)

This example would be evaluated as follows:

1) Find the set of rows mapped to U. In DEFINE, this can only be rows up to and including the current
row; in MEASURES, this can be any rows mapped to U in the completed match.

2) RUNNING LAST restricts to the set of rows that map to U up to and including the current row. In
DEFINE, this is no change from step 1. In MEASURES with ONE ROW PERMATCH, the position is on
the last row, so this also is no change. In MEASURES with ALL ROWS PER MATCH, this may result in
discarding some of the rows mapped to U.

3) In the set of rows remaining after step 2, find the row that is offset 2 from the end. This requires at
least three rows remaining after step 2; if there are not that many, then the result is null. (This is the
functionality of LAST.)

4) Nowmove forward in the row pattern partition three rows. If there are not enough rows in the row
pattern partition, the result is null. (This is the functionality of NEXT.)

5) Finally, find the primary row pattern variable to which the row is mapped; this is the result. If the
row is not mapped, the result is null. (This is the functionality of CLASSIFIER.)

46 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


The explicit or implicit argument of CLASSIFIER is a row pattern variable. This row pattern variable is
used in the same fashion as the qualifier of a column reference in the argument of a rowpattern navigation
operation. For example:

NEXT (CLASSIFIER () || Name)

is a permissible expression, since CLASSIFIER () and Name both reference the universal row pattern
variable. On the other hand,

NEXT (CLASSIFIER (A) || Name)

is not permissible, because the CLASSIFIER function references the row pattern variable A, whereas the
column reference Name references the universal row pattern variable. Similarly:

NEXT (CLASSIFIER () || A.Name)

is not permissible.

The same rule applies to the argument of an aggregate: all row pattern variables referenced explicitly or
implicitly shall be the same. Thus the following is a syntax error:

ARRAY_AGG (CLASSIFIER () || A.Name)

The CLASSIFIER function is not permitted except in MEASURES and DEFINE. For example, the following
is a syntax error:

SELECT CLASSIFIER ()
FROM Ticker

© ISO/IEC 2021 – All rights reserved 47

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


6 Row pattern recognition: WINDOW clause

6.1 Introduction to theWINDOW clause

Feature R020, “Row pattern recognition: WINDOW clause” of ISO/IEC 9075-2 enhances the WINDOW
clause to include row pattern matching. In ISO/IEC 9075-2, a window is a data structure defined on the
result of a <table expression> (the FROM...WHERE...GROUP BY...HAVING... clauses), producing a derived
table. This data structure does three things:

1) Partitions the rows of the derived table according to zero or more columns.

2) Within each window partition, orders the rows of the derived table according to zero or more
expressions.

3) For each row R in a window partition, defines a window frame, which is a subset of the ordered
window partition. The endpoints of the window frame may be the beginning or end of the window
partition, or may be defined relative to the current row using either a physical offset (row count), a
logical offset (a value added to or subtracted from the only sort column), or a group count (number
of groups, defined as peers under the ordering).

Using R020, row pattern recognition may be used to further reduce the window frame. Row pattern
recognition is applicable only to window frames that start at the current row R. The window frame
resulting from step 3 will be called the “full window frame” of R, and the window frame after reduction
by pattern matching will be called the “reduced window frame” of R. When performing row pattern
recognition in a window, the window partition serves as the row pattern partition and the window
ordering serves as the row pattern ordering.

6.2 Example of row pattern recognition in a window

The example from Subclause 4.3, “Example of ONE ROW PER MATCH”, is adapted to use row pattern
matching in the WINDOW clause below:

SELECT T.Symbol,        /* ticker symbol */
       T.Tradeday,      /* trade day */
       T.Price,         /* price on day of trading */
       Classy OVER W,   /* classifier */
       Startp OVER W,   /* starting price */
       Bottomp OVER W,  /* bottom price */
       Endp OVER W,     /* ending price */
       Avgp OVER W      /* average price */
FROM Ticker AS T
WINDOW W AS
  ( PARTITION BY Symbol

ORDER BY Tradeday
MEASURES A.Price AS Startp,

LAST (B.Price) AS Bottomp,
LAST (C.Price) AS Endp,
AVG (U.Price) AS Avgp

ROWS
BETWEEN CURRENT ROW

48 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


AND UNBOUNDED FOLLOWING
AFTER MATCH SKIP PAST LAST ROW
INITIAL
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

           B AS B.Price < PREV (B.Price),
           C AS C.Price > PREV (C.Price)
  )

In the preceding example, the principle syntactic elements are presented on separate lines. In this
example:

— The SELECT list containswindow functions over thewindowWdefined in theWINDOWclause. Note
the window functions Classy OVERW, Startp OVERW, Bottomp OVERW, Endp OVERW, and Avgp
OVERW. These are examples of row pattern measure functions, which are window functions used
to access the row pattern measures defined in the MEASURES clause of the window definition.

— FROM introduces a conventional FROM clause. This example has a single table, Ticker, which is
assigned the range variable T. Since there is no WHERE, GROUP BY, or HAVING clause, the result of
the FROM clause is the row pattern input table in this example.

— WINDOWW declares the window nameW.

— PARTITION BY specifies how to partition the row pattern input table. The PARTITION BY clause is
a list of columns of the row pattern input table. This clause is optional; if omitted, there are no row
pattern partitioning columns, and the entire row pattern input table constitutes a single row pattern
partition.

— ORDER BY specifies how to order the rows within row pattern partitions of the row pattern input
table. The ORDERBY clause is a list of columns of the rowpattern input table. This clause is optional;
if omitted, the order of rows is completely non-deterministic. However, since non-deterministic
ordering will defeat the purpose of most row pattern recognition, the ORDER BY clause will usually
be specified.

— MEASURES specifies row pattern measures, whose values are calculated by evaluating expressions
related to the match. The values of row pattern measures are accessed using row pattern measure
functions, as illustrated in the SELECT list.

— ROWS specifies the unit to use in defining the full window frame. The other choices, RANGE and
GROUPS, are not permitted with row pattern matching in windows.

— BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING is one way to specify the full window
frame. In this example, for any row R in a row pattern partition P, the full window frame consists of
R and all rows that follow R in the row pattern partition P. The full window frame is subsequently
reduced to just the rows constituting a pattern match.

— AFTER MATCH SKIP clause specifies where to resume looking for the next row pattern match after
successfully finding a match. In this example, AFTER MATCH SKIP PAST LAST ROW specifies that
pattern matching will resume after the last row of a successful match. When a row is skipped, its
reduced window frame is empty.

— INITIAL specifies that the pattern always matches starting at the first row of the full window frame.
If there is no such pattern match, the reduced window frame is empty. The alternative to INITIAL is
SEEK, which specifies to seek the first row pattern match in the full window frame; if there is none,
the reduced window frame is empty.

— PATTERN specifies the row pattern that is sought in the row pattern input table. A row pattern is a
regular expression using primary row pattern variables. In this example, the row pattern has three
primary row pattern variables (A, B, and C).

© ISO/IEC 2021 – All rights reserved 49

ISO/IEC 19075-5:2021(E)
6.2 Example of row pattern recognition in a window

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


— SUBSET defines the union row pattern variables. In this example, U is defined as the union of the
primary row pattern variables A, B, and C. The SUBSET clause is optional.

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row shall
satisfy the condition in order to bemapped to a particular primary rowpattern variable. If a primary
row pattern variable is not defined in the DEFINE clause, then its definition defaults to a condition
that is always true, meaning that the primary row pattern variable can match any row.

The result of the preceding query on the sample row pattern partition is given in Table 17, “Window
example query results”.

Table 17—Window example query results

AVGPENDPBOTTOMPSTARTPCLASSYPRICETRADEDAYSYM
BOL

502009-06-08XYZ

45.8453560A602009-06-09XYZ

492009-06-10XYZ

402009-06-11XYZ

352009-06-12XYZ

452009-06-15XYZ

452009-06-16XYZ

51.4704345A452009-06-17XYZ

432009-06-18XYZ

472009-06-19XYZ

522009-06-22XYZ

702009-06-23XYZ

602009-06-24XYZ

6.3 Summary of the syntax

6.3.1 Syntax components

The syntax of row pattern recognition in windows is summarized in Table 18, “Row pattern recognition
in windows— syntax summary”.

50 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
6.2 Example of row pattern recognition in a window

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


Table 18— Row pattern recognition in windows— syntax summary

Cross-referenceNotesOptional?Clause of
window
definition

Subclause 6.6, “Windows
defined on windows”

no defaultyesExisting window
name

Subclause 6.7, “PARTITION
BY”

if omitted, the rowpattern input
table constitutes one row pat-
tern partition

yesPARTITION BY

Subclause 6.8, “ORDER BY”if omitted, there is a non-deter-
ministic ordering in each row
pattern partition

yesORDER BY

Subclause6.9, “MEASURES”no defaultyesMEASURES

Subclause 6.10.2, “ROWS
BETWEEN CURRENT ROW
AND ”

only ROWS is permitted with
row pattern recognition

noROWS, RANGE,
GROUPS

Subclause 6.10.2, “ROWS
BETWEEN CURRENT ROW
AND ”

BETWEENCURRENTROWAND
is required with row pattern
recognition

noBETWEEN CUR-
RENT ROW AND
...

Subclause 6.10.3,
“EXCLUDE NO OTHERS”

EXCLUDE NO OTHERS is the
default; other EXCLUDE options
are forbidden with row pattern
matching

yesEXCLUDE NO
OTHERS

Subclause 6.11, “AFTER
MATCH SKIP”

default is AFTER MATCH SKIP
PAST LAST ROW

yesAFTER MATCH
SKIP

Subclause 6.12, “INITIAL vs
SEEK”

default is INITIALyesINITIAL, SEEK

Subclause6.13, “PATTERN”same as MATCH_RECOGNIZEnoPATTERN

Subclause 6.14, “SUBSET”same as MATCH_RECOGNIZEyesSUBSET

Subclause 6.15, “DEFINE”same as MATCH_RECOGNIZEnoDEFINE

6.3.2 Syntactic comparison to windows without row pattern recognition

Note the following differences between windows with and without row pattern matching:

1) Windows with row pattern matching always have the PATTERN and DEFINE clauses, and optionally
may also have the MEASURES, AFTER MATCH SKIP, INITIAL, SEEK, and SUBSET clauses. Windows
without row pattern matching have none of these clauses.

© ISO/IEC 2021 – All rights reserved 51

ISO/IEC 19075-5:2021(E)
6.3 Summary of the syntax

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


2) Windowswith row patternmatching always start with the current row, and shall specify ROWS (nor
RANGE or GROUPS).

3) The only permitted EXCLUDE clause with row pattern matching is EXCLUDE NO OTHERS, which is
the default.

6.3.3 Syntactic comparison to MATCH_RECOGNIZE

The syntax for row pattern recognition in a window differs from MATCH_RECOGNIZE in the following
respects:

1) Row pattern recognition in windows includes the window syntax of conventional windows, with
someconstraints described in Subclause6.3.2, “Syntactic comparison towindowswithout rowpattern
recognition”.

2) Range variables declared in the FROM clause are visible in the PARTITION BY and ORDER BY clause
of a window, unlike MATCH_RECOGNIZE. See Subclause 6.7, “PARTITION BY”, and Subclause 6.8,
“ORDER BY”.

3) TheORDERBY clausemay use scalar value expressions, not just columns. See Subclause 6.8, “ORDER
BY”.

4) The options ONE ROW PERMATCH and ALL ROWS PER MATCH are not applicable to windows, and
cannot be specified. (Rowpattern recognition inwindows is closer in spirit toONEROWPERMATCH,
though it also has some similarity to ALL ROWS PER MATCHWITH UNMATCHED ROWS.)

5) Row pattern recognition in a window has a choice between INITIAL and SEEK.

6) The MATCH_NUMBER function is not supported.

7) Row patternmeasures are not columns in the result of a window; instead, row patternmeasures are
referenced using OVER, like a window function.

6.4 Row pattern input table

The row pattern input table for row pattern recognition in a WINDOW clause is the result of the FROM,
WHERE, GROUP BY, and HAVING clauses that precede the WINDOW clause.

The example in Subclause 6.2, “Example of row pattern recognition in awindow”, does not haveWHERE,
GROUP BY, or HAVING clauses, so the row pattern input table in that example is the result of the FROM
clause, that is, the table Ticker.

6.5 Row pattern variables and other range variables

There are two sets of range variables in a window with row pattern recognition:

1) The range variables declared in the FROM clause. (In the example in Subclause 6.2, “Example of row
pattern recognition in a window”, T is such a range variable.)

These range variables may be used in the PARTITION BY and ORDER BY clauses, and of course in
the SELECT list, WHERE clause, etc.

52 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
6.3 Summary of the syntax

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


2) The row pattern variables declared in the PATTERN and SUBSET clauses. (In the example in
Subclause 6.2, “Example of row pattern recognition in a window”, A, B, C, and U are row pattern
variables.)

Row pattern variables may be referenced in the MEASURES, DEFINE, and SUBSET clauses. They
cannot be used in the SELECT list.

Note that the two sets of range variables are declared in different clauses and have mutually exclusive
scope. (Since they are walled off in mutually exclusive scopes, it is permitted to use the same range vari-
ables in each scope, though that is a confusing possibility that it is probably best to avoid.)

For example, the following is a syntax error:

SELECT Runlength OVER W
FROM Ticker T
WINDOW W AS ( PARTITION BY Symbol

ORDER BY Tradeday
MEASURES COUNT (T.*) AS Runlength
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS T.Price > PREV (T.Price) )

There are three syntax errors in this example. The first is COUNT (T.*). T is a range variable defined in
the FROM clause and cannot be referenced inMEASURES. Instead of T, the variable to use here is A, since
A is declared in the PATTERN. Similarly, in the DEFINE, the two instances of T are errors.

Any column names to be referenced in either the MEASURES or DEFINE are unique across the entire
FROM clause, because the range variables in the FROM clause are not available to disambiguate in MEA-
SURES or DEFINE. The workaround is to rename column names in the FROM clause as necessary to
remove ambiguities.

For example, suppose both Emp and Dept have a column called Name. In the following query:

SELECT Aname OVER W, Bname OVER W
FROM Emp AS E, Dept AS D
WHERE E.Deptno = D.Deptno
WINDOW W AS ( PARTITION BY E.Deptno

ORDER BY E.Empno
MEASURES A.Name AS Aname,

                       B.Name AS Bname
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING
PATTERN (A B)
DEFINE B AS B.Salary > A.Salary )

The expressions A.Name and B.Name in the MEASURES clause are ambiguous, because they could refer
to either Emp.Name or Dept.Name. The solution is to rename at least one of them in the FROM clause,
like this:

SELECT Aname OVER W, Bname OVER W
FROM ( SELECT Name AS Ename, Deptno, Salary

FROM Emp ) AS E, Dept AS D
WHERE E.Deptno = D.Deptno
WINDOW W AS ( PARTITION BY E.Deptno

ORDER BY E.Empno
MEASURES A.Name AS Aname,

                       B.Name AS Bname
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING

© ISO/IEC 2021 – All rights reserved 53

ISO/IEC 19075-5:2021(E)
6.5 Row pattern variables and other range variables

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


PATTERN (A B)
DEFINE B AS B.Salary > A.Salary )

Note that row pattern variables are not available in the SELECT list. The following example is a syntax
error:

SELECT A.Price
FROM Ticker AS T
WINDOW W AS ( PARTITION BY Symbol

ORDER BY Tradeday
MEASURES COUNT (A.*) AS Runlength
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS A.Price > PREV (A.Price) )

In this example, A is a row pattern variable, which makes it visible in MEASURES and DEFINE. A is not
visible in the SELECT list. There is no loss of expressive power; any expression of row pattern variables
can be placed in MEASURES and then referenced by its measure name, like this:

SELECT Lasta OVER W
FROM Ticker AS T
WINDOW W AS ( PARTITION BY Symbol

ORDER BY Tradeday
MEASURES LAST (A.Price) AS Lasta
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS A.Price > PREV (A.Price) )

6.6 Windows defined on windows

ISO/IEC 9075-2 allows onewindow to be defined on anotherwindow by referencing an existingwindow
name. For example:

FROM Ticker AS T
WINDOW W1 AS ( PARTITION BY Symbol ),
       W2 AS ( W1 ORDER BY Tradeday ),
       W3 AS ( W2 ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING )

Here windowW2 inherits its partitioning fromW1, and W3 inherits its partitioning and ordering from
W2.

As an example of this capability using row pattern recognition:

SELECT Lastprice OVER W3
FROM Ticker AS T
WINDOW W1 AS ( PARTITION BY Symbol ),
       W2 AS ( W1 ORDER BY Tradeday ),
       W3 AS ( W2 MEASURES LAST(A.Price) AS Lastprice

ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING

PATTERN (A+)
DEFINE A AS A.Price > PREV (A.Price) )

54 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
6.5 Row pattern variables and other range variables

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


It is not possible to further subdivide the window definitions. For example, it is not permitted to put
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING in one window definition, and then
inherit that in another window definition that adds the row pattern recognition features.

6.7 PARTITION BY

PARTITION BY is almost the same in windows and in MATCH_RECOGNIZE. The one difference is that
range variables declared in the FROM clause are available in the PARTITION BY of a window, but not in
MATCH_RECOGNIZE. Note that a row pattern partition is the same thing as a window partition when
performing row pattern recognition in a window.

6.8 ORDER BY

ORDER BY is almost the same in windows and in MATCH_RECOGNIZE. The differences are:

1) Range variables declared in the FROM clause are available in the ORDER BY of a window, but not in
MATCH_RECOGNIZE.

2) General scalar value expressions may be used in the ORDER BY of a window, but only column refer-
ences may be used in the ORDER BY in MATCH_RECOGNIZE.

6.9 MEASURES

Row pattern measures in a window definition differ from row pattern measures in MATCH_RECOGNIZE
as follows:

1) The MATCH_NUMBER function is not supported in windows.

2) Row pattern measures are referenced as window functions in the SELECT list using OVER, not as
column references.

3) There is no real distinctionbetween running andfinal semantics. TheRUNNINGandFINALkeywords
maybeusedwith aggregates, FIRST, andLAST, but the semantics is the samenomatterwhichkeyword
is used. Rowpatternmeasures are computed positioned on the last row of thematch, where running
and final semantics are identical.

6.10 Full window frame and reduced window frame

6.10.1 Introduction to window framing

A window associates with each row R a set of rows, called the window frame of R. The definition of the
window frame is essentially a subtractive process:

1) At the outset, there is the entire window partition that contains R.

© ISO/IEC 2021 – All rights reserved 55

ISO/IEC 19075-5:2021(E)
6.6 Windows defined on windows

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


2) Next, zero or more rows are removed from the window partition, based on their position relative to
R in the ordering of rows of the window partition. The criterion at this stage is called the “window
frame extent”.

3) Next, zero or more rows are removed, based on peer relationships to R, using the EXCLUDE clause.

The three steps above are used for all windows. The result is called the “full window frame”. When row
pattern recognition is used, thewindow partition is also the row pattern partition, and there is onemore
step:

4) Amatch to the row pattern is sought within the full window frame; the rows that aremapped by this
match (if any) constitute the “reduced window frame”. If there is no match, the reduced window
frame is empty. (Skipped rows can also cause an empty reduced window frame; see Subclause 6.16,
“Empty matches and empty reduced window frames”.)

6.10.2ROWS BETWEEN CURRENT ROWAND

When performing row pattern recognition in a window, only two options are allowed for specifying the
window frame extent:

— ROWS BETWEEN CURRENT ROWANDUNBOUNDED FOLLOWING: this option specifies that the full
window frame consists of the set of rows from the current row through the end of the row pattern
partition.

— ROWSBETWEENCURRENTROWAND offset FOLLOWING: this option specifies that the full window
frame extends from the current row through some positive offset, which shall be a positive integer,
and specifies the number of rows after the current row. For example, ROWS BETWEEN CURRENT
ROW AND 1 FOLLOWING specifies a full window frame with 2 rows, the current row and the one
after it.

6.10.3 EXCLUDE NO OTHERS

The window EXCLUDE clause has four possibilities:

1) EXCLUDE CURRENT ROW: this is not permitted with row pattern recognition, since the design is
that the full window frame always begins with the current row.

2) EXCLUDE GROUP: also not permitted with row pattern recognition, because this would exclude the
current row, plus any ties under the window ordering.

3) EXCLUDE TIES: not permitted with row pattern recognition, because this could create a hole in the
full window frame, which is contrary to the spirit of row pattern recognition.

4) EXCLUDE NO OTHERS: permitted with row pattern recognition. This is the default.

Thus the only permitted option with row pattern matching is the default, EXCLUDE NO OTHERS.

6.11 AFTERMATCH SKIP

The options for AFTERMATCH SKIP are the same as inMATCH_RECOGNIZE; see Subclause 4.13, “AFTER
MATCH SKIP”, for details.

56 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
6.10 Full window frame and reduced window frame

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


As in MATCH_RECOGNIZE, it is a run-time error to skip to a non-existent row, or to skip to the first row
of a match.

Since only one row patternmatch per full window frame is sought, the semantics of AFTERMATCH SKIP
in a window are as follows. Windows are processed in the sort order within a row pattern partition. If a
row R is skipped as a consequence of a row pattern match in a full window frame prior to R, then the
reduced window frame of R is set to empty, without attempting any row pattern match for R. This is
illustrated in an example in Subclause 6.16, “Empty matches and empty reduced window frames”.

6.12 INITIAL vs SEEK

If a row R has been skipped by a prior row PR, then the reduced window frame of R is empty.

If R has not been skipped, then a row pattern match is attempted in the full window frame of R. INITIAL
and SEEK are two options that determine where to look for a match within the full window frame:

1) INITIAL is used to look for a match whose first row is R.

2) SEEK is used to permit a search for the first match anywhere from R through the end of the full
window frame.

In either case, the reduced window frame comprises the rows that are mapped by the match; if there is
no match, then the reduced window frame is empty. For a worked example, see Subclause 6.16, “Empty
matches and empty reduced window frames”.

The keyword INITIAL or SEEK is placed as a modifier before the PATTERN. The default is INITIAL.

6.13 PATTERN

This clause is precisely the same as in MATCH_RECOGNIZE, except that the anchors (^ and $) are not
permitted with row pattern matching in windows. See Subclause 4.14, “PATTERN”, for details.

6.14 SUBSET

This clause is precisely the same as in MATCH_RECOGNIZE. See Subclause 4.15, “SUBSET”, for details.

6.15 DEFINE

This clause is precisely the same as in MATCH_RECOGNIZE. See Subclause 4.16, “DEFINE”, for details.

6.16 Empty matches and empty reduced window frames

An empty match will cause the reduced window frame to be empty. Empty reduced window frames can
also arise if there is no match at all, as in these circumstances:

© ISO/IEC 2021 – All rights reserved 57

ISO/IEC 19075-5:2021(E)
6.11 AFTERMATCH SKIP

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098


1) AFTER MATCH SKIP on a prior row has caused the current row to be skipped, so no match is
attempted.

2) The query specifies or implies INITIAL and there is no match starting at the current row.

3) The query specifies SEEK but there is no match anywhere between the current row and the end of
the full window frame.

So there are two ways to get an empty reduced window frame: by finding an empty match, or by not
finding a match at all.

The semantics for rowpatternmeasures of empty reducedwindow frames are shown inTable 19, “Results
for empty match and no match”.

Table 19— Results for empty match and nomatch

no matchempty
match

Measure

nullnullCLASSIFIER ()

null0COUNT

nullnullother aggregates (e.g.,, SUM, AVG, etc.

nullnullrowpattern navigation operations (e.g.,, PREV,NEXT, FIRST,
LAST

nullnullordinary column references

Thus COUNT (*) may be used to distinguish an empty match from no match at all. If an empty match is
found, then COUNT (*) as a row pattern measure will be 0; if there is no match at all, then COUNT (*) as
a row pattern measure will be null.

Note the following subtlety: If the query specifies COUNT (*) as a non-measure window function, then
the count over an emptywindow frame is 0 in any case. It is onlywhenCOUNT (*) is used as a rowpattern
measure that it can be used to distinguish an empty match from no match at all. For example:

SELECT S, D,
       Kount OVER W AS "Measure",

COUNT (*) OVER W AS "Window Function"
FROM T
WINDOW W AS ( ORDER BY S

MEASURES COUNT (*) AS Kount
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING
AFTER MATCH SKIP PAST LAST ROW
INITIAL PATTERN (A*)
DEFINE A AS A.D = 'yes' )

Consider the following data, shown in the first two columns,with the other two columns of output shown
in the next two columns, and the internal information (skip indicator, whether a match was found, and
the reduced window frame) in the right three columns, as shown in Table 20, “Computation of matches
and window function results”.

58 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-5:2021(E)
6.16 Empty matches and empty reduced window frames

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-5
:20

21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

	Contents
	Tables
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Row pattern recognition: FROM clause
	4.1 Context of row pattern recognition
	4.2 Introduction to the FROM clause in row pattern recognition
	4.3 Example of ONE ROW PER MATCH
	4.4 Example of ALL ROWS PER MATCH
	4.5 Summary of the syntax
	4.6 The row pattern input table
	4.6.1 Introduction to the row pattern input table
	4.6.2 The row pattern input name
	4.6.3 The row pattern input declared column list

	4.7 MATCH_RECOGNIZE
	4.8 PARTITION BY
	4.9 ORDER BY
	4.10 Row pattern variables
	4.11 MEASURES
	4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH
	4.12.1 Introduction to use of ROWS PER MATCH
	4.12.2 Handling empty matches
	4.12.3 Handling unmatched rows

	4.13 AFTER MATCH SKIP
	4.14 PATTERN
	4.14.1 Introduction to the PATTERN syntax
	4.14.2 PERMUTE
	4.14.3 Excluding portions of the pattern

	4.15 SUBSET
	4.16 DEFINE
	4.17 The row pattern output table
	4.17.1 Introduction to the row pattern output table
	4.17.2 Row pattern output name
	4.17.3 Row pattern output declared column list

	4.18 Prohibited nesting
	4.18.1 Introduction to prohibited nesting
	4.18.2 Row pattern recognition nested within another row pattern recognition
	4.18.3 Outer references within a row pattern recognition query
	4.18.4 Conventional query nested within row pattern recognition query
	4.18.5 Recursion
	4.18.6 Concatenated row pattern recognition


	5 Expressions in MEASURES and DEFINE
	5.1 Introduction to the use of expressions in MEASURES and DEFINE
	5.2 Row pattern column references
	5.3 Running vs. final semantics
	5.4 RUNNING vs.FINAL keywords
	5.5 Aggregates
	5.6 Row pattern navigation operations
	5.6.1 The four operations
	5.6.2 PREV and NEXT
	5.6.3 FIRST and LAST
	5.6.4 Nesting FIRST and LAST within PREV or NEXT

	5.7 Ordinary row pattern column references reconsidered
	5.8 MATCH_NUMBER function
	5.9 CLASSIFIER function

	6 Row pattern recognition: WINDOW clause
	6.1 Introduction to the WINDOW clause
	6.2 Example of row pattern recognition in a window
	6.3 Summary of the syntax
	6.3.1 Syntax components
	6.3.2 Syntactic comparison to windows without row pattern recognition
	6.3.3 Syntactic comparison to MATCH_RECOGNIZE

	6.4 Row pattern input table
	6.5 Row pattern variables and other range variables
	6.6 Windows defined on windows
	6.7 PARTITION BY
	6.8 ORDER BY
	6.9 MEASURES
	6.10 Full window frame and reduced window frame
	6.10.1 Introduction to window framing
	6.10.2 ROWS BETWEEN CURRENT ROW AND
	6.10.3 EXCLUDE NO OTHERS

	6.11 AFTER MATCH SKIP
	6.12 INITIAL vs SEEK
	6.13 PATTERN
	6.14 SUBSET
	6.15 DEFINE
	6.16 Empty matches and empty reduced window frames
	6.17 Prohibited nesting
	6.17.1 Restrictions on nesting
	6.17.2 Row pattern recognition nested within another row pattern recognition
	6.17.3 Outer references within a row pattern recognition query
	6.17.4 Conventional query nested within row pattern recognition query
	6.17.5 Recursion
	6.17.6 Concatenated row pattern recognition


	7 Pattern matching rules
	7.1 Regular expression engines
	7.2 Parenthesized language and preferment
	7.2.1 Introduction to parenthesized language and preferment
	7.2.2 Alternation
	7.2.3 Concatenation
	7.2.4 Quantification
	7.2.5 Exclusion
	7.2.6 Anchors
	7.2.7 The empty pattern
	7.2.8 Infinite repetitions of empty matches

	7.3 Pattern matching in theory and practice

	Blank Page



