INTERNATIONAL ISO/IEC
STANDARD 19075-5

First edition
2021-08

Information technology — Gui:‘ance

for the use of database language
SQL —

Part 5:
Row pattern recognition

Technologies de l'information — Recommandations poun| l'utilisation
du langage de basé)de’ données SQL —

Partie 5: Recannaissance de formes de lignes

Reference number
ISO/IEC 19075-5:2021(E)

© ISO/IEC 2021

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 e Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

Contents Page
FOTEWOTA. . .o e vii
Introduftion. . .. e ix
1 . Y o 1 o T 1 Y M 1
2 Normative references...........ccoviiiiiirriinninnrrerrnnnnnrrerrnnnnness @y ivnnnedinnns 2
3 Temrmsand definitions...........ociiiiiiiiiiiiiii it s e e 3
4 Row pattern recognition: FROM clause...........cccoiiiiiiiiiiiibdeeieennnneenadennn. 4
4.1 Context of row pattern recognition. oo e 4
4.2 Introduction to the FROM clause in row pattern recognition. NS 4
4.3 Example of ONE ROW PERMATCH.t e et cieiei e oo 4
4.4 Example of ALL ROWS PER MATCH. N e e 7
4.5 Summary of the syntax. A N 9
4.6 The row patterninputtable..........) e e 10
4.6.1 Introduction to the row pattern inputtable. o i 10
4.6.2 The row pattern input name. A ittt i e i e e 11
4.6.3 The row pattern input declared columnlist. ,). i e 12
4.7 MATCH_RECOGNIZE. i N e e 13
4.8 PARTITION BY. . ..ot e e et e 13
4.9 ORDER BY. ..ttt T e 13
4.10 Row pattern variables.00 . . . e e 13
411 MEASURES. e 14
412 ONE ROW PER MATCH vssALLROWS PERMATCHo 15
4.12.1 |Introduction to use offROWS PER MATCH. i 15
4.12.2 [Handling empty matches.ot e 15
4.12.3 [Handling unmatehed rows.t e 19
4.13 AFTER MATCH SKIP. o et o 21
4.14 PAT TERN) . o e 22
4.14.1 |Introduction to the PATTERN syntax.couuiinninineiniiiiiininnnenne]ennnn 22
4142 |REBMUTE. .. o 23
4.14.3 "Excluding portions of The patlern.« ...« ...t rrnrneneneonen e 24
4.15 SUB S E T, ottt e e e e e e 25
4.16 DEFINE. . .o 26
4.17 The row pattern output table. e e 27
4.17.1 Introduction to the row pattern outputtable. i i 27
4.17.2 Row pattern output Name.ot e 28
4.17.3 Row pattern output declared column list. o 28
4.18 Prohibited nesting.t e 29
4.18.1 Introduction to prohibited nesting. i 29
4.18.2 Row pattern recognition nested within another row pattern recognition. 30

© ISO/IEC 2021 - All rights reserved iii

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4.18.3 Outer references within a row pattern recognition query. 30
4.18.4 Conventional query nested within row pattern recognition query.o .. 31
4.18.5 RECUISION. L\ ottt ittt ettt e et e e e e e e e 32
4.18.6 Concatenated row pattern reCognition. ottt 32
5 Expressions in MEASURES and DEFINE.oiiiiiiiiiiiiiiii s nsnsnnnsnsnnnnss 33
5.1 Introduction to the use of expressions in MEASURES and DEFINE. 33
5.2 Row pattern column references.t 33
5.3 Running vs. final semantics. e 34
5.4 RENNINGVvsFINAEREyWVPOIT S M —m ——m—m m——m—mm —m m — — 1 - - - - - 38
5.5 A gates. . ottt e O M 39
5.6 Row pattern navigation operations. N 39
5.6.1 The four operations. e Y 39
5.6.2 PREVand NEXT.t A 39
5.6.3 FIRST and LAST.o e 41
5.6.4 Nesting FIRST and LAST within PREVor NEXTo oot 42
5.7 Ordinary row pattern column references reconsidered. & . oo oo 43
5.8 MATCH_NUMBER function.ov vttt iie e e e N e iee e iieennen]on 44
59 CLASSIFIER function. oo 44
6 Row pattern recognition: WINDOW clause........... o0 cceeeiiiiiiinnnnnnnnndonnns 48
6.1 Introduction to the WINDOW clause.o e 48
6.2 Example of row pattern recognition in a window. . <. o oo] 48
6.3 Summary of the Syntax.t AN e 50
6.3.1 Syntax COMPONENTS.ottt e Bt et e et 50
6.3.2 Syntactic comparison to windows without ¥ow pattern recognition.]..... 51
6.3.3 Syntactic comparison to MATCH_RECOGNIZE. it 52
6.4 Row pattern input table. o8 . e 52
6.5 Row pattern variables and other<range variables. o o]t 52
6.6 Windows defined on windows: s e 54
6.7 PARTITION BY. . ..o i e it e 55
6.8 ORDER BY. .t i vt ettt et e e e e e 55
6.9 MEASURES. . e e 55
6.10 Full window frame and reduced window frame. oot 55
6.10.1 [Introductiomsto'window framing. i e 55
6.10.2 |[ROWS BETWEEN CURRENT ROW ANDo e 56
6.10.3 [EXCLUDE NO OTHERS. o i 56
6.11 AFTER MATCH SKIP. . . oo e e i 56
6.12 N SEE 57
6.13 DA T RN, .t e e e 57
6.14 SUBSE T . o e 57
6.15 DEFINE. « o e 57
6.16 Empty matches and empty reduced window frames. i 57
6.17 Prohibited nesting.o 59
6.17.1 ResStrictions 0N NeStiNgG.ttt 59
6.17.2 Row pattern recognition nested within another row pattern recognition. 60
6.17.3 Outer references within a row pattern recognition query.c.o e, 60
6.17.4 Conventional query nested within row pattern recognition query.............. oueun.... 61
6.17.5 RECUISION. ..\ ottt e e e 61
iv © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

6.17.6 Concatenated row pattern recognition. ittt e 61
7 Pattern matching rules. it i 63
7.1 Regular expression eNgines.ttt e 63
7.2 Parenthesized language and preferment. 64
7.2.1 Introduction to parenthesized language and preferment. i ... 64
7.2.2 AETNatioN. 65
7.2.3 CONCAtENALION. . . ottt ettt et e e e 65
7.2.4 Quantification. e 66
7.2.5 Exelostoms-- i ii i mmm —m———————7o67"7"3- - - - . 67
7.2.6 ANCROTS. oo e O N 68
7.2.7 The empty pattern.t N 68
7.2.8 Infinite repetitions of empty matches.o O] 68
7.3 Pattern matching in theory and practice. o A] 70
011 e 73

© ISO/IEC 2021 - All rights reserved A"

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

Tables

Table Page
1 Sample data. o e e 7
2 Results of ONE ROW PER MATCH. oottt e e e e et 7
3 Results of ALL ROWS PER MATCH.ot e e et e et et 8
4 Row pattern recognition Syntax SUIMMATIY.ottt it et ittt en s 9
5 An]ycic of camp]n data permitting empty Do e o1 7] oYY 16
6 Result of query permitting empty matches.] 16
7 Respults of query using SHOW EMPTY ROWS.o AN 18
8 Results of query using OMIT EMPTY ROWS. it o 18
9 Results of ALL ROWS PER MATCH.t 20
10 Original and renamed column names.c.oiiitiiinirnnin e b 29
11 Ordered row pattern partitionof data. oo D 35
12 RUNNING and FINAL in MEASURES. oo e e i 36
13 Ordered row pattern partitionofdata. i & 37
14 Ordered row pattern partitionof data.............. .. oo i N 37
15 Example data set and mappings for FIRSTand LAST. 0 oo e 41
16 Dathp set and mappings for nesting example. 8 e 43
17 Window example query results. o e 50
18 Row pattern recognition in windows — syntax summary,-&). . ..o oo i 51
19 Results for empty match and nomatch.o .S e 58
20 Comnputation of matches and window function resultsy. o 59
21 Inppt data.o e e 71
22 Mapping of first element. L N e 71
23 Mapping of second element. 0 e 72
24 Mapping of third element. 0 e e 72

vi © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5

Foreword

:2021(E)

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
[SO and IEC technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The pro
describe
different
rules of
bers_¢g

Attentio

edures used to develop this document and those intended for its further maintenance
d in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needéed
types of document should be noted. This document was drafted in accordance-with the

xperts/refdocs).

patentrights. ISO and IEC shall not be held responsible for identifying any or.all such patent right

ofany p4
on the IS
declarat

Any trad
constitu

For an e3
related t
Organizd

tent rights identified during the development of the document willbe in the Introductio
O list of patent declarations received (see Ww. i S0. or g/ patent s), or the IEC list o
ons received (see pat ent s. i ec. ch).

fe an endorsement.

wor d. ht m . In the IEC, see ww. i ec. ch/ under st andi ng- st andar ds.

This dod
mittee S

This firs

This doc
9075 sel

— ISO
— ISO
— ISO
— ISO

C 32, Data management and interchange.

L edition of ISO/IEC 19075-5¢ancels and replaces ISO/IEC TR 19075-5:2016.

ies:

IEC 9075-1, sixth-edition or later;
[EC 9075-25sixth edition or later;
IEC 9075-3, sixth edition or later;

IEC'9075-4, seventh edition or later;

are
for the
editorial

he ISO/IEC Directives, Part 2 (see ww. i so. or g/ di r ecti ves orwwv. i.ec. ch/ ngm

h is drawn to the possibility that some of the elements of this document'may be the subject of

5. Details
hand/or
f patent

e name used in this document is information given for the convenience of users and dqges not

planation of the voluntary nature of standards, the meaning of ISO specific terms and exgressions
o conformity assessment, as well as informatien about ISO’s adherence to the World Trade
tion (WTO) principles in the Technical Barriers to Trade (TBT) seewww. i s0. or g/ i soy f or e-

ument was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sibcom-

Lment is intended to be used in conjunction with the following editions of the parts of thg ISO/IEC

— ISO

IEC9075-9, hitth edition or later;

— ISO/IEC 9075-10, fifth edition or later;
— ISO/IEC 9075-11, fifth edition or later;
— ISO/IEC 9075-13, fifth edition or later;
— ISO/IEC 9075-14, sixth edition or later;
— ISO/IEC 9075-15, second edition or later;
— ISO/IEC 9075-16, first edition or later.

© ISO/IEC 2021 - All rights reserved

vii

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iec.ch/members_experts/refdocs
www.iso.org/patents
patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

A list of all parts in the ISO/IEC 19075 series can be found on the ISO and [EC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found atwww. i so. or g/ nenbers. ht Ml and ww. i ec. ch/ -
nati onal -conmittees.

viii © ISO/IEC 2021 - All rights reserved

www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

Introduction

This document discusses the syntax and semantics for recognizing patterns in rows of a table, as defined
in ISO/IEC 9075-2.

The organization of this document is as follows:

1)
2)

3)
4)

5)

6)

7)

Clause 1, “Scope”, specifies the scope of this document.

Clayse 2, “Normative references”, identifies additional standards that, through reference,in

doc
Clay
Clau

Clay
mat

Clay
nitig
mat

“Expressions in MEASURES and DEFINE”, which should-bé read even if the reader is only in

inF

Clay

ment, constitute provisions of this document.

se 3, “Terms and definitions”, defines the terms and definitions used in this decument.

Ching.
se 6, “Row pattern recognition: WINDOW clause”, discusses Feature R020, “Row pattet

brial already presented in Clause 4, “Row pattern recognition: FROM clause” and Claus

pature R020, “Row pattern recognition: WINDOW-clause”.

se 7, “Pattern matching rules”, discusses the formal rules of pattern matching.

this

se 4, “Row pattern recognition: FROM clause”, discusses Feature R010, “Row ‘pattern recpgnition:
FROM clause”.

se 5, “Expressions in MEASURES and DEFINE”, discusses scalar expression syntax in row pattern

n recog-

n: WINDOW clause”. Clause 6, “Row pattern recognition: WINDOW clause”, does not duplicate

b 5,
terested

© ISO/IEC 2021 - All rights reserved

ix

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

INTERNATIONAL STANDARD ISO/IEC 19075-5:2021(E)

Information technology — Guidance for the use of database language SQL —

Part 5:
Row pattern recognition

1 Scape

This dogqument discusses the syntax and semantics for recognizing patterns in rows '6f a table, as
in ISO/IEC 9075-2, commonly called “SQL/RPR”".

SQL/RPR defines two features regarding row pattern recognition:

— Fea]ure R010, “Row pattern recognition: FROM clause”
— Featlure R020, “Row pattern recognition: WINDOW clause”

These two features have considerable syntax and semantics in common, the principle differenc
whether| the syntax is placed in the FROM clause or in the WINDOW clause.

defined

e being

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content consti-
tutes requirements of this document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9075-1, Information technology — Database languages — SQL — Part 1: FrameworH
(SOL/fFramework)

ISO/IEC 9075-2, Information technology — Database languages — SQL — Part 2: Faoundation
(SQL/Foundation)

2 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9075-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia-avaitable at it tpr 77 Www. et ect Topedi a. or g7

— ISO Pnline browsing platform: available atht t p: / / www. i so. or g/ obp

© ISO/IEC 2021 - All rights reserved 3

http://www.electropedia.org/
http://www.iso.org/obp
https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4 Row pattern recognition: FROM clause

4.1 Context of row pattern recognition

The requiirements for the material discussed in this document shall be as specified in ISO/IEC 9
and ISO{IEC 9075-2.

4.2 Introduction to the FROM clause in row pattern recognition

Feature R010, “Row pattern recognition: FROM clause” of SQL/RPR enhandes the capability of tl
clause with a MATCH_RECOGNIZE clause to specify a row pattern. The syntax and semantics of]
pattern 1s discussed through examples presented throughout this Clause of this document.

There a1le two principal variants of the MATCH_RECOGNIZE clause:

1) ONH ROW PER MATCH, which returns a single summary‘row for each match of the pattern
defdqult).

2) ALL|ROWS PER MATCH, which returns one row for,each row of each match. There are thre
tionk, to control whether to also return empty matches or unmatched rows.

4.3 Example of ONE ROW PER'MATCH

The follgwing example illustrates MATCH_RECOGNIZE with the ONE ROW PER MATCH option. L
(Symbolf Tradeday, Price) be a table with three columns representing historical stock prices. Sy
a character column, Tradeday is.a date column, and Price is a numeric column.

NOTH 1 — All examples inthis’document use mixed-case identifiers for the names of tables, columns, etc., whef

key words are shown infuppercase. Unquoted identifiers are actually equivalent to uppercase, so the column he
sample results will betshown with the identifiers converted to uppercase.

It is desired to partition the data by Symbol, sort it into increasing Tradeday order, and then de
maximal “V” patterns in Price: a strictly falling price, followed by a strictly increasing price. For

075-1

ne FROM
arow

(the

e subop-

ot Ticker
mbol is

eas SQL
adings of

fect
each

match tq a V(pattern, it is desired to report the starting price, the price at the bottom of the V, the ending

price, aqd the average price across the entire pattern.

The following query may be used to solve this pattern matching problem:

SELECT M Synbol, /* ticker symbol */
M Mat chno, /* sequential nmatch nunber */
M Startp, /* starting price */
M Bottonp, /* bottomprice */
M Endp, /* ending price */
M Avgp /* average price */
FROM Ti cker
MATCH_RECOGNI ZE (
PARTI TI ON BY Synbol
CORDER BY Tr adeday
MEASURES MATCH_NUMBER() AS Mat chno,

4 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

N

ISO/IEC 19075-5

:2021(E)

4.3 Example of ONE ROW PER MATCH

A . Price AS Startp,
LAST (B.Price) AS Bottonp,
LAST (C. Price) AS Endp,
AVG (U. Price) AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, O
DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B. Price),
CAS C. Price > PREV (C. Price)

A DA
Ao IVl

In the example above, the principal syntactic elements of MATCH_RECOGNIZE are presented on
lines. In fthis example:

— TicKer is the name of the row pattern input table. In this example, the row pattérn input ta
table or view. The row pattern input table may also be a derived table (in-line view).

— MATCH_RECOGNIZE introduces the syntax for row pattern recognition.

— PA

ITION BY specifies how to partition the row pattern input table{Fhe PARTITION BY c

a lisf of columns of the row pattern input table. This clause is optional; if omitted, there arg
pattern partitioning columns, and the entire row pattern input table constitutes a single row
partition.

— ORI
alis
inrg
will

— MEA
expt
sped
aro
LAS
patt
intr

The
PER
row

— ONH
mat|

— AFT

ER BY specifies how to order the rows within row pattern partitions. The ORDER BY ¢
L of columns of the row pattern input table. This €lause is optional; if omitted, the orde
w pattern partitions is completely non-deterministic. However, since non-deterministic
defeat the purpose of most row pattern recognition, the ORDER BY clause will usually be s

\SURES specifies row pattern measure celumns, whose values are calculated by evalua
essions related to the match. The firstirow pattern measure column in this example us
ial nullary function MATCH_NUMBER(), whose value is the sequential number of a matg
v pattern partition. The third and fourth row pattern measure columns in this example
[operation, which obtains the value of an expression in the last row that is mapped by
ern match to a row pattern variable. LAST is one of the row pattern navigation operati
pduced by SQL/RPR, discussed in Subclause 5.6, “Row pattern navigation operations”.

result of the MATCH.RECOGNIZE clause is called the row pattern output table. When O
MATCH is specified, as in this example, the row pattern output table has one column fg
pattern partitioning column and one column for each row pattern measure column.

ROW PERMATCH specifies that the row pattern output table will have a single row fo
Ch thatis-found in the row pattern input table.

ER MATCH SKIP clause specifies where to resume looking for the next row pattern mat

separate

ble is a

ause is
Nno row
F pattern

ause is

" of rows
prdering
pecified.

[ing

es the

h within
e use the
arow
ns

NE ROW
r each

r each

ch after

suc

essfully finding a match. In this example, AFTER MATCH SKIP PAST LAST ROW specifi

s that

pattern matching will resume after the last row of a successful match.

— PATTERN specifies the row pattern that is sought in the row pattern input table. A row pattern is a
regular expression using primary row pattern variables. In this example, the row pattern has three
primary row pattern variables (A, B, and C).

— SUBSET defines the union row pattern variable U as the union of the primary row pattern variables
A, B, and C.

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row shall
satisfy the Boolean condition in order to be mapped to a particular primary row pattern variable.
This example uses PREV, a row pattern navigation operation that evaluates an expression in the
previous row. If a primary row pattern variable is not defined in the DEFINE clause, then the definition

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.3 Example of ONE ROW PER MATCH

1)

2)
3)
4)

5)

6)

7)

defaults to a condition that is always true, meaning that any row can be mapped to the primary row
pattern variable.

AS M defines the range variable M to associate with the row pattern output table. This clause is
optional; if omitted, then an implementation-dependent range variable is used. Since an implemen-
tation-dependent range variable is unknowable to the query writer, the AS clause should not be
omitted if there are any other tables in the FROM clause aside from the MATCH_RECOGNIZE.

The processing of MATCH_RECOGNIZE is as follows:

The row pattern input table is partitioned according to the PARTITION BY clause. Each row pattern

partfition consists of the set of rows ot the row pattern input table that are equal (more pre

not

Eac

Patt]
patt]
row,
Clay

Aftel

are

Usin
for ¢

The

patt

mat
LAS

Table 1,

accordin
arrows 9

EacI row pattern partition is ordered according to the ORDER BY clause.

Histinct) on the row pattern partitioning columns.

ordered row pattern partition is searched for matches to the PATTERN.

ern matching operates by seeking the match at the earliest row, considering the rows i

se 7, “Pattern matching rules”.

r a match is found, row pattern matching calculates the row-pattern measure columns,
bxpressions defined by the MEASURES clause.

g ONE ROW PER MATCH, as shown in the example; iow pattern recognition generates
ach match that is found.

Ching resumes at the next row after the roews mapped by a match (AFTER MATCH SKIP
[ROW).

‘Sample data”, illustrates sample data for one row pattern partition of Ticker, shown s¢
g to the ORDER BY clause. The sample data contains two matches to the pattern, indic:
howing the mapping to primary row pattern variables in each match.

Cisely,

larow

ern partition in the order specified by the ORDER BY. When there is more than one match at a
then the most preferred match is taken. The precise rules of pattern matching are disdussed in

which

one row

AFTER MATCH SKIP clause determines wheretow pattern matching resumes within alrow
ern partition after a non-empty match hasbeen found. In the example above, row pattern

PAST

rted
ited by

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.3 Example of ONE ROW PER MATCH

Table 1 — Sample data

SYMBOL | TRADEDAY | PRICE
XYZ 2009-06-08 | 50

XYZ 2009-06-09 | 60 A |

XYZ 2009-06-10 | 49 -B ||

XYZ 2009-06-11 | 40 —~B | }first match
XYZ 2009-06-12 | 35 -B ||

XYZ 2009-06-15 | 45 -Cc |

XYZ 2009-06-16 | 45

XYZ 2009-06-17 | 45 A]

XYZ 2009-06-18 | 43 -B [

XYZ 2009-06-19 | 47 ~&€ | } second match
XYZ 2009-06-22 | 52 ¢ ||

XYZ 2009-06-23 | 70 -Cc |

XYZ 2009-06-24 [\60

The resylt of the example for this row pattern partition is shown in Table 2, “Results of ONE ROW PER
MATCH’

Table 2 — Results of ONE ROW PER MATCH

SYMBOL MATCHNO STARTP BOTTOMP ENDP AVGP
XYZ 1 60 35 45 45.8
XYZ 2 45 43 70 514

4.4 Example of ALL ROWS PER MATCH

The previous example can be modified slightly to illustrate ALL ROWS PER MATCH, as follows:

SELECT M Synbol, /* ticker symnmbol */
M Mat chno, /* sequential match nunber */
M Tradeday, /* day of trading */
M Price, /* price on day of trading */
M d assy, /* classifier */
M Startp, /* starting price */
M Bottonp, /* bottomprice */

© ISO/IEC 2021 - All rights reserved 7

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.4 Example of ALL ROWS PER MATCH

M Endp, /* ending price */

M Avgp /* average price */
FROM Ti cker

MATCH_RECOGNI ZE (

PARTI TI ON BY Synbol

CORDER BY Tr adeday

MEASURES MATCH_NUMBER() AS Mat chno,
CLASSI FI ER() AS d assy,
A . Price AS Startp,
FI NAL LAST (B.Price) AS Bottonp,
FI NAL LAST (C. Price) AS Endp,

FHNAE—AYE—(O—Prce—AS—Avgp
ALL ROWS PER MATCH
AFTER MATCH SKI P PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, O

B AS B.Price < PREV (B. Price),
CAS C. Price > PREV (C. Price)
AS M

DEFINE /* A defaults to True, matches any row */

Note that the second row pattern measure column in this example shows‘the use of the special

CLASSIF
is discus

The resu

sed in Subclause 5.9, “CLASSIFIER function”.

Table 3 — Results of ALL R@WS PER MATCH

[ER(), which returns the name of the row pattern variable to which a row is mapped. CLA

It of this query on the sample data is shown in Table 3, “Results of ALL ROWS PER MAT

function
\SSIFIER

CH”.

SYM | MA | TRADEDAY | PRICE | CLAS |STAR |[BOT | ENDP | AVGP
BOL |TC SY TP TOMP

HN

0
XYZ |1 |2009-06-09 ‘{60 A 60 35 45 45.8
XYZ |1 |2009-06:10 |49 B 60 35 45 45.8
XYZ |1 |2009-06-11 |40 B 60 35 45 45.8
XYZ |1 (2009-06-12 |35 B 60 35 45 45.8
XYZ |2~ | 2009-06-15 |45 C 60 35 45 45.8
XYz 2 | 2009-06-17 | 45 A 45 43 70 51.4
XY7Z 2 2009-06-18 43 B 45 43 70 514
XYZ |2 |2009-06-19 |47 C 45 43 70 51.4
XYZ |2 |2009-06-22 |52 C 45 43 70 51.4
XYZ |2 |2009-06-23 |70 C 45 43 70 51.4

ALL ROWS PER MATCH differs from ONE ROW PER MATCH in the following respects:
1) ALL ROWS PER MATCH returns one row for each row of each match of the pattern.

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4.4 Example of ALL ROWS PER MATCH

2) The row pattern output table has a column corresponding to every column of the row pattern input
table, not just the row pattern partitioning columns. (Note the column M.Price in the SELECT list.
This is a column of the row pattern input table, not a row pattern measure column.)

3) The MEASURES clause supports two semantics for expression evaluation, running semantics and
final semantics, indicated by the keywords RUNNING and FINAL.

4) ALLROWSPERMATCH provides three suboptions for handling empty matches and unmatched rows.
These options are not illustrated in this example; see Subclause 4.12.2, “Handling empty matches”,
and Subclause 4.12.3, “Handling unmatched rows”, for examples of these options.

4.5 Summary of the syntax

The complete syntax for row pattern recognition in the FROM clause involves the components shown in
Table 4, Row pattern recognition syntax summary”.

Table 4 — Row pattern recognition syntax summary

Syntactjic component Optional? | Default Cross reference

row patfern input table no — Subclause 4.6, “The row pat-
tern input table”

row patfern input name yes implementation-dependent | Subclause 4.6.2, “The row

pattern input name”

row patfern input declared | yes none Subclause 4.6.3, “The row
column [list pattern input declargd col-
umn list”
MATCH]RECOGNIZE no — Subclause 4.7, “MATCH_REC-
OGNIZE”
PARTITION BY y€s row pattern input table con- | Subclause 4.8, “PARTITION
stitutes one row pattern par- | BY”
tition
ORDER BY yes non-deterministic ordering | Subclause 4.9, “ORDER BY”
in each row pattern partition
MEASURES yes none Subclause 4.11, “MEASURES”
ONE ROWPERMATCHor yES ONEROWPERMATCH Subclause4:12;“6NE ROW
ALL ROWS PER MATCH PER MATCH vs ALL ROWS
PER MATCH”
AFTER MATCH SKIP yes AFTER MATCH SKIP PAST Subclause 4.13, “AFTER
LAST ROW MATCH SKIP”
PATTERN no — Subclause 4.14, “PATTERN”
SUBSET yes no explicit union row pattern | Subclause 4.15, “SUBSET”

variables

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.5 Summary of the syntax

Syntactic component Optional? | Default Cross reference
DEFINE no — Subclause 4.16, “DEFINE”
row pattern output name yes implementation-dependent | Subclause 4.17.2, “Row pat-

tern output name”

row pattern output declared | yes none Subclause 4.17.3, “Row pat-

column list tern output declared column
list”

4.6 The row pattern input table

4.6.1 1

The row

row patflern input table was Ticker, which is a table or view, or pérhaps a named query (defineq

WITH cl

examplet

FROM (

VA

The row
as:

FROM (
MA

ntroduction to the row pattern input table

pattern input table is the input argument to MATCH_RECOGNTZE. In the examples abo

huse). The row pattern input table can also be a deriyed-table (also known as in-line vi

SELECT S. Nanme, T.Tradeday, T.Price
FROM Ti cker T, Synbol Names S

NHERE T. Synbol = S. Synbol)

[CH RECOGNIZE (...) AS M

pattern input table shall not be a <jdined table>. The work-around is to use a derived ta

SELECT * FROM A LEFT OUTER-JON B ON (A. X = B.Y))
[CH RECOGNI ZE (...) AS“M

range v

Note thaﬁ column names in the row pattern input table are unambiguous, since it is impossible

a base tgble or a view, this;is not a problem, since SQL does not allow ambiguous column names

table or

For exan
followin

FROM (

riables within the-MATCH_RECOGNIZE clause to disambiguate. If the row pattern inpu

view. This is.Only an issue when the row pattern input table is a derived table.

b is a_syhtax error:

SELECT D. Nane, E. Nane, E. Enpno, E. Sal ary

ve, the
lin a
ew). For

ble, such

to use
[table is
in a base

1ple, conSider a join of two tables, Emp and Dept, each of which has a column called Name. The

FROM Dept D, Enp E

WHERE D. Deptno = E. Deptno)
MATCH _RECOGNI ZE (
PARTI TI ON BY D. Nare

)

The preceding example is an error because the range variable D is not visible within the MATCH_RECOG-
NIZE (the scope of D is just the derived table). Rewriting like this is no help:

FROM (SELECT D. Name, E. Nanme, E.Enpno, E. Sal ary
FROM Dept D, Enmp E
WHERE D. Deptno = E. Deptno)
MATCH_RECOGNI ZE (

10

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.6 The row pattern input table

PARTI TI ON BY Nane
)

This rewrite eliminates the use of the range variable D within the MATCH_RECOGNIZE. However, now
the error is that Name is ambiguous, because there are two columns of the derived table called Name.
The way to handle this is to disambiguate the column names within the derived table itself, like this:

FROM (SELECT D. Nane AS DNane, E. Nane AS ENane,
E. Enpno, E. Sal ary
FROM Dept D, Enp E
WHERE D. Deptno = E. Deptno)
MAJTCH_RECOGNI ZE (
PARTI TI ON BY DNane

)

4.6.2 The row pattern input name

—

Optionally, a correlation name for the row pattern input table may be degclared, as in this examy
(equivalent to the example in Subclause 4.3, “Example of ONE ROW PER\MATCH"):

e

SELECT M Synbol , /* ticker symbol */
M Mat chno, /* sequential match nunmber */
M St art p, /* starting price */
M Bot t onp, /* bottom price */
M Endp, /* ending price */
M Avgp /* average price */

FROM Ti ¢ker AS T
MATCH _RECOGNI ZE (
PARTI TI ON BY T. Synbol
CRDER BY T. Tr adeday
MEASURES MATCH_NUMBER() AS Matéhno,
A . Price AS Startp,
LAST (B.Price) AS-Bottonp,
LAST (C. Price)“AS Endp,
AVG (U. Prigce)s"AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKI P\PAST LAST ROW
PATTERN (A B+/€%)
SUBSET U = (A,~B, O
DEFINE /* ‘A defaults to True, matches any row */
ByAS B. Price < PREV (B.Price),
C AS C. Price > PREV (C. Price)
AS M

The row|pattern input name in this example is T, as defined by the syntax “Ticker AS T". It is also|possible
to omit the-neise-word AS-ike-this—TFicker -

W OoOT 1O TTrIst—riT

Specifying the row pattern input name is optional. The examples in Subclause 4.3, “Example of ONE ROW
PER MATCH”, and Subclause 4.4, “Example of ALL ROWS PER MATCH”, do not show an explicit row pattern
input name.

When the row pattern input name is not specified, the following defaults apply:

1) If the row pattern input table is a base table, view, or query name (the name of a query defined in a
WITH clause), then the table name, view name or query name is the default row pattern input name.

2) Otherwise, an implementation-dependent row pattern input name, different from any other range
variable in the query, is implicit. In practice, this means that the row pattern input name is
unknowable and cannot be referenced elsewhere in the query.

© ISO/IEC 2021 - All rights reserved 11

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.6 The row pattern input table

The scope of the row pattern input name is the PARTITION BY and ORDER BY clauses of the
MATCH_RECOGNIZE clause. This means that the row pattern input name can be used in the following
contexts:

1) To qualify column names in the PARTITION BY clause.
2) To qualify column names in the ORDER BY clause.
The example above illustrates both of these uses.

The row pattern input name cannot be referenced in the MEASURES or DEFINE clauses, nor elsewhere
ln the qln vvvvvv h actbh Ao WHEDLD ol cn o +tha CL'1 I.'.‘f"T‘} nt

CTy, SatiraS tarcvy ITLIchL CrauastCoOT Tt oL LL G T

4.6.3 The row pattern input declared column list

If an expllicit row pattern input name is specified, it may be followed by a paremthesized list of dolumn
names, gs in this example:

SELECT M Sym /* ticker synmbol */
M Mat chno, /* sequential match nunber */
M St art p, /* starting price */
M Bot t onp, /* bottom price */
M Endp, /* ending price */
M Avgp /* average price */

FROM Ti ¢ker AS T (Sym Td, Pr)
MATCH_RECOGNI ZE (
PARTI TION BY T. Sym
ORDER BY T. Td
MEASURES MATCH_NUMBER() AS Mat chno,
A.Pr AS Startp,
LAST (B.Pr) AS Bottonp,
LAST (C. Pr) AS Endp,
AVG (U.Pr) AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKI P PAST~LAST ROW
PATTERN (A B+ Ct)
SUBSET U = (A B, ©
DEFI NE /* A deffaul'ts to True, matches any row */
B AS B.Pr < PREV (B.Pr),
C AS'\C'Pr > PREV (C.Pr)
AS M

The par¢nthesizedlist of column names (Sym, Td, Pr) is called the row pattern input declared golumn
list. The [row pattern input declared column list may be used to change the names of the columns of the
row pattern 1nput table. There shall be exactly the same number of column names in the list as there are
columnsin : deday has
been renamed to Td and Price has been renamed to Pr. Consequently, the columns cannot be referenced
as Symbol, Tradeday, or Price within the MATCH_RECOGNIZE; instead, they are referenced by their new
names, Sym, Td, and Pr. Note that this also changes the default names of the columns in the row pattern
output table. Thus, in the SELECT list, the first item is M.Sym, because the input column names Symbol
was renamed to Sym, which becomes the name of the corresponding output column.

12 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.7 MATCH_RECOGNIZE

4.7 MATCH_RECOGNIZE

MATCH_RECOGNIZE is the keyword that introduces the syntax for row pattern recognition in the FROM
clause. Syntactically, MATCH_RECOGNIZE is a postfix operator following the row pattern input table. The
MATCH_RECOGNIZE keyword is followed by a parenthesized list of syntactic components that collectively
describe the row pattern recognition operation.

4.8 PARTITION BY

PARTITION BY is used to specify that the rows of the row pattern input table are to be partitioned by

one or njore columns. Note that the column names in the PARTITION BY may be unqualified, or they may
be qualified by the row pattern input name. See the examples in Subclause 4.6.2, “Thexow pattdrn input
name”.

If there is no PARTITION BY, then all rows of the row pattern input table constitute a single row pattern
partition).

4.9 ORDERBY

ORDER BY is used to specify the order of rows within a row.pattern partition. The ORDER BY clause of
a MATCH_RECOGNIZE is similar to the ORDER BY clause of a cursor. As with the PARTITION BY| clause,
column hames may be unqualified, or they may be qualified by the row pattern input name. Se¢ the

examples in Subclause 4.6.2, “The row pattern inputname”.

If the orgler of two rows in a row pattern partition is not determined by the ORDER BY, then th¢ result
of MAT(H_RECOGNIZE is non-deterministic!

NOTH 2 — Syntactically, the row pattern output table is always regarded as non-deterministic because there is ho way for
the qyiery engine to deduce at compile time whether the ordering is total. This means that MATCH_RECOGNIZE [cannot be
used |n contexts that are required to be@deterministic, such as check constraints and assertions. However, the query author
can upe ORDER BY to insure that the query is sufficiently deterministic for the author’s intended purpose.

4.10 Row pattern variables

Row pattern variables are range variables whose scope is limited to a MATCH_RECOGNIZE claulse. As
range v¥iables, row pattern variables are used to qualify column references, in either the scaldr

expressipn.of a@ row pattern measure column, or the Boolean condition of a DEFINE.

" 1. 1 L dd . 1.1
There aretwokimdsof row PAtETIT VAT TdDIES?

1) Primary row pattern variables, which are declared in the PATTERN and defined by an associated
Boolean condition specified in the DEFINE clause.

2) Union row pattern variables, which are declared in the SUBSET clause as a union of a list of primary
row pattern variables. The primary row pattern variables are called components of the union row
pattern variable.

A row pattern variable shall not be both a primary row pattern variable and a union row pattern variable.
This means that a row pattern variable that is declared in PATTERN shall not also be declared on the left
hand side of a SUBSET.

© ISO/IEC 2021 - All rights reserved 13

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.10 Row pattern variables

Informally, a match consists of a set of contiguous rows in a row pattern partition of the row pattern
input table. (For a more formal treatment, see Clause 7, “Pattern matching rules”.) Each row of the match
is mapped to a primary row pattern variable. The mapping of rows to primary row pattern variables
conforms to the regular expression in the PATTERN clause, and is further constrained to insure that all
Boolean conditions in the DEFINE clause are true.

Thus rows are mapped to row pattern variables. Conversely, each row pattern variable RPV has a set of
rows that are mapped to RPV. For example, given:

PATTERN (A+ (B+ | C+) D)
SUBSET S = (B, D)

Suppose that consecutive rows R3, Ry, Rs, Rg, and R; are mapped as follows:

— the set of rows mapped to Ais{ R3, R4 },
— the $et of rows mapped to Bis { Rs, Rg },

— the $et or rows mapped to C is empty, and

— the et of rows mapped to D is { Ry }.

The set ¢f rows mapped to a union row,pattern variable URPV can be obtained as the set union|of rows
mapped|to each component of URPV:In this example:

— the set of rows mapped to SGs){ Rg, Rg } U{ R7 } ={ R5, R, R7 }.

There is plways one implicitunion row pattern variable, called the universal row pattern variable, defined
as the union of all primary.row pattern variables. Thus, every row of a match is mapped to the yniversal
row pattern variable. The‘universal row pattern variable is used to implicitly qualify unqualified column
reference within the MEASURES or DEFINE clauses. There is no syntax available to the user to dlenote

the universal row pattern variable. The query writer may, of course, define an explicit union row pattern
variable(that is:the union of all primary row pattern variables. (The example in Subclause 4.3, “Example
of ONE ROW\RER MATCH”, illustrates this technique.)

4.11 MEASURES

The MEASURES clause defines row pattern measure columns, which are columns of the row pattern
output table whose value is computed by evaluating an expression related to a particular match. Note
that SQL/RPR extends the scalar expression syntax of ISO/IEC 9075-2, and provides special semantics
for evaluating scalar expressions in the context of a row pattern match. This is discussed in Clause 5,
“Expressions in MEASURES and DEFINE”.

NOTE 3 — The MEASURES clause in a window definition does not define columns; instead, it defines named expressions
which are accessed using a variant of the window function syntax, called row pattern measure functions. “Row pattern

14 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.11 MEASURES

measure” is the generic term for row pattern measure columns and row pattern measure functions, whose values are
computed using the same rules.

4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH

4.12.1 Introduction to use of ROWS PER MATCH

ONE ROW PER MATCH indicates that the result has one row for each match. Columns of this rew are
defined py the PARTITION and MEASURES clauses. This is the default.

ALL ROWS PER MATCH indicates that the result has one row for each row of each match: (It is possible
to exclude some rows using the exclusion syntax{- -} inthe PATTERN; see Subclause 4.14.3, “Excluding
portiong of the pattern”.)

ALL ROWS PER MATCH has three suboptions:

— ALL|ROWS PER MATCH SHOW EMPTY MATCHES
— ALL{ROWS PER MATCH OMIT EMPTY MATCHES
— ALL{ROWS PER MATCH WITH UNMATCHED ROWS

These options are explained in the following subsections,

4.12.2 Handling empty matches

Some patterns permit empty matches. For example:

PATTERN| (A*)
can be mjatched by zero or morerows that are mapped to A.

An emptly match does not map any rows to primary row pattern variables; nevertheless, an empfy match
has a stqrting row. For example, there can be an empty match at the first row of a row pattern gartition,
an empt} match at the sécond row of a row pattern partition, etc. An empty match is assigned a sgquential
match niimber, based ‘on the ordinal position of its starting row, the same as any other match.

When uging ONE'TROW PER MATCH, an empty match results in one row of the row pattern outgut table.
The row|pattern®measures for an empty match are computed as follows:

— The|value of MATCH_NUMBER() is the sequential match number of the empty match.

— Any COUNT is 0.

— Any other aggregate, row pattern navigation operation, or ordinary row pattern column reference
is null.

For example, the example in Subclause 4.3, “Example of ONE ROW PER MATCH”, can be modified to
permit empty matches, as follows:

SELECT M Synbol, /* ticker synbol */
M Mat chno, /* sequential match nunmber */
MFirstp, /* starting price */
M Last p /* ending price */

FROM Ti cker

© ISO/IEC 2021 - All rights reserved 15

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH

MATCH_RECOGNI ZE (
PARTI TI ON BY Synbol
CORDER BY Tr adeday
MEASURES MATCH_NUMBER() AS Mat chno,

FIRST A Price AS Firstp,

LAST (A Price) AS Lastp
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW

PATTERN (A*)

DEFI NE
o A AS A Price > PREV (A Price)
Here the pattern has been changed to A*, and is used to detect runs of increasing prices. The sample data
is now ahalyzed as shown in Table 5, “Analysis of sample data permitting empty matches”,
Table 5 — Analysis of sample data permitting empty matches
SYMBOL TRADEDAY | PRICE
XYZ 2009-06-08 | 50 match#1 (empty)
XYZ 2009-06-09 | 60 - A | anatch #2
XYZ 2009-06-10 | 49 match #3 (empty)
XYZ 2009-06-11 | 40 match #4 (empty)
XYZ 2009-06-12 | 35 match #5 (empty)
XYZ 2009-06-15 | 45 -~ A | match #6
XYZ 2009-06-16 | 45 match #7 (empty)
XYZ 2009-06-17 | 45 match #8 (empty)
XYZ 2009-06-18 | 43 match #9 (empty)
XYZ 2009-06-19 | 47 A |
XYZ 2009-06-22 | 52 ~A | } match#10
XYZ 2009-06-23 | 70 A |
XYZ 2009-06-24 | 60 match #11
(empty)

The result of the preceding query on the sample row pattern partition is illustrated in Table 6, “Result
of query permitting empty matches”.

Table 6 — Result of query permitting empty matches

16

SYMBOL MATCHNO FIRSTP | LASTP
XYZ 1
XYZ 2 60 60

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

In the pijeceding result, note how the row pattern measures other.than the match number are 1
empty 1

As for Al
match, s

1)

2)

ALL ROV
one row

ISO/IEC 19075-5

:2021(E)

4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH

SYMBOL MATCHNO FIRSTP | LASTP

XYZ 3

XYZ 4

XYZ 5

XYZ 6 45 45

ALL
sing

ALL
the

The
The
The

The
row

The

XYZ 7

XYZ 8

XYZ 9

XYZ 10 47 70

XYZ 11

atches.

L. ROWS PER MATCH, the question arises of whethei‘to generate a row of output for a
peing that there are no rows in the empty match<{To-govern this, there are two options:

ROWS PER MATCH SHOW EMPTY MATCHES:with this option, any empty match gener
le row in the row pattern output table.

ROWS PER MATCH OMIT EMPTY MATCHES: with this option, an empty match is omitf
fow pattern output table. (This may@ause gaps in the sequential match numbering.)

VS PER MATCH defaults to SHOW EMPTY MATCHES. Using this option, an empty match g
in the row pattern output table. In this row:

value of a classifier function is null.
value of MATCH_NUMBER() is the sequential match number of the empty match.
value of any ordinary row pattern column reference is null.

value of any aggregate or row pattern navigation operation is computed using an empf
5 (so any COUNT is 0, and all other aggregates and row pattern navigation operations a

value of any column corresponding to a column of the row pattern input table is the sar

corr

jull for

L empty

ates a

ed from

enerates

y set of
re null).

he as the

esponding column in the starting row of the empty match.

The following example alters the preceding example slightly, to use ALL ROWS PER MATCH SHOW EMPTY

MATCHES:

SELECT M Synbol , /* ticker synbol */
M Mat chno, /* sequential match nunber */
M Tradeday, /* day of trading */
M Price, /* price on day of trading */
M d assy, /* classifier */
M Firstp, /* starting price */
M Last p /* ending price */

FROM Ti cker

MATCH_RECOGNI ZE (

© ISO/IEC 2021 - All rights reserved

17

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH

PARTI TI ON BY Synbol

CORDER BY Tr adeday

MEASURES MATCH_NUMBER() AS Mat chno,
CLASSI FI ER AS d assy,
FINAL FIRST (A Price) AS Firstp,
FI NAL LAST (A. Price) AS Lastp

ALL ROAS PER MATCH SHOW EMPTY MATCHES

AFTER MATCH SKI P PAST LAST ROW

PATTERN (A*)

DEFINE A AS A Price > PREV (A Price)

) AS M
The resylt of the preceding query on the sample row pattern partition is shown in Table 7, “Redults of
query uging SHOW EMPTY ROWS".
Table 7 — Results of query using SHOW EMPTY ROWS
SYMBOL MATCH TRADEDAY | PRICE | CLASSY | FIRSTP LASTP
NO
XYZ 1 2009-06-08 | 50
XYZ 2 2009-06-09 | 60 A 60 60
XYZ 3 2009-06-10 | 49
XYZ 4 2009-06-11 | 40
XYZ 5 2009-06-12 | 35
XYZ 6 2009-06-15, |45 A 45 45
XYZ 7 2009-06-16 | 45
XYZ 8 2009-06-17 | 45
XYZ 9 2009-06-18 | 43
XYZ 10 2009-06-19 | 47 A 47 70
XYZ 10 2009-06-22 | 52 A 47 70
XYZ 10 2009-06-23 | 70 A 47 70
XYZ 11 2009-06-24 | 60

If, instead, ALL ROWS PER MATCH OMIT EMPTY MATCHES were used, the result would lack the rows
for the empty matches, like illustrated in Table 8, “Results of query using OMIT EMPTY ROWS”.

Table 8 — Results of query using OMIT EMPTY ROWS

SYMBOL MATCH TRADEDAY | PRICE | CLASSY FIRSTP LASTP
NO

XYZ 2 2009-06-09 | 60 A 60 60

XYZ 6 2009-06-15 | 45 A 45 45

18 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH
SYMBOL MATCH TRADEDAY | PRICE | CLASSY | FIRSTP LASTP
NO

XYZ 10 2009-06-19 | 47 A 47 70

XYZ 10 2009-06-22 | 52 A 47 70

XYZ 10 2009-06-23 | 70 A 47 70
Note the[gaps i the match numbering; atso, the finat empty match (number I 1) s undetectabie|because
there ar¢ no non-empty matches following it.

4.12.3 Handling unmatched rows

Somero

by a non-empty match. Such rows are called unmatched rows.

The opti

rows. En

unmatcled row, all row pattern measures are null, somewhat analogous to the null-extended s
outer join. Thus COUNT and MATCH_NUMBER may be used to-distinguish an unmatched row fjom the

starting
WITH U

NMATCHED ROWS.

vs of the row pattern input table may be neither the starting row of an empty match, norjmapped

bn ALL ROWS PER MATCH WITH UNMATCHED ROWS shows both empty matches and unmatched
\pty matches are handled the same as with SHOW EMPTY\MATCHES. When displaying|an

de of an

row of an empty match. The exclusion syntax { - ~}.is prohibited as contrary to the spifit of

The examnple in Subclause 4.4, “Example of ALL ROWS-PER MATCH”, can be used to illustrate WMITH

UNMAT

SELECT

FROM Ti

LHED ROWS. The change in the query syntax is:

M Synbol , /* ticker symbol */

M Mat chno, /* sequential mateh*nunber */
M Tr adeday, /* day of trading */

M Price, /* price on day of trading */
M C assy, /* classifi€™/

M St art p, /* startilng price */

M Bottonp, /* bottom price */

M Endp, /* endi\ng price */
M Avgp /*_average price */
Cker

MATCH_RECOGNILZE (

PARTI TI‘ON-BY Synbol

CRDER\BY Tr adeday

MVEASURES MATCH_NUMBER() AS Mat chno,
CLASSI FI ER AS O assy,
A.Price AS Startp,

FI NAL LAST (B.Price) AS Bottonp,
FI NAL LAST (C.Price) AS Endp,
FI NAL AVG (U. Price) AS Avgp
ALL ROAS PER MATCH W TH UNMATCHED RONS
AFTER MATCH SKI P PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, O
DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B.Price),
C AS C. Price > PREV (C. Price)

) AS M

© ISO/IEC 2021 - All rights reserved

19

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH

and the result on the data in the sample row pattern partition is shown in Table 9, “Results of ALL ROWS
PER MATCH".

Table 9 — Results of ALL ROWS PER MATCH

SYM MA | TRADEDAY | PRICE | CLAS | STAR | BOT ENDP | AVGP
BOL TC SY TP TOMP

HN

0
XYZ 2009-06-08 | 50
XYZ 1 2009-06-09 | 60 A 60 35 45 458
XYZ 1 2009-06-10 | 49 B 60 35 45 45.8
XYZ 1 2009-06-11 | 40 B 60 35 45 45.8
XYZ 1 2009-06-12 | 35 B 60 35 45 45.8
XYZ 1 2009-06-15 | 45 C 60 35 45 45.8
XYZ 2009-06-16 | 45
XYZ 2 2009-06-17 | 45 A 45 43 70 514
XYZ 2 2009-06-18 | 43 B 45 43 70 514
XYZ 2 2009-06-19 | 47 C 45 43 70 51.4
XYZ 2 2009-06-22 | 52 C 45 43 70 51.4
XYZ 2 2009-06-23 470 C 45 43 70 514
XYZ 2009-06=24 | 60

In the sample output, note-the rows in which the row pattern measures are null. These rows cofrespond
to unmafched rows in the,;row pattern input table.

It is not possible forapattern to permit empty matches and also have unmatched rows. The regson is
that if a fow of the\row pattern input table cannot be mapped to a primary row pattern variabl¢, then
that row|can stillkbe the starting row of an empty match, and will not be regarded as unmatched, assuming
that the pattern permits empty matches. Thus, if a pattern permits empty matches, then the output using
ALL ROWSPER MATCH SHOW EMPTY MATCHES is the same as the output using ALL ROWS PER MATCH
WITH UNMATCHED ROWS. Thus WITH UNMATCHED ROWS is primarily intended for use with patterns
that do not permit empty matches. However, the user may prefer to specify WITH UNMATCHED ROWS
if the user is uncertain whether a pattern may have empty matches or unmatched rows.

Note thatif ALL ROWS PER MATCH WITH UNMATCHED ROWS is used with the default skipping behavior
(AFTER MATCH SKIP PAST LAST ROW), then every row of the row pattern input table will appear exactly
once in the output (as the location of an empty match, as a row that is mapped by a non-empty match,
or as an unmatched row).

Other skipping behaviors are permitted using WITH UNMATCHED ROWS, in which case it becomes pos-
sible for a row to be mapped by more than one match and appear in the row pattern output table multiple
times. Unmatched rows will appear in the output only once.

20 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.13 AFTER MATCH SKIP

4.13 AFTER MATCH SKIP

The AFTER MATCH SKIP clause determines the point to resume pattern matching after a non-empty
match has been found. The default for the clause is AFTER MATCH SKIP PAST LAST ROW. The options
are as follows (RPV denotes a row pattern variable):

— AFTER MATCH SKIP TO NEXT ROW: resume pattern matching at the row after the first row of the
current match.

— AFTER MATCH SKIP PAST LAST ROW: resume pattern matching at the next row after the last row
of tfe current match.

— AFT[ER MATCH SKIP TO FIRST RPV: resume pattern matching at the first row that is mapped to the
row|pattern variable RPV.

— AFTER MATCH SKIP TO LAST RPV: resume pattern matching at the last row thatis mapped to the
row|pattern variable RPV.

— AFTER MATCH SKIP TO RPV: same as AFTER MATCH SKIP TO LAST RPV.

When uging AFTER MATCH SKIP TO FIRST or AFTER MATCH SKIP TO [LAST], it is possible that no row
is mappéd to the <row pattern variable name>. For example, the row(pattern variable A in

AFTER MATCH SKI P TO A
PATTERN[(X A* X),

might hgve no rows mapped to A. If there is no row mapped+to A, then there is no row to skip tg, so a
run-time¢ exception is generated.

Another|aberrant condition is that AFTER MATCH SKIP may try to resume pattern matching at the same
row thafl the last match started. For example,

AFTER MATCH SKI P TO X
PATTERN| (X Y+ 2),

In this example, AFTER MATCH SKIP-TO X tries to resume pattern matching at the same row where the
previoug match was found. This weuld result in an infinite loop; consequently a run-time exception is
generatqd for this scenario.

the AFTER MATCEHSKIP syntax only determines the point to resume scanning for a mdtch after
a non-empty match. Wheén-an empty match is found, one row is skipped (as if SKIP TO NEXT RQW had
been sp¢cified). Thus ‘an empty match never causes one of these exceptions.

A query that getsone of these exceptions should be rewritten. For example,

AFTER MATCH SKI P TO A
PATTERN| (X AA | B) V)

will cause a run-time error if alternative A does not match. Instead of this example, perhaps the following
will serve the user’s needs:

AFTER MATCH SKIP TO C

PATTERN (X (A | B) V)

SUBSET C = (A, B)

In the revised example, no run-time error is possible, whether A or B is matched.

As another example:

AFTER MATCH SKI P TO FIRST A
PATTERN (A* X)

© ISO/IEC 2021 - All rights reserved 21

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.13 AFTER MATCH SKIP

This example will always get an exception after the first match, either for skipping to the first row of the
match (if A* matches) or for skipping to a non-existent row (if A* does not match). In this example, SKIP
TO NEXT ROW might be a better choice.

When using ALL ROWS PER MATCH together with skip options other than AFTER MATCH SKIP PAST
LAST ROW, it is possible for consecutive matches to overlap, in which case a row R of the row pattern
input table might occur in more than one match. In that case, the row pattern output table will have one
row for each match in which R participates. The MATCH_NUMBER function may be used to distinguish
between the multiple matches in which a row of the row pattern input table participates. When a row
participates in more than one match, its classifier may be different in each match as well.

4.14]

4.14.11

The PAT
parenth

22

PATTERN

ntroduction to the PATTERN syntax

TERN clause is used to specify a regular expression. The regulairexpression is enclosed

pses. It is built from primary row pattern variables, and may use the following operator

con¢atenation: indicated by the absence of any operator sigiixbétween two successive item
pattern. Note that whitespace is required to delimit two suceessive primary row pattern va

quantifiers: quantifiers are postfix operators with thé following choices:

*I— 0 or more iterations

— 1 or more iterations

7+ 0 or 1 iterations

[t T et W et S)

Iq

{

alte
spe(

1 } — exactly n iterations (n > 0)

1, } — n or more iterations (1> 0)

, m } — between n and 'w (inclusive) iterations (0 <n<m, 0 <m)
m } — between 0-and m (inclusive) iterations (m > 0)

luctant quantifiers, indicated by an additional question mark (*?, +?, 72, {n}?, {n,}?, { n,
m}?7). See below for the difference between reluctant and non-reluctant quantifiers.

mationsindicated by a vertical bar (|). Alternatives are preferred in the order in which
ified.

in
S:

5 in a
riables.

m }7,

they are

grou

PER

pingindicated by paremntheses:

MUTE: see Subclause 4.14.2, “PERMUTE".

exclusion: parts of the pattern to be excluded from the output of ALL ROWS PER MATCH are enclosed
between {- and -}. See Subclause 4.14.3, “Excluding portions of the pattern”.

anchors (not permitted with row pattern matching in windows):

~: matches the beginning of a row pattern partition

$:

matches the end of a row pattern partition

(): empty pattern, matches an empty set of rows

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

The difference between non-reluctant (or “greedy”) and reluctant quantifiers appended to a single row
pattern variable is illustrated as follows: A* tries to map as many rows as possible to A (consistent with
mapping the entire pattern), whereas A*? tries to map as few rows as possible to A (consistent with
mapping the entire pattern). The semantics of quantifiers on complex regular expressions, such as (A |
B)*, cannot be expressed succinctly; see Subclause 7.2.4, “Quantification”,

The precedence of the operators in a regular expression, in decreasing order, is as follows:

— primaries: primary row pattern variables, anchors, PERMUTE, parenthetic expressions, exclusion
syntax, empty pattern

— quafififier; a primary may have Zero or one quantitier
— cong¢atenation

— alternation

Precedence of alternation is illustrated by this example:
PATTERN| (A B | C D)

which is|equivalent to

PATTERN| ((A B) | (C D)

and is n¢t equivalent to

PATTERN| (A (B| © D)

Precedence of quantifiers is illustrated by this example;
PATTERN| (A B *)

which is|equivalent to

PATTERN| (A (B*))

and is n¢t equivalent to

PATTERN| ((A B)*)

A quantifier shall not immediately follow another quantifier. For example
PATTERN]| (A**)

is prohibited, wheneas

PATTERN| ((A%)*)

is permitted (though the latter pattern is No More powertul than just A™J.

It is permitted for a primary row pattern variable to occur more than once in a pattern. For example

PATTERN (X Y X)

4.14.2 PERMUTE

The PERMUTE syntax may be used to express a pattern that is a permutation of simpler patterns. For
example,

© ISO/IEC 2021 - All rights reserved 23

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

PATTERN (PERMJUTE (A, B, ©))
is equivalent to an alternation of all permutations of three row pattern variables A, B and C, like this:
PATTERN (ABC| ACB| BAC| BCA| CAB| CBA)

Note that PERMUTE is expanded lexicographically. (In this example, since the three row pattern variables
A, B, and C are listed in alphabetic order; it follows from lexicographic expansion that the expanded

possibilities are also listed in alphabetic order.) This is significant because alternatives are attempted in
the order written in the expansion. Thus a match to (A B C) will be attempted before a match to (A C B),
etc.; the first attempt that succeeds is the “winner .

As another example:
PATTERN| (PERVUTE (X{3}, B C?, D))
is equivdlent to

PATTERN| (

vy)
Qe
W)
x
w

4.14.3 Excluding portions of the pattern

When uding ALL ROWS PER MATCH with either the:OMIT EMPTY MATCHES or SHOW EMPTY MATCHES
suboptigns, rows matching a portion of the PAFTERN may be excluded from the row pattern oytput
table. THe excluded portion is bracketed between {- and -} in the PATTERN clause.

For example, the following example finds-the longest periods of increasing prices that start with a price
no less than 10.

SELECT M Synbol , /* row,s~synbol */

M Tr adeday, /* row s trade day */

M Price, /*mOW s price */

M Avgp, I* ;dverage price */

M Mat chno /¥ row s match nunber */
FROM Ti ¢ker

MATCH_RECOGNI ZE (

PARTISTION BY Synbol

ORDER BY Tradeday

MEASURES FI NAL AVG (S. Price) AS Avgp,

TOLL AN\ AG MMk olo
PO _INUIVDLTN) Ao VAl UTITTU

ALL ROWS PER MATCH
AFTER MATCH SKI P TO LAST B
PATTERN ({- A-} B+ {- C-})

SUBSET S = (A, B)
DEFINE A AS A Price >= 10
B AS B.Price > PREV (B. Price),
C AS C. Price <= PREV (C. Price)
) AS M

The row pattern output table will only have rows that are mapped to B; the rows mapped to A and C will
be excluded from the output.

24 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.14 PATTERN

Although the excluded rows do not appear in the row pattern output table, they are not excluded from
the definitions of union row pattern variables, nor from the calculation of scalar expressions in the DEFINE
or MEASURES. For example, see the definitions of the primary row pattern variables A and C, the definition
of union row pattern variable S, or the Avgp row pattern measure in the example above.

Also, excluded rows do not alter the behavior of AFTER MATCH SKIP. That is, excluded rows are still used
in deciding where to resume looking for the next match. For example, in the example above, suppose the
AFTER MATCH SKIP clause were changed to

AFTER MATCH SKI P PAST LAST ROW

while legving the pattern the same:

PATTERN[({- A -} B+ {- C-})

In that chse, a match to the pattern maps a row to the row pattern variable C, and the sKip will be to the
next row after the last row of the match; that is, after the row that is mapped to C;even though the row
that is nlapped to C is excluded from the output.

The exclpision syntax is not permitted with ALL ROWS PER MATCH WITH UNMATCHED ROWS.

The exclpsion syntax is permitted with ONE ROW PER MATCH, though-ithas no effect since in this case
there is pnly a single summary row per match.

4.15 SUBSET

The SUBSET clause is optional. It is used to declare union row pattern variables. For example:

MATCH| RECOGNI ZE

R BY Tradeday

SURES FIRST (X. tine) AS xirsttine,

LAST (Y.tine) AS y_ lasttine,

AVG (S.Price) AS xy_avgprice

PATTERN (X+ Y+)

SPBSET S = (X, V)

FINE X AS X. Price\> PREV (X. Price),
Y AS Y.Price < PREV (Y.Price)

This example declares a union row pattern variable, S, and defines it as the union of the rows mpapped to
X and the rows mapped to Y. See Subclause 4.10, “Row pattern variables”, for an example of hoy such
unions are formed.

There cqribe’multiple union row pattern variables. For example:

PATTERN (W X+ Y+ Z+)
SUBSET A = (X, V),
B= (W 2

The right hand side of a SUBSET item is a parenthesized, comma-separated list of distinct primary row
pattern variables. This defines the union row pattern variable (on the left hand side) as the union of the
primary row pattern variables (on the right hand side).

Note that the list of row pattern variables on the right hand side cannot include any union row pattern
variables (there are no unions of unions).

© ISO/IEC 2021 - All rights reserved 25

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.16 DEFINE

4.16 DEFINE

DEFINE is a mandatory clause, used to specify the Boolean condition that defines a primary row pattern
variable. In the example,

DEFINE X AS X. Price > PREV (X Price),
Y AS Y.Price < PREV (Y.Price)

X is defined by the condition X.Price > PREV (X.Price), and Y is defined by the condition Y.Price < PREV
(Y.Price). (PREV is a row pattern navigation operation which evaluates an expression in the previous
row; see{Subclause 5.6, "Row pattern navigation operations’, regarding the complete set of row pattern
navigatipn operations.)

A primafy row pattern variable does not require a definition; if there is no definition, theldefault is a
predicate that is always true. Any row can be mapped to such a primary row pattern variable.

A union fow pattern variable cannot be defined by DEFINE, but may appear in the, Boolean confdition of
a primaiy row pattern variable.

The Boolean condition of a primary row pattern variable RPV may reference’RPV, or other primjary or
union rgw pattern variables. For example:

R BY Tradeday
SURES FI RST (A. Tradeday) AS A Firstday,

LAST (D. Tradeday) AS D Last day,

AVG (B. Price) AS B_Avgpri ce,

AVG (D. Price) AS D _Avgprice

PATTERN (A B+ C+ D)

SPBSET BC = (B, ©

FINE A AS Price > 100,
B AS B.Price > A Price;
C AS C. Price < AVG _(B~Price),
D AS D.Price > MAX ("BC. Pri ce)
) AB M

— The|definition of A implicitly references the universal row pattern variable (because of the unfjualified
column reference\Price).

— The|definition\6f B references the primary row pattern variable A.
— The|definition of C references the primary row pattern variable B.

— The

The Boolean conditions are evaluated on successive rows of a row pattern partition in a trial match, with
the current row being tentatively mapped to a primary row pattern variable PRPV as permitted by the
pattern. To be successfully mapped to PRPV, the Boolean condition that defines PRPV shall evaluate to
True.

In the preceding example:

A AS Price > 100

Here Price is an unqualified column reference, so it is implicitly qualified by the universal row pattern
variable. All rows that are already mapped, including the current row, are mapped to the universal

26 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.16 DEFINE

row pattern variable. Also, Price is an ordinary row pattern column reference, so it is evaluated in the
last row mapped to the universal row pattern variable, i.e.,, the current row. Thus this condition is
equivalent to A AS A.Price > 100.

B AS B.Price > A Price

Here B.Price and A.Price are ordinary row pattern column references. B.Price refers to the current
row (since B is being defined), whereas A.Price refers to the last row mapped to A. In view of the pattern,
the only row mapped to A is the first row to be mapped.

C AS C.Price < AVG (B. Price)

Here (.Price refers to the Price in the current row, since C is being defined. The aggregate AVG (B.Price)
is conpputed as the average of all rows that are already mapped to B (but not to any‘rows thaf might
be mdpped to B later).

D AS D.Price > MAX (BC. Price)

This gxample is similar to the preceding, though it illustrates the use 9fa union row pattern yariable
in the|Boolean condition.

The sempntics of Boolean conditions are discussed in more detailin‘Clause 5, “Expressions in MEASURES
and DEHINE”.

4.17 The row pattern output table

4.17.1 Introduction to the row pattern‘output table

The resylt of MATCH_RECOGNIZE is called the row pattern output table. The shape (row type) of the row
pattern putput table depends on,the-choice of ONE ROW PER MATCH or ALL ROWS PER MATCH:

— If ONE ROW PER MATCH,is specified or implied, then the columns of the row pattern outpuyt table
are the row pattern pattitioning columns in their order of declaration, followed by the row|pattern
measure columns intheir order of declaration. Since a table is required to have at least onelcolumn,
thisfimplies that there shall be at least one row pattern partitioning column or one row pattern
measure colunin;

— If ALL ROWSPER MATCH is specified, then the columns of the row pattern output table arg the row
pattern partitioning columns in their order of declaration, the ordering columns in their ornder of
declpration, the row pattern measure columns in their order of declaration, and finally any r¢maining
columns of the row pattern input table, in the order they occur in the row pattern input table.

The order of columns in the row pattern output table is only significant when using SELECT *. The order
of columns is designed to facilitate comparing the output when the query is toggled between ONE ROW
PER MATCH and ALL ROWS PER MATCH.

The names and declared types of the row pattern measure columns are determined by the MEASURES
clause. The names and declared types of the non-measure columns are inherited from the corresponding
columns of the row pattern input table.

© ISO/IEC 2021 - All rights reserved 27

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4.17 Th

e row pattern output table

4.17.2 Row pattern output name

Optionally, a correlation name may be assigned to the row pattern output table, like this:

SELECT T. Mat chno
FROM Ti cker
MATCH_RECOGNI ZE (

MEASURES MATCH NUMBER () AS Mat chno

) AS T

In the pijeceding example, M is the correlation name assigned to the row pattern output tablex]|
word AS|is optional.

The bengfit to assigning a correlation name is that the correlation name may be used to qualify th

names o
importa
suppose
nition sH

SELECT
FROM Ti

VWHERE .

the row pattern output table, as in M.Matchno in the preceding example,,This is esped
ht to resolve ambiguous column names if there are other tables in the FROM clause. For
Matchmaker is a table with a column named Matchno, to be joined with'the row pattef
own above. In that case the query might be written:

. Mat chno, M Mat chno
Cker
VATCH _RECOGNI ZE (
MEASURES MATCH_NUMBER () AS Mat chno

AS T, Matchmaker AS M

4.17.3 Row pattern output declared column list

Optiona
the row
to renan
in the lig
to-onec

ly, the row pattern output name may be followed by a parenthesized list of column nam
pattern output declared colummilist. The row pattern output declared column list may
e the columns of the row pattérn output table. There shall be the same number of colum
t as there are columns inthe row pattern output table. The column names in the list ar
prrespondence with the columns of the row pattern output table.

he noise

b column
ially

bxample,
n recog-

bs, called
be used

nnames
e in one-

For example, the following is'a modification of the example in Subclause 4.6.3, “The row pattern input
declared column list”:
SELECT M Cym /* ticker synbol */

M Mho, /* sequential match nunber */

M St aiitpri ce, /* starting price */

M Bottonprice, /* bottomprice */

MMEndpri ce, /* ending price */

M Avgprice /* average price */

FROM Ticker AS T (Sym Td, Pr)
MATCH _RECOGNI ZE (

28

PARTI TION BY T. Sym

ORDER BY T. Td

MEASURES MATCH_NUMBER() AS Mat chno,
A Pr AS Startp,

LAST (B.Pr) AS Bottonp,

LAST (C. Pr) AS Endp,

AVG (U. Pr) AS Avgp

ONE ROW PER MATCH

AFTER MATCH SKI P PAST LAST ROW
PATTERN (A B+ Ct)

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

) AS M (CGym Mo,

SUBSET U = (A B, O
DEFINE /* A defaults to True,

B AS B.Pr < PREV (B.Pr),
C AS C.Pr > PREV (C. Pr)

Startprice,

mat ches any row */

ISO/IEC 19075-5:2021(E)
4.17 The row pattern output table

Bott onpri ce, Endprice, Avgprice)

The preceding example uses ONE ROW PER MATCH, so the columns of the row pattern output table are
the row pattern partitioning column Sym, followed by the row pattern measure columns Matchno, Startp,
Bottomp, Endp, and Avgp, for a total of six columns. The row pattern output declared column list renames
these columns to Cym, Mno, Startprice, Bottomprice, Endprice, and Avgprice, respectively. Note that the
SELECT list uses the column names of the row pattern output declared column list, since those are the

final nan

In all, th
Table 10

4.18 1

hes of the columns.

e preceding example has the originally defined column names and their renames‘as Sh
, “Original and renamed column names”.

Table 10 — Original and renamed column names

row pattern input table

row pattern output table

original column | renamed original column-|\ rénamed
name column name name column name
Symbol Sym Sym Cym
Tradeday Td
Price Pr
Matchno Mno
Startp Startprice
Bottomp Bottomprice
Endp Endprice
Avgp Avgprice

Prohibited nesting

4.18.1 Introduction to prohibited nesting

The following kinds of nesting are prohibited by SQL/RPR:

1) Nesting one row pattern recognition within another is prohibited.

wn in

2) Outerreferences in MEASURES or DEFINE are prohibited. This means that a row pattern recognition
cannot reference any table in an outer query block except the row pattern input table. (The row
pattern input table is referenced using row pattern variables, not range variables defined outside
the MATCH_RECOGNIZE.)

3) Subqueries in MEASURES or DEFINE cannot reference row pattern variables.

© ISO/IEC 2021 - All rights reserved

29

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.18 Prohibited nesting

4) Row pattern recognition cannot be used in recursive queries.

These restrictions are illustrated in the following Subclauses.

4.18.2 Row pattern recognition nested within another row pattern recognition

Nesting one row pattern recognition within another is prohibited. For example, the following is a syntax
error:

SELECT |..
FROM Ti ¢ker
MATCH_RECOGNI ZE (

DEFI NE A AS EXI STS (SELECT *
FROM St ock2
MATCH_RECOGNI ZE (...))

)

A possible workaround is to relegate the nested row pattern recognition to.aview or SQL-invoked function.

4.18.3 Quter references within a row pattern recognition query

Here is gn example of row pattern recognition nested within an outer query. Note the underling¢d range
variablep T:

SELECT (SELECT M Avg_Price
FROM Ti cker
MATCH_RECOGNI ZE (
ORDER BY Tr adeday
MEASURES AVG (TsPrice) AS Avg_Price
PATTERN (T+)
DEFINE T AS\T..Price >= AVG (T.Price)
) AS M

FROMV Togst AS T

In this example, T is both the range variable for Toast in the outer query, and also a row pattern|variable
in the scplar subquery:

SQL use$ static scoping rules. This means that a range variable declared in an inner scope occlydes a
range variable'of the same name declared in an outer scope. In the preceding example, there are two
range varidbles named T. The row pattern varlable Tis declared in the PATTERN clause and visfible in

R : : : lerefore,
the scalar subquery (the row pattern recognltlon query) is not correlated w1th the outer query, the
overall result will have one row for each row of Toast, and all rows will be identical.

This example is permitted because there are no outer references in the MATCH_RECOGNIZE. However,
while legal, having multiple range variables with the same name can be confusing, so this example might
be better written by changing one of the range variables. For example, changing the row pattern variable
from T to X gives the equivalent query:

SELECT (SELECT M Avg_Price
FROM Ti cker
MATCH_RECOGNI ZE (
ORDER BY Tr adeday

30 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
4.18 Prohibited nesting

MEASURES AVG (X. Price) AS Avg_Price

PATTERN (X+)

DEFI NE X AS X. Price >= AVG (X. Price)
) AS M

)
FROM Toast AS T

On the other hand, the following is a syntax error:

SELECT (SELECT M Avg_Price
FROM Ti cker

MATCLL RECcOoENLZE [
WIT O T N\CCOONT 2

ORDER BY Tr adeday

MEASURES AVG (X. Price) AS Avg_Price

PATTERN (X+)

DEFINE X AS T.Price >= AVG (X. Price)
) AS M

FROM Togst AS T

In the preceding example, the column reference T.Price in the DEFINE clause’is an outer reference to the
range variable T defined in the outer block; therefore, this example is a:syntax error.

It may b¢ possible to work around this limitation by placing the row pattern recognition in an SQLtinvoked
routine, [passing as arguments the values that are prohibited as guter references.

4.18.4 Conventional query nested within row pattern recognition query

A subqupry can be nested in an expression in MEASURES or DEFINE. Subqueries are permitted|if they
do not p¢rform row pattern recognition themselyes, and if they do not reference the row pattern yariables
of the oyter query. Here is an example of theJatter (note underlined A):

SELECT Fi rstday
FROM Ti gker
MATCH _RECOGNI ZE (
CRDER BY Tr adeday
MEASURES A. Tr adeday AS Fir st day
PATTERN (A B+)
DEFI NE A ASA:Price > 100,
B AS'B Price <
(M SELECT AVG (S. Price)
FROM Ti cker S
VWHERE S. Tr adeday BETWEEN
A Tradeday - INTERVAL '1' YEAR
AND A. Tr adeday)

In this example, the definition of B involves a subquery that is correlated with the row pattern variable
A (note underlining). This is a syntax error, since subqueries of row pattern matching cannot reference
row pattern variables.

It may be possible to work around this limitation by placing the correlated subquery in an SQL-invoked
routine, passing as arguments the values that are prohibited as outer references.

© ISO/IEC 2021 - All rights reserved 31

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

4.18 Pro

hibited nesting

4.18.5 Recursion

Row pattern matching is prohibited in recursive queries. For example, the following is a syntax error:

CREATE RECURSI VE VI EW Probl em (Kol o,

SELECT Kol 0, Xoro
FROM T

UNI

ON

SELECT Kolo + 1, Xoro
FROM Pr obl em

Xoro) AS

4.18.6 Concatenated row pattern recognition

l\%\'l'f‘l_l RECOCNL ZE [
VIO T OO 2

CORDER BY Kol o

MEASURES MATCH_NUMBER () AS Xor o

ALL ROAS PER MATCH
PATTERN (A+)

DEFINE A AS A Xoro > PREV (A Xoro)

Note that it is not prohibited to feed the output of one row pattern recognition into the input of|another,

as in thi

SELECT

example:

FROM (BELECT *

FROM Ti cker

MATCH_RECOGNI ZE (. ..)

MATCH_RECOGNI ZE (. . .)

)

In this example, the first MATCH_RECOGNIZE'is in a derived table, which then provides the input to the
second MATCH_RECOGNIZE.

32

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

5 Expressions in MEASURES and DEFINE

5.1 Introduction to the use of expressions in MEASURES and DEFINE

Scalar epression syntax as defined in ISO/IEC 9075-2 is available in row pattern matching. This provides
such fanjiliar capabilities as arithmetic and aggregates. Note though that scalar expressions have special
semanti¢s in MEASURES and DEFINE; this is the subject of this Subclause.

In addition, SQL/RPR provides the following scalar expressions that are unique to row/pattern njatching:

— The|COUNT aggregate has special syntax and semantics to count rows that-are mapped to 4 row
pattern variable by the current row pattern match.

— Row pattern navigation operations, using the functions PREV, NEXT{FIRST, and LAST. Row pattern
navigation operations are discussed in Subclause 5.6, “Row pattern\niavigation operations”

— The|MATCH_NUMBER function, which returns the sequential iumber of a row pattern matdh within
its rpw pattern partition, discussed in Subclause 5.8, “MATGH: NUMBER function”.

— The|CLASSIFIER function, which returns the name of the)primary row pattern variable to which a
row|is mapped, discussed in Subclause 5.9, “CLASSIFIER function”.

Expressions in MEASURES and DEFINE clauses have ‘tlre same syntax and semantics, with the fpllowing
exceptiopns:

1) DEHINE clause only supports running semantics; MEASURES defaults to running semantics| but also
supports final semantics. This distinctionis discussed in Subclause 5.3, “Running vs. final serpantics”.

2) In DEFINE, the CLASSIFIER function‘does not return the classifier of rows after the current row,
whedreas in MEASURES, the CLASSIFIER function does return the classifier of rows after the¢ current
row] (This is only an issue whén CLASSIFIER function is nested within the NEXT row pattern ngvigation
operation; see Subclause 5.9, “CLASSIFIER function”.)

5.2 Row pattern column references

A columh refefernce is a column name qualified by an explicit or implicit range variable, such as

A Price

A column name with no qualifier, such as Price, is implicitly qualified by the universal row pattern variable,
which references the set of all rows in a match.

Column references may in general be nested within other syntactic elements, notably aggregates and
subqueries. (However, nesting in row pattern matching is subject to limitations described in Subclause 4.18,
“Prohibited nesting”, for the FROM clause and Subclause 6.17, “Prohibited nesting”, for the WINDOW
clause.)

A column reference that is qualified by an explicit or implicit row pattern variable is called a row pattern
column reference. Row pattern column references are classified as follows:

— Nested within an aggregate, such as SUM: aggregated row pattern column reference.

© ISO/IEC 2021 - All rights reserved 33

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.2 Row pattern column references

— Nested within a row pattern navigation operation (PREV, NEXT, FIRST, and LAST): a navigated row
pattern column reference.

— Otherwise: an ordinary row pattern column reference.

All row pattern column references in an aggregate or row pattern navigation operation are qualified by
the same row pattern variable. For example

PATTERN (A+ B+)
DEFINE B AS AVG (A Price + B.Tax) > 1000

The preq Cdiug cAdllllJlC tsasyntaxerror; becatse Aand Baretwodifferentrow pattermvar tables.
Aggregafe semantics require a single set of rows; there is no way to form a single set of rows 01} which
to evalugte A.Price + B.Tax. On the other hand, this is acceptable:

DEFI NE B AS AVG (B. Price + B. Tax) > 1000
In the peceding example, all row pattern column references in the aggregate aré qualified by B.

An unqufalified column reference is implicitly qualified by the universal row-pattern variable, which ref-
erences fhe set of all rows in a match. For example

DEFI NE B AS AVG (Price + B.Tax) > 1000

The pre¢eding example is a syntax error, because the unqualifiedcolumn reference Price is implicitly
qualified by the universal row pattern variable, whereas B.Tak is‘explicitly qualified by B. On the other
hand, thjs is acceptable:

DEFI NE B AS AVG (Price + Tax) > 1000

In the preceding example, both Price and Tax are implicitly qualified by the universal row patternvariable.

5.3 Running vs. final semantics

Pattern matching in a sequence of Yows is usually envisioned as an incremental process, with ophe row
after angther examined to see if itfits the pattern. With this incremental processing model, at any step
until thel complete pattern has-been recognized, there is only a partial match and it is not knowpn what
rows might be added in the future, nor what variables those future rows might be mapped to. Therefore,
in SQL/RPR, a row pattern column reference in the Boolean condition of a DEFINE clause has “funning
semanti¢s. This means'that a row pattern variable represents the set of rows that have already peen
mapped

After thg

semanti mantics on the last row of a successful match. Final semanti
availablé4a-ME CINE thereisunecertain boutwhethe - "
achieved.

The keywords RUNNING and FINAL are used to indicate running or final semantics, respectively; the
rules for these keywords are discussed in Subclause 5.4, “RUNNING vs.FINAL keywords”.

The fundamental rule for expression evaluation in MEASURES and DEFINE is as follows:

1) When an expression involving a row pattern variable RPV is computed on a group of rows, then the
set of rows SR that is mapped to RPVis used. If SR is empty, then COUNT is 0 and any other expression
involving RPV is null.

2) When an expression requires evaluation in a single row, then the latest row of SR is used. If SR is
empty, then the expression is null.

34 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

For example:

SELECT M Synbol, M Tradeday, M Price, M Runni ngAvg, M Fi nal Avg
FROM TI CKER
MATCH_RECOGNI ZE (
PARTI TI ON BY Synbol
CRDER BY Tr adeday
MEASURES RUNNI NG AVG (A. Price) AS Runni ngAvg,
FI NAL AVG (A. Price) AS Final Avg
ALL RONS PER MATCH
PATTERN (A+)
DEFTNE A AS A Price >= AVG (A Price)
AS M

Considef the ordered row pattern partition of data shown in Table 11, “Ordered row pattern pgrtition
of data”.

Table 11 — Ordered row pattern partition of data

Row SYMBOL TRADEDAY PRICE
Rq XYZ 2009-06-09 10

Ry XYZ 2009-06-10 16

R3 XYZ 2009-06-11 13

Ry XYZ 2009:06-12 9

The follgwing logic can be used to find a match:

1) On the first row of the row pattern partition, tentatively map row R = Ry to row pattern variable A.
At this point SR = { R{ }. To confirm'whether this mapping is successful, evaluate the predidate

A Prlice >= AVG (A Price)

On the left hand side, A«Price shall be evaluated in a single row, which is the last row of SR @ising
runhing semantics. The)last row of SR is Ry; therefore A.Price is 10.

On the right hand'side, AVG (A.Price) is an aggregate, which is computed using the rows of [SR. This
averjage is 10/¥=10.

Thup the-predicate asks if 10 > 10. The answer is yes, so the mapping is successful. Howevar, the
patteri A+ is “greedy”, so the engine tries to match more rows if possible.

2) On the second row of the row pattern partition, tentatively map R = R, to row pattern variable A. At
this point there are two rows mapped to A, so SR = { R{, Ry }. Confirm whether the mapping is suc-
cessful by evaluating the predicate

A . Price >= AVG (A Price)

On the left hand side, A.Price is evaluated in a single row, which is the last row of SR using running
semantics. The last row of SR is Ry; therefore A.Price is 16.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is (10+16)/2 = 13.

© ISO/IEC 2021 - All rights reserved 35

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

I1SO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics
Thus the predicate asks if 16 > 13. The answer is yes, so the mapping is successful.

3) On the third row of the row pattern partition, tentatively map R = R3 to row pattern variable A. Now
there are three rows mapped to A, so SR = { Ry, Ry, R3 }. Confirm whether the mapping is successful
by evaluating the predicate

A. Price >= AVG (A Price)

On the left hand side, A.Price is evaluated in R3; therefore A.Price is 13.

icht hand side, A A
3)/3 = 13.

aveljage is (10+16+1

Thup the predicate asks if 13 > 13. The answer is yes, so the mapping is successful.
4) On the fourth row of the row pattern partition, tentatively map R = R4 to row pattern variable A. At
thisjpoint SR ={R1, Ry, R3, R4 }. Confirm whether the mapping is successful by evaluating the predicate
A. Pice >= AVG (A Price)

On the left hand side, A.Price is evaluated in R4; therefore A.Price is9:

On the right hand side, AVG (A.Price) is an aggregate, which isscomputed using the rows of |SR. This
avetjage is (10+16+13+9)/4 = 12.

Thup the predicate asks if 9 > 12. The answer is no, so thé:mapping is not successful.

R, did npt satisfy the definition of A, so the longest match to A+ is { R1, Ry, R3 }. Since A+ has a greedy
quantifig¢r, this is the preferred match.

The aveffages computed in the DEFINE are alwaysrunning averages. In MEASURES, especially with ALL
ROWS PER MATCH, it is possible to distinguish final and running aggregates. Notice the use of the keywords
RUNNING and FINAL in the MEASURES claus€. The distinction can be observed in the result of the

example, as shown in Table 12, “RUNNING and FINAL in MEASURES”.

Table 12— RUNNING and FINAL in MEASURES

SYMBOL TRADEDAY PRICE RUNNINGAVG FINALAVG
XYZ 2009-06-09 10 10 13
XYZ 2009-06-10 16 13 13
XYZ 2009-06-11 13 13 13

It is possible that the set of rows SR mapped to a row pattern variable RPV s empty. When evaluating
over an empty set:

1) COUNTIs 0.

2) Any other aggregate, row pattern navigation operation, or ordinary row pattern column reference
is null.

For example:
PATTERN (A? B+)

DEFINE A AS A Price > 100,
B AS B.Price > COUNT (A *) * 50

36 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

With the preceding example, consider the ordered row pattern partition of data illustrated in Table 13,

“Ordered row pattern partition of data”.

Table 13 — Ordered row pattern partition of data

Row | PRICE
Ry 60
R, 70
Ry 40

A match|can be found in this data as follows:

1) Tentatively map R = R1 to row pattern variable A. (The quantifier ? means totry first for a g

ingle

matfh to A; if that fails, then an empty match is taken as matching A?)./To see if the mappinig is suc-

cessful, the predicate

A. Prji ce > 100

is eyaluated. A.Price is 60; therefore the predicate is false and\the mapping to A does not sy
2) Sinde the mapping to A failed, the empty match is takenas matching A?.

3) Tentatively map R = R to B. The predicate to checkfor this mapping is

B. Prlice > COUNT (A.*) * 50

No rows are mapped to A, therefore COUNT-(A.*) is 0. Since B.Price = 60 is greater than 0, the
is syccessful.

cceed.

mapping

4) Simllarly, rows R, and R3 can be suceessfully mapped to B. Since there are no more rows, this is the

complete match: no rows mappedA, { R1, Ry, R3 } mapped to B.

A row pattern variable can make'a forward reference; that is, a reference to a row pattern variaple that

has not been matched yet. Forexample,

PATTERN| (X+ Y+)
DEFI NE K AS COUNT «(Y.*) > 3,
AS Y. Price > 10

is legal syntaxsHewever, this example will never be matched since, at the time that a row is maj
X, no roy has.yet been mapped to Y. Thus, COUNT (Y.*) is 0 and can never be greater than 3. Th

bped to
sis true

even if there‘are four future rows that might be successfully mapped to Y. Consider the data set

brovided

in Table 14, “Ordered row pattern partition of data”.

Table 14 — Ordered row pattern partition of data

Row PRICE
Ry 2

Ry 11

R3 12

© ISO/IEC 2021 - All rights reserved

37

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.3 Running vs. final semantics

Row | PRICE
R4 13
Rs 14

Mapping { Ry, R3, R4, R5 } to Y would be successful, since all four of these rows satisfy the Boolean condition
defined for Y. In that case, one might think that one could map R4 to X and have a complete successful

R 1

n X+ Y+,

match. |
atleast

5.4 RUNNING vs.FINAL keywords

RUNNING and FINAL are available for use with aggregates and the row pattern navigation oper

RUNNIE'lG and FINAL are keywords used to indicate whether running or final semantics are des
FIRST anpd LAST.

Aggregates, FIRST, and LAST can occur in the following places in axxow pattern matching queryf

1) Inth

a match; therefore, the only supported semantics is ruining.

2) Inth

a match; therefore, it becomes possible to considérfinal semantics. There are two subcases:

a)

b)

Based on this analysis, SQL/RPR specifies the following:

1) InM
for 4
COUN

2) Inb

£l] £CAI /DDD £ o d 4l ol 1o nH o il Iy
UVWUVLUI, LIIC TUICLS Ul J\{_LA/ INTIN VVIIT TTUU ITTITU LTS ITIdlUIl, DTULAUST, dUlULUIL ulus LU L1IC }JC[LLCI

ne row shall be mapped to X before any rows are mapped to Y.

e DEFINE clause. When processing the DEFINE clause,the-engine is still in the midst of reg
e MEASURES clause. When processing the MEASURES clause, the engine has finished red

If ONE ROW PER MATCH is specified, orif row pattern matching is done in a window,
engine is conceptually positioned on.the last row of the match, and there is no real diff]
between running vs. final semanticss

[f ALL ROWS PER MATCH is spegified, then the row pattern output table will have one
each row of the match. In this-circumstance, the user may wish to see both running an
values, so SQL/RPR proyides the RUNNING and FINAL keywords to support that distin

EASURES, the keywords RUNNING and FINAL may be used to indicate the desired sem
n aggregate, EIRST, or LAST. The keyword is written before the operator, for example,
T (A *) oDFI'NAL SUM (B. Price).

pth MEASURES and DEFINE, the default is RUNNING.

3) In DIEFINE, FINAL is not permitted; RUNNING may be used for added clarity if desired.

ired.

ations

oghizing

ognizing

hen the
erence

row for
] final
ction.

antics
RUNNI NG

4) In MEASURES with ONE ROW PER MATCH or in windows, all aggregates, FIRST, and LAST are com-
puted after the last row of the match has been recognized, so that the default RUNNING semantics
is actually no different from FINAL semantics. The user may prefer to think of expressions defaulting
to FINAL in these cases. Alternatively, the user may choose to write FINAL for added clarity.

5) Ordinary column references always have running semantics. (To get final semantics in MEASURES,
use the FINAL LAST row pattern navigation operation instead of an ordinary column reference.)

38

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.5 Aggregates

5.5 Aggregates

Aggregates (COUNT, SUM, AVG, etc.) may be used in both the MEASURES and DEFINE clauses. When used
in row pattern matching, aggregates operate on a set of rows that are mapped to a particular row pattern
variable, using either running or final semantics. For example:

MEASURES SUM (A. Price) AS Runni ngSunOver A,
FI NAL SUM A. Price) AS Final SunOver A
ALL RONS PER MATCH

In this example, A 1S a row pattern variable. The [irst Tow pattern measure, Runningsumover4, jJdoes not
specify gither RUNNING or FINAL, so it defaults to RUNNING. This means that it is computed as|the sum
of Price |n those rows that are mapped to A by the current match, up to and including the ‘current row.
The secand row pattern measure, FinalSumOverA, computes the sum of Price over all@:ows that are
mapped|to A by the current match, including rows that may be later than the current row. Final aggregates
are only|available in MEASURES, not in DEFINE.

An unqufalified column reference contained in an aggregate is implicitly qualified by the universal row
pattern yariable, which references all rows of the current row pattern mateh! For example:

SUM (Pr{ce)
computgs the running sum of Price over all rows of the current row-pattern match.

All colurhn references contained in an aggregate shall be qualified by the same row pattern varipble. For
example}

SUM (Pr{ce + A Tax)

is a syntpx error, because Price is implicitly qualified by the universal row pattern variable, whe¢reas
A.Tax is xplicitly qualified by A.

The COUNT aggregate has special syntax fofi row pattern matching, so that COUNT(A.*) may be gpecified.
COUNT(JA.*) is the number of rows that.abe mapped to the row pattern variable A by the current row
pattern match, using running or finalsemantics as appropriate. As for COUNT(*), the * is impligitly
qualified by the universal row pattern variable, so that COUNT(*) is the number of rows in the ¢urrent
row patflern match, with running-or final semantics as appropriate.

5.6 Row patternnavigation operations

5.6.1 Thefour operations

There are four functions — PREV, NEXT, FIRST, and LAST — that enable navigation within the row pattern
by either physical or logical offsets.

5.6.2 PREV and NEXT

The PREV function may be used to access columns of the previous row of a row pattern variable. If there
is no previous row, the null value is returned. For example:

DEFINE A AS PREV (A. Price) > 100

© ISO/IEC 2021 - All rights reserved 39

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

The preceding example says that a row R, can be mapped to A if the preceding row R,_1 has a price
greater than 100. If the preceding row does not exist (i.e.,, R, is the first row of a row pattern partition),

then PREV(A.Price) is null, so the Boolean condition is not True, and therefore the first row cannot be
mapped to A.

The PREV function can accept an optional non-negative integer argument indicating the physical offset
to the previous rows. Thus:

— PREV (A.Price, 0) is equivalent to A.Price
— PREV (A.price, 1) is equivalent to PREV (A.Price). (Note: 1 is the default offset.)

— PREV (A.Price, 2) is the value of Price in the row two rows prior to the row denoted by A with{running
sempntics. (If no row is mapped to A, or if there is no row two rows prior, then PREV,y(A.Price, 2) is
null])

The offs¢tis required to be a run-time constant (literal, embedded variable, and thé€like, but not 4 column
or a subqiuery). There is an exception if the value of the offset is negative or null;

The NEXT function may be used to reference rows in the forward direction(in the row pattern partition
using a physical offset. The syntax is the same as for PREV, except for théfiame of the function. [For
example

DEFI NE A AS NEXT (A Price) > 100

The pre¢eding example looks forward one row in the row pattérn partition. Note that SQL/RPR does not
supportjaggregates that look past the current row duringDEFINE, because of the difficulty of predicting
what row will be mapped to what row pattern variable:in the future. The NEXT function does nat violate
this prinfciple, since it navigates to “future” rows on the-basis of a physical offset, which does not require
knowing the future mapping of rows.

For example, to find an isolated row that is more than twice the average of the two rows before|land two
rows after it: using NEXT, this can be expressed:

PATTERN| (X)

DEFINE K AS X.Price > 2 * (PREV(X Price, 2)

+ PREV (X. Price, 1)

+ NEXT (X. Price, 1)

+ 'NEXT (X. Price, 2)) |/ 4

This qugry can also be expressed:

PATTERN[({- Y YAR'X {- Y Z -})
SUBSET W= (Y, (2)
DEFINE F AS XPrice > 2 * AVG (WPrice)

The secgndAformulation (without NEXT) requires the use of exclusion syntax using {- -} and thg non-
nitiopn-ofZintormae of rauzr nattarn oo 1ac VW o A YA Th A vovag Xaicnauar raqlly dqf

ll’ltUItIVp ettt o+ A Hterm S o+ Fow pacttCTIr var riabTCS 7y afrt vve T IICTOVY 7x ISHhever TCarry GCT HEd at

all, though that is the only row of interest. The first formulation (using NEXT) avoids these issues.

Note that the row in which PREV or NEXT is evaluated is not necessarily mapped to the row pattern
variable in the argument. For example, in the first formulation of the example, PREV (X.Price, 2) is evaluated
in a row that is not even part of the match. The purpose of the row pattern variable is to identify the row
from which to offset, not the row that is ultimately reached. This point is discussed further in
Subclause 5.6.4, “Nesting FIRST and LAST within PREV or NEXT ".

PREV and NEXT may be used with more than one column reference; for example:

DEFINE A AS PREV (A. Price + A Tax) < 100

40 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5

:2021(E)

5.6 Row pattern navigation operations

When using a complex expression as the first argument of PREV or NEXT, all qualifiers shall be the same
row pattern variable (in this example, A).

The first argument of PREV and NEXT shall have at least one column reference or CLASSIFIER function.
For example, this is a syntax error:

PREV (1)

The preceding example is a syntax error because there is no row pattern column reference or CLASSIFIER
function. Without a column reference or CLASSIFIER function, there is no way to determine the row that
is the starting point for offsetting. (The use of CLASSIFIER function within PREV or NEXT is discussed in

Subclaus

PREV an
PREV or
Subclaus

5.6.3 1

FIRST re
pattern

FIRST (

The pred
to A, the

Similarly
to a row

LAST (A
The preq

The FIRS
offset w

FIRST (

evaluate
Table 15

e 5.9, “CLASSIFIER function”.)

d NEXT always have running semantics; the keywords RUNNING and FINAL cannotbe u
NEXT. To obtain final semantics, use, e.g., PREV (FINAL LAST (A.Price)) as explained i
e 5.6.4, “Nesting FIRST and LAST within PREV or NEXT ”.

FIRST and LAST

turns the value of an expression evaluated in the first row of the group of rows mapped
fariable. For example:

A\ Price)

eding example evaluates A.Price in the first row that is mapped to A. If there is no row
h the value is null.

, LAST returns the value of an expressioneyvaluated in the last row of the group of rows
pattern variable. For example:

Price)
eding example evaluates A.Pricein the last row that is mapped to A (null if there is no sy

T and LAST operators canjaccept an optional non-negative integer argument indicating]
thin the set of rows mapped to the row pattern variable. For example:

A\ Price, 1)

s Price in the second row that is mapped to A. Consider the data set and mappings shoy
, “Examplé data set and mappings for FIRST and LAST”.

Table 15 — Example data set and mappings for FIRST and LAST

sed with

=}

to arow

mapped

mapped

chrow).

alogical

vn in

Row—|PRIEE mapping
Rq 10 -A
R, 20 -B
R3 30 -A
Ry 40 -C
Rg 50 -A

© ISO/IEC 2021 - All rights reserved

41

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.6 Row pattern navigation operations

Thus:

— FIRST (A.Price) = FIRST (A.Price, 0) = LAST (A.Price, 2) = 10
— FIRST (A.Price, 1) = LAST (A.Price, 1) = 30

— FIRST (A.Price, 2) = LAST (A.Price, 0) = LAST (A.Price) = 50
— FIRST (A.Price, 3) is null, as is LAST (A.Price, 3)

Note that the offset is a logical offset, moving within the set of rows { Ry, R3, R5 } that are mapped to the

row pat

The opti
like, but

The first
function
function

The first
in which

FI RST (
is a synt
FI RST (
is accept

FIRST an

option in DEFINE. Final semantics may be accessed in the MEASURES by using the keyword FI}

(particu

MEASURE
ALL ROW

5.6.4 Nesting FIRST and LAST within PREV or NEXT

nal integer argument is required to be a run-time constant (literal, embedded variable
not a column or subquery). There is an exception if the value of the offset is negative o

argument of FIRST or LAST shall have at least one row pattern column reference or CLA
(The use of CLASSIFIER function within FIRST or LAST is discussed in Subclause 5.9, “CLA
".) Thus FIRST(1) is a syntax error.

argument of FIRST or LAST is permitted to have more than one row pattern column re
case all qualifiers shall be the same row pattern variable. For example:

\. Price + B. Tax)
hX error, but

A\ Price + A Tax)
able.

d LAST supportboth running and final semantics. RUNNING is the default, and the only st
arly with ALL ROWS PER MATCH), as,in:

5 FI NAL LAST (A. Price) AS Ki‘nal Price
5 PER MATCH

and the
- null.

\SSIFIER
ASSIFIER

ference,

Ipported
AL

FIRST and LAST provide navigation within the set of rows already mapped to a particular row pattern

variable
of navigd
such as {

PREV andNEXT provide navigation using a physical offset from a particular row. Theg
tion may-be combined by nesting FIRST or LAST within PREV or NEXT. This permits exp
he following:

e kinds
ressions

PREV (L

NST (/\ Drica 1+ A Towv 1))
-+ = o

7

In this example, A is required to be a row pattern variable. It is required to have a row pattern column
reference or CLASSIFIER function, and all row pattern variables in the compound operator shall be
equivalent (4, in this example). The use of CLASSIFIER function nested within row pattern navigation

operatio

ns is discussed in Subclause 5.9, “CLASSIFIER function”.

This compound operator is evaluated as follows:

1) The inner operator, LAST, operates on the set of rows that are mapped to the row pattern variable
A. In this set, find the row that is “the last minus 1”. (If there is no such row, the result is null.)

2) The outer operator, PREV, starts from the row found in step 1 and backs up 3 rows in the row pattern
partition. (If there is no such row, the result is null.)

42

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5

:2021(E)

5.6 Row pattern navigation operations

3) LetRbe animplementation-dependent range variable that references the row found by step 2. In
the expression A.Price + A.Tax, replace every occurrence of the row pattern variable A with R. The
resulting expression R.Price + R.Tax is evaluated and determines the value of the compound navigation
operation.

For example, consider the data set and mappings illustrated in Table 16, “Data set and mappings for
nesting example”.

Table 16 — Data set and mappings for nesting example

To evalu
PREV (L
the follo

1) The
arri

2) PRE
3) Let

Row | PRICE TAX | mapping
Ry 10 1
Ry 20 2 - A
R3 30 3 - B
Ry 40 4 - A
Rs 50 5 -C
Rg 60 6 - A
ate
ST (A . Price + A Tax, 1), 3)

wing steps may be used:

set of rows mapped to A is { Ry, Rj;Rg }. LAST operates on this set, offsetting from the
e at row Ry.

V performs a physical offset, 3 rows prior to Ry, arriving at R;.

R be a range variable'\pointing at Ry. R.Price + R.Tax is evaluated, giving 10+1 = 11.

Note th

this nesting isinot defined as a typical evaluation of nested functions. The inner opera

does nof actually evaluate the expression A.Price + A.Tax; it merely uses this expression to desi
row patflern variable-(A) and then navigate within the rows mapped to that variable. The outer
PREV pdrforms.afurther physical navigation on rows. The expression A.Price + A.Tax is not act

evaluat

as(sueh, since the row that is eventually reached is not necessarily mapped to the row

variable[ASln this example, R; is not mapped to any row pattern variable.

bnd to

tor LAST
bnate a
bperator
hally

' pattern

5.7 Ordinary row pattern column references reconsidered

An ordinary row pattern column reference is one that is neither aggregated nor navigated. For example:

A Price

Subclause 5.4, “RUNNING vs.FINAL keywords”, stated that ordinary row pattern column references always
have running semantics. This means:

© ISO/IEC 2021 - All rights reserved

43

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.7 Ordinary row pattern column references reconsidered

1) In DEFINE, an ordinary column reference references the last row that is mapped to the row pattern
variable, up to and including the current row. If there is no such row, then the value is null.

2) In MEASURES, there are two subcases:

a)

b)

If ALL ROWS PER MATCH is specified, then there is also a notion of current row, and the

semantics are the same as in DEFINE.

If ONE ROW PER MATCH is specified, then conceptually the engine is positioned on the

last row

of the match. An ordinary column reference references the last row that is mapped to the row

pattern variable, anywhere in the pattern. If the variable is not mapped to any row, the

n the

These se
an ordin

X Price
is equivd

RUNNI NG

5.8 MATCH_NUMBER function

Matches

'value 1s null.

mantics are the same as the LAST operator, with the implicit RUNNING default. Consec
ary column reference such as:

lent to:

LAST (X. Price)

within a row pattern partition are numbered sequentially starting with 1 in the order

found. N

inherenf ordering between row pattern partitions. MATCH_NUMBER () is a nullary function tha

te that match numbering starts over again at-kin each row pattern partition, since th

uently,

they are
bre is no
[returns

an exactjnumeric value with scale 0 (zero) whosewalue is the sequential number of the match wiithin the

row patfern partition.

All previ
MATCH._
number.

PATTERN
DEFI NE

The con
on even-

MATCH |

us examples of MATCH_NUMBER(} have shown it used in MEASURES. It is also possilj
INUMBER () in DEFINE, where.it.can be used to define conditions that depend upon the
For example:

((At] B+))

A\ AS (MOD (MATCH NUMBER (), 2) = 1)
AND A. Price~> PREV (A Price)),

B AS (MOD (MATEGH _NUMBER (), 2) = 0)
AND B, Price < PREV (B.Price))

lition for-Accan only be true on odd-numbered matches, and the condition for B can onl
numbered matches. Thus, the matches will alternate between A+ and B+.

INUMBER () is not permitted except in MEASURES and DEFINE. For example, the follow

le to use
match

 be true

ring is a

ror:

syntax e

SELECT MATCH_NUMBER ()
FROM Ti cker

5.9 CLASSIFIER function

The classifier of a row is the primary row pattern variable to which the row is mapped by a row pattern
match. The classifier of a row that is not mapped by a row pattern match is null.

44

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

The CLASSIFIER function returns a character string whose value is the classifier of a row. The CLASSIFIER
function has one optional argument, a row pattern variable, defaulting to the universal row pattern
variable.

The simplest usage of CLASSIFIER is with no argument, as seen in the example in Subclause 4.4, “Example
of ALL ROWS PER MATCH”:

MEASURES . . .
CLASSI FIER () AS d assy,
ALL ROWS PER MATCH

as the vglue of the row pattern measure Classy. Subclause 4.4, “Example of ALL ROWS PER MATCH”,
shows the result of the example query on the sample data, illustrating how the CLASSIFIERfungction
returns the classifier of each row of a row pattern match.

In this e{ample, the CLASSIFIER () tunction returns the classitier of the current row, which 1s as signed

The claspifier of the starting row of an empty match is the null value. This can be seen in the example in
Subclauge 4.12.2, “Handling empty matches”, of a query using ALL ROWS PER MATCH SHOW EMPTY
MATCHES.

Optionally, the CLASSIFIER function may take a single argument, a row pattern variable RPV; the default
is the unjiversal row pattern variable. The argument is used to specifyayset of rows using running
semantig¢s, namely, the set of rows up to and including the current.few that are mapped to RPV,

The argument will typically be a union row pattern variable; the(value returned tells which primary row
pattern yariable among the components of the union row pattern variable to which a row was mapped.
For example:

MEASURES CLASSI FI ER (AB) AS AorB

PATTERN[(A | B | O+
SUBSET AB = (A, B)

In this example, AB is a union row pattern-variable. The value of the row pattern measure AorBjis either
A or B, whichever is the classifier of thelast row that mapped to A or B. If no row mapped to A ¢r B, the
value is hull.

The CLASSIFIER function may beuised in an aggregate. For example:

Tr adeday

ARRAY_AGG (CLASSI FI ER () ORDER BY Tradeday)
AS O assi fierArray

ONE ROWN PER MATCH

ORDER Bl
MEASURES

In the precedingexample, one row is created for each row pattern match RPM, with a single row pattern
measurd, which is an array of character strings. The elements of the array are the classifiers of the rows
in RPM, with,one array element for each row of the row pattern input table that is mapped by RPM. Note
that the arrayisorderedusing thesameorderingas-therow pattermpartition—TFhistechniquecan be
used to obtain a value reflecting the precise pattern that was detected, while using ONE ROW PER MATCH
instead of ALL ROWS PER MATCH.

The CLASSIFIER function may be nested within a row pattern navigation operation. For example:

PREV (CLASSI FIER ())

The preceding example returns the classifier of the preceding row. This might be used in DEFINE so that
the definition of one row pattern variable might depend on the classifier of a previously matched row.
For example:

PATTERN ((A | B) C)

© ISO/IEC 2021 - All rights reserved 45

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

DEFINE A AS ...,
BAS ...,
C AS CASE
WHEN PREV (CLASSIFIER ()) = 'A AND Price > 100
THEN 1
WHEN PREV (CLASSIFIER ()) = 'B AND Price < 100
THEN 1
ELSE 0
END = 1

In this example, the first row might be mapped to either A or B. The definition of C can test PREV (CLAS-

SIFIER (
C will be

This par

PATTERN
DEFI NE

Howeve
that warj

When n¢
DEFINE,

NEXT (]

which aj
the next
the entiy
after thd

Here is 3
NEXT (Rl
This exa

1) Find
row

2) RUN

DEH
the

A 'S 3 AL H £ 3 4+ 14 H 4 A
Y] il A | Lo f A Tl o £ |
) UICdr il tU vwilICITI TUVV PGLLCI I vdIl'ldUIUT UUICT 1TIT SUTUVY ulayycu. IT LIIT TIT SU T UVY ulaypcu Lo

true if Price > 100; if the first row mapped to B, then C will be true if Price < 100.

ticular example would be more easily written as:

((AAC| BBQ)
\AS ...,
B AS ...,
NC AS Price > 100,
BC AS Price < 100

, the example does illustrate a general technique that might be tseful for more complex
t to inquire about the mapping chosen in earlier rows.

sting CLASSIFIER within NEXT, there is an important distinction between MEASURES
Consider, for example:

| ASSI FI ER ())

ks for the classifier of the next row. This expression, used in DEFINE, will return null, h
row has not been mapped yet when considering how to map the current row. Used in ME
e pattern has been mapped, and the preceding example is able to return the classifier o
current row. (If the current row is.the last row that is mapped, the result is null.)

UNNI NG LAST (CLASSI FI ERY(U), 2) 3)
mple would be evaluated as follows:

the set of rows-mapped to U. In DEFINE, this can only be rows up to and including the
in MEASURES, this can be any rows mapped to U in the completed match.

NING LAST testricts to the set of rows that map to U up to and including the current rqg
INE, this'is no change from step 1. In MEASURES with ONE ROW PER MATCH, the posit
ast fow, so this also is no change. In MEASURES with ALL ROWS PER MATCH, this may

A, then

patterns

and

ecause
ASURES,
Fthe row

n example of the CLASSIFIER function nested in a compound row pattern navigation operation:

current

w. In
ion is on
result in

disc

hrding some of the rows mapped to U.

3) Inthe set of rows remaining after step 2, find the row that is offset 2 from the end. This requires at
least three rows remaining after step 2; if there are not that many, then the result is null. (This is the
functionality of LAST.)

4) Now move forward in the row pattern partition three rows. If there are not enough rows in the row
pattern partition, the result is null. (This is the functionality of NEXT.)

5) Finally, find the primary row pattern variable to which the row is mapped; this is the result. If the

row

46

is not mapped, the result is null. (This is the functionality of CLASSIFIER.)

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
5.9 CLASSIFIER function

The explicit or implicit argument of CLASSIFIER is a row pattern variable. This row pattern variable is
used in the same fashion as the qualifier of a column reference in the argument of a row pattern navigation
operation. For example:

NEXT (CLASSIFIER () || Name)

is a permissible expression, since CLASSIFIER () and Name both reference the universal row pattern
variable. On the other hand,

NEXT (CLASSIFIER (A) || Nane)

is not permissible, because the CLASSIFIER function references the row pattern variable A, whereas the
column reference Name references the universal row pattern variable. Similarly:

NEXT (CLASSIFIER () || A Nane)
is not pgrmissible.

The samfe rule applies to the argument of an aggregate: all row pattern variables-referenced expglicitly or
implicilgl,‘j shall be the same. Thus the following is a syntax error:

ARRAY_AfG (CLASSIFIER () || A Name)

The CLASSIFIER function is not permitted except in MEASURES and DEFINE. For example, the fpllowing
is a syntpx error:

SELECT {LASSI FI ER ()
FROM Ti ¢ker

© ISO/IEC 2021 - All rights reserved 47

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

6 Row pattern recognition: WINDOW clause

6.1 Introduction to the WINDOW clause

Feature R020, “Row pattern recognition: WINDOW clause” of ISO/IEC 9075-2 enhances the WINDOW

clause tq include row pattern matching. In ISO/IEC 9075-2, a window is a data structure défined on the
result of|a <table expression> (the FROM..WHERE...GROUP BY..HAVING... clauses), producing q derived
table. THis data structure does three things:

1) ParItions the rows of the derived table according to zero or more columns.

2) Within each window partition, orders the rows of the derived table according to zero or mgre
expressions.

3) For pach row R in a window partition, defines a window frame, which is a subset of the ordered
winflow partition. The endpoints of the window frame may be the'beginning or end of the window
partition, or may be defined relative to the current row using either a physical offset (row ¢ount), a
logi¢al offset (a value added to or subtracted from the only seért column), or a group count {(number
of groups, defined as peers under the ordering).

Using R(20, row pattern recognition may be used to further reduce the window frame. Row paftern
recognition is applicable only to window frames thatstart at the current row R. The window frame
resulting from step 3 will be called the “full window’frame” of R, and the window frame after rgduction
by pattefn matching will be called the “reduced window frame” of R. When performing row paftern
recognitjon in a window, the window partition'serves as the row pattern partition and the winglow
ordering serves as the row pattern ordering:

6.2 Example of row pattern recognition in a window

The exannple from Subclause'4.3, “Example of ONE ROW PER MATCH”, is adapted to use row pdttern
matching in the WINDOW) clause below:

SELECT T. Synbol , /* ticker symbol */
. Tr adeday, /* trade day */
. Prj-C€, /* price on day of trading */

Cl assy OVER W /* classifier */
St\art p OVER W /* starting price */
Bottonmp OVER W /* bottom price */

Endp OVER W /* ending price */
Avgp OVER W /* average price */
FROM Ti cker AS T
W NDOW W AS

(PARTI TI ON BY Synbol
ORDER BY Tr adeday
MEASURES A. Price AS Startp,
LAST (B.Price) AS Bottonp,
LAST (C. Price) AS Endp,
AVG (U. Price) AS Avgp

BETWEEN CURRENT ROW

48 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.2 Example of row pattern recognition in a window

AND UNBOUNDED FOLLOW NG
AFTER MATCH SKI P PAST LAST ROW
I NI TI AL
PATTERN (A B+ Ct)
SUBSET U = (A, B, O
DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B.Price),
C AS C. Price > PREV (C. Price)

)

In the preceding example, the principle syntactic elements are presented on separate lines. In this
exampley

— The|SELECT list contains window functions over the window W defined in the WINDOW, clayise. Note
the window functions Classy OVER W, Startp OVER W, Bottomp OVER W, Endp OVERIW, and Avgp
OVER W. These are examples of row pattern measure functions, which are window functiops used
to a¢cess the row pattern measures defined in the MEASURES clause of the window definition.

— FROM introduces a conventional FROM clause. This example has a single table, Ticker, whi¢h is
assigned the range variable T. Since there is no WHERE, GROUP BY, or HAVING clause, the result of
the FROM clause is the row pattern input table in this example.

— WINDOW W declares the window name W.

— PARITITION BY specifies how to partition the row pattern inputtable. The PARTITION BY clause is
a lisf of columns of the row pattern input table. This clause is optional; if omitted, there arg no row
pattern partitioning columns, and the entire row pattern'input table constitutes a single row pattern
partition.

— ORIDER BY specifies how to order the rows within'row pattern partitions of the row pattern input
table. The ORDER BY clause is a list of columns.6f the row pattern input table. This clause is ¢pptional;
if ornitted, the order of rows is completely non-deterministic. However, since non-determiristic
ord¢ring will defeat the purpose of mostitow pattern recognition, the ORDER BY clause will usually
be specified.

— MEASURES specifies row patternmeasures, whose values are calculated by evaluating expressions
related to the match. The values.of row pattern measures are accessed using row pattern measure
fundtions, as illustrated in the SELECT list.

— ROWS specifies the unitto use in defining the full window frame. The other choices, RANGE and
GRQUPS, are not permitted with row pattern matching in windows.

— BETIWEEN CURRENT ROW AND UNBOUNDED FOLLOWING is one way to specify the full window
franpe. In this éxample, for any row R in a row pattern partition P, the full window frame consists of
R and all rows’that follow R in the row pattern partition P. The full window frame is subsequently
reducedtojust the rows constituting a pattern match.

atch after
successfully flndlng a match In thlS example, AFTER MATCH SKIP PAST LAST ROW spec1f1es that
pattern matching will resume after the last row of a successful match. When a row is skipped, its
reduced window frame is empty.

— INITIAL specifies that the pattern always matches starting at the first row of the full window frame.
If there is no such pattern match, the reduced window frame is empty. The alternative to INITIAL is
SEEK, which specifies to seek the first row pattern match in the full window frame; if there is none,
the reduced window frame is empty.

— PATTERN specifies the row pattern that is sought in the row pattern input table. A row pattern is a
regular expression using primary row pattern variables. In this example, the row pattern has three
primary row pattern variables (A, B, and C).

© ISO/IEC 2021 - All rights reserved 49

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)

6.2 Example of row pattern recognition in a window

— SUBSET defines the union row pattern variables. In this example, U is defined as the union of the
primary row pattern variables A, B, and C. The SUBSET clause is optional.

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row shall
satisfy the condition in order to be mapped to a particular primary row pattern variable. If a primary
row pattern variable is not defined in the DEFINE clause, then its definition defaults to a condition

that is always true, meaning that the primary row pattern variable can match any row.

The result of the preceding query on the sample row pattern partition is given in Table 17, “Window

example query results”.

Table 17 — Window example query results
SYM | TRADEDAY | PRICE | CLASSY | STARTP | BOTTOMP | ENDP. .| AVGP
BOL
NYZ | 2009-06-08 | 50
NYZ | 2009-06-09 | 60 A 60 35 45 45.8
XYZ | 2009-06-10 | 49
NYZ | 2009-06-11 | 40
NYZ | 2009-06-12 | 35
NYZ | 2009-06-15 | 45
XYZ | 2009-06-16 | 45
NYZ | 2009-06-17 | 45 A 45 43 70 51.4
NYZ | 2009-06-18 | 43
NYZ | 2009-06-19 | 47
XYZ | 2009-06-22 [52
NYZ | 2009-06-23/ | 70
NYZ | 2009-06-24 | 60
6.3

summary of thesyntax

6.3.1 Syntax components

The syntax of row pattern recognition in windows is summarized in Table 18, “Row pattern recognition

in windows — syntax summary”.

50

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.3 Summary of the syntax

Table 18 — Row pattern recognition in windows — syntax summary

Clause of Optional? | Notes Cross-reference
window
definition
Existing window | yes no default Subclause 6.6, “Windows
name defined on windows”
PARTITION BY yes 1f omitted, the row pattern input | Subclause 6.7, "PARTITION
table constitutes one row pat- | BY”
tern partition
ORIDER BY yes if omitted, there is a non-deter- | Subclause,6:8, “ORDER|BY”
ministic ordering in each row
pattern partition
MEASURES yes no default Subelause 6.9, “MEASURES”
ROWS, RANGE, no only ROWS is permitted with Subclause 6.10.2, “ROWS
GRQUPS row pattern recognition BETWEEN CURRENT ROW
AND”
BETWEEN CUR- | no BETWEEN CURRENT'ROW AND | Subclause 6.10.2, “ROWS
RENT ROW AND is required with row pattern BETWEEN CURRENT ROW
recognition AND”
EXJLUDE NO yes EXCLUDE NO OTHERS is the Subclause 6.10.3,
OTHERS default;.other EXCLUDE options | “EXCLUDE NO OTHERSY’
are forbidden with row pattern
matching
AFTER MATCH yes default is AFTER MATCH SKIP | Subclause 6.11, “AFTER
SKIP PAST LAST ROW MATCH SKIP”
INITIAL, SEEK yes default is INITIAL Subclause 6.12, “INITIAL vs
SEEK”
PATITERN no same as MATCH_RECOGNIZE Subclause 6.13, “PATTERN”
SUHRSET yes same as MATCH_RECOGNIZE Subclause 6.14, “SUBSET”
DEHRINE no same as MATCH_RECOGNIZE Subclause 6.15, “DEFINE”

6.3.2 Syntactic comparison to windows without row pattern recognition

Note the following differences between windows with and without row pattern matching:

1) Windows with row pattern matching always have the PATTERN and DEFINE clauses, and optionally
may also have the MEASURES, AFTER MATCH SKIP, INITIAL, SEEK, and SUBSET clauses. Windows
without row pattern matching have none of these clauses.

© ISO/IEC 2021 - All rights reserved 51

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.3 Summary of the syntax

2) Windows with row pattern matching always start with the current row, and shall specify ROWS (nor
RANGE or GROUPS).

3) The only permitted EXCLUDE clause with row pattern matching is EXCLUDE NO OTHERS, which is
the default.

6.3.3 Syntactic comparison to MATCH_RECOGNIZE

Th £, b adea a - pa | s L£L £ MATCILL DI COCOOMNILZI o il £o1 3
€ Syng@axrorrow pattermrecognitioir ra wHraow airer s Trofnr vzt CII_NCCUTNTIZE Hrtneronowing

respectst

1) Row pattern recognition in windows includes the window syntax of conventional windowg, with
somle constraints described in Subclause 6.3.2, “Syntactic comparison to windows without row pattern
recdgnition”.

2) Ranpe variables declared in the FROM clause are visible in the PARTITION ‘BY and ORDER BY clause
of awindow, unlike MATCH_RECOGNIZE. See Subclause 6.7, “PARTITION BY”, and Subclauge 6.8,
“ORPER BY”.

3) The|ORDER BY clause may use scalar value expressions, not just.celumns. See Subclause 6.8,(“ORDER
BY”,

4) Thel|options ONE ROW PER MATCH and ALL ROWS PER MATCH are not applicable to windpws, and
canmotbe specified. (Row pattern recognition in windows is closer in spirit to ONE ROW PER MATCH,
though it also has some similarity to ALL ROWS PER'MATCH WITH UNMATCHED ROWS.)

5) Row pattern recognition in a window has a choice'between INITIAL and SEEK.
6) The|MATCH_NUMBER function is not supported.

7) Row pattern measures are not columns.i@ithe result of a window; instead, row pattern meagures are
refefenced using OVER, like a window function.

6.4 Row pattern inputtable

The row|pattern input table'for row pattern recognition in a WINDOW clause is the result of the FROM,
WHERE|GROUP BY, and"HAVING clauses that precede the WINDOW clause.

The example in Subclause 6.2, “Example of row pattern recognition in a window”, does not have[WHERE,
GROUP BY, or HAVING clauses, so the row pattern input table in that example is the result of the FROM
clause, that is, the table Ticker.

6.5 Row pattern variables and other range variables

There are two sets of range variables in a window with row pattern recognition:

1) The range variables declared in the FROM clause. (In the example in Subclause 6.2, “Example of row
pattern recognition in a window”, T is such a range variable.)

These range variables may be used in the PARTITION BY and ORDER BY clauses, and of course in
the SELECT list, WHERE clause, etc.

52 © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.5 Row pattern variables and other range variables

2) The row pattern variables declared in the PATTERN and SUBSET clauses. (In the example in
Subclause 6.2, “Example of row pattern recognition in a window”, A, B, C, and U are row pattern
variables.)

Row pattern variables may be referenced in the MEASURES, DEFINE, and SUBSET clauses. They
cannot be used in the SELECT list.

Note that the two sets of range variables are declared in different clauses and have mutually exclusive
scope. (Since they are walled off in mutually exclusive scopes, it is permitted to use the same range vari-
ables in each scope, though that is a confusing possibility that it is probably best to avoid.)

For example, the tollowing 1s a syntax error:

SELECT Runl ength OVER W
FROM Ti ¢ker T
W NDOW W AS (PARTI TI ON BY Symbol
ORDER BY Tr adeday
MEASURES COUNT (T.*) AS Runl ength
ROWNS BETVEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG
PATTERN (A*)
DEFINE A AS T.Price > PREV (T.Price))

There arje three syntax errors in this example. The first is COUNT ([¥). T is a range variable defjned in
the FROM clause and cannot be referenced in MEASURES. Instead,of T, the variable to use here i$ A, since
A is declpred in the PATTERN. Similarly, in the DEFINE, the two instances of T are errors.

Any colymn names to be referenced in either the MEASURES or DEFINE are unique across the ¢ntire
FROM clpuse, because the range variables in the FROM-clause are not available to disambiguatelin MEA-
SURES or DEFINE. The workaround is to rename column names in the FROM clause as necessary to
remove ambiguities.

For example, suppose both Emp and Dept have'a column called Name. In the following query:

SELECT Anane OVER W Bnane OVER W
FROM Enp AS E, Dept AS D
VWHERE E| Deptno = D. Dept no
W NDOW W AS (PARTI TI ON BY E. Dept no
CORDER BY E. Enpno
MEASURES A:.Nane AS Anane,
B! Name AS Bnane
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG
PATFERN (A B)
DEFINE B AS B.Salary > A Salary)

The expressionis A.Name and B.Name in the MEASURES clause are ambiguous, because they cotild refer
to either] Emp.Name or Dept.Name. The solution is to rename at least one of them in the FROM [lause,
like this:

SELECT Aname OVER W Bnanme OVER W
FROM (SELECT Name AS Enane, Deptno, Salary
FROM Emp) AS E, Dept AS D
VWHERE E. Dept no = D. Dept no
W NDOW W AS (PARTI TI ON BY E. Dept no
CRDER BY E. Enpno
MEASURES A. Nane AS Anane,
B. Name AS Bnane
ROWS BETVWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG

© ISO/IEC 2021 - All rights reserved 53

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC

19075-5:2021(E)

6.5 Row pattern variables and other range variables

PATTERN (A B)
DEFINE B AS B. Salary > A Salary)

Note that row pattern variables are not available in the SELECT list. The following example is a syntax

error:

SELECT
FROM Ti
W NDOW

In this example, A is a row pattern variable, which makes it visible in MEASURES andyDEFINE. 4
visible ixll the SELECT list. There is no loss of expressive power; any expression of tow pattern v
can be p

SELECT
FROM Ti
W NDOW

6.6 Windows defined on windows

ISO/IEC
name. F

FROM Ti
W NDOW

Here wihdow W2 inherits its partitioning from W1, and W3 inherits its partitioning and orderi

W2,

As an exhmple of this capability using row pattern recognition:

SELECT
FROM Ti

A Price
cker AS T
W AS (PARTI TI ON BY Synbol
ORDER BY Tr adeday
MEASURES COUNT (A . *) AS Runlength

RONS—BETHEEN—CURRENT—ROW
AND UNBOUNDED FOLLOW NG
PATTERN (A*)
DEFINE A AS A Price > PREV (A Price))

aced in MEASURES and then referenced by its measure name, like this:

 asta OVER W
cker AS T
N AS (PARTI TI ON BY Synbol
ORDER BY Tr adeday
MEASURES LAST (A Price) AS Lasta
ROWS BETVEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG
PATTERN (A*)
DEFINE A AS A Price > PREV (A Price))

9075-2 allows one window to be-defined on another window by referencing an existing
dr example:

cker AS T

M AS (PARTI TI ON.BY "Synbol),

N2 AS (WL ORDER™BY Tradeday),

N8 AS (W2 ROWS) BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG)

A is not
ariables

window

ng from

Lastprice OVER WB
cker AS T

W NDOV WL AS (PARTI TI ON BY Symbol),

54

W2 AS (WL ORDER BY Tradeday),
WB AS (W2 MEASURES LAST(A.Price) AS Lastprice

ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG
PATTERN (A+)
DEFINE A AS A Price > PREV (A Price))

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.6 Windows defined on windows

[t is not possible to further subdivide the window definitions. For example, it is not permitted to put
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING in one window definition, and then
inherit that in another window definition that adds the row pattern recognition features.

6.7 PARTITION BY

PARTITION BY is almost the same in windows and in MATCH_RECOGNIZE. The one difference is that
range variables declared in the FROM clause are available in the PARTITION BY of a window, but not in
MATCH_RECOGNIZE. Note that a row pattern partition is the same thing as a window partition|[when
performfng row pattern recognition in a window.

6.8 ORDERBY

ORDER BY is almost the same in windows and in MATCH_RECOGNIZE. The differences are:

1) Rangpe variables declared in the FROM clause are available in the ©RDER BY of a window, but not in
MATCH_RECOGNIZE.

2) Gengral scalar value expressions may be used in the ORDERBY of a window, but only column refer-
ence¢s may be used in the ORDER BY in MATCH_RECOGNIZE.

6.9 MEASURES

Row patfern measures in a window definition;differ from row pattern measures in MATCH_RECOGNIZE
as follows:

1) The[MATCH_NUMBER function isinot supported in windows.

2) Row pattern measures are referenced as window functions in the SELECT list using OVER, not as
coluymn references.

3) Thereisnoreal distinction between running and final semantics. The RUNNING and FINAL keywords
may|be used with aggregates, FIRST, and LAST, but the semantics is the same no matter which keyword
is uded. Row pattern measures are computed positioned on the last row of the match, where{running
and|final semantics are identical.

6.10 1|

6.10.1 Introduction to window framing

A window associates with each row R a set of rows, called the window frame of R. The definition of the
window frame is essentially a subtractive process:

1) Atthe outset, there is the entire window partition that contains R.

© ISO/IEC 2021 - All rights reserved 55

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.10 Full window frame and reduced window frame

2) Next, zero or more rows are removed from the window partition, based on their position relative to
R in the ordering of rows of the window partition. The criterion at this stage is called the “window
frame extent”.

3) Next, zero or more rows are removed, based on peer relationships to R, using the EXCLUDE clause.

The three steps above are used for all windows. The result is called the “full window frame”. When row
pattern recognition is used, the window partition is also the row pattern partition, and there is one more

step:

4) A match to the row pattern is sought within the full window frame; the rows that are mapped by this

matfh (if any) constitute the reduced window frame’. If there is no match, the reduced wij
frame is empty. (Skipped rows can also cause an empty reduced window frame; see Subcla
“Emipty matches and empty reduced window frames”.)

6.10.2 ROWS BETWEEN CURRENT ROW AND

When pe¢
window
— ROV

win

partition.

— ROV

franpe extends from the current row through some-positive offset, which shall be a positive

and
ROV

after

6.10.3}

The win

1) EXC
that]

rforming row pattern recognition in a window, only two options.are allowed for specif
frame extent:

VS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING: this option specifies thg
How frame consists of the set of rows from the current row through the end of the row

VS BETWEEN CURRENT ROW AND offset FOLLOWING: this option specifies that the full

specifies the number of rows after the current row. For example, ROWS BETWEEN CUJ
V AND 1 FOLLOWING specifies a full window frame with 2 rows, the current row and tl
it.

EXCLUDE NO OTHERS

How EXCLUDE clause has four possibilities:

[LUDE CURRENT ROW: this is not permitted with row pattern recognition, since the des
the full window_frame always begins with the current row.

[LUDE GRQUP: also not permitted with row pattern recognition, because this would exa
ent row).plus any ties under the window ordering.

hdow
1se 6.16,

ying the

t the full
pattern

window
integer,
RRENT
e one

bign is

lude the

LUDE TIES: not permitted with row pattern recognition, because this could create a ho

2) EXC
curr

3) EXC
full

window frame, which is contrary to the spirit of row pattern recognition.

e in the

4) EXCLUDE NO OTHERS: permitted with row pattern recognition. This is the default.

Thus the only permitted option with row pattern matching is the default, EXCLUDE NO OTHERS.

6.11 AFTER MATCH SKIP

The options for AFTER MATCH SKIP are the same as in MATCH_RECOGNIZE; see Subclause 4.13, “AFTER
MATCH SKIP”, for details.

56

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.11 AFTER MATCH SKIP

As in MATCH_RECOGNIZE, it is a run-time error to skip to a non-existent row, or to skip to the first row
of a match.

Since only one row pattern match per full window frame is sought, the semantics of AFTER MATCH SKIP
in a window are as follows. Windows are processed in the sort order within a row pattern partition. If a
row R is skipped as a consequence of a row pattern match in a full window frame prior to R, then the
reduced window frame of R is set to empty, without attempting any row pattern match for R. This is
illustrated in an example in Subclause 6.16, “Empty matches and empty reduced window frames”.

6.12 INITIAL vs SEEK

If a row R has been skipped by a prior row PR, then the reduced window frame of R isempty.

If R has ot been skipped, then a row pattern match is attempted in the full windew frame of RJINITIAL
and SEEK are two options that determine where to look for a match within thefull window frame:

1) INITIAL is used to look for a match whose first row is R.

2) SEEK s used to permit a search for the first match anywhere from R'through the end of thq full
winflow frame.

In either| case, the reduced window frame comprises the rows that are mapped by the match; if{there is
no match, then the reduced window frame is empty. For a warked example, see Subclause 6.16)“Empty
matches|and empty reduced window frames”.

The keyyord INITIAL or SEEK is placed as a modifier before the PATTERN. The default is INITIAL.

6.13 PATTERN

This clayse is precisely the same as in MATCH_RECOGNIZE, except that the anchors (* and $) are not
permittdd with row pattern matching'in windows. See Subclause 4.14, “PATTERN”, for details.

6.14 $UBSET

This clayse is preciSely the same as in MATCH_RECOGNIZE. See Subclause 4.15, “SUBSET”, for details.

6.15 DEFINE

This clause is precisely the same as in MATCH_RECOGNIZE. See Subclause 4.16, “DEFINE”, for details.

6.16 Empty matches and empty reduced window frames

An empty match will cause the reduced window frame to be empty. Empty reduced window frames can
also arise if there is no match at all, as in these circumstances:

© ISO/IEC 2021 - All rights reserved 57

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

ISO/IEC 19075-5:2021(E)
6.16 Empty matches and empty reduced window frames

1) AFTER MATCH SKIP on a prior row has caused the current row to be skipped, so no match is
attempted.

2) The

query specifies or implies INITIAL and there is no match starting at the current row.

3) The query specifies SEEK but there is no match anywhere between the current row and the end of
the full window frame.

So there are two ways to get an empty reduced window frame: by finding an empty match, or by not
finding a match at all.

The semprtiesferrew patternrmeasuresofempty reduced-windew framesare shewninTable 39, “Results
for empfy match and no match”.
Table 19 — Results for empty match and no match
Mleasure empty no match
match

CLASSIFIER () null null

COUNT 0 null

other aggregates (e.g., SUM, AVG, etc. null null

rdw pattern navigation operations (e.g., PREV, NEXT,FIRST, | null null

LAST

ofdinary column references null null
Thus COUNT (*) may be used to distinguish airempty match from no match at all. If an empty match is

found, t}
arow pg

Note the

jen COUNT (*) as a row pattern measure will be 0; if there is no match at all, then COU]
ttern measure will be null.

the counft over an empty window\frame is 0 in any case. It is only when COUNT (*) is used as a roy

measureg

SELECT

FROM T
W NDOW

that it can be used te distinguish an empty match from no match at all. For example:

5, D,
ount OVER W AS " Measure",
COUNT (*) -OVER W AS "W ndow Functi on"

IV AS (NORDER BY S
MEASURES COUNT (*) AS Kount
ROWNS BETWEEN CURRENT ROW

NT (*) as

following subtlety: If the.qliery specifies COUNT (*) as a non-measure window function, then

’ pattern

AND_UNBOUNDED EQOLLOALNG

AFTER MATCH SKI P PAST LAST ROW
I NI TI AL PATTERN (A*)
DEFINE A AS A D = 'yes')

Consider the following data, shown in the first two columns, with the other two columns of output shown
in the next two columns, and the internal information (skip indicator, whether a match was found, and

the reduced window frame) in the right three columns, as shown in Table 20, “Computation of matches
and window function results”.

58

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2277ebe450850940572aaab90ca95098

	Contents
	Tables
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Row pattern recognition: FROM clause
	4.1 Context of row pattern recognition
	4.2 Introduction to the FROM clause in row pattern recognition
	4.3 Example of ONE ROW PER MATCH
	4.4 Example of ALL ROWS PER MATCH
	4.5 Summary of the syntax
	4.6 The row pattern input table
	4.6.1 Introduction to the row pattern input table
	4.6.2 The row pattern input name
	4.6.3 The row pattern input declared column list

	4.7 MATCH_RECOGNIZE
	4.8 PARTITION BY
	4.9 ORDER BY
	4.10 Row pattern variables
	4.11 MEASURES
	4.12 ONE ROW PER MATCH vs ALL ROWS PER MATCH
	4.12.1 Introduction to use of ROWS PER MATCH
	4.12.2 Handling empty matches
	4.12.3 Handling unmatched rows

	4.13 AFTER MATCH SKIP
	4.14 PATTERN
	4.14.1 Introduction to the PATTERN syntax
	4.14.2 PERMUTE
	4.14.3 Excluding portions of the pattern

	4.15 SUBSET
	4.16 DEFINE
	4.17 The row pattern output table
	4.17.1 Introduction to the row pattern output table
	4.17.2 Row pattern output name
	4.17.3 Row pattern output declared column list

	4.18 Prohibited nesting
	4.18.1 Introduction to prohibited nesting
	4.18.2 Row pattern recognition nested within another row pattern recognition
	4.18.3 Outer references within a row pattern recognition query
	4.18.4 Conventional query nested within row pattern recognition query
	4.18.5 Recursion
	4.18.6 Concatenated row pattern recognition

	5 Expressions in MEASURES and DEFINE
	5.1 Introduction to the use of expressions in MEASURES and DEFINE
	5.2 Row pattern column references
	5.3 Running vs. final semantics
	5.4 RUNNING vs.FINAL keywords
	5.5 Aggregates
	5.6 Row pattern navigation operations
	5.6.1 The four operations
	5.6.2 PREV and NEXT
	5.6.3 FIRST and LAST
	5.6.4 Nesting FIRST and LAST within PREV or NEXT

	5.7 Ordinary row pattern column references reconsidered
	5.8 MATCH_NUMBER function
	5.9 CLASSIFIER function

	6 Row pattern recognition: WINDOW clause
	6.1 Introduction to the WINDOW clause
	6.2 Example of row pattern recognition in a window
	6.3 Summary of the syntax
	6.3.1 Syntax components
	6.3.2 Syntactic comparison to windows without row pattern recognition
	6.3.3 Syntactic comparison to MATCH_RECOGNIZE

	6.4 Row pattern input table
	6.5 Row pattern variables and other range variables
	6.6 Windows defined on windows
	6.7 PARTITION BY
	6.8 ORDER BY
	6.9 MEASURES
	6.10 Full window frame and reduced window frame
	6.10.1 Introduction to window framing
	6.10.2 ROWS BETWEEN CURRENT ROW AND
	6.10.3 EXCLUDE NO OTHERS

	6.11 AFTER MATCH SKIP
	6.12 INITIAL vs SEEK
	6.13 PATTERN
	6.14 SUBSET
	6.15 DEFINE
	6.16 Empty matches and empty reduced window frames
	6.17 Prohibited nesting
	6.17.1 Restrictions on nesting
	6.17.2 Row pattern recognition nested within another row pattern recognition
	6.17.3 Outer references within a row pattern recognition query
	6.17.4 Conventional query nested within row pattern recognition query
	6.17.5 Recursion
	6.17.6 Concatenated row pattern recognition

	7 Pattern matching rules
	7.1 Regular expression engines
	7.2 Parenthesized language and preferment
	7.2.1 Introduction to parenthesized language and preferment
	7.2.2 Alternation
	7.2.3 Concatenation
	7.2.4 Quantification
	7.2.5 Exclusion
	7.2.6 Anchors
	7.2.7 The empty pattern
	7.2.8 Infinite repetitions of empty matches

	7.3 Pattern matching in theory and practice

	Blank Page

