INTERNATIONAL ISO/IEC
STANDARD 8824-1

Second edition
1998-12-15

AMENDMENT 2
2000-10-15

Information technology — Abstract Syntax
Notation One (ASN.1): Specification of
basic notation

AMENDMENT 2: ASN.1 Semantic Model

Technologies de l'information’— Notation de syntaxe abstraite numérp un
(ASN.1): Spécification de\a notation de base

AMENDEMENT 2:/Modéle sémantique ASN.1

Reference number
ISO/IEC 8824-1:1998/Amd.2:2000(E)

TR
S ° © ISO/IEC 2000

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

ISO/IEC 8824-1:1998/Amd.2:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that ajoroblem relating to it is found please inform the Central Secretariat at the address given helow

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

ISO/IEC 8824-1:1998/Amd.2: 2000(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC

parficipate In the development of International Standards through technical committees established- q
respective organization to deal with particular fields of technical activity. ISO and IEC technical comn
collaborate in fields of mutual interest. Other international organizations, governmental and non-goveraomer
liaigon with ISO and IEC, also take part in the work.

Intgrnational Standards are drafted in accordance with the rules given in the ISO/IEC Directives;\Part 3.

Drdft International Standards adopted by the joint technical committee are circulated, tohnational bodies for

In {re field of information technology, 1ISO and IEC have established a joint technical committee, ISO/IEC
f
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a v(

Attention is drawn to the possibility that some of the elements of this Amendnient may be the subject of
rights. ISO and IEC shall not be held responsible for identifying any or all suchtpatent rights.

Amiendment 2 to International Standard ISO/IEC 8824-1:1998 was prepared by ITU-T (as ITU-T Recommen
X.680/Amd.2) and was adopted as common text, under a spegial ““fast-track procedure”, by Joint Ted
Coinmittee ISO/IEC JTC 1, Information technology, in parallel with.its’approval by national bodies of ISO and

y the
nittees
tal, in

JTC 1.
oting.
te.

patent
dation

hnical
IEC.

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

I SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

AMENDMENT 2
ASN.1 semantic model

1 Subclause 3.8

Adld the definitions 3.8.39 bis and 3.8.71 bis to subclause 3.8 and replace the definitionyof gover ning; gover nor with the
ngw 3.8.39 below:

3.8.39 governing; governor (type): A type definition or reference whigh“affects the interpretation of a part of the
ABN.1 syntax, requiring that part of the ASN.1 syntax to reference values itithe governor type.

3.8.39 bis identical type definitions: Two instances of the ASN:1 " Type" production (see clause 16) are defined|as
identical type definitions if, after performing the transformations specified in Annex F, they are identical ordered lists|of
APBN.1 items (see clause 11).

3.8.71 bis value mapping: A 1-1 relationship between values in two types that enables a reference to one of thgse
vdlues to be used as a reference to the other value, This can, for example, be used in specifying subtypes and defallt
vglues (see Annex F).

Append to clause 3.8.50:

, and which governs the subtype notation.

2 New subclause 5.9

Adld a new subclatisé 5.9 as follows:

5P Value references and the typing of values

591 ASN.1 defines a value assignment notation which enables a name to be given to a value of a specified type.
This name can be used wherever areference to that value is needed. Annex F describes and specifies the value mapping
mechanism which alows a value reference name for a value of one type to identify a value of a second type. Thus, a
reference to the first value can be used where a reference to a value in the second type is required.

5.9.2 In the body of the ASN.1 standards, normal English text is used to specify legality (or otherwise) of constructs
where more than one type is involved, but where the two types must be "compatible'. For example, the type used in
defining a value reference is required to be "compatible with" the governor type when the value reference is used. The
normative Annex F uses the value mapping concept to give a precise statement about whether any given ASN.1
construct islega or not.

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 1

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

| SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

3) New subclause 13.6
Add a new subclause 13.6 as follows:

13.6 Where a "DefinedType" is used as part of notation governed by a "Type" (for example, in
" SubtypeElementSpec"), then the "DefinedType" shall be compatible with the governing "Type" as specified in F.6.2.

4) New subclause 13.7

A(Iid a new subclause 13.7 as follows:

DefinedValue" shall reference avalue of atype that is compatible with the governing "Type" as specified-in F.6.2.

5 Subclause 15.2

In|15.2, change the sentence after the BNF by inserting immediately before "shall" thejtext:

isgoverned by "Type" and

6 Subclause 36.7

Adld the following to the Note 3 examplein 36.7:

An aternative unambiguous definition of "mystring" would be:
mystring MyAlphabet (BasicLatih)' ::= "HOPE"

Farmally, "mystring” is a value referenceto a value of a subset of "MyAlphabet”, but it can, by the value mapping ru
of|Annex F, be used wherever avalue feference is needed to this value within "MyAlphabet".

7 Subclause 48.3.2

Réplace 48.3.2 with\the following text:

to|be compatible with the parent type as specified in F.6.3.

13.7 Every occurrence within an ASN.1 specification of a "DefinedValue" is governed by a "Type’, and that

48.3.2 AContainedSubtype" specifies al of the values in the parent type that are also in "Type". "Type" is requif

a

es

led

8) Subclause 48.5.2

In 48.5.2, delete the text ", or types formed from any of those types by tagging".

9) Subclause 48.8.2

In 48.8.2, delete the text ", or types formed from any of those types by tagging".

2 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

I SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

10) New Annex F

Add a new Annex F as follows:

Annex F

Rulesfor Type and Value Compatibility
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex is expected to be mainly of use to tool builders to ensure that they interpret the language identically. It is
present in order to clearly specify what is legal ASN.1 and what is not, and to be able to specify the precise value that
any value reference name identifies, and the precise set of values that any type or value set reference name identifies| It
is|not intended to provide a definition of valid transformations of ASN.1 notations for any purpose other thah thgse
stated above.

Fl1 The need for the value mapping concept (Tutorial introduction)
Fp.i Consider the following ASN.1 definitions:

A ::= INTEGER
B ::= [1] INTEGER
C ::= [2] INTEGER (0..6,...)
D ::= [2] INTEGER (0..6,...,7)
E ::= INTEGER (7..20)
F ::= INTEGER {red(0), white(l), blue(2), green(3),(purple(4)}
a A ::=3
b B ::=14
c C ::=5
dD ::=6
e E ::=7
f F ::= green
FL.2 It is clear that the value references a, b, ¢, d, €.and f can be used in value notation governed by A, B, C, D, |E,
arjd F, respectively. For example:
W ::= SEQUENCE {wl A DEFAULT ‘a}
arld:
X A = a
ard:
Y = A(l..a)

arg al valid given the definitionsin F.1.1. If, however, A above were replaced by B, or C, or D, or E, or F, would the
repulting statements be illegal? Similarly, if the value reference a above were replaced in each of these cases by b, or|c,
orld, or g, or f, are theresulting statements legal ?

T

.3 A more sophisticated question would be to consider in each case replacement of the type reference by the
explicit text to the right of its assignment. Consider for example:

f INTEGER {red(0), white(l), blue(2), green(3), purple(4)} ::= green
W ::= SEQUENCE {
wl INTEGER {red(U), white(l), blue(Z), green(3), purple(4) ;
DEFAULT f}
x INTEGER {red(0), white(1l), blue(2), green(3), purple(4)} ::= £
Y ::= INTEGER {red(0), white(l), blue(2), green(3), purple(4)}(1..f)

Would the above be legal ASN.1?

F.14 Some of the above examples are cases which, even if legal (as most of them are — see later text), users would
be ill-advised to write similar text, as they are at the least obscure and at worst confusing. However, there are frequent
uses of a value reference to a value of some type (not necessarily just an INTEGER type) as the default value for that
type with tagging or subtyping applied in the governor. T&lee mapping concept is introduced in order to provide a

clear and precise means of determining which constructs such as the above are legal.

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 3

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

| SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

F.15 Again, consider:

C ::= [2] INTEGER (0..6,...)
E ::= INTEGER (7..20)
F ::= INTEGER {red(0), white(1l), blue(2), green(3), purple(4)}

In each case anew type is being created. For F we can clearly identify a 1-1 correspondence between the valuesin it and
the values in the universal type "INTEGER". In the case of C and E, we can clearly identify a 1-1 correspondence
between the val ues in them and a subset of the values in the unrver&al type "INTEGER" We call this relatronshrp a

vglues of "INTEGER", we can use these mappings to provrde mappi ngs between the values of F, C, and E themselv ES,
Thisisillustrated for F and Cin Figure F.1.

Integer

Mappings

o red(0)
O blue(2)

O[22 O[3

O white(1)

. Derived __
4—XRV i
O green(3) Mappings

ope4 ©Cl2b
O [216

O purple(4)

T0732160-99/d01

FigureF.1

Fl.6 Now when we have a value reference such as:

in "F" Thrs is |IIustrated in Frgure F. 2 where the value reference "is used to |dent|fy avalue in "F" and can be u%d
in place of adirect reference f1 where we would otherwise have to define:

F.1.7 It should be noted that in some cases there will be values in one type (7 to 20 in A of F.1.1 for example) that
have value mappings to values in another type (7 to 20 in E of F.1.1 for example), but other values (21 upwards of A)
that have no such mapping. A reference to such valuesin A would not provide a valid reference to avalue in E. (In this
example, the whole of E has a value mapping to a subset of A. In the general case, there may be a subset of valuesin
both types that have mappings, with other values in both types that are unmapped.)

4 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

I SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

O red(0)
O blue(2)
o White(1)

ogreen(?;)'

O burple(4)

O 211

TO732170-99/d02

FigureF.2

1.8 In the body of the ASN.1 standards, normal English text is used to specify-legality in the above and simi

complex construction.

NOTE —The fact that value mappings are defined to exist between two, occurrences of the "Type" construct perm
value references established using one "Type" construct to identify~values in another "Type" construct which i
similar. It allows dummy and actual parameters to be typed using\two textually separate "Type" constructs without]
rules for compatibility of dummy and actual parameters. It also-allows fields of information object classes to be sp
one "Type" construct and the corresponding value in an infofmation object to be specified using a distinct "Type" co
is sufficiently similar. (These examples are not intended $0°be exhaustive.) It is, however, recommended that adva
of this freedom only for simple cases such as "SEQUENCE OF INTEGER", or "CHOICE {int INTEGER, id
IDENTIFIER}", and not for more complex "Type" constructs.

Fj2 Value mappings
FR.1 Theunderlying model is of types,as non-overlapping containers, that contain values, with every occurrence
the ASN.1 "Type" construct defining a distinct new type (see Figures F.1 and F.2). This annex specifies when val

ar

ses. Subclause F.6 gives the precise requirements for legality and should be referenced whenever there is doubt abgut

its the use of
5 sufficiently
violating the
edgified usi
dtruct whi
htage be take
OBJECT

mpppings exist between such types, enabling a reference to a value in one type to be used where a reference to a val
injsome other type is needed.
Example: Consider:

= (INTEGER

=) INTEGER
Xland Y aretype reference names (pointers) to two distinct types, but value mappings exist between these types, so §
vdlue referenee to avalue of X can be used when governed by Y (for example, following DEFAULT).
FR.2 In the set of all possible ASN.1 values, a value mapping relates a pair of values. The whole set of val

related to itself), it is symmetric (if a value mapping is defined to exist from a value x1 to a value x2, then th
automatically exists a value mapping from x2 to x1), and it is trangitive (if there is a value mapping from a value
to x2, and a value mapping from x2 to x3, then there automatically exists a value mapping from x1 to x3).

F.2.3
in X1 to values in X2 is a one-to-one relation, that is, for al values x1 in X1, and x2 in X2, if there is a value mappi
from x1 to x2, then:

a)

b)

there is no value mapping from x1 to another value in X2 different from x2; and

there is no value mapping from any valuein X1 (other than x1) to x2.

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

ere

x1

Furthermore, given any two types X1 and X2, seen as sets of values, the set of value mappings from values

ng

5

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

| SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

F.24 Where a vaue mapping exists between a value x1 and a value x2, a value reference to either one can
automatically be used to reference the other if so required by some governor type.

NOTE — The fact that value mappings are defined to exist between values in some "Type" constructs is solely for the purpose of
providing flexibility in the use of the ASN.1 notatiohhe existence of such mappings carries no implications whatsoever that

the two types carry the same application semantics, but it isrecommended that ASN.1 constructs which would be illegal

without value mappings are used only if the corresponding types do indeed carry the same application semantics. Note that value
mappings will frequently exist in any large specification between two types that are identical ASN.1 constructs, but which carr
totally different application semantics, and where the existence of these value mappings is never used in determiniitg the legal

of the total specification.

F3 ldentical type definitions

FB.1 The concept of identical type definitions is used to enable value mappings to be defined between tyvo
instances of "Type" which are either identical or sufficiently similar that one would normally expect their use to |pe
interchangeable. In order to give precision to the meaning of "sufficiently similar", this subclause specifies’a series|of
transformations which are applied to each of the instances of "Type" to produce a normal form for those instances|of
"Tlype". The two instances of "Type" are defined to be identical type definitions if, and only if, their-normal forms dre
identical ordered lists of the same ASN.1 items (see clause 11).

FR.2 Each occurrence of "Type" in an ASN.1 specification is an ordered list of the items defined in clause 11. The
ngrmal form is abtained by applying the transformations defined in F.3.2.1 to F.3.2.4 in that-order.

FB.2.1 All the comments (see 11.6) are removed.

F.2.2 Thefollowing transformations are not recursive and hence need only to be applied once, in any order:

a) For each integer type: the "NamedNumberList" (see 18:1)-if any, is reordered so that the "identifiers' @re
in alphabetical order ("a" first, "z" last).

b) For each enumerated type: numbers are added, @s specified in 19.3, to any "Enumerationltem"” (see 19|1)
that is an "identifier" (without a number); then the "RootEnumeration" is reordered so that the
"identifiers" arein aphabetical order ("a!first, "z" last).

¢) For each hitstring type: the "NamedBitList" (see 21.1), if any, is reordered so that the "identifiers" are)
alphabetical order ("a" first, "z" lasf):

n

d) For each object identifier walue: each "ObjectidComponent” is transformed into its corresponding
"NumberForm" in accordance with the semantics of clause 31 (see the examplein 31.11).

€) For sequence types.(see clause 24) and set types (see clause 26): any extension of the fofm
"ExtensionAndExeeption”, "ExtensionAdditions’, is cut and pasted to the end of the
"ComponentTypeLists"; "Optional ExtensionMarker", if present, is removed.

If "Tagbefault" is"IMPLICIT TAGS", the keyword "IMPLICIT" is added to al instances of "Tag" (3ee
clause 30) unless either:

oV it isaready present; or

the reserved word item EXPLICIT is present; or

* thetypebeing tagged is a CHOICE type or;

e itisanopentype.

If "TagDefault" is "AUTOMATIC TAGS", the decision on whether to apply automatic tagging is taken
according to 24.2 (the automatic tagging will be performed later on).

NOTE — Subclauses 24.3 and 26.2 specify that the presence of a "Tag" item in a "ComponentType" which was

inserted as a result of the replacement of "Components of Type" does not in itself prevent the automatic tagging
transformation.

If "ExtensionDefault" is "EXTENSIBILITY IMPLIED", an ellipsis ("...") is added after the
"ComponentTypelLists" if it is not present.

6 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

o

B.23 The following transformations shall be applied recursively in the specified order, until a-fix-point is r

B.24 For set typel the "RootComponentTypeList” is reordered so that the "ComponentType's are in alphabeti

I SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

f) For choice type (see clause 28): "RootAlternativeTypeList" is reordered so that the identifiers of t
"NameType's are in alphabetical order ("a" first, "z" last). If "TagDefault" is "IMPLICIT TAGS', t
keyword "IMPLICIT" is added to al instances of "Tags" (see clause 30) unless either:

e itisaready present; or
e thereserved word item EXPLICIT is present; or
» thetypebeing tagged isa CHOICE type; or

e itisanopentype.

accordmg to 28.3 (the automatic tagglng will be performed later on). If "ExtensonDefault"
"EXTENSIBILITY IMPLIED", an ellipsis ("...") is added after the "AlternativeTypeLists"_if"it
present.

a) For each object identifier value (see 31.3): if the value definition beginsywith a "DefinedV|
"DefinedValue" is replaced by its definition.

b) For sequence types and set types: all instances of "COMPONENTS OF Type" (see cla
transformed according to clauses 24 and 26.

c) For sequence, set and choice types: if it has earlier been degided to tag automatically (see F.
and f)), the automatic tagging is applied according to clauses 24, 26 and 28.

d) For selection type: the construction is replaced by the sel€cted alternative according to clause
e) Alltype references are replaced by their definitions-according to the following rules:

« If the replacing type is a reference to the type being transformed, the type reference is re
special item that matches no other itemthan itself.

* If the replacing type is a sequence=of type or a set-of type, the constraints following th
type, if any, are moved in frontiofthe keyword "OF".

- If the replaced type is alparameterized type or a parameterized value set (see 8.
Rec. X.683 | ISO/IEC 8824-4), every "DummyReference" item is replaced by the corr
"ActualParameter".

f) All value references:are replaced by their definitions; if the replaced value is a parameterizec
8.2 of ITU-T Recl-X.683 | ISO/IEC 8824-4), every "DummyReference" item is replace
corresponding-"ActualParameter".

NOTE — Before replacing any value reference, the procedures of this annex shall be applied to er]
value «eference identifies, through value mappings or directly, a value in its governing type.

Her ("l firgt, 420 ast).

NOTE +Text in 11.9 (bstring), 11.10 (hstring), and 11.11 (cstring) specifies that new-lines and white space are not
such«dtems. If two occurrences of such items contain different uses of new-lines and white space, they are treat
items for the purposes of F.3.3.

he
he

arlen

is
s not

bached:

alue”, the

use 24) are

B.2.2 items €)

29.

placed by a

e replaced

P of ITU-T
esponding

value (see
1 by the

sure that the

cal

fignifican
bd as identica

sXo] £ mat F T g o ta-thar form Al Licta ~f A CNL 1

Fo YaVal

F.u.u

L a1 o +* L
T WO TSN CS Ot I)’PU 3 Wheh I.lullalullllcu tO—tREeH llullllul TOTTTI are IUUIII.I\.’(JI TS U 7 YOI TtCITIS(

clause 11), then the two instances of "Type" are defined to be identical type definitions with the following exception: if
an "objectclassreference” (see 7.1 of ITU-T Rec. X.681 | ISO/IEC 8824-2) appears within the normalized form of the
"Type", then the two types are not defined to be identical type definitions, and value mappings (see F.4 below) will not
exist between them.

NOTE — This exception was inserted to avoid the need to provide transformation rules to normal form for elements of syntax
concerned with information object class, information object, and information object set notation. Similarly, specification for the

normalization of all value notation and of set arithmetic notation has not been included at this time. Should there

p@ve to be

requirement for such specification, this could be provided in a future version of this Recommendation | International Standard.
The concept of identical type definitions and of value mappings was introduced to ensure that simple ASN.1 constructs could be
used either by using reference names or by copying text. It was felt unnecessary to provide this functionality for more complex

instances of "Type" that included information object classes, etc.

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

7

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

| SO/IEC 8824-1: 1998/Amd.2 : 2000 (E)

F.4 Specification of value mappings

F.4.1 If two occurrences of "Type" are identical type definitions under the rules of F.3, then value mappings exist
between every value of one type and the corresponding value of the other type.

F.4.2 For a type, X1, created from any type, X2, by tagging (see clause 30), value mappings are defined to exist
between all the members of X1 and the corresponding members of X2.

NOTE — Whilst value mappings are defined to exist between the values of X1 and X2 in F.4.2 above, and between the values
of X3 and X4 in F.4.3, if such types are embedded in otherwise identical but distinct type definitions (such as SEQUENCE or
CHOICE type definitions), the resulting type definitions (the SEQUENCE or CHOICE types) will not be identical type
definitions, and there will be no value mappings between them.

1.3 For a type, X3, created by selecting values from any governor type, X4, by the element set construct or, py
btyping, value mappings are defined to exist between the members of the new type and those members of the governor
be that were selected by the element set or subtyping construct. The presence or absence of an extension mafker'has ho
ect on thisrule.

1.4 Additional value mappings are specified in F.5 between some of the character string types.

nom oggem

A5 A vaue mapping is defined to exist between all the values of any type defined as ancifiteger type with named
vglues and any integer type defined without named values, or with different named values, 6¢/with different names for
ngmed values, or both.

NOTE — The existence of the value mapping does not affect any scope rule requiremefits on the use of the names gf named values.
They can only be used in a scope governed by the type in which they are defined;or,by a typereference name to tha type.

FK.6 A value mapping is defined to exist between all the values of any type defined as a bit string type with named
bits and any hit string type defined without named bits, or with different named bits, or with different names for named
bits, or both.

NOTE — The existence of the value mapping does not affect any«scope rule requirements on the use of the nameg of named bits.
They can only be used in a scope governed by the type in which*they are defined, or by a typereference name to thatt type.

5 Additional value mappings defined for thecharacter string types

F

Fp.1 There are two groups of restricted characterstring types, group A (see F.5.2) and group B (see F.5.3). Value
mpppings are defined to exist between all types incgroup A, and value references to values of these types can be uged
when governed by one of the other types. For the.types in group B, value mappings never exist between these differgnt
types, nor between any typein group A and any.typein group B.

Fp.2 Group A consists of:

UTF8String

NumericString
PrintableString

IASString

VisibleString (IS0646String)
UniversalString

BMPSt¥ing

Fp.3 Greup B consists of:

TeletexString (T61String)

VideotexString

GraphicString
GeneralString

F.5.4 The value mappings in group A are specified by mapping the character string values of each type to
Universal String, then using the transitivity property of value mappings. To map vaues from one of the group A typesto
Universal String, the string is replaced by a Universal String of the same length with each character mapped as specified
below.

F.5.5 Formally, the set of abstract values in UTF8String is the same set of abstract values that occur in
Universal String but with a different tag (see 36.13), and each abstract value in UTF8String is defined to map to the
corresponding abstract value in Universal String.

8 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

https://iecnorm.com/api/?name=881184dfda12101e7a167a7b0b1a40cc

