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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The proceglures used to develop this document and those intended for its further maintenanee
described In the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed*for
different types of ISO documents should be noted. This document was drafted in accordance 'with
editorial ryles of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
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Introduction

Measurement uncertainties and characteristic values, such as the decision threshold, the detection limit
and limits of the coverage interval for measurements as well as the best estimate and its associated
standard measurement uncertainty, are of importance in metrology in general and for radiological
protection in particular. The quantification of the uncertainty associated with a measurement result
provides a basis for the trust an individual can have in a measurement result. Conformity with
regulatory limits, constraints or reference values can only be demonstrated by taking into account and
quantifying all sources of uncertainty. Characteristic limits provide, at the end, the basis for deciding
under uncertainty.
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of ionizing

5 standard provides characteristic values of a non-negative measurand of ionizing 'rad
applicable for a wide range of measuring methods extending beyond measurements
ation.

Thelimits to be provided according to the ISO 11929 series for specified probabilities of wronlg decisions
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moiments and quantiles-of probability distributions of the possible measurand values.

Sing
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w detection possibilities to be assessed for a measurand and for the physical effect qu
measurand as follows:

the “decision threshold” allows a decision to be made on whether, 6rnot the physical effect
by the measurand is present;

the “detection limit” indicates the smallest true quantity.value of the measurand that
detected with the applied measurement procedure; this gives a decision on whether
measurement procedure satisfies the requirementsyand is therefore suitable for th
measurement purpose;

the “limits of the coverage interval” enclose, inithe case of the physical effect recognized

einafter, the limits mentioned are jointly called the “characteristic limits”.

E According to ISO/IEC Guide 99:2007 updated by JCGM 200:2012 the term “coverage inte}
instead of “confidence interval” ifi order to distinguish the wording of Bayesian terminology
entional statistics.

the characteristic valuesiare based on Bayesian statistics and on the ISO/IEC 98-3 G
ression of Uncertainty in’/Measurement as well as on the ISO/IEC Guide 98-3-1 and ISO/
xplained in detail jn‘ISO 11929-2, the characteristic values are mathematically defined H

e measuremeént’uncertainty plays an important part in ISO 11929, the evaluation of meg
the treatment of measurement uncertainties are carried out by means of the general |
rding_tothe ISO/IEC Guide 98-3 and to the ISO/IEC Guide 98-3-1; see also References
5 enables the strict separation of the evaluation of the measurements, on the one har
vision'and calculation of the characteristic values, on the other hand. The ISO 11929 seg

use

antified by

quantified

ran still be
or not the
e intended

as present,

a coverage interval containing the true quantity value of the measurand with a specified probability.

val” is used
'rom that of

hide to the
[EC 98-3-2.
y means of

surements
brocedures
[9] to [13].
d, and the
ries makes

ofatheary of uncertainty in measurement [14] to [16] hased on Rayesian statistics (e g [

[7] to [22])

in order to allow to take into account also those uncertainties that cannot be derived from repeated or
counting measurements. The latter uncertainties cannot be handled by frequentist statistics.

Because of developments in metrology concerning measurement uncertainty laid down in the
ISO/IEC Guide 98-3, ISO 11929:2010 was drawn up on the basis of the ISO/IEC Guide 98-3, but using
Bayesian statistics and the Bayesian theory of measurement uncertainty. This theory provides a
Bayesian foundation for the ISO/IEC Guide 98-3. Moreover, ISO 11929:2010 was based on the definitions
of the characteristic values[2], the standard proposall19], and the introducing article[11l. It unified and
replaced all earlier parts of ISO 11929 and was applicable not only to a large variety of particular
measurements of ionizing radiation but also, in analogy, to other measurement procedures.

Since the ISO/IEC Guide 98-3-1 has been published, dealing comprehensively with a more general
treatment of measurement uncertainty using the Monte Carlo method in complex measurement
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evaluations. This provided an incentive for writing a corresponding Monte Carlo supplement[12] to
ISO 11929:2010 and to revise ISO 11929:2010. The revised ISO 11929 is also essentially founded on
Bayesian statistics and can serve as a bridge between ISO 11929:2010 and the ISO/IEC Guide 98-3-1.
Moreover, more general definitions of the characteristic values (ISO 11929-2) and the Monte Carlo
computation of the characteristic values make it possible to go a step beyond the present state of
standardization laid down in ISO 11929:2010 since probability distributions rather than uncertainties
can be propagated. It is thus more comprehensive and extending the range of applications.

The revised ISO 11929, moreover, is more explicit on the calculation of the characteristic values. It
corrects also a problem in ISO 11929 2010 regardmg uncertam quant1t1es and mfluences Wh1ch do
not behave ra e the
basis of the revision. Furthermore thls document gives detalled advice how to calculate characterlstlc
values in the case of multivariate measurements using unfolding methods. For such measurements,the
ISO/IEC Guide 98-3-2 provides the basis of the uncertainty evaluation.

Formulas pre provided for the calculation of the characteristic values of an ionizing radiation
measurand via the “standard measurement uncertainty” of the measurand (hereinafter the “standard
uncertaintly”) derived according to the ISO/IEC Guide 98-3 as well as via probability-density functjons
(PDFs) of the measurand derived in accordance with ISO/IEC Guide 98-3-1. The-standard uncertaiI,ies

or probability density functions take into account the uncertainties of the actual measurement as ell
as those of sample treatment, calibration of the measuring system and ‘other influences. The latter
uncertaintjes are assumed to be known from previous investigations.

vi © IS0 2019 - All rights reserved
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Determination of the characteristic limits (decision
threshold, detection limit and limits of the coverage
interval) for measurements of ionizing radiation —
Fundamentals and application —

Part3:
Applications to unfolding methods

1
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Scope

ISO 11929 series specifies a procedure, in the field of ionizing radiation metrology, for the
ulation of the “decision threshold”, the “detection limit” and the “limits of the coverage ipterval” for
n-negative ionizing radiation measurand when counting measurements with preselectjion of time
ounts are carried out. The measurand results from a gross count rate and a background| count rate
Uell as from further quantities on the basis of a model of the évaluation. In particular, the measurand
be the net count rate as the difference of the gross count.rate and the background coyint rate, or
net activity of a sample. It can also be influenced by calibration of the measuring system| by sample
tment and by other factors.

, advanced
g methods

[SO[11929 has been divided into four parts covering'elementary applications in ISO 11929-1
applications on the basis of the ISO/IEC Guide 98-3-1 in ISO 11929-2, applications to unfoldir
in this document, and guidance to the applicatiofi in ISO 11929-4.

ISO
rad
the
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analogous ratemeters, are covered in Annex B of ISO 11929-1:2019.

ISO
acc
gen

Thi
spe

11929-1 covers basic applications of counting measurements frequently used in the field
ation metrology. It is restricted to-applications for which the uncertainties can be ey
basis of the ISO/IEC Guide 98-3-(JCGM 2008). In Annex A of ISO 11929-1:2019, the spe
pated counting measurements-with random influences is covered, while measurements

11929-2 extends the former ISO 11929:2010 to the evaluation of measurement un
brding to the ISO/IEC Guide 98-3-1. ISO 11929-2 also presents some explanatory noteg
pral aspects of counting measurements and on Bayesian statistics in measurements.

5 document ,deals with the evaluation of measurements using unfolding methods an
Ctrometricomulti-channel measurements if evaluated by unfolding methods, in par

of ionizing
aluated on
rial case of
with linear

certainties
regarding

d counting
ficular, for

alpha- and gamma-spectrometric measurements. Further, it provides some advice on how tp deal with

corfelations and covariances.

[SO|11929-4 gives guidance to the application of the ISO 11929 series, summarizes shortly the general

procedure and then presents a wide range or numerical examples.

[SO 11929 Standard also applies analogously to other measurements of any kind especially if a
similar model of the evaluation is involved. Further practical examples can be found, for example,
in ISO 18589[7], ISO 969612], ISO 9697(3], ISO 9698I4], SO 10703[2], ISO 7503[1], ISO 28218I8], and
ISO 11665(8].

NOTE A code system, named UncertRadio, is available for calculations according to ISO 11929- 1 to
ISO 11929-3. UncertRadiol321[36] can be downloaded for free from https://www.thuenen.de/en/fi/fields-of
-activity/marine-environment/coordination-centre-of-radioactivity/uncertradio/. The download contains a
setup installation file which copies all files and folders into a folder specified by the user. After installation one
has to add information to the PATH of Windows as indicated by a pop-up window during installation. English
language can be chosen and extensive “help” information is available.
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2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in

probability

ISO 80000-

1, Quantities and units — Part 1: General

[SO 80000

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 1: Guide to the expression of unceftaint

measuremsgq

ISO/IEC Gy
uncertaint)

ISO/IEC Gy
uncertaint)

ISO/IEC G
terms (VIM

3 Terms and definitions

For the pu
ISO/IEC G
following 3

ISO On

IEC Ele

3.1
quantity v
value of a
value

number a

[SOURCE:
3.2

process of
quantity

|

measurement

10, Quarntities and umnits— Part 10T Atomic and nuclear physics

nt, JCGM 100:2008

ide 98-3-1, Evaluation of measurement data — Supplement 1 to the “Guide to-the expressig
 in measurement” — a Propagation of distributions using a Monte Carlo method, JCGM 101:2)

ide 98-3-2, Evaluation of measurement data — Supplement 2 to the “Guide to the expressidg
f in measurement” — Models with any number of output quantities, JCGM 102:2011

ide 99, International vocabulary of metrology — Basic and geheéral concepts and associg

)

rposes of this document, the terms and definitions given in ISO 80000-1, ISO 80000
ide 98-3, ISO/IEC Guide 98-3-1, ISO/IEC 98-3-2, ISO/IEC Guide 99 and ISO 3534-1 and

pply.

line browsing platform: available at https://www.iso.org/obp

ctropedia: available at http://wwwrelectropedia.org/

alue
quantity

reference togethérexpressing magnitude of a quantity

GM 200:2012, 1.19]

bxperimentally obtaining one or more quantity values that can reasonably be attributed

n of
008

ited

-10,
the

to a

[SOURCE: ]

3.3
measuran

CGM 200:2012, 2.1]

d

quantity intended to be measured

[SOURCE:]

CGM 200:2012, 2.3]
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3.4

coverage interval

interval containing the set of true quantity values of a measurand with a stated probability, based on
the information available

[SOURCE: JCGM 200:2012, 2.36]

Note 1 to entry: A coverage interval does not need to be centred on the chosen measured quantity value (see
JCGM 101:2008).

Note 2 to entry: A coverage interval should not be termed “confidence interval” to avoid confusion with the

a 1
statgstrear Luux,cyt.

3.5
measurement method

method of measurement

genpric description of a logical organization of operations used in a measurement

[SOPURCE: JCGM 200:2012, 2.4]

3.6
measurement procedure
detailed description of a measurement according to one or more) measurement principlds and to a
given measurement method, based on a measurement model and including any calculation [to obtain a
megsurement result

[SOPRCE: JCGM 200:2012, 2.6]

3.7
measurement result

resplt of measurement
set [of quantity values being attributed to-a measurand together with any other availabje relevant
infqrmation

[SOPURCE: JCGM 200:2012, 2.9]

3.8
measured quantity value

valtie of a measured quantity

measured value

qualntity value representing a measurement result

[SOPRCE: JCGM 200:2012, 2.10]

3.9
trug quantity value

trug value of a quantity

trug value

quantity value consistent with the definition of a quantity

[SOURCE: JCGM 200:2012, 2.11]

Note 1 to entry: In the Error Approach to describing measurement, a true quantity value is considered unique
and, in practice, unknowable. The Uncertainty Approach is to recognize that, owing to the inherently incomplete
amount of detail in the definition of a quantity, there is not a single true quantity value but rather a set of
true quantity values consistent with the definition. However, this set of values is, in principle and in practice,
unknowable. Other approaches dispense altogether with the concept of true quantity value and rely on the
concept of metrological compatibility of measurement results for assessing their validity.

Note 2 to entry: When the definitional uncertainty associated with the measurand is considered to be negligible
compared to the other components of the measurement uncertainty, the measurand may be considered to have
an “essentially unique” true quantity value. This is the approach taken by the ISO/IEC Guide 98-3 and associated
documents, where the word “true” is considered to be redundant.

© IS0 2019 - All rights reserved 3
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3.10

measurement uncertainty
uncertainty of measurement
uncertainty

non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand, based on the information used

[SOURCE: JCGM 200:2012, 2.26]

Note 1 to entry: Measurement uncertainty includes components arising from systematic effects, such as
components associated with corrections and the assigned quantity values of measurement standards, as well

as the defififtional uncertainty. Sometimes estimated systematic effects are not corrected for but, insfead,
associated heasurement uncertainty components are incorporated.

Note 2 to ¢ntry: The parameter may be, for example, a standard deviation called standard measurerment
uncertainty] (or a specified multiple of it), or the half-width of an interval, having a stated coverage probability.
Note 3 to gntry: Measurement uncertainty comprises, in general, many components. Some ‘of these may be
evaluated Type A evaluation of measurement uncertainty from the statistical distribution of the quantity
values from series of measurements and can be characterized by standard deviations: The other componints,
which may e evaluated by Type B evaluation of measurement uncertainty, can also bé-characterized by standard
deviations, gvaluated from probability density functions based on experience or ather information.

Note 4 to enjtry: In general, for a given set of information, it is understood thiat the measurement uncertainty is
associated yith a stated quantity value attributed to the measurand. A modification of this value results|in a
modificatioh of the associated uncertainty.

3.11

model of gvaluation

set of mathematical relationships between all measured and other quantities involved in the evaluation
of measurgments

Note 1 to eptry: The model of evaluation does not neéd to be an explicit function; it can also be an algorithm
realized by p computer code.

3.12

decision threshold

value of the¢ estimator of the measurand; which when exceeded by the result of an actual measurenpent
using a givien measurement procedureé of a measurand quantifying a physical effect, is used to defide
that the phjysical effect is present

Note 1 to enptry: The decisionthreshold is defined such that in cases where the measurement result, y, exc¢eds
the decisior] threshold, y*, theyprobability that the true value of the measurand is zero is less or equal to a ch¢sen
probability for a wrong décision, a.

Note 2 to entry: If thexresult, y, is below the decision threshold, y*, it is decided to conclude that the result capnot
be attributed to thephysical effect; nevertheless it cannot be concluded that it is absent.

3.13

detection [imit

smallest true value of the measurand which ensures a specified probability of being detectable by the
measurement procedure

Note 1 to entry: With the decision threshold (3.12), the detection limit is the smallest true value of the measurand
for which the probability of wrongly deciding that the true value of the measurand is zero is equal to a specified
value, 5, when, in fact, the true value of the measurand is not zero. The probability of being detectable is
consequently (1 - f).

Note 2 to entry: The terms detection limit and decision threshold are used in an ambiguous way in different

standards (e.g. standards related to chemical analysis or quality assurance). If these terms are referred to one
has to state according to which standard they are used.

© ISO 2019 - All rights reserved
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3.14
limits of the coverage interval
values which define a coverage interval

Note 1 to entry: A coverage interval is sometimes known as a credible interval or a Bayesian interval. Its limits
are calculated in the ISO 11929 series to contain the true value of the measurand with a specified probability

1-n.

Note 2 to entry: The definition of a coverage interval is ambiguous without further stipulations. In this standard
two alternatives, namely the probabilistically symmetric and the shortest coverage interval are used.

3.15
best estimate of the true quantity value of the measurand
expectation value of the probability distribution of the true quantity value of the measurand, given the
experimental result and all prior information on the measurand

Notg 1 to entry: The best estimate is the one, among all possible estimates of the measurand on the b
infofmation, which is associated with the minimum uncertainty.

hsis of given

31

guifeline value

valye which corresponds to scientific, legal or other requirements with regard to thg
cappbility and which is intended to be assessed by the measurementprocedure by comparis
detgction limit

detection
bn with the

Not
con

b 1 to entry: The guideline value can be given, for exampl€;as an activity, a specific activity o1
entration, a surface activity or a dose rate.

an activity

Not¢ 2 to entry: The comparison of the detection limit with a guideline value allows a decision on whether or not
the measurement procedure satisfies the requirements, set forth by the guideline value and is therei?re suitable
for the intended measurement purpose. The measurement procedure satisfies the requirement if the detection

limif is smaller than the guideline value.

Not¢ 3 to entry: The guideline value shall notibe confused with other values stipulated as conformity
as regulatory limits.

requests or

3.1
badkground effect

megsurement effect caused-by-radiation other than that caused by the object of the measure

Note 1 to entry: The bagkground effect can be due to natural radiation sources or radioactive ma|
aroyind the measuringinstrumentation and also to the sample itself (for instance, from other lines in :

3.1
badkground éffect in spectrometric measurement
number of events of no interest in the region of a specific line in the spectrum

3.1
net|effect

ment itself

ferials in or
spectrum).

contribution of the possible radiation of a measurement object (for instance, of a radiation source or

radiation field) to the measurement effect

3.20
gross effect
measurement effect caused by the background effect and the net effect

3.21
shielding factor

factor describing the reduction of the background count rate by the effect of shielding caused by the

measurement object

© IS0 2019 - All rights reserved
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3.22

relaxation time constant
duration in which the output signal of a linear-scale ratemeter decreases to 1/e times the starting value
after stopping the sequence of the input pulses

4 Quantities and symbols

The symbols for auxiliary quantities and the symbols only used in the annexes are not listed. Physical
quantities are denoted by upper-case letters but shall be carefully distinguished from their values,
denoted by the corresponding lower-case letters.

A
Aik

ao, di

/B

fatt,i
frcs,i
fa

Gk

G

h

h()
H(%;)

L

response matrix of the spectrometer

elements of the response matrix A

parameters in an algebraic expression of the standard uncertainty of a net, counting rat
width of a gamma peak, in channels

position parameter of a peak j, in gamma-ray or alpha-ray spectremetry

indicator for a diagonal matrix

matrix converting measured activities to decay correctéd activity concentrations

set of statistically independent quantities

function representing the analogue of the total peak area method design factor [1 + b/(
for the peak fitting case (gamma-ray spectrometry)

self-attenuation correction factor for gamma-line i
true-coincidence-summing corregction factor for gamma-line i

decay correction factor including the decay during the measurement
function of the input quantities X; (i = 1, ..., m)

column matrix of the-Gy

full width at half*maximum of a peak, in channels

function.aspart of an implicit model

funegional relationship representing the spectral density at ¢; of a multi-channel spect

[

um

number of a channel in a multi-channel spectrum obtained by a spectrometric nuclear
radiation measurement (i = 1,..1 m)

matrix of partial derivatives of y+ with respect to parameters y
width of a background region (in channels) adjacent to a gamma peak

k-th element of a system of functions describing spectral densities, which constitute by
superposition the total fitting function

number of input quantities; or number of channels in the spectrum; number of lines per

nuclide used for activity calculation; or a parameter index
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nj

ng

no
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Poisson-distributed random variable of events counted in channel, i, during the measuring

time, t (i =, ..., m)
number of events counted in a channel, i, during the measuring time, t (i =, ..., m), esti-
mate of N;

number of output quantities in unfolding
gross counts in a peak region

average background counts per channel (spectrum)

Pa,i

Py,

Xj

estimate of an input quantity which is not subject to fitting (parameter); contaif]
response matrix A

column matrix of the p;

values of non-linear parameters held fixed at their calibrated estimates
alpha emission probability of gamma-line i

gamma emission probability of gamma-line i

column matrix of input quantities considered as papameters; mainly contained
matrix D

matrix of partial derivatives of y with respectto parameters p

matrix of partial derivatives of y* with respect to parameters q

net counting rate of the peak i of interest

net counting rate of a backgrouhd spectrum peak at the position of the peak i of
gross counting rate of the)peak i of interest

counting rate of thétrapezoidal background continuum of the peak i of interest
duration of measurement

random variable of the rate of events counted in channel i during the measuring
input guantity of the evaluation, X; = N;/t (i=1, ..., m)

colirmn matrix of the X;

rate of events counted in channel, i, during the measuring time, ¢, x; = n;/t (i=1, .
mate of X;

ed in the

n the

interest

time, ¢,

., m), esti-

Xnet
u(xi, x;)
u(y)
Ux

column matrix of the x;

column matrix of net counting rates
covariance associated with x; and x;
standard uncertainty associated with yi
uncertainty matrix of X

uncertainty matrix of ¥

column matrix of input estimates; w = (x1, ..., Xm, P1, p2, .-.)T (transposed row matrix)
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Yk output quantity (parameter) derived from the multi-channel spectrum by unfolding meth-
ods (k=1, .., n)

Y column matrix of the Y

Vk estimate of the output quantity Y (k =1, ..., n) resulting from (primary) unfolding

y column matrix y after replacement of y; with y

Y+ column matrix of final output quantity values after conversion to decay corrected activity

Yo column matrix of background counting rates

z column matrix of values z; fitted to the values x;

A; fractional size of a parameter j, used for the parameter increment in partial-derivatives

with respect to this parameter

J continuous parameter, e.g. energy or time) related to the different.channel numbers in :
gamma-ray spectrum

W, value of 9 connected with channel (i =1, ..., m)

& detection efficiency of a nuclide i or of a gamma-line §

ni area fraction of tailing component / of an alpha peak, shape parameter in alpha spectromgtry

T] tailing parameter of tailing component / of analpha peak, shape parameter in alpha speic-
trometry

o width of a Gaussian, parameter in alpha’spectrometry

v () 'Elilon;?]?: ?escrni)bing the shape of an individual spectral line or of a background contribuf

5 Evaldation of a measurement using unfolding methods

5.1 General aspects

This clausg is based onthe ISO/IEC Guide 98-3 and the ISO/IEC Guide 98-3-2. The latter extends|the
ISO/IEC Guide 98-3 framework to any number of output quantities. Stipulations are made regardingthe
evaluation|of nuclédr radiation counting and spectrometric measurements by unfolding methods jand
the calculafion 6fthe characteristic values.

When simultaneously measuring more than one output quantity, their individual probability
distributions are superimposed with respect to an independent quantity such as radiation energy
or time, which may yield (e.g. an energy spectrum or a time-dependent decay-curve) as the primary
output of the measurement. Most often, the superposition is linear. A problem occurs if their individual
probability distributions suffer from smearing or broadening (e.g. by a non-ideal detector response
distribution function). The process of reconstructing the original probability density functions from
the measured one, an energy spectrum or a decay-curve, and from the (known) detection response
density function is termed as “unfolding”.

Thus, measuring values y of physical quantities Y (rank n), like radionuclide-specific activities or
counting rates, starts from measuring values x of X (rank m) (e.g. which represent the channel contents
of a multichannel spectrum (energy spectrum) or measured counting rates forming a time-dependent
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decay-curve). In the context of this standard, such a measurement is treated as a linear superposition of
the source activity and background related distribution functions (or contributions) Ag; of the

radionuclide k to each of the components i of the measured x: x; = ZkAk,i Vi -

Although functional representations of detector response functions Ak ; (e.g. gamma line-shape) may
depend non-linearly on parameters like the width parameter, their associated net areas are always
linearly superimposed.

A measurement of more than one output quantity requires a multivariate measurement model. Such
quantltles are generally mutually correlated because they depend on common input quantities.
las fi

invglved in such functlons also thereby requlrmg an iterative process for solvmg Stich a mddel for Yis
spefified by a set of n Formulas

hz(hl,...,hn)Tor h(Y,X)=0 )

The explicit multivariate model is given by a set of n functional relationships

Ye =G (X1, X;); (k=1,..,n) (2)

Estjmates yi of the n measurands Yk are obtained from¢Eormula (2) by inserting estimates ¥; for the m
inpyit quantities X; (i = 1,..., m)

V=G (x1,.nXxp); (k=1,..,n) 3

The standard uncertainties, u(x;), and covariances, u(x;, x;), associated with the x; are the ¢lements of
the[symmetric uncertainty matrix Ux and meet the relations u(x; x;) = u2(x;) and u(x;, x;) 3 u(x;, x;). If
they are given, the analogous standarduncertainties u(yx) and covariances u(yx,y;) associated with the
Yk follow from

dG, JG
ulyg )= Z —k 81 (xi,xj);(k,lzl,...,n) 4)
ij= 1 Xj

Ong obtains u(y,)=uly,y,) and u(yk yi) = u(y, yi) (k # I). For convenience, the partial flerivatives
dG /oX; with all the input quantities X; substituted by their estimates x; are briefly denoted by

dGj /ox; in Forynula (4) and in the following.

Thg modekfunctions Gx need not be explicitly available as arithmetical expressions. They ¢an also be
given as analgorithm, for instance, in form of a computer code. In such cases, or when more cpmplicated
mogié-functions are involved, the partial derivatives possibly cannot be explicitly derivpd but can
numerically be approximated sulficiently exactly using half of the standard uncertainty u(x;) as an
increment of x;

G _ 1 g

ox, = ) k [xl,...,xi +u(x; )/2,...,xm:|—Gk [xl,...,xi —u(x;)/2,., Xy ]} ®))]

NOTE1 Formulas (2) to (4) apply for model functions G which can be taken as sufficiently linear in the
uncertainty ranges between x; - u(x;) and x; + u(x;). Otherwise, more refined procedures can be applied as
described in the ISO/IEC Guide 98-3:2009, 5.1.2.

NOTE2  Inpractise, u(x;) in Formula (5) is replaced by a much smaller value A; (e.g. Aj= 2 - 10-6 x;) for improving
the precision of the differential quotient.
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It has to be emphasized that in multivariate measurements, it is more convenient to use matrix notation.
Therefore, those quantities, values and functions being denoted by the same symbol are in the following
combined to form a column matrix, written as a transposed row matrix and denoted by the same
symbol, but in bold face. Examples are x = (x1,..., xm)T and y = (y1,...,.yn)T and G(x) = (G1,-.., Gy)T. In addition,
the uncertainty matrices Ux = [u(x;, x;)] and Uy = [u(yk, y1)] and also the sensitivity matrix G, = (aGk / 0x; )

are introduced. Formulas (3) and (4) then read

y=6(x); U, =G, UG}

An often-ep
linear equations Wthh can be combmed mto a matrlx equatlon of the form X = A Y. Itis solve(
the methofl of weighted linear least-squares, also called generalized least-squares, if the systen
equations {s over-determined.

5.3 Unfg¢lding as a sub-model

ften
for
her

The primafy output quantities ¥ obtained from unfolding are activities or counting rates. Most o
Y is not thp desired measurand, but activity concentrations. The latter mayneed to be corrected
radionuclide dependent radioactive decay, chemical yield or other influences. Therefore, anot
measurand of interest, ¥+, has often to be calculated

Y+ =DY

or Y"=D-(Y-Y,) (7)

with a dia
they may

gonal matrix D. Its diagonal elements generally arg, functions Dj; (q,y) of input quantitig
also depend on Y, if any of the elements yy is used:inithem. The latter occurs if for instance]

s q;
the

design of t
measurem

in unfolding in order to calculate from it the chemical Strontium yield. The second case of Formula

may occur
of fitted p
determine

The exteng

outlined in|

5.4 Inpuy

The input
unfolding ¢
quantities,
values of W

Depending

he simultaneous measurement of activities of Strontium isotopes is extended such that
ent of 85Sr, added with a known activity to.the sample as a radiochemical tracer, is incly

for instance in fitting peak areas in gamma-ray spectrometry, where Y are counting r
pak areas from which possible peak;contributions ¥y still are to be subtracted, which
] from a separately measured background spectrum.

ion to a two-step uncertaiiity’ propagation implied by utilizing the transformation |
5.6.

It quantities andtheir uncertainties

Huantities encompass all quantities from which measured or other values are used in
nd which have-uncertainties associated with them. The count number or counting rate i
denoted asdX; are separated from the other input quantities, considered as parameters,
hich are.denoted as p; (see 5.5).

o the type of measurement, the count rate related 1nput quantities, X;, Where n; events

counted duri

the
ded
[ (7)
htes
are

the
put
the

are

channel analyzers in the case of multlple countlng channels or of even a multi- channel analy51s as in
multi-window liquid-scintillation counting or in an alpha- or gamma-ray spectrum.

For a count rate X; = R; with the given counting result, n; recorded during the measuring time, t., and if
independent Poisson statistics can be assumed for the individual channels, the specifications x; = r; = n;/
tc and u2(x)) = n;/t;2 = x;/tc apply. In addition, the covariances often can be set at zero, i.e. u(x;x;) = 0
(i # j). The counting times may vary between measurements associated with different X; The
components of uncertainty of measurement comprise uncertainty matrices Uy = [u(x;X;)] and

Uy = [u(yky1)]- Ux is often diagonal with the diagonal elements u? (xl- ) =n; /tg.
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It is useful to have Formulas by which the uncertainty matrix Uy of the input quantities X can be
quantified. Assuming that X represents a vector of net counting rates, it is desirable to put the variances
of Uy into the following general form

i (xo )}

ci

Dk

where the symbols xo x and ¢t; denote possible background and interference counting rates, being
subtracted from the gross counting rates associated with X;, and the counting durations of the sample
measurements, respectively. Covariances between any pair (X;,X;)(i# j) of components of X exist if

”

2 -
ut (%)= (8)

ci

bot

h of the quantities X; and Xj, considered as functions, depend on the same of any of ¢ther input

(bagkground-related) quantities d associated with uncertainties. If the set of dy ishch¢sen to be
staflistically independent, such a covariance is given by (see Annex A)
X; 9X; ,
u(x;,x;)= —>u*(dy) 9)
( v ) ;adk od,,

5.5/ Parameters of unfolding
Examples of parameters are spectrum parameters such as the widths of spectral lines, of detection
effifiencies, radionuclide-specific data, such as emission probabilities and half-lives, or |correction

factors. For parameters in unfolding, it is assumed that theiinvalues and standard uncerta
beeh estimated in advance according to the rules of the ISO/TEC Guide 98-3.

Thd
par

combined to form the column matrix w = (x1,..., Xmp1,p2,--) T

For
unc
on 1
for

the unfolding, one needs the estimates;\x and p, of the input quantities and their
ertainty matrix, Uy (x,p). This uncertaiiity matrix has been calculated as a covariance m

datj for x and p originate frém different independent experiments, there is no correlation
and| p and the matrix elements of Uy, related to pairs x; and py vanish.

An explicit model of the linear unfolding then consists of n relationships between input
qualntities. These relationships can formally and most generally be written as a column matr
modlel functions-Hywhich depend on all these quantities.

x=H(yp)

Without'combining (x, p) to w the uncertainty propagation would read as follows:

elements of the matrix A may contain other quarntities which can be treated as a \
hmeters, which may be associated with uncertainties. For convenience, the estimates J

he ISO/IEC Guide 98-3 (see References [9] and [10]). The uncertainty matrix, Uy (x,p), if

of its functional dependence on-xsince x shall be adjusted if decision threshold and det¢
arelcalculated while p stays constant: The uncertainty matrices Ux and Up associated with }
partial matrices of Uy,. The rank'ef Uy shall not be smaller than the number n of model Forn

inties have

rector p of
f and p are

associated
htrix based

needed in
pction limit
k and p are
ulas. If the
between x

hnd output
x H(y,p) of

(10)

T T T
U,=6,U,Gy =GU,Gl +G,U,G)

(11)

Itis shown in 5.6 that for the case of a linear and explicit model the expression GXUXG; is evaluated by

a different algebraic expression originating from a least-squares analysis. The second term in the
previous Formula, however, is calculated in terms of uncertainty propagation with using the
transformation matrix Gp with elements Gy =9Y; /8pj. To avoid possible confusion regarding the

ambiguous symbol G, this matrix is designated as Q in the following. It has to be emphasized that
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calculating this matrix is not an easily performed step, because it requires building the derivative of the
output quantity values, considered as a function, with respect to the components of p.

vy _ 1

1
5 {y1(p1 b +8 /2)=y1(X,p1 D = A /2)} (12)
J

Q ;=
9

Aj
For A;j see the second note below Formula 5. The two terms in the curly bracket demonstrate that one
value of a derivative requires two evaluations for an output quantity, that means two full least squares
evaluations. It follows that a calculation algorithm has to be organized such that the full least squares

analysis is organized as a function which by each call delivers a value y; of an output quantity.

5.6 Prog¢edure for unfolding

Unfolding in multivariate measurements means in essence fitting new values, z, of the input quantities,
X, to the giyen estimates, x where z = H(y,p) depends on the measurand estimates, y, to-be‘determined

and on fixe
least-squat
can easily

d given estimates, p, of further input quantities which are not subject to fit{ The general
es method is highly recommended for use as a spectrum unfolding\procedure sing
be combined with the uncertainty treatment and allows for a compact and transpa

descripti

B
The meas

as follows.

and estimates, y, are determined by minimizing the quantity

zed
e it
fent

X =()'—Z)T U;l(x)(x—z):min 13)
with the cpnstraint z = H(y,p) and the uncertainty matrix, Ux(xX), given as a function of x for finfally
obtaining tlhe characteristic values. The results of this minimiZing procedure are the functions:

y=G(x,p)=G(w) (14)

z=H(y,p)=H[G(w),p]=F(w) 15)
and, similajr to Formula (6) where w now plays the part of x, the due uncertainty matrices

T T -

v,=G,U,G,; U,=F,U,F, 16)
Here, x an¢l p are combined to-ferm the column matrix, w. The uncertainty matrices, Uy and Up,|are
likewise cqmbined to formthe uncertainty matrix, Uy. The sensitivity matrices, Fy and Gy, denote|the
matrices of the partial derivatives of the functions F(w) and G(w), respectively. All the matrices on|the
right-hand|side of Fornila (16) are functions of w.

NOTE1 The righthand side expressions of the Formulas (6) and (16) defining uncertainty matiices

represent tlhe corfimon uncertainty propagation in matrix notation in which the partial derivatives form lipear

transforma

ion matrices G or F, respectively.

12

© ISO 2019 - All rights reserved


https://standardsiso.com/api/?name=b7df39d075d793dd7841e2c424a86dec

1SO 11929-3:2019(E)

The results of the fit and the given data x conform if the standardized chi-square ;(SZ meets, with m > n

and with the obtained minimum ;(g]m , the chi-square condition

‘%rznin _(m_n)‘
J2(m-n)

with k1 - /2 being the quantile of the standardized normal distribution for the probability 1 - /2 of a
wrong decision. A probability 6 = 0,05 is recommended.

X8 = <ki-5/2 (17)

NO
exp

hccount the
11d result in

EZ Formula [17] is a frequently used, but coarse approximation which takes only Into
bctation, E(x2) = v, and the variance, Var (x2) = 2v, of the y2-distribution. A good test statistic.wo

| 5 1/3 2 [ 2
Criterion such as [(Xmin /(m—n)) —(1—9(”‘_“) J]/ o(m—-n) < ks

In mhany cases, the function H(y,p) to be adapted to the given estimates xis linedrjiny, i.e.,, z=H(y,p) = Ay
whr}‘re the matrix A does not depend on p and can represent the spectrometer+tesponse (explicit linear
multivariate model). Then x and w are identical, and the minimizing procedure of the ledst-squares
method can easily be carried out with results in

the

-1

y=U, AU ()x; =[ATU;1(X)A} (18)

z=Ay; U,=AU, A" (19)

o =(e-2) U () (x-2); 0, =07 (ap)a]” (20

If A|contains parameters p associated with uncertainties Up, Formulas (18) to (20) are exterjded

Uy(x)z[ATU;l(x)A}_l; y=Upx) AU (x)x; U,=U,(x)+QU,Q" (21)

y

z=Ay; U, A( (x)+QU,Q" ) (22)

y2 =(x-2)" U U, =[ATU;1 (Aj/)A} +QU,Q" (23)

x)(x-2);

constitutes,an unfolding sub-model, another measurand, ¥#, is of interest. According
ulated By)Formula (7) with a diagonal matrix D, i.e. yj =D y;, or yi=D;(y; -y,

If ¥
cald

to 5.3, it is
). Let the

eler
u(gq

hents;ef D now contain further input quantities (parameters) q,, associated with un
)-combined into a vector and a covariance matrix. If there are some quantities with un

certainties
certainties

mmended

(ve

fnvp covariance matrix ll \ within the elements of the Hnmnn matrix fcnn 5.5 Q\ itisrec

to simply merge p and Up into q and Ug, respectively. For calculatmg the uncertamty matrix associated
with U »* the partial derivatives ay] /¥m=1]jm and ay] /aqm —Q]m forming the elements of

transformatlon matrices J and Q' respectively, are needed. In the second case of Formula (7), the values
and uncertainties of the components of y are also included in q and Ug; the partial derivatives are then

0 (Djj(Q.Y)yj) and Q’jm= J (Djj(q,Y)(yj—yO,j)); Jim does not depend on

obtained as J;,, =—— e
My, 9,
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Yo. The following matrix Formula is finally obtained for calculating the full uncertainty matrix Uy+ of

the desired output quantity

v,.=Ju, JT+Qu, Q" (24)

- 1
with U, = Atut (x)A} according to Formula (18).

For an explicit model containing a least-squares sub-model (see 5.3), one therefore obtains by analogy
to Formulas (18) to (20) when the second part of Formula (7] is considered (otherwise, yg is set to zero)

oy e [AT03 (AT =0, ) 4702 (8)5-0]

25)
U,.(x)+U . (@)=JU,(x)]" +QU, Q"

-1 )(y+ +Dy0):(AD‘1 )y t+Ay,; U, :(AD‘1 )Uy+ (x)(AD‘l)T +20, 2" 26)

Lo A=)V ()x-2); 0 [ aT05 (407157 )a] T U 27)

with the transformation matrix dz; /dq,, =Z

jm
NOTE 3

(27), respeq
detection li

hen calculating values of l}y and l}y+ the terms QUp QT and Q'Uq Q’T in Formulas (23)|and

tively, need to be re-calculated for each new value 0f' y or y* within the iteration for deriving the
it value, but not in the case of calculating only partial derivatives. Alternatively: To be quite $afe,
ferms QU , QT and Q'Uq Q'T in Formulas (23} and (27) by QU , QT and Q'Uq Q’T, respectively.

replace the ‘

NOTE 4  The similarity of the two Formulas x = Ay-and x = AD-1y+ could suggest to reduce the solution of the

second one

do not depe
to Formula |
by an additi

NOTE 5

tool, which
or channel
not necessa
weighted le

’

o that of the first one by replacing the:second Formula by x = A'y". This only works if the elements
hd on elements of y, otherwise the Fermula becomes non-linear not allowing a solution correspon
[21). This is the reason why theycontribution by Ug, considering also parameters of D, was estim
pnal uncertainty propagation.step.

'he above-mentioned Formtlas for models being linear in y require matrix algebra as a nume
are also available in-common spreadsheets calculations. If the vector x represents channel coy
ounting rates, of a-multi-channel spectrum, the components of x are not correlated. In this case

hst squares, sughvas LFIT[23], would be easier to handle and are significantly faster.

of D
ling
hted

ical
nts,
itis

'y to work withthefull uncertainty matrix Uy, which can be large; using standard routines for lipear

h as
hted
5]).
iny

NOTE 6  Iff it would happen that the model is non-linear another standard technique could be used, suc
the Levenb¢rg-Marquardt method routine MRQMINI23]. If the matrix A contains parameters with associ
uncertainti¢s, thi§ would generally represent the case of total least-squares (e.g. References [24] and [}
However, pifactical experience has shown to assume that it is sufficient to use standard least-squares to obtz
and to perfornrthen futtuncertainty propagation for obtaimmng Uy,

5.7 Modification for Poisson distributed count numbers for unfolding

Counting rates are generally derived from measured counts which are Poisson distributed and thus
deviate in the low-level case from the normal distribution (compare Annex A of ISO 11929-2:2019).
Applying a linear least-squares procedure as presented above, which assumes normal distributed
measured input data, is known to yield biased fitting parameters. This bias however can be reduced
significantly by the following simple iteration scheme of the Formula (18) (e.g. References [27] and
[26]). The steps taken are:

— assume that the Formula (18) have been evaluated once with the input data x (being noisy) to yield
the vector y;

14 © IS0 2019 - All rights reserved


https://standardsiso.com/api/?name=b7df39d075d793dd7841e2c424a86dec

1SO 11929-3:2019(E)

a new vector x1 (not noisy) is calculated from Ay = x1;
replace (only) the diagonal values of the matrix Uy according to U, (i,i)=x,(i)/t;
perform now a re-evaluation by Formula (18), with the modified Ux1 but taking again t

input data vector x

U (x)=[ATU_1 (x )A}_l- =U,, (x) ATULY (x1)x
yil x;1 (X1 » Y1 yi x;1 (X1

he original

(28)

The last three steps may be repeated one or two times, not more. The basic idea of the modification

applied here refers to the "Pearson” type of the Chi-square expression used for minimizanll
he "Neyman" or "modified Neyman" type which is behind the "Gaussian" least-squares method; see

of t
Ref

And

brence [27].

tlon instead

ther technique is that of fitting by Poisson maximum-likelihood estinration (PMLE); see

Reference [27]. It is a non-linear fitting method and is well suited for low numbers of counfls. This can
be gchieved by using MRQMIN being adapted for PMLE; see Reference [28].
5.8 Evaluation of the primary results and their associated standard uncertainties
The calculation of partial derivatives of the output quantities with-respect to input paramefers can be
putfinto a simpler form by introducing a function, which calculatés the output vector by takirlg all actual
valyes of the input quantities into account, such x, p, or q; assurie now that these input quarjtities form
a vector v. The following scheme shows, as a symbolic function Result, the sequence of cplculations
necpssary for establishing the vector y*. Such a function would also be required for cal¢ulating an
uncertainty budget.
The following scheme shows as a symbolic function Result the sequence of calculations nefessary for
establishing the vector y* and using the value its component k.
fupction Result (k, v, Ux, .Up or Uq)

calculate matrices A, D as functions of v ;

invert (locally) the matrixUy;

calculate the matrix Matmul (Transpose (A) , Matmul ( U;l,A) ) and invert it then to

obtain Uy, (x);

obtain vectory7* Matmul (Uy (x), Matmul(Transpose(A) , Matmul ( U;l ,X)));

Result =y (k)

if y is the)sub-model: calculate the result vector as y*= Matmul (D, y) ;

Result = y*(k)

end fanction Result
With using such a function, any partial derivative can be obtained as simply as follows
© IS0 2019 - All rights reserved 15
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function value for unmodified input quantities:
Fvl = Result(k, v, Ux, Up or Uq);
a loop now follows if partial derivatives are to be calculated for several input quantities:
loop
modify a single one of input quantities, v(j), by adding a small amount 4; to v(j):
Fv2 = Result(k, {v(1l),.., v(j)+4; ..}, Ux, Up or Uq);
partial derivative with respect to parameter v(j) is the quotient:
(Fv2 1 Fvl) / 4
restore|the unmodified parameter vector v ;
end loop
This represents an asymmetric form of the differential quotient and reqtiites only one additignal
calculation] per derivative. It is recommended to use small values of 4, sich as 2.E-6 v(j)) in doyible

precision arithmetic.

Thus, one

associated

5.9 Stan

It is necess
needed for

here, it is Mot possible to derive such an unceftainty function for all components of ¥ simultaneou

instead, th
this functid
the assumg
true value

NOTE \
ykwould im|

background
applies onlyj

with y]+- are given by u(y}“)z /Uy'jj .
dard uncertainty as a function of an assumed true value of the measurand

ary to derive the uncertainty, u(y), of an assumed true value, y, as a function, which the
calculating the decision threshold and the detection limit. In the multivariate case conside

n refers to a single componegnt, the quantity of interest, e.g. y;, of Y. In the expression for u

y forj=1yielding y={y,max(0,y,),...max(0,y,)) .which is now used instead of y.

ply for the outpdtquantity of interest (e.g. y;), with k # j, the effect of having lowered the subtra

if yx represents an activity for which negative values are not meaningful.

By a sing

quantities

]replacing the column matrix x. Thus, the column matrix w follows as the combination

multivariate evaluation, this leads to Z:H(jl,p), i.e. simultaneously modified ix

obtains the vector y}r of primary measurement results. The standard uncertainties

nis
red
sly;

by can be derived only for those'individual components of ¥ which are of interest. Therefore,

y)

d true value y is then gbtained by replacing the component yjin the vector Y by an assuined

Vithout the modification of restricting the other components of ¥ to positive values, a negative fifted

Cted

and interferefice to yj; thereby, the uncertainty of y; would be underestimated. This modificdtion

put

fz

and p and, moreover, the uncertainties associated with the modified input quantity values, given by
w» follow as the combination of U, (2) and Up. The matrices w and U, are used in Formula (11)

instead of w and Uy, to calculate U y- Finally, the square root of the (1,1)-element of this uncertainty

matrix is the needed function u(y).

Similarly, i

n the case of an explicit model which is linear with respect to ¥, the single multivar

iate

evaluation leads according to Formula (22) to x=z= A(p)j/, with A being dependent on parameters p,

while the uncertainty matrix U, (z) associated with the modified input quantity values is calculated

according to 5.6. Then, the matrices z and U, (2) =

U, (Aj/) are used in Formula (23) instead of x

and

Uy to calculate l}y yielding the (k,k)-element of this uncertainty matrix as the needed function u(y, ).

16
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If the multivariate evaluation model has a sub-model (see 5.3), then the parameters p and q with
uncertainties Up and Ug, respectively, are merged into a common vector q (ordering: p, q) and a common

uncertainty matrix Uq. Formula (26) then leads to x =z while U, (z) is calculated according to 5.4, U,
refers to the sub-model and is calculated as just described. l}y is then inserted into Formula (27) and

the square root of the (k,k)-element of l}y+ represents a value of the uncertainty function ﬂ(j/,t )

The following scheme shows the sequence of calculations necessary for establishing the uncertainty

function ﬁ(j/,t) as a symbolic function Utilde.

fur|ction Utilde ( y*, k)
calculate matrices 4, D as a function of q ;

replace negative components # k of y* by 0;
calculate x=AD 71y *;

calculate U (see 5.4), e.g. by u? (xl-)=ﬁ+x—0+u2(x0) and u(x, ,xj)=u2 (x0)=x0/}o;

c zl’—C

invert matrix l});
calculate the matrix Matmul (Transpose (A), Matmaly( l};l,A) ) and invert it then to
obtain ﬁ}; (x);

obtainy = Matmul (l}};(i’), Matmul (Transppose (A), matmul (l};, i)))
calculate the matrix Q' of partial derivatives ay}“. /aqm = Q;-m ;

calculate the matrix J of partial derivatives ayj. /aym =J jm;

calculate 0)# as

Matmul (J,Matmul ( l}); (x),Transpose (J)))+
Matmul (Q', Matmul (Ug.\ Transpose(Q")));

take /ﬁ};+ ok S the value Utilde for the component k.

end function Utilde

5.10 Decision threshold, detection limit and assessments

5.10.1 Specifications

The pteébability, a, of a wrong decision in favour of the presence of the physical effect investigated, the
probability, 5, of a wrong decision in favour of the absence of the physical effect investigated and the
probability, 1 - y, for the coverage interval shall be specified. The choice depends on the application. A
frequently cited choice is a =  and the value 0,05 for @ and . Then, k1-¢ = k1-g = 1,65, For the coverage
interval the probability y = 0,05 is frequently chosen. If this is the case, then k1,2 = 1,96.

If it is to be assessed whether or not a measurement procedure for the measurand satisfies the
requirements to be fulfilled for scientific, legal or other reasons, a guideline value, yyj, as a value of the
measurand, for instance, an activity, shall also be specified.
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5.10.2 Decision threshold

Decision threshold and detection limit in multivariate measurements always refers to a single
componentj of the vector y* (or y). If uncertainties can be evaluated according to the ISO/IEC Guide 98-3,

the decision threshold for the component j, y;-r* ,is defined by (see ISO 11929-1:2019, 8.2)

I N TN ey

(29)

The value \[l} ot (f() is derived with using the uncertainty function explained in 5.9 and setting

x=(AD )y ", y* :(max(O,yf),...,j/;-r :0,...,max(0,y:,r ))
5.10.3 Deftection limit
By analogy to ISO 11929-1, the detection limit associated with the component j of the vector y+ (of y),
y;# ,is defined as the solution of the implicit Formula
+# +* = =

yi'=p; +kip /U}+ i (%) 30)
with x :(AD—l )y " and y* =(max(0,yf )j/j =y}f# ,_,_,max(O,y,“: )) .Again, the square root valye is
estimated py the uncertainty function explained in 5.9. Formula)80) is an implicit Formula requiring

solution by

5.10.4 As

The prima
measurem
provided b

If the resu
attributed
effectisre
the specifi

The decisi
requireme
comparing
procedure

5.11 Coveragéiinterval and the best estimate and its associated standard uncertainty

iteration because the value yj+.# is also used within the term under the square root.

sessments

'y measurement result, y, has to be compared with the decision threshold, y*. If the prin
bnt result, y, exceeds the decision threshold, y*, it is decided to conclude that the physical ef
y the measurand is present, i.e. that@a'contribution from the sample has been recognized

t, y, is below the decision threshold, y*, it is decided to conclude that the result canno
to the physical effect. Nevertheless, it cannot be concluded that it is absent. If the phys
h1ly absent, the probability of taking the wrong decision, that the effect is present, is equd
bd probability, a.

bn on whether or*hot a measurement procedure to be applied sufficiently satisfies
hts regarding the“detection of the physical effect quantified by the measurand is madg¢

is not suitable for the intended measurement purpose with respect to the requirements.

ary
fect

[ be
ical
11 to

the
h by

the detectign limit, y#, with the specified guideline value, y;. If y# > y;, the measurenpent

5.11.1 Ge

neral aspects

For more than one output quantity their uncertainties are correlated, and coverage ellipsoids may
be constructed. They are, however, not considered in this standard. The coverage of a single output
quantity is derived from its marginal distribution, which is obtained by integrating out the remaining
output quantities in their joint distribution. Then, the coverage intervals described in the following are
applicable.

The limits of the coverage interval are provided for a physical effect, recognized as present according
to 5.10.2, limit the coverage interval in such a way that it contains the true value of the measurand with
the specified probability 1 - y (see ISO 11929-1:2019, 9.1). The limits of the coverage interval take into
account the fact that the measurand is non-negative (see ISO 11929-2:2019, Annex B).
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There is no unique definition for the coverage interval if only the condition 1 - y is given. Further
conditions are required which lead among others to the definitions of the probabilistically symmetric
coverage interval and the shortest coverage interval. For the calculation of the limits of both types
of coverage intervals the ISO 11929 series provides formulas for the case that uncertainties can be
evaluated according to the ISO/IEC Guide 98-3.

NOTE For the purpose of radiation protection the regulator has to decide which type of coverage interval
shall be used. When comparing upper limits of the two coverage intervals one has to take into account that they
might have different probabilities.

A coverage interval in multivariate measurements always refers to a single component j of the

med

u( )
ofa

jsurand vector Y and is based on primary result y}r and its associated standardyy

}“ )= /Uy,jj (x) given the primary results of the other components of Y. Consequently, the
coverage interval has to be performed as stipulated in ISO 11929-1:2019, Clausé 9 which

ncertainty

calculation

s repeated

in the following.
5.11.2 The probabilistically symmetric coverage interval
With a primary measurement result, y, of the measurand and the standard uncertainty, u(y),|associated
with y, the lower limit of the probabilistically symmetric coverage-nterval, y<, and the upper limit of
the [probabilistically symmetric coverage interval, y*, are caletlated by
™ =y—k,-u(y) with p=w-(1-v/2) (31)
y>=y+kq-u(y) with g=1-w-y/2 (32)
whgre
1 y/u(y) V2
0=—" exp(-—-)dv==2-y/u(y) (33)
0o 5 : ]
For|the distribution function, ®@(t), of the standardized normal distribution and for its inverdion,
kp ¥ ®-1(p), see ISO 11929-1:2019, Table E.1. For methods for its calculation, see ISO 11929-1:2019, E.1
or, for instance, Reference\[23].
In pgeneral, the limits~of the probabilistically symmetric coverage interval are located neither

symmetrical to y, iorto the best estimate, y, but the probabilities of the measurand being sinaller than

y“|orlarger than y™ both equal y/2. The relations 0< y< < y* apply.

w =|1 maybe set if y > 4u(y). In this case, the following approximations symmetrical to y apply:
VEy—kiypp-u(y) and y” =y+ky_y s u(y) (34)
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5.11.3 The shortest coverage interval

As described in detail in Reference [13], the lower limit of the shortest coverage interval, y<, and the
upper limit of the shortest coverage interval, y>, are calculated from a primary measurement result, y,
of the measurand and the standard uncertainty, u(y), associated with y, either by

vy =ytk, u(y)p=(1+o-(1-7))/2 (35)
orif y< <0, by

Yy =0y =yTR, uy); q=1-0o7 36)
with w given by Formula (33). The relations 0< y= < y~ apply and the approximation of Formula (34)
is valid.
5.12 Dociimentation
The contert of the test report depends on the specific application as well as onCdemands of the customer

or regulatd

Independe
guarantee
a) arefer
b) the ph
c) the pr|
necess
d) the ve
withy
e) theve
f) theve
g) a state
intend
h) astate
NOTE 1
8.4), it
docum
that tH
mislea
NOTE 2
i)
20

r.

traceability. This applies in particular to:
ence to this document, i.e. ISO 11929:2019;
sical effect of interest, measurands and model of the evaluation;

pbabilities « and S of a false positive andga*false negative decision, respectively, an
ary, the guideline values, yy;

Ctors of primary measurement results, y, and the standard uncertainties, u(y), associz

tor of decision thresholds, y%
tor of detection limits, y#

ment, if necessary, as' to whether or not the measurement procedure is suitable for
ed measurement-purpose;

ment as to whether or not the different physical effects are recognized as being present;
If thedphysical effect is not recognized as being present given the probability «, i.e. if y < y*

s occaSionally demanded by the regulator to document <y# instead of the measured result, y. §
bntation can be meaningful since it allows, by comparison with the guideline value, to demonst

htly of this, information shall be retained in order to justify-thie data of the test report and to

the

(see
uch
rate

eCmeasurement procedure is suitable for the intended measurement purpose. It is, howq{

ver,

: 1 w1 w1 — 1 : . - -
HIg DTLAUST UIT ITIAUITIIAUITAT IIITAITITTZ 1S5S TTOUCUTTTUL.

Occasionally, it is requested by the customer or regulator to compare the primary measurement

result, y, with the detection limit, y~, in order to decide whether the physical effect is recognized or not.

Such stipulations are not in accordance with the ISO 11929 series. They have the consequence that it is
decided too frequently that there the physical effect is absent when in fact it is not absent.

the physical effect, if recognized as being present, the lower limit of the symmetric coverage

interval, y~, and the upper limit of the symmetric coverage interval, y”, with the probability,
1 -y, for the coverage interval, best estimate, j/ , of the measurand, and standard uncertainty, u(j/)

associated with y .
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NOTE 3  Alternatively, the lower limit of the shortest coverage interval, y<, and the upper limit of the shortest
coverage interval, y>, with the probability, 1 - y, for the coverage interval, the best estimate, y, of the measurand,

and the standard uncertainty, u(y) associated with y can be documented.
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A.1 Definitions

Annex A
(informative)

Correlations and covariances

Assume

relation is
their covar

The covari
[t may be ¢

u(xi,x

For two co

function
[ISO/IEC G

COV(X

A.2 Cald

Considern
to both. Ld
uncertaint

U(YI ’YI

This mean
and covari

Formula (A

a
standard \l:::ertainties u(x;) are available. If any pair X; and Xj is related (dependent), the strehgth of

easurement model with input quantities X;, for which best estimates x; and associd

bpecified as a covariance or a correlation. If the pair of quantities is unrelated (independe
iance is zero [ISO/IEC Guide 98-3, 4.4].

hnce of best estimates x; and x; of X; and Xj, respectively, is denoted as u(x;, ;) or as cov(x;
xpressed by the coefficient of correlation r = r(x;, x;) as [ISO/IEC Guige98-3:1995 5.2.2]
j)=r(xi,xj)u(xl-)u(xj) (
htinuous random variables X1 and X7 for which a joint (multivariate) probability distribuf
§x (&) exists, where X = (X1, X2)T and x=(Xxy,%; )T, their covariance is given
ide 98-3-1, 3.10]

Xz):j_mj_w[il ~E(Xy ) |[%2 ~E(X,) ] g 4¥)dx, d, (

ulation of covariances

oking for a way of deriving\their covariance it is helpful to consider first the general
y propagation for a pair of output quantities Y; and Y, which depend on input quantities

5 that a covariance of output quantities Y7 and Yy is expressed as a summation of varig
pance termsyof the input quantities X. However, the values u(X;, X;) are still unknown. N
.3) is used to derive this unknown variance for a pair X; and Xi. The term u(Xj, Xi) form|

K

ted
this
nt),

Xj).

\.1)

—n

on
by

\.2)

bw that a pair of variables is correlated by being dependent on other input quantities comnon

zed

\.3)

nce
ow,
ally

replaces the left\side of Formula (A.3). Assuming then that X; and X depend on a set of input quantities

denoted as

ZJeads to the Formula

u(X;, Xy)

3X, 3X;
9z, 0z,

22 u(z;.2;)

=1 j=1

(A4)

With a further assumption, that the components of Z are mutually independent, covariances u(Z;, Zj)

vanish for

U(XI,

Xy )=

i# j and this Formula reduces to

- 0X; Xy o

u”(Z;)

o9z, 2,

(A.5)

Formula (A.5) finally represents the common method of deriving covariances of pairs of dependent
quantities X; and Xj. Note that often some of the input quantities X also belong to Z.

22
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A.3 Example

As an example, consider the following Formula for an estimate of g being a ratio of two differences

_XiXr_y1

Xo—=XT )2

(A.6)

It is often observed that the uncertainty propagation is based on y; and y; as pre-aggregated input

qua

Thi
suc

ntity estimates, to which uncertainties u(y1) and u(y) are assigned.
1’2 (n\—nz (\I \—Ll’z (\I \
rel \17) reir\x., 1) refr\. 2)

5 may introduce a “hidden” covariance; to check for this possibility one has to look'for e

quantity. The uncertainty u(x) is therefore used twice, in u(y1) and u(y2), respectively. The

u(X|

As 1
one|

, Xk) solves this problem. It is evaluated according to Formula (A.5) and formally yields
n
V1 Wz 2
u(yq, =) ——=u"(z
(yl yZ) Zazi aZi (l)

i=1

here is only one variable-estimate common to y1 and y3, i.ezxT,the sum in Formula (A.
term and z1 = xT. This yields

(z1)= (XT):(_l)(_l)uz(xT)zuz(XT)

v, according to Formula (A.4) the correct version of Formula (A.7) is obtained by add

d(x1—x7)d(x—x7) 5

_ V1 V2 2 2
aXT aXT

aZl 821

U(J’1 rJ/Z)

teryn to it

1 dg<laq

uyi,y
qz ayl ayz ( 1 2)

“rzel(Q)=“r2e1(y1)+“r2e1(y2)+2

Evalluating the partial derivatives 9q/dy; =q/ y4 and dq/dy, =—q/ y,, finally yields

The
wit
Thi
and
inst
unc

“Z(XT)

Y12

2“(}’1'}’2)
Y1J)2

2

=Uyg

u?el (q)zufel (J’1)+“?e1 (v2)- (J’1)+“Ee1 (y2)-2

same result would be obtained by doing the uncertainty propagation according to Foi
h the values oftthe primary input quantities x1, X2 and xT, and without using a covariance

5 demongtrates that if the uncertainty propagation were based on the primary input v
xT, its-calculation would have been a bit longer but would lead to the correct uncertq
ead functions of pre-aggregated primary input quantity values, like y1 and y», and th
ertainties, u(y1) and u(yz), for uncertainty propagation, would have been easier but wo

the

(A7)

ktimates of

h input quantities, which could be common to both, y1 and y;. xT represents afi-estimate of such a

covariance

(A.8)

/) has only

(A9)

ing a third

(A.10)

mula (A.4)

hlues x1, x2
inty. Using
bir derived
uld include

foiat L h | S 43
uriccert LCllllL)’ MLAIJ CllUllCUuDl)’ LVVU LIIIIUS.

A.4 Rules for covariances

Formula (A.5) can be used for deriving rules for covariance calculations if quantities X and Y are
multiplied by constants a or b. Some basic rules are given by the following relations:

u(X,Y)=u(Y,X)

u(aX,bX)=abu(X,X)=abu®(X)

© IS0 2019 - All rights reserved
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u(aX,bY)=abu(X,Y) (A.13)

u(X,Y+Z)=u(X,Y)+u(X,2) (A.14)

u(X+Y,Z)=u(X,Z)+u(Y,Z) (A.15)
A.5 Uncertainty propagation and linear transformations

The concgpt behind estimating (unknown) uncertainties of output quantities Y from Kngwn
uncertaintjes of the input quantities X may be considered as a linear transformation of variables.
For this purpose the variables are collected in an n-vector X and an m-vector Y and the (m x m)=covarignce
matrix Uy |s required. A Taylor-series of the y; around the means of x; restricted to the'first derivafive
results in 4 linear transformation
Y=BX (Al16)
where B is an (m x n) -matrix with elements Bj, =0dY; /0X . Elementary linear transformafion
mathematics leads to the following matrix relation[33][34]
Uy =BU BT (Al17)
The T raisdd to the exponent indicates the transposed version of the matrix B. With
oY, /0X; dY;/dX, --- oYy /dX,
oY, /0X{ dY, /dX, --- dY, /X
B= 2 1 . 2 2 2 n (A 18)
oY, /oX, dY,, /dX, --- dY,, /X,
the matrix Formula (A.17) turns out<to be equivalent to Formula (A.3) when writing up the majtrix
multiplication summations
Y, E)Yk
u(Y;,Y}) Zzax o ul(X; X ;) (Al19)
Formulas of the form_of’Formula (A.17), which represent the uncertainty propagation in matrix fqrm,
are often ujsed in lineaf unfolding.
NOTE 1 Jee al§0ISO/IEC Guide 98-3-2:2008, Clause 3.
NOTE2  The/matrix with elements u(X; X;) may be termed uncertainty matrix (ISO/IEC Guide 98-3-1) or

elements of

24

the measurement covariance matrix (ISO/IEC Guide 98-3-2).
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Annex B
(informative)

Spectrum unfolding in nuclear spectrometric measurement

the unfolding of a measured multi-channel spectrum, one fits functions H{y,p)
ormula (10) to the estimates x of the m input quantities X, for instance to the' measy
n;/t of the spectral density calculated from the channel counts n;. The model may contai
hmeters, p, associated with uncertainties (e.g. location and line-shape parameters).

calculation of the estimates y of the output quantities, ¥, of the uncertainty matrix, Uy,
h y and of the fitted values z (best estimate), of the input quantities, X;from the given me
ated values of all input quantities, w, with their associated un€ertainty matrix, Uy,

e special case of a spectrum unfolding which is linear in~the parameters Y, the spect|
= [H(Y9;, p)]. The; are assumingly exact base

according
red values
n values of

associated
hsured and
Fequires in

ral density
points, for

such values of parameters p which would result in a non-linear behaviour, if included in y,[need to be
held fixed at values p. obtained by preceding calibrations. The spectral density is approxipnated by a
system of functions Lk(9;, pc)
n
X; =H(0;,pc)=D Ly (8.0 )Yy ; (=1, m) or X =AY (B.1)
k=1
With fixed parameter values, the censtant response matrix A consists of the elements Ajx | Lk(9;, pc)

which describe the shapes of the individual spectral lines and of the background contributig

Thd output quantities, Yi tode determined are for instance the net peak areas of spectra
step-function height or thel@amplitudes of polynomial background contributions. They form
mafrix y of the measurandyestimates.

Sonpe of the paraméters p may not be known exactly. Starting from estimates, they are
be Hetermined by the unfolding. Consequently, these unknown quantities are to be ad
output quantities, y. Then, A depends also on y and one obtains the case, which is usual
ganmima-specthometry, of a non-linear model according to Formula (10) with x = H(y,p) = A(/

The
sen|

functions Lg(.) are the response functions of the spectrometer which can, for inst

Nns.

lines, or a
he column

ikewise to
Hed to the
n complex

p)y.

ance, be a
iconductor

1conductor detector ora grld lomsatlon chamber in alpha spectrometry, but also a sem|

atically, they

can be nearly arbltrarlly chosen and therefore they can be set up as required for phenomenologlcal or
physical reasons. They can also be measured functions or calculated ones which reflect the underlying
physical processes. They can be known as analytical expressions as well as numerical. With these
response functions, it is not only possible to describe shapes of spectral lines. Also, the background
under spectral lines can be modelled by superposition of such functions in any arbitrary way.

B.2 Gamma-ray spectrometry — Evaluation of a single peak by linear
background subtraction

One elementary example of an evaluation of a gamma-spectrum is given here, in which events of a single
undisturbed line with a known location in the spectrum are to be detected and a linear background
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subtraction is sufficient to determine the net counts in the line. Such a linear background can often be
assumed in gamma-spectrometry.

It is suitable for the background determination to introduce three adjacent channel regions, A1, B and
A2, in the following way. The central region B comprises all the channels belonging to the line and
has the total content, ng, and the width, b. Assuming a Gaussian line shape with the full width, h, at
half-maximum, region B shall be placed as symmetrically as possible over the line. For an evaluation
by the common total peak area method, b is usually adjusted to the actual peak height and may require
values larger than b = 2,5h, for large peak areas. Both, the net peak area and the background area,
are determined from b. b is part of the peak evaluation model; the values of decision threshold and
detection ljmit also depend on it

NOTE1 1
peak area a
of conventi
to decision
method, sud

'he method of peak fitting, however, uses the whole region, i.e., (A1, B, A2), for determining‘the
hd the background area simultaneously. While the net peak area does not depend on b, iti5-a m4
n to define a value of b also in this case, from which a background area is determined,.which |
hreshold and detection limit values. b is chosen as roughly comparable to that of thejtotal peak

h as b =2,5h, by which a portion of f= 0,997 of the peak area is covered. It is recomimended to use

net
tter
bads
hrea
this

value also ih the case of an absent peak, for which a detection limit is to be reported.

by
ring
, SO

The full wjidth h at half-maximum shall be determined under the same meaSurement conditionj
means of a[Reference sample emitting the line to be investigated strongly enetigh, or from neighbou
lines with comparable shapes and widths. Region B shall comprise an intéger number of channels
that b is ropnded up accordingly.

Regions Al and A2, bordering region B below and above, shall be specified with the same widlths,
[ =1 = I, The total width, I1 + I = 2], shall be chosen as large as-possible, but at most so large that{the
ptal
the
age

backgrounfd shape over all regions can still be taken as approximately linear. n; and n; are the t
contents of all channels of regions A1l and A2, respectively."Expressing now the total counts of
linear background under the peak as the product of the\width, b, given in channels, and the aver
backgrounf per channel, (n1 + n2)/(21) yields

B.2)
net
peak area ¢btained during a counting duration tg and its associated uncertainty are given as
@ ng
Xnet Z',Li_t_ (B.3)
g g
n h ’ n b b
2 s SLVA s - S DL 8 o Mo Mob _ *ne Mofy D
4 ()= (2 22| 2 (n1+n2)_t2 et eae, e [1+21) T
g N8 '8 § g g g g § g
Comparing Forriimla (B.4) with the standardized form of a net count rate variance, see ISO 11929-1:2p19,
Formula (I).5)
2
u (Xnet)zalxnet +tdy (B.5)

yields the coefficients, ap and a1, from which decision threshold and detection limit values can be
evaluated directly (xo is now the trapezoidal background counting rate)

a :i, ay="0(14 0 )Xoy, b (B.6)
T T 21
g ty g

NOTE 2  The expression in the bracket of Formula (B.6) is considered as a “design factor” of this classical peak
evaluation method, i.e. of the Total Peak Area (TPA) method. This factor, which is independent of the peak area in
the TPA method, changes, however, if the peak fitting method would be used. It is assumed that (1 + b/(21)) then

changes to a function fj ()
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Following ISO 11929-1:2019, Annex D and assuming a value w of the calibration factor, the value of the
decision threshold can be calculated as follows

y* Zkl_afl(O):kl_aW aO

1+2
21

* X
Yy =ki_gwyag =k;_ow t_O
9

)

(B.7)

(B.8)

Under the assumption k1-o = k1-p = k the detection limit value is calculated according to Annex D as

* * 2
#=2y W=2y +k W/tg

y (B9)
2.2
0 1-k Uye] (W)
whegre the two parameters used from ISO 11929-1:2019, Annex D are
ki
6=1-k} guZy (w), w=1+—"L(way) (B.10)
2y
B.3 Gamma-ray spectrometry — Fitting a single peak
B.3l1 General aspects
In jgamma-ray spectrometry with high-purity Germanium detectors the detection [process is
enefgy-dispersive. Therefore, an energy spectrum incthe form of a multi-channel pulse heighft spectrum
is optained by a measurement. It consists of a background continuum (Compton continuym), slowly
varying with energy, and superimposed to it séveral rather narrow peaks due to gamma-rays leaving
their full energy by the photo effect in the Germanium crystal. The peaks in most cases are well isolated

from each other; however, some of them*may also overlap. It appears that their line sha

wel
at I
con
use

The
rad
bac
for

fun
suif]

Thd
par
Sm43

described by a Gaussian where the-width parameter h, usually characterized as the
alf-maximum (FWHM), increases\with the gamma-ray energy. The centre of a peak j
verted to energy), estimated as channel number, corresponds to the gamma-ray energy,
d for identifying the radionuclide.

net area of the Gaussian peak, converted to a net counting rate, is a measure of the acti
onuclide. The net péak'area may be obtained by subtracting, for example, an integral
kground function from the integral of counts within the peak region; this is the “trapezoid
pstimating the-baekground. It may, however, also be estimated by fitting the sum of a Iy

ably selected part of the spectrum which safely encompasses the peak.

pe is quite

full width
¢j (or Ej if
and can be

vity of this
of a linear
al” method
ackground

Ction, if neceSsafy also an asymmetric so-called step-function, and a (Gaussian) peak function to a

latter case is considered below. Linear fitting is applied with fixing the non-linear

II'peaks.

ak shape

hmeters for peak position and width to calibrated values. This is considered as apprppriate for

“F

NOTE

For larger peaks, however, generally non-linear fitting is used. If this is also applied to small peaks,

care has to be taken of preventing the non-linear parameter values from leaving their meaningful ranges during
fitting. This may be achieved by, for example, the method of penalized fitting[29], which corresponds to applying
normal distributions of the fitting parameters as their Bayesian priors[30l. The parameters of these prior
distributions are to be taken from preceding calibrations of the non-linear shape parameters.

B.3.2 Model consideration

Let nfr be the number of channels taken as fitting region; it may for example be defined by taking the
asymmetric interval (c1 — 4h, c1 + 3h), in channels, corresponding to nr = 7h; it is chosen as asymmetric
because of the step function. In practice, the choice of this region may often depend on how close to
c1 other peaks occur. Assuming a polynomial background and a step-function beneath the peak, the
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following functional representation can be used to describe the superposition of contributions from
spectral lines and background in a part of the spectrum under investigation:

Ly (i)=

Lz(i):

L;(i)=

exp[—(i—cl)z /(202)}/\/21“:2
1

1+exp[(i—c1 )/(aa)]

i—ci) 2 (j=3,4,5
( 1) J)

(D 110 2 L /2D D0, 3

(B

11)

where o in

I 1 daf | £l ) PP 1 11 | 3 3 3 L
TUTTTOTa O 00 1S5 ACTImC U asS O — 117z, 333, T CICSCTT OTTITOTA S, a1l v aTa TS ar CgTV CIT TIT CITATTT

Choosing
FWHM (h)

he linear energy calibration coefficient as less than 0,5 keV channel-1 assures thab
is larger than a minimum of 4 channels. The number of output quantities subject td fittir

equal to th
at this sta

e
The first jnction in Formula (B.11) describes the shape of a spectral line by a Gaussian function.
of Formula (B.11) represents the “step function” under a spectral line which shall be explained

second line
by the twa
dominate

the step fu
are used to

Although 1

e number of different indices j of Lj; however, only the first output quantity is that of‘inter
the net peak area.

effects of i) incomplete charge collection and ii) Compton-scattering in the source, w}
higher (i) or lower energies (ii), respectively. a is a parameter characterizing the steepne;
ction and shall be known beforehand. The residual functions in the third line of Formula (B
model phenomenologically the background by a polynomial ¢f up to second order.

he step-function area originates from the peak and is’ connected to its amplitude,

common p|
estimatinﬁ[rthe decision threshold associated with the peak area, the assumed peak and thereby

the step-f

The assun
independe
for peak s
step-functi
account, hc

Ly (i)

L;(i)=

The new p

peak, the 1

actise to assign its area to the background. When considering, for example, the cas

nction vanish.

ption implicitly made by Lz(i) in Formula=(B.11) that the height of the step-functio
1t of the peak height, is not generally usable. It may be applied only to larger peaks u
hape calibration. For small peaks the.fitted height of L, might be dubious. Normally,
on height is coupled in an energy-dépendent form to the peak height. If this is taken
wever, the Formula (B.11) is replaced by the following Formula:

d
1+exp[(i—cl)/(ao)]

1 _ {exp[—(i—cl)z /(202)}

2o (B

(i-c)/ s (1=233)
hrameter introdueed, d, is the relative step-function height, relative to the amplitude of

atter being-y /\/2750‘2 ; d then is a further shape parameter. A definite reason for u

Formula (B.12) arises if the expected step function amplitude is less than about %/Z (x; in cou

because fit
which are

ting according to Formula (B.11) otherwise may yield also negative step-function heig
hat-meaningful.
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12)
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Except for the channel number i, all quantities in Formula (B.11) are parameters p. of the spectral line or
of the background step function the values of which have been determined by calibration; the channel
position of the peak centre, c1, can be estimated by other algorithms if the peak is not overlapped
by another one. The elements of the response matrix are A;j = L;j(i), with i being the channel number
covering the fitting region.

In actual cases, more complicated line shapes may be used, introducing, for instance, low-energy
exponential tailings, which increases the number of parameters of the peak shape.

In the Formula system of Formulas (B.11) and (B.12), the value y1, i.e. the net peak area counting rate,
associated with Lq (equivalently the counting rate), usually is not yet the one being of interest, but for
instance the decay-corrected activity concentration. Therefore, these two Formulas describe the
sub-model which is solved for y; by unfolding y1 has to be multiplied with an extended calibration

28 © IS0 2019 - All rights reserved


https://standardsiso.com/api/?name=b7df39d075d793dd7841e2c424a86dec

1SO 11929-3:2019(E)

factor, called wi here, which depends on the details of gamma-spectrometric measurement,
+)'1tA
e f1
87/1 pylvfd (2'1 'O'tc

40K, that a counting rate contribution, y1 o, due to a background peak has to be subtracted, the counting
rate of which has been determined from a separately measured background spectrum. A typical

yi=wy (yl —y1’0)= )(yl -Y10 ) It is assumed also, as in the case of measuring

evaluation of such a measurement then is given as

e+lltAf1 ( )
Y1—Jy
€41 Py1Vfa (A1,0t,) Lo

J/IF=W1(J/1—)’1,0):

(B.13)

The other input quantities are: £y1 and py1, detection efficiency and gamma emissien ]I)robability,

respectively, for the energy of the gamma line; f4(11,0,t;), correction for the décay
megsurement with counting duration t. and radionuclide decay constant As; f1,.d cor
selffattenuation; ty4, the time elapsed between sampling and the start of the measturement
volyme (in L); tc and ¢, counting durations for sample and background measurement.

Thd
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B.3
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background peak subtraction indicated in Formula (B.13) means in practise that the cori
ponents of y and Uy have to be modified

V1bc=V1— V10 Uy.bc (1'1):Uy (1'1):u2 (J’l,O)

n Formula (B.13) shortly reads: yf =W V1 pc (the indexdbc means background peak coy

.3 Uncertainties of input quantities

primary input quantities belonging to the\sub-model, w; are channel counting r3
cted fitting region around the peak center.¢q: The uncertainty matrix Uy is diagonal wit]
I) = x;/tc. The values and uncertainties of the fixed parameters, pc and Uy, i.e. the peak
o as shape-parameter (np = 2), are given from preceding calibrations or obtained by ot
5 includes also the net peak counting rate from a separate background measurement.

.4 Evaluation of the primary result and its associated standard uncertainty

equation system (B.1) represents an explicit and linear model with A(p¢) beingan x m
nents of which are - for eath row i - are the function values of L(i),j = 1,..., 5. Its firs

Formula systen’(B.12) with Formula (B.13) has now become a sub-model and leads,

prding to Forinula (18)

y sUy, (x)ATU;1 (x)x; U, (x)=[ATU;1 [x)AJ_1

Juring the
rection for
; V, sample

‘esponding

(B.14)

rected).

tes of the
h elements
position ¢q
her means.

matrix the

t colunin contains
values of the Gaussian peak function (normalized to 1) plus the step-function, see Formglla (B.13).

depending

he existencenof’a corresponding background peak to a two-step or three-step solution, the first

(B.15)

If a corresponding background peak exists, the next step is to calculate Formula (25). As a pre-requisite,
it is recommended to construct a vector q, associated with uncertainties Ug, which includes the peaks
shape parameters p. and those parameters contained in the factor wi (see Formula (B.13)); the
background counting rate y1,0 being subtracted in Formula (B.14) is also included in q and Ugq. Then,
with taking the second part of Formula (7) into account and using D1,1 = w; one obtains

v, (x)=[aTu 04|yt =blU, (x)aTU B.16
y(x)_ x (x) yo o= y(x) x (X)x-yq (B.16)

U +=U (x)+U . (@)=JU,(x)]" +QU.Q" (B.17)
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NOTE If the peak-shape parameters as given in Li of Formula (B.12) are included in q and Ug their
uncertainties if given are taken into account by the uncertainty propagation according to Formula (B.17).

B.3.5 Standard uncertainty as a function of an assumed true value of the measurand

In the decision threshold case of the activity concentration (k=1; see 5.9) a modified vector y~is
prepared by replacing the first component of g and 7", associated with the output quantity of interest,

by yT =0. This value can be converted to y; =w ™1y +y1 0 Following 5.9, the vector z of modified

input quantities x, i.e. of modified net counting rates of the spectrum channels, is obtained as z=x = Ay.

The compdnents of U; are calculated as follows
w? (%)=L u(®,%;)=0, i%] (8l18)
tC
Now a conpplete set of modified measured input values, x and Ij);, is found which-tlien by applying
Formulas (|B.13) to (B.17) leads to modified values y+ and 0}* , from which finally the square roqgt of
the (1,1)-element of l}V is taken as the desired value of the uncertaintyx function for the actiyity
concentratjon.
NOTE This means the actual spectrum region is modified and re-fittéd'inl each evaluation of this uncertafinty
function. Uging this re-fitting avoids finding an appropriate expressien for the peak-fitting “design fadtor”

function fjp

For the cal

() ; see also the note below Formula (B.6).

Culation of the characteristic limits one has to proceed as stipulated in 5.10 to 5.11.

B.4 Gamma-ray spectrometry — Fitting double peaks

This case i
channel ¢1
the width

b quite similar to that of B.3 apart fromm assuming that the gamma-peak of interest, locate|
is now partly overlapped by a setond one located at c3. Referring to the model considerat
bf the full fitting region is now extended to (c1 - 4h,c2 = 3h) corresponding to a numbg

d at
ion,
r of

channels nf = 7h + (c1 - ¢2). The model-Formulas now include a second function L;(i) for the peak fand
the step-fulnction of the second peak
. 1 . d
Ly (i)4— exp[—(z—cl)z/(ZGZ)}+ ,
o2 1+exp[(1—c1)/(a6)]
, 1 . 2 2 d
Ly (i) — exp[—(z—cz) /(20 )}+ (Bl19)

1+exp[(i—cz )/(aO')]

2T

L, (i) = 2e YV (=34 5)
The same shape parameter values of g, d and a are used for the two peaks. This means that the matrix
Ajj = Lj(i) is extended by one column (inserted before the second column). Then, solving this sub-model
for y and U), follows the Formula (B.16). With treating the second peak as the origin of interference, one
is again interested only in the value of the first output quantity, y1. Therefore, the steps now following
are the same as in 6.2, with taking Formula (B.14) into account, if necessary.

It follows that this case is quite similar to that of B.3, only the dimensions of vectors and matrices within
the sub-model are extended.
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