INTERNATIONAL STANDARD

ISO 18416

First edition 2007-07-15

Cosmetics — Microbiology — Detection of Candida albicans

Cosmétiques — Microbiologie — Détection de Candida albicans
reprinte full purise de la companya del companya de la companya de la companya del companya de la companya del la companya de la companya de

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents Page

Forew	ord	i۷
Introdu	uction	. v
1	Scope	. 1
2	Normative references	. 1
3	Torms and definitions	4
4	Principle	. 2
5	Diluents and culture media	. 2
5.1 5.2 5.3	Diluent for the yeast suspension (tryptone sodium chloride solution)	. 3
6	Apparatus and glassware	. 5
7	Strains of microorganisms	. 5
8	nanding of cosmetic products and laboratory samples	
9 9.1 9.2 9.3 9.4	Procedure General recommendation Preparation of the initial suspension in the enrichment broth Incubation of the inoculated enrichment broth Detection and identification of Candida albicans	. 6 . 7
10	Expression of the results (detection of Candida albicans)	. 8
11 11.1 11.2 11.3	Neutralization of the antimicrobial properties of the product	. 8 . 8
12	Test report	. 9
Annex	A (informative) Other media	11
Annex	B (informative) Neutralizers of antimicrobial activity of preservatives and rinsing liquids	15
Bibliog	graphygraphy	16

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 18416 was prepared by Technical Committee ISO/TC 217, Cosmetics Citch to view the full such patential committee Citch to view the full such patential committee ISO/TC 217, Cosmetics of the full such patential comm

Introduction

Microbiological examinations of cosmetic products are carried out according to an appropriate microbiological risk analysis in order to ensure their quality and safety for consumers.

Microbiological risk analysis depends on several parameters such as:

- potential alteration of cosmetic products;

site of application of the cosmetic product (hair, skin, eyes, mucous membranes)

type of user (adults, children, including under 3 vears) For cosmetics and other topical products, the detection of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans may be relevant because they can cause skin or eye infections. The detection of other JANDARDSISO. CHICK TO VIEW THE FULL STANDARDSISO. kinds of microorganism might be of interest since those microorganisms (including indicators of faecal contamination, e.g. Escherichia coli) suggest hygienic failure during the manufacturing process.

© ISO 2007 - All rights reserved

STANDARDS ISO COM. Click to view the full policy of Iso 1884 6:2001

Cosmetics — Microbiology — Detection of Candida albicans

1 Scope

This International Standard gives general guidelines for the detection and identification of the specified microorganism *Candida albicans* in cosmetic products. Microorganisms considered as specified in this International Standard might differ from country to country according to national practices or regulations.

In order to ensure product quality and safety for consumers, it is advisable to perform an appropriate microbiological risk analysis so as to determine the types of cosmetic product to which this International Standard is applicable. Products considered to present a low microbiological risk include those with low water activity, hydro-alcoholic products, those with extreme pH values, etc.

The method described in this International Standard is based on the detection of *Candida albicans* in a non-selective liquid medium (enrichment broth), followed by isolation of a selective agar medium. Other methods may be appropriate dependent on the level of detection required.

NOTE For the detection of *Candida albicans*, subcultures can be performed on non-selective culture media followed by suitable identification steps (e.g. using identification kits).

Because of the large variety of cosmetic products within this field of application, this method might not be suited in every detail to some products (e.g. certain water-immiscible products). Other International Standards (e.g. ISO 18415) might be appropriate. Other methods (e.g. automated) can be substituted for the test presented here provided that their equivalence has been demonstrated or the method has been otherwise validated.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 21148:2005, Cosmetics — Microbiology — General instructions for microbiological examination

EN 12353. Chemical disinfectants and antiseptics — Preservation of test organisms used for the determination of bactericidal, mycobactericidal, sporicidal and fungicidal activity

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

product

portion of an identified cosmetic product received in the laboratory for testing

3.2

sample

portion of the product (at least 1 g or 1 ml) that is used in the test to prepare the initial suspension

3.3

initial suspension

suspension (or solution) of the sample in a defined volume of an appropriate enrichment broth

3.4

sample dilution

dilution of the initial suspension

3.5

specified microorganisms

aerobic mesophilic bacteria or yeast that is undesirable in a cosmetic product because it can cause skin or eye infections or is an indication of hygienic failure

3.6

Candida albicans

yeast that form white to beige, creamy and convex colonies on the surface of a selective medium

NOTE The main characteristic for identification is the production of germ tube and/or pseudomycelium and chlamydospore when the test is performed following the method specified in this International Standard.

3.7

enrichment broth

non-selective liquid medium containing suitable neutralizers and/or dispersing agents and validated for the product under test

4 Principle

The first step of the procedure is to perform an enrichment by using a non-selective broth medium to increase the number of microorganisms without the risk of inhibition by the selective ingredients that are present in selective/differential growth media.

The second step (isolation) of the test is performed on a selective medium followed by identification tests.

To prevent the possible inhibition of microbial growth by the sample it shall be neutralized to allow the detection of viable microorganisms ^[1]. In all cases and whatever the methodology, the neutralization of the antimicrobial properties of the product shall be checked and validated ^[2], ^[3], ^[4].

5 Diluents and culture media

5.1 General

General instructions are given in ISO 21148. When water is mentioned in this International Standard, use distilled water or purified water as specified in ISO 21148.

The enrichment broth is used to disperse the sample and to increase the initial microbial population. It may contain neutralizers if the specimen to be tested has antimicrobial properties. The efficacy of the neutralization shall be demonstrated (see Clause 11). Information relative to suitable neutralizers is given in Annex B.

The enrichment broth (5.3.3.1), or any of the ones listed in Annex A, is suitable for checking the presence of *Candida albicans* in accordance with this International Standard provided that it is validated in accordance with Clause 11.

Other diluents and culture media may be used if it has been demonstrated that they are suitable for use.

5.2 Diluent for the yeast suspension (tryptone sodium chloride solution)

5.2.1 General

The diluent is used for the preparation of yeast suspension used for the validation procedure (see Clause 11).

5.2.2 Composition

tryptone, pancreatic digest of casein
 1,0 g

sodium chloride8,5 g

— water
 1 000 ml

5.2.3 Preparation

Dissolve the components in water by mixing whilst heating. Dispense into suitable containers. Sterilize in the autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent $7,0 \pm 0,2$ when measured at room temperature.

5.3 Culture media

5.3.1 General

Culture media may be prepared using the descriptions provided below or from dehydrated culture media in accordance with the manufacturer's instructions. The instructions provided by the supplier of the media should be followed.

NOTE Ready-to-use media may be used when their composition and/or growth yields are comparable to those of the formulae given herein.

5.3.2 Agar medium for validation

5.3.2.1 Sabouraud dextrose agar (SDA)

5.3.2.1.1 Composition

— dextrose 40,0 g

peptic digest of animal tissue 5,0 g

pancreatic digest of casein
 5,0 g

agar15,0 g

— water 1 000 ml

5.3.2.1.2 Preparation

Dissolve the components or the dehydrated complete medium in the water by heating. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min. After sterilization the pH shall be equivalent to $5,6 \pm 0,2$ when measured at room temperature.

© ISO 2007 – All rights reserved

5.3.2.2 Other agar media for validation

Other agar media for validation may be used as appropriate (see Annex A).

5.3.3 Enrichment broth

5.3.3.1 **Eugon LT 100 broth**

5.3.3.1.1 General

Ood michaelin por of 150 real for 150 real f This medium contains ingredients which neutralize inhibitory substances present in the sample: lecithin and polysorbate 80, and dispersing agent octoxynol 9.

5.3.3.1.2 Composition

	pancreatic digest of casein	15,0 g
—	papaic digest of soybean meal	5,0 g
—	L-cystine	0,7 g
—	sodium chloride	4,0 g
—	sodium sulfite	0,2 g
—	glucose	5,5 g
	egg lecithin	1,0 g
	polysorbate 80	5,0 g
	octoxynol 9	1,0 g
—	water	1 000 ml

5.3.3.1.3 **Preparation**

Dissolve the components polysorbate 80, octoxynol 9 and egg lecithin one after another in boiling water to complete dissolution. Dissolve the other components by mixing whilst heating. Dispense the medium into suitable containers. Sterilize in the autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 7,0 \pm 0,2 when measured at room temperature.

5.3.3.2 Other enrichment broths

Other enrichment broths may be used as appropriate (see Annex A).

Selective agar medium for isolation of Candida albicans

5.3.4.1 Sabouraud dextrose chloramphenicol agar

5.3.4.1.1 Composition

—	dextrose	40,0 g
_	peptic digest of animal tissue	5,0 g
	pancreatic digest of casein	5,0 g

chloramphenicol 0,050 g 15,0 g agar 1 000 ml water

5.3.4.1.2 Preparation

Dissolve the components (including the chloramphenicol) or the dehydrated complete medium in the water by mixing while heating. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min. After sterilization the pH shall be equivalent to 5.6 ± 0.2 when measured at room temperature.

Other selective agar media 5.3.4.2

Other selective agar media may be used as appropriate (see Annex A).

5.3.5 Corn meal agar with 1 % polysorbate 80

5.3.5.1 Composition

infusion from corn meal 50,0 g agar 15,0 g 10,0 g polysorbate 80 water 1 000 ml

5.3.5.2 **Preparation**

view the full PDF of 150 18416:2001 Dissolve the components or the dehydrated complete medium in the water by mixing while heating. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min. After sterilization the pH shall be equivalent to 6.0 ± 0.2 when measured at room temperature.

Apparatus and glassware

The laboratory equipment, apparatus and glassware shall be as described in ISO 21148.

Strains of microorganisms

For the validation of the test conditions, the following representative strain is used:

Candida albicans ATCC¹⁾ 10231 or equivalent strain: IP²⁾ 48.72 or NCPF³⁾ 3179 or NBRC⁴⁾ 1594 or KCTC⁵⁾ 17205, or other equivalent national collection strain.

The culture should be reconstituted according to the procedures provided by the supplier of the reference strain.

5 © ISO 2007 - All rights reserved

¹⁾ American Type Culture Collection.

²⁾ Institute Pasteur.

National Collection of Pathogenic Fungi.

⁴⁾ National Biological Resource Center.

⁵⁾ Korean Collection for Type Culture.

The strain can be kept in the laboratory in accordance with EN 12353.

8 Handling of cosmetic products and laboratory samples

If necessary, store products to be tested at room temperature.

Do not incubate, refrigerate or freeze products (3.1) and samples (3.2) before or after analysis.

Sampling of cosmetic products to be analysed should be carried out as described in ISO 21148. Analyse samples as described in ISO 21148 and according to the procedure given in Clause 9.

9 Procedure

9.1 General recommendation

Use sterile material, equipment and aseptic techniques to prepare the sample, initial suspension and dilutions. In the case of preparation of the initial suspension in an appropriate solubilizing agent, the time that elapses between the end of the preparation and the moment the inoculum comes into contact with the enrichment broth shall not exceed 45 min, unless specifically mentioned in the established protocols or documents.

9.2 Preparation of the initial suspension in the enrichment broth

9.2.1 General

The enrichment is prepared from a sample of at least 1 g or 1 ml of the well-mixed product under test, which is dispersed in at least 9 ml of enrichment broth.

Note S, the exact mass or volume of the sample.

The method shall be checked to ensure that the composition (neutralizer eventually added) and the volume of the broth perform satisfactorily (see 11.3).

NOTE In some cases, and when possible, filtration of the cosmetic product through a membrane which is afterwards immersed in the enrichment broth facilitates the neutralization of the antimicrobial properties of the product (see 11.3).

9.2.2 Water-miscible products

Transfer the sample, S, of product to a suitable container containing an appropriate volume of broth.

9.2.3 Water-immiscible products

Transfer the sample, of product to a suitable container containing a suitable quantity of solubilizing agent (e.g. polysorbate 80)

Disperse the sample within the solubilizing agent and add an appropriate volume of broth.

9.2.4 Filterable products

Use a membrane filter having a nominal pore size no greater than 0,45 µm.

Transfer the sample, *S*, on to the membrane in a filtration apparatus (see ISO 21148). Filter immediately and wash the membrane using defined volumes of water and/or diluent.

Transfer and immerse the membrane into a tube or flask of suitable size containing an appropriate volume of broth.

9.3 Incubation of the inoculated enrichment broth

Incubate the initial suspension prepared in broth (see 9.2) at 32,5 $^{\circ}$ C \pm 2,5 $^{\circ}$ C for at least 20 h but not more than 72 h.

9.4 Detection and identification of Candida albicans

9.4.1 Isolation

Using a sterile loop, streak an aliquot of the incubated enrichment broth on to the surface of Sabouraud dextrose chloramphenicol agar in order to obtain isolated colonies.

Invert the Petri dish and then incubate at 32,5 °C \pm 2,5 °C for 24 h to 48 h.

Check for characteristic colonies (see Table 1).

Table 1 — Morphologic characteristics of Candida albicans on selective agar medium

Selective medium	Aspect of the colonies of Candida albicans
Sabouraud dextrose chloramphenicol agar	White to beige, creamy and convex

9.4.2 Identification

9.4.2.1 **General**

Candida albicans can appear to be dimorphic and is capable of producing pseudohyphae, some true hyphae, and clusters of round blastoconidia as well as large thick-walled chlamydospores. At low ambient temperature the culture might express this pseudo-mycelial form; however, it can change to the unicellular form at higher temperatures.

Proceed to the following tests for the suspect colonies isolated on the Sabouraud dextrose chloramphenicol agar medium. The presence of *Candida albicans* may be confirmed by other suitable cultural and biochemical tests.

9.4.2.2 Gram's stain

Follow the procedure specified in ISO 21148.

The microscopic observation shall reveal a violet colour, short ovoid or elongated cells, sometimes with budding cells.

9.4.2.3 Germ tube production

- **9.4.2.3.1** Place 0,5 ml to 1 ml of serum (feotal calf or horse serum) in a small test tube.
- **9.4.2.3.2** Emulsify a small portion of yeast colony to be tested in the serum.
- **9.4.2.3.3** Incubate in a water bath, at 37 °C \pm 1 °C, for 1,5 h to 2 h, or in an incubator at 37 °C \pm 2 °C for 3 h.
- **9.4.2.3.4** Place a drop of serum on a slide, put on a coverglass, and examine microscopically for germ tube production.

Germ tubes appear as cylindrical filaments originating from the blastospore, without any constriction at the point of origin and without obvious swelling along the length of the filament.

© ISO 2007 – All rights reserved

The formation of germ tubes characterizes the presence of Candida albicans.

If germ tubes were not formed, the colonies shall be examined for production of hyphae, pseudohyphae and chlamydospores in accordance with 9.4.2.4.

9.4.2.4 Culture on corn meal agar with 1 % polysorbate 80

- **9.4.2.4.1** Remove a small portion of the yeast colony with an inoculating wire and streak-inoculate the surface of the medium across the centre of the plate. Place a sterile coverglass over the inoculum streak.
- **9.4.2.4.2** Incubate at 32,5 °C \pm 2,5 °C for up to 3 d.
- **9.4.2.4.3** After 24 h, remove the dish lid and examine the growth through the coverglass under the microscope with magnification of $100 \times$ to $400 \times$.

Candida albicans produces large, highly refractile, thick-walled chlamydospore which may be seen terminally or on short lateral branches.

10 Expression of the results (detection of Candida albicans)

If the identification of the colonies confirms the presence of this species, express the result as:

— "Presence of Candida albicans in the sample S"

If no growth after enrichment is observed and/or if the identification of the colonies does not confirm the presence of this species, express the result as:

— "Absence of Candida albicans in the sample S"

11 Neutralization of the antimicrobial properties of the product

11.1 General

The different tests described below demonstrate that the microorganism can grow under the conditions of analysis.

11.2 Preparation of inoculum

Prior to the test, inoculate the surface of the non-selective agar medium soybean casein digest agar (SCDA) or Sabouraud dextrose agar (SDA) with *Candida albicans*.

Incubate the plate at 32,5 °C \pm 2,5 °C for 18 h to 24 h.

To harvest the culture use a sterile loop, streak the surface of the culture and resuspend into the diluent (see 5.2) to obtain a calibrated suspension of about 1×10^6 CFU per ml (e.g. using a spectrophotometer). See Annex C of ISO 21148:2005.

Use this calibrated suspension and its dilutions within 2 h.

11.3 Validation of the detection method

11.3.1 Procedure

- **11.3.1.1** In tubes of 9 ml of diluent prepare a dilution of the calibrated suspension in order to obtain a final count between 100 CFU per ml and 500 CFU per ml. To count the number of viable microorganisms in the final dilution of the calibrated suspension, transfer 1 ml of the suspension into a Petri dish and pour 15 ml to 20 ml of the melted agar medium kept in a water bath at no more than 48 °C. Let solidify and then incubate at 32.5 °C for 20 h to 24 h.
- **11.3.1.2** Prepare in duplicate the initial suspension in the conditions chosen for the test (at least 1 g or 1 ml of product under test, defined volume of enrichment broth) in a tube or flask. When using the membrane filtration method, filter in duplicate at least 1 ml of product under test and transfer each membrane to a tube or flask containing the enrichment broth in the conditions chosen for the test.
- 11.3.1.3 Introduce aseptically 0,1 ml of diluted calibrated suspension (see 11.3.1.1) of microorganisms into one tube or flask (validation test). Mix, then incubate both tubes or flasks (validation test and non-inoculated control) at 32.5 $^{\circ}$ C \pm 2.5 $^{\circ}$ C for 20 h to 24 h.
- 11.3.1.4 Perform an isolation for each tube or flask (validation test and non-inoculated control). Using a sterile loop, streak an aliquot (under the same conditions as in the test) of the incubated mixture onto the surface of the Petri dish (diameter 85 mm to 100 mm) containing approximately 15 ml to 20 ml of Sabouraud dextrose chloramphenicol agar medium. Incubate the plates at $32.5\,^{\circ}\text{C} \pm 2.5\,^{\circ}\text{C}$ for 24 h to 48 h.

11.3.2 Interpretation of validation results

Check that the diluted calibrated suspension of yeast contains between 100 CFU per ml and 500 CFU per ml.

The neutralization and the detection method are validated if a growth characteristic of *Candida albicans* occurs on the validation plate and no growth occurs on the control plate.

When growth is detected on the control plate (contaminated products), the neutralization and the detection method are validated if *Candida albicans* is recovered on the validation plate.

Failure of growth on the validation plates indicates that antimicrobial activity is still present and necessitates a modification of the conditions of the method either by an increase in the volume of enrichment broth, the quantity of product remaining the same, or by incorporation of a sufficient quantity of inactivating agent in the enrichment broth, or by an appropriate combination of these modifications so as to permit the growth of *Candida albicans*.

If, in spite of the incorporation of suitable inactivating agents and a substantial increase in the volume of broth, it is still not possible to recover viable cultures as described above, indicate that the product is not likely to be contaminated with *Candida albicans*.

12 Test report

The test report shall specify the following:

- all information necessary for the complete identification of the product;
- b) method used;
- c) results obtained;
- d) all operating details for the preparation of the initial suspension;
- e) description of the method with the neutralizers and media used;

- f) validation of the method, even if the test has been performed separately;
- g) any point not specified in this document, or regarded as optional, together with details of any incidents that may have influenced the results.

STANDARDS 50. COM. Click to view the full POF of 150 18A to STANDARDS 150. COM.

Annex A (informative)

Other media

A.1 Other enrichment broths

A.1.1 Fluid soybean-casein digest medium

A.1.1.1 Composition

A.1 Other enrichment broths			
A.1.1 Fluid soybean-casein digest medium			
A.1.1.1 Composition	17,0 g		
 pancreatic digest of casein 	17,0 g		
 papaic digest of soybean meal 	3,0 g		
sodium chloride	5,0 g		
 dibasic potassium phosphate 	2,5 g		
— dextrose	2,5 g		
— water	1 000 ml		
A.1.1.2 Preparation	17,0 g 3,0 g 5,0 g 2,5 g 2,5 g 1 000 ml		
Dissolve the components or the dehydrated complete medium in the water, heating if necessary. Di medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min.			

A.1.1.2 Preparation

Dissolve the components or the dehydrated complete medium in the water, heating if necessary. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 7,3 \pm 0,2 when measured at room temperature.

Dispense the medium into suitable containers.

A.1.2 Modified letheen broth

A.1.2.1 Composition

	peptic digest of meat	20,0 g
	pancreatic digest of casein	5,0 g
	beef extract	5,0 g
	yeast extract	2,0 g
	lecithin	0,7 g
	polysorbate 80	5,0 g
	sodium chloride	5,0 g
	sodium bisulfite	0,1 g
_	water	1 000 ml

11 © ISO 2007 - All rights reserved

A.1.2.2 Preparation

Dissolve successively in boiling water polysorbate 80 and lecithin to complete dissolution. Dissolve the other components by mixing whilst heating. Mix gently to avoid foam. Dispense the medium into suitable containers. Sterilize in the autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 7.2 ± 0.2 when measured at room temperature.

A.1.3 Glucose and peptone added lecithin-polysorbate 80 medium (GPLP 80 broth)

A.1.3.1 Composition

	glucose	20,0 g
	yeast extract	2,0 g
	magnesium sulfate	0,5 g
_	peptone	5,0 g
_	potassium dihydrogen phosphate	1,0 g
_	lecithin	1,0 g
_	polysorbate 80	7,0 g
	water	1 000 ml

A.1.3.2 Preparation

view the full PDF of 150 18416:2001 Dissolve the components or the dehydrated complete medium successively in boiling water to complete dissolution. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 5.7 ± 0.2 when measured at room temperature.

A.1.4 D/E neutralizing broth (Dey/Engley neutralizing broth)[5]

A.1.4.1 Composition

	glucose	10,0 g
_	soybean lecithin	7,0 g
	sodium thiosulfate pentahydrate	6,0 g
	polysorbate 80	5,0 g
	pancreatic digest of casein	5,0 g
	sodium bisulfite	2,5 g
	yeast extract	2,5 g
	sodium thioglycollate	1,0 g
	bromcresol purple	0,02 g
	water	1 000 ml

A.1.4.2 Preparation

Dissolve all of these components or dehydrated complete medium, one after another, in boiling water to complete dissolution. Dispense the medium into suitable containers. Sterilize in the autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 7.6 ± 0.2 when measured at room temperature.

A.1.5 Soybean-casein-digest-lecithin-polysorbate 80 medium (SCDLP 80 broth)

A.1.5.1 Composition

_	casein peptone	17,0 g	Por
	soybean peptone	17,0 g 3,0 g	
_	sodium chloride	5,0 g	
_	dipotassium hydrogen phosphate	2,5 g	
_	glucose	2,5 g	
_	lecithin	1,0 g	
_	polysorbate 80	7,0 g	
_	water	1 000 ml	
		$\mathcal{L}_{\mathcal{L}}}}}}}}}}$	

A.1.5.2 Preparation

Dissolve all of these components or dehydrated complete medium successively in boiling water to complete dissolution. Dispense the medium into suitable containers. Sterilize in the autoclave at 121 °C for 15 min. After sterilization, the pH shall be equivalent to 7.2 ± 0.2 when measured at room temperature.

A.2 Other agar media for validation

A.2.1 Potato dextrose agar medium (PDA)

A.2.1.1 Composition

potato extract 4,0 g
 dextrose 20,0 g
 agar 15,0 g
 water 1 000 ml

A.2.1.2 Preparation

Dissolve the components or the dehydrated complete medium in the water by mixing while heating. Dispense the medium into suitable containers. Sterilize in an autoclave at 121 °C for 15 min.

After sterilization and cooling of the solution, the pH shall be equivalent to 5.6 ± 0.2 when measured at room temperature.

© ISO 2007 – All rights reserved