

INTERNATIONAL
STANDARD

ISO
3630-4

Second edition
2023-08

**Dentistry — Endodontic
instruments —**

**Part 4:
Auxiliary instruments**

*Médecine bucco-dentaire — Instruments d'endodontie —
Partie 4: Instruments auxiliaires*

STANDARDSISO.COM : Click to view the full PDF of ISO 3630-4:2023

Reference number
ISO 3630-4:2023(E)

© ISO 2023

STANDARDSISO.COM : Click to view the full PDF of ISO 3630-4:2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Classification and symbols	2
4.1 Classification	2
4.2 Symbols	2
5 Requirements	3
5.1 Material	3
5.2 Dimensions	3
5.2.1 General	3
5.2.2 Barbed broaches — Type 1 instruments	3
5.2.3 Paste carriers — Type 2 instruments	4
5.2.4 Explorers and cotton broaches — Type 3 instruments	5
5.2.5 Cannulae — Type 4 instruments	6
5.3 Colour designation and size marking with rings	7
5.4 Mechanical requirements	7
5.4.1 Resistance to fracture by twisting (torque) and angular deflection — Types 1 and 3	7
5.4.2 Stiffness — Resistance to bending — Types 1 and 3	8
5.4.3 Handle or shank security — Types 1, 2 and 3 instruments	8
5.4.4 Resistance to fatigue — Type 2	8
5.4.5 Resistance to breakage or cracking — Type 4	9
5.5 Reprocessing	9
5.6 Heat effects of sterilization	9
5.6.1 General	9
5.6.2 Single-use instruments (supplied non-sterile)	9
5.6.3 Multi-use instruments	9
6 Sampling	9
7 Testing	10
7.1 General	10
7.2 Dimensions	10
7.2.1 General	10
7.2.2 Barbed broaches	10
7.2.3 Paste carriers — Type 2 instruments	11
8 Product information	11
8.1 Marking	11
8.2 Labelling	12
8.3 Packaging	12
8.4 Instructions for use	12
Annex A (normative) Test method for resistance of cannula to breakage or cracking	13
Annex B (normative) Test method for resistance of cannula to corrosion	18
Bibliography	19

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 106, *Dentistry*, Subcommittee SC 4, *Dental instruments*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 55, *Dentistry*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 3630-4:2009), which has been technically revised.

The main changes are as follows:

- rasps requirements have been removed;
- a cyclic fatigue test of paste carriers has been added;
- the term *cannula* has been added;
- the *cannula* symbol has changed;
- [Annexes A](#) and [B](#) have been added.

A list of all parts in the ISO 3630 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Dentistry — Endodontic instruments —

Part 4: Auxiliary instruments

1 Scope

This document specifies requirements and test methods for hand-held or mechanically operated auxiliary instruments for performing root canal procedures such as barbed broaches, paste carriers, explorers, cotton broaches and cannulae. This document specifies requirements for size, product designation, safety considerations, instructions and labelling.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1797, *Dentistry — Shanks for rotary and oscillating instruments*

ISO 1942, *Dentistry — Vocabulary*

ISO 3630-1:2019, *Dentistry — Endodontic instruments — Part 1: General requirements*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1942, ISO 3630-1 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

3.1

barbed broach

endodontic instrument with barbs designed for removing the pulp tissue

3.2

paste carrier

endodontic instrument designed for conveying filling material or medicaments into a root canal system

3.3

explorer

endodontic instrument designed for exploring the root canal system

3.4

cotton broach

endodontic instrument used with cotton for drying root canals or placing medicaments

3.5

instrument core

portion of endodontic instrument that is the centre of the working part

3.6

core diameter of the instrument

diameter of the solid portion of a *barbed broach* (3.1)

3.7

height of barb

height measured perpendicularly from the outside of the instrument core to the tip of the barb of a *barbed broach* (3.1)

3.8

thermoplastic delivery device

powered endodontic instrument designed for placing thermoplastic obturation material into a root canal system

3.9

cannula

tube, connected to a *thermoplastic delivery device* (3.8) to deliver the thermoplastic obturation material into a root canal system

4 Classification and symbols

4.1 Classification

For the purposes of this document, endodontic instruments are grouped according to the shape and intended endodontic application of the instrument as follows:

- type 1: barbed broaches;
- type 2: paste carriers;
- type 3: explorers and cotton broaches;
- type 4: cannulae.

4.2 Symbols

For the purposes of this document, the following symbols apply.

D	core diameter of the instrument (projected core for paste carriers) measured at the tip
d_m	core diameter of the instrument or working part measured from the tip at length l_m
d_n	core diameter of the instrument or working part measured from the tip at length l_n
d_{op}	core diameter of the instrument or operative part at length l_{op}
d_w	core diameter of the instrument or working part measured from the tip at length l_w
h	height of barb
l_b	tip length, measured from the tip of the broach to the base of the first barb
l_m	length for measuring point d_m
l_n	length for measuring point d_n
l_{op}	length of operative part
l_{tot}	total length of instrument

l_w length of working part, measured from the tip

d_{od} outer diameter of cannula

d_{id} inner diameter of cannula

5 Requirements

5.1 Material

The material for the endodontic instrument and for the handle or shank is left to the discretion of the manufacturer.

The handle or shank security shall meet the requirement specified in ISO 3630-1:2019, 5.9.3.

5.2 Dimensions

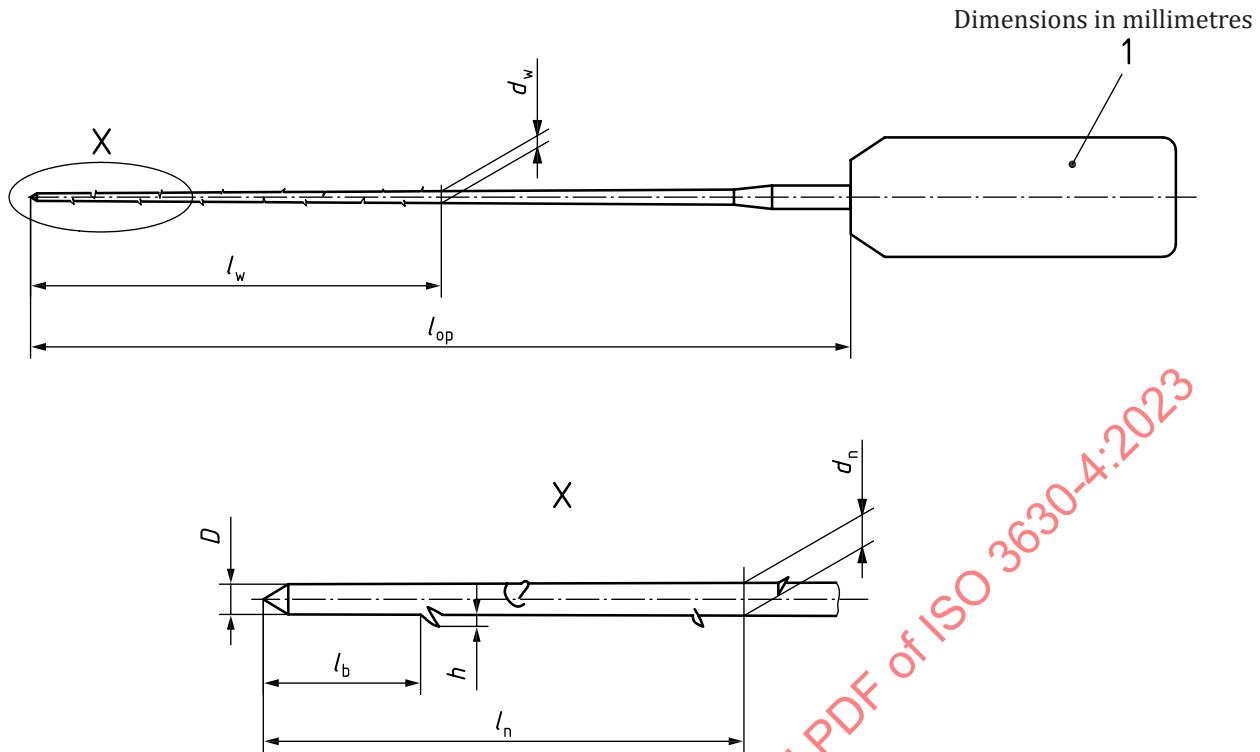
5.2.1 General

The nominal diameters, selected by the manufacturer, represent the sizes of the instrument and shall meet the requirements included in [Figures 1 to 4](#) and [Tables 1 to 4](#).

The length of the operative part of the endodontic instrument shall be the nominal length, as specified by the manufacturer, with a tolerance of $\pm 0,5$ mm.

The dimensions of the shank shall meet the requirements of ISO 1797.

5.2.2 Barbed broaches — Type 1 instruments


Type 1 instruments shall meet the dimensions and tolerances specified in [Figure 1](#) and [Table 1](#).

The shape of the tip and the design of the handle are at the discretion of the manufacturer.

The working length (l_w) shall be at least 8 mm.

The operative length (l_{op}) shall be at least 20 mm.

There shall be three barbs per millimetre with the first barb starting 1 mm from the tip (l_b).

Key

1 handle

Figure 1 — Barbed broaches — Type 1 instruments**Table 1 — Dimensions and designations for barbed broaches — Type 1 instruments**

Dimensions in millimetres

Nominal size	D	Tolerance	l_b min	d_b min	Tolerance	d_w	Tolerance	h ($\pm 0,02$)	Designation by colour	number of rings	
020	0,12	±0,02	1	0,15	±0,02	0,22	±0,02	0,075	purple	0	
025	0,14			0,17		0,24		0,085	white	I	
030	0,16			0,19		0,26		0,096	yellow	II	
035	0,18			0,21	±0,03	0,28	±0,03	0,105	red	III	
040	0,21			0,24		0,31		0,120	blue	III I	
050	0,25	±0,04		0,28	±0,04	0,35	±0,04	0,140	green	III II	
060	0,29			0,32		0,39		0,160	black	III III	

5.2.3 Paste carriers — Type 2 instruments

Type 2 instruments shall meet the dimensions and tolerances specified in [Figure 2](#) and [Table 2](#).

The minimum working length (l_w) shall be 16 mm.

The taper of the working part shall be from 0 % to 2 %.

The operative length (l_{op}) is left to the discretion of the manufacturer.

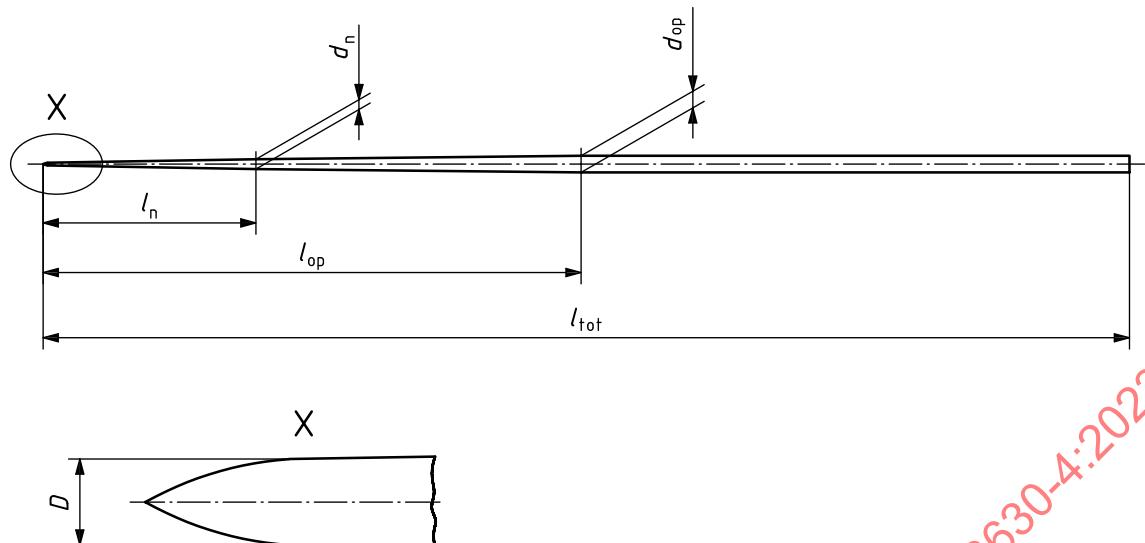
The winding of the spiral shall be such as to convey the material to the tip of the instrument when rotated clockwise as viewed from the handle or shank end.

The minimum number of spirals shall be 10 and the design of these spirals is left to the discretion of the manufacturer.

Shanks shall be designed in accordance with ISO 3630-1:2019, 5.8.3.2. Test in accordance with ISO 3630-1:2019, 7.6.

Figure 2 — Paste carriers — Type 2 instruments

Table 2 — Dimensions and designations for paste carriers — Type 2 instruments


Dimensions in millimetres

Nominal size	D	d_n	Tolerance	Colour	Rings
25	0,25	See 7.2.2	$\pm 0,05$	Red	I
30	0,30			Blue	II
35	0,35			Green	III
40	0,40			Black	IIII

5.2.4 Explorers and cotton broaches — Type 3 instruments

Type 3 instruments shall meet the dimensions and tolerances specified in [Figure 3](#) and [Table 3](#).

The cross-section along the operative part (e.g. round or polygonal) shall be at the discretion of the manufacturer.

Figure 3 — Explorers and cotton broaches — Type 3 instruments

Table 3 — Dimensions and designations for explorers and cotton broaches — Type 3 instruments

Nominal size	D $\pm 0,02$	d_n at 3 mm $\pm 0,02$	Dimensions in millimetres	
			colour	number of rings
12	0,12	0,20	White	I
15	0,14	0,23	Yellow	II
17	0,16	0,25	Red	III
20	0,18	0,28	Blue	III I
25	0,21	0,33	Green	III II
30	0,25	0,38	Black	III III

The minimum operative length (l_{op}) shall be 25 mm and the total length (l_{tot}) of the instrument shall be $(50 \pm 1,5)$ mm, the maximum operative part (d_{op}) shall be 0,8 mm, and the length for measuring point d_n (l_n) shall be 10,5 mm.

5.2.5 Cannulae — Type 4 instruments

Type 4 instruments shall meet the dimensions and tolerances specified in [Figure 4](#) and [Table 4](#). The shape of the cannula is at the discretion of the manufacturer.

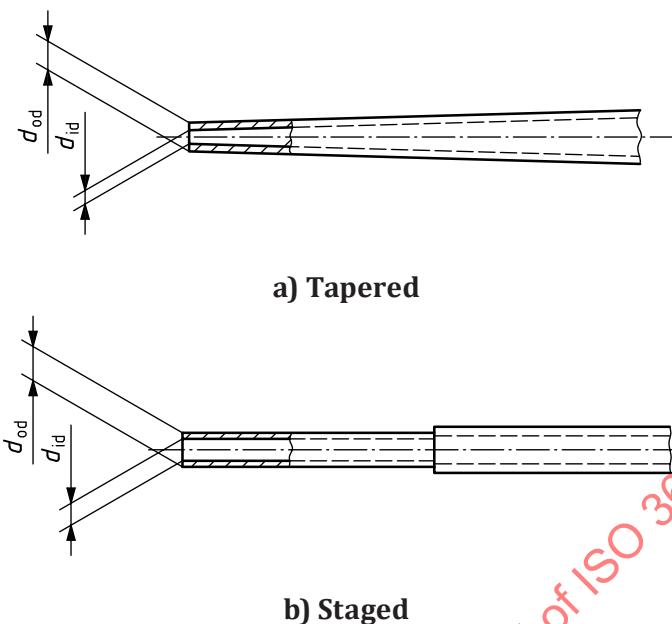


Figure 4 — Cannulae — Type 4 instruments

Table 4 — Dimensions and designations for cannulae — Type 4 instruments

No.	Size	d_{0d} $\pm 0,01$ mm
01	30Gauge	0,311
02	28Gauge	0,362
03	25Gauge	0,514
04	24Gauge	0,565
05	23Gauge	0,641

5.3 Colour designation and size marking with rings

If the manufacturer uses colours and/or rings to identify the size of the instrument, such marking(s) shall comply with the requirements of [Tables 1](#) to [3](#).

5.4 Mechanical requirements

5.4.1 Resistance to fracture by twisting (torque) and angular deflection — Types 1 and 3

When barbed broaches, explorers, and cotton broaches are tested in accordance with ISO 3630-1:2019, 7.4, the instrument shall not fracture below the value specified in [Table 5](#).

Types 1 and 3 instruments shall not fracture at less than 90° of angular deflection.

Table 5 — Resistance to fracture by twisting — Torque

Nominal size	Minimum resistance to fracture by twisting mN·m	
	for barbed broaches	for explorers and cotton broaches
20	0,5	1,2
25	0,6	2,1
30	0,8	3,5
35	1,0	NA
40	1,2	NA
45	NA	NA
50	2,0	NA
60	3,4	NA
Key		
NA: not applicable; these instrument sizes are not manufactured		

5.4.2 Stiffness — Resistance to bending — Types 1 and 3

When barbed broaches, explorers and cotton broaches are tested in accordance with ISO 3630-1:2019, 7.5, the instrument shall not fracture below the value specified in [Table 6](#).

Table 6 — Stiffness — Resistance to bending

Nominal size	Maximum bending moment mN·m	
	for barbed broaches	for explorers and cotton broaches
20	2,5	7,8
25	2,9	11,7
30	3,9	16,6
35	4,9	NA
40	7,8	NA
50	11,8	NA
60	16,7	NA
Key		
NA: not applicable; these instrument sizes are not manufactured		

5.4.3 Handle or shank security — Types 1, 2 and 3 instruments

The handle shall meet the requirements of ISO 3630-1:2019, 5.9.3.

5.4.4 Resistance to fatigue — Type 2

When paste carriers are tested in accordance with [7.2.3](#), the tested instruments shall meet the minimum number of revolutions given in [Table 7](#).

Table 7 — Resistance to fatigue for paste carriers

Nominal size	Diameter mm	Minimum number of revolutions
025	0,25	4 000
030	0,30	2 400
035	0,35	1 500
040	0,40	1 000

5.4.5 Resistance to breakage or cracking — Type 4

When the cannulae are tested in accordance with [Annex A](#), four out of five instrument samples shall not break or crack at less than the minimum value for the resistance to breakage or cracking by bending, as specified by the manufacturer.

5.5 Reprocessing

Explorers, cotton broaches and paste carriers shall meet the requirements of ISO 3630-1:2019, 5.10. When tested in accordance with [Annex B](#), four out of five cannulae shall not show evidence of corrosion.

5.6 Heat effects of sterilization

5.6.1 General

Barbed broaches, explorers, cotton broaches and paste carriers, if applicable, shall meet the requirements of ISO 3630-1:2019, 5.10. This requirement does not apply to sterile-packed single-use instruments.

5.6.2 Single-use instruments (supplied non-sterile)

For barbed broaches, explorers, cotton broaches and paste carriers following one cycle of sterilization, the instrument shall comply with the requirements specified in [5.4.1](#), [5.4.2](#), [5.4.3](#) and [5.4.4](#), when tested as specified in ISO 3630-1:2019, 7.7.

For cannulae, following one cycle of sterilization, the instrument shall comply with the requirements specified in [5.4.5](#), when tested as specified in [Annexes A and B](#).

5.6.3 Multi-use instruments

Following 10 cycles of sterilization as specified by manufacturer, barbed broaches, explorers, cotton broaches and paste carriers shall comply with the requirements specified in [5.4.1](#), [5.4.2](#), [5.4.3](#) and [5.4.4](#), when tested as specified in ISO 3630-1:2019, 7.7.

For cannulae, following five cycles of sterilization as specified by the manufacturer, the instrument shall comply with the requirements specified in [5.4.5](#), when tested as specified in [Annexes A and B](#).

6 Sampling

Test 10 instruments of types 1 to 3 and of each size of the same lot. If all 10 samples pass, the product passes. If eight or fewer samples pass, the product fails. If nine samples pass, test 10 additional samples. When 10 additional samples are required to be tested, all 10 shall pass for the product to comply.

For cannulae (type 4), follow instructions in [Annexes A and B](#).

7 Testing

7.1 General

For barbed broaches, explorers, cotton broaches, and paste carriers, use the test methods specified in ISO 3630-1:2019, Clause 7. For cannulae, use the test methods specified in [Annexes A](#) and [B](#).

7.2 Dimensions

7.2.1 General

For instruments with handles, remove the handle and insert the neck into a suitable holder. For instruments with shanks, insert the shank into a suitable holder.

7.2.2 Barbed broaches

7.2.2.1 Location of barbs

Rotate the instrument to locate the position in full view of the barb closest to the tip. Measure the distance from the tip of the instrument to the base of the first barb as l_b .

Rotate the instrument to locate the position in the full view of the barb most distant from the tip. Measure the distance from the tip of the instrument to the tip of the last barb as l_w .

7.2.2.2 Height of barbs

Rotate the instrument to locate the barb nearest the tip. Measure the vertical distance from the barb base to the barb tip.

NOTE This procedure is intended as guidance for the calculation of nominal size.

7.2.2.3 Number of barbs

Count the number of barbs from the tip of the instrument to the end of the working part.

7.2.2.4 Tip

Rotate the instrument, as described in [7.2.2.1](#), to locate the first barb. Visually determine the point at which the barb base and instrument core surface meet and measure from this point to the tip for length as l_b .

7.2.2.5 Taper calculation

Calculate the taper by subtracting the diameter d_3 from the diameter d_{10} and dividing by 7.

EXAMPLE For a standard instrument size 10 (see [Table 1](#)), $d_3 = 0,15$ mm, $d_{10} = 0,22$ mm, the taper is calculated as: $(0,22 - 0,15) / 7 = 0,01$.

NOTE Taper tolerance is controlled solely by the tolerance of the specified diameters.

7.2.3 Paste carriers — Type 2 instruments

7.2.3.1 Diameters

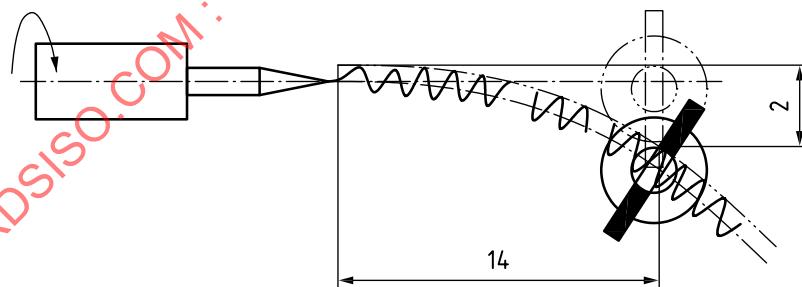
The diameter, D , is calculated according to the following formula, where d_n and d_m are two diameters measured at l_n and l_m , respectively, away from the tip, as illustrated in [Figure 2](#).

$$D = d_n - l_n * \frac{d_m - d_n}{l_m - l_n}$$

Position l_n at a distance of 3 mm from the tip, trace a tangent passing through point 1 and 2, trace a perpendicular at this tangent passing by point 3, located at the maximum distance of the spiral. Measure the diameter d_n , which is the distance between point 3 and the tangent 1-2.

Repeat the same procedure for the second diameter d_m at l_m , the distance shall be selected at 10 mm from the tip.

Measure the instrument diameters D , d_n , d_w and d_{op} using the procedure described in ISO 3630-1:2019, Clause 7.

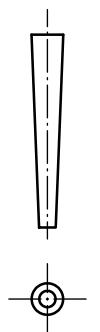

7.2.3.2 Number of spirals

Count the number of spirals from the tip of the instrument to the end of working part, by counting each single “peak” on one side.

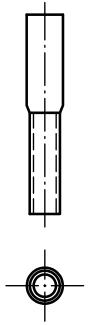
7.2.3.3 Resistance to cyclic fatigue

Grip the shaft of the instrument in the chuck of a variable-speed motor and place the head in the ball-bearing ring. Locate the centre of the ball bearing as specified in [Figure 5](#). Deflect the ball-bearing 2 mm away from the axial alignment with the motor (see [Figure 5](#)). Rotate the motor at $(4\ 000 \pm 400)$ revolutions per minute. Count the total number of revolutions until failure (see [Table 7](#)).

Test 10 instruments.


Figure 5 — Apparatus for testing resistance to fatigue — Type 2 instruments

8 Product information


8.1 Marking

The nominal size of the barbed broaches, explorers, cotton broaches and paste carriers shall be marked on the handle, shank or on the packaging (unless there are extreme space constraints). Marking symbols shall comply with ISO 3630-1:2019.

For cannulae, the identification symbol on the packaging or in manufacturer's literature shall be in accordance with [Figure 6](#).

a) Taper

b) Staged

Figure 6 — Identification symbols for cannulae

8.2 Labelling

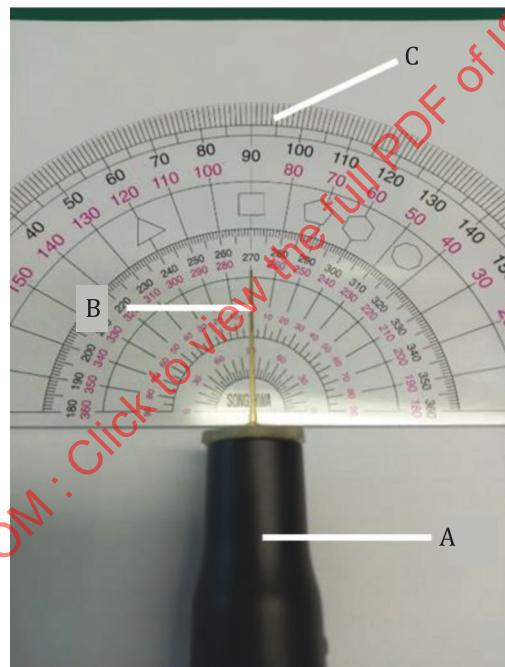
Instruments shall comply with the labelling requirements as specified in ISO 3630-1.

8.3 Packaging

Instruments shall comply with the packaging requirements as specified in ISO 3630-1.

8.4 Instructions for use

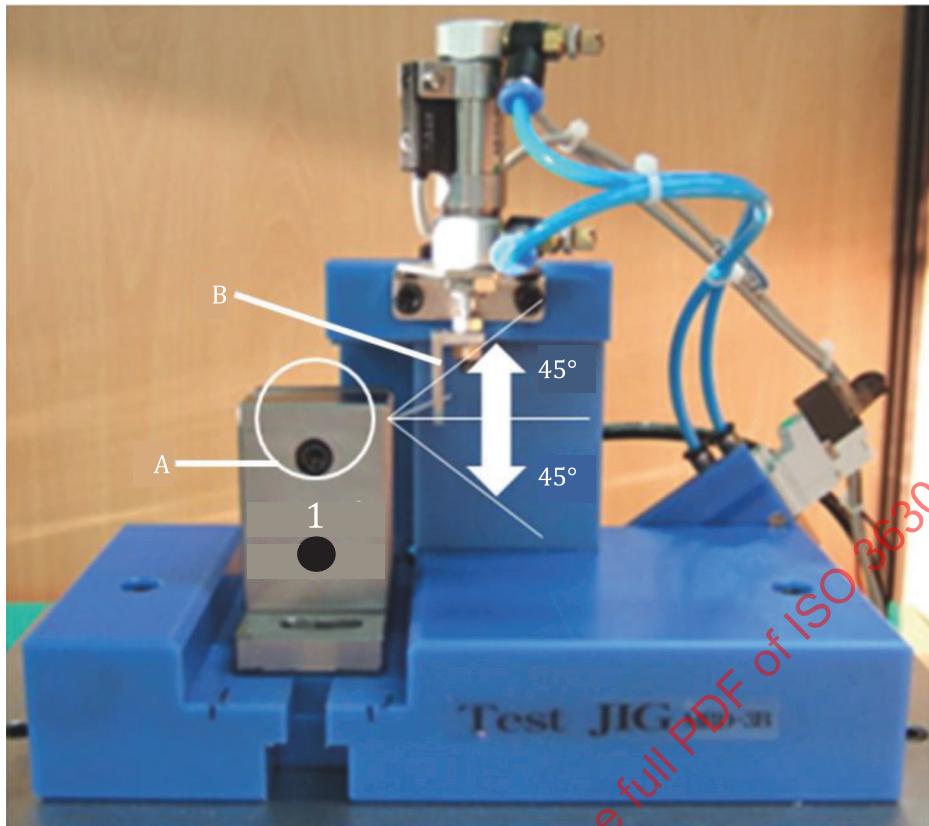
Instruments shall comply with the instructions for use requirements as specified in ISO 3630-1.


Annex A (normative)

Test method for resistance of cannula to breakage or cracking

A.1 Principle

One end of the cannula is fixed to the thermoplastic delivery device or to a customized support. A force is applied to bend the cannula through a specified angle, first in one direction and then in the opposite direction for one cycle.


A.2 Apparatus

Key

- A support/holder for fixing the cannula
- B cannula
- C protractor

Figure A.1 — Manual test apparatus for resistance of cannula to breakage by bending

Key

- A support/holder for fixing the cannula
- B bending tool
- 1 cannula fixation

Figure A.2 — Electronic test apparatus for resistance of cannula to breakage by bending

A.2.1 Thermoplastic delivery device or the support/holder for fixing the cannula, capable of holding and fixing the cannula (see Key A in [Figure A.1](#) or Key A in [Figure A.2](#) for examples).

A.2.2 Bending tool (if applicable), that would be capable of bending the cannula without damage. (See [Figure A.3](#), [Figure A.4](#) or Key B in [Figure A.2](#) for examples). Manual bending can be also done by bending with hand and therefore does not require this tool. (See [Figure A.5](#) for an example.) If applicable, the bending tool shall be supplied by the manufacturer.

Figure A.3 — Bending tool for manual test

Figure A.4 — Demonstration of bending with the bending tool

Figure A.5 — Demonstration of bending by hand for manual test

A.2.3 Microscope (up to $\times 100$), capable of examining at the bent surface of the cannula to determine if there is breakage or cracking at the bent surface.

A.2.4 Protractor, capable of measuring the angle of bending, to the nearest 1° .

A.3 Procedure

A.3.1 Manual test method

A.3.1.1 Rigidly fix one end of the cannula in the thermoplastic delivery device or support (A.2.1) and place the fixed cannula on the protractor (A.2.4) so that the cannula is in line with 90° indication of the protractor. (See [Figure A.2](#) as an example).

A.3.1.2 Using the bending tool (A.2.2) or a hand, bend the cannula in one direction to an angle of $(45 \pm 5)^\circ$.

NOTE [Figure A.6](#) shows an example using the hand.