INTERNATIONAL ISO/IEC
STANDARD 10514-3

First edition
1998-12-01

Information technology — Programming
languages —

Part 3:
Object Oriented Modula-2

Technologies de l'information*~— Langages de programmation —
Partie 3: Modula 2 orienté*objet

Reference number
it ® ISO/IEC 10514-3:1998(E)

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

Contents
0] £=111Y 0 (o [V...
T Y00 11T 1o I, Vi...
I 0 = g
.2 Specifications included in this part of ISO/IEC 10514oovvviiviiinnnnniinnnegtis 1
.3 Relationship to ISO/IEC 105141cccciiiiiiieieiieeeeeeeciee e e e e e e e e e e eeee s G 1
.4 Specifications not within the scope of this Standardcccoeooo B, 1
2 NOrMIALIVE REFEBIENCES ...un i e e sa S T et e e e e 2
3 Definjtions, Structure, and CONVENLIONSccocvvviiiiiiiieeiie e e BT e e e 2
I = 1 1 [0 F= N 0 S 2
.2 Structure of the Formal Definitionccoooviiiiiiiiiiiee S e, 2
I O00] 01 V/=T o1 1 [0] o 1T S0 R 2
4 Requjrements for IMpIemeENntatioNSiiiiiiiie e e T e e e e e e e e e e 2
O =T 1S F= T o U € DR 3
.2 Source Code RepresSentationuuuuuuuiiiiie e N e ee et e s e e e e e e e e e e aeeees 3
.3 Ordering of DeclarationsS...........ccouviviiiviiiiiie e S e 3
O e =T Loy 11 =T = 0 1 (= 3
BT I o= T2 1Y, o T (U] L= 3
B = 0] £ T PP 3
A o =T o] 1o 1 1 S 4
.8 Implementation-depPendEnCIES. ... o e e e e e e e e 4
RS D Lo Tot0 g aT=T g v= 1 (0] o [y G S 4
.10 Statement of COMPlANCE .. i e 4
Y T T T8 T =T [0 LT =T 0 L=] ST e 4
I I A TSI 1 (21 4.
(Yo [[o] g F= U = Y0 (0 FS R SRR 4
.2 Additional PervasiveddentifierS........ccooeuuiiiiiie e 5
OO T To | F=To I o PSP 5.
O T YT e 6
6.1.1 ClaSS DefiNItION.....iiiii i e e e e 6
6.1.2.C1aSS DECIAratiONccvuniiiiiiiiiie e 8
O Y o 1) = o3 O £ T YT 10
N B I - (ot Yo [O F= 1YY T 10
B.1.5 REVEAI LIStS ...cuuiiiiiiiiiiiie et e e e et e e e e e aaa e 12
B.1.6 INNEIME CIAUSEcieveeee e e e eaa e 12
6.1.7 Class COMPONENES.........cuuuuuiuiiiiieeieeeeeeeeeeeeeeeeeeerr s eeeeeaaeeeeaeeennne 13
6.1.8 Overridden MethOdS.uiiiiiiiiiiii e 14
B.1.9 CONSIIUCTON ...ttt e e e e e et e s e e b ens 14
LT O I 1T 1 U [od (0] PP 15

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and micro-
film, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 6CH-1211 Genéve 20 Switzerland
Printed in Switzerland

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

6.2 AcCess t0 Class COMPONENTS.........ccceiiiiiiiieiiiiiiiis e e e e e e e e e e e e e ee e eas,
6.2.1 Access by Class Identifier ... 1€
6.2.2 Access by Object Selectioncoovvvviiiiiiiiiiicrr e, 1¢
6.2.3 ACCESS IN SUDCIASSEScooiiitiee e 1
6.2.4 Immutable entitieSoooiiiii e 1¢
6.3 ObJECt VariabIEScveiiiec e 1
6.3.1 ASSIGNMENT.....coiieiiiiiiiiiiei e e e e e e e e e e e e e e e e e e eeeerae s 1
(RS I 0] 3] o = 1] o P 1
8. 3 3 CIEaOT i e 1
6.3.4 DESIIUCTION ...t G b e 2(
6.3.5 Empty Referencecccceeeeevvviiieiieiiiiieeeeeee o 2
6.3.6 Traced Object References..........ccceeeeevvevne S b, 2
6.4 Membership TeSt.........uuiiiiiiiiiieeee e B e e, 2
6.5 GuAard StatemMENT........ccvviiiiiiiiee e h :
6.5.1 Guarded Statement SEQUENCE..........oo. e iiieeeiieiiiiiiiies e eee e, :
6.6 Safeguarded MOAUIESuuviiiiiiii i e b e :
6.7 Garbage CoOllECHON..........uviiciciee e\ s e e e e e e e e e 2
6.8 Changes to the Base Language...........Cnmiiiiiiniiieeeeeeeeeeeessbereeesieeiiiiiiiinnnns
6.8.1 Module Header ... St b, 2
6.8.2 Definitions and Declarations=............cooeeevevviiiiinnvininieec e, 28
6.8.3 BIOCKScoiiiiiis b 2¢
6.8.4 Statement Part........o..5 e 2
6.8.5 Parameter Compatibility and Argument Binding............Jecevvvviinnnnns 30
6.8.6 The Module COROUTINES.cccccviviviiiiiiieeeeeeeeeeee s fos 30
6.8.7 ENVIFONMENT .5ttt [3]
7 Required System MOAUIES.. Girteeeveeeiiiiiiei e e e e e e e e eees far e
7.1 ObjecCt EXCEPLIONSA...cciiiiieeeeeiiie e e e e e e e 3
7.1.1 The Interface to M2OOEXCEPTIONcooovviviiiiviinnebes 31
7.1.2 The Entities of M2OOEXCEPTION.........coooicviviviiiiieeeec [, 31
7.1.3 Aggregation of the Exceptions of the Language Extensipns.............. 32
7.2 The Module GARBAGECOLLECTIONcccccvvvieeeeeeeneeeeeeeennseeiec o, 32
7:2.1 The interface to GARBAGECOLLECTION.........cccccvvvecferrniennninnnnns 32
7.2.2 The Procedures of GARBAGECOLLECTION.........ueevecferniiiiniinnnns 33
7.2.3 The Functions of GARBAGECOLLECTION.......ccccceeeeiforiiiininnne. 33
Annex-A-Collected Concrete Syntax (informative)cccoovvvvveviviiciiie e 3
A.L Class DefiNItiONcooiiiiiiiiiiiiiiee b 3¢
A.2 Class DeCIaration...........oooiiiiiiiiiiiiiiiiiiieiieeeee e ab e 3
A.3 REVEAI LiSt...cccee ittt rnnneeereeees [3
A4 INNEIE CIAUSE.......uiiiiiiiiiiiiiiiiee e 3
A5 DESIGNALOIS ...uuuiiiiie e i e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e 3
A 6 Guard Statement i, :
Annex B Changes to the Syntax of the Base Language (informative)ccccceeeeieenennn. :
Annex C Glossary (INfOrMAtIVE)oovviiiiiiiiiie e e e e e e e e e e e e e aaananes 3

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Annex D Examples (INfOrMatiVE)uuuiiiiiii i 41
D.1 Class Definition and Class Declaration............cc.ueeiiieiiiiiiiieciiie e 41
D.2 CroSS LINKEA CIASSEScovvuiiiiiii ettt e et e e e e e e e e eaas 42
D.3 Inheritance and Overridden MethodsSo.uuiiiiiiiiiiiie e 42
D.4 Abstract Class DefiNIitiONiviuiiiiiii e 43
D.5 Creation and DESIUCTION........cocuueiiiiii e e e e e e et eeea e e eaaaeees 43
D.6 ConStructor anNd DESIIUCTOLuuiiiiie i ee et e et ea e e aaa e ees 44
D.7 TYPE INQUITIES...cceeeeeiiiiei e e et e e e e e e e ettt s s e aaa e e e e aeaaaeeeaees 44
P-8Constructor chaimandDestructorcham 457
[D.9 Coroutines and Garbage ColleCtionccceeiiiiiiiiiiiiiiiiiie e 45

Annex E Finalization Order (informative)cccooueeiiieeiiiiiieeeeeeccie s e e e eeeeeeeeeeeannns Do 46

Annex F Participating Individuals and Organisations (informative)ccccceeeeen 00 48

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-

Foreword

ISO (the International Organization for Standardization) and IEC (the

3:1998(E)

International

Electrotechnical Commission) form the specialized system for worldwide standardization

Standards through technical committees established by
organization to deal with particular fields of technical activity. ISO ,and |
committees collaborate in fields of mutual interest. Other interndtional
governmental and non-governmental, in liaison with ISO and IEC, also take pg

In the field of information technology, ISO and IEC have established a |
committee, ISO/IEC JTC 1. Draft International Standards__adopted by the
committee are circulated to national bodies for voting.“Publication as a
Standard requires approval by at least 75 % of the national bodies casting a v¢

International Standard ISO/IEC 10514-3 was prepared by Joint Technical Con
JTC 1, Information technology Subcommittee~‘SC 22Programming languag
environments and system software interfaces

ISO/IEC 10514 consists of the following parts, under the general it
technology — Programming languages

Part 1: Modula-2, Base Language
Part 2: Generics in Modulaz2
Part 3: Object Oriented-Modula-2

Annexes A to F of this part of ISO/IEC 10514 are for information only.

2velopment of

the respectiv

[EC technical

organizations,
rt in the work.

oint technical
joint technica
N Internationa
te.

mittee ISO/IE(
jes, their

prmation

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Introduction

This part of ISO/IEC 10514 is part three of the multi-part standard ISO/IEC 10514 and
specmes the form and meanlng of Object Orlented Modula 2 programs and by reference to
that spec A e .

part standard, herein referred to as "the Base Standard") for introductory remarks on [the

This part of ISO/IEC 10514 defines Object Oriented Modula-2 by additions to the Bage
Langu the
introdugtion of new keywords—see clause 5).

_|
=.
2]
e}
—~
@)
=
)
©)
=
m
@]
(IR
o
a1
(RN
5
Q.
o
D
2}
>
o
—_
o
=
]
<.
Q.
@D
jsb)
—
o
=
3
=
(9]
©
®
O
=h
Q
Q
[=
o
S5
@)
=
@)
K=}
D
(@]
—
@)
=
1)
>
—
(4]
[oX

Modulg-2, although it is the intention of WG13 to construch the appropriate VDM-SI
descriptions for the syntax and semantics described hereinwhen committee resources permit.

Ratiorjale
Object |oriented programming is a method of pregramming that allows a high degree |of
abstragtion as well as good structuring of programs. Because of its substantial benefits it has
becom¢ a common method of programming.

As Modula-2 in its original design provides for basic facilities necessary for object orientatign
(like data encapsulation and moduldrization), full object oriented facilities can be easily added

to the lpase language in a very natural way. Thus the advantages of this new programming
method are made available tothe programmer in a fully upward compatible way.

\Y

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 10514-3:1998(E)

Information technology — Programming languages —

Part 3:

Obj

ect Oriented Modula-2

1S

1.1

In ad
provi
Base
mear

keyw
1.2 3

In ad
provi

13§

This
of IS

cope
50als

dition to the goals of the Base Language, the goal of this part of ISO/IEC 10514
e simple extensions to allow object oriented programming facilities to be added t(
Language defined in International Standard ISO/IEC 10514-1 without altering
ing of any valid program allowed by the Base Language (exeept for the use of the
prds introduced by this standard, see clause 5).

bpecifications included in this part of ISO/IEC 10514

dition to the specifications included in the Base Language this part of ISO/IEC 1(
les specifications for:

required symbols for Object Oriented Modula-2 programs;

the lexical structure, the syntactic structure and semantics of Object Oriented Mod
programs;

the interface to and the semantics of Object Oriented Modula-2 system modules;

violations of the rules for the use of the object oriented extensions that a confori
implementation is required to detect;

requirements,

Relationship to ISO/IEC 10514-1

part 0f ISO/IEC 10514 is part three of the multi-part standard ISO/IEC 10514. This

is to

) the
the
new

D514

la-2

ning

further complianee” requirements for implementations, including documentation

part

QAEC 10514 extends and modifies the Base Language ISO/IEC 10514-1, bu

the

adop

1on ot this part or ISU/IEC 10514 Is optional with respect 1o the base Language.

This

part of ISO/IEC 10514 is also independent of any other parts of ISO/IEC 10514 except for
part 1, and can be adopted either together with or independently of such other parts.

1.4 Specifications not within the scope of this part of ISO/IEC 10514

In addition to the categories of specifications excluded by the Base Language this part of

ISO/I

EC 10514 provides no specifications for:

the internal representation of the objects and their associated methods;

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

— the implementation of the garbage collector;

— the implementation of the tracking mechanism for traced objects.

2 Normative References

The following normative documents contain provisions which, through reference in this text,
constityte provisions of this International Standard. For dated references, subseguent
amendments to, or revisions of, any of these publications do not apply. However, pattieg to
agreemlents based on this International Standard are encouraged to investigate the"possipility
of applying the most recent editions of the normative documents indicated below, For undated
referenges, the latest edition of the normative document referred to applies. Members of ISO
and IEC maintain registers of currently valid International Standards.

ISO/IEC 10514-1:1996Information technology — Programming languages — Part 1:
Modula-2, Base Language.

3 Definitions, Structure, and Conventions

3.1 Dsfinitions

For thg purposes of this part of ISO/IEC 10514;'all the definitions contained in the Bake
Standafd apply. No additional definitions are needed.

NOTE — A glossary of the terms used in this part of ISO/IEC 10514 is found in Annex C.

3.2 Structure of the Formal Definition

This part of ISO/IEC 10514 states its requirements in the same form as the Base Language
with the exception that it doesnet include formal expression of semantics in VDM-SL at this
time.

3.3 Canventions

The copventions.used in this part of ISO/IEC 10514 are to be interpreted in the same way as
in the Base Language with the exception that this document does not include VDM-SL at this
time.

4 Requirements for Implementations

A conforming Object Oriented Modula-2 implementation shall meet the requirements for
Modula-2 implementations that are laid down in the Base Language.

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

In addition:

4.1 Translation

A conforming Object Oriented Modula-2 implementation shall accept compilation modules
for translation from source code when they contain the additional lexical form defined in

clause 5, and when this is in the syntactic form specified in clause 6. A con

forming Objec

Oriented Modula-2 implementation shall also accept the lexical forms defined in the Bas

Canguage wWhen they are used in the (New) syntactc forms specified 1n this
Modula-2 standard.

4.2 Source Code Representation

A conforming Object Oriented Modula-2 implementation shall provide t
keywords specified in clause 5 and shall recognize keywords ‘and identifiers
that clause, including those situations where keywords and-symbols from th
are used for new syntactic constructs in this document.

4.3 Ordering of Declarations

Dbject Oriente

ne additional
as specified |
b base langua

A conforming Object Oriented Modula-2 implementation shall have rules identical in this

respect to a conforming Modula-2 implementation.

4.4 Predefined Entities

A conforming Object Oriented Modula-2 implementation shall have rules identical in this

respect to a conforming Modula-2 implementation.

4.5 Library Modules

A conforming Object. Oriented Modula-2 implementation shall have rules ig:antical in this

respect to a conforming Modula-2 implementation. No new library modules
this document.

4.6 Errors

e specified by

A conforming Object Oriented Modula-2 implementation shall have rules identical in this

respect to a conforming Modula-2 implementation, with the following changes:

— it shall detect any new errors defined in this document in a manner con

sistent with th

detection and Teporting of errors required by the Base Canguage.

— In standard mode a conforming implementation shall treat the use of extensions that a
not specified by this standard or by any other part of this multi-part standard as errors
Conformance to standards parallel to this one (if any) is on an additive basis, so that tw

or more such standard extensions can be conformed to simultaneously.

NOTE — The intent of this provision is to allow a version of Modula-2 to support, for example, both object

oriented and generic.

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

4.7 Exceptions

A conforming Object Oriented Modula-2 implementation shall have rules identical in this
respect to a conforming Modula-2 implementation. This includes the additional exceptions for
object oriented extensions as identified in subclause 7.1.3. This subclause also specifies which
exceptions are mandatory and which exceptions are not mandatory.

4.8 Implementation-dependencies

A confprming Object Oriented Modula-2 implementation shall have rules identical in-this
respect to a conforming Modula-2 implementation.

4.9 Dgcumentation

A confprming Object Oriented Modula-2 implementation shall have rules identical in this
respect to a conforming Modula-2 implementation.

4.10 Statement of Compliance

A confprming Object Oriented Modula-2 implementation shall have rules identical in this
respect to a conforming Modula-2 implementation and in“addition, a separate compliarjce
statement shall be made citing the degree of compliance:with this standard.

4.11 Mlinimum requirements

A confprming Object Oriented Modula-2 implementation shall have rules identical in this
respect to a conforming Modula-2 implementation.

5 The Lexis

The lexis of Object Oriented- Modula-2 is based directly on the lexis of the base languagel as
defined in ISO/IEC 10514-1. All syntax elements of the base language keep their
represgntation and _meaning; new keywords and pervasive identifiers that are needed to
express the new language elements are defined in this clause.

NOTE —} A confarming program written in the base language is compiled correctly by a translator conforming|to
this stanglard unless one or more of the newly defined keywords are used as an identifier in that program.

5.1 Additional Keywords

Standard Object Oriented Modula-2 includes the following keywords in addition to those used
in the Base Language:

"AS" | "ABSTRACT" | "CLASS" |
"GUARD" | "INHERIT" | "OVERRIDE" |
"READONLY" | "REVEAL" | "TRACED" |
"UNSAFEGUARDED"

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

5.2 Additional Pervasive ldentifiers

Standard Object Oriented Modula-2 includes the following identifiers in addition to those
used in the Base Language:

"CREATE" | "DESTROY" | "EMPTY" |
"ISMEMBER" | "SELF"
6 Language

Object Oriented Modula-2 is an extension of the Base Language.to provide for facilities fo
object oriented programming. The provided model has reference-based sempantics and sin
inheritance; no facilities for type parameterization have beenincluded.

Summary of model characteristics
The following list provides an overview of the model.

— Access to objects: via references only.
— Arity of inheritance: single inheritance.
— Visibility modes: three modes via explicit visibility rules—hidden, family (for those
developing subclasses) and public.
— Constructors/Destructors (withaut- parameters): class initialization/finalization (similar
to module initialization/finalization).
— Object allocation/deallocation: viaCREATE" and 'DESTROY" (untraced ¢lasses) /
implicit (traced classes).
— Type inquiries: test for-membership of a class-type family and selectiop in a guardec
region.
— Class syntax: different from modules and records because of new concgpts and simil
to modules and records because of visibility rules and type nature.
— Garbage cellection: on dedicated classes.
— Standarel root object: none.
— Generieity: none; this is subject of a separate part of this multi-part standard.
— Opéerator definition: no.
— Operator overloading: no.
— Method covariance: no.

Reference-based semantic model
The model for object-oriented programming for standard Object Oriented Modlula-2 is to ust

reference-based semantics; I.e. object variables contain references to objects and assignn
copies references and not objects themselves. For exampndf are object variables,:=

y results inx having the same reference to an object $hhas; it does not copy to the
contents of the object referencedyby

NOTE — The consequence of this model is to allow objects to be created only dynamically.

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

6.1 Classes

A new kind of entity is introduced, calledciass Classes are a new kind of type (caliass
type — the type of reference based objects — and can be used as any other type (see 6.8.7).
Classes are declared in implementation or program modules (referred to as "class
declaration"). In addition to a class declaration a class definition may occur in the
corresponding definition module. The class definition specifies an external interface for a
class in the same way that a procedure definition specifies an external interface for a
proced(ire.

A clasg declaration or class definition opens a new scope (details see 6.1.1 and 6.1.2).| All
identifigrs declared in a class definition are also visible in a class inheriting from. this clagss
(they afe referred to damily visiblg. The identifiers declared in a class declaration are only
visible |n the class declaration of a subclass in the same module; to subclasses declargd in
other modules they remain hidden (see 6.1.6). The reveal clause allows one to spegify

compoments that may be accessed from outside the class or its desceéndants; they are further
referred to as public components (see 6.1.5).

Abstragt classes (and methods) are further described in subclause 6.1.3.
A class|may inherit from another class; this is further described in subclause 6.1.6.

The variable (state) components of a class do not denete variables in the usual way, i.e. their
definitign does not imply the association of storage-with them. They act more like fields of{a
record type declaration.

The procedures declared in a class are called methods of the class. They always act on ohjects
of this (or a descendant) class and have, areference to this object as an implicit first parameter
(see 6.[L.7). They are not compatible.with normal procedure types and there are no method

types, method variables or method.¢onstants. Methods can be overridden in subclassegs as
describged in subclause 6.1.8.

Finally,[classes may contain.a constructor and a destructor, this code is to be executed at the
time of jobject creation and-deletion (see 6.1.9 and 6.1.10).

As the [meaning of traced and untraced classes is different only with respect to objects,| no
distinction betweeft these two kinds of classes is made in the description of the declaration of
classes.

6.1.1 Class.Definition

A class definition defines a new structured type. Each value of the type has a collection of
components, called components of that class. The components are identified by their names.
The components can be accessed from outside the class via class hame qualification or via an
object designator (see 6.2).

NOTE 1 — The term "component” is already used in the Base Language (see Annex E of the Base Language).
Using it also for the components of a class is an additional usage, not a redefinition.

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

A full class definition consists of a class header followed by a class definition body. The
identifier following the class definition body shall be identical to the class identifier.

A forward class definition consists of a class header followed by the keywao®@ARD.
Forward definitions of classes are needed to solve the declare-before-use-in-declaratic
problem e. g. in the case where two classes reference each other.

Concrete Syntax
class definition =

Ltro A-ela Hatraead-ela dafiaiti
LLLA]

\ |9 IAC\'U CIMSS duf:nit:un i urimiracvoeu CIMSS \CAwap]} ILIUn) ,
untraced class definition =

(normal class definition | abstract class definition) ;
traced class definition =

"TRACED", (normal class definition | abstract class definition) ;

normal class definition =

normal class header, (normal class definition body | "FORWARD") ;
normal class header=

"CLASS", class identifier, semicolon ;
normal class definition body =

[inherit clause],

[reveal list],

normal class component definitions,

"END", class identifier ;

abstract class definition =

abstract class header, (abstract class definitionybody | "FORWARD") ;
abstract class header=

"ABSTRACT", "CLASS", class identifier,,semicolon ;
abstract class definition body =

[inherit clause],

[reveal list],

abstract class component definitions,

"END", class identifier ;

class identifier = identifier ;

normal class component definitions = { normal component definition } ;
normal component-definition =
"CONST", {{constant declaration, semicolon } |
"TYPE", {type definition, semicolon } |
"VAR" A class variable declaration, semicolon } |
(normal"method definition | overriding method definition), semicolon ;

abstract class component definitions = {abstract component definition } ;
abstract component definition =

"CONST", { constant declaration, semicolon } |

"TYPE", { type definition, semicolon } |

"VAR", { class variable declaration, semicolon } |
(normal method definition | abstract method definition |
overriding method definition), semicolon ;

class variable declaration = identifier list, colon, type denoter ;
normal method definition = procedure heading;

overriding method definition = "OVERRIDE", procedure heading;
abstract method definition = "ABSTRACT", procedure heading;

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

Declaration Semantics

As in a type definition, a class definition is used to introduce an identifier for the new declared
class type. As classes cannot be defined implicitly, each class type has its corresponding class
identifier.

Static Semantics
If present, the inherit clause shall be valid (see 6.1.6).

If presgnt, the reveal list shall be valid (see 6.1.5).

The identifiers declared in the class definition body shall be well-formed given th
environment that applies at the point of the class definition (see also 6.1.6: inherit clause).

If a for

that class. The full definition shall be made in the same definition module;

If a clgss definition exists for a class, this class shall be declared in the correspond
implementation module. If this declaration is done in a local nigdule, the name shall
exportgd unqualified to the outermost block.

NOTE 2

NOTE 3
declarati

6.1.2 CJass Declaration

A clasd declaration defines a new structured type. Each value of the type has a collectiol
components, called components of the class. The components are identified by their nan

The co
qualific

A full c

identifigr following the class declaration body shall be identical to the class identifier.
A forward class declaration eonsists of a class header followed by the kes@RWARD.

Forwar

problem, e. g. in the case where two classes reference each other.

Concrete Syntax

class de

(traged class declaration | untraced class declaration) ;
untraced| class declaration =
(normalclass declaration | abstract class declaration) ;

normal ¢

© ISO/IEC

vard definition of a class is made, it shall precede a corresponding full definition (

— This rule is identical to the rule for declaring a procedure defined in a definition module.

— If an opaque type is defined in a class definition, it shall be declared in the corresponding cl
DN,

mponents can be accessed from the outside world via class name qualification or
htion of an object designator (se€ 6.2).

ass declaration consists.0f a class header followed by a class declaration body.]

] declarations of-classes are needed to solve the declare-before-use-in-declarg

laration‘=

D

Df

ng
be

ASS

n of
hes.
via

"he

tion

lass declaration =

normal class header, (normal class declaration body | "FORWARD") ;

normal ¢

lass header=

"CLASS", class identifier, semicolon ;

normal ¢

lass declaration body =

[inherit clause],

[reveal list],

normal class component declarations,
[class body],

"END", class identifier ;

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC ISO/IEC 10514-3:1998(E)

abstract class declaration =

abstract class header, (abstract class declaration body | "FORWARD") ;
abstract class header=

"ABSTRACT", "CLASS", class identifier, semicolon ;
abstract class declaration body =

[inherit clause],

[reveal list],

abstract class component declarations,

[class body],

"END", class identifier ;

class body = module body;

normal class component declarations = { normal component declaration } ;
normal component declaration =

"CONST", { constant declaration, semicolon } |

"TYPE", { type declaration, semicolon } |

"VAR", { class variable declaration, semicolon } |

normal method declarations , semicolon ;

abstract class component declarations = {abstract component declaration } ;
abstract component declaration =

"CONST", { constant declaration, semicolon } |

"TYPE", { type declaration, semicolon } |

"VAR", { class variable declaration, semicolon } |

abstract method declarations , semicolon ;

normal method declarations =

normal method declaration | overriding method declaration;
normal method declaration = procedure declaration;
overriding method declaration = "OVERRIRE", procedure declaration;

abstract method declarations =
normal method declaration | abstract method definition | overriding method declaration;

Declaration Semantics

Like a type declaration, a class declaration is used to introduce an identifler for the ne\
declared class type. As classes cannot be declared implicitly, each clags type has
corresponding c¢lass identifier.

Static Semantics
A class'shall be declared at declaration level 0.

NOTE"1 — For the definition of "declaration level 0" see Base Language 6.2.5.

it present, the inherit clause shall be valid (see 6.1.6).

IT present, the reveal list shall be valid (see b.1.9).

The identifiers declared in the class declaration body shall be well-formed given the
environment that applies at the point of the class declaration. If a corresponding clas
definition exists, the starting environment of the class scope shall be the environment of tr
class definition instead of the empty environment (see also 6.1.6: inherit clause).

If a forward declaration of a class is made, it shall precede the corresponding full declaratio
of that class. The full declaration shall be made in the same block or in a nested local modu
from which it is exported unqualified.

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

A class that is exported from a separate module that has a corresponding class definition in the
definition module, shall not be given a forward class declaration in the implementation
module.

Dynamic Semantics

The elaboration of a class declaration shall associate, in the resulting execution environment,
the identifier of the class and the unique type that is the result of the elaboration of the class
declaration body.

NOTE 2 |— The body of the class is executed on creation / destruction of an object of that type.
6.1.3 Apstract Classes

Abstragt classes are used to define interface descriptions for a set of subclasses with a
common external behaviour but different internal implementations. In an abstract class, not|all
methods need to be implemented, these abstract methods do have only-the procedure header
for the| interface description and are implemented only in subclasses. Because of this
incompjeteness it is not possible to instantiate an object of an abstraet\class.

Classes$ may be declared as abstract by prefixing them with the keABgIRIACT.

NOTE 1] — Like non-abstract classes, abstract classes always qged to have a declaration. If no hidden
compongnts are declared and no method has to be implemented (i.e. all methods are abstract), this declarafion is

empty.

Declaration Semantics

The deglaration semantics of an abstract class’is the same as that of a non-abstract clasg with
the exgeption that the class identifier is_marked abstract, so it shall not be possible| to
instantipte an object of that class.

NOTE 2}— No other restriction is made for-the“use of abstract classes. It can be used anywhere a non-abgtract
class can be used, especially as a typtSMEMBER.

If the class definition is marked abstract, the class declaration also shall be marked abstragt; if
the clags definition is not marked abstract, the class declaration shall not be marked abstragt.

Static Semantics
Within [an abstract class, abstract methods may be defined. They do not have |an

implementation. As long as there exist abstract methods, the class shall be abstract. Absjract
methods are marked with the keyw@aBSTRACT.

If an abstract method is defined in a class definition, there shall be no declaration for th
method-nthe—corresponding—ctass-dectaration:

S

If there is a class definition, no abstract methods shall be specified in the corresponding class
declaration, as they could not be overridden by inheritors to make the class non-abstract.

6.1.4 Traced Classes

Two kinds of class are provided: traced and untraced. This allows two kinds of object to be
created: traced and untraced.

10

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

A program that uses traced objects is safe from undetected dangling object reference erro
except when the tracing mechanism is deliberately subverted. The implementation guarante
this by the automatic initialization of traced object references and the automatic collection o
traced objects that are no longer referenced (see 6.3.6 and 6.7).

A program that uses untraced objects is not safe from undetected dangling object referen
errors. In such a program, it is the programmer's responsibility to prevent such an error k
ensuring that the program does not use uninitialized object references or references to obje

thattrave beemdestroyed:

An untraced class may have a finalization body that is executed when the object is explicitl
destroyed. Traced objects are automatically destroyed in an order>and ap a time that
implementation dependent. Therefore, a traced class shall not have & finalizatijon body.

Concrete Syntax

traced class declaration =
(normal traced class declaration | abstract traced class declaration™ ;

normal traced class declaration =

normal traced class header, (normal traced class declaration body | "FORWARD") ;
normal traced class header=

"TRACED", "CLASS", class identifier, semicolon ;
normal traced class declaration body =

[inherit clause],

[reveal list],

normal class component declarations,

[traced class body],

"END", class identifier ;

abstract traced class declaration =

abstract traced class header,((abstract traced class declaration body | "FORWARD") ;
abstract traced class header=

"TRACED", "ABSTRACT"}"CLASS", class identifier, semicolon ;
abstract traced class declaration body =

[inherit clause],

[reveal list],

abstract class cemponent declarations,

[traced class/body],

"END",.class identifier ;

traced<lass body = "BEGIN", block body;

Declaration Semantics

The declaration rules for traced classes are the same as for untraced classef, except that
are marked as traced.

Static Semantics

The static semantics of a traced class definition is identical to that for an untraced clas
definition.

The static semantics of a traced class declaration is identical to that for an untraced cla

declaration, except that it shall be an error for a traced class declaration to have a finalizatic
body.

11

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

6.1.5 Reveal Lists

Components in a class definition / declaration are visible by default only in the class itself or
in subclasses. (We term thHamily visibility, see Annex C Glossary) To expose identifiers to
clients of a class the identifiers shall appear in a listewkaledidentifiers. In a class
declaration (i. e. in an implementation module) these rules also hold.

NOTE 1 — A subclass declared in the same module has access to all components of the class, as a subclass does
not depend on revealing (see 6.1.6).

Concrete Syntax
reveal list = "REVEAL" revealed component list, semicolon ;

revealed|component list = revealed component, { comma, revealed component } ;
revealed|component = identifier | "TREADONLY" class variable identifier ;
class vatfiable identifier = identifier ;

Declaration Semantics

The components listed in the reveal list are flagged to be accessihlesfrom outside the class|(see
6.2).

Class variables may also be markRHADONLY to restrict-the access rights, preventing
modification by a client (immutable entity, see 6.2.4).

Static Yemantics

REVEALU is bound to the rules for the separation+of definition and implementation modules.
Thus, the reveal list in a class definition shall"not contain components defined in the class
implementation. The revealed components_are accessible in all modules referring to that cJass
as cliepts (by importing the module the class is defined in) and in the corresponding
implementation module; i.e. compenents revealed in a class definition are automaticglly
revealed in the corresponding class declaration.

The reyeal list in a class declaration may contain components defined in the corresponding
class definition as well asthose declared in the class declaration.

The reyeal list in a class declaration shall not contain components already revealed in the dlass
definitign.

The reyeal list-shall not contain components defined in a superclass.

NOTE 2|—="Each class is owner of the access rights of its components. If for any reason a subclass wanis to
loosen dccess restrictions on a component of a superclass, it has to provide for access methods for this
component.

6.1.6 Inherit Clause

Classes may inherit from at most one other class. Inheritance is specified by the new keyword
"INHERIT" followed by the name of a class (which becomes the parent of the inheriting class).

12

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

Subclasses are subtypes in the following sense: if Blagserits from class, B is a subtype

of A. Object variables of type will then be assignment compatible to object variables of type
A. Object variables of type will not be assignment compatible to object variables of Bype
(according to the type system of Object Oriented Modula-2, see 6.3.1). Therefore, the stat
type of an object variable (the one used to declare that variable) may be different from th
dynamic type of the object that is referenced by this variable; the dynamic type may be
subtype.

Concrete Syntax

inherit clause = "INHERIT", class type identifier, semicolon ;
class type identifier = type identifier ;

Declaration Semantics

If classB inherits from clasg, the environment for the elaboration of the entitieg|shall be

the same as if the already declared entitiea @fere actually(declared in the place of the
inherit clause. Inheritance does not cause nested scopes.“Therefore, an identifier shall not
redefined or redeclared by an inheriting class (methods_may be overridden blt not redefine
see 6.1.8).

NOTE — As a result, clag® contains all entities o0& plus all the additional entities &

Static Semantics

If a class definition exists, inheritance“~may only be specified in the class definition.
Conversely, inheritance may only befused in a class declaration if no corresponding cla:
definition exists.

It shall be an error for a traced ¢class to inherit from an untraced class. It shall e an error for :
untraced class to inherit from a traced class.

6.1.7 Class Components

The elaboration af‘class component definitions/class component declarations|acts similarly |
the elaboration -of definitions/declarations described in the base language. [There are sor
differences with class variables and methods that are described in this subclayse.

Declaration Semantics

Class variables:
A class variable is collected to the type structure of the class at declaration time (like a field c
a record to the type structure of that record); at run-time this structure is yised to alloca

storagefor-each-object:
Methods:

Each method definition / declaration establishes an implicit first formal parameter with the
parameter identifiesELF; the type ofSELF shall be a reference to the class the method is
declared in.

SELF shall denote an immutable entity (see 6.2.4)

NOTE — The fact thaSELF is the first parameter with respect to the formal elaboration has no implication on
the implementation, e. g. in what position this parameter is actually passed.

13

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Dynamic Semantics

Class variables:

No storage is allocated for a class variable (see above).

Methods:

A call to a method automatically binds the object reference used to invoke the call (see 6.2.2)
to the implicit first parameteELF.

6.1.8 Overridden Methods

Methoi? of an ancestor classcan be overridden by a direct or indirect descendant Blass
Overridden methods preserve the method interface but replace the implementation. Method
calls (vfa dynamic object access) will always refer to the method implementation according|to
the dynfamic type of the object.

Declaration Semantics

By ovefriding an existing method, no new component is established:>"The meaning of the
overridglen method is replaced by the meaning of the overriding method.

For the|overriding method, the type of the implicit parameter,, is the type of the class in
which this method is overridden.

Static Yemantics

To be able to override an existing inherited methodithe method definition/declaration of the
subclags containing the override shall be marked\by the new kepwBRRIDE.

If a clags definition exist$HVERRIDE shall be used in both the class definition and the class
declaration if the method is to be overridden. Failing to do either of these will result in|a
compilation error.

A method that is marked as_woverridden shall exist in an ancestor class; otherwisq a
compilgtion error shall occur.

The overriding method shall have the same number, positions, and types of parameters as the
overridflen method; otherwise a compilation error shall occur. If the overridden method iy a
function procedure method, the overriding method shall also be a function procedure method
and addlitionally te the restriction on the parameters the result types shall be identical.

6.1.9 Cpnstructor

A constructorofanmobject s code that s executeddurmnygits creation A class dectaratiommay
contain a class body (which has the same syntax as a module body) in which the initialization
part of the body plays the role of a constructor.

Declaration Semantics

As with the elaboration of a method declaration, the elaboration of the initialization part of a
class body shall establish the implicit parametarF, usable inside the initialization part as a
reference to the object under construction. The initialization body shall be added to the
(possibly empty) constructor chain.

14

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

NOTE 1 — The construction of the constructor chain is similar to the construction of the initialization chain of

modules; the import relationship is replaced by the inherit relationship.

Static Semantics

The environment of the initialization part shall be that established at the beginning of the clas

body, overwritten by the (implicit) declaration of the formal param&ter.

Dynamic Semantics

The constructor is automatically invoked on creation of an object of the-g
6.3.3).

For inheritance chains, the execution order of the constructors is;from root cla
i.e. the constructor of a superclass is executed before the ;constructor of
execution of the constructor of a superclass is not a call from within the actual
acts like the initialization of dynamic modules within a procedure. In particulaf
handler within a constructor of a class does not protect the execution of the
superclass.

Constructors are executed in their static context,<. e. all method calls during ¢
are done without dynamic dispatch. On a callto an abstract method, an exce
whose detection is mandatory (see 7.1.3).

NOTE 2 — No dynamic overhead is caused-\by this check, as it can be done within a defau
procedures.

6.1.10 Destructor

A destructor of an object is code that is executed during the destruction of the
declaration may contain a class body in which the finalization part of the bod
of a destructor.

Declaration'Semantics

As with-the elaboration of a method declaration, the elaboration of the finaliz
class body shall establish the implicit paramst&iF, usable inside the finalizatig
reference to the object under destruction. The finalization body shall be added
empty) destructor chain.

ven class (se

SS to leaf clas
a subclass. T
constructor bl
, an exception
constructor of

pbnstruction tim
ption shall occ

t body for abstra

» object. A clas
y plays the rol

ation part of &
n part as a
to the (possib

Static Semantics

The environment of the finalization part shall be that established at the beginning of the clas

body, overwritten by the (implicit) declaration of the formal param&ter.

Dynamic Semantics

The destructor is automatically invoked on destruction of an object of the g
6.3.4).

iven class (se

15

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

For inheritance chains, the execution order of the destructors is from leaf class to root class,
i.e. the destructor of a superclass is executed after the destructor of a subclass. The execution
of the destructor of a superclass acts like the finalization of dynamic modules within a
procedure. In particular, an exception handler within a destructor does not protect the
execution of the destructor of a superclass.

NOTE — Whereas the constructor is executed in its static context, the destructor is executed in the dynamic
context.

6.2 Adcess to Class Components

Inside @ class, all components are visible according to the scope rules. This is also true| for
compoments of superclasses (with exception of overridden methods). Therefere, no special
syntax |s required; the meaning of the access to attributes and methods is-described later in
this suljclause.

For usgrs of a class (the clients), access to class entities from outside the class scope is
provided by qualifying either a class identifier or an object variablecOnly components marked
as 'REVEAL" are accessible from outside.

6.2.1 Arcess by Class Identifier

Access| by class identifier acts like the qualification by*a-module name. As in this case therg is
no objgct for an attribute to belong to or for a method to act on, only type identifiers and
constant identifiers (including identifiers specifying the values of an enumeration type) can pe
accessgd in this way.

Concrete Syntax

qualifiedidentifier =
{ qudlifying identifier, period }, [class identifier, period], identifier ;

Static Semantics
If a clags identifier is provided, the identifier is looked for in the scope of the class specified
by the given class identifier. No class variable or method can be accessed from outside|the
class. No unrevealed~component shall be accessed from outside the class. If no class identifier
is provifed, the definition of the base language holds.

NOTE — As the-components defined in a superclass become part of the scope of a subclass, the identifier[may
be defingd eitherin the given class or in a superclass.

6.2.2 Actess by ObjectSetection

Access by object selection acts like selection of a record field. With object selection, all
components of a class are accessible from inside the class, all revealed components are
accessible from outside the class. For class inheritance trees, it is possible to specify the class
where the selected identifier shall be looked for.

NOTE 1 — Though in principle allowed by the syntax of selection, access to a type identifier declared in a class
by object selection is impossible because of the general syntax governing the rules of the use of types.

16

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

Value designator and variable designator are described together, as constant object referen
shall not occur (see static semantics). The rules given in the base language describe 1
meaning of the selected components, the access of the values of the selected components,

the assignment to the selected components.

Concrete Syntax

variable designator = entire designator | indexed designator | selected designator |

dereferenced designator | object selected designator ;
nhjnrt selected dpcignatnr = nhjprt variahle dingnnmrl pprind, [class identifier In@rinri]

class variable identifier ;
object variable designator = variable designator ;

value designator =
entire value | indexed value | selected value | dereferenced value | object selected value ;
object selected value =
object value designator, period, [class identifier, period], entity identifier\,
object value designator = value designator ;
entity identifier = identifier ;

Static Semantics

The object variable designator/object value designator shall denote an objed
The declaration of constant object values shallbe-an errorsY.S#EM. CAST sha
enhanced to allow a class type as first parameter and a constant as second pé

The type of an object variable designater./ object value designator shall be
component identifier.

If a class identifier is specified, it shall denote the class of the object variable
of this class. In this case, the selected identifier shall be looked for in the speci

NOTE 2 — Specifying a class«is_used to call to an overridden method. In all other cases
functionality; it only verifies that'the entity is available in the specified class scope.

NOTE 3 — The access to.a constant by object selection is hot a constant expression.

Dynamic Semantics

The object variable designator shall be evaluated to give a variable P which
an object of:the type of the object variable .

An exception shall be raised, if the object reference is the empty reference (se

t variable/valu
Il not be
jrameter.
the type of tt

or a supercla:
fied class.

it has no speci

s a reference

e 7.1.3).

Anrexception shall occur (but need not be raised), if the object reference is ungefined.

An exception shall occur (but need not be raised), if the object reference is a

reference to t

wrong class, I.e. not to the class given by the object variable or a descend
class.

The exception that is to be raised in case of an empty reference is defined in

ant class of tt

subclause 7.1

the exceptions that may be raised in the other two cases are those defined in the be

language.

Access to a constant by object selection gives the value of this constant.

Access to a class variable by object selection gives the value stored in this class variable.

17

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Access to a method by object selection always results in a procedure call. The meaning of
procedure calls and the meaning of argument binding as defined in the base language apply
with the addition, that the object reference used for the access to the method becomes the
value for the first implicit parametesgLF).

6.2.3 Access in Subclasses

As all components of a class are visible in subclasses (except hidden components, if the
subclags is declared in another compilation unit), no class specification/object variable] is
needed to access the components of a class. For constants and types, the normal rules-apply.

For the[access to class variables and methods (which can only occur in the statement parf of a
method or in the class body), the implicit parametar defines the object the class'variable
belong$ to or the method it acts on.

The optional specification of the class identifier of a superclass is alsopassible for the acgess
to class components within a subclass (see concrete syngaxiiffd identifier). In this case,
the component is looked for in the given scope (as described in the-previous subclauses). [This
kind of|access is used to access overridden methods that are no longer accessible direcfly in
the subclass.

6.2.4 Immutable entities

Entitieq that shall not be changed are cailechutableentities. Immutable entities occurring
in this gtandard are:

— the implicitSELF parameter of methods, c@nstructors and destructors,

— thp class variables markeghdonly when-used by a client,

— the object denoters declared in the object denoter paguafded statement sequence.

Static Semantics
Immutgbleentities shall not oecur on the left hand side of an assignment statement or [as
actual parameter for a formahR-parameter.

NOTE 1 |— This also prevents “threatening"®YSTEM.ADR.

Dynam|c Semanties
An excgption shall occur (but need not be raised), if an immutable entity is changed (gee
7.1.3).

NOTE 2|—_A class variable markedadonly is immutable only when accessed by a client; it may well be
changedlfram within a method of the defining class and its descendants

6.3 Object Variables

Object variables always store references to objects. Any operation on object variables is an
operation on the object reference, not on the object itself. Therefore, objects shall be explicitly
created and either explicitly destroyed (untraced classes) or implicitly destroyed by garbage
collection (traced classes).

18

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

6.3.1 Assignment

The assignment compatibility rules and the meaning of the assignment statement are extenc
for objects. Objects are not only assignment compatible to object variables of the same cla
but also to object variables of any ancestor clas®TY is assignment compatible to any

object variable.

Static Semantics

danatead b o U t

\ £ rvariahble—dacianatar—cha
CUCTIOTCO— 0y o varnagic— ot StiyratoT— ol

compatible with the type.lof the value of an expression, if any of the following
true:

Tha tvnma T of an ~hinot vaviahia
TC—typPC— Vv U ail ODJeCtr varagre

Tv and T, are identical types.
T. is a subclass ofvl
T.is the empty type.

Dynamic Semantics
The execution of an object variable assignment statement shall cause the

e assignment
Statements is

object referer

value resulting from the elaboration of the expression-to’become the new value of the obje

variable denoted by the variable designator.

All rules defined for the elaboration of an assignment statement as defin
Standard also apply for object variable assighments.

6.3.2 Comparison

The relational operators are overleaded for object reference comparison. T
operators are provided, test for equality ("=") and test for inequality ("<>" or "
both operators compare objectyreferences, not objects themselves.

Static Semantics

Both operands of an ‘ebject reference comparison shall be of object typ
following shall hold:

The type of the left operand is assignment-compatible to the type of the r
The type-of-the right operand is assignment-compatible to the type of the
Both @perands denote the empty reference.

The result-of an object reference comparison shall be of the Boolean type.

Dynamic Semantics

The'evaluation of the left and right expression of an object reference comparf
i two values which are references to objects.
The value of an object reference equality operation shall be the tvaduié and o

bd in the Bas

'Wo comparisc
#"). However,

bs. One of tr

ght operand.
left operand.

ison shall rest

nly if the

two Teferences are identicat:

The value of an object reference inequality operation shall be thetwaéué and only if the

two references are different.
6.3.3 Creation

Objects are allocated storage and thereby instantiated by a call to the
procedurecREATE, a template for which is given below:

CREATE (variable [, type])

new predefine

19

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Static Semantics
"variable" shall denote a variable designator which is of class type.

The second parameter, if present, shall be a type parameter that denotes a class type which is
assignment compatible to the type of the first parameter.

The dynamic type of the new object is either the statically declared class type of "variable" or,
if present, the class type specified by the second parameter. That is, a variable statically
declared to be of one class type could be dynamically created with a subclass type.

If the type of the first parameter denotes an untraced class, the ideatifiecCATE" shall be
visible @s required by the pervasive procedosn".

Dynam|c Semantics

If the flrst parameter to a call tOREATE is a variable of the traced class type, then use
allocatg-traced-object-storagéo allocate storage for the object. Foriam untraced object
storaggq is allocated by a callA0LOCATE.

If storage cannot be allocated for the object, the valwrery shall be assigned to "variable",
otherwise a reference to the new object is stored in "variable®,

NOTE — No exception occurs in the case of an unsuccessful storage allocation.

If storage allocation was successful,:
— If the first parameter to a call to CREATE is a variable of a traced class type, then the
gdrbage collector shall be informed afi@w-traced-variablen respect of the new value
and then informed of defunct-traced-variablén respect of the old value (see 6.7).

— The constructor chain of the new object shall be executed.

6.3.4 Dstruction

Invoking the destruction of an ©bject is different for traced and untraced objects.

Traced| objects are implieitly destroyed by garbage collection, if doing so will leave np
dangling references tothem (see 6.7).

Untraced objects:are explicitly destroyed by a call to the new predefined probeguroY,
a template forwhich is given below:

DESTROY (variable)

Static Semantics
"variable" shall denote a variable designator which is of object type of an untraced class.

The identifierDEALLOCATE shall be visible as required by the pervasive proceniSroSE.

It shall be an error for the parameter to a catbe$TROY to be a variable of the traced class
type.

20

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

Dynamic Semantics

If "variable" contains the empty reference, an exception shall occur and shall
any other access to an object via the empty reference (see 6.3.5).

be raised as f

The destructor chain of the object shall be invoked, i.e. the destructors are elaborated in tl

reverse order of the constructors (see 6.1.10).

The storage occupied by the object shall be returned by a ca&hta OCATE.

NOTE — For the call thEALLOCATE, the dynamic type of the object (and the space it occupie
the runtime system.

6.3.5 Empty Reference

A new constant, denoted by the new pervasive idendf@TY, is intrdduced and d
non-existing object. The type &vPTY is theempty type The value ofEMPTY sh
object reference distinct of all references to existing abjects, it is refere
referencewithin this document.

EMPTY is compatible with all object references (see 6.3.1 and 6.3.2).
Any attempt to access an object via an objectsvariable whose value is the
shall be an exception whose detection is mandatory (see 7.1.3).

6.3.6 Traced Object References

5) is detected by

enotes the
bll be an
ncethHy

empty referen

Traced object references in global, lecal and class variables are initializetbty by the

implementation. This ensures that.dangling object reference errors caused by
references that do not point to valid objects will raise an exception.

the use of obj

The programmer is not permitted to destroy a traced object. The implementarlion is permitte

to destroy a traced object when doing so will leave no dangling refere
implementation does this by tracking references to traced objects stored in
variables and parameters. This ensures that dangling object reference errg
destruction of an object that has more that one reference to it can not occur.

NOTE 1 — The_programmer indicates that a traced object can be destroyed by assigning
parameters-that reference the object the viaMieTY or a reference to another traced object.

NOTE 2°= An implementation is not required to track references to traced object stored in dy
obtained by the use of procedures from the system meYEEEM.

NOTE 3 — Whether and when an implementation destroys a traced object is implementation ¢

6.3.6.1 Initialization of Object Referencing Variables

ces to it. The
plobal and loc
rs caused by

to all variables
namic variables c

ependent.

Dynamic Semantics
Global elementary variables of a traced class type and components of g

lobal structure

variables of a traced class type shall be automatically initialized with the xRy as each

static module and the program module is elaborated (see 6.8.2).

NOTE 1 — This includes the initialization of variables declared in local modules.

NOTE 2 — Initialization of these variables is performed before any finalization body is queued.

21

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Local elementary variables of a traced class type and components of local structured variables
of a traced class type shall be initialized with the vamMeTy on activation of a procedure
(see 6.8.2).

NOTE 1 — This includes the initialization of variables declared in local (dynamic) modules.

NOTE 2 — Initialization of variables is performed before any local modules are initialized.

Elementary class variables of a traced class type and components of structured class variables

of a traced class type shall be initialized with the valeTY on creation of an object.

Class viariables shall be initialized before the constructor chain of a new object is execuoted.

NOTE 3 | It is not permitted to declare a variant field of a record to be a traced class type (see. 6.8.2).

NOTE 4 | It is not permitted to declare a variable that points to a traced object reference (see-6.8.2).

6.3.6.2|Creation of an Object Reference
Dynam|c Semantics

When an object of a traced class type is created the garbage collector shall be informed of the
object and of the variable to which the initial reference was-assigned (see 6.3.3).

NOTE 1| It is not permitted to declare a variable that points to a-traced object reference (see 6.8.1).

When @ traced object reference is bound to a walue formal parameter the garbage collector
shall b¢ informed that the object referred to iscreferenced by the formal parameter (see 6,8.5
and 6.8.4).

When a structured value that contains-at least one traced object reference is bound to a value
formal [parameter the garbage collector shall be informed that the objects referred are
referenfed by the formal parameter components (see 6.8.5 and 6.8.4).

(D
(@]
=

When & variable actual parameter to a procedure call is the designator for a class variabl
an objgct of a traced class type the garbage collector shall be informed that the object is
implicitly referenced by-the parameter.

NOTE 2| — It is not{necessary to trace the subsequent passing of such a formal parameter via a varipble
parameter because.it/is protected from collection by the traced reference created by the initial call.

6.3.6.3|Changing an Object Reference

Dynamic Semantics

When a new value that is nBMPTY is assigned to an elementary variable of a traced class
type the garbage collector shall be informed that the variable now points to the object
referenced by the new value. If the previous value wagwmpety, then the garbage collector

shall be informed that the variable no longer references the object previously referred to by the
variable (see 6.8.4).

22

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

When a new value that is nB¥MPTY is assigned to a component of a structured variable that
is of a traced class type the garbage collector shall be informed that the variable's compone
now points to the object referenced by the new value. If the previous value WagAToL

then the garbage collector shall be informed that the variable’s component no longe
references the object previously referred to by the component (see 6.8.4).

NOTE 1 — It is not permitted to declare a variable that points to a traced object reference (see 6.8.1).

NOTE 2 — It is not permitted to declare a variant field of a record to be of a traced class type (see 6.8.1).

6.3.6.4 Deletion of an Object Reference

Dynamic Semantics

On completion of the execution of a procedure block or if an exception is rajsed during th
execution of the body of a procedure block that has no exceptional part, or iflan exception

raised during the execution of the exceptional part of a procedure block, the fgllowing shall b
performed:

The garbage collector shall be informed that locahelementary variables (¢
type and components of local structured variables of a traced class t
contain the valuEMPTY no longer contain an.active reference (see 6.8.3).

f a traced clas
ype that do ne

The garbage collector shall be informed that value formal parameters gf a traced clas

type that do not contain the val@PTY no longer contain an active ref
6.8.2).

The garbage collector shallcbe informed that components of structure
parameters of a traced class type that do not contain theBriTe no longe
an active reference (see-6.8.2).

The garbage collector shall be informed that the variable parameters t
call that were_designators for a class variable of a traced class type no |

erence (see

d value forma
r contain

D the procedu
bnger contain

active reference.

On destruction of an untraced object the garbage collector shall be informedebtinat-

traced-variablefor each class variable of the object that is an elementary varigble of a tracec
class type or component of a structured variable of a traced class type that do¢s not contain
valueEMPTY.

NOTE — It is not necessary for the garbage collector to be informediefuact-traced-variabldof the class

variables of a traced object because this is implicit in the object becoming collectable (see 6.7).

At the end of the lifetime of a coroutine, for each active traced object reference stored in th
coroutine's workspace the garbage collector shall be informed that the reference is no
defunct (see 6.8.6).

6.4 Membership Test

The new pervasive function procedus®EMBER is introduced to determine the dynamic type
of an object.

23

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

Static Semantics

ISMEMBER takes two parameters, which may be either object value designators or type
parameters of class type. The result typs®EMBER is the Boolean type.

Dynam

ic Semantics

© ISO/IEC

If not a type parameter, the parameters are evaluated and the dynamic type of each is

determinedISMEMBER returns true, if and only if the (dynamic) type of the first parameter is

a deSC ndant of or acuial ta tha (duynamie) tvna af tha cacond naramatar
a0 -egtartotheayHaictype-oHe-Seconapalaietet

NOTE — If the first parameter is an object and the second is a class typelSsIBRIBER returns true if the

object is

assignment compatible to the specified class.

6.5 Guard Statement

A new
combin

guarded region statement is introduced (keywswdRD) to provide) an efficient
gtion of type assertion (in which the dynamic type is asserted to-be compatible wit

static type) and type selection.

Concre

fe Syntax

statement = ... | guard statement;

guard statement =

"GU

ARD", guard selector, "AS", guarded list,

['EL$HE" statement sequence],
"END";

guard se

guarded
guarded

ector = expression ;

list = guarded statement sequence {vertical bar, guarded statement sequence} ;
statement sequence =

[[object denoter], colon, guarded class type, "DO", statement sequence] ;

guarded

class type = class type identifier. ;

object dgnoter = identifier ;

Static Yemantics

The gu

Dynam
When ¢
selecto
guarde

hrd selector shalf*be a well formed expression of a class type.

c Semantics
pxecuting the guard statement, the guard selector is evaluated. The dynamic type o

f the

[object is checked against the class types and the first (in lexical order) matching
] statement sequence is selected. The dynamic type of the guard selector L;I)ject

matches a guarded class type if it is assignment compatible to that type but not the empty
reference, i. e. it is of the guarded class type or one if its subclasses.

If the selector object does not match any of the guarded statement sequergiest thaat of
the guard statement shall be executed (if present); otherwise an exception shall be raised (see

7.1.3).

NOTE — The empty reference always selectsHh&E part (or raises the exception).

24

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

6.5.1 Guarded Statement Sequence

Within a selected guarded statement sequence, the selector object is access
denoter (if present).

Static Semantics

ible via the ob

The guarded statement sequence opens a new scope (like the with statement), the obj
denoter, if present, is declared in this scope. The object denoter is an immutable entity insi

the—staterment—sequenceandhas the—statictype—as spectified by theguarde
statement sequence shall be well-formed within this scope.

Dynamic Semantics

If the guarded statement sequence is selected, the object reference that
evaluation of the guard selector is assigned to the object denoter (if pre
statement sequence is executed.

6.6 Safeguarded Modules

Unless a compilation module is tagged as ungafeguarded it shall contain

d class type.

results from
sent). Then tt

heither untrac

objects nor statements that threaten the ability of the garbage-collector to tratc]:k references

traced objects. A compilation module is tagged as unsafeguarded by includi
UNSAFEGUARDED in its module header (see6.8.1).

g the keywor

If a program contains no unsafeguarded modules then it is guaranteed fo be safe fro

undetected dangling object referefice errors. A program that contains unsafe
is no longer safe from such errofs. In such a program, it is the programmer's
ensure that the unsafeguardéd’modules do not cause such errors.

NOTE 1 — Even in a program:that contains no unsafeguarded modules, dangling object refer
be caused by injudicious use_of features fronSth&TEM module.

NOTE 2 — Modules that\do not use object oriented extensions are safeguarded by definition.

6.7 Garbage’ Collection

The garbage collector identifies and has the option to destroy traced objects t
referenced. Along with the automatic initialization of traced object reference
object safety by guaranteeing not to destroy an object that is referenced by 4
elass variable or by a procedure parameter. It does this by tracking the refers

puarded modu
responsibility 1

ENCe errors can S

nat are no long
s this ensure
. global, local
bnces to a trac
it.

object and only destroying it when to do so will leave no dangling references tq

NOTE 1 — An implementation is not required to track references to traced objects obtained by the use
procedures from the system mod@eSTEM. If such untracked references are the only references to a traced

object the implementation is allowed to collect the object.

NOTE 2 — It is not the intention of this standard to specify the way traced object references s
implementation is free to use any scheme that has the same behaviour as the one specified.

The garbage collector allocates and deallocates storage for traced objects.

hall be tracked. A

NOTE 3 — This standard does not provide a means (for a user of an implementation) to replace the stora

management scheme employed for traced objects.

25

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Dynamic Semantics

This specification models the behaviour of the garbage collector in terms of operations on a
map from objects to sets of references. The operations refer t@dldgge-collection-
enabledwhich is maintained by procedures of the system maeMRBAGECOLLECTION (see

7.2). Before module initializatiomgarbage-collection-enableid set to be true, and the map is

set to be empty.

that set of the map which is associated with the object. Such an operatioaddi@nal-
traced-yariable

When & reference to a non-empty object ends, the referring variable shall be excluded ffom
that sef of the map which is associated with the object. Such an operatidefuisiet-traced-
variable

At times that are implementation dependent, but subject to the trghrledge-collection-
enabled the garbage collector shall attempt to reclaim object-storage.

NOTE 4 |— This specification does not oblige an implementation to attempt reclamation at any particular time | or
even at gll.

When the garbage collector is reclaiming object:storage it shall only reclaim the memaqry
occupigd by an object if either of the following is {rue:

— the set of references associated with the'object is empty

— al| variables in the object's set of references are components of objects whose associated
sgts contain only variables that ;are components of the object in question, or variables
thpat are directly or indirectly,components of such objects.

NOTE 5}|— This specification allows an' object to be collected when the only remaining active references to that
object are contained within objects.that may also be collected.

NOTE 6] — This specification.does not oblige an implementation to reclaim all, or even any, unreferenced
objects. |t therefore allows-a.garbage collector to be "leaky".

When the garbagé<collector reclaims the memory occupied by an object it removes the object
from the map and useeallocate-traced-object-storage

When Etorage is required for a traced object it shall be allocated in an implementation
dependent manner. Such an operation isllotate-traced-object-storagdf the requested |0
object storage cannot be allocated the vaMeTy is returned.

When storage is no longer required for a traced object it shall be deallocated in an
implementation dependent manner. Such an operatioteigllcate-traced-object-storage

6.8 Changes to the Base Language
This subclause describes, where changes in the definition of the base language have to be

made in order to incorporate the extensions described in this standard. A collection of the
changes to the concrete syntax is found in Annex B.

26

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

6.8.1 Module Header
Program Modules

Concrete Syntax

The concrete syntax is changed to allow the module to be tagged as unsafeguarded
permitting the optional keywordNSAFEGUARDED to appear before the keywokbDULE

(Base Language 6.1.2).

Static Semantics
The following test is added to the well-formed rules for the module (Base Lang

Unless the module is tagged as unsafeguarded in its header, it shall con
following:
An import that directly or indirectly causes the import of an'‘untraced clasg

NOTE 1 — This includes the import of
— an untraced class type
— a structured type that contains a component of an untraced class type
— a procedure type that returns a value of an untraced class‘type
— a procedure type that returns a structure that contains & component of an untraced clag
of any variable or procedure that is of such a type.

A declaration of an untraced class type:
A call of SYSTEM.CAST with a variable of a traced class type or a structy
contains a component of a traced glass type as the second actual param
A call that passes a variable ofia traced class type or a structured typd
component of a traced class type as a value actual parameter to an ope
OF LOC.

A call of SYSTEM.ADR witha class variable (attribute) as the actual paramg
A call that passes a class variable (attribute) as a variable actual paramg
fixed ARRAY OF LOE,

Definition Modules

Concrete Syntax

The concrete-syntax is changed to allow the module to be tagged as u
permitting-the optional keywordNSAFEGUARDED to appear before the keywobd|
(Base-llahguage 6.1.3).

Static Semantics
The following test is added to the well-formed rules for the module (Base Lang

uage 6.1.2):

ain none of t

type.

s type or the img

red type that
pter.

b that contains
nArRied

pter.
ter to an open

nsafeguarded
FINITION

uage 6.1.2):

NOTE 2 — This includes the import of
— an untraced class type
— a structured type that contains a component of an untraced class type
— a procedure type that returns a value of an untraced class type

ain none of t

An import that directly or indirectly causes the import of an untraced class type.

— a procedure type that returns a structure that contains a component of an untraced class type or the imf

of any variable or procedure that is of such a type.

A definition of an untraced class type.

27

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Sourced Implementation Modules

Concrete Syntax

The concrete syntax is changed to allow the module to be tagged as unsafeguarded by
permitting the optional keyworduUNSAFEGUARDED to appear before the keyword
IMPLEMENTATION (Base Language 6.1.4.1).

Static Semantics
The following test is added to the well-formed rules for the module (Base Language 6.1.4:1):

Unless|the module is tagged as unsafeguarded in its header, it shall contain nene of|the
following:
— A import that directly or indirectly causes the import of an untraced class type.

NOTE 3 |— This includes the import of
— anjuntraced class type
— a $tructured type that contains a component of an untraced class type
— a procedure type that returns a value of an untraced class type
— a [procedure type that returns a structure that contains a component of anCuntraced class type or the import
of any variable or procedure that is of such a type.

— Aldeclaration of an untraced class type.
— Afcall of SYSTEM.CAST with a variable of a traced ‘elass type or a structured type that
cgntains a component of a traced class type as the;second actual parameter.
— A|call that passes a variable of a traced class>type or a structured type that contains a
cgmponent of a traced class type as a value actual parameter to an open or fixed
ARRAY OF LOC.
— Afcall of SYSTEM.ADR with a class variable (attribute) as the actual parameter.
— Afcall that passes a class variable (aftribute) as a variable actual parameter to an opgn or
fided ARRAY OF LOC.

NOTE 4|— If a definition module is unsafeguarded its implicit import into its implementation module sha
require that module to be tagged as unsafeguarded .

6.8.2 DEfinitions and Declarations
Definitipns
The "class definition"ds-added to the description afefinition”.

Declargtions
The "class dedlaration” is added to the description afetlaration”.

Qualified Identifier
The possibility of qualifying a class identifier is added to the descriptioguaiffied identifier".

Variant Records

It shall be an error to declare a type that is or contains a record with a variant of a traced class
type (Base Language 6.2.9, Type Declaration).

It shall be an error to declare a variable of a type that is or contains a record with a variant of a
traced class type (Base Language 6.2.10, Variable Declaration).

28

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

Pointer Types

It shall be an error to declare a pointer type with a bound type that is a traced class type ot
structured type with a component that is of a traced class type (Base Language 6.2.9, Ty
Declaration).

It shall be an error to declare a variable of a pointer type with a bound type that is a trace
class type or a structured type with a component that is of a traced class type (Base Langu:
6.2.10, Variable Declaration).

Variable Allocation

Add in allocate-a-variable before the return perform (Base Language.-6.2|10, Variable
Declaration):

If the variable is of a traced class type, then assign the galB®Y-10 it. If the variable is
structured, then assign the valePTY to each of its components that are of g traced class

type.

Parameter Deallocation

Add in deallocate-parameterbefore deallocate-storageerform (Base Language 6.2.11.1,
Proper Procedure Declarations, Auxiliaries):

If the parameter is of a traced class type,.then the garbage collector shall e informed of
defunct-traced-variabl¢see 6.7). If the parameter is structured, then for each qomponent tha
is of a traced class type the garbage collector shall be informediefdiract-traced-viariablen

respect of each object referred to (see6.7).

6.8.3 Blocks

Add in deallocate-declarationdefore deallocate-storageperform (Base Langyage 6.5.1
Proper Procedure Blocks;-Auxiliaries).

If the variable is of'a traced class type, then the garbage collector shall b¢ informed of
defunct-traced-yvariablé¢see 6.7). If the variable is structured, then for each conmpponent that is
of a traced class’type the garbage collector shall be informed of a defunct-trjaced-variable
respect of each object referred to (see 6.7).

6.8.4 Statement Part

Statement
The "guard statement” is added to the alternatives defined faiatement".

Assignment

Additions have to be made to the rules for assignment compatibility and to the meaning of tr
assignment statement to cover the assignment of object references.

Add in elementary-variable-assignmeatter both instances ahange-valugperform (Base
Language 6.6.3 Assignment Statement, Dynamic Semantics):

If the assignment is to a variable of a traced class type, then the garbage collector shall first
informed of anadditional-traced-variablan respect of the new value and then informed of a
defunct-traced-variablén respect of the old value (see 6.7).

29

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

Relational Operations
The rules for the comparison of object references have to be added to the rules for relational

operations.
6.8.5 Parameter Compatibility and Argument Binding

Add in bind-valuebeforeassignperform (Base Language 6.9.4.1 Argument Binding to Value

P otare Dunamrnain C oot~
aram TS, DyrmarmmC-OTTTITartiat S

If the parameter is of a traced class type, then assign theersae to it. If the parameter.is
structurled, then assign the valEPTY to each of its components that are of a traced class

type.

6.8.6 The Module COROUTINES

Change in the description of the pseudo modid®ROUTINES (Base Language 7.2.1 The
Interfade to COROUTINES)

Add the following to the pseudo-definition module:

PROCEDURE COROUTINEDONE (cr: COROUTINE);
(* Asse(ts that the coroutine identified by cr has reached
the end of its lifetime.
)

Declargtion Semantics
Add COROUTINEDONE to map as £€OROUTFINE-PROPER-PROCEDURE

New Base Language 7.2.3.7 The Procedure COROUTINEDONE

The procedurecOROUTINEDONE~IS' used by the programmer to assert that a coroutine hapg
reached the end of its lifetime; and that no further transfer to the coroutine will occur. This
informg the garbage coallector that any active traced object references contained in the
worksppace of the coroutine are now defunct.

NOTE — A call of COROUTINEDONE does not prevent a later transfer to the specified coroutine. Such 3
transfer can, however, result in erroneous operation, and is analogous to transferring to a coroutine whose
workspage is ngllonger available.

Static Semanties
A call of COROUTINEDONE shall have one actual parameter that shall be an expression that is
of the coroutine type.

Dynamic Semantics

The callcCOROUTINEDONE(cr) shall inform the garbage collector otlafunct-traced-variable
for each active traced object reference in the workspace of the coroutine identdied by

30

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

6.8.7 Environment

Structures

The class type as described in subclause 6.1 is denoted as a type structur€lasdled
structure.This type structur€lass-structureis added to the list of alternatives for the VDM

type Structure(Base Language 6.11.1.3, Structures).

NOTE — Class types are not a substructure of any other structured type as defined in the Base Language. T
assures that none of the features of the Base Language defined for special groups of types (e. g. type convers

apples 10 class types. This also states that pointers and class references are not compatiblé
compatibility rules defined in the Base Language (expression compatibility, assignment
parameter compatibility) refer either to equal types or to types especially named in these-comp

7 Required System Modules

Two new system modules are provided for the OO extensions, one for the
additional exceptions and one for the garbage collector management.

7.1 Object Exceptions

to each other, @
ompatibility, anc
atibility rules.

handling of th

The system module M2OOEXCEPTION «provides facilities for identifying language

exceptions that have been raised by using features described in this standard.

7.1.1 The Interface to M2OOEXCEPTION

The interface to M20OOEXCEPTION behaves as if the following were its definifion module.

DEFINITION MODULE M2OOEXCEPTION,;

(* Provides facilities for identifying exceptions of the extended language
*)
TYPE
M2OOEXxceptions =
(emptyException; abstractException, immutableException, guardException

PROCEDWURE M20OOEXxception (): M2OOEXxceptions;
(* If the edrrent coroutine is in the exceptional execution state because
of.the raising of an exception of the language extensions, returns the
corresponding enumeration value, and otherwise raises an exception.

)
PROCEDURE IsM20OException (): BOOLEAN;

(* If the current coroutine is in the exceptional execution state because

of the raising of an exception of the language extensions, returns
TRUE, and otherwise returns FALSE.

")
END M20OEXCEPTION.

7.1.2 The Entities of M2OOEXCEPTION

All entities defined in the modulev200EXCEPTION" behave as the corresponding entities of
the module M2EXCEPTION" of the base language, except that they act on the enumeration

value 'M20OExceptions".

31

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E) © ISO/IEC

7.1.3 Aggregation of the Exceptions of the Language Extensions

The extended language defines four new exceptions, for three of them the detection is
mandatory (EmptyException”, "abstractException”, “"guardException”); for the forth the
detection is non-mandatoryiriimutableException™).

— emptyException
to be raised whenever an attempt is made to access an object via an object variable that
cqntaifis-the-emptyreference:

— aljstractException
to|be raised whenever an attempt is made to call to an abstract method.

— immutableException

mpy be raised on an attempt to change an immutable entity.

— gyardException
to|be raised whenever the selector object in a guard statement does net'match any of the
guarded statement sequences andus& part is present.

NOTE — A call to an abstract method can occur only during construction time of an-object.

The mgssages associated with these exceptions are implementation defined.

7.2 The Module GARBAGECOLLECTION

The system module GARBAGECOLLECTION provides facilities for controlling the garbage
collectipn process.

7.2.1 The interface to GARBAGECOLLECTON

The interface to GARBAGECOLLECTION behaves as if the following were its definition
module).

DEFINITION MODULE GARBAGECO[LLECTION;

(* Provides facilities for controlling the garbage collector.
*)
PROCEDURE IsCollectienEnabled (): BOOLEAN;

(* If garpage collection is’enabled then returns TRUE and otherwise
returr]s FALSE.
)

PROCEDURE SetCollectionEnable (on: BOOLEAN);
(* If on |s, TRUE then enable garbage collection; otherwise if on is
FALSE and garbage collection can be disabled then disable garbage
collection.

")

PROCEDURE ForceCollection;
(* If garbage collection can be forced then force it else do nothing.
*

END GARBAGECOLLECTION.

32

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC

ISO/IEC 10514-3:1998(E)

7.2.2 The Procedures of GARBAGECOLLECTION

7.2.2.1 The Procedure SetCollectionEnable

Static Semantics

A call of setCollectionEnable shall have one actual parameter which shall be an
the Boolean type.

expression of

Dynamic Semantics
Whether or not garbage collection can be disabled shall be implementation

defined. If th

implementation does not allow garbage -collection to be disabled then the cal

SetCollectionEnable (on) shall have no action; otherwise the csdiCollectionEnable(

pn) shall

assign the value true to the flggrbage-collection-enableidi the valueon.is TRUE, gtherwise

it shall assign the valusLSE to the flaggarbage-collection-enabled

7.2.2.2 The Procedure ForceCollection

Static Semantics
A call of ForceCollection shall have no actual parameters.

Dynamic Semantics

Whether or not garbage collection can«he forced shall be implementation
implementation does not allow garbage’collection to be forced then theorcatt

defined. If the

llection()

shall have no action; otherwise the caliceCollection() shall attempt to reclaim object storage

(see 6.7).

7.2.3 The Functions of GARBAGECOLLECTION

7.2.3.1 The Function IsCollectionEnabled

Static Semantics

A call of IscellectionEnabled shall have no actual parameters. The type
IsCollectionEnabled shall be the Boolean type.

Dynamic/Semantics

If the value of the flaggarbage-collection-enableds true, the value of
IsCullectionEnabled() shall beTRUE, otherwise the value shall baLSE.

pf a call of

the call

33

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

A.1Cl

Annex A
(informative)

Collected Concrete Syntax

ss Definition

© ISO/IEC

class deflinition =

(‘trag
untraced
(‘nor
traced cl
"TRA

normal ¢
norn
normal ¢
"CLA
normal ¢
[inh
[rev
norn
"ENI

abstract
abst

abstract
"ABS

abstract
[inh
[rev
abst
"ENI

class ide

normal ¢
normal ¢
"CO
"TYH
"VAHR
(norr

abstract

ed class definition | untraced class definition);

class definition =

mal class definition | abstract class definition) ;

hss definition =

CED", (normal class definition | abstract class definition) ;

ass definition =

al class header, (normal class definition body | "FORWARD") ;
ass header=

SS", class identifier, semicolon ;

ass definition body =

brit clause],

pal list |,

al class component definitions,

D", class identifier ;

Class definition =

act class header, (abstract class definition body |\'FORWARD") ;
Class header=

TRACT", "CLASS", class identifier, semicolon;

Class definition body =

brit clause],

pal list |,

act class component definitions,

D", class identifier ;

htifier = identifier ;

ass component definitions = { normal component definition } ;
bmponent definition =

NST", { constant declaration, semicolon } |

E", { type definition, semicolon } |

", { classvariable declaration, semicolon } |

hal method/definition | overriding method definition), semicolon ;

Class.component definitions = {abstract component definition } ;

abstract

component definition =

"CONST", { constant declaration, semicolon } |
"TYPE", { type definition, semicolon } |
"VAR", { class variable declaration, semicolon } |
(normal method definition | abstract method definition |
overriding method definition), semicolon ;

class variable declaration = identifier list, colon, type denoter ;

normal method definition = procedure heading;
overriding method definition = "OVERRIDE", procedure heading;
abstract method definition = "ABSTRACT", procedure heading;

34

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC ISO/IEC 10514-3:1998(E)

A.2 Class Declaration

class declaration =

(traced class declaration | untraced class declaration) ;
untraced class declaration =

(normal class declaration | abstract class declaration) ;

normal class declaration =

normal class header, (normal class declaration body | "FORWARD") ;
IIUIIIICl: b:abb hcaGICI—

"CLASS", class identifier, semicolon ;
normal class declaration body =

[inherit clause],

[reveal list],

normal class component declarations,

[class body],

"END", class identifier ;

abstract class declaration =

abstract class header, (abstract class declaration body | "FORWARD") ;
abstract class header=

"ABSTRACT", "CLASS", class identifier, semicolon ;
abstract class declaration body =

[inherit clause],

[reveal list],

abstract class component declarations,

[class body],

"END", class identifier ;

class body = module body;

normal class component declarations =\{'normal component declaration } ;
normal component declaration =

"CONST", { constant declaration, semicolon } |

"TYPE", { type declaration,"semicolon } |

"VAR", { class variable declaration, semicolon } |

normal method declarations , semicolon ;

abstract class companent declarations = {abstract component declaration } ;
abstract component declaration =

"CONST'{,constant declaration, semicolon } |

"TYPE!;{\type declaration, semicolon } |

"VAR"){ class variable declaration, semicolon } |

abstract method declarations , semicolon ;

normal method declarations =
normal method declaration | overriding method declaration;

normal method declaration = procedure declaration;
averriding method declaration = "OVERRIDE" procedure declaration;

abstract method declarations =
normal method declaration | abstract method definition | overriding method declaration;

traced class declaration =
(normal traced class declaration | abstract traced class declaration) ;

normal traced class declaration =

normal traced class header, (normal traced class declaration body | "FORWARD") ;
normal traced class header=

"TRACED", "CLASS", class identifier, semicolon ;

35

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

normal traced class declaration body =
[inherit clause],
[reveal list],
normal class component declarations,
[traced class body],
"END", class identifier ;

abstract traced class declaration =
abstract traced class header, (abstract traced class declaration body | "FORWARD") ;
abstract traced class header=

© ISO/IEC

"TRACED", "ABSTRACT", "CLASS", class identifier, semicolon ;
abstract fraced class declaration body =

[inherit clause],

[reveal list],

abstract class component declarations,

[traged class body],

"END", class identifier ;

traced class body = "BEGIN", block body;

A.3 Reveal List

reveal list = "REVEAL" revealed component list, semicolon ;

revealed|component list = revealed component, { comma, revealed conponent } ;
revealed|component = identifier | "READONLY" class variable identifier ;
class vatfiable identifier = identifier ;

A.4 Inherit Clause

inherit clpuse = "INHERIT", class type identifier, semieglon ;
class type identifier = type identifier ;

A.5 Degsignators

object sglected designator =
obje¢t variable designator, period,) class identifier, period], class variable identifier ;
object vdriable designator = variable’ designator ;

object sqlected value =

obje¢t value designatar,period, [class identifier, period], entity identifier ;
object vdlue designaton=walue designator ;
entity idgntifier = identifier ;

A.6 Glard:Statement

guard staterent=
"GUARD", guard selector, "AS", guarded list,
['ELSE" statement sequence],
"END";

guard selector = expression ;

guarded list = guarded statement sequence {vertical bar, guarded statement sequence} ;
guarded statement sequence =
[[object denoter], colon, guarded class type, "DO", statement sequence] ;
guarded class type = class type identifier ;
object denoter = identifier ;

36

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

© ISO/IEC ISO/IEC 10514-3:1998(E)

Annex B
(informative)

Changes to the Syntax of the Base Language

program module =
["UNSAFEGUARDED"], "MODULE", module identifier,
[nterrupt protection], semicolon,
import lists,
module block, module identifier, period ;

definition module =
["UNSAFEGUARDED"], "DEFINITION", "MODULE", module identifier, semicolon,
import lists, definitions,
"END", module identifier, period ;

implementation module =
["UNSAFEGUARDED"], "IMPLEMENTATION", "MODULE", fmodule identifier,
[interrupt protection], semicolon,
import lists,
module block, module identifier, period ;

definition =
"CONST", {constant declaration, semicolon}
"TYPE", {type definition, semicolon} [
"VAR", {variable declaration, semicolon} |
procedure heading, semicolon |
class definition, semicolon

declaration =
"CONST", {constant declarationysemicolon} |
"TYPE", {type declaration, semicolon} |
"VAR", {variable declaration, semicolon} |
procedure declaration; s€micolon |
class declaration, semicolon, |
local module declaration, semicolon;

qualified identifier)= { qualifying identifier, period], class identifier, period],
identifier,

variableydesignator = entire designator | indexed designator | selected designator |
dereferenced designatashject selected designatoyr

value designator = entire value | indexed value | selected value | dereferenced value |
object selected value

Statemernt —
empty statement | assignment statement | procedure call |
retry statement | with statement | if statement |
case statement | while statement | repeat statement |
loop statement | exit statement | for statement |

guard statement;

37

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

ISO/IEC 10514-3:1998(E)

Annex C
(informative)

Glossary

Ancestor
A class that other classes have inherited from. An ancestor class may be the "immediate" or

© ISO/IEC

"direct"

from. Alternately an ancestor class may be any class further up the inheritance chain.thag

inherite

Attribut
A class

Child
A class
inherit ¢

Class
An inte

also contains the specifications of the data and methods. (In a safe object oriented langy

the de
encaps|
Data Ty

Class ty
The ne

Client

Any pa
messag
a client

Compo
Any en
method

Descern
Any cla

ancestor (also called the parent class), that is the class that is being directly inher

d by a class from which the current class inherits. (see Inheritance)

a)
-

variable (i. e. data component of a class).

that directly inherits another class, that is the class that listSyanother class in its (
tlause. (see Inheritance)

'face (description) of the data and methods that an‘object of this class contains. A ¢

finition and specification can be separated.) A class is a language entity t
ulates both the data and the operations on‘the data. A class is essentially an Abjs
pe (ADT).

pe
v type introduced by a class declaration or class definition is called class type.

t of a program that uses.another part of that program. For example a class that ser
je to an object of anather class, or a class that has an object within it of another cla
of the class to whigch the object belongs.

ent
ity declaredinside a class is called component of this class (e. g. class variab

S).

dant
1SS, that inherits from another class, including classes further down the inheritan

ted

tis

DWN

ass
lage
nat
stract

ds a

SS is

€s,

ce

chain t

atinherit from classes that have inherited from a class. A “direct” or “immediate

descendant (also called a child class) is the class that directly inherits from another class. (see
Inheritance)

Dynamic Binding
The ability of a variable to refer to different versions of an object. A variable declared to be of

a superclass type can refer to a subclass object, as the subclass object contains all features that
the superclass contains. A variable of the superclass type can only access those features that

are declared within the superclass, as they are all that the superclass is aware of, even though

the object the variable is referring to may contain other features as well.

38

https://standardsiso.com/api/?name=e9864f373e8baa24832fe4a724bf2c1e

