
Information security — Key
management —
Part 3:
Mechanisms using asymmetric
techniques
Sécurité de l'information — Gestion de clés —
Partie 3: Mécanismes utilisant des techniques asymétriques

INTERNATIONAL
STANDARD

ISO/IEC
11770-3

Fourth edition
2021-10

Reference number
ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ii

ISO/IEC 11770-3:2021(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

	 ﻿� © ISO/IEC 2021 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved iii

Contents Page

Foreword ... 5

Introduction ... 6

1 Scope .. 1

2 Normative references .. 2

3 Terms and definitions .. 2

4 Symbols and abbreviations .. 8

5 Requirements ... 10

6 Key derivation functions .. 11

7 Cofactor multiplication ... 11

8 Key commitment ... 12

9 Key confirmation .. 12

10 Framework for key management ... 13
10.1 General ... 13
10.2 Key agreement between two parties ... 14
10.3 Key agreement between three parties .. 14
10.4 Secret key transport .. 15
10.5 Public key transport .. 15

11 Key agreement ... 15
11.1 Key agreement mechanism 1 ... 15
11.2 Key agreement mechanism 2 ... 17
11.3 Key agreement mechanism 3 ... 17
11.4 Key agreement mechanism 4 ... 19
11.5 Key agreement mechanism 5 ... 20
11.6 Key agreement mechanism 6 ... 21
11.7 Key agreement mechanism 7 ... 23
11.8 Key agreement mechanism 8 ... 24
11.9 Key agreement mechanism 9 ... 25
11.10 Key agreement mechanism 10 ... 26
11.11 Key agreement mechanism 11 ... 27
11.12 Key agreement mechanism 12 ... 28
11.13 Key agreement mechanism 13 ... 29
11.14 Key agreement mechanism 14 ... 30
11.15 Key agreement mechanism 15 ... 31

12 Secret key transport .. 32
12.1 Secret key transport mechanism 1 ... 32
12.2 Secret key transport mechanism 2 ... 34
12.3 Secret key transport mechanism 3 ... 35
12.4 Secret key transport mechanism 4 ... 37
12.5 Secret key transport mechanism 5 ... 38
12.6 Secret key transport mechanism 6 ... 41

13 Public key transport .. 42
13.1 Public key transport mechanism 1 .. 42
13.2 Public key transport mechanism 2 .. 43
13.3 Public key transport mechanism 3 .. 44

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

iv © ISO/IEC 2021 – All rights reserved

Annex A (normative) Object identifiers .. 46

Annex B (informative) Properties of key establishment mechanisms .. 55

Annex C (informative) Examples of key derivation functions .. 58

Annex D (informative) Examples of key establishment mechanisms .. 66

Annex E (informative) Examples of elliptic curve based key establishment mechanisms 70

Annex F (informative) Example of bilinear pairing based key establishment mechanisms 80

Annex G (informative) Secret key transport ... 84

Bibliography ... 88

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details
of any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent
declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 27, Information security, cybersecurity and privacy protection.

This fourth edition cancels and replaces the third edition (ISO/IEC 11770-3:2015), which has been
technically revised. It also incorporates Technical Corrigenda ISO/IEC 11770-3:2015/Cor1:2016 and
ISO/IEC 11770-3:2015/Amd.1:2017.

The main changes compared to the previous edition are as follows:

— the blinded Diffie-Hellman key agreements are added as key agreement mechanism 13 and 14 and
examples of the mechanisms are included in Annex E;

— key agreement mechanism 15 is added and the SM9 key agreement protocol as an example of the
mechanism is included in Annex F.

A list of all parts in the ISO/IEC 11770 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user's national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

http://www.iso.org/directives
http://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch/
http://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
http://www.iso.org/members.html
https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

vi © ISO/IEC 2021 – All rights reserved

Introduction

This document describes schemes that can be used for key agreement and schemes that can be used for
key transport.

Public key cryptosystems were first proposed in the seminal paper by Diffie and Hellman in 1976. The
security of many such cryptosystems is based on the presumed intractability of solving the discrete
logarithm problem over certain finite fields. Other public key cryptosystems such as RSA are based on
the difficulty of the integer factorization problem.

A third class of public key cryptosystems is based on elliptic curves. The security of such a public key
system depends on the difficulty of determining discrete logarithms in the group of points of an elliptic
curve. When based on a carefully chosen elliptic curve, this problem is, with current knowledge, much
harder than the factorization of integers or the computation of discrete logarithms in a finite field of
comparable size. All known general purpose algorithms for determining elliptic curve discrete logarithms
take exponential time. Thus, it is possible for elliptic curve based public key systems to use much shorter
parameters than the RSA system or the classical discrete logarithm based systems that make use of the
multiplicative group of some finite field. This yields significantly shorter digital signatures, as well as
system parameters, and allows for computations using smaller integers.

This document includes mechanisms based on the following:

— finite fields;

— elliptic curves;

— bilinear pairings.

The International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use
of a patent.

ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO and IEC that he/she is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statement of the holder of this patent right is registered with ISO and IEC. Information may
be obtained from the patent database available at www.iso.org/patents and http://patents.iec.ch.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those in the patent database. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

http://www.iso.org/patents
http://patents.iec.ch/
https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

INTERNATIONAL STANDARD ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 1

Information security — Key management —

Part 3:
Mechanisms using asymmetric techniques

1 Scope

This document defines key management mechanisms based on asymmetric cryptographic techniques. It
specifically addresses the use of asymmetric techniques to achieve the following goals.

a) Establish a shared secret key for use in a symmetric cryptographic technique between two entities A
and B by key agreement. In a secret key agreement mechanism, the secret key is computed as the
result of a data exchange between the two entities A and B. Neither of them is able to predetermine
the value of the shared secret key.

b) Establish a shared secret key for use in a symmetric cryptographic technique between two entities A
and B via key transport. In a secret key transport mechanism, the secret key is chosen by one entity
A and is transferred to another entity B, suitably protected by asymmetric techniques.

c) Make an entity's public key available to other entities via key transport. In a public key transport
mechanism, the public key of entity A is transferred to other entities in an authenticated way, but not
requiring secrecy.

Some of the mechanisms of this document are based on the corresponding authentication mechanisms in
ISO/IEC 9798-3.

This document does not cover certain aspects of key management, such as:

— key lifecycle management;

— mechanisms to generate or validate asymmetric key pairs; and

— mechanisms to store, archive, delete, destroy, etc., keys.

While this document does not explicitly cover the distribution of an entity's private key (of an asymmetric
key pair) from a trusted third party to a requesting entity, the key transport mechanisms described can
be used to achieve this. A private key can in all cases be distributed with these mechanisms where an
existing, non-compromised key already exists. However, in practice the distribution of private keys is
usually a manual process that relies on technological means such as smart cards, etc.

This document does not specify the transformations used in the key management mechanisms.
NOTE To provide origin authentication for key management messages, it is possible to make provisions for
authenticity within the key establishment protocol or to use a public key signature system to sign the key exchange
messages.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

2 © ISO/IEC 2021 – All rights reserved

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10118-1, Information technology — Security techniques — Hash-functions — Part 1: General

ISO/IEC 11770-1, Information technology — Security techniques — Key management — Part 1:
Framework

ISO/IEC 11770-6, Information technology — Security techniques — Key management — Part 6: Key
derivation

ISO/IEC 15946-1, Information technology — Security techniques — Cryptographic techniques based on
elliptic curves — Part 1: General

ISO/IEC 18031, Information technology — Security techniques — Random bit generation

ISO/IEC 19772, Information security — Authenticated encryption

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1
asymmetric cryptographic technique
cryptographic technique that uses two related transformations, a public transformation [defined by the
public key (3.33)] and a private transformation [defined by the private key (3.32)], and has the property
that given the public transformation, then it is computationally infeasible to derive the private
transformation

Note 1 to entry: A system based on asymmetric cryptographic techniques can either be an encryption system, a
signature system, a combined encryption and signature system, or a key agreement scheme. With asymmetric
cryptographic techniques there are four elementary transformations: signature and verification for signature
systems, encryption and decryption for encryption systems. The signature and the decryption transformations are
kept private by the owning entity, whereas the corresponding verification and encryption transformations are
published. There exist asymmetric cryptosystems (e.g. RSA) where the four elementary functions can be achieved
by only two transformations: one private transformation suffices for both signing and decrypting messages, and
one public transformation suffices for both verifying and encrypting messages. However, since this does not
conform to the principle of key separation, throughout this document the four elementary transformations and the
corresponding keys are kept separate.

3.2
asymmetric encryption system
system based on asymmetric cryptographic techniques (3.1) whose public transformation is used for
encryption (3.9) and whose private transformation is used for decryption (3.6)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://www.iso.org/obp
https://www.electropedia.org/
https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 3

3.3
asymmetric key pair
pair of related keys (3.17) where the private key (3.32) defines the private transformation and the public
key (3.33) defines the public transformation

3.4
certification authority
CA
centre trusted to create and assign public key (3.33) certificates

3.5
collision-resistant hash-function
hash-function (3.15) satisfying the following property: it is computationally infeasible to find any two
distinct inputs which map to the same output

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment.

[SOURCE: ISO/IEC 10118-1:2016, 3.1]

3.6
decryption
reversal of a corresponding encryption (3.9)

[SOURCE: ISO/IEC 11770-1:2010, 2.6]

3.7
digital signature
data unit appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data
unit to verify the origin and integrity of the data unit and protect the sender and the recipient of the data
unit against forgery by third parties, and the sender against forgery by the recipient

3.8
distinguishing identifier
information which unambiguously distinguishes an entity

[SOURCE: ISO/IEC 11770-1:2010, 2.9]

3.9
encryption
(reversible) transformation of data by a cryptographic algorithm to produce ciphertext, i.e. to hide the
information content of the data

[SOURCE: ISO/IEC 11770-1:2010, 2.10]

3.10
entity authentication
corroboration that an entity is the one claimed

[SOURCE: ISO/IEC 9798-1:2010, 3.14]

3.11
entity authentication of entity A to entity B
assurance of the identity of entity A for entity B

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

4 © ISO/IEC 2021 – All rights reserved

3.12
explicit key authentication from entity A to entity B
assurance for entity B that entity A is the only other entity that is in possession of the correct key (3.17)

Note 1 to entry: Implicit key authentication from entity A to entity B and key confirmation from entity A to entity B
together imply explicit key authentication from entity A to entity B.

3.13
forward secrecy with respect to both entity A and entity B individually
property that knowledge of entity A's long-term private key (3.32) or knowledge of entity B's long-term
private key (3.32) subsequent to a key agreement (3.18) operation does not enable an opponent to
recompute previously derived keys (3.17)

Note 1 to entry: This differs from mutual forward secrecy in which knowledge of both entity A's and entity B's long-
term private keys do not enable recomputation of previously derived keys.

3.14
forward secrecy with respect to entity A
property that knowledge of entity A's long-term private key (3.32) subsequent to a key agreement (3.18)
operation does not enable an opponent to recompute previously derived keys (3.17)

3.15
hash-function
function which maps strings of bits of variable (but usually upper bounded) length to fixed-length strings
of bits, satisfying the following two properties:

— for a given output, it is computationally infeasible to find an input which maps to this output;

— for a given input, it is computationally infeasible to find a second input which maps to the same
output

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment.

Note 2 to entry: For the purposes of this document all hash-functions are assumed to be collision-resistant hash-
functions.

[SOURCE: ISO/IEC 10118-1:2016, 3.4]

3.16
implicit key authentication from entity A to entity B
assurance for entity B that entity A is the only other entity that can possibly be in possession of the correct
key (3.17)

3.17
key
sequence of symbols that controls the operation of a cryptographic transformation (e.g. encryption (3.9),
decryption (3.6), cryptographic check function computation, signature calculation, or signature
verification)

[SOURCE: ISO/IEC 11770-1:2010, 2.12]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 5

3.18
key agreement
process of establishing a shared secret key (3.38) between entities in such a way that neither of them can
predetermine the value of that key (3.17)
Note 1 to entry: By predetermine it is meant that neither entity A nor entity B can, in a computationally efficient
way, choose a smaller key space and force the computed key in the protocol to fall into that key space.

3.19
key commitment
process of committing to use specific keys (3.17) in the operation of a key agreement (3.18) scheme before
revealing the specified keys (3.17)

3.20
key confirmation from entity A to entity B
assurance for entity B that entity A is in possession of the correct key (3.17)

3.21
key control
ability to choose the key (3.17) or the parameters used in the key (3.17) computation

3.22
key derivation function
function that outputs one or more shared secrets, for use as keys (3.17), given shared secrets and other
mutually known parameters as input

3.23
key establishment
process of making available a shared secret key (3.38) to one or more entities, where the process includes
key agreement (3.18) and key transport (3.25)

3.24
key token
key (3.17) management message sent from one entity to another entity during the execution of a key
(3.17) management mechanism

3.25
key transport
process of transferring a key (3.17) from one entity to another entity, suitably protected

3.26
message authentication code
MAC
string of bits which is the output of a MAC algorithm (3.27)

Note 1 to entry: A MAC is sometimes called a cryptographic check value (see for example ISO 7498-2).

[SOURCE: ISO/IEC 9797-1:2011, 3.9]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

6 © ISO/IEC 2021 – All rights reserved

3.27
message authentication code algorithm
MAC algorithm
algorithm for computing a function which maps strings of bits and a secret key (3.38) to fixed-length
strings of bits, satisfying the following two properties:
— for any key (3.17) and any input string, the function can be computed efficiently;
— for any fixed key (3.17), and given no prior knowledge of the key (3.17), it is computationally

infeasible to compute the function value on any new input string, even given knowledge of a set of
input strings and corresponding function values, where the value of the ith input string can have been
chosen after observing the value of the first i – 1 function values (for integers i > 1)

Note 1 to entry: A MAC algorithm is sometimes called a cryptographic check function (see for example ISO 7498-2).

Note 2 to entry: Computational feasibility depends on the user's specific security requirements and environment.

[SOURCE: ISO/IEC 9797-1:2011, 3.10]

3.28
mutual entity authentication
entity authentication (3.10) which provides both entities with assurance of each other's identity

3.29
mutual forward secrecy
property that knowledge of both entity A's and entity B's long-term private keys (3.32) subsequent to a
key agreement (3.18) operation does not enable an opponent to recompute previously derived keys (3.17)

3.30
one-way function
function with the property that it is easy to compute the output for a given input but it is computationally
infeasible to find an input which maps to a given output

3.31
prefix free representation
representation of a data element for which concatenation with any other data does not produce a valid
representation

3.32
private key
key (3.17) of an entity's asymmetric key pair (3.3) that is kept private

Note 1 to entry: The security of an asymmetric system depends on the privacy of this key.

[SOURCE: ISO/IEC 11770-1:2010, 2.35]

3.33
public key
key (3.17) of an entity's asymmetric key pair (3.3) which can usually be made public without
compromising security

Note 1 to entry: In the case of an asymmetric signature system, the public key defines the verification
transformation. In the case of an asymmetric encryption system, the public key defines the encryption
transformation, conditional on the inclusion of randomisation elements. A key that is “publicly known” is not
necessarily globally available. The key can only be available to all members of a pre-specified group.

[SOURCE: ISO/IEC 11770-1:2010, 2.36]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 7

3.34
public key certificate
public key information (3.35) of an entity signed by the certification authority (3.4) and thereby rendered
unforgeable

3.35
public key information
information containing at least the entity's distinguishing identifier (3.8) and public key (3.33), but can
include other static information regarding the certification authority (3.4), the entity, restrictions on key
(3.17) usage, the validity period, or the involved algorithms

3.36
resilience to key compromise impersonation attack on A
resilience to attacks in which an adversary exploits knowledge of the long-term private key (3.32) of A to
impersonate any entity in subsequent communication with A

3.37
resilience to unknown key share attack for A and B
resilience to attacks in which only A and B know the session key (3.17) K; however, A and B disagree on
who they share K with

Note 1 to entry: Resilience to unknown key share attack can be achieved by choosing a key derivation function that
includes the identifiers of the involved entities.

3.38
secret key
key (3.17) used with symmetric cryptographic techniques by a specified set of entities

3.39
sequence number
time variant parameter (3.44) whose value is taken from a specified sequence which is non-repeating
within a certain time period

[SOURCE: ISO/IEC 11770-1:2010, 2.44]

3.40
signature system
system based on asymmetric cryptographic techniques (3.1) whose private transformation is used for
signing and whose public transformation is used for verification

3.41
third party forward secrecy
property that knowledge of a third party's private key (3.32) subsequent to a key agreement (3.18)
operation does not enable an opponent to recompute previously derived keys (3.17)

Note 1 to entry: Instead of third party forward secrecy, master key forward secrecy is also used in Reference [19].

3.42
time stamp
data item which denotes a point in time with respect to a common time reference

3.43
time-stamping authority
trusted third party (3.45) trusted to provide a time-stamping service
[SOURCE: ISO/IEC 13888-1:2020, 3.54]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

8 © ISO/IEC 2021 – All rights reserved

3.44
time variant parameter
data item used to verify that a message is not a replay, such as a random number, a time stamp (3.42) or
a sequence number (3.39)

Note 1 to entry: If a random number is used. then this is as a challenge in a challenge-response protocol. See also
ISO/IEC 9798-1:2010, Annex B.

[SOURCE: ISO/IEC 9798-1:2010, 3.36]

3.45
trusted third party
security authority or its agent, trusted by other entities with respect to security related activities

[SOURCE: ISO/IEC 9798-1:2010, 3.38]

4 Symbols and abbreviations

The following symbols and abbreviations are used in this document.

A, B, C distinguishing identifiers of entities

BE encrypted data block

BS signed data block

BS2IP bit string to integer conversion primitive

CA certification authority

CertA entity A's public key certificate

DA entity A's private decryption transformation function

dA entity A's private decryption key

E elliptic curve, either given by an equation of the form Y2 = X3 + aX + b over the
field GF(pm) for p>3 and a positive integer m, by an equation of the form Y2 +
XY = X3 + aX2 + b over the field GF(2m), or by an equation of the form Y2 = X3 +
aX2 + b over the field GF(3m), together with an extra point OE referred to as
the point at infinity, which is denoted by E/GF(pm), E/GF(2m), or E/GF(3m),
respectively

EA entity A's public encryption transformation function

eA entity A's public encryption key

F key agreement function

F(h,g) key agreement function using as input a factor h and a common element g

FP key agreement function based on pairing

G point on E with order n

g common element shared publicly by all the entities that use the key
agreement function F

gcd(a,b) greatest common divisor of two integers a and b

GF(pm), GF(2m), GF(3m) finite field with pm , 2m, 3m elements for a prime p>3 and a positive integer m

HA private key agreement key in a pairing-friendly elliptic curve of entity A

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 9

hA entity A's private key agreement key

hash hash-function

IHF2(A, n) BS2IP(kdf(A,   ))/328 (5)nb mod (n-1) +1 where bn is the bit-length of n

j cofactor used in performing cofactor multiplication

K secret key for a symmetric cryptosystem

KAB secret key shared between entities A and B
NOTE 1 In practical implementations, the shared secret key is subject to further processing before it can be used
for a symmetric cryptosystem.

kdf key derivation function

KT key token

KTA entity A's key token

KTAi key token sent by entity A after step (Ai)

l supplementary value used in performing cofactor multiplication

lcm least common multiple

M data message

MAC Message Authentication Code

MACK(Z) output of a MAC algorithm when using as input the secret key K and an
arbitrary data string Z

MQV Menezes-Qu-Vanstone

n prime divisor of the order (or cardinality) of an elliptic curve E over a finite
field

OE elliptic curve point at infinity

P point on an elliptic curve E

PA public key-agreement key in an elliptic curve of entity A

pA entity A's public key-agreement key

pairing pairing defined over an elliptic curve and used in FP

parameters parameters used in the key derivation function

PKIA entity A's public key information

q prime power pm for some prime p ≠ 3 and some integer m ≥ 1

r random number generated in the course of a mechanism

rA random number issued by entity A in a key agreement mechanism

S1, S2, S3 sets of elements

SA entity A's private signature transformation function

sA entity A's private signature key

T trusted third party

Texti ith optional text, data or other information that may be included in a data
block, if desired

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

10 © ISO/IEC 2021 – All rights reserved

TVP time-variant parameter such as a random number, a time stamp, or a
sequence number

VA entity A's public verification transformation function

vA entity A's public verification key

w one-way function

X(P) x-coordinate of a point P

√q square root of a positive number q

#E order (or cardinality) of an elliptic curve E

|| concatenation of two data elements

x  
smallest integer greater than or equal to the real number x

Σ digital signature

π(P) (X(P) mod /22 ρ  ) + /22 ρ   where 2log nρ =    and X(P) is the x-coordinate of
the point P

NOTE 2 No assumption is made on the nature of the signature transformation. In the case of a signature system
with message recovery, SA(M) denotes the signature Σ itself. In the case of a signature system with appendix, SA(M)
denotes the message M together with the signature Σ.

NOTE 3 The keys of an asymmetric cryptosystem are denoted by lower case letters (indicating its function)
indexed with the identifier of its owner, e.g. the public verification key of entity A is denoted by vA . The
corresponding transformations are denoted by upper case letters indexed with the identifier of their owner, e.g. the
public verification transformation of entity A is denoted by VA .

5 Requirements

It is assumed that the entities involved in a mechanism are aware of each other's claimed identities. This
can be achieved by the inclusion of identifiers in information exchanged between the two entities, or it
can be apparent from the context of use of the mechanism. Verifying the identity means checking that a
received identifier field agrees with some known (trusted) or expected value.

If a public key is registered with an entity, then that entity shall make sure that the entity who registers
the key is in possession of the corresponding private key (see ISO/IEC 11770-1 for further guidance on
key registration).

Annex A lists the object identifiers which shall be used to identify the key management mechanisms
specified in this document.

Annex B summarizes the major properties of the key establishment/transport mechanisms specified in
this document.

Annex C provides examples of key derivation functions.

Annex D provides examples of key establishment mechanisms.

Annex E provides examples of elliptic curve based key establishment mechanisms.

Annex F provides example of bilinear pairing based key establishment mechanisms.

Annex G describes secret key transport.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 11

6 Key derivation functions

The use of a shared secret as derived in Clause 10 as a key for a symmetric cryptosystem without further
processing is not recommended. It is often the case that the form of a shared secret established as a result
of using a mechanism specified in this document does not conform to the form needed for a specific
cryptographic algorithm, so some processing is needed. Moreover, the shared secret (often) has
arithmetic properties and relationships that can result in a shared symmetric key not being chosen from
the full key space. It is therefore advisable to pass the shared secret through a key derivation function,
e.g. involving the use of a hash function. The use of an inadequate key derivation function can compromise
the security of the key agreement scheme with which it is used. It is recommended to use a one-way
function as a key derivation function.

A key derivation function produces keys that are computationally indistinguishable from randomly
generated keys. The key derivation function takes as input a shared secret and a set of key derivation
parameters and produces an output of the desired length.

In order for the two parties in a key establishment mechanism to agree on a common secret key, the key
derivation function shall be agreed (see ISO/IEC 11770-6 for further guidance on key derivation
functions).

Annex C provides examples of key derivation functions.

7 Cofactor multiplication

This clause applies only to mechanisms using elliptic curve cryptography. The key agreement
mechanisms in Clause 11 and the key transport mechanisms in Clauses 12 and 13 require that the user's
private key or key token be combined with another entity's public key or key token. If the other entity's
public key or key token is not valid (i.e. it is not a point on the elliptic curve, or is not in the subgroup of
order n), then performing this operation can result in some bits of the private key being leaked to an
attacker. One example of such an attack is known as the "small subgroup attack".
NOTE 1 The small subgroup attack is described in Reference [37].

In order to prevent the "small subgroup attack" and similar attacks, one option is to validate public keys
and key tokens received from the other party using public key validation, as specified in ISO/IEC 11770-1.

As an alternative to public key validation, a technique called cofactor multiplication as specified in
Clause 11 can be used. The values j and l, defined below, are used in cofactor multiplication.

If cofactor multiplication is used, there are two options:

— if compatibility with entities not using cofactor multiplication is not required, then let j = #E / n and
l = 1. If this option is chosen, both parties involved shall agree to use this option, otherwise the
mechanism will not work;

— if compatibility with entities not using cofactor multiplication is required, then let j = #E / n and l = j
-1 mod n.

NOTE 2 The value j -1 mod n always exists since n is required to be greater than 4√q and therefore gcd(n, j) = 1.

If cofactor multiplication is not required, then let j = l = 1.

Regardless of whether or not cofactor multiplication is used, if the shared key (or a component of the
shared key) evaluates to the point at infinity (OE), then the user shall assume that the key agreement
procedure has failed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

12 © ISO/IEC 2021 – All rights reserved

It is particularly appropriate to perform public key validation or cofactor multiplication in the following
cases:

— if the entity's public key is not authenticated;

— if the key token is not authenticated;

— if the user's public key is intended for a long-term use.

If the other entity's public key is authenticated and the cofactor is small, then the amount of information
that can be leaked is limited. Thus, it is not always necessary to perform these tests.

8 Key commitment

Clause 11 describes key agreement mechanisms in which the established key is the result of applying a
one-way function to the private key-agreement keys. However, it is possible that one entity knows the
other entity's public key or key token prior to choosing their private key. As a result, such an entity can
control the value of s bits in the established key, at the cost of generating 2s candidate values for their
private key-agreement key in the time interval between discovering the other entity's public key or key
token and choosing their own private key[31].

One way to address this concern (if it is a concern) at the cost of one additional message/pass in the
protocol is through the use of key commitment. Key commitment can be performed by having the first
entity hash the public key or key token and send the hash-code to the second entity. The second entity
then replies with its public key or key token, and the first entity replies with its public key or key token.
The second entity can now hash it and verify that the result is equal to the hash-code sent earlier.

9 Key confirmation

Explicit key confirmation is the process of adding additional messages to a key establishment protocol
providing implicit key authentication, so that explicit key authentication and entity authentication are
provided. Explicit key confirmation can be added to any method that does not possess it inherently. Key
confirmation is typically provided by exchanging a value that can (with very high probablity) only be
calculated correctly if the key establishment calculations were successful. Key confirmation from entity
A to entity B is provided by entity A calculating a value and sending it to entity B for confirmation of entity
A's correct calculation. If mutual key confirmation is desired, then each entity sends a different value to
the other.

Key confirmation is often provided by subsequent use of an established key, and if something is wrong
then it is immediately detected. This is called implicit key confirmation. Explicit key confirmation in this
case can be unnecessary. If one entity is not online (for example, in one-pass protocols used in store and
forward (email) scenarios), then it is simply not possible for the other entity to obtain key confirmation.
However, sometimes a key is established yet used only later (if at all), or the entity performing the key
establishment process can simply not know if the resulting key will be used immediately or not. In these
cases, it is often desirable to use a method of explicit key confirmation, as it can otherwise be too late to
correct an error once detected. Explicit key confirmation can also be seen as a way of “firming up” security
properties during the key establishment process and can be warranted if a conservative protocol design
is deemed appropriate.

An example method of providing key confirmation using a MAC is as follows:

Entities A and B first perform one of the key establishment procedures specified in Clauses 11 and 12 of
this document. As a result, they expect to share a secret MAC key KAB. They then perform the following
procedure.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 13

— Entity B forms the message M, an octet string consisting of the message identifier octet 0x02, entity
B's identifier, entity A's identifier, the octet string KTB corresponding to entity B's key token (omitted
if not present), the octet string KTA corresponding to entity A's key token (omitted if not present),
the octet string pB corresponding to entity B's public key-establishment key (omitted if not present),
the octet string pA corresponding to entity A's public key-establishment key (omitted if not present)
and, if present, optional additional Text1, i.e.:

M = 02||B||A||KTB||KTA||pB||pA||Text1, where 0x02 is the message number.

— Entity B calculates KB = kdf(KAB), and then calculates MACKB(M) for the message M under the
(supposedly) shared secret key KB for an appropriate MAC scheme.

— Entity B sends the message M and MACKB(M) to entity A.

— Entity A calculates KA = kdf(KAB), computes MACKA(M) using the received message M, and verifies
MACKB(M)= MACKA(M).

— Assuming the MAC verifies, entity A has received key confirmation from entity B (that is, entity A
knows that KA equals KB). If mutual key confirmation is desired, entity A continues the protocol and
forms the message M' as the octet string consisting of the message identifier octet 0x03, entity A's
identifier, entity B's identifier, the octet string KTA corresponding to entity A's key token (omitted if
not present), the octet string KTB corresponding to entity B's key token (omitted if not present), the
octet string pA corresponding to entity A's public key-establishment key (omitted if not present), the
octet string pB corresponding to entity B's public key-establishment key (omitted if not present) and
optional additional octet string Text2, i.e.:

M' = 03||A||B||KTA||KTB||pA||pB||Text2, where 0x03 is the message number.

— Entity A calculates MACKA(M') under the (supposedly) shared secret KA using an appropriate MAC
scheme.

— Entity A sends M' and MACKA(M') to entity B.

— Entity B uses KB to verify MACKA(M') on the message M'. Assuming the MAC verifies, entity B has
received key confirmation from entity A (that is, entity B knows that KA equals KB).

Other methods of key confirmation are possible. If the shared secret is to be used for data confidentiality
(encryption), one entity can send the encryption of some specific plaintext known to the other entity, for
example a block of all binary zeros or all binary ones. Care should be taken that any subsequent use of
the key is very unlikely to encrypt the same plaintext as was used for key confirmation.

10 Framework for key management

10.1 General

This clause contains a high-level description of a framework for the key establishment mechanisms
specified in this document. Four categories of mechanism are defined (key agreement between two
parties, key agreement between three parties, secret key transport and public key transport), together
with requirements for their use.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

14 © ISO/IEC 2021 – All rights reserved

10.2 Key agreement between two parties

The provisions in this subclause apply to key agreement mechanisms 11.1 to 11.11 and 11.13 to 11.15,
all of which specify mechanisms for key agreement between two parties. Key agreement between two
parties is the process of establishing a shared secret key between two entities A and B in such a way that
neither of them can predetermine the value of the shared secret key. Key agreement mechanisms can
provide for implicit key authentication; in the context of key establishment, implicit key authentication
means that after the execution of the mechanism only an identified entity can be in possession of the
correct shared secret key.

Key agreement between two entities A and B takes place in a context shared by the two entities. The
context consists of sets S1 and S2, and a key agreement function F. The function F shall satisfy the
following requirements.

a) F : S1 × S2 → S2 maps elements (h, g) ∈ S1 × S2 to S2, and let y = F(h, g).

b) F satisfies the commutativity condition F(hA, F(hB, g)) = F(hB, F(hA, g)).

c) It is computationally intractable to find F(h1, F(h2, g)) from F(h1, g), F(h2, g) and g. This implies that
F(·,g) is a one-way function.

d) The entities A and B share a common element g in S2 which can be publicly known.

e) The entities acting in this setting can efficiently compute function values F(h, g) and can efficiently
generate random elements in S1. Depending on the particular key agreement mechanism, further
conditions can be imposed.

NOTE 1 Examples for the function F are given in Annex D and Annex E. See also ISO/IEC 15946-1.

NOTE 2 As discussed in Clause 6, in practical implementations of the key agreement mechanisms the shared secret
key is subject to further processing.

NOTE 3 It is in general necessary to check the received function values F(h, g) for weak values. If such values are
encountered, the protocol aborts.

10.3 Key agreement between three parties

This clause applies to the key agreement mechanism 11.12 that describes key agreement between three
parties. Key agreement between three parties is the process of establishing a shared secret key among
three entities A, B, and C in such a way that none of them can predetermine the value of the shared secret
key. Key agreement among three entities A, B, and C takes place in a context shared by the three entities.
The context consists of sets S1, S2, and S3, a function F, and a function FP. The functions F and FP shall
satisfy the following requirements.

— F : S1 × S2 → S2 maps elements (h, g) ∈ S1 × S2 to S2, and let y = F(h, g).

— F satisfies the commutativity condition F(hA, F(hB, g)) = F(hB, F(hA, g)).

— It is computationally intractable to find F(h1, F(h2, g)) from F(h1, g), F(h2, g) and g. This implies that
F(·,g) is a one-way function.

— FP : S1 × S2 × S2 → S3 maps an element (hC, F(hA, g), F(hB, g)) ∈ S1 × S2 × S2 to an element of S3, and
let z = FP(hC, F(hA, g), F(hB, g)). ISO/IEC 15946-1 shall be referred for the relation between F and FP.

— FP satisfies the commutativity condition

— FP(hC, F(hA, g), F(hB, g)) = FP(hC, F(hB, g), F(hA, g)) = FP(hB, F(hA, g), F(hC, g))

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 15

 = FP(hA, F(hB, g), F(hC, g)) = FP(hA, F(hC, g), F(hB, g)) = FP(hB, F(hC, g), F(hA, g)).

— It is computationally intractable to find FP(hC, F(hA, g), F(hB, g)) from F(hA, g), F(hB, g), F(hC, g), and
g. This implies that F(·, pA, pB) is a one-way function.

— The entities A, B, and C share a common element g in S2 which can be publicly known.

— The entities acting on this setting can efficiently compute function values F(h, g) and FP(hC, F(hB, g),
F(hA, g)), and can efficiently generate random elements in S1. Depending on the particular key
agreement mechanism, further conditions can be imposed.

NOTE 4 An example of a possible function FP is given in Annex F.

NOTE 5 As discussed in Clause 6, in practical implementations of the key agreement mechanisms, the shared secret
key is subject to further processing. A derived shared secret key is computed by 1) extracting bits from the shared
secret key KABC directly, or 2) passing the shared secret key KABC and optionally other non-secret data through a
one-way function and extracting bits from the output.

10.4 Secret key transport

Secret key transport (often abbreviated to "key transport") is the process of transferring a secret key,
chosen by one entity (or a trusted centre), to another entity, suitably protected by asymmetric
cryptographic encryption.

10.5 Public key transport

Public key transport makes an entity's public key available to other entities in an authenticated fashion.
Authenticated distribution of public keys is an essential security requirement. This distribution can be
achieved in two main ways:

a) public key distribution without a trusted third party;

b) public key distribution involving a trusted third party, such as a certification authority.

The public key of an entity A is part of the public key information of entity A. The public key information
includes at least entity A's distinguishing identifier and entity A's public key.

11 Key agreement

11.1 Key agreement mechanism 1

This key agreement mechanism non-interactively establishes a shared secret key between entities A and
B with mutual implicit key authentication. The following requirements shall be satisfied.

— Each entity X has a private key agreement key hX in S1 and a public key agreement key pX = F(hX, g).

— Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 1 is summarized in Figure 1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

16 © ISO/IEC 2021 – All rights reserved

Figure 1 — Key agreement mechanism 1

Figure 2 — Key agreement mechanisms 2 and 8

Key construction (A1) Entity A computes, using its own private key agreement key hA and entity B's
public key agreement key pB, the shared secret key as KAB = F(hA, pB).

Key construction (B1) Entity B computes, using its own private key agreement key hB and entity A's
public key agreement key pA, the shared secret key as KAB = F(hB, pA).

As a consequence of requirements on F specified in Clause 10, the two computed values for the key KAB
are identical.
NOTE 1 The number of passes is 0.

NOTE 2 This mechanism provides mutual implicit key authentication. However, a zero-pass protocol such as this
always generates the same key. One way to eliminate this problem is to ensure that the key is only used once.
Furthermore, the use of a unique initialization vector with each utilization of the key can also solve this problem.

NOTE 3 This mechanism does not provide key confirmation.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of the
private key agreement keys hA and hB of entities A and B, respectively. However, one entity can learn the other
entity's public key prior to choosing their private key. As described in Clause 8, such an entity can select
approximately s bits of the established key, at the cost of generating 2s candidate values for their private key
agreement key in the interval between discovering the other entity's public key and choosing their own private key.

NOTE 5 Examples of this mechanism (known as Diffie-Hellman key agreement) are given in Clauses D.2, D.3, and
E.3.

NOTE 6 This mechanism has no resilience to key compromise impersonation attacks on A.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 17

11.2 Key agreement mechanism 2

This key agreement mechanism establishes a shared secret key in one pass between entities A and B with
implicit key authentication from entity B to entity A, but no entity authentication from entity A to entity
B (i.e. entity B does not know with whom it has established the shared secret key). The following
requirements shall be satisfied.

— Entity B has a private key agreement key hB in S1 and a public key agreement key pB = F(hB, g).

— Entity A has access to an authenticated copy of entity B's public key agreement key pB. This can be
achieved using the mechanisms described in Clause 13.

Key agreement mechanism 2 is summarized in Figure 2.

Key token construction (A1) Entity A randomly and secretly generates r in S1, computes F(r, g) and
sends the key token KTA1 = F(r, g)||Text to entity B.

Key construction (A2) Entity A computes the shared key as KAB = F(r, pB).

Key construction (B1) Entity B extracts F(r,g) from the received key token KTA1 and computes the
shared secret key KAB = F(hB, F(r, g)).

As a consequence of the requirements on F specified in Clause 10, the two computed values for the key
KAB are identical.
NOTE 1 The number of passes is 1.

NOTE 2 This mechanism provides implicit key authentication from entity B to entity A (entity B is the only entity
other than entity A who can compute the shared secret key).

NOTE 3 This mechanism does not provide key confirmation.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of a
random value r supplied by entity A and entity B's private key agreement key. As discussed in Clause 8, since entity
A can learn entity B's public key prior to choosing the value r, entity A can select approximately s bits of the
established key, at the cost of generating 2s candidate values for r in the interval between discovering entity B's
public key and sending KTA1.

NOTE 5 Examples of this mechanism (known as ElGamal key agreement) are described in Clauses D.4 and E.4.

NOTE 6 As entity B receives the information necessary to compute the key KAB from entity A, which has not been
authenticated, use of KAB by entity B is restricted to functions not requiring trust in entity A's authenticity, such as
decryption and generation of message authentication codes.

11.3 Key agreement mechanism 3

This key agreement mechanism establishes a shared secret key in one pass between entities A and B with
mutual implicit key authentication, and entity authentication of entity A to entity B. The following
requirements shall be satisfied.

— Entity A has an asymmetric signature system (SA, VA).

— Entity B has access to an authenticated copy of the public verification transformation VA. This can be
achieved using the mechanisms described in Clause 13.

— Entity B has a key agreement scheme with keys (hB , pB).

— Entity A has access to an authenticated copy of the public key agreement key pB of entity B. This can
be achieved using the mechanisms described in Clause 13.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

18 © ISO/IEC 2021 – All rights reserved

— (Optional) If used, the TVP shall either be a time stamp or a sequence number. If time stamps are
used, secure and synchronized time clocks are required; if sequence numbers are used, the ability to
maintain and verify bilateral counters is required.

— The entities A and B have agreed on a MAC function and a way to use KAB as the key for this MAC
function. ISO/IEC 9797 is referred for a MAC function.

Key agreement mechanism 3 is summarized in Figure 3.

Figure 3 — Key agreement mechanism 3

Figure 4 — Key agreement mechanisms 4, 5 and 9

Key construction (A1.1) Entity A randomly and secretly generates r in S1 and computes F(r, g). Entity A
computes the shared secret key as KAB = F(r, pB).

Using the shared secret key KAB, entity A computes a MAC on the concatenation of the sender's
distinguishing identifier for entity A and an optional TVP, a time stamp or a sequence number.

Key token signature (A1.2) Entity A signs the MAC, using its private signature transformation SA. Then
entity A forms the key token, consisting of the sender's distinguishing identifier for entity A, the key input
F(r, g), the (optional) TVP, the signed MAC, and some optional data, i.e.

KTA1 = A||F(r, g)||TVP|| SA(MAC
ABK (A||TVP))||Text1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 19

and sends it to entity B.

Key construction (B1.1) Entity B extracts F(r, g) from the received key token and computes the shared
secret key, using its private key agreement key hB, KAB = F(hB, F(r, g)).

Using the shared secret key KAB, entity B computes the MAC on the sender's distinguishing identifier for
entity A and the (optional) TVP.

Signature verification (B1.2) Entity B uses the sender's public verification transformation VA to verify
entity A's signature and, thus, the integrity and origin of the received key token KTA1. Then entity B
validates the timeliness of the token [by inspection of the (optional) TVP].
NOTE 1 The number of passes is 1.

NOTE 2 This mechanism provides explicit key authentication from entity A to entity B and implicit key
authentication from entity B to entity A.

NOTE 3 This mechanism provides key confirmation from entity A to entity B.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of a
random value r supplied by entity A and entity B's private key agreement key. As discussed in Clause 8, since entity
A can learn entity B's public key prior to choosing the value r, entity A can select approximately s bits of the
established key, at the cost of generating 2s candidate values for r in the interval between discovering entity B's
public key and sending KTA1.

NOTE 5 The (optional) TVP prevents replay of the key token from entity A to entity B.

NOTE 6 Examples of this mechanism (known as Nyberg-Rueppel key agreement) are described in Clauses D.5 and
E.5

NOTE 7 If Text1 is used to transfer entity A's public key certificate, then requirement 2 at the beginning of 11.3 can
be relaxed to the requirement that entity B is in possession of an authenticated copy of the CA's public verification
key.

NOTE 8 This mechanism has no resilience to key compromise impersonation attacks on A.

11.4 Key agreement mechanism 4

This key agreement mechanism establishes a shared secret key in two passes between entities A and B
with joint key control without prior exchange of keying information. This mechanism provides neither
entity authentication nor key authentication.

Key agreement mechanism 4 is summarized in Figure 4.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g),
constructs the key token KTA1 = F(rA, g)||Text1, and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, g),
constructs the key token KTB1 = F(rB, g)||Text2, and sends it to entity A.

Key construction (A2) Entity A extracts F(rB, g) from the received key token KTB1 and computes the
shared secret key KAB = F(rA, F(rB, g)).

Key construction (B2) Entity B extracts F(rA, g) from the received key token KTA1 and computes the
shared secret key KAB = F(rB, F(rA, g)).
NOTE 1 The number of passes is 2.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

20 © ISO/IEC 2021 – All rights reserved

NOTE 2 This mechanism does not provide implicit or explicit key authentication. However, this mechanism can be
useful in environments where authenticity of the key tokens is verified using other means. For instance, a hash-code
of the key tokens can be exchanged between the entities using a second communication channel. See also public key
transport mechanism 2. Another example of entity authentication is using mechanisms specified in Reference [6].

NOTE 3 A separate channel or means exists whereby the key tokens can be verified.

NOTE 4 This mechanism provides no key confirmation.

NOTE 5 This mechanism is a key agreement mechanism, since the established key is a one-way function of random
values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B can learn F(rA, g)
prior to choosing the value rB, entity B can select approximately s bits of the established key, at the cost of generating
2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

NOTE 6 Examples of this mechanism (known as Diffie-Hellman key agreement) are described in Clauses D.6 and
E.7.

11.5 Key agreement mechanism 5

This key agreement mechanism establishes a shared secret key in two passes between entities A and B
with mutual implicit key authentication and joint key control. The following requirements shall be
satisfied.

— Each entity X has a private key agreement key hX in S1 and a public key agreement key pX = F(hX, g).

— Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

— Both entities have agreed on a common one-way function w.

Key agreement mechanism 5 is summarized in Figure 4.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g) and
sends the key token KTA1 = F(rA, g)||Text1 to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, g) and
sends the key token KTB1 = F(rB, g)||Text2 to entity A.

Key construction (B2) Entity B extracts F(rA, g) from the received key token KTA1 and computes the
shared secret key as KAB = w(F(hB, F(rA, g))||F(rB, pA)) where w is a one-way function.

Key construction (A2) Entity A extracts F(rB, g) from the received key token KTB1 and computes the
shared secret key as KAB = w(F(rA, pB)||F(hA, F(rB, g))).
NOTE 1 The number of passes is 2.

NOTE 2 This mechanism provides mutual implicit key authentication. If the data field Text2 contains a MAC (on
known data) computed using the key KAB, then this mechanism provides explicit key authentication from entity B
to entity A.

NOTE 3 If the data field Text2 contains a MAC (on known data) computed using the key KAB, then this mechanism
provides key confirmation from entity B to entity A.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of random
values rA and rB supplied by entities A and B respectively.

NOTE 5 Examples of this key agreement mechanism [known as the Matsumoto-Takashima-Imai A(0) key
agreement scheme] are described in Clauses D.7 and E.6. Another example is known as the Goss protocol.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 21

NOTE 6 If Text1 and Text2 contain the public key certificates of entity A's and B's key agreement keys, respectively,
then the requirement 2 at the beginning of 11.5 can be replaced by the requirement that each entity is in possession
of an authenticated copy of the CA's public verification key.

NOTE 7 Under certain circumstances, this mechanism can be subject to a source substitution attack (also known
as an unknown key share attack)[30]. If this is a concern, this type of attack can be avoided by ensuring that as part
of the process of submitting a public key to a CA for certification, the submitter proves possession of the
corresponding private key. This type of attack is slightly more serious in the case of protocols based on elliptic
curves.[26] Resilience to unknown key share attack for A and B can be achieved by choosing a key derivation function
that includes the identifiers of the involved entities.

11.6 Key agreement mechanism 6

This key agreement mechanism establishes a shared secret key in two passes between entities A and B
with mutual implicit key authentication and joint key control. It is based on the use of both an asymmetric
encryption scheme and a signature system. The following requirements shall be satisfied.

a) Entity A has an asymmetric encryption system with transformations (EA, DA).

b) Entity B has an asymmetric signature system with transformations (SB, VB).

c) Entity A has access to an authenticated copy of entity B's public verification transformation VB. This
can be achieved using the mechanisms described in Clause 13.

d) Entity B has access to an authenticated copy of entity A's public encryption transformation EA. This
can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 6 is summarized in Figure 5.

Figure 5 — Key agreement mechanism 6 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

22 © ISO/IEC 2021 – All rights reserved

Figure 6 — Key agreement mechanism 7

Key token construction (A1) Entity A generates a random number rA, constructs the key token KTA1 =
rA||Text1, and sends it to entity B.

Key token processing (B1) Entity B generates a random number rB and signs a data block consisting of
the distinguishing identifier for entity A, the random number rA, the random number rB and some
optional data Text2 using its private signature transformation SB, to obtain BS = SB(A||rA||rB||Text2).

Entity B then encrypts a data block consisting of its distinguishing identifier (optional), the signed block
BS, and some optional data Text3 using entity A's public encryption transformation EA. Entity B then
sends the key token KTB1 = EA(BS||Text3)||Text4 back to entity A, or entity B can include the identifier for
B as KTB1= EA(B||BS||Text3) ||Text4.

Key construction (B2) The shared secret key consists of all or part of entity B's signature Σ contained
in the signed block BS (see Note 2 in Clause 4), after passing through a key derivation function.

Key token processing and key construction (A2) Entity A decrypts the key token KTB1 using its private
decryption transformation DA, optionally checks the sender identifier, and uses entity B's public
verification transformation VB to verify the digital signature of the signed block BS. Then entity A checks
the recipient identifier and that the random number rA in the signed block BS equals the random number
rA sent in token KTA1. If all checks are successful, entity A accepts all or part of entity B's signature of the
signed block BS used with a key derivation function as the shared secret key.
NOTE 1 The number of passes is 2.

NOTE 2 The part of the signature Σ that is to be used as the basis of the secret key established between entities A
and B is agreed in advance.

NOTE 3 This mechanism provides implicit key authentication from entity A to entity B and explicit key
authentication from entity B to entity A.

NOTE 4 If the data field Text3 contains a MAC (on known data) computed using the key KAB, then this mechanism
provides key confirmation from entity B to entity A.

NOTE 5 This mechanism is a key agreement mechanism, since the established key is a one-way function of random
values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B can learn F(rA, g)
prior to choosing the value rB, entity B can select approximately s bits of the established key, at the cost of generating
2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 23

NOTE 6 This mechanism is derived from Beller and Yacobi's two pass protocol described in Clause D.8.

NOTE 7 If Text1 and Text4 contain a public key certificate for entity A's encryption key and a public key certificate
for entity B's verification key, respectively, then the requirements 3 and 4 at the beginning of 11.6 can be relaxed to
the requirement that each entity is in possession of an authenticated copy of the CA's public verification key.

NOTE 8 A significant feature of this scheme is that the identity of entity B can remain anonymous to eavesdroppers,
a property of potential significance in a wireless communication environment.

NOTE 9 This mechanism has no resilience to key compromise impersonation attacks on A.

11.7 Key agreement mechanism 7

This key agreement mechanism is based on the three-pass authentication mechanism of ISO/IEC 9798-3
and establishes a shared secret key between entities A and B with mutual authentication. The following
requirements shall be satisfied.

— Each entity X has an asymmetric signature system (SX, VX).

— Both entities have access to an authenticated copy of the public verification transformation of the
other entity. This can be achieved using the mechanisms described in Clause 13.

— The two entities have agreed on a common MAC function.

Key agreement mechanism 7 is summarized in Figure 6.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g),
constructs the key token KTA1 = F(rA, g)||Text1, and sends it to entity B.

Key token processing and key construction (B1) Entity B randomly and secretly generates rB in S1,
computes F(rB, g), computes the shared secret key as KAB = F(rB, F(rA, g)), and constructs the signed key
token

KTB1 = SB(DB1)|| MAC
ABK (DB1)||Text3,

where DB1 = F(rB, g)||F(rA, g)||A||Text2, and sends it back to entity A.

Key confirmation is provided by including MAC
ABK (DB1) in KTB1. Alternatively, if both parties have a

common symmetric encryption system, key confirmation can be obtained by replacing KTB1 with KTB1 =
F(rB, g)|| E

ABK (SB(DB1)), where E is a suitable symmetric encryption function.

Key token processing and key construction (A2) Entity A verifies entity B's signature on the key token
KTB1 using entity B's public verification key, and then verifies entity A's distinguishing identifier and the
value F(rA, g) sent in step (A1). If the checks are successful, entity A proceeds to compute the shared
secret key as KAB = F(rA, F(rB, g)).

Using KAB, entity A verifies MAC
ABK (DB1). Then entity A constructs the signed key token

KTA2 = SA(DB2)|| MAC
ABK (DB2)||Text5,

where DB2 = F(rA, g)||F(rB, g)||B||Text4, and sends it to entity B.

Key confirmation is provided by including MAC
ABK (DB2) in KTA2. Alternatively, key confirmation can be

obtained by replacing KTA2 with KTA2 = E
ABK (SA(DB2)).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

24 © ISO/IEC 2021 – All rights reserved

Key token processing (B2) Entity B verifies entity A's signature on the key token KTA2, using entity A's
public verification key, then verifies entity B's distinguishing identifier and that the values F(rA, g) and
F(rB, g) agree with the values exchanged in the previous steps. If the checks are successful, entity B
verifies MAC

ABK (DB2) using KAB = F(rB, F(rA, g)).

NOTE 1 The number of passes is 3.

NOTE 2 This mechanism provides mutual explicit key authentication and mutual entity authentication.

NOTE 3 This mechanism provides mutual key confirmation.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of random
values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B can learn F(rA, g)
prior to choosing the value rB, entity B can select approximately s bits of the established key, at the cost of generating
2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

NOTE 5 Examples of this mechanism (known as the Diffie-Hellman scheme) can be constructed by combining the
examples in Clause E.9 with use of a digital signature scheme, such as one of those specified in ISO/IEC 9796-2,
ISO/IEC 9796-3, ISO/IEC 14888-2 and ISO/IEC 14888-3.

NOTE 6 This mechanism conforms to ISO/IEC 9798-3. KTA1, KTB1, and KTA2 are identical to the tokens sent in the
three pass authentication mechanism. The TVPs are also identical, with the following changes of use: the TVP RA is
set to the value F(rA, g); and the TVP RB is set to the value F(rB, g).

NOTE 7 If the data fields Text1 and Text3 (or Text5 and Text3) contain the public key certificates of entities A and
B, respectively, then the second requirement at the beginning of 11.7 can be relaxed to the requirement that all
entities are in possession of an authenticated copy of the CA's public verification key.

NOTE 8 If a signature mechanism with text hashing is used, then F(rA, g) and/or F(rB, g) does not need to be sent
in key token KTB1. Similarly, neither F(rA, g) nor F(rB, g) need to be sent in key token KTA2. However, the random
numbers need to be included in the computation of the respective signatures.

NOTE 9 Key confirmation can alternatively be achieved by encrypting part of the signature. In this case, the third
requirement at the beginning of 11.7 does not apply.

11.8 Key agreement mechanism 8

This key agreement mechanism uses elliptic curve cryptography, and establishes a shared secret key in
one pass between entities A and B with mutual implicit key authentication. The following requirements
shall be satisfied.

— Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

— Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 8 is summarized in Figure 2.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required

to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod ρ  /22) +
ρ  /22 , where ρ =   2log n and X(P) is the x-coordinate of the point P.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

Key construction (A2) Entity A computes the shared key as

KAB = ((rA + π(KTA1)hA)·l)(j·(PB + π(PB)PB)).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 25

Key construction (B1) Entity B computes the shared key as

KAB = ((hB + π(PB)hB)·l)(j·(KTA1 + π(KTA1)PA)).

NOTE 1 The number of passes is 1.

NOTE 2 This mechanism provides mutual implicit key authentication.

NOTE 3 An example of this mechanism (known as MQV key agreement) is described in Clause E.11.

NOTE 4 This mechanism has no resilience to key compromise impersonation attacks on A.

11.9 Key agreement mechanism 9

This key agreement mechanism uses elliptic curve cryptography and establishes a shared secret key in
two passes between entities A and B with mutual implicit key authentication. The following requirements
shall be satisfied.

a) Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

b) Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 9 is summarized in Figure 4.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required

to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod ρ  /22) +
ρ  /22 , where ρ =   2log n and X(P) is the x-coordinate of the point P.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, G),
constructs the key token KTB1 = F(rB, G), and sends it to entity A.

Key construction (A2) Entity A computes the shared secret key as

KAB = ((rA + π(KTA1)hA)·l)(j·(KTB1 + π(KTB1)PB)).

Key construction (B2) Entity B computes the shared secret key as

KAB = ((rB + π(KTB1)hB)·l)(j·(KTA1 + π(KTA1)PA)).

NOTE 1 The number of passes is 2.

NOTE 2 This mechanism provides mutual implicit key authentication.

NOTE 3 An example of this mechanism (known as MQV key agreement with two passes) is described in
Clause E.12.

NOTE 4 Under certain circumstances, this mechanism can be subject to a source substitution attack (also known
as an unknown key share attack)[26]. If this is a concern, such an attack can be avoided by adding delay detection.
Resilience to unknown key share attack for A and B can also be achieved by choosing a key derivation function that
includes the identifiers of the involved entities. Other countermeasures are described in Reference [26].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

26 © ISO/IEC 2021 – All rights reserved

11.10 Key agreement mechanism 10

This key agreement mechanism uses elliptic curve cryptography and establishes a shared secret key in
three passes between entities A and B with mutual implicit key authentication. The following
requirements shall be satisfied.

— Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

— Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 10 is summarized in Figure 7.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required

to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod ρ  /22) +
ρ  /22 , where ρ =   2log n and X(P) is the x-coordinate of the point P.

Figure 7 — Key agreement mechanism 10

Figure 8 — Key agreement mechanism 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 27

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

Key construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, G), and
constructs the key token KTB1 = F(rB, G).

Entity B computes the shared secret key as

KAB = ((rB + π(KTB1)hB)·l)(j·(KTA1 + π(KTA1)PA)).

Entity B then computes the key K = kdf(KAB). Entity B further constructs MACK(2||KTA1||KTB1), and sends
KTB1 and MACK(2 || KTA1 || KTB1) to entity A.

Key construction (A2) Entity A computes the shared secret key as

KAB = ((rA + π(KTA1)hA)·l)(j·(KTB1 + π(KTB1)PB)).

Entity A computes the key K = kdf(KAB). Entity A computes MACK(2||KTA1||KTB1) and verifies what was
sent by entity B. Entity A then computes MACK(3||KTA1||KTB1), and sends it to entity B.

Verification (B2) Entity B computes MACK(3||KTA1||KTB1).
NOTE 1 The number of passes is 3.

NOTE 2 This mechanism provides mutual explicit key authentication.

NOTE 3 An example of this mechanism (known as MQV key agreement with three passes) is described in
Clause E.13.

11.11 Key agreement mechanism 11

This key agreement mechanism establishes a shared key in four passes between entities A and B. The
following requirements shall be satisfied.

— Entity B has an asymmetric encryption system with transformation (EB, DB).

— Entity A has access to an authenticated copy of the public verification transformation necessary to
verify CertB.

— Both entities have agreed on a common key derivation function kdf.

Key agreement mechanism 11 is summarized in Figure 8.

Entity confirmation (A1): Entity A chooses a random integer rA, and sends a message M1 = (rA||Text1)
to entity B.

Entity confirmation (B1): Entity B chooses a random integer rB, and sends M2 = (rB||CertB||Text2) to
entity A.

Key token and key construction (A2): Entity A verifies CertB to obtain a trusted copy of entity B's public
key. Entity A then generates a random integer r'A and computes the shared key KAB = kdf(rA, rB, r'A).

Entity A then sends the key token KTA2 = EB(r'A) and MAC
ABK (M1||KTA2) to entity B.

Key construction (B2): Entity B decrypts KTA2 and computes the shared key KAB = kdf(rA, rB, r'A).

Entity B computes MAC
ABK (M1 || KTA2) and compares it with the received MAC value. Entity B sends

MAC
ABK (M2) to entity A.

Key verification (A3): Entity A computes MAC
ABK (M2) and compares it with the received MAC value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

28 © ISO/IEC 2021 – All rights reserved

NOTE 1 The number of passes is 4.

NOTE 2 This mechanism provides B's implicit key authentication to A.

NOTE 3 This mechanism is derived from the transport layer security (TLS) protocol[15], which can be regarded as
an example of this mechanism. In TLS, the key agreement process is known as the TLS handshake phase. In TLS,
each entity has a "cipher suite", i.e. a list of algorithms that the entity supports. Text1 and Text2 are used to exchange
these cipher suites as part of a process known as "cipher suite negotiation".

11.12 Key agreement mechanism 12

This key agreement mechanism non-interactively establishes a shared secret key among entities A, B, and
C with mutual implicit key authentication. The following requirements shall be satisfied.

— Each entity X has a private key-agreement key hX in S1 and a public key-agreement key pX = F(hX, g).

— Each entity has access to an authenticated copy of the public key-agreement key of the other entities.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 12 is summarized in Figure 9.

Figure 9 — Key agreement mechanism 12

Key construction (A1) Entity A computes, using its own private key-agreement key hA, entity B's public
key-agreement key pB, and entity C's public key-agreement key pC, the shared secret key as KABC = FP(hA,
pB, pC).

Key construction (B1) Entity B computes, using its own private key-agreement key hB, entity A's public
key-agreement key pA, and entity C's public key-agreement key pC, the shared secret key as KABC = FP(hB,
pC, pA).

Key construction (C1) Entity C computes, using its own private key-agreement key hC, entity A's public
key-agreement key pA, and entity B's public key-agreement key pB, the shared secret key as KABC = FP(hC,
pA, pB).

As a consequence of the requirements on functions F and FP specified in Clause 10, the three computed
values for the key KABC are identical.
NOTE 1 The number of passes is 0.

NOTE 2 This mechanism provides mutual implicit key authentication. However, a zero-pass protocol such as this
always generates the same key. One way to eliminate this problem is to ensure that the key is only used once.
Furthermore, the use of a unique initialization vector with each utilization of the key can also solve this problem.

NOTE 3 This mechanism does not provide key confirmation.

NOTE 4 This is a key agreement mechanism, since the established key is a one-way function of the private key
agreement keys hA, hB and hC of entities A, B and C respectively.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 29

NOTE 5 An example of this mechanism (known as Joux key agreement) is given in Clause F.2.

11.13 Key agreement mechanism 13

This key agreement mechanism, known as “2-pass blinded Diffie-Hellman”, establishes a shared secret
key in two passes between entities A and B with unilateral implicit key authentication. The following
requirements shall be satisfied.

— Entity A has a private key agreement key hA in S1 and a public key agreement key PA= F(hA, G) in S2,
where S1 and S2 are the sets introduced in 10.2.

— Entity B has access to the credentials necessary to authenticate the public key agreement key of entity
A. This can be achieved using the mechanisms described in Clause 13, but to ensure the privacy
property of unlinkability, any identifiers of entity A and any credentials unique to entity A that are
sent from entity A to entity B are sent encrypted using a key derived from the shared key, for example,
as shown in Text1 in the description below.

— Key derivation shall comply with ISO/IEC 11770-6 (see also Annex C) and encryption shall use an
authenticated encryption method chosen from ISO/IEC 19772.

— Random number generation shall comply with ISO/IEC 18031.

Key agreement mechanism 13 is summarized in Figure 10.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes its ephemeral
public key PB = F(rB, G) in S2, constructs the key token KTB1 = PB, and sends it to entity A.

Key token construction, key construction and encryption (A1) Entity A randomly and secretly
generates rA in S1, and constructs the key token KTA1 = F(rA, PA).

Entity A computes the shared secret key as K = F(rA, F(hA,KTB1)).

Entity A derives key KAB from K using an agreed key derivation function and uses an authenticated
encryption algorithm AuthEnc to compute BE = AuthEnc

ABK (rA, PA, Text1) and sends this and the key

token KTA1 to entity B.

Key construction, decryption and checking (B2) Entity B computes the shared secret key as K = F(rB,
KTA1).

Entity B derives key KAB from K using the agreed key derivation function and uses AuthEnc and BE to
recover rA and PA and check that KTA1 = F(rA, PA).
NOTE 1 A security proof for the 3-pass protocol (Mechanism 14) is provided in Reference [38], and is extended
to a proof for the 2-pass protocol in Reference [41]. The security proof requires the use of unidirectional
authenticated encryption keys and the inclusion of state information such as message counters.

NOTE 2 A cryptographic analysis of the impact of using a small blinding factor (i.e. in step A1 selecting rA from a
small subset of S1) is provided in Reference [39].

NOTE 3 An analysis in an enhanced security model is given in Reference [40].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

30 © ISO/IEC 2021 – All rights reserved

Figure 10 — Key agreement mechanism 13 (2-pass)

11.14 Key agreement mechanism 14

This key agreement mechanism, known as “3-pass blinded Diffie-Hellman”, establishes a shared secret
key in three passes between entities A and B with unilateral implicit key authentication. The following
requirements shall be satisfied.

— Entity A has a private key agreement key hA in S1 and a public key agreement key PA= F(hA, G) in S2,
where S1 and S2 are the sets introduced in 10.2.

— Entity B has access to the credentials necessary to authenticate the public key agreement key of entity
A. This can be achieved using the mechanisms described in Clause 13, but to ensure the privacy
property of unlinkability any identifiers of entity A and any credentials unique to entity A that are
sent from entity A to entity B are sent encrypted using a key derived from the shared key, for example,
as shown in Text1 in the description below.

— Key derivation shall comply with ISO/IEC 11770-6 (see also Annex C) and encryption shall use an
authenticated encryption method chosen from ISO/IEC 19772.

— Random number generation shall comply with ISO/IEC 18031.

Key agreement mechanism 14 is summarized in Figure 11.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, constructs the key token
KTA1 = F(rA, PA), and sends it to entity B.

Key token construction and key construction (B1) Entity B randomly and secretly generates rB in S1,
computes its ephemeral public key PB = F(rB, G) in S2, constructs the key token KTB1 = PB, and sends it to
entity A.

Entity B computes the shared secret key as K = F(rB, KTA1).

Key construction and encryption (A2) Entity A computes the shared secret key as
K = F(rA, F(hA, KTB1)).

Entity A derives key KAB from K using an agreed key derivation function and uses an authenticated
encryption algorithm AuthEnc to compute BE = AuthEnc

ABK (rA, PA, Text1) and sends this to entity B.

Decryption and checking (B2) Entity B derives key KAB from K using the agreed key derivation function
and uses AuthEnc and BE to recover rA and PA and check that KTA1 = F(rA, PA).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 31

NOTE 1 A security proof for the 3-pass protocol is provided in Reference [38]. The security proof requires the use
of unidirectional authenticated encryption keys and the inclusion of state information such as message counters.

NOTE 2 A cryptographic analysis of the impact of using a small blinding factor (i.e. in step A1 selecting rA from a
small subset of S1) is provided in Reference [39].

NOTE 3 An analysis in an enhanced security model is given in Reference [40].

Figure 11 — Key agreement mechanism 14 (3-pass)

11.15 Key agreement mechanism 15

This key agreement mechanism establishes a shared secret key in two passes between entities A and B
with mutual implicit key authentication and joint key control. The following requirements shall be
satisfied.

— Each entity X has a private key agreement key hX in S1 and a public key agreement key pX = F(hX , g).

— Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This can be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 15 is summarized in Figure 12.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, pB) and
sends the key token KTA1 = F(rA, pB)||Text1 to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, pA) and
sends the key token KTB1 = F(rB, pA)||Text2 to entity A.

Key construction (B2) Entity B extracts F(rA, pB) from the received key token KTA1 and computes the
shared secret key as KAB = F(1/hB, F(rA, pB))||F(rB, g)||F(rB, F(1/hB, F(rA, pB))).

Key construction (A2) Entity A extracts F(rB, pA) from the received key token KTB1 and computes the
shared secret key as KAB = F(rA, g)||F(1/hA, F(rB, pA))||F(rA, F(1/hA, F(rB, pA))).
NOTE 1 The number of passes is 2.

NOTE 2 This mechanism provides mutual implicit key authentication. If the data field Text2 contains a MAC (on
known data) computed using the key KAB, then this mechanism provides explicit key authentication from entity B
to entity A.

NOTE 3 If the data field Text2 contains a MAC (on known data) computed using the key KAB, then this mechanism
provides key confirmation from entity B to entity A.

NOTE 4 This mechanism is a key agreement mechanism, since the established key is a one-way function of random
values rA and rB supplied by entities A and B respectively.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

32 © ISO/IEC 2021 – All rights reserved

NOTE 5 This mechanism is the direct combination of Matsumoto-Takashima-Imai B(0) and Matsumoto-
Takashima-Imai C(0)[28]. The SM9 key agreement protocol described in F.5 is a pairing-based example of this
mechanism.

NOTE 6 This mechanism provides mutual forward secrecy.

NOTE 7 As discussed in Clause 6, in practical implementations of this mechanism, the shared secret key is subject
to further processing.

Figure 12 — Key agreement mechanism 15

12 Secret key transport

12.1 Secret key transport mechanism 1

This secret key transport mechanism transfers a secret key in one pass from entity A to entity B with
implicit key authentication from entity B to entity A. The following requirements shall be satisfied.

— Entity B has an asymmetric encryption system (EB, DB).

— Entity A has access to an authenticated copy of entity B's public encryption transformation EB. This
can be achieved using the mechanisms described in Clause 13.

— The optional TVP shall either be a time stamp or sequence number. If time stamps are used, then the
entities A and B need to maintain synchronous clocks. If sequence numbers are used, then entities A
and B shall maintain bilateral counters.

Secret key transport mechanism 1 is summarized in Figure 13.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 33

Figure 13 — Secret key transport mechanism 1

Figure 14 — Secret key transport mechanism 2

Key token construction (A1) Suppose K is a secret key that entity A wishes to securely transfer to entity
B. Entity A constructs a key data block consisting of its distinguishing identifier (optional), the key K, an
optional TVP and an optional data field Text1. Entity A then encrypts the key data block using the
receiver's public encryption transformation EB and sends the key token

KTA1 = EB(A||K||TVP||Text1)||Text2

to entity B.

Key token deconstruction (B1) Entity B decrypts the encrypted part of the received key token KTA1
using its private decryption transformation DB, recovers the key K, checks the optional TVP, and
associates the recovered key K with the claimed originator entity A.
NOTE 1 The number of passes is 1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

34 © ISO/IEC 2021 – All rights reserved

NOTE 2 This mechanism provides implicit key authentication from entity B to entity A, since only entity B can
possibly recover the key K.

NOTE 3 This mechanism does not provide key confirmation.

NOTE 4 Entity A can choose the key.

NOTE 5 As entity B receives the key K from a non-authenticated entity A, secure use of K by entity B is restricted
to functions not requiring trust in entity A's authenticity. For example, decryption and generation of message
authentication codes can be performed, whereas encryption and verification of message authentication codes
should not.

NOTE 6 An example of this mechanism (known as ElGamal key transfer) is described in Clause G.1. A second
example of this mechanism using RSA is described in Clause G.3, and a third example based on Sakai-Kasahara key
establishment is described in Clause G.6.

12.2 Secret key transport mechanism 2

This secret key transport mechanism is an extension of the one-pass entity authentication mechanism in
ISO/IEC 9798-3. It transfers a secret key, encrypted and signed, from entity A to entity B with explicit key
authentication from entity A to entity B and implicit key authentication from entity B to entity A. The
following requirements shall be satisfied.

— Entity A has an asymmetric signature system (SA, VA).

— Entity B has an asymmetric encryption system (EB, DB).

— Entity A has access to an authenticated copy of entity B's public encryption transformation EB. This
can be achieved using the mechanisms described in Clause 13.

— Entity B has access to an authenticated copy of entity A's public verification transformation VA. This
can be achieved using the mechanisms described in Clause 13.

— The optional TVP shall be either a time stamp or sequence number. If time stamps are used, then the
entities A and B need to maintain synchronous clocks or use a trusted third party time-stamping
authority. If sequence numbers are used then entities A and B shall maintain bilateral counters.

Secret key transport mechanism 2 is summarized in Figure 14.

Key encryption (A1.1) Suppose K is a secret key that entity A wishes to securely transfer to entity B.
Entity A forms the key data block, consisting of the sender's distinguishing identifier, the key K and an
optional data field Text1. Entity A then encrypts the key data block with entity B's public encryption
transformation EB and forms the encrypted block BE = EB(A||K||Text1).

Key token construction (A1.2) Entity A forms the token data block, consisting of the recipient's
distinguishing identifier, an optional TVP (time stamp or sequence number), the encrypted block BE and
the optional data field Text2. Then entity A signs the token data block using its private signature
transformation SA, appends optional Text3, and sends the resulting key token

KTA1 = SA(B||TVP||BE||Text2)||Text3

to entity B.

Key token verification (B1.1) Entity B uses the sender's public verification transformation VA to verify
the digital signature in the received key token KTA1. Entity B then checks its identifier in KTA1 and,
optionally, the TVP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 35

Key decryption (B1.2) Entity B decrypts the block BE with its private decryption transformation DB.
Entity B then compares the identifier for entity A contained in block BE with the identity of the signing
entity. If all checks are successful, entity B accepts the key K.
NOTE 1 The number of passes is 1.

NOTE 2 This mechanism provides entity authentication of entity A to entity B, and implicit key authentication from
entity B to entity A.

NOTE 3 This mechanism provides key confirmation from entity A to entity B. Entity B can be sure that it shares the
correct key with entity A, but entity A can only be sure that entity B has indeed received the key after it has obtained
a positive reply from entity B encrypted using key K.

NOTE 4 The optional TVP provides entity authentication of entity A to entity B and prevents replay of the key token.
In order to prevent replay of the key data block BE, an additional TVP can also be included in Text1.

NOTE 5 Entity A can choose the key KA , since it is the originating entity. Similarly, entity B can choose the key KB.
Joint key control can be achieved by requiring entities A and B to combine two keys KA and KB, transported using
two instances of the mechanism, to form a shared secret key KAB. An extra pass is required for joint key control. The
combination function is one-way, otherwise entity A can choose the shared secret key. This mechanism can then be
classified as a key agreement mechanism.

NOTE 6 Entity A's distinguishing identifier is included in the encrypted block BE to prevent entity A from
misappropriating an encrypted key block intended for use by another entity. Prevention of the attack is achieved
by requiring entity B to compare entity A's identifier with entity A's signature on the token.

NOTE 7 In conformance with ISO/IEC 9798-3, entity authentication using a public key algorithm KTA1 is
compatible with the token sent in the one-pass authentication mechanism. The token accommodates the transfer of
the key K through use of the optional Text field: Text1 in the mechanism of ISO/IEC 9798-3 has been replaced by
BE || Text2.

NOTE 8 The data field Text3 can be used to deliver the public key certificate of entity A. If this is the case, then the
fourth requirement at the beginning of 12.2 can be relaxed to the requirement that entity B is in possession of an
authenticated copy of the CA's public verification key.

NOTE 9 Examples of this mechanism are described in Clauses G.2 and G.5.

12.3 Secret key transport mechanism 3

This secret key transport mechanism transfers a secret key, signed, and encrypted in one pass from entity
A to entity B with unilateral key confirmation. The following requirements shall be satisfied.

a) Entity A has an asymmetric signature system (SA, VA).

b) Entity B has an asymmetric encryption system (EB, DB).

c) Entity A has access to an authenticated copy of entity B's public encryption transformation EB. This
can be achieved using the mechanisms described in Clause 13.

d) Entity B has access to an authenticated copy of entity A's public verification transformation VA. This
can be achieved using the mechanisms described in Clause 13.

e) The optional TVP shall be either a time stamp or a sequence number: If time stamps are used, then
the entities A and B need to maintain synchronous clocks. If sequence numbers are used, then entities
A and B shall maintain bilateral counters.

Secret key transport mechanism 3 is summarized in Figure 15.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

36 © ISO/IEC 2021 – All rights reserved

Figure 15 — Secret key transport mechanism 3

Figure 16 — Secret key transport mechanism 4

Key block signature (A1.1) Suppose K is a secret key that entity A wishes to securely transfer to entity
B. Entity A forms a key data block consisting of the recipient's distinguishing identifier, the key K, an
optional TVP (sequence number or time stamp), and optional data. Entity A then signs the key block using
its private signature transformation SA to generate the signed block BS = SA(B||K||TVP||Text1).

Key token construction (A1.2) Entity A forms the token data block, consisting of the signed block BS
and optional Text2. Then entity A encrypts the token data block using the receiver's public encryption
transformation EB, appends optional Text3, and sends the resulting key token

KTA1 = EB(BS||Text2)||Text3

to entity B.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 37

Key token decryption (B1.1) Entity B decrypts the encrypted part of the received key token KTA1 using
its private decryption transformation DB.

Key block verification (B1.2) Entity B uses the sender's public verification transformation VA to verify
the integrity and origin of BS. Entity B validates that it is the intended recipient of the token (by inspection
of the identifier in BS) and, optionally, that the TVP is within acceptable bounds (to verify the token's
timeliness). If all verifications are successful, entity B accepts the key K.
NOTE 1 The number of protocol passes is 1.

NOTE 2 This mechanism provides entity authentication of entity A to entity B, and implicit key authentication from
entity B to entity A.

NOTE 3 This mechanism provides key confirmation from entity A to entity B. Entity B can be sure that it shares the
correct key K with entity A, but entity A can only be sure that entity B has indeed received the key after it has
obtained a positive reply from entity B encrypted using key K.

NOTE 4 Entity A can choose the key.

NOTE 5 Entity B's distinguishing identifier is included in the signed key block BS to explicitly indicate the recipient
of the key, thereby preventing misuse of the signed block BS by entity B.

NOTE 6 The data field Text3 can be used to deliver the public key certificate of entity A. If this is the case, then the
fourth requirement at the beginning of 12.3 can be relaxed to the requirement that entity B is in possession of an
authenticated copy of the CA's public verification key.

NOTE 7 If two executions of this secret key transport mechanism are combined (from entity A to entity B and from
entity B to entity A) then mutual entity authentication and joint key control can be provided (depending on use of
the optional TVP).

12.4 Secret key transport mechanism 4

This secret key transport mechanism is based on the two-pass authentication mechanism of
ISO/IEC 9798-3, and transfers a key from entity B to entity A. The following requirements shall be
satisfied.

— Entity A has an asymmetric encryption system (EA, DA).

— Entity B has an asymmetric signature system (SB, VB).

— Entity A has access to an authenticated copy of entity B's public verification transformation VB. This
can be achieved using the mechanisms described in Clause 13.

— Entity B has access to an authenticated copy of entity A's public encryption transformation EA. This
can be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 4 is summarized in Figure 16.

Key token construction (A1) Entity A generates a random number rA, constructs the key token KTA1
consisting of rA and an optional data field Text1, KTA1 = rA||Text1 and sends it to entity B.

Key block encryption (B1.1) Suppose K is a secret key that entity B wishes to securely transfer to entity
A. Entity B forms a key data block, consisting of the sender's distinguishing identifier, the key K and an
optional data field Text2. Entity B then encrypts the key data block with entity A's public encryption
transformation EA, and forms the encrypted block BE = EA(B||K||Text2).

Key token construction (B1.2) Entity B optionally generates a random number rB and forms the token
data block, consisting of the recipient's distinguishing identifier, the random number rA received in step
(A1), the new random number rB (optional), the encrypted block BE, and the optional data field Text3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

38 © ISO/IEC 2021 – All rights reserved

Then entity B signs the token data block with its private signature transformation SB, appends optional
Text4, and sends the resulting key token KTB1 = SB(A||rA||rB||BE||Text3)||Text4 to entity A.

Key token verification (A2.1) Entity A uses the sender's public verification transformation VB to verify
the digital signature in the received key token KTB1. Then entity A checks its distinguishing identifier in
KTB1 and checks that the received value rA agrees with the random number sent in step (A1).

Key block decryption (A2.2) Entity A decrypts the block BE with its private decryption transformation
DA. Entity A then validates the sender's distinguishing identifier in BE. If all checks are successful, entity
A accepts the key K.
NOTE 1 The number of protocol passes is 2.

NOTE 2 This mechanism provides implicit key authentication from entity A to entity B.

NOTE 3 This mechanism provides key confirmation from entity B to entity A. Entity A can be sure that it shares the
correct key K with entity B, but entity B can only be sure that entity A has indeed received the key after it has
obtained a secured message from entity A which has been processed using K.

NOTE 4 Entity B can choose the key.

NOTE 5 The tokens KTA1 and KTB1 conform to the tokens sent in the two-pass authentication mechanism described
in ISO/IEC 9798-3:2019, 5.1.2, (note that the roles of entities A and B are exchanged). The token KTB1 accommodates
the transfer of the key K through use of the optional data field: Text2 in the mechanism of ISO/IEC 9798-3 has been
replaced by BE || Text3.

NOTE 6 If this secret key transport mechanism is executed twice in parallel between two entities, then the resulting
mutual secret key transport mechanism is in conformance with the mechanism described in ISO/IEC 9798-3.

NOTE 7 Data field rB is included for consistency with ISO/IEC 9798-3. Because of the presence of BE in KTB1, rB is
no longer required and is therefore optional in this mechanism.

12.5 Secret key transport mechanism 5

This secret key transport mechanism is based on the three-pass authentication mechanism of
ISO/IEC 9798-3 and transfers two shared secret keys with mutual entity authentication and key
confirmation. One key is transferred from entity A to entity B and one key from entity B to entity A. The
following requirements shall be satisfied.

— Each entity X has an asymmetric signature system (SX, VX).

— Each entity X has an asymmetric encryption system (EX, DX).

— Each entity has access to an authenticated copy of the public verification transformation of the other
entity. This can be achieved using the mechanisms described in Clause 13.

— Each entity has access to an authenticated copy of the public encryption transformation of the other
entity. This can be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 5 is summarized in Figure 17.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 39

Figure 17 — Secret key transport mechanism 5

Figure 18 — Secret key transport mechanism 6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

40 © ISO/IEC 2021 – All rights reserved

Key token construction (A1) Entity A randomly generates rA, constructs the key token KTA1 = rA||Text1
and sends it to entity B.

Key block encryption (B1.1) Suppose K is a secret key that entity B wishes to securely transfer to entity
A. Entity B constructs a block containing its own distinguishing identifier, the key KB, and optional Text2,
and encrypts the block using the recipient's public encryption transformation EA:

BE1 = EA(B||KB||Text2).

Key token construction (B1.2) Entity B randomly generates rB and constructs a data block containing
rB, rA, the recipient's identity, the encrypted key block BE1, and optional Text3. Entity B signs the block
using its private signature transformation SB, appends optional Text4, and sends the key token KTB1 =
SB(rB||rA||A||BE1||Text3)||Text4 to entity A.

Key token verification (A2.1) Entity A verifies entity B's signature on the key token KTB1 using entity
B's public verification transformation VB, checks its distinguishing identifier in KTB1 and checks that the
received value rA agrees with the random number sent in step (A1).

Key block decryption (A2.2) Entity A decrypts the encrypted block BE1 using its private decryption
transformation DA and checks the distinguishing identifier for entity B. If all checks are successful, entity
A accepts the key KB.

Key block encryption (A2.3) Entity A constructs a data block containing its own distinguishing
identifier, its own key KA, and optional Text5, and encrypts the block using the recipient's public
encryption transformation EB to obtain BE2 = EB(A||KA||Text5).

Key token construction (A2.4) Entity A constructs a data block containing the random number rA, the
random number rB, the recipient's distinguishing identifier, the encrypted key block BE2, and optional
Text6. Entity A signs the data block using its private signature transformation SA, appends optional Text7,
and sends the key token KTA2 = SA(rA||rB||B||BE2||Text6)||Text7 to entity B.

Key token verification (B2.1) Entity B verifies entity A's signature on the key token KTA2 using entity
A's public verification transformation VA, checks its distinguishing identifier in KTA2 and checks that the
received value rB agrees with the random number sent in step (B1.2). In addition, B checks that the
received value rA agrees with the value contained in KTA1.

Key block decryption (B2.2) Entity B decrypts the encrypted block BE2 using its private decryption
transformation DB and verifies the distinguishing identifier for entity A. If all checks are successful, entity
B accepts the key KA. If only unilateral key transport is required then, as appropriate, either BE1 or BE2
can be omitted.
NOTE 1 The number of passes is 3.

NOTE 2 This mechanism provides mutual entity authentication, implicit key authentication of KA from entity B to
entity A and implicit key authentication of KB from entity A to entity B.

NOTE 3 This mechanism provides key confirmation from sender to recipient for both keys KA and KB. Moreover, if
entity A includes a MAC on KB in the data field Text6 of KTA2, then this mechanism provides mutual key confirmation
with respect to KB.

NOTE 4 Entity A can choose the key KA , since it is the originating entity. Similarly, entity B can choose the key KB.
Joint key control can be achieved by each entity by combining the two keys KA and KB to form a shared secret key
KAB. The combination function is one-way, otherwise entity A can choose the shared secret key. This mechanism can
then be classified as a key agreement mechanism.

NOTE 5 KTA1, KTB1, and KTA2 are compatible with the tokens sent in the three pass authentication mechanism
described in ISO/IEC 9798-3:2019, 5.2.2. The second token accommodates the transfer of the key KB: Text2 of the
mechanism of ISO/IEC 9798-3 has been replaced by BE1||Text3. The third token accommodates the transfer of the
key KA: Text4 of the mechanism of ISO/IEC 9798-3 has been replaced by BE2||Text6. The third token can also
accommodate the transfer of a MAC within Text6.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 41

NOTE 6 If the data fields Text1 and Text4 (or Text7 and Text4) contain the public key certificates of entities A and
B, respectively, then the third and fourth requirements at the beginning of 12.5 can be relaxed to the requirement
that both entities are in possession of an authenticated copy of the CA's public verification key.

12.6 Secret key transport mechanism 6

This secret key transport mechanism securely transfers two secret keys in three passes, one from entity
A to entity B and one from entity B to entity A. In addition, the mechanism provides mutual entity
authentication. This mechanism is based on the following requirements.

— Each entity X has an asymmetric encryption system (EX, DX).

— Each entity has access to an authenticated copy of the public encryption transformation of the other
entity. This can be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 6 is summarized in Figure 18.

Key token construction (A1) Entity A has obtained a key KA and wants to transfer it securely to entity
B. Entity A selects a random number rA and constructs a key data block consisting of its distinguishing
identifier, the key KA, the number rA and an optional data field Text1. Then entity A encrypts the key block
using entity B's public encryption transformation EB, thereby producing the encrypted data block BE1 =
EB(A||KA||rA||Text1).

Entity A constructs the token KTA1 = BE1||Text2, consisting of the encrypted data block and some optional
data field Text2.

Entity A sends the token to entity B.

Key token construction (B1) Entity B extracts the encrypted key block BE1 from the received key token
KTA1 and decrypts it using its private decryption transformation DB. Then entity B checks that the
decrypted version of BE1 contains the identifier for entity A.

Entity B has obtained a key KB and wants to transfer it securely to entity A. Entity B selects a random
number rB and constructs a key data block consisting of the distinguishing identifier for entity B, the key
KB, the random number rB, the random number rA (as extracted from the decrypted block) and an
optional data field Text3. Then entity B encrypts the key block using entity A's public encryption
transformation EA, thereby producing the encrypted data block BE2 = EA(B||KB||rA||rB||Text3).

Then entity B constructs the key token KTB1 = BE2||Text4, consisting of the encrypted data block BE2 and
an optional data field Text4.

Entity B sends the token to entity A.

Key and entity confirmation (A2.1) Entity A extracts the encrypted key block BE2 from the received
key token KTB1 and decrypts it using its private decryption transformation DA. Then entity A checks the
validity of the key token through comparison of the random number rA with the random number rA
contained in the encrypted block BE2. If the verification is successful, entity A has implicitly confirmed
that KA has safely reached entity B.

Key token response (A2.2) Entity A extracts the random number rB from the decrypted key block and
constructs the key token KTA2 = rB||Text5, consisting of the random number rB and an optional data field
Text5.

Entity A sends the token to entity B.

Key and entity confirmation (B2) Entity B verifies that the response rB extracted from KTA2 is
consistent with the random number rB sent in encrypted form in KTB1. If the verification is successful,
entity B has authenticated entity A and at the same time has obtained confirmation that KB has safely
reached entity A.
NOTE 1 The number of passes is 3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

42 © ISO/IEC 2021 – All rights reserved

NOTE 2 This mechanism provides implicit key authentication of KA from entity B to entity A and implicit key
authentication of KB from entity A to entity B.

NOTE 3 Entity A can choose the key KA , since it is the originating entity. Similarly, entity B can choose the key KB.
Joint key control can be achieved by each entity by combining the two keys KA and KB on both sides to form a shared
secret key KAB. However, the combination function is one-way, otherwise entity B can choose the shared secret key.
This mechanism can then be classified as a key agreement mechanism.

NOTE 4 This mechanism uses asymmetric techniques to mutually transfer two secret keys, KA from entity A to
entity B and KB from entity B to entity A. The following cryptographic function separation can be derived from the
mechanism: entity A uses its key KA to encrypt messages for entity B and to verify authentication codes from entity
B. Entity B in turn uses the received key KA to decrypt messages from entity A and generate authentication codes
for entity A. The cryptographic functions of KB can be separated in an analogous manner. In such a way, the
asymmetric basis of the key transport mechanism can be extended to the usage of the secret keys.

NOTE 5 This mechanism is derived from the three pass protocol known as COMSET[18].

NOTE 6 This mechanism is based on zero-knowledge techniques. From the execution of the mechanism, neither of
the entities learns anything that it cannot have computed itself.

13 Public key transport

13.1 Public key transport mechanism 1

If entity A has access to a protected channel (i.e. a channel which provides data origin authentication and
data integrity), such as a courier, registered mail, etc., to entity B then entity A may transport its public
key information directly via that protected channel to entity B. This is the most elementary form of
transferring a public key. The following requirements shall be satisfied.

— Entity A's public key information PKIA contains at least entity A's distinguishing identifier and entity
A's public key. In addition, it may contain a serial number, a validity period, a time stamp and other
data elements.

— Since the public key information does not contain any secret data, the communication channel need
not provide confidentiality.

Public key transport mechanism 1 is summarized in Figure 19.

Figure 19 — Public key transport mechanism 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 43

Figure 20 — Public key transport mechanism 2

Key token construction (A1) Entity A constructs the key token KTA1 containing the public key
information of entity A and some optional data field Text, and sends KTA1 = PKIA||Text via a protected
channel to entity B.

Key token reception (B1) Entity B receives the key token via the protected channel from entity A,
retrieves entity A's public key information PKIA and stores entity A's public key into the list of active
public keys (this list shall be protected from tampering).
NOTE 1 This mechanism can be used to transfer public verification keys (for an asymmetric signature system) or
public encryption keys (for an asymmetric encryption system) or public key agreement keys.

NOTE 2 Authentication in this context includes both data integrity and data origin authentication (as defined in
ISO 7498-2).

13.2 Public key transport mechanism 2

This mechanism transports the public key information of entity A via an unprotected channel to entity B.
To verify the integrity and the origin of the received public key information a second authenticated
channel is used. Such a mechanism is useful when the public key information PKI is transferred
electronically on a high bandwidth channel, whereas the authentication of the public key information
takes place over an authenticated low bandwidth channel such as a telephone, courier, or registered mail.
As an additional requirement, the entities shall share a common hash, as defined in ISO/IEC 10118-1. The
following requirements shall be satisfied.

— Entity A's public key information PKIA contains at least entity A's distinguishing identifier and entity
A's public key. In addition, it may contain a serial number, a validity period, a time stamp and other
data elements.

— Since the public key information does not contain any secret data, the communication channel need
not provide confidentiality.

Public key transport mechanism 2 is summarized in Figure 20.

Key token construction (A1) Entity A constructs the key token KTA1 containing the public key
information of entity A and sends KTA1 = PKIA||Text1 to entity B.

Key token reception (B1) Entity B receives the key token, retrieves entity A's public key information
PKIA, and stores it protected from tampering for later verification and use.

Verification token construction (A2) Entity A computes a check value hash(PKIA) on its public key
information and sends this check value together with the optional distinguishing identifiers of entities A
and B to entity B using a second independent and authenticated channel (e.g. a courier or registered mail),
where

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

44 © ISO/IEC 2021 – All rights reserved

KTA2 = A||B||hash(PKIA)||Text2.

Key token verification (B2) Upon reception of the verification token KTA2, B optionally checks the
distinguishing identifier of entities A and B, computes the check value on the public key information of
entity A received in the key token KTA1 and compares it with the check value received in the verification
token KTA2. If the check succeeds, entity B puts entity A's public key onto the list of active public keys (this
list shall be protected from tampering).
NOTE 1 This mechanism can be used to transfer public verification keys (for an asymmetric signature system) or
public encryption keys (for an asymmetric encryption system) or public key agreement keys.

NOTE 2 Authentication in this context includes both data integrity and data origin authentication.

NOTE 3 If the public key that is transported is a key for an asymmetric signature system not giving message
recovery, then entity A can sign the token KTA1 using the corresponding private signature key. In that case, the
verification of entity A's signature in step (B1) using the received public verification key confirms that entity A knew
the corresponding private signature key, and so presumably, was the only entity that knew the corresponding
private signature key at the time the token was created. If a time stamp is used in PKIA , then verification confirms
that entity A currently knows the corresponding private signature key.

NOTE 4 A manually signed letter from Entity A can be used for the verification token.

13.3 Public key transport mechanism 3

This mechanism transfers a public key from entity A to entity B in an authenticated way by using a trusted
third party. The authentication of the entities' public keys can be ensured by exchanging the public keys
in the form of public key certificates. Entity A's public key certificate contains the public key information,
together with a digital signature provided by a trusted third party, the certification authority (CA). The
introduction of a CA reduces the problem of authenticated user public key distribution to the problem of
authenticated distribution of the CA's public key, at the expense of a trusted centre (the CA). ISO/IEC
11770-1 shall be referred. See also ISO/IEC 9594-8:2020, Annex E.

This mechanism is based on the assumption that a valid public key certificate CertA of entity A's public
key information PKIA has been issued by some certification authority, and that entity B has access to an
authenticated copy of the public verification transformation VCA of that certification authority CA which
has issued the public key certificate.

Public key transport mechanism 3 is summarized in Figure 21.

Figure 21 — Public key transport mechanism 3

Key token construction (A1) Entity A constructs the key token KTA1 containing the public key certificate
of entity A and sends it to entity B, KTA1 = CertA||Text.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 45

Certificate verification (B1) Upon reception of the public key certificate, entity B uses the public
verification transformation VCA of the certification authority to verify the authenticity of the public key
information and to check the validity of entity A's public key.

If entity B wants to make sure that entity A's public key certificate has not been revoked recently, then
entity B should consult a trusted third party (such as the CA) via some authenticated channel.
NOTE 1 The number of passes is 1, but there can have been a request from entity B to entity A for the transfer of
the public key certificate. This additional pass is optional and not shown here. Entity A's public key certificate can
also be distributed by a directory, in which case this public key transport mechanism would be executed between
the directory and entity B.

NOTE 2 Entity authentication is not provided by this mechanism.

NOTE 3 Receiving a public key certificate provides confirmation that the public key has been certified by the CA.

NOTE 4 The public verification key vCA of the CA is made available to entity B in an authenticated way. This can be
done using the mechanisms described in Clause 13.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

46 © ISO/IEC 2021 – All rights reserved

Annex A
(normative)

Object identifiers

This annex lists the object identifiers (see References [42] and [43]) assigned to the key management
mechanisms specified in this document.
Key-management-AsymmetricTechniques {

iso(1) standard(0) key-management(11770)

asymmetricTechniques(3) asn1-module(0) object-identifiers(0) }

DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

-- IMPORTS None; --

OID ::= OBJECT IDENTIFIER – Alias

-- Synonyms –

id-km-at OID ::= {

iso(1) standard(0) key-management(11770) asymmetricTechniques(3) }

-- Assignments –

id-km-at-kAM-1 OID ::= { id-km-at keyAgreementMechanism1(1) }

id-km-at-kAM-2 OID ::= { id-km-at keyAgreementMechanism2(2) }

id-km-at-kAM-3 OID ::= { id-km-at keyAgreementMechanism3(3) }

id-km-at-kAM-4 OID ::= { id-km-at keyAgreementMechanism4(4) }

id-km-at-kAM-5 OID ::= { id-km-at keyAgreementMechanism5(5) }

id-km-at-kAM-6 OID ::= { id-km-at keyAgreementMechanism6(6) }

id-km-at-kAM-7 OID ::= { id-km-at keyAgreementMechanism7(7) }

id-km-at-kAM-8 OID ::= { id-km-at keyAgreementMechanism8(8) }

id-km-at-kAM-9 OID ::= { id-km-at keyAgreementMechanism9(9) }

id-km-at-kAM-10 OID ::= { id-km-at keyAgreementMechanism10(10) }

id-km-at-kAM-11 OID ::= { id-km-at keyAgreementMechanism11(11) }

id-km-at-kAM-12 OID ::= { id-km-at keyAgreementMechanism12(21) }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 47

id-km-at-kAM-13 OID ::= { id-km-at keyAgreementMechanism13(22) }

id-km-at-kAM-14 OID ::= { id-km-at keyAgreementMechanism14(23) }

id-km-at-kAM-15 OID ::= { id-km-at keyAgreementMechanism15(24) }

id-km-at-kTM-1 OID ::= { id-km-at keyTransportMechanism1(12) }

id-km-at-kTM-2 OID ::= { id-km-at keyTransportMechanism2(13) }

id-km-at-kTM-3 OID ::= { id-km-at keyTransportMechanism3(14) }

id-km-at-kTM-4 OID ::= { id-km-at keyTransportMechanism4(15) }

id-km-at-kTM-5 OID ::= { id-km-at keyTransportMechanism5(16) }

id-km-at-kTM-6 OID ::= { id-km-at keyTransportMechanism6(17) }

id-km-at-pKT-1 OID ::= { id-km-at publicKeyTransportMechanism1(18) }

id-km-at-pKT-2 OID ::= { id-km-at publicKeyTransportMechanism2(19) }

id-km-at-pKT-3 OID ::= { id-km-at publicKeyTransportMechanism3(20) }

-- Key Agreement Mechanism 1 –

keyConstruction-1a OID ::= {

 id-km-at-kAM-1 keyConstructionFunction-1a(1) }

keyConstruction-1b OID ::= {

 id-km-at-kAM-1 keyConstructionFunction-1b(2) }

-- Key Agreement Mechanism 2 –

keyTokenConstruction-2 OID ::= {

 id-km-at-kAM-2 keyTokenConstructionFunction(1) }

keyConstruction-2a OID ::= {

 id-km-at-kAM-2 keyConstructionFunction-2a(2) }

keyConstruction-2b OID ::= {

 id-km-at-kAM-2 keyConstructionFunction-2b(3) }

-- Key Agreement Mechanism 3 –

keyConstruction-3a OID ::= {

 id-km-at-kAM-3 keyConstructionFunction-3a(1) }

keyTokenSignature-3 OID ::= {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

48 © ISO/IEC 2021 – All rights reserved

 id-km-at-kAM-3 keyTokenSignatureFunction(2) }

keyConstruction-3b OID ::= {

 id-km-at-kAM-3 keyConstructionFunction-3b(3) }

signatureVerification-3 OID ::= {

 id-km-at-kAM-3 signatureVerificationFunction(4) }

-- Key Agreement Mechanism 4 –

keyTokenConstruction-4a OID ::= {

 id-km-at-kAM-4 keyTokenConstructionFunction-4a(1) }

keyTokenConstruction-4b OID ::= {

 id-km-at-kAM-4 keyTokenConstructionFunction-4b(2) }

keyConstruction-4a OID ::= {

 id-km-at-kAM-4 keyConstructionFunction-4a(3) }

keyConstruction-4b OID ::= {

 id-km-at-kAM-4 keyConstructionFunction-4b(4) }

-- Key Agreement Mechanism 5 –

keyTokenConstruction-5a OID ::= {

 id-km-at-kAM-5 keyTokenConstructionFunction-5a(1) }

keyTokenConstruction-5b OID ::= {

 id-km-at-kAM-5 keyTokenConstructionFunction-5b(2) }

keyConstruction-5a OID ::= {

 id-km-at-kAM-5 keyConstructionFunction-5a(3) }

keyConstruction-5b OID ::= {

 id-km-at-kAM-5 keyConstructionFunction-5b(4) }

-- Key Agreement Mechanism 6 –

keyTokenConstruction-6 OID ::= {

 id-km-at-kAM-6 keyTokenConstructionFunction(1) }

keyTokenProcessing-6b OID ::= {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 49

 id-km-at-kAM-6 keyTokenProcessingFunction-6b(2) }

keyConstruction-6 OID ::= {

 id-km-at-kAM-6 keyConstructionFunction(3) }

keyTokenProcessing-6a OID ::= {

 id-km-at-kAM-6 keyTokenProcessingFunction-6a(4) }

-- Key Agreement Mechanism 7 –

keyTokenConstruction-7 OID ::= {

 id-km-at-kAM-7 keyTokenConstructionFunction(1) }

keyTokenProcessingAndKeyConstruction-7 OID ::= {

 id-km-at-kAM-7 keyTokenProcessingAndKeyConstructionFunction(2) }

keyTokenProcessing-7a OID ::= {

 id-km-at-kAM-7 keyTokenProcessingFunction-7a(4) }

keyTokenProcessing-7b OID ::= {

 id-km-at-kAM-7 keyTokenProcessingFunction-7b(5) }

-- Key Agreement Mechanism 8 –

keyTokenConstruction-8 OID ::= {

 id-km-at-kAM-8 keyTokenConstructionFunction(1) }

keyConstruction-8a OID ::= {

 id-km-at-kAM-8 keyConstructionFunction-8a(2) }

keyConstruction-8b OID ::= {

 id-km-at-kAM-8 keyConstructionFunction-8b(3) }

-- Key Agreement Mechanism 9 –

keyTokenConstruction-9a OID ::= {

 id-km-at-kAM-9 keyTokenConstructionFunction-9a(1) }

keyTokenConstruction-9b OID ::= {

 id-km-at-kAM-9 keyTokenConstructionFunction-9b(2) }

keyConstruction-9a OID ::= {

 id-km-at-kAM-9 keyConstructionFunction-9a(3) }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

50 © ISO/IEC 2021 – All rights reserved

keyConstruction-9b OID ::= {

 id-km-at-kAM-9 keyConstructionFunction-9b(4) }

-- Key Agreement Mechanism 10 –

keyTokenConstruction-10a OID ::= {

 id-km-at-kAM-10 keyTokenConstructionFunction(1) }

keyConstruction-10b OID ::= {

 id-km-at-kAM-10 keyConstructionFunction-10b(2) }

keyConstruction-10a OID ::= {

 id-km-at-kAM-10 keyConstructionFunction-10a(3) }

verification-10b OID ::= {

 id-km-at-kAM-10 verificationFunction(4) }

-- Key Agreement Mechanism 11 –

entityConfirmation-11a OID ::= {

 id-km-at-kAM-11 entityConfirmationFunction-11a(1) }

entityConfirmation-11b OID ::= {

 id-km-at-kAM-11 entityConfirmationFunction-11b(2) }

keyTokenAndKeyConstruction-11 OID ::= {

 id-km-at-kAM-11 keyTokenProcessingAndKeyConstructionFunction(3) }

keyConstruction-11 OID ::= {

 id-km-at-kAM-11 keyConstructionFunction(4) }

keyVerification-11 OID ::= {

 id-km-at-kAM-11 keyVerificationFunction(5) }

-- Key Agreement Mechanism 13 --

keyTokenConstruction-13-B1 OID ::= {

 id-km-at-kAM-13 keyTokenConstruction (1) }

keyKeyTokenConstructionEncryption-13-A1 OID ::= {

 id-km-at-kAM-13 kKTCE (2) }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 51

-- Key Agreement Mechanism 14 --

keyTokenConstruction-14-A1 OID ::= {

 id-km-at-kAM-14 keyConstruction (1) }

keyKeyTokenConstruction-14-B1 OID ::= {

 id-km-at-kAM-14 keyKeyTokenConstruction (2) }

keyConstructionEncryption-14-A2 OID ::= {

 id-km-at-kAM-14 keyConstructionEncryption (3) }

-- Key Agreement Mechanism 15 --

keyTokenConstruction-15a OID ::= {

 id-km-at-kAM-15 keyTokenConstructionFunction-15a (1) }

keyTokenConstruction-15b OID ::= {

 id-km-at-kAM-15 keyTokenConstructionFunction-15b (2) }

keyConstruction-15a OID ::= {

 id-km-at-kAM-15 keyConstructionFunction-15a(3) }

keyConstruction-15b OID ::= {

 id-km-at-kAM-15 keyConstructionFunction-15b(4) }

sharedKeyConstruction-15a OID ::= {

 id-km-at-kAM-15 sharedKeyConstructionFunction-15a(5) }

sharedKeyConstruction-15b OID ::= {

 id-km-at-kAM-15 sharedKeyConstructionFunction-15b(6) }

-- Key Transport Mechanism 1 –

keyTokenConstruction-1 OID ::= {

 id-km-at-kTM-1 keyTokenConstructionFunction(1) }

keyTokenDeconstruction-1 OID ::= {

 id-km-at-kTM-1 keyTokenDeconstructionFunction(2) }

-- Key Transport Mechanism 2 –

keyEncryption-2 OID ::= {

 id-km-at-kTM-2 keyEncryptionFunction(1) }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

52 © ISO/IEC 2021 – All rights reserved

keyTokenConstruction-2a OID ::= {

 id-km-at-kTM-2 keyTokenConstructionFunction(2) }

keyTokenVerification-2 OID ::= {

 id-km-at-kTM-2 keyTokenVerificationFunction(3) }

keyDecryption-2 OID ::= {

 id-km-at-kTM-2 keyDecryptionFunction(4) }

-- Key Transport Mechanism 3 –

keyBlockSignature-3 OID ::= {

 id-km-at-kTM-3 keyBlockSignatureFunction(1) }

keyTokenConstruction-3 OID ::= {

 id-km-at-kTM-3 keyTokenConstructionFunction(2) }

keyTokenDecryption-3 OID ::= {

 id-km-at-kTM-3 keyTokenDecryptionFunction(3) }

keyBlockVerification-3 OID ::= {

 id-km-at-kTM-3 keyBlockVerificationFunction(4) }

-- Key Transport Mechanism 4 –

keyTokenConstruction-4c OID ::= {

 id-km-at-kTM-4 keyTokenConstructionFunction-4c(1) }

keyBlockEncryption-4 OID ::= {

 id-km-at-kTM-4 keyBlockEncryptionFunction(2) }

keyTokenConstruction-4d OID ::= {

 id-km-at-kTM-4 keyTokenConstructionFunction-4d(3) }

keyTokenVerification-4 OID ::= {

 id-km-at-kTM-4 keyTokenVerificationFunction(4) }

keyBlockDecryption-4 OID ::= {

 id-km-at-kTM-4 keyBlockDecryptionFunction(5) }

-- Key Transport Mechanism 5 –

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 53

keyTokenConstruction-5c OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5c(1) }

keyBlockEncryption-5b OID ::= {

 id-km-at-kTM-5 keyBlockEncryptionFunction-5b(2) }

keyTokenConstruction-5d OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5d(3) }

keyTokenVerification-5a OID ::= {

 id-km-at-kTM-5 keyTokenVerificationFunction-5a(4) }

keyBlockDecryption-5a OID ::= {

 id-km-at-kTM-5 keyBlockDecryptionFunction-5a(5) }

keyBlockEncryption-5a OID ::= {

 id-km-at-kTM-5 keyBlockEncryptionFunction-5a(6) }

keyTokenConstruction-5e OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5e(7) }

keyTokenVerification-5b OID ::= {

 id-km-at-kTM-5 keyTokenVerificationFunction-5b(8) }

keyBlockDecryption-5b OID ::= {

 id-km-at-kTM-5 keyBlockDecryptionFunction-5b(9) }

-- Key Transport Mechanism 6 –

keyTokenConstruction-6a OID ::= {

 id-km-at-kTM-6 keyTokenConstructionFunction-6a(1) }

keyTokenConstruction-6b OID ::= {

 id-km-at-kTM-6 keyTokenConstructionFunction-6b(2) }

keyEntityConfirmation-6a OID ::= {

 id-km-at-kTM-6 keyEntityConfirmationFunction-6a(3) }

keyTokenResponse-6 OID ::= {

 id-km-at-kTM-6 keyResponseFunction(4) }

keyEntityConfirmation-6b OID ::= {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

54 © ISO/IEC 2021 – All rights reserved

 id-km-at-kTM-6 keyEntityConfirmationFunction-6b(5) }

-- Public Key Transport Mechanism 1 –

keyTokenConstruction-1a OID ::= {

 id-km-at-pKT-1 keyTokenConstructionFunction(1) }

keyTokenReception-1 OID ::= {

 id-km-at-pKT-1 keyTokenReceptionFunction(2) }

-- Public Key Transport Mechanism 2 –

keyTokenConstruction-2b OID ::= {

 id-km-at-pKT-2 keyTokenConstructionFunction(1) }

keyTokenReception-2 OID ::= {

 id-km-at-pKT-2 keyTokenReceptionFunction(2) }

keyTokenVerification-2a OID ::= {

 id-km-at-pKT-2 keyTokenVerificationFunction(3) }

-- Public Key Transport Mechanism 3 –

keyTokenConstruction-3a OID ::= {

 id-km-at-pKT-3 keyTokenConstructionFunction(1) }

certificationVerification-3 OID ::= {

 id-km-at-pKT-3 certificationVerificationFunction(2) }

END -- Key-management-AsymmetricTechniques --

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 55

Annex B
(informative)

Properties of key establishment mechanisms

Tables B.1 to B.3 summarize the major properties of the key establishment/transport mechanisms
specified in this document.

The following notation is used in Tables B.1 to B.3.

A The mechanism provides the property with respect to entity A.

B The mechanism provides the property with respect to entity B.

A, B The mechanism provides the property with respect to both entities A and B.

No The mechanism does not provide the property.

Opt The mechanism can provide the property as an option, using additional means.

(A) The mechanism can optionally provide the property with respect to entity A, using additional
means.

(B) The mechanism can optionally provide the property with respect to entity B, using additional
means.

MFS The mechanism provides mutual forward secrecy.

#passes The number of passes

Public key operations in Tables B.1, B.2 and B.3: the number of computations of asymmetric
transformation. F and FP, the number of computations of asymmetric transformation executed by entity
X , EX , DX , SX , and VX . "(2F,1F)" means that entity A needs two computations of the function F and entity
B needs one computation of the function F in key agreement mechanism 2 in Table B.1; and the number
of computations of asymmetric transformation, "(1FP,1FP,1FP)" means that entity A needs one
computation of the function FP, entity B needs one computation of the function FP, and entity C needs one
computation of the function FP in key agreement mechanism 12 in Table B.1. "(1EB,1DB)" means that
entity A needs one computation of the function EB and entity B needs one computation of the function DB
in Table B.2. "(0,1VCA)" means that entity B needs one computation of the public verification
transformation VCA of the certification authority CA in Table B.3. EP means an exponentiation operation
in S3.

Another important property that can be derived from key freshness is replay attack prevention. Replay
attacks are generally not possible where key freshness is guaranteed for both entities.

The property of implicit key authentication has direction by its definition. When each table for implicit
key authentication has an "A", this means that entity B is assured that entity A is the only other entity that
can possibly be in possession of the correct key. When each table for implicit key authentication has an
"A, B", this means that entities A and B are assured that only the other entity can possibly be in possession
of the correct key.

Having the property of being unlinkable provides privacy in the sense that a passive eavesdropper is
unable to determine if two instances of the protocol involve the same entity or not. Note that the property
of being unlinkable for entity A necessarily provides anonymity for entity A, for if it did not then it would
not be unlinkable. Mechanisms that require an entity's plaintext public key to be sent to the other entity
do not provide the property of unlinkability for that entity. For the purposes of this annex, mechanisms
which assume that an entity's public key is already shared are not considered to provide the property of
unlinkability.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

56 © ISO/IEC 2021 – All rights reserved

NOTE 1 Only mechanism 12 in Table B.1 executes among three entities and others execute among two entities.

NOTE 2 All mechanisms except mechanism 1 in Table B.1 use secure random bit generation.

Table B.1 — Properties of key agreement mechanisms

Mechanis
m

#passe
s

Implicit key
authenticati

on

Key
confirmatio

n

Entity
authenticati

on

Public key
operations

Forwar
d

secrecy

Key
freshnes

s

Unlinkabl
e

1 0 A, B No No (1F, 1F) No No No

2 1 B No No (2F, 1F) A A A

3 1 A, B B A (2F/1SA ,
1F/1VA)

A A No

4 2 No No No (2F, 2F) MFS A, B A, B

5 2 A, B Opt No (3F, 3F) A, B A, B No

6 2 A, B Opt B (1VB/1DA ,
1SB/1EA)

B A, B No

7 3 A, B A, B A, B (2F/1VB/1S
A , 2F/1SB/
1VA)

MFS A, B No

8 1 A, B No No (2F, 1F) A A No

9 2 A, B No No (2F, 2F) MFS A, B No

10 3 A, B A, B A, B (2F, 2F) MFS A, B No

11 4 B A, B B (1VCA/1EB,
1DB)

MFS A, B A

12 0 A, B, C No No (1FP, 1FP,
1FP)

No No No

13 2 A (A), B A (2F, 3F) A A, B A, B

14 3 A (A), B A (2F, 3F) A A, B A, B

15 2 A, B Opt No (4F, 4F) A, B A, B No

F.3 2 A, B No No (3F/2FP,
3F/2FP)

A, B A, B No

F.4 2 A, B No No (3F/2FP,
3F/2FP)

A, B A, B No

F.5 2 A, B Opt No (2F/1FP/2E
P,
2F/1FP/2EP
)

A, B A, B No

Table B.2 — Properties of secret key transport mechanisms

Mechanis
m

#pas
ses

Implicit key
authenticati

on

Key
confirmat

ion

Key
control

Entity
authenticat

ion

Public
key

operati
ons

Forwar
d

secrec
y

Key
freshne

ss

1 1 B No A No (1EB,
1DB)

A A

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 57

2 1 B B A A (1EB/1
SA,
1VA/1D
B)

A A

3 1 B B A A (1SA/1
EB,
1DB/1V
A)

A A

4 2 A A B B (1VB/1
DA,
1EA/1S
B)

B A

5 3 A, B (A), B A, B A, B (1VB/1
DA
/1EB/1
SA,
1EA/1S
B
/1VA/1
DB)

No A, B

6 3 A, B No A, B No (1EB/1
DA,
1DB/1E
A)

No A, B

Table B.3 — Properties of public key transport mechanisms

Mechanis
m

#pas
ses

Implicit key
authenticati

on

Key
confirmat

ion

Key
control

Entity
authenticat

ion

Public
key

operati
ons

Forwar
d

secrec
y

Key
freshne

ss

1 1 - - A A (0, 0) - No

2 2 - - A A (0, 0) - No

3 1 - - A A (0,
1VCA)

- No

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

58 © ISO/IEC 2021 – All rights reserved

Annex C
(informative)

Examples of key derivation functions

C.1 ASN.1 syntax for key derivation functions

This clause describes ASN.1 syntax for a key derivation function.

The input to the key derivation function is the shared secret ZZ and other information OtherInfo.The other
information includes the initiator's information entityAInfo, and the responder's information entityBInfo,
suppPubInfo, and suppPrivInfo.
OtherInfo ::= SEQUENCE {
 keyInfo KeySpecificInfo,
 entityAInfo [0] OCTET STRING OPTIONAL,
 entityBInfo[1] OCTET STRING OPTIONAL,
 suppPubInfo[2] OCTET STRING OPTIONAL,
 suppPrivInfo[3] OCTET STRING OPTIONAL
}
KeySpecificInfo ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 counter Counter
}
Counter ::= INTEGER (1...32767)
The suppPubInfo and suppPrivInfo fields are optional fields used in key derivation. These fields may be
used to hold additional, supplementary public and private information that is mutually known to the
communicating parties, but that is not specific to either party.

The contents of suppPubInfo and suppPrivInfo are defined by the key management protocol. The
definition, syntax, and encoding rules of the suppPubInfo and suppPrivInfo fields are the responsibility of
the key management protocol and are beyond the scope of this document.

All inputs to the key derivation hash function shall be an integral number of octets in length. suppPrivInfo
may include ZZ.
NOTE 1 Some mechanisms in Clauses 11 and 12 derive shared secrets either as points on the elliptic curve or as
the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret integer
z for input into the key derivation function, the function π is applied to the point.

NOTE 2 OtherInfo is used in Clauses C.3, C.5, and C.6.

C.2 IEEE P1363 key derivation function

This clause describes the key derivation function that is given in IEEE P1363[14].

Preconditions

As a precondition of the use of this key derivation function, users shall agree on a common hash function.
Users who use different hash functions will obtain different results. For the purposes of this document,
the hash function is referred in ISO/IEC 10118-2, ISO/IEC 10118-3 and ISO/IEC 10118-4. The shared key
that is produced will have length equal to the length of the output of the hash function.

Input

The inputs to this key derivation function are:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 59

— the shared secret z which is an integer, expressed as an octet string;

— the key derivation parameters, parameters, also expressed as an octet string.

NOTE Users also agree on a common method of converting integers and parameters to octet strings for input
into the key derivation function.

Actions

If the combined length of the shared secret z and the parameters exceeds any limitation that can exist for
the agreed hash function, hash, then output "error" and stop.

Otherwise, compute the value K = hash(z || parameters).

Output

Output K as the key.

C.3 ANSI X9.42 key derivation function

This element describes a key derivation function based on the key derivation function that is given in
ANSI X9.42[12].

Prerequisites

A hash function specified in ISO/IEC 10118-2, ISO/IEC 10118-3 and ISO/IEC 10118-4 is chosen. Let
hashlen denote the length of the output of the hash function chosen, and let maxhashlen denote the
maximum length of the input to the hash function.

Input

The input to the key derivation function is ZZ, a bit string denoting the shared secret.
NOTE 1 Some mechanisms in Clauses 11 and 12 derive shared keys KAB either as points on the elliptic curve or as
the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret value ZZ
for input into the key derivation function, the function π is applied to the point and the resulting integer converted
to a bit string. In the second situation, the function π is applied to both points to obtain two integers z1 and z2. The
two integers are then converted to bit strings and concatenated (or combined using any prefix-free encoding
method), as were the points, to obtain the appropriate bit string.

— keydatalen: An integer representing the length in bits of the keying data to be generated. This integer
is less than (hashlen × (232–1)).

— OtherInfo: A bit string, specified in ASN.1 DER encoding, consisting of the following key specification
information as specified in Clause C.2.

— AlgorithmID: a unique object identifier (OID) of the symmetric algorithm(s) with which the keying
data will be used.

— Counter: a 32-bit octet string, with initial value 00000001 (in hexadecimal).

— (Optional) EntityAInfo: A bit string containing public information contributed by the initiator.

— (Optional) EntityBInfo: A bit string containing public information contributed by the responder.

— (Optional) SuppPrivInfo: A bit string containing some additional, mutually known private
information, e.g. a shared secret symmetric key communicated through a separate channel.

— (Optional) SuppPubInfo: A bit string containing some additional, mutually known public information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

60 © ISO/IEC 2021 – All rights reserved

NOTE 2 Users also agree on a common method of converting integers and parameters to bit strings for input into
the key derivation function.

Actions

The key derivation function is computed as follows.

a) Let d =   /keydatalen hashlen .

b) Initialize Counter = 00000001 (in hexadecimal).

c) For i = 1 to d,

— compute hi = hash(ZZ || OtherInfo) where hi denotes the hash value computed using the
appropriate hash function, and OtherInfo = AlgorithmID || Counter [|| EntityAInfo ||
EntityBInfo || SuppPrivInfo || SuppPubInfo];

— increment Counter;

— increment i.

d) Compute K = leftmost keydatalen bits of h1 || h2 || … || hd.

e) Output K.

Output

The keying data K as a bit string of length keydatalen bits.

Note that this key derivation function based on ASN.1 DER encoding produces keying data which is less
than hashlen×(232–1) bits in length. It is assumed that all key derivation function calls are indeed for bit
strings which are less than hashlen×(232–1) bits in length. Any scheme attempting to call the key
derivation function using a bit string that is greater than or equal to hashlen×(232–1) bits shall output
“invalid” and stop. Similarly, it is assumed that all key derivation function calls do not involve hashing a
bit string that is more than maxhashlen bits in length. Any scheme attempting to call the key derivation
function on a call involving hashing a bit string that is greater than maxhashlen bits shall output “invalid”
and stop.

C.4 ANSI X9.63 key derivation function

This clause describes a key derivation function based on the key derivation function that is given in
ANSI X9.63[13].

Prerequisites The prerequisite for the operation of the key derivation function is that a hash function,
hash, specified in ISO/IEC 10118-2, ISO/IEC 10118-3 and ISO/IEC 10118-4 is chosen. Let hashlen denote
the length of the output of the hash function chosen, and let maxhashlen denote the maximum length of
the input to the hash function.

Input

The input to the key derivation function is a bit string Z which is the shared secret.
NOTE 1 Some mechanisms in Clauses 11 and 12 derive shared keys KAB either as points on the elliptic curve or as
the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret Z for
input into the key derivation function, the function π is applied to the point and the resulting integer converted to a
bit string. In the second situation, the function π is applied to both points to obtain two integers z1 and z2. The two
integers are then converted to bit strings and concatenated (or combined using any prefix-free encoding method),
as were the points, to obtain the appropriate bit string.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 61

— An integer keydatalen which is the length in bits of the keying data to be generated. keydatalen shall
be less than hashlen×(232–1).

— (Optional) A bit string SharedInfo which consists of some data shared by the two entities intended to
share the secret Z.

NOTE 2 Users also agree on a common method of converting integers and parameters to bit strings for input into
the key derivation function.

Actions

The key derivation function is computed as follows.

— Initiate a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

— For i = 1 to j =   /keydatalen hashlen , do the following.

— Compute Hashi = H(Z || counter [|| SharedInfo]).

— Increment counter.

— Increment i.

— Let HHashj denote Hashj if keydatalen/hashlen is an integer, and let it denote the (keydatalen -
(hashlen×(j-1))) leftmost bits of Hashj otherwise.

— Set KeyData = Hash1 || Hash2 || … || Hashj-1 || HHashj.

Output

The bit string KeyData of length keydatalen bits.

Note that the key derivation function produces keying data of length less than hashlen×(232–1) bits. It is
assumed that all key derivation function calls are indeed for bit strings of length less than hashlen×(232–
1) bits. Any scheme attempting to call the key derivation function for a bit string of length greater than or
equal to hashlen×(232–1) bits shall output "invalid" and stop. Similarly, it is assumed that all key
derivation function calls do not involve hashing a bit string that is more than maxhashlen bits in length.
Any scheme attempting to call the key derivation function on a call involving hashing a bit string that is
greater than maxhashlen bits shall output "invalid" and stop.

C.5 NIST SP 800-56A concatenation key derivation function

This clause describes a key derivation function based on the key derivation function that is given in
NIST SP 800-56A[32].

Function call

kdf (Z, OtherInput),

where OtherInput is keydatalen and OtherInfo.

Fixed values (implementation dependent)

a) hashlen: an integer that indicates the length (in bits) of the output of the hash function used to derive
blocks of secret keying material.

b) max_hash_inputlen: an integer that indicates the maximum length (in bits) of the bit string(s) input
to the hash function.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

62 © ISO/IEC 2021 – All rights reserved

Auxiliary function

a) H: an approved hash function chosen from those specified in ISO/IEC 10118-2, ISO/IEC 10118-3 and
ISO/IEC 10118-4.

Input

a) Z: a byte string that is the shared secret.

b) keydatalen: An integer that indicates the length (in bits) of the secret keying material to be generated;
keydatalen shall be less than or equal to hashlen × (232 –1).

c) OtherInfo: A bit string equal to the following concatenation:

AlgorithmID || EntityAInfo || EntityBInfo [|| SuppPubInfo] [|| SuppPrivInfo]

where the subfields are defined as follows:

a) AlgorithmID: A bit string that indicates how the derived keying material will be parsed and for which
algorithm(s) the derived secret keying material will be used. For example, AlgorithmID can indicate
that bits 1-80 are to be used as an 80-bit HMAC key and that bits 81-208 are to be used as a 128-bit
AES key.

b) EntityAInfo: A bit string containing public information that is required by the application using this
kdf to be contributed by entity A to the key derivation process. At a minimum, EntityAInfo shall
include IDA, the identifier of entity A (see NOTE 1 and NOTE 2).

c) EntityBInfo: A bit string containing public information that is required by the application using this
kdf to be contributed by entity B to the key derivation process. At a minimum, EntityBInfo shall
include IDB, the identifier of entity B (see NOTE 1 and NOTE 2).

d) (Optional) SuppPubInfo: A bit string containing additional, mutually-known public information.

e) (Optional) SuppPrivInfo: A bit string containing additional, mutually-known private information (for
example, a shared secret symmetric key that has been communicated through a separate channel).

Each of the three subfields AlgorithmID, EntityAInfo, and EntityBInfo shall be the concatenation of an
application-specific, fixed-length sequence of substrings of information. Each substring representing a
separate unit of information shall have one of these two formats: Either it is a fixed-length bit string, or it
has the form Datalen || Data, where Data is a variable-length string of zero or more bytes, and Datalen is
a fixed-length, big-endian counter that indicates the length (in bytes) of Data. (In this variable-length
format, a null string of data shall be represented by using Datalen to indicate that Data has length zero.)
An application using this kdf shall specify the ordering and number of the separate information substrings
used in each of the subfields AlgorithmID, EntityAInfo, and EntityBInfo, and shall also specify which of the
two formats (fixed-length or variable-length) is used for each substring. The application shall specify the
lengths for all fixed-length quantities, including the Datalen counters.

The subfields SuppPrivInfo and SuppPubInfo (when allowed by the application) shall be formed by the
concatenation of an application-specific, fixed-length sequence of substrings of additional information
that may be used in key derivation upon mutual agreement of entities A and B. Each substring
representing a separate unit of information shall be of the form Datalen || Data, where Data is a variable-
length string of zero or more (eight-bit) bytes and Datalen is a fixed-length, big-endian counter that
indicates the length (in bytes) of Data. The information substrings that entities A and B choose not to
contribute are set equal to Null, and are represented in this variable-length format by setting Datalen
equal to zero. If an application allows the use of the OtherInfo subfield SuppPrivInfo and/or the subfield
SuppPubInfo, then the application shall specify the ordering and the number of additional information

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 63

substrings that may be used in the allowed subfield(s) and shall specify the fixed-length of the Datalen
counters.

Process

a) reps =   /keydatalen hashlen .

b) If reps > (232 −1), then ABORT: output an error indicator and stop.

c) Initialize a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

d) If counter || Z || OtherInfo is more than max_hash_inputlen bits long, then ABORT: output an error
indicator and stop.

e) For i = 1 to reps by 1, do the following:

1) Compute Hashi = H(counter || Z || OtherInfo).

2) Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

f) Let Hhash be set to Hashreps if (keydatalen / hashlen) is an integer; otherwise, let Hhash be set to the
(keydatalen mod hashlen) leftmost bits of Hashreps.

g) Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

Output

The bit string DerivedKeyingMaterial of length keydatalen bits (or an error indicator). Any scheme
attempting to call this key derivation function with keydatalen greater than or equal to hashlen × (232 −1)
shall output an error indicator and stop without outputting DerivedKeyingMaterial. Any call to the key
derivation function involving an attempt to hash a bit string that is greater than max_hash_inputlen bits
long shall cause the kdf to output an error indicator and stop without outputting DerivedKeyingMaterial.
NOTE 1 IDA and IDB are represented in OtherInfo as separate units of information, using either the fixed-length
format or the variable-length format described above – according to the requirements of the application using this
kdf.

NOTE 2 Entity A is the initiator, and entity B is the responder, as assigned by the protocol employing the key
agreement scheme used to determine the shared secret Z.

C.6 NIST SP 800-56A ASN.1 key derivation function

This clause describes a key derivation function based on the key derivation function that is given in
NIST SP 800-56A[32].

Function call

kdf (Z, OtherInput)

where OtherInput is keydatalen and OtherInfo.

Fixed values (implementation dependent)

a) hashlen: an integer that indicates the length (in bits) of the output of the hash function used to derive
blocks of secret keying material.

b) max_hash_inputlen: an integer that indicates the maximum length (in bits) of the bit string(s) input
to the hash function.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

64 © ISO/IEC 2021 – All rights reserved

Auxiliary function

H: an approved hash function chosen from those specified in ISO/IEC 10118-2, ISO/IEC 10118-3 and
ISO/IEC 10118-4.

Input

a) Z: a byte string that is the shared secret.

b) keydatalen: An integer that indicates the length (in bits) of the secret keying material to be generated;
keydatalen shall be less than or equal to hashlen × (232 –1).

c) OtherInfo: A bit string specified in ASN.1 DER encoding, which consists of the following information:

1) AlgorithmID: A bit string that indicates how the derived keying material will be parsed and for
which algorithm(s) the derived secret keying material will be used. For example, AlgorithmID
can indicate that bits 1-80 are to be used as an 80-bit HMAC key and that bits 81-208 are to be
used as a 128-bit AES key.

2) EntityAInfo: A bit string containing public information that is required by the application using
this kdf to be contributed by entity A to the key derivation process. At a minimum, EntityAInfo
shall include IDA, the identifier of entity A. See the notes below.

3) EntityBInfo: A bit string containing public information that is required by the application using
this kdf to be contributed by entity B to the key derivation process. At a minimum, EntityBInfo
shall include IDB, the identifier of entity B. See the notes below.

4) (Optional) SuppPubInfo: A bit string containing additional, mutually-known public information.

5) (Optional) SuppPrivInfo: A bit string containing additional, mutually-known private information
(for example, a shared secret symmetric key that has been communicated through a separate
channel).

Process

a) reps =   /keydatalen hashlen .

b) If reps > (232 −1), then ABORT: output an error indicator and stop.

c) Initialize a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

d) If counter || Z || OtherInfo is more than max_hash_inputlen bits long, then ABORT: output an error
indicator and stop.

e) For i = 1 to reps by 1, do the following.

1) Compute Hashi = H(counter || Z || OtherInfo).

2) Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

f) Let Hhash be set to Hashreps if (keydatalen / hashlen) is an integer; otherwise, let Hhash be set to the
(keydatalen mod hashlen) leftmost bits of Hashreps.

g) Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

Output

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 65

The DerivedKeyingMaterial as a bit string of length keydatalen bits (or an error indicator). The ASN.1 kdf
produces secret keying material that is at most hashlen × (232–1) bits in length. Any call to this key
derivation function using a keydatalen value that is greater than hashlen × (232–1) shall cause the kdf to
output an error indicator and stop without outputting DerivedKeyingMaterial. Any call to the key
derivation function involving an attempt to hash a bit string that is greater than max_hash_inputlen bits
long shall cause the kdf to output an error indicator and stop without outputting DerivedKeyingMaterial.
NOTE 1 IDA and IDB are represented in OtherInfo as separate units of information.

NOTE 2 Entity A is the initiator, and entity B is the responder, as assigned by the protocol employing the key
agreement scheme used to determine the shared secret Z.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

66 © ISO/IEC 2021 – All rights reserved

Annex D
(informative)

Examples of key establishment mechanisms

D.1 Examples of a function F, and sets S1 and S2

This annex first specifies a widely used example of a function F, and accompanying sets S1 and S2, which
is conjectured to satisfy the five properties listed in Clause 10, given that certain parameters are chosen
appropriately.

Let p be a prime number, and g be a primitive element of Fp. Let S2 = {0, 1, … p-1}, and S1 = {2, ... , p - 2}.
Then set F(h, g) = gh mod p.

F is commutative with respect to h, where (ghB)hA = (ghA)hB = (ghAhB) mod p.

The prime p shall be large enough so that F(·,g) can be conjectured to be a one-way function. Let each
entity X have a private key hx in S1 which is only known by entity X, and a public key pX = ghx mod p known
by all other entities.

For discrete logarithm modulo a prime, the size of the prime is chosen such that computing discrete
logarithms in the corresponding cyclic group is computationally infeasible. Some other conditions on the
prime number can be imposed in order to make discrete logarithms infeasible. It is also recommended to
choose p to be a strong prime such that p - 1 has a large prime factor q and choose g to be a generator of
a group of its large prime order q.
NOTE For discrete logarithm modulo a composite, the modulus is chosen as the product of two distinct odd
primes that is kept secret. The size of the modulus is chosen such that factoring the modulus is computationally
infeasible. Some additional conditions on the choice of the primes can be imposed in order to make factoring the
modulus computationally infeasible.

D.2 Non-interactive Diffie-Hellman key agreement

Reference [20] is an example of key agreement mechanism 1.

Key construction (A1) Entity A computes, using its own private key agreement key hA and entity B's
public key agreement key pB, the shared key as KAB = pBhA mod p.

Key construction (B1) Entity B computes, using its own private key agreement key hB and entity A's
public key agreement key pA, the shared key as KAB = pAhB mod p.

D.3 Identity-based mechanism

Reference [23] is an example of key agreement mechanism 1, which is identity-based in the following
sense:

— the public key of an entity can be retrieved from some combination of its identity and its certificate;

— the authenticity of the certificate is not directly verified, but the correct public key can only be
recovered from an authentic certificate.

Let (n,y) be the public verification key of a certification authority, in the digital signature scheme giving
message recovery which is specified in ISO/IEC 9796-2:2010, Annex B. Therefore, n is the product of two
large prime numbers p and q, kept secret by the certification authority, and y is co-prime with lcm(p-1, q-
1).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 67

Let O be an integer of large order modulo n and g = Oy mod n.

Let IX be the result of adding redundancy to a public information on entity X which contains at least the
distinguishing identifier of entity X and possibly a serial number, a validity period, a time stamp and other
data elements. Then, entity X 's key management pair is (hX, pX) where hX is an integer less than n and pX
= ghX mod n. ISO/IEC 9796-3 is referred for a description of how to add redundancy.

Its certificate is computed by the certification authority as CertX = sXOhX mod n, where sX is the integer
such that

sXyIX = 1 mod n.

Key construction (A1) Entity A computes the public key of entity B as pB = CertBy·IB mod n and computes
the shared secret key as KAB = pBhA = ghAhB mod n.

Key construction (B1) Entity B computes the public key of entity A as pA = CertAy·IA mod n and computes
the shared secret key as KAB = pAhB = ghAhB mod n.

NOTE A one-pass and a two-pass identity-based mechanisms using the same set-up are described in
References [23], [34] and [36].

D.4 ElGamal key agreement

Reference [21] is an example of key agreement mechanism 2.

One shall check that p to be a strong prime such that p-1 has a large prime factor and that the exponentials
are not of the form 0, +1, -1 mod p.

Key token construction (A1) Entity A randomly and secretly generates r in {2, ... , p-2 }, computes gr mod
p and constructs the key token KTA1 = gr mod p and sends it to entity B.

Key construction (A2) Entity A computes the shared key KAB = (pB)r mod p = ghBr mod p.

Key construction (B1) Entity B computes the shared key KAB = (gr)hB mod p = ghBr mod p.

D.5 Nyberg-Rueppel key agreement

Reference [33] is an example of key agreement mechanism 3. The signature system and the key
agreement scheme are chosen in such a way that the signature system is determined by the keys (hX , pX).

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}. Then entity X 's
asymmetric key pair used for signatures and key agreements is (hX, pX), where hX is an element of H and

pX = ghX mod p.

To prevent replay of old key tokens this example makes use of a time-stamp or a serial number, TVP, and
of a cryptographic hash function hash, which maps strings of bits of arbitrary length to random integers
in a large subset of {2, ... , p-2}, for example, in H.
NOTE A hash-function as defined here is collision resistant.

Key construction (A1.1) Entity A randomly and secretly generates r in H and computes e = gr mod p.

Further entity A computes the shared secret key as KAB = pBr mod p.

Using the shared secret key KAB, entity A computes a MAC on the sender's distinguishing identifier for
entity A and a sequence number or time-stamp TVP, e' = e⋅hash(KAB||A||TVP) mod p.

Key token signature (A1.2) Entity A computes the signature y = r-hAe' mod q.

Entity A forms the key token KTA1 = A||e||TVP||y and sends it to entity B.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

68 © ISO/IEC 2021 – All rights reserved

Key construction (B1.1) Entity B computes the shared secret key, using its private key agreement key
hB,

KAB = ehB mod p.

Using the shared secret key KAB, entity B computes the MAC on the sender's distinguishing identifier for
entity A and the TVP, and computes e' = e·hash(KAB||A||TVP) mod p.

Signature verification (B1.2) Entity B checks the validity of TVP and verifies, using the sender's public
key pA, the equality e = gypAe' mod p.

D.6 Diffie-Hellman key agreement

Reference [20] is an example of key agreement mechanism 4.

One shall check that p to be a strong prime such that p-1 has a large prime factor and that the exponentials
are not of the form 0, +1, -1 mod p.

Key token construction (A1) Entity A randomly and secretly generates rA in {2, ... , p-2 }, computes grA
mod p, constructs the key token as KTA1 = grA mod p, and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in {2, ... , p-2 }, computes grB
mod p, constructs the key token, KTB1 = grB mod p, and sends it to entity A.

Key construction (A2) Entity A computes the shared key as KTAB = (grB)rA = grArB mod p.

Key construction (B2) Entity B computes the shared key as KAB = (grA)rB = grArB mod p.

D.7 Matsumoto-Takashima-Imai A(0) key agreement

Reference [28] is an example of key agreement mechanism 5.

One recommended method is to use a safe prime p and to check that the exponentials are not of the form
0, +1, -1 mod p.

Key token construction (A1) Entity A randomly and secretly generates rA in {2, ... , p-2}, computes the
key token as KTA1 = grA mod p and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in {2, ... , p-2}, computes the
key token as KTB1 = grB mod p and sends it to entity A.

Key construction (B2) Entity B computes the shared key as KAB = w(KTA1hB,pArB) = KTA1hB pArB mod p.

Key construction (A2) Entity A computes the shared key as KAB = w(pBrA,KTB1hA) = KTA1hB pArB mod p.

NOTE To avoid attacks in Reference [25], each entity needs to reject a trivial value of KTA1 or KTB1 = 0 or 1 and
the same private keys hA = hB.

D.8 Beller-Yacobi protocol

This clause gives a description of the original Beller-Yacobi protocol[17], which has been used to derive
key agreement mechanism 6.
NOTE This mechanism is not completely compatible with the Mechanism 6 as it was optimized for specific
situations. Specifically, it uses ElGamal signature scheme and makes use of an additional symmetric encryption
algorithm to transfer entity B's signature verification key and its certificate to entity A in a confidential way, thus
assuring anonymity.

Let enc: K : M → C be a conventional encryption function, such as the algorithms found in
ISO/IEC 18033-3, where K = key space, M = message space, and C = cryptogram space.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 69

Let SX denote the ElGamal signature operation of entity X. The process described below emphasizes the
distinction between off-line and on-line operations required in ElGamal family of signature schemes.

PX and CX are used to denote entity X 's public key and certificate, respectively. The public encryption
operation of entity X (which uses PX) is denoted EX (modular squaring in the case of Rabin).

Off-line computation: entity B picks a random number rB and computes u = grB mod p.

Key token construction (A1) Entity A picks a random number rA and computes KTA1 = (rA||A||CA) and
sends it to entity B.

Key token processing (B1) Entity B produces the signature BS = (u,v) = SB(rA||A), where u and v is the
ElGamal signature. Then entity B picks a random xB and creates KTB1 = EA(BS)||enc(u,(B||PB||CB||xB)) and
sends it to entity A.

Key construction (B2) The shared secret key consists of part of entity B's signature, u.

Key token processing and key construction (A2) Entity A decrypts the key token EA(BS) to find the
session key u, then decrypts the conventional encryption enc(u,(B||PB||CB||xB)) using session key u to
find the identifier, public key, and certificate of the alleged entity B. Entity A verifies certificate CB, and if
positive it then uses the verification function, VB to verify entity B's signature BS. If positive it then accepts
u as a shared secret key.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

70 © ISO/IEC 2021 – All rights reserved

Annex E
(informative)

Examples of elliptic curve based key establishment mechanisms

E.1 Example of a function F

This annex first gives a widely used example of a function F to satisfy the five properties listed in
Clause 10, given that certain parameters are chosen appropriately.

Given an elliptic curve over a finite field, an integer d and a point G on the curve where G may be the base
point, then the function F is F(d,G) = dG.

F has the property that d1(d2G) = d2(d1G) = d1d2G.

The number of points on the curve shall be large enough so that F(·,G) can be conjectured to be a one-way
function. Let each entity X have a private key hX, which is an integer only known by entity X, and a public
key pX = hX G which is a point on the curve known by all other entities.

E.2 Common information

For all key agreement mechanisms, prior to the process of agreeing on a shared secret, the following
common information shall be established between the parties and optionally validated (ISO/IEC 15946-1
is referred for a description of parameter validation).

The elliptic curve parameters with which the key pairs shall be associated, which shall be the same for
both parties key pairs. This includes p, pm, 2m, or 3m, a description of GF(q), GF(pm) ,GF(2m), or GF(3m) and
an indication of the basis used, E, n and G.

Named curve identifiers such as those specified in X9.62, provide a simple means of identifying elliptic
curve domain parameters and can be used to specify groups of common information values.

In each of the mechanisms defined below, the resulting agreed key should not be used as a cryptographic
key directly. Instead, it should be used as the input to a key derivation function, allowing both parties to
derive the same cryptographic keys from it. Hence, it is also necessary for the two parties to agree on the
following information:

— a key derivation function, kdf;

— any parameters to the key derivation function, and

— the type of cofactor multiplication that is to be performed (if any).

E.3 Non-interactive key agreement of Diffie-Hellman type

Reference [20] is an example of key agreement mechanism 1. This key agreement mechanism non-
interactively establishes a shared secret between two entities A and B.

Prior to the process of agreeing on a shared secret, in addition to the common information, the following
shall be established:

— for each entity X, a private key-agreement key hX and a public key-agreement key PX, which is an
elliptic curve point satisfying PX = hXG. ISO/IEC 15946-1 is referred for a description of how to
generate this key pair.

— for each entity, access to an authentic copy of the public key-agreement key of the other party.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

© ISO/IEC 2021 – All rights reserved 71

Each entity shall independently verify that the other entity‘s public key is indeed a point on the elliptic
curve. ISO/IEC 15946-1 is referred for a description of how to do this.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key construction (A1) Entity A computes, using its own private key-agreement key hA and entity B's
public key-agreement key PB, the shared key as KAB = (hA·l)(j·PB).

Key construction (B1) Entity B computes, using its own private key-agreement key hB and entity A's
public key-agreement key PA, the shared key as KAB = (hB·l)(j·PA).
NOTE As a consequence of the first property, the established secret between the same two users always has the
same value. For this reason it is suggested that the input to the key derivation function in this case include time-
varying information.

E.4 Key agreement of ElGamal type

Reference [21] is an example of key agreement mechanism 2. This key agreement mechanism establishes
a shared secret between two entities A and B in one pass.

Prior to the process of agreeing on a shared secret, in addition to the common information, the following
shall be established:

— for entity B, a private key-agreement key dB and a public key-agreement key PB, which is an elliptic
curve point satisfying PB = dBG. ISO/IEC 15946-1 is referred for a description of how to generate this
key pair;

— for entity A, access to an authentic copy of the public key-agreement key of entity B.

Entity A should verify that entity B's public key is indeed a point on the elliptic curve. ISO/IEC 15946-1 is
referred for a description of how to do this.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1.1) Entity A randomly and secretly generates r in the range {2,...,n-2},
computes rG, constructs the key token, KTA1 = rG, and sends it to entity B.

Key construction (A1.2) Entity A computes the shared key as KAB = (r·l)(j·PB).

Key construction (B1) Entity B should verify that KTA1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Using its own private key, entity B computes
the shared key from KTA1 as follows: KAB = (dB·l)(j·KTA1).
NOTE This key agreement mechanism provides forward secrecy with respect to entity A.

E.5 Key agreement following Nyberg-Rueppel

Reference [33] is an example of key agreement mechanism 3. The protocol is not a 1-1-transcript of
protocol Clause C.4 but follows the essential ideas of Clause C.4.

The signature system and the key agreement scheme are chosen in such a way that the signature system
is determined by the keys (hX, PA).

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}. Then entity X 's
asymmetric key pair used for signatures and key agreements is (hX, pX), where hX is an element of H and

pX = ghX mod p.

To prevent the replay of old key tokens this example makes use of a timestamp or a serial number TVP,
and of a cryptographic hash function hash, which maps strings of bits of arbitrary length to random
integers into H, for example.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

ISO/IEC 11770-3:2021(E)

72 © ISO/IEC 2021 – All rights reserved

The values l and j are used for cofactor multiplication as explained in Clause 7.
NOTE A hash-function as defined here is collision resistant.

Key construction (A1.1) Entity A randomly and secretly generates r in H and computes R = rG.

Further entity A computes the shared secret key as KAB = (r·l)(j·PB).

Using the shared secret key KAB, entity A computes a MAC on the point R, the sender's distinguishing
identifier for entity A and a sequence number or timestamp TVP: e =hash(R||KAB||A||TVP).

Key token signature (A1.2) Entity A computes the signature y = (r-hAe) mod q, forms the key token

KTA1 = (R||A||TVP||y) and sends it to entity B.

Key construction (B1.1) Entity B computes the shared secret key, using its private key agreement key
hB,

KAB = (hB·l)(j·R).

Using the shared secret key KAB entity B computes the MAC on the sender's distinguishing identifier for
entity A and the TVP and computes e =hash(R||KAB||A||TVP).

Signature verification (B1.2) Entity B checks the validity of TVP and verifies, using the sender's public
key PA, the equality R = yG + ePA.

E.6 Key agreement of Matsumoto-Takashima-Imai type A(0)

Reference [28] is an example of key agreement mechanism 5.

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1) Entity A randomly and secretly generates rA in H, computes the key token

KTA1 = (rA·l)(j·G), and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in H, computes the key token

KTB1 = (rB·l)(j·G), and sends it to entity A.

Key construction (B2) Entity B computes the shared key as KAB = w(hBKTA1,rBPA), where w is a one-way
function.

Key construction (A2) Entity A computes the shared key as KAB = w(hAKTB1,rAPB).

E.7 Key agreement of Diffie-Hellman type

Reference [20] is an example of key agreement mechanism 4. This key agreement mechanism establishes
a shared secret between entities A and B in two passes.

This key agreement mechanism does not require any initial information other than the common
information to be set up. The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1) Entity A randomly and secretly generates rA in the range {2,...,n-2},
computes rAG, constructs the key token, KTA1 = rAG, and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in the range {2,...,n-2},
computes rBG, constructs the key token, KTB1 = rBG, and sends it to entity A.

Key construction (A2) Entity A should verify that KTB1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Entity A computes the shared key KAB =
(rA·l)(j·KTB1).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

21

https://standardsiso.com/api/?name=54ccf9cdc6d374044584188077bed036

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviations
	5 Requirements
	6 Key derivation functions
	7 Cofactor multiplication
	8 Key commitment
	9 Key confirmation
	10 Framework for key management
	10.1 General
	10.2 Key agreement between two parties
	10.3 Key agreement between three parties
	10.4 Secret key transport
	10.5 Public key transport

	11 Key agreement
	11.1 Key agreement mechanism 1

	Figure 1 — Key agreement mechanism 1
	Figure 2 — Key agreement mechanisms 2 and 8
	11.2 Key agreement mechanism 2
	11.3 Key agreement mechanism 3

	Figure 3 — Key agreement mechanism 3
	Figure 4 — Key agreement mechanisms 4, 5 and 9
	11.4 Key agreement mechanism 4
	11.5 Key agreement mechanism 5
	11.6 Key agreement mechanism 6

	Figure 5 — Key agreement mechanism 6
	Figure 6 — Key agreement mechanism 7
	11.7 Key agreement mechanism 7
	11.8 Key agreement mechanism 8
	11.9 Key agreement mechanism 9
	11.10 Key agreement mechanism 10

	Figure 7 — Key agreement mechanism 10
	Figure 8 — Key agreement mechanism 11
	11.11 Key agreement mechanism 11
	11.12 Key agreement mechanism 12

	Figure 9 — Key agreement mechanism 12
	11.13 Key agreement mechanism 13

	Figure 10 — Key agreement mechanism 13 (2-pass)
	11.14 Key agreement mechanism 14

	Figure 11 — Key agreement mechanism 14 (3-pass)
	11.15 Key agreement mechanism 15

	Figure 12 — Key agreement mechanism 15
	12 Secret key transport
	12.1 Secret key transport mechanism 1

	Figure 13 — Secret key transport mechanism 1
	Figure 14 — Secret key transport mechanism 2
	12.2 Secret key transport mechanism 2
	12.3 Secret key transport mechanism 3

	Figure 15 — Secret key transport mechanism 3
	Figure 16 — Secret key transport mechanism 4
	12.4 Secret key transport mechanism 4
	12.5 Secret key transport mechanism 5

	Figure 17 — Secret key transport mechanism 5
	Figure 18 — Secret key transport mechanism 6
	12.6 Secret key transport mechanism 6

	13 Public key transport
	13.1 Public key transport mechanism 1

	Figure 19 — Public key transport mechanism 1
	Figure 20 — Public key transport mechanism 2
	13.2 Public key transport mechanism 2
	13.3 Public key transport mechanism 3

	Figure 21 — Public key transport mechanism 3
	Annex A (normative) Object identifiers
	Annex B (informative) Properties of key establishment mechanisms
	Table B.1 — Properties of key agreement mechanisms
	Table B.2 — Properties of secret key transport mechanisms
	Table B.3 — Properties of public key transport mechanisms
	Annex C (informative) Examples of key derivation functions
	C.1 ASN.1 syntax for key derivation functions
	C.2 IEEE P1363 key derivation function
	C.3 ANSI X9.42 key derivation function
	C.4 ANSI X9.63 key derivation function
	C.5 NIST SP 800-56A concatenation key derivation function
	C.6 NIST SP 800-56A ASN.1 key derivation function
	Annex D (informative) Examples of key establishment mechanisms
	D.1 Examples of a function F, and sets S1 and S2
	D.2 Non-interactive Diffie-Hellman key agreement
	D.3 Identity-based mechanism
	D.4 ElGamal key agreement
	D.5 Nyberg-Rueppel key agreement
	D.6 Diffie-Hellman key agreement
	D.7 Matsumoto-Takashima-Imai A(0) key agreement
	D.8 Beller-Yacobi protocol
	Annex E (informative) Examples of elliptic curve based key establishment mechanisms
	E.1 Example of a function F
	E.2 Common information
	E.3 Non-interactive key agreement of Diffie-Hellman type
	E.4 Key agreement of ElGamal type
	E.5 Key agreement following Nyberg-Rueppel
	E.6 Key agreement of Matsumoto-Takashima-Imai type A(0)
	E.7 Key agreement of Diffie-Hellman type
	E.8 Key agreement of Diffie-Hellman type with 2 key pairs
	E.9 Key agreement of Diffie-Hellman type with 2 signatures and key confirmation
	E.10 Full unified model
	E.11 Key agreement of MQV type with one pass
	E.12 Key agreement of MQV type with two passes
	E.13 Key agreement of MQV type with three passes
	E.14 Key agreement of Diffie-Hellman type with blinded public key
	E.15 Key agreement of Diffie-Hellman type with blinded public key
	Annex F (informative) Example of bilinear pairing based key establishment mechanisms
	F.1 Example of a function FP
	F.2 Joux key agreement
	F.3 Identity-based key agreement following Smart-Chen-Cheng
	F.4 Identity-based key agreement following Fujioka-Suzuki-Ustaoglu
	F.5 SM9 identity-based key agreement
	Annex G (informative) Secret key transport
	G.1 ElGamal key transfer
	G.2 ElGamal key transfer with originator's signature
	G.3 RSA key transfer
	G.4 Elliptic curve based key transport of ElGamal type
	G.5 Elliptic curve based key transport of ElGamal type with originator signature
	G.6 Sakai-Kasahara key transfer
	Bibliography
	Blank Page

