
Information technology — Guidance
for the use of database language
SQL —
Part 3:
SQL embedded in programs using the
JavaTM programming language
Technologies de l'information — Recommandations pour l'utilisation
du langage de base de données SQL —
Partie 3: SQL intégré dans des programmes utilisant le langage de
programmation de JavaTM

© ISO/IEC 2021

INTERNATIONAL
STANDARD

ISO/IEC
19075-3

Reference number
ISO/IEC 19075-3:2021(E)

First edition
2021-08

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

﻿

ISO/IEC 19075-3:2021(E)
﻿

ii� © ISO/IEC 2021 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

Contents Page

Foreword. v

Introduction. vii

1 Scope. 1
2 Normative references. 2
3 Terms and definitions. 3
4 Use of SQL in programs written in Java. 4
4.1 Context of SQL programs written in Java. 4
4.2 Design goals. 4
4.3 Advantages of SQL/OLB over JDBC. 4
4.4 Consistency with existing embedded SQL languages. 5
4.5 Profile customization overview. 5
4.5.1 Introduction to profile customization. 5
4.5.2 Profile customization process. 6
4.5.3 Profile customization utilities. 7
4.6 Examples. 7
4.6.1 Example of profile generation and naming. 7
4.6.2 Example of a JAR manifest file. 7
4.6.3 Host variables. 8
4.6.4 Host expressions. 8
4.6.5 SQL/OLB clauses. 8
4.6.6 Connection contexts. 9
4.6.7 Default connection context. 9
4.6.8 Iterators. 10
4.6.8.1 Positional bindings to columns. 10
4.6.8.2 Named bindings to columns. 10
4.6.8.3 Providing names for columns of queries. 11
4.6.9 Invoking SQL-invoked routines. 12
4.6.10 Using multiple SQL/OLB contexts and connections. 12
4.6.11 SQL execution control and status. 13
4.6.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls . 14
4.6.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object . 15
4.6.14 Obtaining a java.sql.ResultSet object from an iterator object . 15
4.6.15 Working with user-defined types. 16
4.6.16 Batching. 17
4.6.17 Example program. 17
4.6.18 Host variable definition. 18

Bibliography. 20

© ISO/IEC 2021 – All rights reserved iii

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

Index. 21

iv © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISOand IEC technical committees collaborate infieldsofmutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This documentwas drafted in accordancewith the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/mem-
bers_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not beheld responsible for identifying anyor all suchpatent rights. Details
of anypatent rights identifiedduring thedevelopment of the documentwill be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents), or the IEC list of patent
declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanationof the voluntarynature of standards, themeaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO’s adherence to the World Trade
Organization (WTO)principles in theTechnical Barriers toTrade (TBT) seewww.iso.org/iso/fore-
word.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 32, Data management and interchange.

This first edition of ISO/IEC 19075-3 cancels and replaces ISO/IEC TR 19075-3:2015.

This document is intended to be used in conjunctionwith the following editions of the parts of the ISO/IEC
9075 series:

— ISO/IEC 9075-1, sixth edition or later;

— ISO/IEC 9075-2, sixth edition or later;

— ISO/IEC 9075-3, sixth edition or later;

— ISO/IEC 9075-4, seventh edition or later;

— ISO/IEC 9075-9, fifth edition or later;

— ISO/IEC 9075-10, fifth edition or later;

— ISO/IEC 9075-11, fifth edition or later;

— ISO/IEC 9075-13, fifth edition or later;

— ISO/IEC 9075-14, sixth edition or later;

— ISO/IEC 9075-15, second edition or later;

— ISO/IEC 9075-16, first edition or later.

© ISO/IEC 2021 – All rights reserved v

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iec.ch/members_experts/refdocs
www.iso.org/patents
patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

A list of all parts in the ISO/IEC 19075 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/-
national-committees.

vi © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

Introduction

The organization of this document is as follows:

1) Clause 1, “Scope”, specifies the scope of this document.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this
document, constitute provisions of this document.

3) Clause 3, “Terms and definitions”, defines the terms and definitions used in this document.

4) Clause 4, “Use of SQL in programs written in Java”, provides a tutorial on the embedding of SQL
expressions and statements in programs written in the Java™1 programming language.

1Java™ is the trademarkof a product suppliedbyOracle. This information is given for the convenienceof users of this document
and does not constitute an endorsement by ISO or IEC of the product named.

© ISO/IEC 2021 – All rights reserved vii

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

INTERNATIONAL STANDARD ISO/IEC 19075-3:2021(E)

Information technology—Guidance for the use of database language SQL—

Part 3:
SQL embedded in programs using the Java™ programming language

1 Scope

This document describes the support for the use of SQL within programs written in Java.

This document discusses the following features of the SQL language:

— The embedding of SQL expressions and statements in programs written in the Java programming
language.

© ISO/IEC 2021 – All rights reserved 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content consti-
tutes requirements of this document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9075-1, Information technology— Database languages — SQL— Part 1: Framework
(SQL/Framework)

ISO/IEC 9075-10, Information technology— Database languages — SQL— Part 10: Object Language
Bindings (SQL/OLB)

Java Community Process. The Java™ Language Specification [online]. Java SE 13 Edition. Redwood
Shores, California,USA:Oracle, Available athttps://docs.oracle.com/javase/specs/jls/-
se13/jls13.pdf

Java Community Process. JDBC™ 4.3 Specification [online]. Edition 4.3. Redwood Shores, California,
USA: Oracle, Available at https://download.oracle.com/otn-pub/jcp/-
jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf

2 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf
https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf
https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf
https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9075-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

© ISO/IEC 2021 – All rights reserved 3

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

http://www.electropedia.org/
http://www.iso.org/obp
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

4 Use of SQL in programs written in Java

4.1 Context of SQL programs written in Java

The requirements for the material discussed in this document shall be as specified in ISO/IEC 9075-1
and ISO/IEC 9075-10.

4.2 Design goals

The following items represent the major design features of ISO/IEC 9075-1. ISO/IEC 9075-10, Java, and
JDBC all specify requirements for the material discussed in this document.

— Provide a concise, legible mechanism for embedding SQL-statements in a program that otherwise
conforms to Java.

— Syntactic and semantic check of SQL-statements prior to program execution.

SQL/OLB can use an implementation-definedmechanism at translate time to check embedded SQL-
statements to make sure that they are syntactically and semantically correct.

— Allow the syntax and semantics of SQL-statements to be location-independent.

The syntax and semantics of SQL-statements in an SQL/OLB program do not depend on the configu-
ration under which SQL/OLB is running. This makes it possible to implement SQL/OLB programs
that run on the client, in the SQL-server, or in a middle tier.

— Provide facilities that enable the programmer tomovebetween the SQL/OLBand JDBCenvironments
by sharing a single SQL-connection in both environments.

— Provide for binary portability of translated and compiled Java SQL-client applications such that they
can be used transparently with multiple SQL-servers. In addition, binary portability profiles allow
for customization and optimization of SQL-statements within an SQL/OLB application.

4.3 Advantages of SQL/OLB over JDBC

JDBCprovides a complete, low-level SQL interface from Java to SQL-implementations. SQL/OLB is designed
to fill a complementary role by providing a higher-level programming interface to SQL-implementations
in such amanner as to free the programmer from the tedious and complex programming interfaces found
in lower-level APIs.

The following are some major differences between the two:

— SQL/OLB source programs are smaller than equivalent JDBC programs since the translator can
implicitly handle many of the tedious programming chores that dynamic interfaces require.

— SQL/OLB programs can type-check SQL code at translate time using an implementation-dependent
mechanism. JDBC, being a completely dynamic API, can not.

4 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

— SQL/OLB programs allow direct embedding of Java host expressions within SQL-statements. JDBC
requires a separate call statement for eachbind variable and specifies the bindingbypositionnumber.

— SQL/OLB enforces strong typing of query outputs and values returned and allows type checking on
calls. JDBC passes values to and from SQL without compile time type checking.

— SQL/OLB provides simplified rules for invoking SQL-invoked routines. JDBC requires a generic call
to an SQL-invoked routine, fun, to have the following syntax:

prepStmt.prepareCall("{call fun(...)}"); // For SQL-invoked procedures
prepStmt.prepareCall("{? = call fun(...)}"); // For SQL-invoked functions

SQL/OLB provides simplified notations:

#sql { CALL fun(...) }; // SQL-invoked procedure
// Declare x
...
#sql x = { VALUES(fun(...)) }; // SQL-invoked function
 // VALUES is an SQL construct

4.4 Consistency with existing embedded SQL languages

Programming languages containing embedded SQL are called host languages. Java differs from the tradi-
tional host languages (Ada, C, COBOL, Fortran, MUMPS (M), Pascal, PL/I) in ways that significantly affect
its embedding of SQL.

— Java has automatic storage management (also known as “garbage collection”) that simplifies the
management of storage for data retrieved from SQL-implementations.

— All Java types representing composite data, and data of varying sizes, have a distinguished value
null, which can be used to represent the SQL NULL value. This gives Java programs an alternative
to the indicator variables that are part of the interfaces to other host languages.

— Java is designed to support programs that are automatically heterogeneously portable (also called
“super portable” or simply “downloadable”). That, along with Java’s type system of classes and
interfaces, enables component software. In particular, an SQL/OLB translator, written in Java, can
call components that are specialized by SQL-implementations, in order to leverage the existing
authorization, schema checking, type checking, transactional, and recovery capabilities that are tra-
ditional of SQL-implementations, and to generate codeoptimized for particular SQL-implementations.

— Java is designed for binary portability in heterogeneous networks, which promises to enable binary
portability for applications that use SQL.

— SQL/OLB extends the traditional concept of embedded host variables by allowing generalized host
expressions.

4.5 Profile customization overview

4.5.1 Introduction to profile customization

This subclause describes how implementation-specific “customized” SQL execution control can be added
to SQL/OLB applications. The SQL/OLB runtime framework uses the following interfaces:

© ISO/IEC 2021 – All rights reserved 5

ISO/IEC 19075-3:2021(E)
4.3 Advantages of SQL/OLB over JDBC

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

— SQLJ.runtime.profile.RTStatement to execute SQL-statements.

— SQLJ.runtime.profile.RTResultSet to describe query results.

— SQLJ.runtime.profile.ConnectedProfile to createRTStatement objects corresponding toparticular
SQL-statements.

An SQL-implementation is able to control SQL execution by providing an implementation of the
RTStatement,RTResultSet, andConnectedProfile interfaces. An SQL-implementation is able to redirect
control to its own code by registering customization hooks with the application profiles.

For example, if the client connects to SQL-server A, then a customization that understands SQL-server
A’s systemwill be used. If the client connects to SQL-server B, then SQL-server B’s customization will be
used. In the absence of a connection specific customization, the default JDBC based customization will
be used. Like the profile object, customization objects are serializable. This allows the customization
state to be stored and restoredwith theprofile. In thismanner, an implementation-dependentdeployment
tool is able to load the profile, inspect and precompile the SQL-statements it contains, register an
appropriate customization, and store the profile in persistent storage. Then at application runtime, the
profile and the registered implementation-dependent customization will both be restored, and the cus-
tomization will be used to execute the SQL-statements.

4.5.2 Profile customization process

Theprofile customizationprocess is the act of registering profile customization objectswith the profile(s)
associated with an application. The profile customization process can be generalized to the following
steps:

1) Discover the profile objects within a JAR file.

2) For each profile, deserialize the profile object from the appropriate JAR entry.

3) Create an SQL-connection with which the profile will be customized.

4) Create and register a profile customization with the profile.

5) Serialize the customized profile back to persistent storage.

6) Recreate the JAR contents using the customized serialized profiles.

Of the above steps, only Step 4) is likely to change from SQL-implementation to SQL-implementation.
While Step 3) is implementation-dependent, it can be done using a parameterized tool and JDBC. The
rest of the steps involve actions that can be performed by any generic utility without specific knowledge
of the customization being performed.

The act of creating and registering a customization object with a profile (step 4 above) is abstractly
defined by the Java interface SQLJ.runtime.profile.util.ProfileCustomizer. The intent of defining this
interface is to allowSQL-implementations to concentrate onwritingprofile customizers and customization
objects (step 4 above), while tools and application implementations concentrate onwriting generic tools
that apply customizers to application profiles (steps 1 – 3 and 5 – 6 above).

Theprofile customizer interface is able to supportmost customization registration requirements.However,
it is not required that all utilities that register customizationobjectswith aprofile implement this interface.
SQL/OLB applicationswill be able to run and leverage all implementation-specific customization objects
registered with a profile, regardless of whether or not they were registered by a profile customizer. The
primary benefit of conforming to the profile customizer interface is to be able to take advantage of
existing and future automated profile customization utilities that are able to load, call and manipulate
profile customizers.

6 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.5 Profile customization overview

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

4.5.3 Profile customization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization
utilities. An SQL-implementationmight include a command-linebased tool that serves as a customization
utility prototype. In addition to a command line-based utility, other useful customization utilities might
include:

— GUI-based IDEs used to drag-and-drop customizations into profiles.

— Tight integration of customization utilities with SQL-implementations to automatically customize
the profiles loaded into the SQL-server.

— Background “SQL/OLB installer” process used as administrative tool to discover and customize
SQL/OLB applications for available SQL-schemas.
NOTE 1— Implementors are encouraged to implement utilities using these and other ideas. Making such tools publicly
available will greatly benefit and facilitate the SQL/OLB binary-portability effort.

4.6 Examples

4.6.1 Example of profile generation and naming

Suppose there exists the following file, Bar.SQLJ, which defines package COM.foo, and contains three
<executable clause>s associated with two <connection context>s.

package COM.foo;
#sql context MyContext;
public class Bar
{
 public static void doSQL(MyContext ctx) throws SQLException
 {
 // 1: explicit context
 #sql [ctx] { UPDATE TAB1 SET COL1 = COL1 + 2 };
 // 2: implicit context
 #sql { INSERT INTO TAB2 VALUES(3, 'Hello there') };
 // 3: explicit context again
 #sql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };
 }
}

Two profiles are created for this file; they are named COM.foo.Bar_SJProfile0 and COM.foo.Bar_SJPro-
file1. COM.foo.Bar_SJProfile0 contains information describing <executable clause>s 1 and 3, and is
stored in a file called Bar_SJProfile0.ser. Com.foo.Bar_SJProfile1 describes clause 2, and is stored in
file Bar_SJProfile1.ser.

4.6.2 Example of a JARmanifest file

Working again with the file Bar.SQLJ from the last example, if the Bar application were packaged for
deployment as a JAR file, the JAR’s manifest can be used by SQL/OLB customization utilities to locate the
application’s profile files. To allow that use, the profile section of themanifest filewould have the following
entries:

— Name: COM/foo/Bar_SJProfile0.ser SQLJProfile: TRUE

© ISO/IEC 2021 – All rights reserved 7

ISO/IEC 19075-3:2021(E)
4.5 Profile customization overview

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

— Name: COM/foo/Bar_SJProfile1.ser SQLJProfile: TRUE

4.6.3 Host variables

The following query contains host variable :x (which is the Java variable, Java field, or parameter x visible
in the scope containing the query):

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

4.6.4 Host expressions

Host expressions are evaluated from left to right and can cause side effects. For example:

SELECT COL1, COL2 FROM TABLE1 WHERE :(x++) > COL3

Host expressions are always passed to and retrieved from the SQL-server using pure value semantics.
For instance, in the above example, the value of x++ is determined prior to statement execution and its
determined value is the value that is passed to the SQL-server for statement execution.

SELECT COL1, COL2 FROM TABLE1 WHERE :(x[--i]) > COL3

In the above example, prior to statement execution, the value of i is decremented by 1 (one) and then
the value of the i-th element of x is determined and passed to the SQL-server for statement execution.

Consider the following example of an SQL/PSM <assignment statement>:

SET :(z[i++]) = :(x[i++]) + :(y[i++])

Assume that i has an initial value of 1 (one). Host expressions are evaluated in lexical order.

Therefore, the array index used to determine the location in the array z is 1 (one), after which the value
of i is incremented by 1 (one). Consequently, the array index used to determine the location in the array
x is 2, after which the value of i is incremented by 1 (one). As a result, the array index used to determine
the location in the array y is 3, after which the value of i is incremented by 1 (one). The value of i in the
Java space is now4. The statement is then executed. After statement execution, the output value is assigned
to z[1].

Assignments to output host expressions are also performed in lexical order. For example, consider the
following call to an SQL-invoked procedure foo that returns the values 2 and 3.

CALL foo(:OUT x, :OUT x)

After execution, x has the value 3.

4.6.5 SQL/OLB clauses

The following SQL/OLB clause is permitted to appear wherever a Java statement can legally appear and
its purpose is to delete all of the rows in the table named TAB:

#sql { DELETE FROM TAB };

The following Java method, when invoked, inserts its arguments into an SQL table. The method body
consists of an SQL/OLB executable clause containing the host expressions x, y, and z.

8 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

void m (int x, String y, float z) throws SQLException
{
 #sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };
}

The following method selects the address of the person whose name is specified by the input host
expression name and then retrieves an associated address from the assumed table PEOPLE, with columns
NAME and ADDRESS, into the output host expressions addr, where it is then permitted to be used, for
example, in a call to System.out.println:

void print_address (String name) throws SQLException
{
 String addr;
 #sql { SELECT ADDRESS INTO :addr

FROM PEOPLE
WHERE :name = NAME };

}

4.6.6 Connection contexts

In the following SQL/OLB clause, the connection context is the value of the Java variable myconn.

#sql [myconn] { SELECT ADDRESS INTO :addr
FROM PEOPLE
WHERE :name = NAME } ;

The following illustrates an SQL/OLB connection clause that defines a connection context class named
“Inventory”:

#sql context Inventory;

4.6.7 Default connection context

If an invocation of an SQL/OLB translator indicates that the default connection context class is class Green,
then all SQL/OLB clauses that use the default connection will be translated as if they used the explicit
connection context object Green.getDefaultContext(). For example, the following twoSQL/OLBclauses
are equivalent if the default connection context class is class Green:

#sql { UPDATE TAB SET COL = :x };
#sql [Green.getDefaultContext()] { UPDATE TAB SET COL = :x };

Programs are permitted to install a connection context object as the default connection by calling setDe-
faultContext. For example:

Green.setDefaultContext(new Green(argv[0], autoCommit));

argv[0] is assumed to contain aURL. autoCommit is a Booleanflag that is true if auto commitmode should
be on, and false otherwise.

© ISO/IEC 2021 – All rights reserved 9

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

4.6.8 Iterators

4.6.8.1 Positional bindings to columns

The following is an example of an iterator class declaration that binds by position. It declares an iterator
class called ByPos, with two columns of types String and int.

#sql public iterator ByPos (String, int);

Assume a table PEOPLE with columns FULLNAME and BIRTHYEAR:

CREATE TABLE PEOPLE (FULLNAME VARCHAR(50),
 BIRTHYEAR NUMERIC(4,0))

An iterator object of type ByPos is used in conjunction with a FETCH...INTO statement to retrieve data
from table PEOPLE, as illustrated in the following example:

{
 ByPos positer; // declare iterator object
 String name = null;
 int year = 0;
 // populate it
 #sql positer = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };
 #sql { FETCH :positer INTO :name, :year };
 while (!positer.endFetch())
 {
 System.out.println(name + " was born in " + year);
 #sql { FETCH :positer INTO :name, :year };
 }
}

The predicate method endFetch() of the iterator object returns true if no more rows are available from
the iterator (specifically, it becomes true following the first FETCH that returns no data).

The first SQL/OLB clause in the block above effectively executes its query and constructs an iterator
object containing the result set returned by the query, and assigns it to variable positer. The type of the
iterator object is derived from the assignment target, which is of type ByPos.

The second SQL/OLB clause in that block contains a FETCH...INTO statement. The SQL/OLB translator
checks that the types of host variables in the INTO clause match the positionally corresponding types of
the iterator columns. The types of the SQL columns in the query must be convertible to the types of the
positionally corresponding iterator columns, according to the SQL to Java type mapping of SQL/OLB.
Those conversions are statically checked at SQL/OLB translation time if an SQL-connection to an exemplar
schema is provided to the translator.

4.6.8.2 Named bindings to columns

The following is an example of an iterator class declaration that binds by name. It declares an iterator
class called ByName, the named accessor methods fullNAME and birthYEAR of which correspond to the
columns FULLNAME and BIRTHYEAR:

#sql public iterator ByName (String fullNAME,
 int birthYEAR);

10 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

That iterator class can then be used as follows:

{
 ByName namiter; // define iterator object
 #sql namiter = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };
 String s;
 int i;
 // advances to next row
 while (namiter.next())
 {
 i = namiter.birthYEAR(); // returns column named BIRTHYEAR
 s = namiter.fullNAME(); // returns column named FULLNAME
 System.out.println(s + " was born in "+i);
 }
}

In this example, the first SQL/OLB clause constructs an iterator object of type ByName, as that is the type
of the assignment target in that clause. That iterator has generated accessor methods birthYEAR() and
fullNAME() that return the data from the result set columns with those names.

The names of the generated accessor methods are an exact case-sensitive matchwith their definitions on
the iterator declaration clause. Matching a specific accessor method to a specific column name in the
SELECT list expressions is performed using a case-insensitive match.

Two column names that differ only in the case of one or more characters must use the SQL AS clause to
avoid ambiguity, even if one or both of those column names are specified using delimited identifiers.

Method next() advances the iterator object to successive rows of the result set. It returns true if a next
row is available and false if it fails to retrieve a next row because the iterator contains no more rows.

A Java compiler will detect type mismatch errors in the uses of named accessor methods. Additionally,
if a connection to an exemplar schema is provided at translate time, then the SQL/OLB translator will
statically check the validity of the types and names of the iterator columns against the SQL queries
associated with it.

4.6.8.3 Providing names for columns of queries

If the expressions selected by a query are unnamed, or have SQL names that are not legal Java identifiers,
then SQL column aliases can be used to name them. Consider a table named "Trouble!"with a column
called "Not a legal Java identifier":

CREATE TABLE "Trouble!" (
 "Not a legal Java identifier" VARCHAR(10),
 col2 FLOAT)

The following line generates an iterator class called xY.

#sql iterator xY (String x, double Y);

The SQL/OLB clause in the following block uses column aliases to associate that column’s name with an
expression in the query:

{
 xY it;
 #sql it = { SELECT "Not a legal Java identifier" AS "x",
 COL2 * COL2 AS Y

FROM "Trouble!" };

© ISO/IEC 2021 – All rights reserved 11

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

 while (it.next()) { System.out.println(it.x() + it.Y());
 }
}

The first line declares a local variable of that iterator class.

The second line initializes that variable to contain a result set obtained from the specified query.

The while() loop calls the named accessor methods of the iterator to obtain and print data from its
rows.

4.6.9 Invoking SQL-invoked routines

An SQL/OLB executable clause, appearing as a Java statement, can call an SQL-invoked procedure by
means of the SQL CALL statement. For example:

#sql { CALL SOME_PROC(:INOUT myarg) };

Support for invoking SQL-invoked routines is not required for conformance to Core SQL/OLB.

SQL-invoked procedures can have IN, OUT, or INOUT parameters. In the above case, the value of host
variable myarg is changed by the execution of that clause.

AnSQL/OLBexecutable clause can invokeanSQL-invoked functionbymeansof theSQLVALUES construct.
For example, assume an SQL-invoked function F that returns an integer. The following example illustrates
an invocation of that function that then assigns its result to Java local variable x.

{
 int x;
 #sql x ={ VALUES (F(34)) };
}

4.6.10Using multiple SQL/OLB contexts and connections

The followingprogramdemonstrates the use ofmultiple concurrent connections. It uses oneuser-defined
context to access a table of employees throughone connectionandanotheruser-definedcontext to access
employee department information via a separate connection. By using distinct contexts, it is possible for
the employee and department information to be stored on physically different SQL-servers.

// declare a new context class for obtaining departments
#sql context DeptContext;
#sql context EmpContext;
#sql iterator Employees (String ename, int deptno);
class MultiSchema {
 void masterRoutine(String deptURL, String empURL)
 throws SQLException
 {
 // create a context for querying department info
 DeptContext deptCtx = new DeptContext(deptURL, true);
 // a second connection
 EmpContext empCtx = new EmpContext(empURL, true);
 printEmployees(deptCtx, empCtx);
 deptCtx.close();
 empCtx.close();
 }
// performs a join on deptno field of two tables

12 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

// accessed from different connections.
void printEmployees(DeptContext deptCtx, EmpContext empCtx)
 throws SQLException
 {
 // obtain the employees from the emp table connection context
 Employees emps;
 #sql [empCtx] emps = { SELECT ENAME, DEPTNO FROM EMP };
 // for each employee, obtain the department name
 // using the dept table connection context
 while (emps.next())
 {
 String dname;
 #sql [deptCtx]
 {

SELECT DNAME INTO :dname
FROM DEPT
WHERE DEPTNO = :(emps.deptno())

 };
 System.out.println("employee: " + emps.ename() +
 ", department: " + dname);
 }
 emps.close();
 }
}

For now, it is sufficient to note that close() executed against the connection contexts DeptContext and
EmpContext, and against the iterator emps, frees the resources associated with the object against which
it is invoked.

A programmermight wish to release the resourcesmaintained by the connection context (e.g.,, Connect-
edProfile, and RTStatement objects)without actually closing the underlying SQL-connection. To this end,
connection context classes also support a closemethod that takes aBoolean argument indicatingwhether
or not to close the underlying SQL-connection. Pass the constant CLOSE_CONNECTION if the SQL-con-
nection should be closed, andKEEP_CONNECTION if it should be retained. The variant of close that takes
no arguments is a shorthand for calling close(CLOSE_CONNECTION).

As a final point, even if not using multiple SQL/OLB connection context objects, explicit manipulation of
connection objects is recommended. This allows applications to avoid hidden global state (e.g.,, Java
“static variables”) that would be necessarily used to implement the <SQL connection statement>. In
particular, Java “applets” and other multi-threaded programs are usually coded to avoid contention of
global state. Such programs should store connection objects in local variables and use them explicitly in
SQL/OLB clauses.

4.6.11 SQL execution control and status

An execution context can be supplied explicitly as an argument to each SQL-statement.

ExecutionContext execCtx = new ExecutionContext();
 #sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };

If explicit execution context objects are used, each SQL-statement can be executed using a different exe-
cution context object. If an explicit connection context object is also being used, both are available to be
queried and modified during execution of the SQL-statement.

#sql [connCtx, execCtx] { DELETE FROM EMP
WHERE SAL > 10000 };

© ISO/IEC 2021 – All rights reserved 13

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

If an execution context object is not supplied explicitly as an argument to an SQL-statement, then adefault
execution context object is used implicitly. The default execution context object for a particular SQL-
statement is obtained via the getExecutionContext()method of the connection context object used in
the operation. For example:

#sql [connCtx] { DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object
given by connCtx. If neither a connection context object nor an execution context object is explicitly
supplied, then the execution context object associatedwith the default connection context object is used.

The use of an explicit execution context object overrides the execution context object associated with
the connection context object, referenced explicitly or implicitly by an SQL clause.

The following code demonstrates the use of some ExecutionContextmethods.

{
 ExecutionContext execCtx = new ExecutionContext();
 // Wait only 3 seconds for operations to complete
 execCtx.setQueryTimeout(3);
 try {
 // delete using explicit execution context
 // if operation takes longer than 3 seconds,
 // SQLException is thrown
 #sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };
 System.out.println
 ('removed ' + execCtx.getUpdateCount() + ' employees');
 }
 catch(SQLException e) {
 // Assume a timeout occurred
 System.out.println('SQLException has occurred with' + ' exception ' + e);
 }
}

4.6.12Multiple java.sql.ResultSet objects from SQL-invoked procedure calls

If execution of an SQL-statement producesmultiple results, the resources are not releaseduntil all results
have been processed using getNextResultSet. Accordingly, if an SQL-invoked procedure might return
side-channel result sets, then the callingprogramshouldprocess all results usinggetNextResultSetuntil
null is returned. Further, if one or more side-channel result sets have been left open, they should be
closed, because their associated resources cannot be released until they are closed.

If the invocation of an SQL-invoked procedure does not produce side-channel result sets, then there is
noneed to callgetNextResultSet. All resources are automatically reclaimedas soon as theCALLexecution
completes.

The following code snippet demonstrates howmultiple results are processed. The example assumes that
an SQL-invoked procedure named “multi_results” exists and produces one ormore side-channel result
sets when executed.

#sql [execCtx] { CALL MULTI_RESULTS() };
ResultSet rs;
while ((rs = execCtx.getNextResultSet()) != null)
 { // process result set
 ...
 rs.close();
 }

14 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

The following snippet demonstrates howmultiple result sets can be processed simultaneously. The
example assumes an SQL-invoked procedure named “multi_results” exists and produces between 2
and 10 side-channel result sets when executed.

#sql [execCtx] { CALL MULTI_RESULTS() };
ResultSet[] rsets = new ResultSet[10];
ResultSet rs;
int rsCounter = 0;
// access the ResultSets
while ((rs = execCtx.getNextResultSet(Statement.KEEP_CURRENT_RESULT)) != null)
 { rsets[rsCounter++] = rs;
 }
// process ...
// close
for (int ii=0; ii < rsCounter; ii++)
 { rsets[ii].close();
 }

4.6.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object

AnSQL/OLB iterator object canbe created fromajava.sql.ResultSetobjectwith the<iterator conversion
clause>. Once an iterator object has been created this way, portable code should not issue any further
calls to the java.sql.ResultSet object, because the result of doing so is implementation-defined.

As an example, assume the following iterator declaration has been made:

 #sql iterator Employees (String ename, double sal) ;

The following method uses JDBC to perform a dynamic query and uses an instance of the above iterator
declaration to view the results. It illustrates the use of an iterator conversion statement.

 public void listEarnings(Connection conn, String whereClause)
 throws SQLException
 {
 // prepare a java.sql.Statement object to execute a dynamic query
 PreparedStatement stmt = conn.prepareStatement();
 String query = 'SELECT ename, sal FROM emp WHERE ';
 query += whereClause;
 ResultSet rs = stmt.executeQuery(query);
 Employees emps;
 // Use the iterator conversion statement to create a
 // SQL/OLB iterator from a java.sql.ResultSet object
 #sql emps = { CAST :rs };
 while (emps.next()) {
 System.out.println(emps.ename() +
 " earns " + emps.sal());
 }
 emps.close(); // closing emps also closes rs
 stmt.close();
 }

4.6.14Obtaining a java.sql.ResultSet object from an iterator object

Every SQL/OLB iterator object, whether typed or untyped, has a getResultSetmethod that returns a
java.sql.ResultSet object representation of its data. For portable code, the getResultSet()method

© ISO/IEC 2021 – All rights reserved 15

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

should be invoked before the first next()method invocation on the iterator object. And, once the
java.sql.ResultSet object has been produced, all operations to fetch data, or update the ResultSet,
should be through that java.sql.ResultSet object; doing so avoids potential problems due to the
implementation-defined nature of the synchronization (if any) between the iterator object and its
java.sql.ResultSet object.

As an example, the followingmethod uses aweakly typed iterator to hold to results of an SQL/OLB query
and then process them using a java.sql.ResultSet object:

 public void showEmployeeNames() throws SQLException
 {
 SQLJ.runtime.ResultSetIterator iter;
 #sql iter = { SELECT ename FROM emp };
 ResultSet rs = iter.getResultSet();
 while (rs.next()) {
 System.out.println("employee name: " + rs.getString(1));
 }
 iter.close(); // close the iterator, not the result set
 }

4.6.15Working with user-defined types

NOTE 2—Readers of this Subclause should note that some of the examples herein depend on optional features of the SQL
language and of the JDBC specification. As a consequence, not all examples are guaranteed to work on all SQL/OLB imple-
mentations. They are provided for educational purposes only.

Consider the following typemapping information tobespecified infileaddrpckg/address-map.properties:

file: addressmap.properties
class.addrpckg.Address = STRUCT ADDRESS
class.addrpckg.BusinessAddress = STRUCT BUSINESS
class.addrpckg.HomeAddress = STRUCT HOME
class.addrpckg.ZipCode = DISTINCT ZIPCODE

The first entry defines that the Java class Address in package addrpckg corresponds to the SQL user-
defined type ADDRESS. It further indicates that the SQL type is a structured type.

The type map specified in the above file can be attached to a connection context class as part of the con-
nection context declaration in the following way:

#sql context Ctx with (typeMap = "addrpckg.addressmap")

The SQL/OLB translator and runtime will interpret the specified type map "addrpckg.addressmap" as a
Java resource bundle family name, and look for an appropriate properties or class file using the Java class
path. This means that the type map can easily be packaged with the rest of the SQL/OLB application or
application module.

It is now possible to define host variables or iterators based on the Java types that participate in the type
map:

#sql public iterator ByPos (String, int, addrpckg.Address);

Assume a table PEOPLEwith columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (
 FULLNAME CHARACTER VARYING(50),
 BIRTHYEAR NUMERIC(4,0),
 ADDR ADDRESS)

16 © ISO/IEC 2021 – All rights reserved

ISO/IEC 19075-3:2021(E)
4.6 Examples

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
07

5-3
:20

21

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Use of SQL in programs written in Java
	4.1 Context of SQL programs written in Java
	4.2 Design goals
	4.3 Advantages of SQL/OLB over JDBC
	4.4 Consistency with existing embedded SQL languages
	4.5 Profile customization overview
	4.5.1 Introduction to profile customization
	4.5.2 Profile customization process
	4.5.3 Profile customization utilities

	4.6 Examples
	4.6.1 Example of profile generation and naming
	4.6.2 Example of a JAR manifest file
	4.6.3 Host variables
	4.6.4 Host expressions
	4.6.5 SQL/OLB clauses
	4.6.6 Connection contexts
	4.6.7 Default connection context
	4.6.8 Iterators
	4.6.8.1 Positional bindings to columns
	4.6.8.2 Named bindings to columns
	4.6.8.3 Providing names for columns of queries

	4.6.9 Invoking SQL-invoked routines
	4.6.10 Using multiple SQL/OLB contexts and connections
	4.6.11 SQL execution control and status
	4.6.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls
	4.6.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object
	4.6.14 Obtaining a java.sql.ResultSet object from an iterator object
	4.6.15 Working with user-defined types
	4.6.16 Batching
	4.6.17 Example program
	4.6.18 Host variable definition

