INTERNATIONAL ISO/IEC
STANDARD 19075-3

First edition
2021-08

Information technology —= Guidance
for the use of database language
SQL —

Part 3:
SQL embedded in programs using|the
Java™ programming language

Technologies de l'information — Recommandations pour l'utllisation
du langage de.bdse de données SQL —

Partie 3: SQbvintégré dans des programmes utilisant le langage de
programiadation de Java™

Reference number
ISO/IEC 19075-3:2021(E)

© ISO/IEC 2021

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

COFPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 e Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

Contents Page
200} o 37T 4 P .V
INErPAUCHION. « . o oo b . vii
1 I I Y o0) o T MM 1
2 | Normative references..........vvvuiiiiinriiirrriirsssirrsssttrrsrrrrsssymalessrnensss 2
3 |Termsand definitions...........ccoiiiiiiiiiiiiiiiiiii it Fa i ..3
4 | Use of SQL in programs writtenin Java...........cccoiiiiiiii i i e b e i i ninnnnnnns .. 4
4.1 Context of SQL programs written in Java. N 4
4.2 Design goals.o T 4
4.3 Advantages of SQL/OLB over JDBC.ottt e 4
4.4 Consistency with existing embedded SQL languages. </ ..o o .5
4.5 Profile customization overview. N e .5
4.5.1 Introduction to profile customization. 00 e .5
4.5.7 Profile customization process. N e .. 6
4.5.3 Profile customization utilities. 008 e 7
4.6 XA LS. oot R e e e e e 7
4.6.1 Example of profile generation and naming L7
4.6.7 Example of a JAR manifest file. 0. .o e 7
4.6.3 Host variables. S e ..8
4.6.4 HOSE @XPIreSSIONS. . ..ottt i s ettt e e e .. 8
4.6.9 SQL/OLB ClaUSES. v v vttt e e e ettt et e e e e e e e e ..8
4.6.4 ConneCtion COMEEXES. ., o o e e e .9
4.6.7 Default connection CONTEXL. ot e .9
4.6.9 = =0 .10
4.6.9.1 Positional bindings to coOlUmMNS. o e .10
4.6.4.2 Named bindings to colUmMNS.t e .10
4.6.4.3 Providing-names for columns of queries.c. i .11
4.6.9 InvaKing SQL-invoked routines.ttt 12
4.6.10 Using multiple SQL/OLB contexts and connections.ot iinennnnn.n. 12
4.6.11_7~\SQL execution control and Status.ttt i e e e 13
4.6.12 Mnl‘riplpj ava. sql Result Set nhjer‘rq from SQl.-invoked pmrpdnrp calls .14
4.6.13 Creating an SQL/OLB iterator object from aj ava. sql . Resul t Set object....................... 15
4.6.14 Obtainingaj ava. sql . Resul t Set object from an iterator object................t 15
4.6.15 Working with user-defined types. i e 16
4.6.16 Batching. i e 17
4.6.17 EXaMPle PrOZIamL . ..ottt ittt et et et et e e e e 17
4.6.18 Host variable definition. 18
Bibliography.coi i i e 20

© ISO/IEC 2021 - All rights reserved iii

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

iv © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:202

Foreword

1(E)

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are

members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.

ISO
gov¢

The
des

diffe
rule
ber

Atte
patd

arrd TEC techmicat committees tottaborate i fields of mutuat imterest-Other imtermatiomat orgamizat
brnmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

procedures used to develop this document and those intended for its further maintenance are
ribed in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for t
rent types of document should be noted. This document was drafted in accordanceAvith the edit
5 of the ISO/IEC Directives, Part 2 (see Wwmw. i SO. or g/ di rect i ves or ww. jec. ch/ mem
s_experts/refdocs).

ntion is drawn to the possibility that some of the elements of this document may be the subject
ntrights. ISO and IEC shall not be held responsible for identifying any or-all such patent rights. De

of aliy patent rights identified during the development of the document will be in the Introduction an

ont
decl

Any)|
conjg

For

rela
Org;
WOr

This

arations received (see pat ent s. i ec. ch).

titute an endorsement.

hn explanation of the voluntary nature of standards, the meaning of ISO specific terms and express
fed to conformity assessment, as well as information about ISO’s adherence to the World Trade

d. ht M . In the IEC, see wwv. | ec. ch/ under st andi ng- st andar ds.

mitfee SC 32, Data management and interchange.

Thi{

Thid
907

first edition of ISO/IEC 19075-3cancels and replaces ISO/IEC TR 19075-3:2015.

document is intended to beised in conjunction with the following editions of the parts of the ISO
b series:

[SO/IEC 9075-1, sixth edition or later;
[SO/IEC 9075-2,sixth edition or later;
[SO/IEC 9075-3, sixth edition or later;
[SO/IEC:9075-4, seventh edition or later;
[SO/IEC 9075-9, fifth edition or later;

trade name used in this document is information given fapthe convenience of users and does njot

ons,

he
brial

of
tails
1/or

he ISO list of patent declarations received (see www. i S0. or g/ pat'ent s), or the IEC list of patent

ions

inization (WTO) principles in the Technical Barriers to Trade (TBT) seewww. i s0. or g/ i so/ f of e-

document was prepared by Technical Gommittee ISO/IEC JTC 1, Information technology, Subcom-

[EC

ISO/IEC9075-10, fifth edition or later;
ISO/IEC 9075-11, fifth edition or later;
[SO/IEC 9075-13, fifth edition or later;
ISO/IEC 9075-14, sixth edition or later;
ISO/IEC 9075-15, second edition or later;
ISO/IEC 9075-16, first edition or later.

© ISO/IEC 2021 - All rights reserved

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iec.ch/members_experts/refdocs
www.iso.org/patents
patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

A list of all parts in the ISO/IEC 19075 series can be found on the ISO and [EC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found atwww. i so. or g/ nenbers. ht Ml and ww. i ec. ch/ -
nati onal -conmittees.

vi © ISO/IEC 2021 - All rights reserved

www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

Introduction

The organization of this document is as follows:

1)
2)

3)
4)

Clause 1, “Scope”, specifies the scope of this document.

Clause 2, “Normative references”, identifies additional standards that, through reference in this

document, constitute provisions of this document.
Clause 3, “Terms and definitions”, defines the terms and definitions used in this document.

Clause 4, “Use of SQL in programs written in Java”, provides a tutorial on the embedding of SQL
expressions and statements in programs written in the]avaTMl programming language.

Java™ is the trademark of a product supplied by Oracle. This information is given for the convenience of users of this document

and does not constitute an endorsement by ISO or IEC of the product named.

© ISO/IEC 2021 - All rights reserved

vii

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

INTERNATIONAL STANDARD ISO/IEC 19075-3:2021(E)

Information technology — Guidance for the use of database language SQL —

Part 3:
SQL embedded in programs using the Java™ programming language

1 |Scope

Thiq document describes the support for the use of SQL within programs written jn-Java.
Thig document discusses the following features of the SQL language:

— |The embedding of SQL expressions and statements in programs writtén\in the Java programmihg
language.

© ISO/IEC 2021 - All rights reserved 1

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content consti-
tutes requirements of this document. For dated references, only the edition cited applies. For undated
refefences, the latest edition of the referenced document (including any amendments) applies.

I§0/1EC 9075-1, Information technology — Database languages — SQL — Part 1: Framework
(§OL/Framework)

0/IEC 9075-10, Information technology — Database languages — SQL — Part 10/0bject Langujage
indings (SQL/OLB)

S =

Jdva Community Process. The Java™ Language Specification [online]. Java SE13 Edition. Redwood
Shores, California, USA: Oracle, Availableatht t ps: / / docs. or acl e. conlj,avase/ specs/j | s/ -
spl3/j1s13. pdf

Jdva Community Process. J]DBC™ 4.3 Specification [online]. Edition4.3-Redwood Shores, Californja,
USA: Oracle, Available at ht t ps: / / downl oad. or acl e. coml abn- pub/j cp/ -
jdbc-4_3-nrel 3-eval -spec/jdbc4. 3-fr-spec. pdf

2 © ISO/IEC 2021 - All rights reserved

https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf
https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf
https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf
https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9075-1 apply.

ISO pid TEC maintain terminotogical databases for Use in standardization at the following addressep:
— [IEC Electropedia: available at ht t p: / / www. el ect r opedi a. or g/

— [ISO Online browsing platform: available atht t p: / / www. i so. or g/ obp

© ISO/IEC 2021 - All rights reserved 3

http://www.electropedia.org/
http://www.iso.org/obp
https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

4

4.1

The
and

4.2

The
JDB

Use of SQL in programs written in Java

—Context of SQL programs written in Java

requirements for the material discussed in this document shall be as specified in ISO/IEC9075
ISO/IEC 9075-10.

Design goals
following items represent the major design features of ISO/IEC 9075-4\[SO/IEC 9075-10, Java,
[all specify requirements for the material discussed in this document:

Provide a concise, legible mechanism for embedding SQL-statements in a program that otherw
conforms to Java.

Syntactic and semantic check of SQL-statements prior to program execution.

SQL/OLB can use an implementation-defined mechanism at translate time to check embedded §
statements to make sure that they are syntactically@nd semantically correct.

Allow the syntax and semantics of SQL-statements to be location-independent.

The syntax and semantics of SQL-statements in an SQL/OLB program do not depend on the con

that run on the client, in the SQL-server, or in a middle tier.

by sharing a single SQL-connection in both environments.

Provide for binary portability of translated and compiled Java SQL-client applications such that
can be used transparently with multiple SQL-servers. In addition, binary portability profiles all
for customization @ndoptimization of SQL-statements within an SQL/OLB application.

4.3 Advantages of SQL/OLB over JDBC

JDB

[provides a complete, low-level SQL interface from Java to SQL-implementations. SQL/OLB is desig

to fi

T
[u

and

se

bQL-

igu-

ration under which SQL/OLB is running.This makes it possible to implement SQL/OLB prograins

Provide facilities that enable the programmer to move between the SQL/OLB and JDBC environments

they
bW

rmed

l a-¢omplementary role by providing a higher-level programming interface to SQL-implementat

ions

in such a manner as to free the programmer from the tedious and complex programming interfaces found
in lower-level APIs.

The

following are some major differences between the two:

SQL/OLB source programs are smaller than equivalent JDBC programs since the translator can
implicitly handle many of the tedious programming chores that dynamic interfaces require.

SQL/OLB programs can type-check SQL code at translate time using an implementation-dependent

mechanism. JDBC, being a completely dynamic AP], can not.

© ISO/IEC 2021 - All rights res

erved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:202
4.3 Advantages of SQL/OLB over]

1(E)
DBC

— SQL/OLB programs allow direct embedding of Java host expressions within SQL-statements. JDBC
requires a separate call statement for each bind variable and specifies the binding by position number.

— SQL/OLB enforces strong typing of query outputs and values returned and allows type checking on

calls. JDBC passes values to and from SQL without compile time type checking.

— SQL/OLB provides simplified rules for invoking SQL-invoked routines. JDBC requires a generic call

to an SQL-invoked routine, fun, to have the following syntax:

prepSImT. preparecart C{car— Tt . T 77 For SQL-TMVORed procedures
prepStnt. prepareCall ("{? = call fun(...)}"); /1 For SQ.-invoked functions

SQL/OLB provides simplified notations:

#sql { CALL fun(...) }; /1 SQ.-invoked procedure
/| Declare x

#sql x = { VALUES(fun(...)) }; /1 SQL-invoked function
/1 VALUES is an SQL const ruct

4.4 Consistency with existing embedded SQL languages

Prog
tion|
its e

bramming languages containing embedded SQL are calledost languages. Java differs from the ti
hl host languages (Ada, C, COBOL, Fortran, MUMPS (M), \Rascal, PL/I) in ways that significantly a
mbedding of SQL.

Java has automatic storage management (also knewn as “garbage collection”) that simplifies th
management of storage for data retrieved froim SQL-implementations.

All Java types representing composite data, and data of varying sizes, have a distinguished valu
nul |, which can be used to represent the SQL NULL value. This gives Java programs an alternat
to the indicator variables that are part of the interfaces to other host languages.

Java is designed to support programs that are automatically heterogeneously portable (also call
“super portable” or simply “downloadable”). That, along with Java's type system of classes and
interfaces, enables component software. In particular, an SQL/OLB translator, written in Java, ca
call components that are-specialized by SQL-implementations, in order to leverage the existing
authorization, schema.checking, type checking, transactional, and recovery capabilities that are
ditional of SQL-implementations, and to generate code optimized for particular SQL-implementat

Java is designedAfor binary portability in heterogeneous networks, which promises to enable bi
portability\foer applications that use SQL.

SQL/OLB extends the traditional concept of embedded host variables by allowing generalized }
expressions.

)

adi-
ffect

0

ve

1%

ed

n

tra-
ons.

hary

jost

4.5

4.5.

Profile customization overview

1 Introduction to profile customization

This subclause describes how implementation-specific “customized” SQL execution control can be added
to SQL/OLB applications. The SQL/OLB runtime framework uses the following interfaces:

© ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.5 Profile customization overview

— SQLJ.runtime.profile.RTStatement to execute SQL-statements.

— SQLJ.runtime.profile.RTResultSet to describe query results.

— SQLJ.runtime.profile.ConnectedProfile to create RTStatement objects corresponding to particular
SQL-statements.

An SQL-implementation is able to control SQL execution by providing an implementation of the
RTStatement, RTResultSet, and ConnectedProfile interfaces. An SQL-implementation is able to redirect

ral o itc orazn de b ragict 3 raizatian-kh Lceunth tha axnalicod: oo o001
Con ITUT TU IO UVVII CUUC U)’ I \aleL\/l 1115 CUOLUIIIIZAUIVIT TITUURNO VVIUIL UIIC at}t}ll\,u\,lull }Jl UIIIC O,

For pxample, if the client connects to SQL-server A, then a customization that understands SQL=seryer
A’s gystem will be used. If the client connects to SQL-server B, then SQL-server B’s customizdtion willl be
usedl. In the absence of a connection specific customization, the default JDBC based customization will
be used. Like the profile object, customization objects are serializable. This allows the cistomization
state to be stored and restored with the profile. In this manner, an implementation-depehdent deployment
tool|is able to load the profile, inspect and precompile the SQL-statements it contains, register an
appfopriate customization, and store the profile in persistent storage. Then at application runtime, [the
prollile and the registered implementation-dependent customization will both’be restored, and the fus-
tomjzation will be used to execute the SQL-statements.

4.5]2 Profile customization process

The(profile customization process is the act of registering prefile customization objects with the profile(s)
assdciated with an application. The profile customization process can be generalized to the following
steps:

1) |Discover the profile objects within a JAR file,

2) [|For each profile, deserialize the profile object from the appropriate JAR entry.
3) |Create an SQL-connection with which'the profile will be customized.

4) [Create and register a profile custemization with the profile.

5) [Serialize the customized profile back to persistent storage.

6) |Recreate the JAR contents'using the customized serialized profiles.

of tJ]:e above steps, only-Step 4) is likely to change from SQL-implementation to SQL-implementatiop.
Whille Step 3) is implémentation-dependent, it can be done using a parameterized tool and JDBC. The
rest{of the steps invelve actions that can be performed by any generic utility without specific knowl¢dge
of the customization being performed.

Thelact of ereating and registering a customization object with a profile (step 4 above) is abstractly
definedy the Java interface SQL].runtime.profile.util.ProfileCustomizer. The intent of defining this
intefface is to allow SQL-implementations to concentrate on writing profile customizers and customizgtion
objects (step 4 above]), while tools and application implementations concentrate on writing generic tools
that apply customizers to application profiles (steps 1 - 3 and 5 - 6 above).

The profile customizer interface is able to support most customization registration requirements. However,
itis notrequired that all utilities that register customization objects with a profile implement this interface.
SQL/OLB applications will be able to run and leverage all implementation-specific customization objects
registered with a profile, regardless of whether or not they were registered by a profile customizer. The
primary benefit of conforming to the profile customizer interface is to be able to take advantage of
existing and future automated profile customization utilities that are able to load, call and manipulate
profile customizers.

6 © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

4.5.

ISO/IEC 19075-3:202

1(E)

4.5 Profile customization overview

3 Profile customization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization

utilities. An SQL-implementation mightinclude a command-line based tool that serves as a customization
utility prototype. In addition to a command line-based utility, other useful customization utilities might
include:

GUI-based IDEs used to drag-and-drop customizations into profiles.

4.6

4.6

Sup
<ex(

pach
#sql
publ
{

Tight integration of customization utilities with SQL-implementations to automatically custom
the profiles loaded into the SQL-server.

Background “SQL/OLB installer” process used as administrative tool to discover and customize
SQL/OLB applications for available SQL-schemas.

NOTE 1 — Implementors are encouraged to implement utilities using these and other ideas. Making such tools publi
hvailable will greatly benefit and facilitate the SQL/OLB binary-portability effort.

Examples

1 Example of profile generation and naming

pose there exists the following file, Bar.SQLJ, which defines package COM.foo, and contains thrg
pcutable clause>s associated with two <connection¢ontext>s.

age COM f oo;
cont ext MyCont ext;
ic class Bar

public static void doSQ.(MContexiy'ctx) throws SQLException

{

}
}

Twd
file]
stor]
file

/1 1. explicit context

#sql [ctx] { UPDATE TABI\'SET COL1 = COL1 + 2 };

/1 2: inplicit context

#sql { I NSERT I NTO TAB2 VALUES(3, 'Hello there') };
/1 3: explicit cantext again

#sql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };

profiles are created for this file; they are named COM.foo.Bar_S]JProfile0 and COM.foo.Bar_S]
| . COM.foo.Bar_S]Profile0 contains information describing <executable clause>s 1 and 3, and i
ed in ‘@file called Bar_SJProfile0.ser. Com.foo.Bar_SJProfile1 describes clause 2, and is stored|

T3
—_

y

e

Pro-

Bar., S]Profilel.ser.

4.6.

2 Example of a JAR manifest file

Working again with the file Bar.SQL]J from the last example, if the Bar application were packaged for
deployment as a JAR file, the JAR’s manifest can be used by SQL/OLB customization utilities to locate the
application’s profile files. To allow that use, the profile section of the manifest file would have the following
entries:

Name: COM/foo/Bar_S]Profile0.ser SQLJProfile: TRUE

© ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)

4.6

Examples

Name: COM/foo/Bar_S]Profilel.ser SQLJProfile: TRUE

4.6.3 Host variables

The following query contains host variable : x (which is the Java variable, Java field, or parameter x visible
in the scope containing the query):

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

4.6

Hos

SELECT COL1, COL2 FROM TABLE1l WHERE : (x++) > COL3

Hos
For
dete

SELH

In the above example, prior to statement execution, the value ofi is decremented by 1 (one) and th

the

Con

SET

Assyime thati has an initial value of 1 (ong). Host expressions are evaluated in lexical order.

The
of’i

X is
the
Java
toz

Assignments to output’ host expressions are also performed in lexical order. For example, consider t

folld

CALL
Afte

4 Host expressions

[expressions are evaluated from left to right and can cause side effects. For example:

nstance, in the above example, the value of x++ is determined prior'to statement execution and
rmined value is the value that is passed to the SQL-server for,statement execution.

FCT COL1, COL2 FROM TABLEL WHERE : (x[--i]) > COL3

Ualue of the i -th element of x is determined and passed to the SQL-server for statement executi

sider the following example of an SQL/PSM <assignment statement>:

S(z[i++]) = o (x[i++]) + o (y[i++])

refore, the array index used to détermine the location in the array z is 1 (one), after which the v

D, after which the value of j-isincremented by 1 (one). As a result, the array index used to deter]
ocation in the array y is/3,-after which the value ofi is incremented by 1 (one). The value of i ir
space is now 4. The stateirient is then executed. After statement execution, the output value is assig
1] .

wing call toan-SQL-invoked procedure f oo that returns the values 2 and 3.
foo(_~GUT x, :QUT x)

I execution, x has the value 3.

F expressions are always passed to and retrieved from the SQL-servérusing pure value semanti¢

its

ENn
p1.

hlue

is incremented by 1 (one). Consequently, the array index used to determine the location in the afrray

nine
the
med

he

4.6.

5 SQL/OLB clauses

The following SQL/OLB clause is permitted to appear wherever a Java statement can legally appear and
its purpose is to delete all of the rows in the table named TAB:

#sql

{ DELETE FROM TAB };

The following Java method, when invoked, inserts its arguments into an SQL table. The method body
consists of an SQL/OLB executable clause containing the host expressions x, y, and z.

© ISO/IEC 2021 - All rights res

erved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

void m(int x, String y, float z) throws SQ.Exception
{

}

The following method selects the address of the person whose name is specified by the input host
expression narme and then retrieves an associated address from the assumed table PECPLE, with columns
NAME and ADDRESS, into the output host expressions addr, where it is then permitted to be used, for
examplc, fmacattto SystenTout. primttTm:

#sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };

voi d print_address (String nane) throws SQ.Exception

{
$tring addr;
#sqgl { SELECT ADDRESS | NTO : addr
FROM PECPLE
VWHERE : nane = NAME };
}

4.6)6 Connection contexts

=

In the following SQL/OLB clause, the connection context is the yalue of the Java variable nyconn.

#sql| [myconn] { SELECT ADDRESS | NTO : addr
FROM PEOPLE
WHERE : name = NAME } ;

Thelfollowing illustrates an SQL/OLB connection clause that defines a connection context class nanjed
“I'nMent ory”:

#sql| context |nventory;

4.6{7 Default connection context

If anjinvocation of an SQL/OL:B'translator indicates that the default connection context class is class Gleen,
thern all SQL/OLB clauses\that use the default connection will be translated as if they used the expli¢it
conhection context object G- een. get Def aul t Cont ext () . For example, the following two SQL/OLB clapses
are gquivalent if the default connection context class is class G een:

—e

#sqll { UPDATE\TAB SET COL = :x };
#sqll [G eensget Defaul t Context()] { UPDATE TAB SET COL = :x };

Programs'are permitted to install a connection context object as the default connection by calling se{ De-
f aullt‘Cont ext . For example:

Green. set Def aul t Cont ext (new Green(argv[0], autoConmmit));

ar gv[0] is assumed to contain a URL. aut oCormi t is a Boolean flag that is true if auto commit mode should
be on, and false otherwise.

© ISO/IEC 2021 - All rights reserved 9

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

4.6.8 Iterators

4.6.8.1 Positional bindings to columns

The following is an example of an iterator class declaration that binds by position. It declares an iterator
class called ByPos, with two columns of types Stri ng and i nt .

#sql| public iterator ByPos (String, int);

Assiime a table PEOPLE with columns FULLNAME and Bl RTHYEAR:

CREATE TABLE PECPLE (FULLNAVE VARCHAR(50),
Bl RTHYEAR NUMERI C(4, 0))

An iferator object of type ByPos is used in conjunction with a FETCH. . . | NTOstatement to retrieve dqta
fronh table PEOPLE, as illustrated in the following example:

{
By Pos positer; /1 declare iterator object
String nane = null;
it year = 0;
/| populate it
#3ql positer = { SELECT FULLNAME, BI RTHYEAR
FROM PEOPLE };
#3ql { FETCH :positer |INTO :name, :year };
while (!positer.endFetch())
Systemout.println(nane + " was born iny" + year);
#sqgl { FETCH :positer INTO :nane, :yedar };
X
}

The|predicate method endFet ch() of the-iterator object returns true if no more rows are available from
the Jterator (specifically, it becomes true following the first FETCH that returns no data).

Thelfirst SQL/OLB clause in thetblock above effectively executes its query and constructs an iterator
objdct containing the result setreturned by the query, and assigns it to variable posi t er. The type of the
iterator object is derived from the assignment target, which is of type ByPos.

The|second SQL/OLB-clause in that block contains a FETCH. . . | NTOstatement. The SQL/OLB translator

chegks that the types-of host variables in the | NTOclause match the positionally corresponding types of
the Jterator columns. The types of the SQL columns in the query must be convertible to the types of|the
positionally cerresponding iterator columns, according to the SQL to Java type mapping of SQL/OLB.
Thope conversions are statically checked at SQL/OLB translation time if an SQL-connection to an exemplar
schgma,i§provided to the translator.

4.6.8.2 Named bindings to columns

The following is an example of an iterator class declaration that binds by name. It declares an iterator
class called ByNane, the named accessor methods f ul | NAME and bi r t hYEAR of which correspond to the
columns FULLNAVME and Bl RTHYEAR:

#sqgl public iterator ByNane (String ful | NAMVE,
i nt bi rt hYEAR) ;

10 © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

That iterator class can then be used as follows:

{
ByName namter; /1 define iterator object
#sql namiter = { SELECT FULLNAME, BI RTHYEAR
FROM PECPLE };
String S;
i nt i;
/'l advances to next row
wifrte—(Tmam terTextt))
{
i = namiter.birthYEAR(); // returns colum named Bl RTHYEAR
s = namter.ful | NAME(); // returns columm named FULLNAVE
Systemout.println(s + " was bornin "+i);
}
}

In this example, the first SQL/OLB clause constructs an iterator object of type ByNane, as that is the fype
of the assignment target in that clause. That iterator has generated accessor methods bi rt hYEAR() and
ful INAMVE() that return the data from the result set columns with those names:

The|names of the generated accessor methods are an exact case-sensitivednatch with their definitions on
the Jterator declaration clause. Matching a specific accessor method t6.a specific column name in the
SELECT list expressions is performed using a case-insensitive match.

174

Twq column names that differ only in the case of one or more¢haracters must use the SQL AS clauseg to
avoid ambiguity, even if one or both of those column names:are specified using delimited identifiers.

Method next () advances the iterator object to successige rows of the result set. It returns true if a next
rowlis available and false if it fails to retrieve a next fow because the iterator contains no more rows.

A Jaya compiler will detect type mismatch errorsdn the uses of named accessor methods. Additionally,
if a ¢onnection to an exemplar schema is provided at translate time, then the SQL/OLB translator will
statjcally check the validity of the types and\inames of the iterator columns against the SQL queries
assdciated with it.

4.6{8.3 Providing names for columns of queries

If the expressions selected-by a query are unnamed, or have SQL names that are not legal Java identifjers,
then SQL column aliasescan be used to name them. Consider a table named " Tr oubl e! " with a column
callgd"Not a legal YJava identifier":

CREATE TABLE~Troubl e! " (
"Not alegal Java identifier" VARCHAR(10),
col 2 FLOAT)

Thelfollowing line generates an iterator class called x .

#sqgl iterator xY (String x, double Y);

The SQL/OLB clause in the following block uses column aliases to associate that column’s name with an
expression in the query:

{
XY it;
#sqgl it = { SELECT "Not a |legal Java identifier" AS "x",
CoL2 * COL2 AS Y
FROM " Troubl e!' " };

© ISO/IEC 2021 - All rights reserved 11

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

while (it.next()) { Systemout.printin(it.x() +it.Y());
}
}

The first line declares a local variable of that iterator class.
The second line initializes that variable to contain a result set obtained from the specified query.

The whi l e() loop calls the named accessor methods of the iterator to obtain and print data from its
rows.

4.6]9 Invoking SQL-invoked routines

An §QL/OLB executable clause, appearing as a Java statement, can call an SQL-invoked procedure by
means of the SQL CALL statement. For example:

#sqll| { CALL SOVE_PROC(: | NOUT nyarg) };
Support for invoking SQL-invoked routines is not required for conformanee’to Core SQL/OLB.

SQLtinvoked procedures can have I N, QUT, or | NOUT parameters. In the:above case, the value of host
varipble nyar g is changed by the execution of that clause.

An JQL/OLB executable clause can invoke an SQL-invoked funétion by means of the SQL VALUES constfuct.
For example, assume an SQL-invoked function F that returns:an integer. The following example illustrjates
an ifvocation of that function that then assigns its result te Java local variable x.

{
it x;
#49l x ={ VALUES (F(34)) }:

4.6{10 Using multiple SQL/OLB.contexts and connections

Thelfollowing program demdnstrates the use of multiple concurrent connections. It uses one user-defjned
confext to access a table of employees through one connection and another user-defined context to access
employee department.information via a separate connection. By using distinct contexts, it is possiblg for
the employee and department information to be stored on physically different SQL-servers.

/'l declare a new context class for obtaining departments
#sql| cont ext Dept Cont ext ;
#sql| context EmpCont ext ;
#sql| iterator Enployees (String enane, int deptno);
cl ags~Mil ti Schema {
voi-dZmasterRout | nn(Stri ng dnpf LIBL . Stri ng nrrpIIDI)

throws SQLException

{
/'l create a context for querying department info
Dept Cont ext dept Ctx = new Dept Context (deptURL, true);
/1 a second connection
EnpCont ext enpCtx = new EnpContext(enpURL, true);
pri nt Enpl oyees(dept &t x, enpCtx);
dept Ct x. cl ose();
empCt x. ¢l ose();
}

/1 perfornms a join on deptno field of two tables

12 © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

/1 accessed fromdifferent connections.

voi d print Enpl oyees(Dept Cont ext dept Ct x, EnpContext enpCtx)
throws SQ.Exception

{

/1 obtain the enpl oyees fromthe enp table connection context
Enpl oyees enps;
#sql [enpCtx] enps = { SELECT ENAME, DEPTNO FROM EMP };
/1 for each enpl oyee, obtain the departnent nane
/1 using the dept table connection context

whila (aonnc naosvt ()
YT eHpS—HEXtT

{

String dnane;
#sql [dept Ctx]

{
SELECT DNAME | NTO : dnane
FROM DEPT
VWHERE DEPTNO = : (enps. deptno())
3
Systemout. println("enpl oyee: " + enps.ename() +

, departnent: " + dnane);

enps. cl ose();
}
}

For how, it is sufficient to note that cl ose() executed against the.connection contexts Dept Cont ext and
EnpCont ext , and against the iterator enps, frees the resources associated with the object against whiich
it isfinvoked.

A programmer might wish to release the resources maintained by the connection context (e.g.,, Connect-
edProfile, and RTStatement objects) without actually; closing the underlying SQL-connection. To this end,
conmection context classes also support a close method that takes a Boolean argument indicating whether
or npt to close the underlying SQL-connection. Pass the constant CLOSE_CONNECTION if the SQL-cpn-

nection should be closed, and KEEP_CONNECTION if it should be retained. The variant of close that takes
no grguments is a shorthand for calling close(CLOSE_CONNECTION).

As dfinal point, even if not using multiple SQL/OLB connection context objects, explicit manipulatign of
conhection objects is recommended: This allows applications to avoid hidden global state (e.g., Java
“stafic variables”) that would bé)hecessarily used to implement the <SQL connection statement>. In
particular, Java “applets” and_other multi-threaded programs are usually coded to avoid contention |of

glohal state. Such programs should store connection objects in local variables and use them explicit]ly in
SQL{/OLB clauses.

4.6]11 SQLexecution control and status

An gxecution context can be supplied explicitly as an argument to each SQL-statement.

Executi onCont ext execCtx = new Executi onContext();
#sqgl [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };

If explicit execution context objects are used, each SQL-statement can be executed using a different exe-
cution context object. If an explicit connection context object is also being used, both are available to be
queried and modified during execution of the SQL-statement.

#sgl [connCtx, execCix] { DELETE FROM EMP
WHERE SAL > 10000 };

© ISO/IEC 2021 - All rights reserved 13

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

If an execution context object is not supplied explicitly as an argument to an SQL-statement, then a default
execution context object is used implicitly. The default execution context object for a particular SQL-
statement is obtained via the get Execut i onCont ext () method of the connection context object used in
the operation. For example:

#sqgl [connCtx] { DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object
given by connCt x. If neither a connection context object nor an execution context object is explicitly
supplied, then the execution context object associated with the default connection context object is Used.

The|use of an explicit execution context object overrides the execution context object associated with
the fonnection context object, referenced explicitly or implicitly by an SQL clause.

The|following code demonstrates the use of some Execut i onCont ext methods.

{
BEtecuti onCont ext execCtx = new Executi onContext();
/| Wit only 3 seconds for operations to conplete
efecCt x. set QueryTi nmeout (3) ;
ty {
/1 delete using explicit execution context
/1 if operation takes |onger than 3 seconds,
/1 SQ.Exception is thrown
#sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000:\} ;
Systemout.println
("renpved ' + execCtx.get Updat eCount () + ' genployees');
}
cqt ch(SQLException e) {
/1 Assune a tineout occurred
Systemout. println(' SQLExcepti on has oceurred with' + ' exception' + e);
}
}

4.6{12 Multiple j ava. sql . Resul t-Set objects from SQL-invoked procedure calls

If execution of an SQL-statemient produces multiple results, the resources are not released until all regults
hav¢ been processed usinggetNextResultSet. Accordingly, if an SQL-invoked procedure might retufn
sidetchannel result sets;thien the calling program should process all results using getNextResultSet fintil
nulllis returned. Further, if one or more side-channel result sets have been left open, they should be
closgd, because their associated resources cannot be released until they are closed.

If thie invocatien of an SQL-invoked procedure does not produce side-channel result sets, then therq is
no need to call'getNextResultSet. All resources are automatically reclaimed as soon as the CALL execytion

o 3 3 X ? that
an SQL-invoked procedure named “nul ti _resul t s” exists and produces one or more side-channel result
sets when executed.

cS NOW 1M plere e proce e ne exampie me

#sql [execCtx] { CALL MULTI_RESULTS() };

Resul t Set rs;

while ((rs = execCtx.getNextResultSet()) !'= null)
{ Il process result set

rs.close();

}

14 © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

The

example assumes an SQL-invoked procedure named “nmul ti _resul ts” exists and produces between 2

and

ISO/IEC 19075-3:2021(E)
4.6 Examples

following snippet demonstrates how multiple result sets can be processed simultaneously. The

10 side-channel result sets when executed.

#sql [execCtx] { CALL MULTI _RESULTS() };
Resul t Set[] rsets = new ResultSet[10];
Resul t Set rs;

int rsCounter = O;
/'l access the ResultSets
whille ((rs = execC x. get Next Resul t Set (St at enent . KEEP_CURRENT_RESULT)) != nulT)
{|rsets[rsCounter++] = rs;
}
/'l process ...
/'l ¢l ose
for|(int ii=0; ii < rsCounter; ii++)
{|rsets[ii].close();
}
4.613 Creating an SQL/OLB iterator object from aj ava. sql . Resutt Set object

An JQL/OLB iterator object can be created fromaj ava. sql . Resul t Set“object with the <iterator converjsion

clause>. Once an iterator object has been created this way, portable code should not issue any further

call

As an example, assume the following iterator declaration*ias been made:

4§ to the j ava. sql . Resul t Set object, because the result of doing so is implementation-defined.

#sqgl iterator Enployees (String enane, double sal) ;

The|following method uses JDBC to perform a dynamic query and uses an instance of the above iterptor

dec

laration to view the results. It illustrates the use of an iterator conversion statement.

public void |istEarnings(Connectdion conn, String whereC ause)
throws SQ.Exception

{
/] prepare a java.sql.Stlat ément object to execute a dynam c query
Prepar edSt at ement stnt™\= conn. prepar eSt at enent () ;
String query = ' SELECT enane, sal FROM enp WHERE ';
query += wher e ause;
Resul t Set rs = Sttt . executeQuery(query);
Enpl oyees enps;
/'l Use the {terator conversion statement to create a
/] SQ/COLBA-terator froma java.sql.ResultSet object
#sqgl epps ™= { CAST :rs };
whi | esfehps. next ()) {

System out. println(enps. enane() +
" earns " + enps.sal());

¥
enps.close(); // closing enps also closes rs
stnt.close();

}

4.6.14 Obtaining a j ava. sql . Resul t Set object from an iterator object

Every SQL/OLB iterator object, whether typed or untyped, has a getResultSet method that returns a

j ava. sgl . Resul t Set object representation of its data. For portable code, the get Resul t Set () method

© ISO/IEC 2021 - All rights reserved

15

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

ISO/IEC 19075-3:2021(E)
4.6 Examples

should be invoked before the first next () method invocation on the iterator object. And, once the

j ava. sgl . Resul t Set object has been produced, all operations to fetch data, or update the ResultSet,
should be through thatj ava. sql . Resul t Set object; doing so avoids potential problems due to the
implementation-defined nature of the synchronization (if any) between the iterator object and its

j ava. sgl . Resul t Set object.

As an example, the following method uses a weakly typed iterator to hold to results of an SQL/OLB query
and then process them using aj ava. sql . Resul t Set object:

[lubl i c void showEnpl oyeeNanes() throws SQLException

SQLJ.runtime. ResultSetlterator iter;
#sqgl iter = { SELECT enane FROM enp };
ResultSet rs = iter.getResultSet();
while (rs.next()) {
Systemout. println("enpl oyee nane: " + rs.getString(1));

iter.close(); // close the iterator, not the result set

4.6{15 Working with user-defined types

NOTE 2 — Readers of this Subclause should note that some of the examples herein depend on optional features of th¢ SQL
anguage and of the JDBC specification. As a consequence, not all examples are guaranteed to work on all SQL/OLB ihple-
mentations. They are provided for educational purposes only.

Congider the following type mapping information to bespecified in file addr pckg/ addr ess- map. pr oper t|i es:

fill e: addressnap. properties

cl ags. addr pckg. Address = STRUCT ADDRESS

cl ags. addr pckg. Busi nessAddr ess = STRUCT.)BUSI NESS
cl ags. addr pckg. HoneAddr ess = STRUCT\HOVE

cl ags. addr pckg. Zi pCode = DI STI NCT\ ZHPCCDE

Thelfirst entry defines that the Jaya' class Address in package addr pckg corresponds to the SQL user
defipned type ADDRESS. It furtheriindicates that the SQL type is a structured type.

Thel[type map specified in the.above file can be attached to a connection context class as part of the fon-
nectiion context declaration'in the following way:

#sql| context Ctx with (typeMap = "addr pckg. addressnmap”)

The|SQL/OLB translator and runtime will interpret the specified type map " addr pckg. addr essmap" |as a
Javalresource bundle family name, and look for an appropriate properties or class file using the Java ¢lass
pathj. This fireans that the type map can easily be packaged with the rest of the SQL/OLB application or

application module.

I 3 3lal 4 o £ 1 4 L | 1 4 1 A | 41 L 4= 41 4 VR 4 H 41
t 1S TTOW PUSSIUIT LU UTTIHIT TIUST VAT IdUITS UT IITLALUT S UdSTU UIT UIT Jdvd Lyl)cb Uldt pdititipdic 1T UIT ype
map:

#sqgl public iterator ByPos (String, int, addrpckg. Address);
Assume a table PEOPLE with columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (

FULLNAME CHARACTER VARYI N& 50) ,
Bl RTHYEAR NUMERI C(4, 0),
ADDR ADDRESS)

16 © ISO/IEC 2021 - All rights reserved

https://standardsiso.com/api/?name=578bb565d8de24fa59d08fc8af293d52

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Use of SQL in programs written in Java
	4.1 Context of SQL programs written in Java
	4.2 Design goals
	4.3 Advantages of SQL/OLB over JDBC
	4.4 Consistency with existing embedded SQL languages
	4.5 Profile customization overview
	4.5.1 Introduction to profile customization
	4.5.2 Profile customization process
	4.5.3 Profile customization utilities

	4.6 Examples
	4.6.1 Example of profile generation and naming
	4.6.2 Example of a JAR manifest file
	4.6.3 Host variables
	4.6.4 Host expressions
	4.6.5 SQL/OLB clauses
	4.6.6 Connection contexts
	4.6.7 Default connection context
	4.6.8 Iterators
	4.6.8.1 Positional bindings to columns
	4.6.8.2 Named bindings to columns
	4.6.8.3 Providing names for columns of queries

	4.6.9 Invoking SQL-invoked routines
	4.6.10 Using multiple SQL/OLB contexts and connections
	4.6.11 SQL execution control and status
	4.6.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls
	4.6.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object
	4.6.14 Obtaining a java.sql.ResultSet object from an iterator object
	4.6.15 Working with user-defined types
	4.6.16 Batching
	4.6.17 Example program
	4.6.18 Host variable definition

