

Reference number
ISO/IEC 24744:2007(E)

© ISO/IEC 2007

INTERNATIONAL
STANDARD

ISO/IEC
24744

First edition
2007-02-15

Software Engineering — Metamodel for
Development Methodologies

Ingénierie du logiciel — Métamodèle pour les méthodologies de
développement

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

ISO/IEC 24744:2007(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

ISO/IEC 24744:2007(E)

 iii

 Contents Page

1 Scope .. 1
1.1 Purpose... 1
1.2 Audience... 1

2 Conformance ... 2

3 Terms and definitions .. 2

4 Naming, diagramming and definition conventions, and abbreviated terms ... 4
4.1 Naming, diagramming and definition conventions... 4
4.2 Abbreviations .. 5

5 Basic Concepts ... 5
5.1 Method Engineering ... 6
5.2 Dual-Layer Modelling ... 6
5.3 Powertypes and Clabjects... 6
5.4 Uniting Process and Product.. 7
5.5 Process Assessment.. 7

6 Introduction to the SEMDM ... 8
6.1 Highly Abstract View .. 8
6.2 Abstract View and Core Classes.. 8
6.3 Process Classes.. 9
6.4 Producer Classes.. 11
6.5 Product Classes .. 12
6.6 Connection between Process and Product.. 13
6.7 Support Classes.. 14

7 Metamodel Elements .. 15
7.1 Classes ... 15

7.2 Enumerated Types.. 63

8 Using the Metamodel ... 64
8.1 Usage Rules... 64

8.2 Usage Guidelines.. 65

9 Extending the Metamodel.. 66
9.1 Extension Rules .. 66
9.2 Extension Guidelines ... 67

Annex A (informative) Worked Example ... 68

Annex B (informative) Mappings to Other Metamodelling Approaches.. 74

Bibliography .. 78

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

iv

Table of Figures

Figure 1 – The three areas of expertise, or domains, which act as a context for SEMDM 5

Figure 2 – Highly abstract view of the SEMDM.. 8

Figure 3 – Abstract view of the SEMDM, showing the core classes in the metamodel... 9

Figure 4 – Work units ...10

Figure 5 – Stages ...11

Figure 6 – Producers ..12

Figure 7 – Work product and modelling classes ..13

Figure 8 – Actions and constraints ..14

Figure 9 – Support classes ..14

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 24744 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

vi

Introduction

Development methodologies may be described in the context of an underpinning metamodel, but the precise
mechanisms that permit them to be defined in terms of their metamodels are usually difficult to explain and do
not cover all needs. For example, it is difficult to devise a practice that allows the definition of properties of the
elements that compose the methodology and, at the same time, of the entities (such as work products)

created when the methodology is applied. This International Standard introduces the Software

Engineering Metamodel for Development Methodologies SEMDM, a comprehensive metamodel that makes

use of a new approach to defining methodologies based on the concept of powertype. The SEMDM is aimed at
the definition of methodologies in information-based domains, i.e. areas characterized by their intensive reliance

on information management and processing, such as software, business or systems engineering. The
SEMDM combines key advantages of other metamodelling approaches with none of their known drawbacks,
allowing the seamless integration of process, modelling and people aspects of methodologies. Refer to
Annex B where other metamodels are mapped to SEMDM and a brief synopsis of problems is provided.

Various methodologies are defined, used or implied by a growing number of standards and it is desirable that

the concepts used by each methodology be harmonized. A vehicle for harmonization is the SEMDM.
Conformance to this metamodel will ensure a consistent approach to defining each methodology with
consistent concepts and terminology.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

INTERNATIONAL STANDARD ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved 1

1 Scope

This International Standard defines the Software Engineering Metamodel for Development Methodologies
(SEMDM), which establishes a formal framework for the definition and extension of development
methodologies for information-based domains (IBD), such as software, business or systems, including three

major aspects: the process to follow, the work products to use and generate, and the people and tools involved.

This metamodel can serve as a formal basis for the definition and extension of any IBD development
methodology and of any associated metamodel, and will be typically used by method engineers while
undertaking such definition and extension tasks.

The metamodel does not rely upon nor dictate any particular approach to IBD development and is, in fact,
sufficiently generic to accommodate any specific approach such as object-orientation, agent-orientation,
component-based development, etc.

1.1 Purpose

This International Standard follows an approach that is minimalist in depth but very rich in width

(encompassing domains that are seldom addressed by a single approach). It therefore includes only those
higher-level concepts truly generic across a wide range of application areas and at a higher level of
abstraction than other extant metamodels. The major aim of the SEMDM is to deliver a highly generic
metamodel that does not unnecessarily constrain the resulting methodologies, while providing for the creation
of rich and expressive instances.

In order to achieve this objective, the SEMDM incorporates ideas from several metamodel approaches plus
some results of recent research (see [1-7] for details). This will facilitate:

• The communication between method engineers, and between method engineers and users of

methodology (i.e. developers);

• The assembly of methodologies from pre-existing repositories of method fragments;

• The creation of methodology metamodels by extending the standard metamodel via the extension

mechanisms provided to this effect;

• The comparison and integration of methodologies and associated metamodels; and

• The interoperability of modelling and methodology support tools.

The relation of SEMDM to some existing methodologies and metamodels is illustrated in Annex B.

1.2 Audience

Since many classes in the SEMDM represent the endeavour domain (as opposed to the methodology domain),
it might look like developers enacting the methodology would be direct users of the metamodel. This is not
true. Classes in the SEMDM that model endeavour-level elements serve for the method engineer to establish
the structure and behaviour of the endeavour domain, and are not used directly during enactment. Only

Software Engineering — Metamodel for Development
Methodologies

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

2 © ISO/IEC 2007 – All rights reserved

methodology elements, i.e. classes and objects created by the method engineer from the metamodel, are
used by developers at the endeavour level, thus supporting both the creation of “packaged” methodologies as
well as tailored, project-specific methodologies.

Here the term “method engineer” refers collectively to either a person constructing a methodology on site for a
particular purpose or a person creating a "packaged" methodology as a "shrink-wrapped" process product.

2 Conformance

A metamodel is defined in accordance with this International Standard if it:

 describes the scope of the concepts in the metamodel in relation to the scope of the elements defined

in Clause 7; and

 defines the mapping between the concepts that are addressed in the metamodel, and that are within

the scope of this International Standard, and the corresponding elements of this International Standard

(i.e. its elements cannot be substituted by others of identical intent but different construction).

A development methodology is defined in accordance with this International Standard if it is generated from a
conformant metamodel as defined in the first paragraph of this clause (2 Conformance).

A development or engineering tool is developed in accordance with this International Standard if it implements
a conformant metamodel as defined in the first paragraph of this clause (2 Conformance). If the purpose of the

tool involves the creation of methodologies, then it is developed in accordance with this International Standard

if it also implements the necessary features so as to make the mechanisms described in 8.1 available to

the tool’s users. If the purpose of the tool involves the extension of the metamodel, then it is developed in

accordance with this International Standard if it also implements the necessary features so as to make the

mechanisms described in 9.1 available to the tool’s users.

NOTE 1 The metamodel thus defined does not necessarily have to include all the elements defined in

Clause 7 – only those that are relevant to the purpose of the said metamodel are required.

NOTE 2 Conformance for methodologies or conformance for tools can be established without any necessity of

explicitly including the detailed metamodel for any relevant work product kind or model unit kind. It is adequate
to define the mappings of any such work products to the WorkProductKind and ModelUnitKind classes of the
SEMDM.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply. Unless otherwise noted, the definitions

are specific to this International Standard.

The following concepts are defined only for their usage throughout this International Standard.

NOTE – This International Standard uses a self-consistent set of core concepts that is as compatible as possible
with other International Standards (such as ISO/IEC 12207, ISO/IEC 15504, etc.).

3.1

information-based domain
IBD
realm of activity for which information is the most valuable asset

NOTE This means that information creation, manipulation and dissemination are the most important
activities within information-based domains. Typical information-based domains are software and
systems engineering, business process reengineering and knowledge management.

ISO/IEC 24744:2007(E)

•

•

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 3

3.2
methodology
specification of the process to follow together with the work products to be used and generated, plus the
consideration of the people and tools involved, during an IBD development effort

NOTE A methodology specifies the process to be executed, usually as a set of related activities, tasks and/or
techniques, together with the work products that must be manipulated (created, used or changed) at each moment and by
whom, possibly including models, documents and other inputs and outputs. In turn, specifying the models that must be
dealt with implies defining the basic building blocks that should be used to construct.

3.3
method
synonym of methodology

NOTE The term “methodology” is used throughout this International Standard, reserving the term “method” for
conventional phrases such as “method engineer” or “method fragment”.

3.4
metamodel
specification of the concepts, relationships and rules that are used to define a methodology

3.5
endeavour
IBD development effort aimed at the delivery of some product or service through the application of a
methodology

EXAMPLES Projects, programmes and infrastructural duties are examples of endeavours.

3.6
methodology element
simple component of a methodology

NOTE Usually, methodology elements include the specification of what tasks, activities, techniques, models,
documents, languages and/or notations can or must be used when applying the methodology. Methodology elements are
related to each other, comprising a network of abstract concepts. Typical methodology elements are Capture
Requirements, Write Code for Methods (kinds of tasks), Requirements Engineering, High-Level Modelling (kinds of
activities), Pseudo-code, Dependency Graphs (notations), Class, Attribute (kinds of model building blocks), Class Model,
Class Diagram, Requirements Specification (kind of work products), etc.

3.7
endeavour element
simple component of an endeavour

NOTE During the execution of an endeavour, developers create a number of endeavour elements, such as tasks,
models, classes, documents, etc. Some examples of endeavour elements are Customer, Invoice (classes), Name, Age
(attributes), High-Level Class Model number 17 (a model), System Requirements Description (a document), Coding Cycle
number 2, Coding Cycle number 3 (tasks), etc.

3.8
generation
act of defining and describing a methodology from a particular metamodel. Generating a methodology
includes explaining the structural position and semantics of each methodology element using the selected
metamodel. Thus, what methodology elements are possible, and how they relate to each other, are
constrained by such a metamodel. Usually, method engineers perform generation, yielding a complete and
usable methodology.

3.9
enactment
act of applying a methodology for some particular purpose, typically an endeavour

NOTE Enacting a methodology includes using the existing generated methodology to create endeavour elements
and, eventually, obtain the targeted IBD system. Thus, what kinds of endeavour elements can be created, and how they
relate to each other, is governed by the methodology being used. Usually, technical managers, together with other
developers, perform enactment.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

4

4 Naming, diagramming and definition conventions, and abbreviated terms

4.1 Naming, diagramming and definition conventions

The SEMDM is defined using different kinds of instruments that complement each other. These instruments
are:

• Definitions. Each concept in the SEMDM is defined using natural language. Also, a description is
given, including the context in which the concept occurs and its most distinctive properties. Examples
are also given for each concept.

• Class diagrams. Concepts of interest to the SEMDM are formalized as classes. Consequently, class
diagrams are used to show these classes together with their attributes and relationships. UML 1.4.2
(i.e. ISO/IEC 19501) is used throughout with some noticeable exceptions. First, a special notation is
used to depict powertype patterns, consisting of a dashed line between the powertype and the
partitioned type with a black dot on the side of the powertype. Secondly, “white diamonds” are used to
depict whole/part relationships without making any reference to their secondary characteristics (see
[8] for more details).

• Text tables. Text tables are included to provide additional descriptions of attributes and relationships.

• Mappings to other approaches. Each concept in the SEMDM is related to equivalent or similar
concepts in other metamodelling approaches, so that translation between approaches is easier.

These instruments are used simultaneously.

Two different types of class diagrams are provided. Clause 6 presents some diagrams that aim to give an
overall picture of the structure of SEMDM. These diagrams are designed to give an idea of the main classes
and relationships within the metamodel, and are not comprehensive, i.e. do not display every single detail of
the metamodel. Clause 7, on the other hand, includes a class diagram for each class in the metamodel. The
class under discussion is shown in the centre, and is surrounded by its closest neighbours. Each of these
diagrams, together with the accompanying attribute and relationship tables, do contain all the details for the
particular class being discussed.

3.10
method engineer
person who designs, builds, extends and maintains methodologies

NOTE Method engineers create methodologies from metamodels via generation.

3.11
developer
person who applies a methodology for some specific job, usually an endeavour

NOTE Developers apply methodologies via enactment.

3.12
powertype
A powertype of another type, called the partitioned type, is a type the instance of which are subtypes of the
partitioned type. This definition is interpreted in the context of the object-oriented paradigm. For example, the
class TreeSpecies is a powertype of the class Tree, since each instance of TreeSpecies is also a subclass of
Tree.

3.13
clabject
dual entity that is a class and an object at the same time

NOTE This definition is interpreted in the context of the object-oriented paradigm. Because of their dual nature,
clabjects exhibit a class facet and an object facet, and can work as either at any time. Instances of powertypes are usually
viewed as clabjects, since they are objects (because they are instances of a type, the powertype) and also classes
(subtypes of the partitioned type).

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 5

The philosophy of the SEMDM is to offer broad coverage for all the issues often found in methodology
definition avoiding, at the same time, unnecessary structural constraints on the resultant methodologies.
Therefore, only a minimal set of attributes and associations is provided by the metamodel. Using powertype
pattern instantiation (see sub-clause 8.1.2), and thanks to the usage of powertypes in the metamodel,
additional attributes and associations can be easily added at the methodology domain.

4.2 Abbreviations

IBD information-based domain

5 Basic Concepts

Metamodels are useful for specifying the concepts, rules and relationships used to define methodologies.
Although it is possible to describe a methodology without an explicit metamodel, formalizing the underpinning
ideas of the methodology in question is valuable when checking its consistency or when planning extensions
or modifications. A good metamodel must address all of the different aspects of methodologies, i.e. the
process to follow, the work products to be generated and those responsible for making all this happen. In turn,
specifying the work products that must be developed implies defining the basic modelling building blocks from
which they are built.

Metamodels are often used by method engineers to construct or modify methodologies. In turn,
methodologies are used by developers to construct products or deliver services in the context of endeavours.
Metamodel, methodology and endeavour constitute, in this approach, three different areas of expertise that, at
the same time, correspond to three different levels of abstraction and three different sets of fundamental
concepts. As the work performed by developers at the endeavour level is constrained and directed by the
methodology in use, the work performed by the method engineer at the methodology level is constrained and
directed by the chosen metamodel. Traditionally, these relationships between “modelling layers”, here called
“domains”, are seen as instance-of relationships, in which elements in one layer or domain are instances of
some element in the layer or domain below (Figure 1).

Endeavour Domain

Methodology Domain

Metamodel Domain

Figure 1 – The three areas of expertise, or domains, which act as a context for SEMDM

Regarding the methodology domain, it must be noted that more than one “methodology” may exist at this level,
interlinked by refinement relationships. For example, it is common that organizations create organization-wide,
generic methodologies from a metamodel, and then adjust and customize said methodologies for each
particular endeavour. In cases like this, both kinds of methodologies (organization-wide and endeavour-
specific) belong in the methodology domain and are connected via a refinement relationship (as opposed to
instance-of). Cases with more than two steps of refinement are also possible.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved S

SEMDM software engineering metamodel for development methodologies

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

6

5.1 Method Engineering

In accordance with most of the above-mentioned approaches to metamodelling, the SEMDM accepts the idea
of method engineering (see [9, 10] for an introduction), defining the metamodel as a set of classes from which
“methodology chunks” can be generated and then composed into a usable methodology [11]. However, the
method engineering approach has been used primarily in the process realm (and hence the often-used name

of “process engineering”), whereas the SEMDM extends it to the modelling domain as well (see 5.2).

5.2 Dual-Layer Modelling

Most metamodelling approaches define a metamodel as a model of a modelling language, process or
methodology that developers may employ. Following this conventional approach, classes in the metamodel
are used by the method engineer to create instances (i.e. objects) in the methodology domain and thus
generate a methodology. However, these objects in the methodology domain are often used as classes by
developers to create elements in the endeavour domain during methodology enactment. This apparent
contradiction, not solved by any of the existing metamodelling approaches, is addressed by the SEMDM and
solved by conceiving a metamodel as a model of both the methodology and the endeavour domains. While
offering a strict model of the endeavour domain in the metamodel, the SEMDM maintains a high degree of
flexibility, allowing the method engineer to configure the development process and address the modelling
issues as necessary.

5.3 Powertypes and Clabjects

Two concepts, new to methodology modelling, must be introduced in order to support the features required by
the SEMDM. First of all, modelling the methodology and endeavour domains at the same time gives rise to
pairs of classes in the metamodel that represent the same concept at different levels of classification. For
example, the Document class in the metamodel represents documents managed by developers, while the
DocumentKind class in the metamodel represents different kinds of documents that can be managed by
developers. Notice how Document represents a concept that belongs in the endeavour domain (documents
that people manage) while DocumentKind represents a concept that belongs in the methodology domain
(kinds of documents described by the methodology). For example, the concept of ClassDiagram is an
instance of DocumentKind, but a given class diagram in the endeavour, with a particular author and creation
time, is an instance of Document. In turn, these two classes are related by a classification relationship, since
every document (in the endeavour domain) is an example (instance) of some particular kind of document (as
defined in the methodology domain). This pattern of two classes in which one of them represents “kinds of”
the other is called a powertype pattern, since the class with the “kind” suffix is a powertype (see [12] for an

introduction to the powertype concept) of the other class, called the partitioned type. In this International
Standard, the notation Document/*Kind is used to refer to the powertype pattern formed by the powertype

DocumentKind and the partitioned type Document.

At the same time, endeavour-level elements must be instances of some methodology-level elements, and
methodology-level elements must be instances of metamodel-level elements. This means that (at least some)
elements in the methodology domain act at the same time as objects (since they are instances of metamodel
classes) and classes (since endeavour-level elements are instances of them). This class/object hybrid
concept has been described in [13] and named clabject. Clabjects have a class facet and an object facet.
Within the SEMDM, clabjects are the means to construct a methodology from the powertype patterns found in
the metamodel. In this way, a powertype pattern can be “instantiated” into a clabject by making the object
facet of the clabject an instance of the powertype class in the powertype pattern, and the class facet of the
clabject a subclass of the partitioned type in the powertype pattern. For example, a method engineer wanting
to support requirement specification documents in the methodology that he or she is constructing would create
the clabject RequirementsSpecificationDocument (in the methodology domain) as an instance of Document-
Kind and a subclass of Document. By using clabjects at the methodology level, every single element
susceptible of being instantiated during enactment is represented by a class, which is appropriate for
instantiation, and by an object, which is appropriate for automated manipulation by tools.

Notice how a given attribute of the powertype class acts as discriminator of the powertype pattern, meaning
that unique values of that attribute will be assigned to each of the instances of the powertype class, and the
same value will be used to name the corresponding subclass of the partitioned type. For example, in the
Document/*Kind powertype pattern, DocumentKind.Name is the discriminator. This means that each instance

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 7

of DocumentKind will have a unique value for Name and its associated class (a subtype of Document) will be
named with that value. Following the previous example, a given instance of DocumentKind would have Name
= “ClassDiagram”, and its corresponding subclass of Document would be called ClassDiagram. The
discriminator attribute thus acts as the bond between the two facets of the clabject.

5.4 Uniting Process and Product

Most of the existing metamodelling approaches focus either on the process or on the modelling (i.e. product)
side of methodologies. Most of these approaches, however, offer connection points for “plugging in” the
complementary, as yet undefined, component of a full-fledged methodology. The SEMDM goes a step beyond
by offering a complete metamodel that covers the process and modelling aspects of methodologies evenly.
Not doing so would be like trying to define the actions to be performed without defining the concepts on which
these actions must act (process focus), or the concepts to use without knowing what to do with them
(modelling focus). This approach has the benefit of allowing a rich definition, at the methodology level, of the
interactions between a process and the products generated by it.

5.5 Process Assessment

Usually, the maturity or capability of an organization regarding the performance of a process is measured by
assigning a capability level to its enactment. The SEMDM adopts the concept of capability level and attaches

it to work unit kinds expressed using the MinCapabilityLevel attribute of class WorkUnitKind,
 so a method engineer can easily establish the minimum capability level at which each
work unit kind may be performed. Although different assessment approaches and standards have slightly
different ranges of capability levels (see [14] for an example), the following exemplar list is generic enough to
be applicable to nearly every situation:

• Incomplete (level 0): the organization fails to successfully execute the process.

• Performed (level 1): the process is successfully executed but may not be rigorously planned and
tracked.

• Managed (level 2): the process is planned and tracked while it is performed; work products conform
to specified standards and requirements.

• Established (level 3): the process is performed according to a well-defined specification that may use
tailored versions of standards.

• Predictable (level 4): measures of process performance are collected and analysed, leading to a
quantitative understanding of process capability and an improved ability to predict performance.

• Optimizing (level 5): continuous process improvement against business goals is achieved through
quantitative feedback.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

8

6 Introduction to the SEMDM

6.1 Highly Abstract View

From the most abstract perspective, the SEMDM defines the classes MethodologyElement and Endeavour-
Element that represent, respectively, elements in the methodology and the endeavour domains. Methodology-
Element, in turn, is specialized into Resource and Template, corresponding to methodology elements that are
used “as is” at the endeavour level (i.e. resources) and methodology elements that are used by instantiation at
the endeavour level (i.e. templates) [3]. Since Template is the abstract type of all elements at the methodology
level that will have instances at the endeavour level, and EndeavourElement is the abstract superclass of the
same elements, these two classes form a powertype pattern in which Template is the powertype, Endeavour-
Element is the partitioned type and Template.Name is the discriminant. Powertype patterns and their usage
are discussed in sub-clause 5.3. See Figure 2 for a graphical representation.

MethodologyElement

EndeavourElement

+Name

TemplateResource

+DisplayText

Element

Figure 2 – Highly abstract view of the SEMDM

At the same time, a top class Element is defined to generalize MethodologyElement and EndeavourElement
and allow homogeneous treatment of all elements across the methodology and endeavour domains when
necessary. The DisplayText attribute of Element gives a short text describing each instance suitable to be
shown to the instance’s final users.

6.2 Abstract View and Core Classes

There are three clusters of core classes: methodology templates, specializing from Template; methodology
resources, specializing from Resource; and endeavour classes, specializing from EndeavourElement.

The powertype pattern formed by Template and EndeavourElement is refined into more specialized
powertype patterns formed by subclasses of these two, namely: StageKind and Stage (representing a
managed time frame within an endeavour), WorkUnitKind and WorkUnit (a job performed, or intended to be
performed, within an endeavour), WorkProductKind and WorkProduct (an artefact of interest for the
endeavour), ProducerKind and Producer (an agent that has the responsibility to execute work units) and
ModelUnitKind and ModelUnit (an atomic component of a model). See Figure 3 for a graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 9

MethodologyElement

+Purpose

+MinCapabilityLevel

WorkUnitKind

+Description

WorkProductKind

+Definition

ModelUnitKind

+ Name

Template Resource

+Name

Language

+Name

Notation

+Expression

Constraint

+Description

+MinCapabilityLevel

Outcome

EndeavourElement

+StartTime

+EndTime

+Duration

WorkUnit

+CreationTime

+LastChangeTime

+Status

WorkProduct

ModelUnit

+Description

GuidelineProducerKind

+ Name

ProducerStage

StageKind

Figure 3 – Abstract view of the SEMDM, showing the core classes in the metamodel

At the same time, Resource is specialized into Language (a structure of model unit kinds that focus on a
particular modelling perspective), Notation (a concrete syntax, usually graphical, which can be used to depict
models created with certain languages), Guideline (an indication of how some methodology elements can be
used), Constraint (a condition that holds or must hold at certain point in time) and Outcome (an observable
result of the successful performance of a work unit).

6.3 Process Classes

The WorkUnit/*Kind powertype pattern is specialized into Process/*Kind (large-grained, operating within a
given area of expertise), Task/*Kind (small-grained, focusing on what must be done in order to achieve a
given purpose) and Technique/*Kind (small-grained, focusing on how the given purpose may be achieved).

WorkUnitKind is characterized by a purpose and a minimum capability level at which it makes sense to be
performed, and is related to Outcome in a one-to-many fashion, so a set of outcomes can be defined for each
specific kind of work unit. Also, WorkUnit/*Kind holds a whole/part relationship to Task/*Kind, so any work unit
or work unit kind can be defined as a collection of tasks or task kinds, respectively. This allows for the
recursive definition of units of work down to the necessary level of detail.

Since individual work units happen at the endeavour domain within a particular temporal frame (see below),
the WorkUnit class incorporates the necessary attributes to describe this. The WorkUnitKind class, however,
is only a specification of what must be done and does not contain any reference to any particular time frame;
therefore, no time-related attributes are present. See Figure 4 for a graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

10

+Purpose

+MinCapabilityLevel

WorkUnitKind

+StartTime

+EndTime

+Duration

WorkUnit

+ Description

TaskKind

+Description

TechniqueKind

+Context0..*

+Component

0..*

+ Description

+ MinCapabilityLevel

Outcome

1

+ Result

0..*

Task Technique

+Context 1

+Component

0..*

ProcessKind

Process

+ Justification

TaskTechniqueMapping

0..*

1

0..*

1

+RecommendedUsage

TaskTechniqueMappingKind

0..*

1

0..*

1

+ Parent0..1

+Child

0..*

+Parent

0..1

+ Child0..*

Figure 4 – Work units

On the temporal side, Stage/*Kind is specialized into StageWithDuration/*Kind (a managed interval of time
within an endeavour) and InstantaneousStage/*Kind (a managed point in time within an endeavour). Stage-
WithDuration/*Kind is, in turn, specialized into TimeCycle/*Kind (having as objective the delivery of a final
product or service), Phase/*Kind (having as objective the transition between cognitive frameworks) and
Build/*Kind (having as major objective the delivery of an incremented version of an already existing set of
work products). TimeCycle/*Kind also holds a whole/part relationship to Stage/*Kind, allowing for the recursive
composition of time cycles and other stages. Phase/*Kind, on the other hand, holds a whole/part relationship
to Build/*Kind so any phase or phase kind can be linked to the corresponding builds or build kinds,
respectively, that occur within it. At the same time, StageWithDuration/*Kind is associated with Process/*Kind
so the temporal side of the process can be related to the appropriate elements on the job side. See Figure 5
for a graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 11

StageKind

Stage
+ StartTime

+ EndTime

+ Duration

StageWithDuration

StageWithDurationKind

InstantaneousStageKind

+TimeReached

InstantaneousStage

Milestone

+Description

MilestoneKind

TimeCycle

Phase

+Number

Build

+Context0..1

0..*

TimeCycleKind

0..* +Context0..*

PhaseKind

BuildKind

Process

0..*

+TemporalContext 0..1

ProcessKind

+TemporalContext 0..*

0..*

Figure 5 – Stages

NOTE – Temporal ordering and sequencing are achieved in SEMDM in two different ways. At a high level of
abstraction, stage kinds allow the methodologist to specify the overall temporal structure of a methodology.
Stage kinds, in this sense, are “empty containers” that can be “filled” with work unit kinds in order to specify
when things are to be done. At a detailed level, however, time ordering and sequencing is not explicitly
specified, but emerges from the collections of action kinds associated to each task kind. Action kinds of any
given task kind determine what kinds of work products are necessary in order to accomplish the associated
task. Thus, at any point in time during enactment, the set of “executable” tasks can be determined by looking
at the pool of existing work products and the action kinds associated to each candidate task kind.

6.4 Producer Classes

Producer/*Kind is specialized into Role/*Kind (a collection of responsibilities that a producer can take),
Tool/*Kind (an instrument that helps another producer to execute its responsibilities in an automated way).
Producer has an additional subclass, Person, which allows taking into account individual persons at the
endeavour level. Producer/*Kind is also related to WorkUnit/*Kind through WorkPerformance/*Kind, so links
between units of work and the assigned and/or responsible producers are possible. See Figure 6 for a
graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

12

+Name

Producer

ProducerKind

+Responsibilities

RoleKind

Role Person

TeamKind

Team

0..*

0..*

Plays

1

0..*

Plays

0..*

+Member
0..*

0..*

+Member
0..*

+ Purpose

+ MinCapabilityLevel

WorkUnitKind

+StartTime

+EndTime

+Duration

WorkUnit

Tool

ToolKind

+Justification

WorkPerformance

+RecommendedAssignment

WorkPerformanceKind

0..*

+Agent

1

0..*

+ Job

1

0..*

+ Agent

1

0..*

+Job

1

Figure 6 – Producers

6.5 Product Classes

WorkProduct/*Kind has five subtypes: SoftwareItem/*Kind, HardwareItem/*Kind (a piece of software or
hardware, respectively, that is of interest to the endeavour), Model/*Kind (an abstract representation of some
subject that acts as the subject’s surrogate for some well defined purpose), Document/*Kind (a durable
depiction of a fragment of reality) and CompositeWorkProduct/*Kind (an aggregate of other elements).
Although documents would usually depict models, they can also depict other entities of interest or even other
documents. In fact, Document/*Kind has an association to WorkProduct/*Kind to represent this fact. Also,
Document/*Kind has a recursive whole/part relationship with itself so a given work product or work product
kind can be defined as a collection of other work products or work product kinds, respectively. See Figure 7
for a graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 13

+Description

WorkProductKind

+ CreationTime

+ LastChangeTime

+ Status

WorkProduct

ModelKind

DocumentKind

Model

+Title

+Version

Document

0..*

0..*

Depicts

0..*

0..*

Depicts

+ MinUsageCount

+ MaxUsageCount

ModelUnitUsageKind

+ Context

1

1..*

ModelUnitUsage

+Context

1

1..*

+Definition

ModelUnitKind

1..*

+Target 1

RefersTo

ModelUnit

1..* +Target1

RefersTo

+Name

Language
+Context

1..*

1..*

+ Name

Notation

1..*

+Target 1..*

Supports1..*

0..*

Uses

+ParentDocumentKind

0..*

+SubDocumentKind0..*

+ParentDocument

0..1

+ SubDocument 0..*SoftwareItem

HardwareItem

SoftwareItemKind

HardwareItemKind 0..*

1

Uses

CompositeWorkProduct

CompositeWorkProductKind

0..*

1..*

0..*

1..*

Figure 7 – Work product and modelling classes

Model/*Kind, in turn, holds a whole/part relationship to ModelUnitUsage/*Kind, which in turn is associated to a
specific ModelUnit/*Kind. This chain of relationships makes it possible to describe what model units are used
in which models, and how they are employed. In addition, every ModelUnitKind is always defined in the
context of at least one Language. Different languages sharing the same model unit kinds allow for a single
and interconnected network of model units and models across a system rather than having different separate,
isolated models. In addition, ModelKind and Language are directly linked by an association to support cases
in which a method engineer wishes to specify what language is used by a certain model kind without detailing
the component model unit kinds. Also, Language is associated with Notation to represent the fact that different
notations support (or can depict) different languages. Finally, Notation is also related to DocumentKind to
represent that each document kind makes use of at least one notation.

Note that Language and ModelUnit/*Kind can generate any required modelling language.

6.6 Connection between Process and Product

The interaction between the process and the product sides of the metamodel is achieved by the powertype
pattern Action/*Kind. An Action/*Kind is always performed in the context of a given Task/*Kind (process side),
and acts upon a given WorkProduct/*Kind (product side). The ActionKind.Type attribute takes values showing
whether actions of a specific kind create, modify or only read work products of a given kind. Note that some
task kinds may not perform any action kinds whatsoever. See Figure 8 for a graphical depiction.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

14

+ Description

TaskKind

Task

+Type

+Optionality

+WorkProductRole

ActionKind

Action

+Cause

1

+Effect

0..*

Causes

+Cause

1

+ Effect

0..*

Causes

+Description

WorkProductKind

+CreationTime

+LastChangeTime

+Status

WorkProduct

+Agent

1..*

+Subject

1

ActsUpon

+Agent

1..*

+Subject

1

ActsUpon

+Expression

Constraint

+Target 1

0..*

PreCondition

PostCondition

Figure 8 – Actions and constraints

ActionKind is also related to Constraint, which is specialized into PreCondition (a condition that must hold in
order for the associated action to proceed) and PostCondition (a condition that is guaranteed to hold after the
associated action has been successfully performed).

6.7 Support Classes

In addition to the classes necessary to construct methodologies, some support classes exist for the
convenience of method engineers using the SEMDM. See Figure 9 for a graphical depiction.

+Name

+Description

Conglomerate0..*

+Component

0..*
+Location

Reference
0..*

+ReferredToElement

1 RefersTo

+Name
+Citation

Source

1

0..*

IsUsedBy

MethodologyElement

Figure 9 – Support classes

Some mechanism for specifying reusable methodology chunks is necessary. The Conglomerate class is
defined to represent collections of related methodology elements (i.e. instances of the MethodologyElement
class) that can be defined by a method engineer and then reused in different methodological contexts. Note
that Conglomerate is also a subtype of MethodologyElement, so recursive composition of conglomerates is
possible.

Also, some means of managing references to bibliographic sources and best practices is needed. The Source
class represents literature items or other sources of information and experience that a method engineer may
want to use when defining methodology elements. The Reference class acts as a link between Source and
Element so any number of linkages between methodology elements and sources can be specified.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 15

7 Metamodel Elements

7.1 Classes

In this sub-clause, the classes in the SEMDM are described in alphabetical order. For each class, a definition

is given in italics, and a description optionally follows. A diagram for each class is also included, showing the

class being defined in the context of its immediate neighbours in the metamodel. Then, the attributes of the
class are listed, including, for each one, its name, data type and semantics. Attribute data types are always
one of the basic primitive types (Boolean, Integer, Timestamp or String) or an enumerated type defined in sub-
clause 7.2. Finally, the relationships that the class is involved in are listed from the class’ perspective,
including, for each one, the name of the relationship if there is one, the role that the class being described
plays in said relationship if there is one, the target class to which the class is associated, and its semantics.

7.1.1 Action

An action is a usage event performed by a task upon a work product. Actions represent the fact that specific
tasks use specific work products.

Action is an abstract subclass of EndeavourElement.

This is a process- and product-related class.

Action

EndeavourElement

+Type
+Optionality

+WorkProductRole

ActionKind

+CreationTime
+LastChangeTime

+Status

WorkProduct
+Agent

1..*

+Subject

1

ActsUpon

Task +Cause

1

+Effect 0..*

Causes

7.1.1.1 Attributes

This class has no attributes of its own.

7.1.1.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ActionKind An action in the endeavour domain is always of some

action kind defined in the methodology domain.

ActsUpon Agent WorkProduct An action always acts upon a particular work product.

n/a Effect Task An action is always the effect of a particular task.

7.1.1.3 Example

In a software development project, developer John executes a programming task (a task) that involves making
modifications to the source code file “Invoice.cs” (a work product). The event of said task changing said work
product is an action.

7.1.2 ActionKind

An action kind is a specific kind of action, characterized by a given cause (a task kind), a given subject (a work
product kind) and a particular type of usage. Action kinds describe how tasks of specific kinds use work
products of specific kinds, including the nature of such usage, i.e. creation, modification, etc.; its optionality

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

16

(whether tasks of the associated kind always use work products of the associated kind via this action kind, or
whether this is optional to some degree); and, optionally, the role that each work product kind plays when
acted upon by the associated task kind. This last characterization is useful to differentiate work products when
a single task kind is linked (via action kinds) to the same work product kind multiple times. In cases like this, it
is expected that each action kind will be marked with a distinctive work product role.

ActionKind is a subclass of Template.

This is a process- and product-related class.

+Type

+Optionality
+WorkProductRole

ActionKind

Action

+Name

Template

+Description

TaskKind

+Cause 1

+Effect

0..*

Causes

+Description

WorkProductKind

+Agent1..*

+Subject

1

ActsUpon

+Expression

Constraint
+Target

1 0..*

7.1.2.1 Attributes

Name Type Semantics

Type ActionType The nature of the usage that the associated task kind performs on

the associated work product kind. See sub-clause 7.2.1 for possible
values.

Optionality DeonticValue The degree of obligation for the associated task kind to act upon the
associated work product kind. See 7.2.2 for possible values.

WorkProductRole String The role that work products of the associated kind will play during
enactment within actions of this kind.

7.1.2.2 Relationships

Name Role To class Semantics

Classifies n/a Action An action in the endeavour domain is always of some
action kind defined in the methodology domain.

ActsUpon Agent WorkProductKind An action kind is always the agent that acts upon a

particular work product kind.

n/a Effect TaskKind An action kind is always the effect of a particular task

kind.

n/a Target Constraint An action kind may be constrained by some

constraints.

7.1.2.3 Example

In a given methodology, a task kind “Determine business concepts” is defined, together with a work product
kind “Business Concept Dictionary”. Both are related by the fact that tasks of the “Determine business
concepts” kind will, when executed, create work products of the “Business Concept Dictionary” kind. Said
relationship is modelled as an action kind with Type = Create and Optionality = Mandatory.

7.1.3 Build

A build is a stage with duration for which the major objective is the delivery of an incremented version of an
already existing set of work products. Builds are often used to implement incremental, iterative time cycles.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

)

 17

Build is an abstract subclass of StageWithDuration.

This is a process-related class.

+Number

Build

+StartTime

+EndTime

+Duration

StageWithDuration

BuildKind

7.1.3.1 Attributes

Name Type Semantics

Number String The number of the build. Since builds are, by definition, incremental,
some kind of numbering system is strongly recommended.

7.1.3.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a BuildKind A build in the endeavour domain is always of some

build kind defined in the methodology domain.

7.1.3.3 Example

In a software development project, John’s team spends two weeks focusing on analysing, modelling,
implementing and testing a few new system features. After these two weeks, they deliver a partial
implementation of the final system. Once this is done, they pick a new bunch of features and repeat the
analysis, modelling, implementation and testing to construct an incremented version of the system. They keep
doing this until the system contains all the required features. Each of the short time spans in which a new set
of features is incrementally incorporated to the system, as performed by John’s team, is a build.

7.1.4 BuildKind

A build kind is a specific kind of build, characterized by the type of result that it aims to produce.

BuildKind is a subclass of StageWithDurationKind.

This is a process-related class.

BuildKind

StageWithDurationKind

+Number

Build

7.1.4.1 Attributes

This class has no attributes of its own.

7.1.4.2 Relationships

Name Role To class Semantics

Classifies n/a Build A build in the endeavour domain is always of some
build kind defined in the methodology domain.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

18

7.1.4.3 Example

In a given methodology, a build kind “Construction Build” is defined to represent the fact that, when said
methodology is enacted, a sequence of construction builds will be performed in order to construct the product
incrementally.

7.1.5 CompositeWorkProduct

A composite work product is a work product composed of other work products.

CompositeWorkProduct is an abstract subclass of WorkProduct.

This is a product-related class.

CompositeWorkProduct

+CreationTime

+LastChangeTime

+Status

WorkProduct

+Composite

0..*

+Component

1..*

CompositeWorkProductKind

7.1.5.1 Attributes

This class has no attributes of its own.

7.1.5.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a CompositeWork-

ProductKind

A composite work product in the endeavour domain is

always of some composite work product kind defined in
the methodology domain.

IsMadeOf Composite WorkProduct A composite work product is made of one or more work

products.

7.1.5.3 Example

Upon finalization of a systems development project, a complex configuration of hardware, software and
documentation is delivered to the customer. Each individual released work product can be modelled as either
a hardware item, a software item or a document; the complete, final product delivered to the customer is a
composite work product.

7.1.6 CompositeWorkProductKind

A composite work product kind is a specific kind of composite work product, characterized by the kinds of
work products that are part of it.

CompositeWorkProductKind is a subclass of WorkProductKind.

This is a product-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 19

CompositeWorkProductKind

+Description

WorkProductKind

+Composite

0..*

+Component

1..*

CompositeWorkProduct

7.1.6.1 Attributes

This class has no attributes of its own.

7.1.6.2 Relationships

Name Role To class Semantics

Classifies n/a CompositeWork-

Product

A composite work product in the endeavour domain is

always of some composite work product kind defined in
the methodology domain.

IsMadeOf Composite WorkProductKind A composite work product kind is made of one or more

work product kinds.

7.1.6.3 Example

In a given methodology, the final product to be delivered to the customer upon completion of a project is
modelled as a composite work product kind. Such a composite includes software and hardware item kinds
plus the associated document kinds.

7.1.7 Conglomerate

A conglomerate is a collection of related methodology elements that can be reused in different methodological
contexts. Conglomerates provide the basic reuse mechanism in the SEMDM.

Conglomerate is a subclass of MethodologyElement.

This is a support class.

+Name

+Description

Conglomerate

MethodologyElement

0..*

+Component

0..*

7.1.7.1 Attributes

Name Type Semantics

Name String The name of the conglomerate.

Description String The description of the conglomerate, usually explaining the

methodological contexts for which it has been designed.

7.1.7.2 Relationships

Name Role To class Semantics

n/a n/a Methodology-
Element

A conglomerate is composed of a collection of
methodology elements.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

20

7.1.7.3 Example

In a given methodology, the process kind “Quality Assurance”, the document kinds “Quality Standard” and
“Quality Report”, and the team kind “Quality Assurance Team” (all of them methodology elements) are put into
a conglomerate named “Quality-Related Fragments” so a methodologist can, easily and in a single step,
incorporate it to a customized methodology or remove it from a methodology.

7.1.8 Constraint

A constraint is a condition that holds or must hold at certain point in time. Constraints are often used to
declaratively characterize the entry and exit conditions of actions.

Constraint is an abstract subclass of Resource, specialized into PreCondition and PostCondition.

This is a process- and product-related class.

+Expression

Constraint

Resource

+Type
+Optionality

+WorkProductRole

ActionKind +Target

1 0..*

PreCondition PostCondition

7.1.8.1 Attributes

Name Type Semantics

Expression String The expression that must evaluate as true for the constraint to hold.

Note that this is an abstract attribute and therefore different
subclasses attach different specific semantics to it.

7.1.8.2 Relationships

Name Role To class Semantics

n/a n/a ActionKind A constraint always characterizes a given action kind.

7.1.8.3 Example

In a given methodology, a task kind “Deliver user documentation” is defined, together with a work product kind
“User Documentation”. Both are related by the fact that tasks of the “Deliver user documentation” kind will,
when executed, use work products of the “User Documentation” kind. Said relationship is modelled as an
action kind with Type = ReadOnly. However, the method engineer wants to capture the need that user
documentation is only delivered after the associated “User Interface Specification” work product has been
approved. This is done by creating a constraint with Expression = (UserInterfaceSpecification.WorkProduct-
Status is Approved) (a precondition) and attaching this constraint to the above mentioned action. Thus, the
action will not be allowed to execute unless the required condition is met.

7.1.9 Document

A document is a durable depiction of a fragment of reality. Documents often represent models, but they can
also represent other subjects.

Document is an abstract subclass of WorkProduct.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 21

This is a product-related class.

+Title

+Version

Document

+ParentDocument0..1

+SubDocument

0..*

+CreationTime

+LastChangeTime

+Status

WorkProduct

0..*

+RepresentedSubject

0..*

Depicts

DocumentKind

7.1.9.1 Attributes

Name Type Semantics

Title String The title of the document.

Version String The version identifier of the document. Since documents are durable

by definition, some version control is strongly recommended.

7.1.9.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a DocumentKind A document in the endeavour domain is always of
some document kind defined in the methodology

domain.

n/a ParentDocument Document A document may be the parent of sub-documents.

n/a SubDocument Document A document may be a sub-document of a number of
parent documents.

Depicts n/a WorkProduct A document may depict a number of work products.

7.1.9.3 Example

In order to organize a code inspection, Mary prints out the code to be inspected plus a copy of the inspection
checklist. During the inspection, Mary takes notes of the defects found in the code and then she compiles
these results into an inspection report. The code to be inspected, the inspection checklist and the inspection
report, as used by Mary, are documents.

7.1.10 DocumentKind

A document kind is a specific kind of document, characterized by its structure, type of content and purpose.

DocumentKind is a subclass of WorkProductKind.

This is a product-related class.

+ParentDocumentKind0..*

+SubDocumentKind

0..*
DocumentKind

+Description

WorkProductKind

0..*

+RepresentedSubject

0..*Depicts

+Title

+Version

Document

+Name

Notation

1..*

0..*

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

22

7.1.10.1 Attributes

This class has no attributes of its own.

7.1.10.2 Relationships

Name Role To class Semantics

Classifies n/a Document A document in the endeavour domain is always of
some document kind defined in the methodology
domain.

n/a Parent-
DocumentKind

DocumentKind A document kind may be the parent of sub-document
kinds.

n/a SubDocument-
Kind

DocumentKind A document kind may be a sub-document kind of a
number of parent document kinds.

Depicts n/a WorkProductKind A document kind may depict a number of work product

kinds.

n/a n/a Notation A document kind uses some given notations.

7.1.10.3 Example

In a given methodology, the document kind “System Requirements Specification” is defined to represent the
fact that, when said methodology is enacted, documents of such a kind will be created or used.

7.1.11 Element

An element is an entity of interest to the metamodel. Since the SEMDM addresses both the methodology and
the endeavour domains (see sub-clause 5.2), any entity in either of these realms is subject to being modelled
by the SEMDM and therefore to becoming represented by an element.

Element is an abstract class, specialized into MethodologyElement and EndeavourElement.

This is a high-level class.

+DisplayText

Element

MethodologyElement EndeavourElement

7.1.11.1 Attributes

Name Type Semantics

DisplayText String Name or description suitable to be displayed to final users of the

element. The value of this attribute can be, in many of the
subclasses of Element, computed from other attributes.

7.1.11.2 Relationships

This class has no relationships of its own.

7.1.11.3 Example

This class is too abstract to give a concrete example. Please see the examples for any of the subtypes of
Element.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 23

7.1.12 EndeavourElement

An endeavour element is an element that belongs in the endeavour domain. Any element created by a
developer while using a methodology is represented by EndeavourElement.

EndeavourElement is an abstract subclass of Element, specialized into Stage, WorkUnit, TaskTechnique-
Mapping, Action, WorkProduct, ModelUnit, ModelUnitUsage, Producer and WorkPerformance.

This is a high-level class.

EndeavourElement

+DisplayText

Element

+Name

Template

+StartTime

+EndTime

+Duration

WorkUnit
Action

+CreationTime
+LastChangeTime

+Status

WorkProduct

ModelUnit

ModelUnitUsage

+Name

Producer

Stage

+Justification

TaskTechniqueMapping

+Justification

WorkPerformance

7.1.12.1 Attributes

This class has no attributes of its own.

7.1.12.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a Template An endeavour element is always of some template

defined in the methodology domain.

7.1.12.3 Example

This class is too abstract to give a concrete example. Please see the examples for any of the subtypes of
EndeavourElement.

7.1.13 Guideline

A guideline is an indication of how a set of methodology elements can be used during enactment.

Guideline is a subclass of Resource.

This is a high-level class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

24

+Description

Guideline

Resource

MethodologyElement

0..*

+DocumentedElement

1..* Documents

7.1.13.1 Attributes

Name Type Semantics

Description String The description of the usage of the associated methodology
elements.

7.1.13.2 Relationships

Name Role To class Semantics

Documents n/a Methodology-

Element

A guideline always documents some methodology

elements.

7.1.13.3 Example

In a particular agent-oriented software development methodology, the model unit kind “Role” is defined to
represent roles that agents may play at run-time. Since the concept of “role” in this context is different to the
concept of “role” in object-oriented methodologies, the method engineer decides to create a guideline
explaining how the model unit kind “Role” in this particular methodology is intended to be used, and attaches
said guideline to said model unit kind.

7.1.14 HardwareItem

A hardware item is a piece of hardware of interest to the endeavour.

HardwareItem is an abstract subclass of WorkProduct.

This is a product-related class.

HardwareItemHardwareItemKind

+CreationTime

+LastChangeTime

+Status

WorkProduct

7.1.14.1 Attributes

This class has no attributes of its own.

7.1.14.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a HardwareItem-

Kind

A hardware item in the endeavour domain is always of

some hardware item kind defined in the methodology
domain.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 25

7.1.14.3 Example

During an IT infrastructure deployment project, a number of sub-networks are organized and then
interconnected via routers. Each sub-network and each router is a hardware item.

7.1.15 HardwareItemKind

A hardware item kind is a specific kind of hardware item, characterized by its mechanical and electronic
characteristics, requirements and features.

HardwareItemKind is a subclass of WorkProductKind.

This is a product-related class.

HardwareItemKind HardwareItem

WorkProductKind

7.1.15.1 Attributes

This class has no attributes of its own.

7.1.15.2 Relationships

Name Role To class Semantics

Classifies n/a HardwareItem A hardware item in the endeavour domain is always of

some hardware item kind defined in the methodology
domain.

7.1.15.3 Example

In a particular systems development methodology, the hardware item kind “Network” is defined to represent
the fact that, when said methodology is enacted, hardware items of such kind will be created or used.

7.1.16 InstantaneousStage

An instantaneous stage is a managed point in time within an endeavour. Instantaneous stages usually
correspond to significant events in the endeavour.

InstantaneousStage is an abstract subclass of Stage, specialized into Milestone.

This is a process-related class.

+TimeReached

InstantaneousStage

Stage

InstantaneousStageKind

Milestone

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

26

7.1.16.1 Attributes

Name Type Semantics

TimeReached Timestamp The point in time at which the instantaneous stage is reached.

7.1.16.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a Instantaneous-
StageKind

An instantaneous stage in the endeavour domain is
always of some instantaneous stage kind defined in the
methodology domain.

7.1.16.3 Example

During a certain project for which John is project manager, the system definition phase is approaching
completion. Once the system is fully defined, the system construction phase will take place. In order to
manage the transition between phases, John tracks the point in time in which system definition is complete
and stable, which marks said transition. This point in time is an instantaneous stage (to be precise, a
milestone).

7.1.17 InstantaneousStageKind

An instantaneous stage kind is a specific kind of instantaneous stage, characterized by the kind of event that it
represents.

InstantaneousStageKind is an abstract subclass of StageKind, specialized into MilestoneKind.

This is a process-related class.

InstantaneousStageKind

StageKind

+Description

MilestoneKind

+TimeReached

InstantaneousStage

7.1.17.1 Attributes

This class has no attributes of its own.

7.1.17.2 Relationships

Name Role To class Semantics

Classifies n/a Instantaneous-

Stage

An instantaneous stage in the endeavour domain is

always of some instantaneous stage kind defined in the
methodology domain.

7.1.17.3 Example

In a given methodology, two large phase kinds are defined in order to describe the definition of the system as
opposed to the construction of the system. The transition between phases of these kinds needs to be marked
by a managed point in time, and therefore the instantaneous stage kind “System definition is complete and
stable” (a milestone kind) is defined to represent this fact.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 27

7.1.18 Language

A language is a structure of model unit kinds that focus on a particular modelling perspective. This definition
fits well with common definitions of “language”, such as “a systematic means of communicating by the use of
sounds or conventional symbols“; in SEMDM’s definition, the symbols are the model unit kinds. Languages
often focus on specific abstraction levels (i.e. informal view, high-level formal view, detailed formal view, etc.)
and specific aspects of the modelled subject (i.e. structural, behavioural, visual, etc.).

Language is a subclass of Resource.

This is a product-related class.

+Name

Language

Resource

+Definition

ModelUnitKind
+Context

1..* 1..*
+Name

Notation

1..*

+Target

1..*

Supports

ModelKind

0..*

1

Uses

7.1.18.1 Attributes

Name Type Semantics

Name String The name of the language.

7.1.18.2 Relationships

Name Role To class Semantics

n/a Context ModelUnitKind A language is always composed of some model unit

kinds.

n/a Target Notation A language is always targeted by at least one notation,

which must be capable of depicting model units of the
associated model unit kinds.

n/a n/a ModelKind A language may be used by some model kinds.

7.1.18.3 Example

In a particular software development methodology, the detailed static structure of the system is represented
using the object-oriented concepts of “class”, “attribute”, “generalization” and “association”. In order to capture
this, the method engineer defines a language “Class Modelling Language” involving the above listed concepts
plus their semantics and the relationships amongst them.

7.1.19 MethodologyElement

A methodology element is an element that belongs in the methodology domain. Any element created by a
method engineer while constructing a new methodology (or extending an existing one) is represented by
MethodologyElement.

MethodologyElement is an abstract subclass of Element, specialized into Resource, Template and
Conglomerate.

This is a high-level class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

28

MethodologyElement

+DisplayText

Element

+Name

Template Resource

+Description

Guideline
0..*

+DocumentedElement1..*

Documents

+Location

Reference

0..*

+ReferredToElement

1

+Name

+Description

Conglomerate

0..*

+Component

0..*

7.1.19.1 Attributes

This class has no attributes of its own.

7.1.19.2 Relationships

Name Role To class Semantics

n/a Component Conglomerate A methodology element may be a component of a

number of conglomerates.

n/a Documented-

Element

Guideline A methodology element may be documented by

guidelines.

n/a ReferredTo-
Element

Reference A methodology element can be referred to by
references.

7.1.19.3 Example

This class is too abstract to give a concrete example. Please see the examples for any of the subtypes of
MethodologyElement.

7.1.20 Milestone

A milestone is an instantaneous stage that marks some significant event in the endeavour. Milestones may be
used to mark the delivery of significant work products.

Milestone is an abstract subclass of InstantaneousStage.

This is a process-related class.

Milestone

+Description

MilestoneKind

+TimeReached

InstantaneousStage

7.1.20.1 Attributes

This class has no attributes of its own.

7.1.20.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a MilestoneKind A milestone in the endeavour domain is always of some

milestone kind defined in the methodology domain.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 29

7.1.20.3 Example

During a certain project for which John is project manager, the system definition phase is approaching
completion. Once the system is fully defined, the system construction phase will take place. In order to
manage the transition between phases, John tracks the point in time in which system definition is complete
and stable, which marks said transition. This point in time is a milestone.

7.1.21 MilestoneKind

A milestone kind is a specific kind of milestone, characterized by its specific purpose and kind of event that it
signifies.

MilestoneKind is a subclass of InstantaneousStageKind.

This is a process-related class.

+Description

MilestoneKind Milestone

InstantaneousStageKind

7.1.21.1 Attributes

Name Type Semantics

Description String The description of the event signified by milestones of this kind.

7.1.21.2 Relationships

Name Role To class Semantics

Classifies n/a Milestone A milestone in the endeavour domain is always of some
milestone kind defined in the methodology domain.

7.1.21.3 Example

In a given methodology, two large phase kinds are defined in order to describe the definition of the system as
opposed to the construction of the system. The transition between phases of these kinds needs to be marked
by a managed point in time with specific semantics, and therefore the milestone kind “System definition is
complete and stable” is defined by the method engineer to represent this fact.

7.1.22 Model

A model is an abstract representation of some subject that acts as the subject’s surrogate for some well
defined purpose. Notice that models are abstract constructs and therefore they are not visible or directly
manageable. Documents are the perceivable, communicable counterparts of models.

Model is an abstract subclass of WorkProduct.

This is a product-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

30

Model

+CreationTime

+LastChangeTime

+Status

WorkProduct

ModelUnitUsage
+Context

1 1..*

ModelKind

7.1.22.1 Attributes

This class has no attributes of its own.

7.1.22.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ModelKind A model in the endeavour domain is always of some

model kind defined in the methodology domain.

n/a Context ModelUnitUsage A model is the context for some number of model unit
usages.

7.1.22.3 Example

During the requirements process in a software development project, a list of candidate classes is made. After,
during high-level modelling, this list is refined and classes are determined. Also, classes are fleshed out, and
attributes, generalizations and associations are added. The resulting abstract construct is repeatedly used
along the project to assist with other tasks, being different in different ways depending on each moment’s
needs. This construct is a model.

7.1.23 ModelKind

A model kind is a specific kind of model, characterized by its focus, purpose and level of abstraction.

ModelKind is a subclass of WorkProductKind.

This is a product-related class.

ModelKind Model

WorkProductKind

+MinUsageCount

+MaxUsageCount

ModelUnitUsageKind

+Context

11..*

+Name

Language

0..*

1

Uses

7.1.23.1 Attributes

This class has no attributes of its own.

7.1.23.2 Relationships

Name Role To class Semantics

Classifies n/a Model A model in the endeavour domain is always of some
model kind defined in the methodology domain.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 31

Name Role To class Semantics

n/a Context ModelUnitUsage-

Kind

A model kind is defined to be the context for some

number of model unit usage kinds.

Uses n/a Language A model kind uses a certain language.

7.1.23.3 Example

In a particular software development methodology, both the structure and behaviour of the software system to
be built need to be described. Each time the methodology is enacted, the system’s structure will be
represented by a structural model, and the system’s behaviour will be represented by a dynamic model. To
capture this, the method engineer defines two model kinds, “Structural Model” and “Dynamic Model”.

7.1.24 ModelUnit

A model unit is an atomic component of a model, which represents a cohesive fragment of information in the
subject being modelled. Model units are usually linked to each other to form the semantic network that
comprises the model. Furthermore, each model unit can appear in multiple models, thus achieving model
connectivity.

ModelUnit is an abstract subclass of EndeavourElement.

This is a product-related class.

ModelUnit

EndeavourElement

+Definition

ModelUnitKind

ModelUnitUsage

1..*

+Target 1

RefersTo

7.1.24.1 Attributes

This class has no attributes of its own.

7.1.24.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ModelUnitKind A model unit in the endeavour domain is always of
some model unit kind defined in the methodology

domain.

n/a Target ModelUnitUsage A model unit is always the target of one or more model

unit usages.

7.1.24.3 Example

The class model of a software system contains a number of classes and associations. Each class, in turn,
contains attributes and operations. Each class, association, attribute and operation in the model is a model
unit.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

32

7.1.25 ModelUnitKind

A model unit kind is a specific kind of model unit, characterized by the nature of the information it represents
and the intention of using such a representation. Some model unit kinds, such as the conventional Class or
Association, represent structural aspects of the subject being modelled, while others such as Service or
Operation focus on its behavioural aspects. Other perspectives can be considered by using additional model
unit kinds.

ModelUnitKind is a subclass of Template.

This is a product-related class.

+Definition

ModelUnitKind

+Name

Template

ModelUnit

+MinUsageCount
+MaxUsageCount

ModelUnitUsageKind

1..*

+Target 1

RefersTo

+Name

Language
+Context

1..* 1..*

7.1.25.1 Attributes

Name Type Semantics

Definition String The definition of this model unit kind.

7.1.25.2 Relationships

Name Role To class Semantics

Classifies n/a ModelUnit A model unit in the endeavour domain is always of
some model unit kind defined in the methodology

domain.

n/a Target ModelUnitUsage-

Kind

A model unit kind is always the target of one or more

model unit usage kinds.

n/a n/a Language A model unit kind is a component of one or more
languages.

7.1.25.3 Example

In a particular distributed systems development methodology, both object- and agent-oriented approaches are
contemplated. Therefore, developers using this methodology would be able to use concepts such as “object”
and “class” (typically object-oriented) to model the system under development, but also they could use “agent”
and “message” (typically agent-oriented). To define the precise semantics of each of these concepts and how
they relate to each other, the method engineer introduces the model unit kinds “Object”, “Class”, “Agent” and
“Message”.

7.1.26 ModelUnitUsage

A model unit usage is a specific usage of a given model unit by a given model. Multiple models often include
the same model units to achieve connectivity across all the representations of the subject being modelled.

ModelUnitUsage is an abstract subclass of EndeavourElement.

This is a product-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 33

ModelUnitUsage

EndeavourElement

Model
+Context

1

1..*

ModelUnit

1..*

+Target

1

RefersTo

+MinUsageCount

+MaxUsageCount

ModelUnitUsageKind

7.1.26.1 Attributes

This class has no attributes of its own.

7.1.26.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ModelUnitUsage-
Kind

A model unit usage in the endeavour domain is always
of some model unit usage kind defined in the

methodology domain.

RefersTo n/a ModelUnit A model unit usage always refers to a given model

unit.

n/a n/a Model A model unit usage always belongs to a given model.

7.1.26.3 Example

The class model of a word processing system contains classes named Document and Printer. Mary then
constructs a state chart model for the Printer class. Both the class models and the Printer state chart model
involve the Printer class. In addition, the class model involves the Document class, while the Printer state
chart model involves a number of additional model units. Each of the relationships between a given model and
a given model unit is a model unit usage.

7.1.27 ModelUnitUsageKind

A model unit usage kind is a specific kind of model unit usage, characterized by the nature of the use that a
given model kind makes of a given model unit kind.

ModelUnitUsageKind is a subclass of Template.

This is a product-related class.

+MinUsageCount

+MaxUsageCount

ModelUnitUsageKind

+Name

Template

ModelUnitUsageModelKind
+Context

1 1..*

+Definition

ModelUnitKind

1..*
+Target

1

RefersTo

7.1.27.1 Attributes

Name Type Semantics

MinUsageCount Integer Minimum number of model units of the associated kind that can

appear in a model of the associated kind.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

34

Name Type Semantics

MaxUsageCount Integer Maximum number of model units of the associated kind that can

appear in a model of the associated kind.

7.1.27.2 Relationships

Name Role To class Semantics

Classifies n/a ModelUnitUsage A model unit usage in the endeavour domain is always
of some model unit usage kind defined in the

methodology domain.

RefersTo n/a ModelUnitKind A model unit usage kind always refers to a given model

unit kind.

n/a n/a ModelKind A model unit usage kind always belongs to a given
model kind.

7.1.27.3 Example

In a particular software development methodology, two model kinds exist: “Service Model”, which describes
how the system will fulfil service requests from users for a given service, and “Class Model”, which describes
the detailed structure of the whole system. At the same time, the following model unit kinds exist: “Class”,
“Service” and “State”. In order to capture how model units of these kinds will be used by models of each of the
defined kinds, the method engineer needs to define several model unit usage kinds. First, a model unit usage
kind is introduced with Context = ClassModel, Target = Class, MinUsageCount = 1 and MaxUsageCount = n,
meaning that class models will use as many classes as necessary. Secondly, another model unit usage kind
is introduced with Context = ServiceModel, Target = Service and MinUsageCount = MaxUsageCount = 1,
meaning that each service model will describe one and only one service. Additional model unit usage kinds
would be defined similarly.

7.1.28 Notation

A notation is a concrete syntax, usually graphical, that can be used to depict models created with certain
languages. Different notations may focus on different aspects of the same language, or support more than
one language.

Notation is a subclass of Resource.

This is a product-related class.

+Name

Notation

Resource

+Name

Language

1..*

+Target

1..*

Supports

DocumentKind
1..*0..* Uses

7.1.28.1 Attributes

Name Type Semantics

Name String The name of the notation.

7.1.28.2 Relationships

Name Role To class Semantics

Supports n/a Language A notation always supports at least one language.

n/a n/a DocumentKind A notation may be used by certain document kinds.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 35

7.1.28.3 Example

In a particular software development methodology, the detailed static structure of the system is represented
using the language “Class Modelling Language”, which involves model unit kinds such as “Class”, “Attribute”
and “Association”. In order to represent instances of these concepts when the methodology is enacted, a
notation needs to be introduced that can support the above mentioned language. Therefore, the method
engineer defines the notation “Class Diagrams” with Target = ClassModellingLanguage.

7.1.29 Outcome

An outcome is an observable result of the successful performance of any work unit of a given kind. Outcomes
are often used to assess the performance of work units, since their presence define success. An unsuccessful
work unit may or may not exhibit its defined outcomes; a successful work unit, by definition, will exhibit all of
them.

Outcome is a subclass of Resource.

This is a process-related class.

+Description

+MinCapabilityLevel

Outcome

Resource

+Purpose

+MinCapabilityLevel

WorkUnitKind

1

+Result 0..*

7.1.29.1 Attributes

Name Type Semantics

Description String The description of the observable result.

MinCapabilityLevel Integer The minimum capability level at which the outcome may be

considered. Enactments at capability levels lower than this level
should not take this outcome into account.

7.1.29.2 Relationships

Name/ Role To class Semantics

n/a Result WorkUnitKind An outcome is a result of work units of a particular

kind.

7.1.29.3 Example

In a given methodology, the outcomes “All project stakeholders are aware of the scope of the system” and
“The system requirements specification has been created and approved” are defined an attached to the
process kind “Requirements Engineering” in order to describe the expected result of its successful
performance when the methodology is enacted.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

36

7.1.30 Person

A person is an individual human being involved in a development effort.

Person is a subclass of Producer.

This is a producer-related class.

Person

+Name

Producer

7.1.30.1 Attributes

This class has no attributes of its own.

7.1.30.2 Relationships

This class has no relationships of its own.

7.1.30.3 Example

During a certain project, Mary leads a team of developers to construct a product. Each of the developers in
the team, as well as Mary, are persons.

7.1.31 Phase

A phase is a stage with duration for which the objective is the transition between cognitive frameworks.
Phases usually add detail to a previously existing set of work products.

Phase is an abstract subclass of StageWithDuration.

This is a process-related class.

Phase

+StartTime

+EndTime

+Duration

StageWithDuration

PhaseKind

7.1.31.1 Attributes

This class has no attributes of its own.

7.1.31.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a PhaseKind A phase in the endeavour domain is always of some

phase kind defined in the methodology domain.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 37

7.1.31.3 Example

During a development project, the system is first defined and then, after definition is complete, the system is
incrementally constructed. Each of these two large timeframes is a phase.

7.1.32 PhaseKind

A phase kind is a specific kind of phase, characterized by the abstraction level and formality of the result that it
aims to produce.

PhaseKind is a subclass of StageWithDurationKind.

This is a process-related class.

PhaseKind

StageWithDurationKind

Phase

7.1.32.1 Attributes

This class has no attributes of its own.

7.1.32.2 Relationships

Name Role To class Semantics

Classifies n/a Phase A phase in the endeavour domain is always of some

phase kind defined in the methodology domain.

7.1.32.3 Example

In a given methodology, the product to be built is first defined and then incrementally constructed. To capture
this, the method engineer introduces the phase kinds “System Definition” and “System Construction”.

7.1.33 PostCondition

A postcondition is a constraint that is guaranteed to be satisfied after an action of the associated kind is
performed.

PostCondition is a subclass of Constraint.

This is a process- and product-related class.

PostCondition

+Expression

Constraint

7.1.33.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

38

7.1.33.2 Relationships

This class has no relationships of its own.

7.1.33.3 Example

In a given methodology, a task kind “Sign off requirements” is defined, together with a work product kind
“Requirements Specification”. Both are related by the fact that tasks of the “Sign off requirements” kind will,
when executed, change a work product of the “Requirements Specification” kind to the “Approved” state. Said
relationship is modelled as an action kind with Type = Modify. However, the method engineer wants to capture
the fact that signing off requirements means that the status of the associated “Requirements Specification”
work product is changed to “Approved”. This is done by creating a postcondition with Expression =
(RequirementsSpecification.WorkProductStatus is Approved) and attaching this constraint to the above
mentioned action. Thus, executing the task will guarantee that the stated condition is met.

7.1.34 PreCondition

A precondition is a constraint that must be satisfied before an action of the associated kind can be performed.

PreCondition is a subclass of Constraint.

This is a process- and product-related class.

PreCondition

+Expression

Constraint

7.1.34.1 Attributes

This class has no attributes of its own.

7.1.34.2 Relationships

This class has no relationships of its own.

7.1.34.3 Example

In a given methodology, a task kind “Deliver user documentation” is defined, together with a work product kind
“User Documentation”. Both are related by the fact that tasks of the “Deliver user documentation” kind will,
when executed, use work products of the “User Documentation” kind. Said relationship is modelled as an
action kind with Type = ReadOnly. However, the method engineer wants to capture the need that user
documentation is only delivered after the associated “User Interface Specification” work product has been
approved. This is done by creating a precondition with Expression = (UserInterfaceSpecification.WorkProduct-
Status is Approved) and attaching this constraint to the above mentioned action. Thus, the action will not be
allowed to execute unless the required condition is met.

7.1.35 Process

A process is a large-grained work unit that operates within a given area of expertise.

Process is an abstract subclass of WorkUnit.

This is a process-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 39

Process

+StartTime

+EndTime

+Duration

WorkUnit

+StartTime

+EndTime
+Duration

StageWithDuration

+TemporalContext

0..1

0..*

ProcessKind

+Parent0..1

+Child

0..*

7.1.35.1 Attributes

This class has no attributes of its own.

7.1.35.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ProcessKind A process in the endeavour domain is always of some
process kind defined in the methodology domain.

n/a n/a StageWith-
Duration

A process can be performed within a particular stage
with duration.

n/a ParentProcess Process A process may be the parent of sub-processes.

n/a SubProcess Process A process may be a sub-process of a number of parent

processes.

7.1.35.3 Example

In an engineering project, developer Mary leads the team in charge of quality assurance. She must ensure
that products generated in the project maintain the minimum levels of quality at all times. Such a focused job,
as performed by Mary’s team, is a process.

7.1.36 ProcessKind

A process kind is a specific kind of process, characterized by the area of expertise in which it occurs.

ProcessKind is a subclass of WorkUnitKind.

This is a process-related class.

ProcessKind

+Purpose

+MinCapabilityLevel

WorkUnitKind

Process

StageWithDurationKind
+TemporalContext

0..*

0..*

+Parent

0..1

+Child 0..*

7.1.36.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

40

7.1.36.2 Relationships

Name Role To class Semantics

Classifies n/a Process A process in the endeavour domain is always of some

process kind defined in the methodology domain.

n/a n/a StageWith-

DurationKind

A process kind can be defined to be performed within

stages with duration of some particular kinds.

n/a ParentProcess-

Kind

ProcessKind A process kind may be the parent of sub-process kinds.

n/a SubProcessKind ProcessKind A process kind may be a sub-process kind of a number
of parent process kinds.

7.1.36.3 Example

In a given methodology, the process kind “Quality Assurance” is defined to represent the fact that, when said
methodology is enacted, somebody will have to take the ongoing responsibility of quality assurance.

7.1.37 Producer

A producer is an agent that has the responsibility to execute work units. Producers are usually people or
groups of people, but can also be tools.

Producer is an abstract subclass of EndeavourElement, specialized into Person, Tool, Team and Role.

This is a producer-related class.

+Name

Producer

EndeavourElement

ProducerKind

Role

1

0..*

Plays

Tool

Person

Team

0..*

+Member0..*

+Justification

WorkPerformance

0..*

+Agent

1

0..*

0..*

7.1.37.1 Attributes

Name Type Semantics

Name String The name of the producer. This is an abstract attribute and different
subclasses of Producer can implement it differently.

7.1.37.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ProducerKind A producer in the endeavour domain is always of some

producer kind defined in the methodology domain.

Plays n/a Role A producer may play a number of roles.

IsInvolvedIn-
Performance

Agent Work-
Performance

A producer may be involved in a number of work
performances.

n/a Member Team A producer may be a member of a team.

IsAssistedBy n/a Tool A producer may be assisted by a set of tools.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 41

7.1.37.3 Example

During a certain software development project, John produces some source code and a few XML
specifications. A code generator tool reads these specifications and generates some additional code from
them. Both John and the tool are producers.

7.1.38 ProducerKind

A producer kind is a specific kind of producer, characterized by its area of expertise.

ProducerKind is an abstract subclass of Template, specialized into ToolKind, TeamKind and RoleKind.

This is a producer-related class.

ProducerKind

+Name

Template

ToolKind

TeamKind

0..*

+Member

0..*

+Responsibilities

RoleKind

0..*

0..*

Plays

+Name

Producer

+RecommendedAssignment

WorkPerformanceKind

0..*
+Agent1

0..*

1..*

Assists

7.1.38.1 Attributes

This class has no attributes of its own.

7.1.38.2 Relationships

Name Role To class Semantics

Classifies n/a Producer A producer in the endeavour domain is always of some

producer kind defined in the methodology domain.

Plays n/a RoleKind A producer kind may be assigned to play one or more

role kinds.

IsInvolvedIn-

Performance

Agent Work-

PerformanceKind

A producer kind may be involved in a number of work

performance kinds.

n/a Member TeamKind A producer kind may be a member of a team kind.

IsAssistedBy n/a ToolKind Producers of a particular kind are assisted by tools of
some particular kinds.

7.1.38.3 Example

In a given methodology, a producer kind “Quality Assurance Team” (a team kind) is defined and linked to a
work performance kind that points to the “Quality Assurance” process kind. This is to represent the fact that,
when said methodology is enacted, a group of people will have to take the responsibility of performing work
units of the “Quality Assurance” kind.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

42

7.1.39 Reference

A reference is a specific linkage between a given methodology element and a given source. References
implement the many-to-many mapping between MethodologyElement and Source.

This is a support class.

+Location

Reference

+Name

+Citation

Source

1

0..*

IsUsedBy

MethodologyElement
0..*

+ReferredToElement

1 RefersTo

7.1.39.1 Attributes

Name Type Semantics

Location String The specific location of the information relating to the documented

element within the associated source.

7.1.39.2 Relationships

Name Role To class Semantics

RefersTo n/a Methodology-
Element

The reference refers to a given methodology element.

Uses n/a Source The source providing information for this reference.

7.1.39.3 Example

A method engineer decides to incorporate the methodology element “Dialog Design” (a technique kind) to a
method fragment repository. Since the description of the technique in the book by Henderson-Sellers, Simons
and Younessi (a source, called “HendersonSellers98a”) is interesting, the method engineer decides to attach
a reference to said technique kind that precisely locates the documented element within the source. This is
achieved by creating a reference with ReferredToElement = DialogDesign, Source = HendersonSellers98a
and Location = “pages 182-188”.

7.1.40 Resource

A resource is a methodology element that is directly used at the endeavour level, without an instantiation
process. Any methodology element that serves as a reference or guideline during an endeavour is
represented by Resource.

Resource is an abstract subclass of MethodologyElement, specialized into Language, Notation, Constraint,
Outcome and Guideline.

This is a high-level class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 43

Resource

MethodologyElement

+Name

Language

+Name

Notation

+Expression

Constraint

+Description

+MinCapabilityLevel

Outcome

+Description

Guideline

7.1.40.1 Attributes

This class has no attributes of its own.

7.1.40.2 Relationships

This class has no relationships of its own.

7.1.40.3 Example

This class is too abstract to give a concrete example. Please see the examples for any of the subtypes of
Resource.

7.1.41 Role

A role is a collection of responsibilities that a producer can take. Roles are often used to declare what
responsibilities must be addressed without deciding on how they will be implemented.

Role is an abstract subclass of Producer.

This is a producer-related class.

Role

+Name

Producer

1

0..*

Plays

+Responsibilities

RoleKind

7.1.41.1 Attributes

This class has no attributes of its own.

7.1.41.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a RoleKind A role in the endeavour domain is always of some role

kind defined in the methodology domain.

n/a n/a Producer A role is played by a given producer.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

44

7.1.41.3 Example

During a certain project, Mary is in charge of writing the user documentation. Mary leaves the project midway
and John takes over with the same responsibilities. This collection of responsibilities, which could be called
“technical writer”, is a role.

7.1.42 RoleKind

A role kind is a specific kind of role, characterized by the involved responsibilities. Different role kinds usually
address different needs and make use of different skills.

RoleKind is a subclass of ProducerKind.

This is a producer-related class.

+Responsibilities

RoleKind

ProducerKind
0..*

0..*

Plays

Role

7.1.42.1 Attributes

Name Type Semantics

Responsibilities String The responsibilities of this role kind.

7.1.42.2 Relationships

Name Role To class Semantics

Classifies n/a Role A role in the endeavour domain is always of some role

kind defined in the methodology domain.

n/a n/a ProducerKind A role kind is defined to be possibly played by different

producer kinds.

7.1.42.3 Example

In a given methodology, it is necessary that close contact is maintained with the customers. To capture this
independently of any person or group in particular, the method engineer introduces a role kind “Customer
Liaison”.

7.1.43 SoftwareItem

A software item is a piece of software of interest to the endeavour.

SoftwareItem is an abstract subclass of WorkProduct.

This is a product-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 45

SoftwareItem

+CreationTime

+LastChangeTime

+Status

WorkProduct

SoftwareItemKind

7.1.43.1 Attributes

This class has no attributes of its own.

7.1.43.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a SoftwareItem-

Kind

A software item in the endeavour domain is always of

some software item kind defined in the methodology
domain.

7.1.43.3 Example

During a software development project, a team of developers (with the help of some tools) produce the
executable program. John produces the online help files and Mary creates an initial database dump. The
executable program, the online help files and the database dump are software items.

7.1.44 SoftwareItemKind

A software item kind is a specific kind of software item, characterized by its scope, requirements and features.

SoftwareItemKind is a subclass of WorkProductKind.

This is a product-related class.

SoftwareItemKind

WorkProductKind

SoftwareItem

7.1.44.1 Attributes

This class has no attributes of its own.

7.1.44.2 Relationships

Name Role To class Semantics

Classifies n/a SoftwareItem A software item in the endeavour domain is always of
some software item kind defined in the methodology
domain.

7.1.44.3 Example

In a particular systems development methodology, the software item kind “Operating System” is defined to
represent the fact that, when said methodology is enacted, software items of such kind will be used in different
ways.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

46

7.1.45 Source

A source is a source of information, experience or best practices. This class is often used by method
engineers to represent books, articles or other sources of documentation useful to track information related to
elements.

This is a support class.

+Name

+Citation

Source

+Location

Reference

1 0..*

IsUsedBy

7.1.45.1 Attributes

Name Type Semantics

Name String The name of the source.

Citation String The formal citation of the source, often used with bibliographic
sources.

7.1.45.2 Relationships

Name Role To class Semantics

IsUsedBy n/a Reference A source may be used by a number of references.

7.1.45.3 Example

A method engineer decides to incorporate several technique kinds from the book by Henderson-Sellers,
Simons and Younessi to a method fragment repository. Since the description of the techniques in the book is
interesting, the method engineer decides to create the source “HendersonSellers98a” (with the appropriate
citation) and link it to the above mentioned technique kinds via references.

7.1.46 Stage

A stage is a managed time frame within an endeavour.

Stage is an abstract subclass of EndeavourElement, specialized into StageWithDuration and Instantaneous-
Stage.

This is a process-related class.

Stage

EndeavourElement

+StartTime
+EndTime

+Duration

StageWithDuration

StageKind

+TimeReached

InstantaneousStage
+Context

0..1

0..*

7.1.46.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 47

7.1.46.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a StageKind A stage in the endeavour domain is always of some

stage kind defined in the methodology domain.

n/a n/a StageWith-

Duration

A stage may take place within a stage with duration.

7.1.46.3 Example

During a certain project, the product to be built is first defined and then incrementally constructed. These two
managed time frames are stages (with duration). To manage the transition between definition and
construction, a project-managed point in time between these phases is considered. This point in time is
another (instantaneous) stage.

7.1.47 StageKind

A stage kind is a specific kind of stage, characterized by the abstraction level at which it works on the
endeavour and the result that it aims to produce.

StageKind is an abstract subclass of Template, specialized into StageWithDurationKind and Instantaneous-
StageKind.

This is a process-related class.

StageKind Stage

+Name

Template

StageWithDurationKind InstantaneousStageKind

0..*

+Context

0..*

7.1.47.1 Attributes

This class has no attributes of its own.

7.1.47.2 Relationships

Name Role To class Semantics

Classifies n/a Stage A stage in the endeavour domain is always of some
stage kind defined in the methodology domain.

n/a n/a StageWith-

DurationKind

A stage kind may take place within a number of stage

with duration kinds.

7.1.47.3 Example

In a given methodology, the product to be built is first defined and then incrementally constructed. To capture
this, the method engineer introduces the stage kinds “System Definition” and “System Construction” (phase
kinds) separated by the stage kind “System definition is complete and stable” (a milestone kind).

7.1.48 StageWithDuration

A stage with duration is a managed interval of time within an endeavour.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

48

StageWithDuration is an abstract subclass of Stage, specialized into TimeCycle, Phase and Build.

This is a process-related class.

StageWithDurationKind +StartTime

+EndTime
+Duration

StageWithDuration

TimeCycle Phase

+Number

Build

Process

+TemporalContext 0..1

0..*

Stage

+Context

0..1

0..*

7.1.48.1 Attributes

Name Type Semantics

StartTime Timestamp The point in time at which the stage with duration is started.

EndTime Timestamp The point in time at which the stage with duration is finished.

Duration Timespan The span of time between the start time and the end time.

7.1.48.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a StageWith-
DurationKind

A stage with duration in the endeavour domain is
always of some stage with duration kind defined in

the methodology domain.

n/a TemporalContext Process A stage with duration is the temporal context in which

a set of processes take place.

n/a Context Stage A stage with duration may be the context in which a
number of other stages take place.

7.1.48.3 Example

During a certain project, the product to be built is first defined and then incrementally constructed. These two
managed time frames are stages with duration (phases). Within the construction stage with duration, a
sequence of smaller stages is performed in order to incrementally build the product. Each of these smaller
stages is a stage with duration too (a build).

7.1.49 StageWithDurationKind

A stage with duration kind is a specific kind of stage with duration, characterized by the abstraction level at
which it works on the endeavour and the result that it aims to produce.

StageWithDurationKind is an abstract subclass of StageKind, specialized into TimeCycleKind, PhaseKind and
BuildKind.

This is a process-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 49

StageWithDurationKind

ProcessKind
0..*

+TemporalContext0..*

TimeCycleKind PhaseKind BuildKind

+StartTime

+EndTime
+Duration

StageWithDuration

StageKind
0..*

+Context

0..*

7.1.49.1 Attributes

This class has no attributes of its own.

7.1.49.2 Relationships

Name Role To class Semantics

Classifies n/a StageWith-

Duration

A stage with duration in the endeavour domain is

always of some stage with duration kind defined in the
methodology domain.

n/a TemporalContext ProcessKind A stage with duration kind is the temporal context in

which a set of process kinds may take place.

n/a Context StageKind A stage with duration kind may be the context in which

a number of other stage kinds take place.

7.1.49.3 Example

In a given methodology, the product to be built is first defined and then incrementally constructed. To capture
this, the method engineer introduces the stage with duration kinds “System Definition” and “System
Construction” (phase kinds).

7.1.50 Task

A task is a small-grained work unit that focuses on what must be done in order to achieve a given purpose.

Task is an abstract subclass of WorkUnit.

This is a process-related class.

Task

+StartTime

+EndTime

+Duration

WorkUnit +Context

1

+Component

0..*
+Description

TaskKind

Action

+Cause

1

+Effect0..*

+Justification

TaskTechniqueMapping
0..*

1

7.1.50.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

50

7.1.50.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a TaskKind A task in the endeavour domain is always of some task

kind defined in the methodology domain.

n/a Component WorkUnit A task always occurs within a particular work unit.

n/a n/a TaskTechnique-
Mapping

A task may be involved in a number of task-technique
mappings.

n/a Cause Action A task may cause actions.

7.1.50.3 Example

During a software development project, Mary identifies the candidate classes in the system, and then she tries
to find the relationships between them, updating the class list in the process. Finally, Mary defines some
attributes and operations on the classes. Each of these individual pieces of work is a task.

7.1.51 TaskKind

A task kind is a specific kind of task, characterized by its purpose within the endeavour.

TaskKind is a subclass of WorkUnitKind.

This is a process-related class.

+Description

TaskKind

+Purpose

+MinCapabilityLevel

WorkUnitKind

+Context

0..*

+Component

0..*

Task

+Type

+Optionality

+WorkProductRole

ActionKind
+Cause1

+Effect

0..*

+RecommendedUsage

TaskTechniqueMappingKind

0..*

1

7.1.51.1 Attributes

Name Type Semantics

Description String The description of what is to be done in order to accomplish the

purpose.

7.1.51.2 Relationships

Name Role To class Semantics

Classifies n/a Task A task in the endeavour domain is always of some task
kind defined in the methodology domain.

n/a Component WorkUnitKind A task kind is defined to occur within some particular
work unit kinds.

n/a n/a TaskTechnique-
MappingKind

A task kind may be involved in a number of task-
technique mapping kinds.

n/a Cause ActionKind A task kind may cause action kinds.

7.1.51.3 Example

In a particular software development methodology, quality assurance is performed by reviewing each
generated product and then comparing the number of defects found against historical data. To capture this,
the method engineer defines the task kinds “Review work product” and “Compare defect report to historical
data”.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 51

7.1.52 TaskTechniqueMapping

A task-technique mapping is a usage association between a given task and a given technique. A task-
technique mapping represents the fact that, at the endeavour domain, a given technique is being used to
accomplish a given task.

TaskTechniqueMapping is an abstract subclass of EndeavourElement.

This is a process-related class.

+Justification

TaskTechniqueMapping

EndeavourElement

Task
0..*1

Technique
0..*

1

+RecommendedUsage

TaskTechniqueMappingKind

7.1.52.1 Attributes

Name Type Semantics

Justification String The justification why the associated technique is chosen to
accomplish the associated task.

7.1.52.2 Relationships

Name Role To class Semantics

Classifies n/a TaskTechnique-

MappingKind

A task-technique mapping in the endeavour domain is

always of some task-technique mapping kind defined in
the methodology domain.

n/a n/a Task A task-technique mapping maps a particular task.

n/a n/a Technique A task-technique mapping maps a particular technique.

7.1.52.3 Example

During a software development project, Mary needs to identify the candidate classes in the system. In order to
do so, she checks the methodology being used and she sees that two kinds of techniques are recommended
for tasks of this kind: “Text Analysis” and “CRC Cards”. Since Mary is working by herself, she thinks it is better
to use text analysis. The particular association between the “Identify Classes” task that Mary is performing and
the chosen technique “Text Analysis” (together with Mary’s justification for her decision) is a task-technique
mapping.

7.1.53 TaskTechniqueMappingKind

A task-technique mapping kind is a specific kind of task-technique mapping, characterized by the mapped
task kind and technique kind.

TaskKind is a subclass of Template.

This is a process-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

52

+RecommendedUsage

TaskTechniqueMappingKind

+Name

Template

+Description

TaskKind
0..*1

+Description

TechniqueKind
0..*

1

+Justification

TaskTechniqueMapping

7.1.53.1 Attributes

Name Type Semantics

Recommended-

Usage

DeonticValue The recommended usage of techniques of the associated kind by
tasks of the associated kind. See 7.2.2 for possible values.

7.1.53.2 Relationships

Name Role To class Semantics

Classifies n/a TaskTechnique-
MappingKind

A task-technique mapping in the endeavour domain is
always of some task-technique mapping kind defined in
the methodology domain.

n/a n/a TaskKind A task-technique mapping kind maps a particular task
kind.

n/a n/a TechniqueKind A task-technique mapping kind maps a particular
technique kind.

7.1.53.3 Example

When certain software development methodology is enacted, tasks of kind “Elicit system requirements” can
be performed by interviewing stakeholders and, optionally, by organizing focus groups. To capture this, the
method engineer introduces the technique kinds “Stakeholder Interviews” and “Focus Groups”, and associates
both with the above mentioned task kind via the appropriate task-technique mapping kinds, assigning
recommended usage values of Recommended and Optional, respectively.

7.1.54 Team

A team is an organized set of producers that collectively focus on common work units.

Team is an abstract subclass of Producer.

This is a producer-related class.

Team

+Name

Producer

0..*

+Member

0..*

TeamKind

7.1.54.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 53

7.1.54.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a TeamKind A team in the endeavour domain is always of some

team kind defined in the methodology domain.

Context n/a Producer A team is composed of producers.

7.1.54.3 Example

On a certain project, maintaining a close contact with the customer is so important that a single person is not
enough for the task. A group of people is organized to deal with this task. This group of people is a team.

7.1.55 TeamKind

A team kind is a specific kind of team, characterized by its responsibilities.

TeamKind is a subclass of ProducerKind.

This is a producer-related class.

TeamKind

ProducerKind

0..*

+Member

0..*

Team

7.1.55.1 Attributes

This class has no attributes of its own.

7.1.55.2 Relationships

Name Role To class Semantics

Classifies n/a Team A team in the endeavour domain is always of some

team kind defined in the methodology domain.

Context n/a ProducerKind A team kind is composed of producer kinds.

7.1.55.3 Example

In a certain safety-critical software development methodology, quality assurance needs to be performed by a
specially designated separate group of developers. To capture this, the method engineer defines the team
kind “Quality Assurance Team”.

7.1.56 Technique

A technique is a small-grained work unit that focuses on how the given purpose may be achieved.

Technique is an abstract subclass of WorkUnit.

This is a process-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

54

Technique

+StartTime

+EndTime

+Duration

WorkUnit

+Description

TechniqueKind

+Justification

TaskTechniqueMapping

0..*

1

7.1.56.1 Attributes

This class has no attributes of its own.

7.1.56.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a TechniqueKind A technique in the endeavour domain is always of some
technique kind defined in the methodology domain.

n/a n/a TaskTechnique-

Mapping

A technique may be involved in a number of task-

technique mappings.

7.1.56.3 Example

During a software development project, Mary needs to identify the classes in the system. In order to perform
this task, she first analyses the text in some documents related to the system, then she organizes a CRC Card
session, and finally she brainstorms with her colleagues trying to find additional classes. These three different
ways of tackling the same task are techniques.

7.1.57 TechniqueKind

A technique kind is a specific kind of technique, characterized by its purpose within the endeavour.

TechniqueKind is a subclass of WorkUnitKind.

This is a process-related class.

+Description

TechniqueKind

+Purpose

+MinCapabilityLevel

WorkUnitKind

Technique

+RecommendedUsage

TaskTechniqueMappingKind

0..*

1

7.1.57.1 Attributes

Name Type Semantics

Description String The description of how to accomplish the purpose.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 55

7.1.57.2 Relationships

Name Role To class Semantics

Classifies n/a Technique A technique in the endeavour domain is always of some

technique kind defined in the methodology domain.

n/a n/a TaskTechnique-

MappingKind

A technique kind may be involved in a number of task-

technique mapping kinds.

7.1.57.3 Example

When certain software development methodology is enacted, tasks of kind “Elicit system requirements” can
be performed by either interviewing stakeholders or organizing focus groups. To capture this, the method
engineer introduces the technique kinds “Stakeholder Interviews” and “Focus Groups”, and associates both
with the above mentioned task kind via the appropriate task-technique mapping kinds.

7.1.58 Template

A template is a methodology element that is used at the endeavour level through an instantiation process. Any
methodology element that acts as a class to be instantiated during enactment as an endeavour element is
represented by Template.

Template is an abstract subclass of MethodologyElement, specialized into StageKind, WorkUnitKind, Task-
TechniqueMappingKind, ActionKind, WorkProductKind, ModelUnitKind, ModelUnitUsageKind, ProducerKind
and WorkPerformanceKind.

This is a high-level class.

+Name

Template

MethodologyElement

EndeavourElement

+Purpose

+MinCapabilityLevel

WorkUnitKind
+Type

+Optionality

+WorkProductRole

ActionKind

+Description

WorkProductKind

+Definition

ModelUnitKind

+MinUsageCount

+MaxUsageCount

ModelUnitUsageKind

ProducerKind

StageKind

+RecommendedUsage

TaskTechniqueMappingKind

+ RecommendedAssignment

WorkPerformanceKind

7.1.58.1 Attributes

Name Type Semantics

Name String The name of the class that would be instantiated during enactment.

7.1.58.2 Relationships

Name Role To class Semantics

Classifies n/a EndeavourElement An endeavour element is always of some template
defined in the methodology domain.

7.1.58.3 Example

This class is too abstract to give a concrete example. Please see the examples for any of the subtypes of
Template.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

56

7.1.59 TimeCycle

A time cycle is a stage with duration for which the objective is the delivery of a final product or service.

TimeCycle is an abstract subclass of StageWithDuration.

This is a process-related class.

TimeCycle

+StartTime

+EndTime

+Duration

StageWithDuration

TimeCycleKind

7.1.59.1 Attributes

This class has no attributes of its own.

7.1.59.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a TimeCycleKind A time cycle in the endeavour domain is always of some

time cycle kind defined in the methodology domain.

7.1.59.3 Example

John has been commissioned to develop and deliver an experimental, strategically important product. He
decides to organize a product-focused project and, in addition, establish a research and development line to
do further investigation. Each of these major time-related arrangements is a different time cycle.

7.1.60 TimeCycleKind

A time cycle kind is a specific kind of time cycle, characterized by the type of outcomes that it aims to produce.
Different time cycle kinds are usually utilized to account for different needs in the characteristics of
endeavours and products.

TimeCycleKind is a subclass of StageWithDurationKind.

This is a process-related class.

TimeCycleKind TimeCycle

StageWithDurationKind

7.1.60.1 Attributes

This class has no attributes of its own.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 57

7.1.60.2 Relationships

Name Role To class Semantics

Classifies n/a TimeCycle A time cycle in the endeavour domain is always of some

time cycle kind defined in the methodology domain.

7.1.60.3 Example

When certain methodology is enacted, final products are delivered by either executing product-focused
projects or sustaining research & development lines for some time. To capture this, the method engineer
introduces the time cycle kinds “SpecificProject” and “ResearchLine”. Each will comprise different stage kinds.

7.1.61 Tool

A tool is an instrument that helps another producer to execute its responsibilities in an automated way.

Tool is an abstract subclass of Producer.

This is a producer-related class.

Tool

+Name

Producer

ToolKind

0..*

0..*

Assists

7.1.61.1 Attributes

This class has no attributes of its own.

7.1.61.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a ToolKind A tool in the endeavour domain is always of some tool

kind defined in the methodology domain.

Assists n/a Producer A tool may assist a set of producers.

7.1.61.3 Example

During a certain software development project, Mary writes some code and then compiles it. She then
automatically creates unit test stubs for the code and, after completing the skeleton stubs, she unit tests her
code. The code editor, the compiler and the automated unit tester are tools.

7.1.62 ToolKind

A tool kind is a specific kind of tool, characterized by its features. Different tool kinds are often used to
represent different products such as diagram editors, integrated development environments, defect tracking
systems, collaboration and messaging systems or code generators.

ToolKind is a subclass of ProducerKind.

This is a producer-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

58

ToolKind

ProducerKind

Tool
0..*

1..*

Assists

7.1.62.1 Attributes

This class has no attributes of its own.

7.1.62.2 Relationships

Name Role To class Semantics

Classifies n/a Tool A tool in the endeavour domain is always of some tool

kind defined in the methodology domain.

Assists n/a ProducerKind Tools of a particular kind may assist producers of some

particular kinds.

7.1.62.3 Example

In a particular software development methodology, different kinds of tools can be used. To capture this, the
method engineer introduces tool kinds “Compiler”, “.NET Compiler” (a subtype of the former) and “Diagram
Editor”.

7.1.63 WorkPerformance

A work performance is an assignment and responsibility association between a particular producer and a
particular work unit.

WorkPerformance is an abstract subclass of EndeavourElement.

This is a producer- and process-related class.

+Justification

WorkPerformance

EndeavourElement

+Name

Producer

0..*

+Agent

1

+StartTime
+EndTime

+Duration

WorkUnit

0..*

+Job

1
+RecommendedAssignment

WorkPerformanceKind

7.1.63.1 Attributes

Name Type Semantics

Justification String The justification why the associated work unit is assigned to the

associated producer.

7.1.63.2 Relationships

Name Role To class Semantics

InvolvesWork-

Unit

n/a WorkUnit A work performance involves a particular work unit.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 59

Name Role To class Semantics

Involves-

Producer

n/a Producer A work performance involves a particular producer.

7.1.63.3 Example

During a certain project, the system documentation team is assigned the task to create a user’s manual for the
system being developed. Such assignment is a work performance.

7.1.64 WorkPerformanceKind

A work performance kind is a specific kind of work performance, characterized by the purpose of the inherent
assignment and responsibility association.

WorkPerformanceKind is a subclass of Template.

This is a producer- and process-related class.

+RecommendedAssignment

WorkPerformanceKind

+Name

Template

+Justification

WorkPerformanceProducerKind
0..*

+Agent

1

+Purpose
+MinCapabilityLevel

WorkUnitKind

0..*

+Job

1

7.1.64.1 Attributes

Name Type Semantics

Recommended-

Assignment

DeonticValue The recommended assignment of work units of the associated kind

to producers of the associated kind. See 7.2.2 for possible values.

7.1.64.2 Relationships

Name Role To class Semantics

InvolvesWork-

UnitKind

n/a WorkUnitKind A work performance kind involves a particular work unit
kind.

Involves-

ProducerKind

n/a ProducerKind A work performance kind involves a particular producer
kind.

7.1.64.3 Example

In a given methodology, the “Quality Assurance” process kind must be mapped to the “Quality Assurance
Team” team kind and, to a lesser degree, to the “Development Team” team kind. In order to do this, the
method engineer creates two work performance kinds associated with the “Quality Assurance” process kind
(also a work unit kind): one of them is associated to the “Quality Assurance Team” producer kind and has
RecommendedAssignment = Recommended; and the other one is associated to the “Development Team”
producer kind and has RecommendedAssignment = Optional.

7.1.65 WorkProduct

A work product is an artefact of interest for the endeavour. Work products are usually documents, physical
things or information collections that are created, modified or referred to (i.e. used but not changed) during the
endeavour.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

60

WorkProduct is an abstract subclass of EndeavourElement, specialized into Document, Model, SoftwareItem,
HardwareItem and CompositeWorkProduct.

This is a product-related class.

+CreationTime
+LastChangeTime

+Status

WorkProduct

EndeavourElement

+Title

+Version

Document0..*

+RepresentedSubject

0..*

Model

Action

+Agent

1..*

+Subject1
+Description

WorkProductKind

SoftwareItem

HardwareItem

CompositeWorkProduct

0..*

1..*

7.1.65.1 Attributes

Name Type Semantics

CreationTime Timestamp The point in time at which the work product is created.

LastChangeTime Timestamp The point in time at which the work product is last changed.

Status WorkProductStatus The maturity status of the work product. See 7.2.3 for
possible values.

7.1.65.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a WorkProductKind A work product in the endeavour domain is always of

some work product kind defined in the methodology
domain.

n/a Represented-

Subject

Document A work product may be depicted by different

documents.

n/a Subject Action A work product is always the subject of one or more

actions.

IsPartOf Component CompositeWork-

Product

A work product may be part of any number of

composite work products.

7.1.65.3 Example

During a certain project, John creates a requirements specification using a needs statement provided by the
customers. The requirements specification is then used by other developers as a starting point to design and
build the final system. The users’ needs statement, the requirements specification and the final system are
work products.

7.1.66 WorkProductKind

A work product kind is a specific kind of work product, characterized by the nature of its contents and the
intention behind its usage. Different work product kinds are usually defined to provide content and/or
presentation “templates” that can be applied to the corresponding work products.

WorkProductKind is an abstract subclass of Template, specialized into DocumentKind, ModelKind, Software-
ItemKind, HardwareItemKind and CompositeWorkProductKind.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

 61

This is a product-related class.

+Description

WorkProductKind

+Name

Template

+CreationTime

+LastChangeTime

+Status

WorkProduct

DocumentKind
0..*

+RepresentedSubject

0..*

ModelKind

+Type

+Optionality
+WorkProductRole

ActionKind +Agent

1..*

+Subject1

SoftwareItemKind

HardwareItemKind

CompositeWorkProductKind
+Composite

0..*

+Component

1..*

7.1.66.1 Attributes

Name Type Semantics

Description string The description of the nature of the contents and, optionally, form of

representation, of work products of this kind.

7.1.66.2 Relationships

Name Role To class Semantics

Classifies n/a WorkProduct A work product in the endeavour domain is always of
some work product kind defined in the methodology

domain.

n/a Represented-
Subject

DocumentKind A work product kind may be depicted by different
document kinds.

n/a Subject ActionKind A work product kind is always the subject of one or
more action kinds.

IsPartOf Component CompositeWork-
ProductKind

A work product kind may be part of any number of
composite work product kinds.

7.1.66.3 Example

In a given methodology, the work product kind “System Requirements Specification” (a document kind) is
defined to represent the fact that, when said methodology is enacted, work products of such kind will be
created or used.

7.1.67 WorkUnit

A work unit is a job performed, or intended to be performed, within an endeavour.

WorkUnit is an abstract subclass of EndeavourElement, specialized into Task, Technique and Process.

This is a process-related class.

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

62

Technique ProcessTask

+StartTime

+EndTime

+Duration

WorkUnit

+Context

1

+Component

0..*

+Purpose

+MinCapabilityLevel

WorkUnitKind

EndeavourElement

+Justification

WorkPerformance
0..*

+Job

1

7.1.67.1 Attributes

Name Type Semantics

StartTime Timestamp The point in time at which the work unit is started.

EndTime Timestamp The point in time at which the work unit is finished.

Duration Timespan The span of time between the start time and the end time.

7.1.67.2 Relationships

Name Role To class Semantics

IsClassifiedBy n/a WorkUnitKind A work unit in the endeavour domain is always of some
work unit kind defined in the methodology domain.

n/a Context Task A work unit is always the context for a given task.

IsInvolvedIn-

Performance

Job Work-

Performance

A work unit may be involved in a number of work

performances.

7.1.67.3 Example

On a certain project, Mary is in charge of quality assurance. In order to do this, Mary’s team reviews each
generated product and then compares the number of defects found against historical data. Mary’s overall
responsibility (quality assurance) is a work unit (a process), and each individual piece of work performed by
her team (reviewing work products and comparing defect reports to historical data) is also a work unit (tasks).

7.1.68 WorkUnitKind

A work unit kind is a specific kind of work unit, characterized by its purpose within the endeavour.

WorkUnitKind is an abstract subclass of Template, specialized into TaskKind, TechniqueKind and Process-
Kind.

This is a process-related class.

+Purpose

+MinCapabilityLevel

WorkUnitKind

+Name

Template

+Description

TaskKind

+Context

0..*

+Component

0..*
+Description

TechniqueKind ProcessKind

+StartTime

+EndTime

+Duration

WorkUnit

+Description

+MinCapabilityLevel

Outcome

1

+Result

0..*

+RecommendedAssignment

WorkPerformanceKind
0..*

+Job

1

ISO/IEC 24744:2007(E)

© ISO/IEC 2007 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
74

4:2
00

7

https://standardsiso.com/api/?name=ba816ddb064b3e42d70c333786bf2a54

