N F P A

30

Flammable and Combustible Liquids Code

1996 Edition

National Fire Protection Association

An International Codes and Standards Organization

IMPORTANT NOTICE ABOUT THIS DOCUMENT

NFPA codes, standards, recommended practices, and guides, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

See inside back cover for additional important notices and information.

Copyright © 1996 NFPA, All Rights Reserved

NFPA 30

Flammable and Combustible Liquids Code

1996 Edition

This edition of NFPA 30, Flammable and Combustible Liquids Code, was prepared by the Flammable and Combustible Liquids Committee and acted on by the National Fire Protection Association, Inc., at its Annual Meeting held May 20–23, 1996, in Boston, MA. It was issued by the Standards Council on July 18, 1996, with an effective date of August 9, 1996, and supersedes all previous editions.

Changes other than editorial are indicated by a vertical rule in the margin of the pages on which they appear. These lines are included as an aid to the user in identifying changes from the previous edition.

This edition of NFPA 30 was approved as an American National Standard on July 26, 1996.

Origin and Development of NFPA 30

From 1913 to 1957, this document was written as a model municipal ordinance known as the *Suggested Ordinance for the Storage, Handling, and Use of Flammable Liquids*. In 1957, the format was changed to a code, although the technical requirements and provisions remained the same. During the 83-year period of existence of NFPA 30, numerous revised editions have been published as dictated by experience and advances in technology.

A brief review of the major changes adopted over the previous four editions follows: In 1984, the chapter covering automotive and marine service stations was removed from NFPA 30 and was used as the basis for a separate document, NFPA 30A, *Automotive and Marine Service Station Code*. In 1987, Chapter 5 (Industrial Plants), Chapter 6 (Bulk Plants and Terminals), Chapter 7 (Process Plants), and Chapter 8 (Refineries, Chemical Plants, and Distilleries) were combined into a single chapter on Operations. In 1990, a new section was added to Chapter 4 to address hazardous materials storage lockers, and more detailed guidance was added to Section 5-3 to address ventilation of enclosed process areas and for estimation of fugitive emissions. In 1993, Chapter 4, Container and Portable Tank Storage, was completely rewritten so that its requirements were presented more clearly, especially for mercantile occupancies. In addition, changes were made to the tank diking provisions to allow combined remote impounding and diking systems and to provide relief from the spill control requirements for certain secondary containment-type tanks.

This 1996 edition incorporates the following major changes:

- A new section on the classification of liquids has been added to Chapter 1. This new section replaces NFPA 321, Standard on Basic Classification of Flammable and Combustible Liquids, and incorporates it into NFPA 30.
- An entirely new section (2-4.4) has been added to establish requirements for temporary and permanent closure of underground storage tanks.
- The requirements for tightness testing of tanks have been revised substantially to apply to specific tank designs.
- Certain intermediate bulk containers other than metal portable tanks are now recognized in Chapter 4, Container and Portable Tank Storage.
- The requirements for display and storage of liquids in mercantile occupancies have been completely revised to recognize current retailing practice and to encourage the use of fire protection design criteria based on full-scale fire testing.
- New fire protection design criteria for inside storage of flammable and combustible liquids have been incorporated into Chapter 4. These criteria are based on full-scale fire tests and are more comprehensive than what was previously available.
- Design criteria for containment and drainage of spills in inside storage areas have been added to Chapter 4.
- Chapter 5, Operations, has been editorially revised for clarity and for easier use in conjunction with federal process safety management and process safety analysis rules.
- The requirements in Chapter 5 for marine terminals have been significantly strengthened.

Technical Correlating Committee on Flammable and Combustible Liquids

Edward Hildebrandt, *Chair* Village of Morton Grove, IL

John A. Davenport, Industrial Risk Insurers, CT John J. Hawley, Underwriters Laboratories Inc., IL Donald L. Hierman, Rhone-Poulenc, Inc., NJ Rep. Chemical Mfrs. Assn.

James D. Kieffer, Hiram Walker & Sons Ltd, Canada Richard S. Kraus, Petroleum Safety Consultants, VA Rep. American Petroleum Inst.

John F. Murphy, Dow Chemical U.S.A., TX

William E. Rehr, BOCA Int'l, IL
Douglas A. Rivers, 3M Co., MN
Gerald J. Rosicky, General Motors Corp., MI
Rep. NFPA Industrial Fire Protection Section
Orville M. Slye, Jr., Loss Control Assoc., Inc., PA
Brooke B. Smith, Jr., Aspen Engr Inc., CO
Hugh Patrick Toner, Society of the Plastics Industry, Inc., DC
Rep. Society of the Plastics Industry, Inc.

Alternates

Richard D. Gottwald, Society of the Plastics Industry, Inc., DC (Alt. to H. P. Toner)

Kenneth H. Turnbull, Texaco, TX (Alt. to R. S. Kraus)

Nonvoting

David L. Blomquist, Blomquist Fire Protection Engr, CA Rep. T/C on Tank Storage and Piping SystemsDonald M. Johnson, Walnut Creek, CA (Member Emeritus) **Jack Woycheese,** Gage-Babcock & Assoc., Inc., CA Rep. T/C on Operations

Committee Scope: This Committee shall have primary responsibility for documents on safeguarding against the fire and explosion hazards associated with the storage, handling, and use of flammable and combustible liquids; safeguarding against the fire and explosion hazards associated with the transporting of flammable and combustible liquids in tank vehicles, in portable tanks, and in containers, except as this subject is addressed by the regulations of the U.S. Department of Transportation; and classifying flammable and combustible liquids.

Technical Committee on Fundamentals (FLC-FUN)

C. Charles Snow, Jr., Chair 3M Co., MN

Robert P. Benedetti, Secretary Nat'l Fire Protection Assn., MA (Nonvoting)

David L. Blomquist, Blomquist Fire Protection Engr, CA Gerald A. Gordon, Sonoco Industrial, IL John J. Hawley, Underwriters Laboratories Inc., IL

Richard S. Kraus, Petroleum Safety Consultants, VA Rep. American Petroleum Inst. Jack Woycheese, Gage-Babcock & Assoc., Inc., CA

Alternate

Charilyn A. Zeisset, Penzoil Co., TX (Alt. to R. S. Kraus)

Committee Scope: This Committee shall have primary responsibility for documents or portions of documents on the fundamental requirements for safeguarding against the fire and explosion hazards associated with the storage and handling of flammable and combustible liquids, the classification of flammable and combustible liquids, and definitions related thereto.

Technical Committee on Operations (FLC-OPS)

Jack Woycheese, Chair Gage-Babcock & Assoc., Inc., CA

Gary R. Glowinski, Safety-Kleen Corp., IL

John P. Hartmann, Hartmann Mgmt. Services, Inc., IL

Donald L. Hierman, Rhone-Poulenc, Inc., NJ

Rep. Chemical Mfrs. Assn.

Richard J. Hild, Verlan Fire Insurance Co., MD

Edward Hildebrandt, Village of Morton Grove, IL

Clark L. Holmberg, Citco Petroleum Corp., OK

Rep. Nat'l Petroleum Refiners Assn.

Joshy Paul Kallungal, Ontario Fire Marshals Office, Canada

James D. Kieffer, Hiram Walker & Sons Ltd, Canada

Robert E. McClay, Indiana University of Pennsylvania, PA

Rep. American Society of Safety Engr

Thaddeus A. Nosal, American Insurance Services Group, NY

Rep. American Insurance Services Group, Inc.

Anthony M. Ordile, Loss Control Assoc., Inc., PA
Lee Paige, IRM Insurance, NC
Susan Preske, Liberty Mutual Insurance Co., NY
Rep. The Alliance of American Insurers
Robert N. Renkes, Petroleum Equipment Inst., OK
Rep. Petroleum Equipment Inst.
Gerald J. Rosicky, General Motors Corp., MI
Rep. NFPA Industrial Fire Protection Section
Brooke B. Smith, Jr., Aspen Engr Inc., CO
C. Charles Snow, Jr., 3M Co., MN
Thomas K. Terrebonne, Kemper Nat'l Insurance Cos., KS
William A. Thornberg, Industrial Risk Insurers, CT
Kenneth H. Turnbull, Texaco, TX

Alternates

John A. Davenport, Industrial Risk Insurers, CT

(Alt. to W. A. Thornberg)

John J. Foley, Gage-Babcock & Assoc., Inc., GA

(Alt. to J. Woycheese)

Robert D. Grausam, Kemper Nat'l Insurance Cos., NY

(Alt. to T. K. Terrebonne)

David C. Kirby, Union Carbide Corp., WV

(Alt. to D. L. Hierman)

Richard S. Kraus, Petroleum Safety Consultants, VA

(Alt. to K. H. Turnbull)

Thomas E. McCauley, IRM Services, Inc., TX

(Alt. to L. Paige)

Douglas A. Rivers, $3M\ Co., MN$

Rep. American Petroleum Inst.

(Alt. to C. C. Snow)

Orville M. Slye, Jr., Loss Control Assoc., Inc., PA

(Alt. to A. M. Ordile)

Kevin F. Sykora, The Sherwin-Williams Co., OH

(Alt. to R. E. McClay)

Nonvoting

Michael B. Moore, U.S. Occupational Safety & Health Admin., DC

Terence P. Smith, U.S. Dept. of Labor, DC (Alt. to M. B. Moore)

Committee Scope: This Committee shall have primary responsibility for documents or portions of documents on operations that involve the handling or use of flammable and combustible liquids, either as a principal activity or as an incidental activity, and for the transportation of these liquids, except as this subject is addressed by the regulations of the U.S. Department of Transportation.

Technical Committee on Storage and Warehousing of Containers and Portable Tanks (FLC-SWC)

William M. Carey, Underwriters Laboratories Inc., IL

Robert H. Christopher, DuPont Co., DE

Rep. Nat'l Paint & Coatings Assn.

John A. Davenport, Industrial Risk Insurers, CT

John J. Foley, Gage-Babcock & Assoc., Inc., GA

Gary R. Glowinski, Safety-Kleen Corp., IL

Gerald A. Gordon, Sonoco Industrial, IL

John Heller, Brown Sprinkler Corp., KY

Rep. Nat'l Fire Sprinkler Assn.

Richard J. Hild, Verlan Fire Insurance Co., MD

Edward Hildebrandt, Village of Morton Grove, IL

Joshy Paul Kallungal, Ontario Fire Marshals Office, Canada

David C. Kirby, Union Carbide Corp., WV

Rep. Chemical Mfrs. Assn.

John A. LeBlanc, Factory Mutual Research Corp., MA

Robert E. Lister, American Insurance Services Group, NY

Rep. American Insurance Services Group, Inc.

Navin D. Mehta, Defense Logistic Agency (DLA-MMDI), VA

Charles L. Milles, Jr., AgrEvo USA Co., DE

Rep. American Crop Protection Assn.

Anthony M. Ordile, Loss Control Assoc., Inc., PA

Lee Paige, IRM Insurance, NC

Lee Rindfuss, M&M Protection Consultants, MA

Douglas A. Rivers, 3M Co., MN

Gerald J. Rosicky, General Motors Corp., MI

Rep. NFPA Industrial Fire Protection Section

Ronald J. Stephens, Automatic Sprinkler Corp. of

America, CA

David C. Tabar, The Sherwin-Williams Co., OH Thomas K. Terrebonne, Kemper Nat'l Insurance Cos., KS William J. Tomes, Tomes, VanRickley & Assoc., CA Rep. Home Depot Hugh Patrick Toner, Society of the Plastics Industry, Inc., DC
Paul T. Vavala, Haz-Stor Co., IL
William W. Woodfill, Wausau Insurance Cos., IL
Rep. The Alliance of American Insurers

Alternates

Jon V. Brannan, Underwriters Laboratories Inc., IL (Alt. to W. M. Carey)

Richard D. Gottwald, Society of the Plastics Industry, Inc., DC

(Alt. to H. P. Toner)

Robert D. Grausam, Kemper Nat'l Insurance Cos., NY (Alt. to T. K. Terrebonne)

Donald L. Hierman, Rhone-Poulenc, Inc., NJ (Alt. to D. C. Kirby)

Thomas E. McCauley, IRM Services, Inc., TX (Alt. to L. Paige)

Richard S. Kraus, Petroleum Safety Consultants, VA (Vot. Alt. to API Rep.)

Thaddeus A. Nosal, American Insurance Services Group, NY (Alt. to R. F. Lister)

Susan Preske, Liberty Mutual Insurance Co., NY (Alt. to W. W. Woodfill)

Leon C. Schaller, L-C Schaller Co., DE (Alt. to R. H. Christopher) Orville M. Slye, Jr., Loss Control Assoc., Inc., PA

(Alt. to A. M. Ordile)

C. Charles Snow, Jr., 3M Co., MN

(Alt. to D. A. Rivers) **David C. Swenson,** The Sherwin-Williams Co., OH

(Alt. to D. C. Tabar)

William A. Thornberg, Industrial Risk Insurers, CT (Alt. to J. A. Davenport)

James W. Tomes, Tomes, VanRickley & Assoc., CA (Alt. to W. J. Tomes)

Jack Woycheese, Gage-Babcock & Assoc., Inc., CA (Alt. to J. J. Foley)

Larry E. Yunker, Sonoco Products Co., IL (Alt. to G. A. Gordon)

Committee Scope: This Committee shall have primary responsibility for documents or portions of documents on storage of liquids in containers and in portable tanks whose capacity does not exceed 2500 L (660 gal).

Technical Committee on Tank Storage and Piping Systems (FLC-TAN)

David L. Blomquist, *Chair* Blomquist Fire Protection Engr, CA

Gary T. Austerman, Burns & McDonnel Engr Co., MO Thomas M. Bazzolo, Connecticut Fire Marshal's Office, CT Rep. T/C Automotive/Marine Service Station Jon V. Brannan, Underwriters Laboratories Inc., IL

Michael T. Castellano, Joseph E. Seagram & Sons, Inc., NY Rep. Distilled Spirits Council of the U.S.

Sullivan D. Curran, Fiberglass Petroleum Tank & Pipe Inst., TX

Rep. Fiberglass Petroleum Tank & Pipe Inst.

Wayne Geyer, Steel Tank Inst., IL Rep. Steel Tank Inst.

John P. Hartmann, Hartmann Mgmt. Services, Inc., IL

Thomas Henning, Unocal, CA

Rep. Western States Petroleum Assn.

Donald L. Hierman, Rhone-Poulenc, Inc., NJ Rep. Chemical Mfrs. Assn.

Michael D. Lattner, Morrison Bros., Co. IA
David G. Mahoney, M&M Protection Consultants, IL
Armin E. Mittermaier, Data Action, IN
Rep. Petroleum Marketers Assn. of America
Joseph R. Natale, Mobile Research & Development, NJ
Rep. Nat'l Petroleum Refiners Assn.
Thaddeus A. Nosal, American Insurance Services Group, NY
Rep. American Insurance Services Group, Inc.
Albert S. Pela, Jr., Mobil Research & Development Corp., NJ
Rep. American Petroleum Inst.
Robert N. Renkes, Petroleum Equipment Inst., OK
Rep. Petroleum Equipment Inst.
Orville M. Slye, Jr., Loss Control Assoc., Inc., PA
Brooke B. Smith, Jr., Aspen Engr Inc., CO

Alternates

James W. Cragun, Phillips Petroleum Co., OK (Alt. to A. S. Pela) John A. Davenport, Industrial Risk Insurers, CT (Alt. to W. A. Thornberg) Shari L. Duzac, Underwriters Laboratories Inc., CA (Alt. to J. V. Brannan) David C. Kirby, Union Carbide Corp., WV
(Alt. to D. L. Hierman)

Patrick A. McLaughlin, McLaughlin & Assoc., CA
(Alt. to S. D. Curran)

Michael B. Nolan, Joseph E. Seagram & Sons, Inc., NY
(Alt. to M. T. Castellano)

William A. Thornberg, Industrial Risk Insurers, CT

Anthony M. Ordile, Loss Control Assoc., Inc., PA (Alt. to O. M. Slye)

K. Tim Perkins, Unocal, CA (Alt. to J. R. Natale)

Nonvoting

Donald M. Johnson, Walnut Creek, CA (Member Emeritus)

Robert P. Benedetti, NFPA Staff Liaison

Committee Scope: This Committee shall have primary responsibility for documents or portions of documents on the storage of liquids in fixed aboveground and underground tanks of any size and in portable tanks whose capacity exceeds 2500 liters (660 gallons) and for the installation of such tanks and portable tanks in buildings and in storage tank buildings.

These lists represent the membership at the time each Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

NOTE: Membership on a Committee shall not in and of itself constitute an endorsement of the Association or any document developed by the Committee on which the member serves.

Contents

Forewor	d	30 - 7			gn, Construction, and Capacity of age Cabinets	30 –31
Chapter	1 General Provisions		4-4	Desig	gn, Construction, and Operation of de Liquid Storage Areas	
	Scope				airements for Liquid Storage Areas in	
1-2	Purpose					30 –35
1-3	Applicability				ardous Materials Storage Lockers	30 –37
1-4	Equivalency					30 –38
1-5	Retroactivity				Protection and Control	
1-6	Definitions	30 – 7				
1-7	Definition and Classification of	00 10	=		perations	
1.0	Liquids			•	e	
1-8	Use of Other Units		5-2	Gene	eral	30 –48
1-9	General Requirements	30-11			ity Design	
CI.	0 7 10		5-4	Rese	rved	30 –50
_	2 Tank Storage		5-5	Incid	lental Operations	30- 50
2-1	Scope		5-6	Load	ling and Unloading Operations	30 –50
2-2	Design and Construction of Tanks	30 -11	5-7	Wha	rves	30 –52
2-3	Installation of Outside Aboveground	20.10	5-8	Rese	rved	30 –54
	Tanks		5-9	Cont	rol of Ignition Sources	30 –54
2-4	Installation of Underground Tanks		5-10	Vapo	or Recovery and Vapor Processing	
2-5	Storage Tank Buildings	30 –21	9	Syste	ems	30 –54
2-6	Supports, Foundations, and Anchorage for	20.00	5-11	Mana	agement of Fire Hazards	30 –57
	All Tank Locations		5-12	Fire :	Protection and Fire Suppression	30 –57
2-7	Sources of Ignition					
2-8	Testing and Maintenance		Chapter 6	5 R	eferenced Publications	30 –58
2-9		30 –28	Annondiz	. A	Explanatory Material	20 60
2-10	Prevention of Overfilling of Tanks	30 –28	Appendix	X A	Explanatory Material	30 -00
2-11	Leakage Detection and Inventory Records for Underground Tanks	30 –28	Appendix	х В	Emergency Relief Venting for Fire Exposure for Aboveground Tanks	30 –70
Chapter	3 Piping Systems	30 –28	A	C	Tommorphile Out of Society Classes	
3-1	Scope	30 –28	Appendix		Temporarily Out of Service, Closure in Place, or Closure by Removal of	
3-2	General	30 –29			Underground Tanks	30 –73
3-3	Materials for Piping, Valves, and					
	Fittings		Appendix	x D		
3-4	Pipe Joints	30 –29			Shown in Section 4-8 and Suggested F	ire
3-5	Supports	30 –29			Protection for Some Containers of Flammable and Combustible Liquids	
3-6	Protection against Corrosion	30 –29			Not Covered in Section 4-8	30-75
3-7	Underground Piping	30 –29			Trot dovered in section 1-0	30-73
3-8	Valves	30 –30	Appendix		Suggested Fire Protection for Containe	ers
3-9	Testing	30 –30			of Flammable and Combustible	
3-10	Identification	30 –30			Liquids	30 –78
			Appendix	кF	Fugitive Emissions Calculations	30 –81
Chapter	4 Container and Portable Tank					
r		30 –30	Appendix	k G	Referenced Publications	30– 82
4-1	General	30 –30	Index			30 –84
4-2	Design, Construction, and Capacity of		muca			JUU-I
	• ,	30 –30	Tentative	Inte	rim Amendment	30 –90

NFPA 30

Flammable and Combustible Liquids Code

1996 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates explanatory material on that paragraph in Appendix A.

Information on referenced publications can be found in Chapter 6 and Appendix G.

Foreword

This code, known as the Flammable and Combustible Liquids Code, is recommended for use as the basis for legal regulations. Its provisions are intended to reduce the hazard to a degree consistent with reasonable public safety, without undue interference with public convenience and necessity, of operations that require the use of flammable and combustible liquids. Thus, compliance with this standard does not eliminate all hazards in the use of flammable and combustible liquids. (See the Flammable and Combustible Liquids Code Handbook for additional explanatory information.)

Chapter 1 General Provisions

1-1 Scope.

- **1-1.1** This code shall apply to the storage, handling, and use of flammable and combustible liquids, including waste liquids, as herein defined and classified.
- **1-1.2** This code shall not apply to the following:
- (a)* Any liquid that has a melting point equal to or greater than 100°F (37.8°C) or that does not meet the criteria for fluidity given in the definition for "Liquid" in Section 1-6 of this code;
- (b) Any liquefied gas or cryogenic liquid as defined in Section 1-6 of this code;
- (c)* Any liquid that does not have a flash point, which can be flammable under some conditions, such as certain halogenated hydrocarbons and mixtures containing halogenated hydrocarbons;
 - (d)* Any aerosol product;
 - (e) Any mist, spray, or foam;
- (f) Storage of flammable and combustible liquids as covered by NFPA 395, Standard for the Storage of Flammable and Combustible Liquids at Farms and Isolated Sites.
- **1-1.3** This code shall also not apply to the following:
- (a)* Transportation of flammable and combustible liquids, as governed by the U. S. Department of Transportation;
- (b)* Storage, handling, and use of fuel oil tanks and containers connected with oil burning equipment.
- **1-2* Purpose.** The purpose of this code shall be to provide reasonable requirements for the safe storage and handling of flammable and combustible liquids.
- **1-3 Applicability.** Chapters 2 and 3 shall apply to bulk storage of liquids in tanks and similar vessels. Chapter 4 shall apply to storage of liquids in containers and portable tanks

in storage areas and in warehouses. Chapter 5 shall apply to handling of liquids in manufacturing and related operations and processes.

1-4 Equivalency.

- 1-4.1 Nothing in this code shall be intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, or safety over those prescribed by this code, provided that technical documentation is submitted to the authority having jurisdiction to demonstrate equivalency and the system, method, or device is approved for the intended purpose.
- 1-4.2 The provisions of this code shall be permitted to be altered at the discretion of the authority having jurisdiction after consideration of special situations, such as topographical conditions of the site; presence or absence of protective features (barricades, walls, etc.); adequacy of building exits; the nature of the occupancy; proximity to buildings or adjoining property and the construction of such buildings; capacity and construction of proposed storage tanks and the nature of the liquids to be stored; the nature of the process; the degree to which private fire protection is provided; and the capabilities of the local fire department. Such alternate arrangements shall provide protection at least equivalent to that required by this code.
- **1-4.3** The provisions of this code shall also be permitted to be altered at the discretion of the authority having jurisdiction in cases where other regulations, such as for environmental protection, impose requirements that are not anticipated by this code. Such alternate arrangements shall provide protection at least equivalent to that required by this code.
- **1-4.4** Installations made in accordance with the applicable requirements of the following standards shall be deemed to be in compliance with this code:

NFPA 30A, Automotive and Marine Service Station Code; NFPA 32, Standard for Drycleaning Plants; NFPA 33, Standard for Spray Application Using Flammable or Combustible Materials; NFPA 34, Standard for Dipping and Coating Processes Using Flammable or Combustible Liquids; NFPA 35, Standard for the Manufacture of Organic Coatings; NFPA 36, Standard for Solvent Extraction Plants; NFPA 37, Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines; NFPA 45, Standard on Fire Protection for Laboratories Using Chemicals; and Chapter 10 of NFPA 99, Standard for Health Care Facilities.

- 1-5 Retroactivity. The provisions of this code shall be considered necessary to provide a reasonable level of protection from loss of life and property from fire and explosion. They reflect situations and the state of the art prevalent at the time the code was issued. Unless otherwise noted, it shall not be intended that the provisions of this code be applied to facilities, equipment, structures, or installations that were existing or approved for construction or installation prior to the effective date of this code, except in those cases where it is determined by the authority having jurisdiction that the existing situation involves a distinct hazard to life or adjacent property.
- **1-6 Definitions.** For the purpose of this code, the following terms shall be defined as follows:

Apartment House. A building or that portion of a building containing more than two dwelling units.

Approved.* Acceptable to the authority having jurisdiction.

Assembly Occupancy. All buildings or portions of buildings used for gathering 50 or more persons for such purposes as deliberation, worship, entertainment, dining, amusement, or awaiting transportation.

Atmospheric Tank.* A storage tank that has been designed to operate at pressures from atmospheric through 1.0 psig (760 mm Hg through 812 mm Hg) measured at the top of the tank.

Authority Having Jurisdiction.* The organization, office, or individual responsible for approving equipment, an installation, or a procedure.

Barrel. A volume of 42 U.S. gal (158.9 L).

Basement. A story of a building or structure having $\frac{1}{2}$ or more of its height below ground level and to which access for fire-fighting purposes is unduly restricted.

Boiling Point. See 1-7.2.

Boil-Over.* An event in the burning of certain oils in an open-top tank when, after a long period of quiescent burning, there is a sudden increase in fire intensity associated with expulsion of burning oil from the tank. Boil-over occurs when the residues from surface burning become more dense than the unburned oil and sink below the surface to form a hot layer, which progresses downward much faster than the regression of the liquid surface. When this hot layer, called a "heat wave," reaches water or water-in-oil emulsion in the bottom of the tank, the water is first superheated and then boils almost explosively, overflowing the tank. Oils subject to boil-over consist of components having a wide range of boiling points, including both light ends and viscous residues. These characteristics are present in most crude oils and can be produced in synthetic mixtures.

Building. A three-dimensional space that is enclosed by a roof and a wall that covers more than one-half of the possible area of the sides of the space, is of sufficient size to allow entry by personnel, will likely limit the dissipation of heat or dispersion of vapors, and restricts access for fire fighting.

Bulk Plant or Terminal. That portion of a property where liquids are received by tank vessel, pipelines, tank car, or tank vehicle and are stored or blended in bulk for the purpose of distributing such liquids by tank vessel, pipeline, tank car, tank vehicle, portable tank, or container.

Chemical Plant. A large integrated plant or that portion of such a plant, other than a refinery or distillery, where liquids are produced by chemical reactions or used in chemical reactions.

Closed Container. A container as herein defined, so sealed by means of a lid or other device that neither liquid nor vapor will escape from it at ordinary temperatures.

Container. Any vessel of 60 U.S. gal (227 L) or less capacity used for transporting or storing liquids.

Crude Petroleum. Hydrocarbon mixtures that have a flash point below 150°F (65.6°C) and that have not been processed in a refinery.

Cryogenic Liquid. A refrigerated liquid gas having a boiling point below -130°F (-90°C) at atmospheric pressure.

Distillery. A plant or that portion of a plant where liquids produced by fermentation are concentrated and where the concentrated products are also mixed, stored, or packaged.

Dwelling. A building that is occupied exclusively for residence purposes and has not more than two dwelling units. Also, a building that is used as a boarding or rooming house and that serves not more than 15 persons with meals or sleeping accommodations or both.

Dwelling Unit. One or more rooms arranged for the use of one or more individuals living together as a single housekeeping unit, with cooking, living, sanitary, and sleeping facilities.

Educational Occupancy. A building or structure or any portion thereof used for the purpose of learning or of receiving educational instruction.

Emergency Relief Venting. An opening, construction method, or device that will automatically relieve excessive internal pressure due to an exposure fire.

Fire Area. An area of a building separated from the remainder of the building by construction having a fire resistance of at least 1 hr and having all communicating openings properly protected by an assembly having a fire resistance rating of at least 1 hour.

Fire Point. The lowest temperature at which a liquid will ignite and achieve sustained burning when exposed to a test flame in accordance with ASTM D 92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup.

Flash Point. See 1-7.2.

Fugitive Emissions. Releases of flammable vapor that continuously or intermittently occur from process equipment during normal operations. These include leaks from pump seals, valve packing, flange gaskets, compressor seals, process drains, etc.

Hazardous Material or Hazardous Chemical. Material presenting dangers beyond the fire problems relating to flash point and boiling point. These dangers can arise from but are not limited to toxicity, reactivity, instability, or corrosivity.

Hazardous Materials Storage Locker. A movable prefabricated structure, manufactured primarily at a site other than the final location of the structure and transported completely assembled or in a ready-to-assemble package to the final location. It is intended to meet local, state, and federal requirements for outside storage of hazardous materials.

Hazardous Reaction or Hazardous Chemical Reaction. Reactions that result in dangers beyond the fire problems relating to flash point and boiling point of either the reactants or of the products. These dangers might include, but are not limited to, toxic effects, reaction speed (including detonation), exothermic reaction, or production of unstable or reactive materials.

Hotel. Buildings or groups of buildings under the same management in which there are sleeping accommodations for hire, primarily used by transients who are lodged with or without meals, including, but not limited to, inns, clubs, motels, and apartment hotels.

Important Building. A building that is considered not expendable in an exposure fire. Examples include, but are not limited to, occupied buildings, control buildings, or buildings that contain high value contents or critical equipment or supplies.

Incidental Liquid Use or Storage. Use or storage as a subordinate activity to that which establishes the occupancy or area classification.

Inside Liquid Storage Area. A room or building used for the storage of liquids in containers or portable tanks, separated from other types of occupancies. Such areas include:

- (a) *Inside Room.* A room totally enclosed within a building and having no exterior walls.
- (b) Cutoff Room. A room within a building and having at least one exterior wall.
- (c) Attached Building. A building having only one common wall with another building having other types of occupancies.
- (d) Liquid Warehouse. A separate, detached building or attached building used for warehousing-type operations for liquids.

Institutional Occupancy. A building or structure or any portion thereof used by persons who are harbored or detained to receive medical, charitable, or other care or treatment or by persons involuntarily detained.

Labeled. Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation that maintains periodic inspection of production of labeled equipment or materials and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Liquefied Gas. A gas that, under its charged pressure, is partially liquid at 70°F (21°C).

Liquid. See 1-7.2.

Listed.* Equipment, materials, or services included in a list published by an organization acceptable to the authority having jurisdiction and concerned with evaluation of products or services that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services and whose listing states either that the equipment, material, or service meets identified standards or has been tested and found suitable for a specified purpose.

Low-Pressure Tank. A storage tank designed to withstand an internal pressure above 1.0 psig (6.9 kPa) but not more than 15 psig (103.4 kPa) measured at the top of the tank.

Mercantile Occupancy. The occupancy or use of a building or structure or that portion thereof used for the wholesale or retail display, storage, and merchandising of goods or wares.

Occupancy Classification. The system of defining the predominant operating characteristic of a portion of a building or plant for purposes of applying relevant sections of this code. This can include, but is not limited to, distillation, oxidation, cracking, and polymerization.

Office Occupancy. A building or structure or any portion thereof used for the transaction of business or the rendering or receiving of professional services.

Operating Unit (Vessel) or Process Unit (Vessel). The equipment in which a unit operation or unit process is conducted. (See also the definition of "Unit Operation or Unit Process.")

Operations. A general term that includes, but is not limited to, the use, transfer, storage, and processing of liquids.

Outdoor Occupancy Classification. Similar to occupancy classification, except that it applies to outdoor operations not enclosed in a building or shelter.

Portable Tank. Any closed vessel having a liquid capacity over 60 U.S. gal (227 L) and not intended for fixed installation. This includes intermediate bulk containers (IBCs) as defined and regulated by the U.S. Department of Transportation.

Pressure Vessel. Any fired or unfired vessel within the scope of the applicable section of the ASME *Boiler and Pressure Vessel Code*.

Process or Processing. An integrated sequence of operations. The sequence can be inclusive of both physical and chemical operations, unless the term is modified to restrict it to one or the other. The sequence can involve, but is not limited to, preparation, separation, purification, or change in state, energy content, or composition.

Protection for Exposures. Fire protection for structures on property adjacent to liquid storage. Fire protection for such structures shall be acceptable when located either within the jurisdiction of any public fire department or adjacent to plants having private fire brigades capable of providing cooling water streams on structures on property adjacent to liquid storage.

Refinery. A plant in which flammable or combustible liquids are produced on a commercial scale from crude petroleum, natural gasoline, or other hydrocarbon sources.

Safety Can. An approved container, of not more than 5 gal (18.9 L) capacity, having a spring-closing lid and spout cover and so designed that it will safely relieve internal pressure when subjected to fire exposure.

Secondary Containment Tank. A tank having an inner and an outer wall with an interstitial space (annulus) between the walls and having means for monitoring the interstitial space for a leak. Underground secondary containment tanks are of either Type I or Type II construction.

- (a) *Type I*. A primary tank wrapped by an exterior shell that is in direct contact with it. The exterior shell might or might not wrap the full 360-degree circumference of the primary tank.
- (b) *Type II*. A primary tank wrapped by an exterior shell that is physically separated from it by stand-offs and wraps the full 360-degree circumference of the primary tank.

Stable Liquid. Any liquid not defined as unstable.

Storage Tank. Any vessel having a liquid capacity that exceeds 60 gal (227 L), is intended for fixed installation, and is not used for processing.

Storage Tank Building. A roofed structure that contains storage tanks and that limits the dissipation of heat or the dispersion of flammable vapors or restricts fire-fighting access and control and that is installed in accordance with the requirements of Section 2-5.

Unit Operation or Unit Process. A segment of a physical or chemical process that might or might not be integrated with other segments to constitute the manufacturing sequence.

Unstable Liquid. A liquid that, in the pure state or as commercially produced or transported, will vigorously polymerize, decompose, undergo condensation reaction, or become self-reactive under conditions of shock, pressure, or temperature.

Vapor Pressure. See 1-7.2.

Vapor Processing Equipment. Those components of a vapor processing system designed to process vapors or liquids captured during transfer operations.

Vapor Processing System. A system designed to capture and process vapors displaced during transfer operations by use of mechanical or chemical means. Examples are systems using blower-assist for capturing vapors and refrigeration, absorption, and combustion systems for processing vapors.

Vapor Recovery System. A system designed to capture and retain, without processing, vapors displaced during transfer operations. Examples are balanced-pressure vapor displacement systems and vacuum-assist systems without vapor processing.

Ventilation. As specified in this code, movement of air that is provided for the prevention of fire and explosion. It is considered adequate if it is sufficient to prevent accumulation of significant quantities of vapor-air mixtures in concentrations over one-fourth of the lower flammable limit.

Warehouses.*

- (a) General-Purpose Warehouse. A separate, detached building or portion of a building used only for warehousing-type operations.
- (b) Liquid Warehouse. See definition under "Inside Liquid Storage Area."

Wharf. Any dock, pier, bulkhead, or other structure over or contiguous to navigable water with direct physical access from land, the primary function of which is the transfer of liquid cargo in bulk between shore installations and any tank vessel, such as a ship, barge, lighter boat, or other mobile floating craft.

1-7 Definition and Classification of Liquids.

- **1-7.1 Scope.** This section shall establish a uniform system of defining and classifying flammable and combustible liquids for the purpose of proper application of this code. This section shall apply to any liquid within the scope of and subject to the requirements of this code.
- **1-7.1.1** This section shall not apply to mists, sprays, or foams.
- **1-7.1.2** This section shall not apply to liquids that do not have flash points, but are capable of burning under certain conditions, such as certain halogenated hydrocarbons and certain mixtures of flammable or combustible liquids and halogenated hydrocarbons. [See A-1-1.2(c)]
- **1-7.2 Definitions.** For the purpose of this section, the following terms shall have the definitions given.

Boiling Point.* The temperature at which the vapor pressure of a liquid equals the surrounding atmospheric pressure. For purposes of defining the boiling point, atmospheric pressure shall be considered to be 14.7 psia (760 mm Hg). For mixtures that do not have a constant boiling point, the 20 per-

cent evaporated point of a distillation performed in accordance with ASTM D 86, Standard Method of Test for Distillation of Petroleum Products, shall be considered to be the boiling point.

Flash Point.* The minimum temperature of a liquid at which sufficient vapor is given off to form an ignitible mixture with air, near the surface of the liquid or within the vessel used, as determined by the appropriate test procedure and apparatus specified in 1-7.4.

Liquid. Any material that has a fluidity greater than that of 300 penetration asphalt when tested in accordance with ASTM D 5, *Test for Penetration for Bituminous Materials*.

Vapor Pressure.* The pressure, measured in pounds per square inch, absolute (psia), exerted by a liquid, as determined by ASTM D 323, Standard Method of Test for Vapor Pressure of Petroleum Products (Reid Method).

- 1-7.3* Classification and Definition of Liquids. Any liquid within the scope of this code and subject to the requirements of this code shall be known generally as either a flammable liquid or a combustible liquid and shall be defined and classified in accordance with this subsection.
- **1-7.3.1 Flammable Liquid.** Any liquid that has a closed-cup flash point below 100°F (37.8°C), as determined by the test procedures and apparatus set forth in 1-7.4. Flammable liquids shall be classified as Class I as follows:
- (a) Class I Liquid. Any liquid that has a closed-cup flash point below 100°F (37.8°C) and a Reid vapor pressure not exceeding 40 psia (2068.6 mm Hg) at 100°F (37.8°C), as determined by ASTM D 323, Standard Method of Test for Vapor Pressure of Petroleum Products (Reid Method). Class I liquids shall be further classified as follows:
- 1. Class IA liquids shall include those liquids that have flash points below $73^{\circ}F$ (22.8°C) and boiling points below $100^{\circ}F$ (37.8°C).
- 2. Class IB liquids shall include those liquids that have flash points below 73°F (22.8°C) and boiling points at or above 100°F (37.8°C).
- 3. Class IC liquids shall include those liquids that have flash points at or above 73°F (22.8°C), but below 100°F (37.8°C).
- **1-7.3.2 Combustible Liquid.** A combustible liquid shall be defined as any liquid that has a closed-cup flash point at or above 100°F (37.8°C), as determined by the test procedures and apparatus set forth in 1-7.4. Combustible liquids shall be classified as Class II or Class III as follows:
- (a) Class II Liquid. Any liquid that has a flash point at or above $100^{\circ}F$ (37.8°C) and below $140^{\circ}F$ (60°C).
- (b) Class IIIA. Any liquid that has a flash point at or above 140°F (60°C), but below 200°F (93°C).
- (c) Class IIIB. Any liquid that has a flash point at or above 200°F (93°C).
- **1-7.4 Determination of Flash Point.** The flash point of a liquid shall be determined according to the methods specified in this subsection.
- 1-7.4.1 The flash point of a liquid having a viscosity below 5.5 centiStokes at 104°F (40°C) or below 9.5 centiStokes at 77°F (25°C) shall be determined in accordance with ASTM D 56, Standard Method of Test for Flash Point by the Tag Closed Tester.

Exception: Cut-back asphalts, liquids that tend to form a surface film, and liquids that contain suspended solids shall not be tested in accordance with ASTM D 56, even if they otherwise meet the viscosity criteria.

- 1-7.4.2 The flash point of a liquid having a viscosity of 5.5 centiStokes or more at 104°F (40°C) or 9.5 centiStokes or more at 77°F (25°C) or a flash point of 200°F (93.4°C) or higher shall be determined in accordance with ASTM D 93, Standard Test Methods for Flash Point by the Pensky-Martens Closed Tester.
- 1-7.4.3 As an alternative, ASTM D 3278, Standard Method of Tests for Flash Point of Liquids by Setaflash Closed Tester, shall be permitted to be used for paints, enamels, lacquers, varnishes, and related products and their components that have flash points between 32°F (0°C) and 230°F (110°C) and viscosities below 150 Stokes at 77°F (25°C).
- **1-7.4.4** As an alternative, ASTM D 3828, Standard Test Methods for Flash Point by Small Scale Closed Tester, shall be permitted to be used for materials other than those for which ASTM D 3278 is specifically required.
- **1-8 Use of Other Units.** If a value for measurement given in this standard is followed by an equivalent value in other units, the first stated shall be regarded as the requirement. The given equivalent value shall be considered to be approximate.

1-9 General Requirements.

- **1-9.1 Storage.** Liquids shall be stored in tanks in accordance with Chapter 2 of this code or in containers, portable tanks, and intermediate bulk containers in accordance with Chapter 4 of this code.
- **1-9.2 Pressure Vessels.** All new pressure vessels that contain flammable or combustible liquids shall meet the following:
- (a) Fired pressure vessels shall be designed and constructed in accordance with Section I (Power Boilers), or Section VIII, Division 1 or Division 2 (Pressure Vessels), as applicable, of the ASME *Boiler and Pressure Vessel Code*.
- (b) Unfired pressure vessels shall be designed and constructed in accordance with Section VIII, Division 1 or Division 2, of the ASME *Boiler and Pressure Vessel Code*.
- (c) Pressure vessels that do not meet the requirements of (a) or (b) shall be permitted to be used provided approval has been obtained from the state or other governmental jurisdiction in which they are to be used. (Such pressure vessels are generally referred to as "State Special.")
- **1-9.3 Exits.** Egress from buildings and areas covered by this code shall meet the requirements of NFPA *101*®, *Life Safety Code*®.

Chapter 2 Tank Storage

2-1 Scope. This chapter shall apply to:

- (a) The storage of flammable and combustible liquids in fixed aboveground and underground tanks;
- (b) The storage of flammable and combustible liquids in fixed aboveground tanks in buildings;
- (c) The storage of flammable and combustible liquids in portable tanks whose capacity exceeds 660 gal (2500 L); and
 - (d) The installation of such tanks and portable tanks.

2-2 Design and Construction of Tanks.

- **2-2.1 Materials.** Tanks shall be designed and built in accordance with recognized good engineering standards for the material of construction being used and shall be of steel or approved noncombustible material, with the following limitations and exceptions:
- (a) The material of tank construction shall be compatible with the liquid to be stored. In case of doubt about the properties of the liquid to be stored, the supplier, producer of the liquid, or other competent authority shall be consulted.
- (b) Tanks constructed of combustible materials shall be subject to the approval of the authority having jurisdiction and limited to:
 - 1. Installation underground, or
- 2. Use where required by the properties of the liquid stored, or
- 3. Storage of Class IIIB liquids aboveground in areas not exposed to a spill or leak of Class I or Class II liquid, or
- 4. Storage of Class IIIB liquids inside a building protected by an approved automatic fire extinguishing system.
- (c) Unlined concrete tanks shall be permitted to be used for storing liquids having a gravity of 40° API or heavier. Concrete tanks with special linings shall be permitted to be used for other services provided the design is in accordance with sound engineering practice.
- (d) Tanks shall be permitted to have combustible or non-combustible linings. The choice of a suitable protective lining shall depend upon the properties of the liquid stored.
- (e) Special engineering consideration shall be required if the specific gravity of the liquid to be stored exceeds that of water or if the tank is designed to contain liquids at a liquid temperature below $0^{\circ}F$ ($-17.8^{\circ}C$).

2-2.2 Fabrication.

- **2-2.2.1** Tanks shall be permitted to be of any shape or type consistent with sound engineering design.
- **2-2.2.2** Metal tanks shall be welded, riveted and caulked, or bolted, or constructed by use of a combination of these methods.

2-2.3 Atmospheric Tanks.

- **2-2.3.1** Atmospheric tanks, including those incorporating secondary containment, shall be built in accordance with recognized standards of design or approved equivalents. Atmospheric tanks shall be built, installed, and used within the scopes of their approvals or within the scopes of any of the following:
- (a) Underwriters Laboratories Inc., Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids, UL 142; Standard for Steel Underground Tanks for Flammable and Combustible Liquids, UL 58; Standard for Steel Inside Tanks for Oil Burner Fuel, UL 80; or Standard for Insulated Aboveground Tanks for Flammable Liquids, UL 2085.
- (b) American Petroleum Institute Standard No. 650, Welded Steel Tanks for Oil Storage, eighth edition.
- (c) American Petroleum Institute Specifications 12B, Bolted Tanks for Storage of Production Liquids, twelfth edition; 12D, Field Welded Tanks for Storage of Production Liquids, eighth edition; or 12F, Shop Welded Tanks for Storage of Production Liquids, seventh edition.

- (d) American Society for Testing and Materials, Standard Specification for Glass-Fiber Reinforced Polyester Underground Petroleum Storage Tanks, ASTM D 4021.
- (e) Underwriters Laboratories Inc., Standard for Glass-Fiber Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures, UL 1316.
- **2-2.3.2** Atmospheric tanks designed and constructed in accordance with Appendix F of API 650, *Welded Steel Tanks for Oil Storage*, shall be permitted to operate at pressures from atmospheric to 1.0 psig (gauge pressure of 6.9 kPa).

An engineering analysis shall be required for any other tank that is intended to be used at pressures greater than 0.5 psig (gauge pressure of 3.5 kPa) to determine that the tank can withstand the elevated pressure. In no case shall any atmospheric tank be permitted to be operated at a pressure greater than 1.0 psig (gauge pressure of 6.9 kPa).

- **2-2.3.3** Low-pressure tanks and pressure vessels shall be permitted to be used as atmospheric tanks.
- **2-2.3.4** Atmospheric tanks shall not be used for the storage of a liquid at a temperature at or above its boiling point.

2-2.4 Low-Pressure Tanks.

- **2-2.4.1** The normal operating pressure of the tank shall not exceed the design pressure of the tank.
- **2-2.4.2** Low-pressure tanks shall be built in accordance with recognized standards of design. Low-pressure tanks shall be permitted to be built in accordance with:
- (a) American Petroleum Institute Standard No. 620, Recommended Rules for the Design and Construction of Large, Welded, Low-Pressure Storage Tanks, fifth edition; and
- (b) The principles of the Code for Unfired Pressure Vessels, Section VIII, Division I, of the ASME Boiler and Pressure Vessel Code.
- **2-2.4.3** Horizontal cylindrical and rectangular tanks built according to Underwriters Laboratories Inc. requirements in 2-2.3.1 shall be permitted to be used for operating pressures not exceeding 1 psig (6.9 kPa) and shall be limited to 2.5 psig (17.2 kPa) under emergency venting conditions.
- **2-2.4.4** Pressure vessels shall be permitted to be used as low-pressure tanks.

2-2.5 Pressure Vessels.

- **2-2.5.1** The normal operating pressure of the vessel shall not exceed the design pressure of the vessel.
- **2-2.5.2** Storage tanks designed to withstand pressures above 15 psig (103.4 kPa) shall meet the requirements of 1-9.2.
- **2-2.6 Provisions for Internal Corrosion.** Where tanks are not designed in accordance with the American Petroleum Institute, American Society of Mechanical Engineers, or the Underwriters Laboratories Inc. standards, or if corrosion is anticipated beyond that provided for in the design formulas used, additional metal thickness or suitable protective coatings or linings shall be provided to compensate for the corrosion loss expected during the design life of the tank.

2-3 Installation of Outside Aboveground Tanks.

2-3.1* This section shall include installations in which tanks are above, at, or below grade and are without backfill.

2-3.2 Location with Respect to Property Lines, Public Ways, and Important Buildings on the Same Property.

- **2-3.2.1** Every aboveground tank for the storage of Class I, Class II, or Class IIIA liquids (except as provided in 2-3.2.2, and those liquids with boil-over characteristics and unstable liquids) operating at pressures not in excess of 2.5 psig (17.2 kPa) and designed with a weak roof-to-shell seam (see 2-3.6.3), or equipped with emergency venting devices that will not permit pressures to exceed 2.5 psig (17.2 kPa), shall be located in accordance with Table 2-1. Where tank spacing is contingent on a weak roof-to-shell seam design, the user shall present evidence certifying such construction to the authority having jurisdiction, upon request.
- (a) For the purpose of Section 2-3, a floating roof tank is defined as one that incorporates either:
- 1. A pontoon or double-deck metal floating roof in an open-top tank in accordance with API 650, Welded Steel Tanks for Oil Storage, or
- 2. A fixed metal roof with ventilation at the top and roof eaves in accordance with API 650 and containing a metal floating roof or cover meeting any one of the following requirements:
- a. A pontoon or double-deck metal floating roof meeting the requirements of API 650, or
- b. A metal floating cover supported by liquidtight metal floating devices that provide sufficient buoyancy to prevent the liquid surface from being exposed when half of the flotation is lost.
- (b) An internal metal floating pan, roof, or cover that does not meet the requirements of (a)2a above, or one that uses plastic foam (except for seals) for flotation, even if encapsulated in metal or fiberglass, shall be considered a fixed roof tank.
- **2-3.2.2** Vertical tanks having a weak roof-to-shell seam (*see* 2-3.6.3) and storing Class IIIA liquids can be located at one-half the distances specified in Table 2-1, provided the tanks are not within a diked area or drainage path for a tank storing a Class I or Class II liquid.
- **2-3.2.3** Every aboveground tank for the storage of Class I, Class II, or Class IIIA liquids (except those liquids with boilover characteristics and unstable liquids) operating at pressures exceeding 2.5 psig (gauge pressure of 17.2 kPa) or equipped with emergency venting that will permit pressures to exceed 2.5 psig (gauge pressure of 17.2 kPa), shall be located in accordance with Table 2-2.
- **2-3.2.4** Every aboveground tank for storage of liquids with boil-over characteristics shall be located in accordance with Table 2-3. Liquids with boil-over characteristics shall not be stored in fixed roof tanks larger than 150 ft (45.7 m) in diameter, unless an approved inerting system is provided on the tank.
- **2-3.2.5** Every aboveground tank for the storage of unstable liquids shall be located in accordance with Table 2-4.
- **2-3.2.6** Every aboveground tank for the storage of Class IIIB liquids, excluding unstable liquids, shall be located in accordance with Table 2-5, except where located within a diked area or drainage path for a tank(s) storing a Class I or Class II liquid. Where a Class IIIB liquid storage tank is within the diked area or drainage path for a Class I or Class II liquid, 2-3.2.1 or 2-3.2.2 shall apply.

Table 2-1 Stable Liquids [Operating Pressure 2.5 psig (17.2 kPa) or Less]

Type of Tank	Protection	Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way and Shall Not Be Less than 5 Feet	Minimum Distance in Feet from Nearest Side of Any Public Way or from Nearest Important Building on the Same Property and Shall Not Be Less than 5 Fee	
Floating Roof	Protection for exposures ¹	1/2 times diameter of tank	1/6 times diameter of tank	
[See 2-3.2 .1(a).]	None	Diameter of tank but need not exceed 175 ft	1/6 times diameter of tank	
Vertical with Weak Roof-to-Shell Seam	Approved foam or inerting system ² on tanks not exceeding			
(See 2-3.5.3.)	150 ft in diameter ³	1/2 times diameter of tank	1/6 times diameter of tank	
	Protection for exposures ¹ None	Diameter of tank 2 times diameter of tank but need not exceed 350 ft	$\frac{1}{3}$ times diameter of tank	
Horizontal and Vertical with Emergency Relief Venting to Limit			.,	
Pressures to 2.5 psig (gauge pressure of	Approved inerting system ² on the tank or approved foam			
17.2 kPa)	system on vertical tanks	1/2 times Table 2-6	½ times Table 2-6	
	Protection for exposures ¹ None	Table 2-6 2 times Table 2-6	Table 2-6 Table 2-6	

SI units: 1 ft = 0.3 m.

Table 2-2 Stable Liquids [Operating Pressure Greater than 2.5 psig (17.2 kPa)]

Type of Tank	Protection	Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Oppo- site Side of a Public Way	Minimum Distance in Feet fron Nearest Side of Any Public Wa or from Nearest Important Build ing on the Same Property	
Any Type	Protection for exposures ¹	$1\frac{1}{2}$ times Table 2-6 but shall not be less than 25 ft	$1\frac{1}{2}$ times Table 2-6 but shall not be less than 25 ft	
	None	3 times Table 2-6 but shall not be less than 50 ft	1/2 times Table 2-6 but shall not be less than 25 ft	

SI units: 1 ft = 0.3 m.

Table 2-3 Boil-Over Liquids

Type of Tank Protection		Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way, and Shall Not Be Less than 5 Feet	Minimum Distance in Feet from Nearest Side of Any Public Way or from Nearest Important Build- ing on the Same Property and Shall Not Be Less than 5 Feet	
Floating Roof [See 2-3.2.1(a)]	Protection for exposures ¹	½ times diameter of tank	1/6 times diameter of tank	
	None	Diameter of tank	1/6 times diameter of tank	
Fixed Roof	Approved foam or inerting			
	system ²	Diameter of tank	$\frac{1}{3}$ times diameter of tank	
	Protection for exposures ¹	2 times diameter of tank	∜3 times diameter of tank	
	None	4 times diameter of tank but need not exceed 350 ft	% times diameter of tank	

SI units: 1 ft = 0.3 m.

¹See definition of "Protection for Exposures."

²See NFPA 69, *Standard on Explosion Prevention Systems*.

³For tanks over 150 ft in diameter, use "Protection for Exposures" or "None," as applicable.

^{&#}x27;See definition of "Protection for Exposures."

¹See definition of "Protection for Exposures."
²See NFPA 69, Standard on Explosion Prevention Systems.

Table 2-4 Unstable Liquids

Type of Tank	Protection	Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way	Minimum Distance in Feet from Nearest Side of Any Public Way or from Nearest Important Building or the Same Property
Horizontal and Vertical Tanks with Emergency Relief Venting to Permit Pressure Not in Excess of 2.5 psig (gauge pressure of 17.2 kPa)	Tank protected with any one of the following: approved water spray, approved inerting, approved insulation and refrigeration, approved barricade	Table 2-6 but not less than 25 ft	Not less than 25 ft
	Protection for exposures ²	21/2 times Table 2-6 but not less than 50 ft	Not less than 50 ft
	None	5 times Table 2-6 but not less than 100 ft	Not less than 100 ft
Horizontal and Vertical Tanks with Emergency Relief Venting to Permit Pressure over 2.5 psig (gauge pressure of 17.2 kPa)	Tank protected with any one of the following: approved water spray, approved insulation and refrigeration, approved barricade	2 times Table 2-6 but not less than 50 ft	Not less than 50 ft
	Protection for exposures ²	4 times Table 2-6 but not less than 100 ft	Not less than 100 ft
	None	8 times Table 2-6 but not less than 150 ft	Not less than 150 ft

SI units: 1 ft = 0.3 m.

¹See NFPA 69, Standard on Explosion Prevention Systems.

²See definition of "Protection for Exposures."

Table 2-5 Class IIIB Liquids

Tank Capacity (gal)	Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way	Minimum Distance in Feet from Nearest Side of Any Public Way or from Nearest Important Building on the Same Property	
12,000 or less	5	5	
12,001 to 30,000	10	5	
30,001 to 50,000	10	10	
50,001 to 100,000	15	10	
100,001 or more	15	15	

SI units: 1 ft = 0.3 m; 1 gal = 3.8 L.

| **2-3.2.7** Where two tank properties of diverse ownership have a common boundary, the authority having jurisdiction shall be permitted, with the written consent of the owners of the two properties, to substitute the distances provided in 2-3.3.1 through 2-3.3.6 for the minimum distances set forth in 2-3.2.

2-3.2.8 Where end failure of horizontal pressure tanks and vessels can expose property, the tank shall be placed with the longitudinal axis parallel to the nearest important exposure.

2-3.3 Spacing (Shell-to-Shell) between Any Two Adjacent Aboveground Tanks.

2-3.3.1 Tanks storing Class I, II, or IIIA stable liquids shall be separated in accordance with Table 2-7, except as provided in 2-3.3.2.

2-3.3.2 Crude petroleum tanks having individual capacities not exceeding 126,000 gal (3000 barrels), where located at production facilities in isolated locations, need not be separated by more than 3 ft (0.9 m).

Table 2-6 Reference Table for Use in Tables 2-1 to 2-4

Tank Capacity (gal)	Minimum Distance in Feet from Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way	Minimum Distance in Feet from Nearest Side of Any Public Way or from Nearest Important Building on the Same Property
275 or less	5	5
276 to 750	10	5
751 to 12,000	15	5
12,001 to 30,000	20	5
30,001 to 50,000	30	10
50,001 to 100,000	50	15
100,001 to 500,000	80	25
500,001 to 1,000,000	100	35
1,000,001 to 2,000,000	135	45
2,000,001 to 3,000,000	165	55
3,000,001 or more	175	60

SI units: 1 ft = 0.3 m; 1 gal = 3.8 L.

2-3.3.3 Tanks used only for storing Class IIIB liquids shall be permitted to be spaced no less than 3 ft (0.9 m) apart unless within a diked area or drainage path for a tank storing a Class I or II liquid, in which case the provisions of Table 2-7 shall apply.

2-3.3.4 For unstable liquids, the distance between such tanks shall not be less than one-half the sum of their diameters.

2-3.3.5 Where tanks are in a diked area containing Class I or Class II liquids, or in the drainage path of Class I or Class II liquids, and are compacted in three or more rows or in an irregular pattern, greater spacing or other means shall be permitted to be required by the authority having jurisdiction to make tanks in the interior of the pattern accessible for fire-fighting purposes.

Table 2-7 Minimum Tank Spacing (Shell-to-Shell)

		Fixed or Ho	rizontal Tanks	
	Floating Roof Tanks	Class I or II Liquids	Class IIIA Liquids	
All tanks not over 150 ft in diameter	$\frac{1}{6}$ sum of adjacent tank diameters but not less than 3 ft	½ sum of adjacent tank diameters but not less than 3 ft	¹ / ₆ sum of adjacent tank diameters but not less than 3 ft	
Tanks larger than 150 ft in diameter If remote impounding is				
provided in accordance with 2-3.4.2 If diking is provided	⅓ sum of adjacent tank diameters	½ sum of adjacent tank diameters	½ sum of adjacent tank diameters	
in accordance with 2-3.4.3	1/4 sum of adjacent tank diameters	$^{1\!/}_{3}$ sum of adjacent tank diameters	^l / ₄ sum of adjacent tank diameters	

SI units: 1 ft = 0.3 m.

2-3.3.6 The minimum horizontal separation between an LP-Gas container and a Class I, Class II, or Class IIIA liquid storage tank shall be 20 ft (6 m), except in the case of a Class I, Class II, or Class IIIA liquid tank operating at pressures exceeding 2.5 psig (17.2 kPa) or equipped with emergency venting that will permit pressures to exceed 2.5 psig (17.2 kPa), in which case the provisions of 2-3.3.1 and 2-3.3.2 shall apply. Suitable measures shall be taken to prevent the accumulation of Class I, Class II, or Class IIIA liquids under adjacent LP-Gas containers such as by dikes, diversion curbs, or grading. Where flammable or combustible liquid storage tanks are within a diked area, the LP-Gas containers shall be outside the diked area and at least 10 ft (3 m) away from the centerline of the wall of the diked area. The foregoing provisions shall not apply where LP-Gas containers of 125 gal (475 L) or less capacity are installed adjacent to fuel oil supply tanks of 660 gal (2498 L) or less capacity. No horizontal separation is required between aboveground LP-Gas containers and underground flammable and combustible liquid tanks installed in accordance with Section 2-4.

2-3.4 Control of Spillage from Aboveground Tanks.

2-3.4.1 Facilities shall be provided so that any accidental discharge of any Class I, II, or IIIA liquids will be prevented from endangering important facilities, and adjoining property, or reaching waterways, as provided for in 2-3.4.2 or 2-3.4.3.

Exception No. 1: Tanks storing Class IIIB liquids do not require special drainage or diking provisions for fire protection purposes.

Exception No. 2: Aboveground secondary containment-type tanks need not meet the requirements of 2-3.4 if all of the following conditions are met:

- (a) The capacity of the tank shall not exceed 12,000 gal (45,420 L).
- (b) All piping connections to the tank shall be made above the normal maximum liquid level.
- (c) Means shall be provided to prevent the release of liquid from the tank by siphon flow.
- (d) Means shall be provided for determining the level of liquid in the tank. This means shall be accessible to the delivery operator.
- (e) Means shall be provided to prevent overfilling by sounding an alarm when the liquid level in the tank reaches 90 percent of capacity and by automatically stopping delivery of liquid to the tank

when the liquid level in the tank reaches 95 percent of capacity. In no case shall these provisions restrict or interfere with the proper functioning of the normal vent or the emergency vent.

- (f) Spacing between adjacent tanks shall be not less than 3 ft (0.9 m).
- (g) The tank shall be capable of resisting the damage from the impact of a motor vehicle or suitable collision barriers shall be provided.
- (h) Where the interstitial space is enclosed, it shall be provided with emergency venting in accordance with 2-3.6.
- (i) Means shall be provided to establish the integrity of the secondary containment. For testing of secondary containment-type tanks, see 2-8.3.5.
- **2-3.4.2 Remote Impounding.** Where protection of adjoining property or waterways is by means of drainage to a remote impounding area, so that impounded liquid will not be held against tanks, such systems shall comply with the following:
- (a) A slope of not less than 1 percent away from the tank shall be provided for at least 50 ft (15 m) toward the impounding area.
- (b) The impounding area shall have a capacity not less than that of the largest tank that can drain into it. Where it is not possible because there is not enough open area around the tanks or it is impractical to provide 100 percent capacity remote impounding, it shall be permitted to provide "partial" remote impounding for some percentage of the required capacity remote from any tank or adjoining property. The required volume exceeding the capacity of the partial remote impoundment shall be provided for by diking meeting the requirements of 2-3.4.3.
- (c) The route of the drainage system shall be so located that, if the liquids in the drainage systems are ignited, the fire will not seriously expose tanks or adjoining property.
- (d) The confines of the impounding area shall be located so that, when filled to capacity, the liquid level will not be closer than 50 ft (15 m) from any property line that is or can be built upon, or from any tank. Where "partial" remote impounding is used, the liquid level in the partial impound shall meet the requirement of this section. The excess volume shall meet the requirements of impounding by diking as provided or in 2-3.4.3. Tank spacing shall be determined as for tanks impounded in accordance with 2-3.4.3.

- **2-3.4.3 Impounding around Tanks by Diking.** Where protection of adjoining property or waterways is by means of impounding by diking around the tanks, such system shall comply with the following:
- (a) A slope of not less than 1 percent away from the tank shall be provided for at least 50 ft (15 m) or to the dike base, whichever is less.
- (b)* The volumetric capacity of the diked area shall not be less than the greatest amount of liquid that can be released from the largest tank within the diked area, assuming a full tank. To allow for volume occupied by tanks, the capacity of the diked area enclosing more than one tank shall be calculated after deducting the volume of the tanks, other than the largest tank, below the height of the dike.
- (c) To permit access, the outside base of the dike at ground level shall be no closer than 10 ft (3 m) to any property line that is or can be built upon.
- (d) Walls of the diked area shall be of earth, steel, concrete, or solid masonry designed to be liquidtight and to withstand a full hydrostatic head. Earthen walls 3 ft (0.9 m) or more in height shall have a flat section at the top not less than 2 ft (0.6 m) wide. The slope of an earthen wall shall be consistent with the angle of repose of the material of which the wall is constructed. Diked areas for tanks containing Class I liquids located in extremely porous soils might require special treatment to prevent seepage of hazardous quantities of liquids to low-lying areas or waterways in case of spills.
- (e) Except as provided in (f) below, the walls of the diked area shall be restricted to an average interior height of 6 ft (1.8 m) above interior grade.
- (f) Dikes shall be permitted to be higher than an average of 6 ft (1.8 m) above interior grade where provisions are made for normal access and necessary emergency access to tanks, valves, and other equipment, and safe egress from the diked enclosure.
- 1. Where the average height of the dike containing Class I liquids is over 12 ft (3.6 m) high, measured from interior grade, or where the distance between any tank and the top inside edge of the dike wall is less than the height of the dike wall, provisions shall be made for normal operation of valves and for access to tank roof(s) without entering below the top of the dike. These provisions shall be permitted to be met through the use of remote-operated valves, elevated walkways, or similar arrangements.
- 2. Piping passing through dike walls shall be designed to prevent excessive stresses as a result of settlement or fire exposure.
- 3. The minimum distance between tanks and toe of the interior dike walls shall be 5 ft (1.5 m).
- (g) Each diked area containing two or more tanks shall be subdivided, preferably by drainage channels or at least by intermediate dikes, in order to prevent spills from endangering adjacent tanks within the diked area as follows:
- 1. Where storing normally stable liquids in vertical cone roof tanks constructed with weak roof-to-shell seam or floating roof tanks, or when storing crude petroleum in producing areas in any type of tank, one subdivision for each tank in excess of 10,000 bbl (1,590,000 L) and one subdivision for each group of tanks [no tank exceeding 10,000 bbl (1,590,000 L) capacity] having an aggregate capacity not exceeding 15,000 bbl (2,385,000 L).

- 2. Where storing normally stable liquids in tanks not covered in subsection (1), one subdivision for each tank in excess of 2380 bbl (378,500 L) and one subdivision for each group of tanks [no tank exceeding 2380 bbl (378,500 L) capacity] having an aggregate capacity not exceeding 3570 bbl (567,750 L).
- 3. Where storing unstable liquids in any type of tank, one subdivision for each tank except tanks installed in accordance with the drainage requirements of NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, shall require no additional subdivision. Since unstable liquids will react more rapidly when heated than when at ambient temperatures, subdivision by drainage channels is the preferred method.
- 4. Whenever two or more tanks storing Class I liquids, any one of which is over 150 ft (45 m) in diameter, are located in a common diked area, intermediate dikes shall be provided between adjacent tanks to hold at least 10 percent of the capacity of the tank so enclosed, not including the volume displaced by the tank.
- 5. The drainage channels or intermediate dikes shall be located between tanks so as to take full advantage of the available space with due regard for the individual tank capacities. Intermediate dikes, where used, shall be not less than 18 in. (45 cm) in height.
- (h) Where provision is made for draining water from diked areas, such drains shall be controlled in a manner so as to prevent flammable or combustible liquids from entering natural water courses, public sewers, or public drains, if their presence would constitute a hazard. Control of drainage shall be accessible under fire conditions from outside the dike.
- (i) Storage of combustible materials, empty or full drums, or barrels, shall not be permitted within the diked area.

2-3.5 Normal Venting for Aboveground Tanks.

- **2-3.5.1** Atmospheric storage tanks shall be adequately vented to prevent the development of vacuum or pressure sufficient to distort the roof of a cone roof tank or exceeding the design pressure in the case of other atmospheric tanks, as a result of filling or emptying, and atmospheric temperature changes.
- **2-3.5.2** Normal vents shall be sized in accordance with either: (1) API 2000, *Venting Atmospheric and Low-Pressure Storage Tanks*, or (2) other accepted standard; or shall be at least as large as the filling or withdrawal connection, whichever is larger, but in no case less than 1½ in. (3 cm) nominal inside diameter.
- **2-3.5.3** Low-pressure tanks and pressure vessels shall be adequately vented to prevent development of pressure or vacuum, as a result of filling or emptying and atmospheric temperature changes, from exceeding the design pressure of the tank or vessel. Protection shall also be provided to prevent overpressure from any pump discharging into the tank or vessel when the pump discharge pressure can exceed the design pressure of the tank or vessel.
- **2-3.5.4** If any tank or pressure vessel has more than one fill or withdrawal connection and simultaneous filling or withdrawal can be made, the vent size shall be based on the maximum anticipated simultaneous flow.
- **2-3.5.5** The outlet of all vents and vent drains on tanks equipped with venting to permit pressures exceeding 2.5 psig (17.2 kPa) shall be arranged to discharge in such a way as to prevent localized overheating of, or flame impingement on, any part of the tank, in the event vapors from such vents are ignited.

TANK STORAGE 30–17

2-3.5.6 Tanks and pressure vessels storing Class IA liquids shall be equipped with venting devices that shall be normally closed except when venting to pressure or vacuum conditions. Tanks and pressure vessels storing Class IB and IC liquids shall be equipped with venting devices that shall be normally closed except when venting under pressure or vacuum conditions, or with listed flame arrestors. Tanks of 3000 bbl (476,910 L) capacity or less containing crude petroleum in crude-producing areas, and outside aboveground atmospheric tanks under 23.8 bbl (3785 L) capacity containing other than Class IA liquids, shall be permitted to have open vents. (*See 2-3.6.2.*)

2-3.5.7* Flame arrestors or venting devices required in 2-3.5.6 shall be permitted to be omitted for IB and IC liquids where conditions are such that their use can, in case of obstruction, result in tank damage. Liquid properties justifying the omission of such devices include, but are not limited to, condensation, corrosiveness, crystallization, polymerization, freezing, or plugging. When any of these conditions exist, consideration shall be permitted to be given to heating, use of devices employing special materials of construction, the use of liquid seals, or inerting.

2-3.6 Emergency Relief Venting for Fire Exposure for Aboveground Tanks.

2-3.6.1 Except as provided in 2-3.6.2, every aboveground storage tank shall have some form of construction or device that will relieve excessive internal pressure caused by exposure fires. This requirement shall also apply to each compartment of a compartmented tank, the interstitial space (annulus) of a secondary containment-type tank, and the enclosed space of tanks of closed-top dike construction. Spaces or enclosed volumes, such as those intended for insulation, membranes, or weather shields, that can contain liquid because of a leak from the primary vessel and can inhibit venting during fire exposure shall also comply with this subsection. The insulation, membrane, or weather shield shall not interfere with emergency venting.

2-3.6.2 Tanks larger than 285 bbl (45,306 L) capacity storing Class IIIB liquids and not within the diked area or the drainage path of Class I or Class II liquids shall not require emergency relief venting.

2-3.6.3 In a vertical tank, the construction referred to in 2-3.6.1 shall be permitted to take the form of a floating roof, lifter roof, a weak roof-to-shell seam, or other approved pressure-relieving construction. The weak roof-to-shell seam shall be constructed to fail preferential to any other seam. Design methods that will provide a weak roof-to-shell seam construction are contained in API 650, Welded Steel Tanks for Oil Storage, and UL 142, Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids.

2-3.6.4 Where entire dependence for emergency relief is placed upon pressure-relieving devices, the total venting capacity of both normal and emergency vents shall be enough to prevent rupture of the shell or bottom of the tank if vertical, or of the shell or heads if horizontal. If unstable liquids are stored, the effects of heat or gas resulting from polymerization, decomposition, condensation, or self-reactivity shall be taken into account. The total capacity of both normal and emergency venting devices shall be not less than that derived from Table 2-8 except as provided in 2-3.6.6 or 2-3.6.7. Such devices shall be vaportight and shall be permitted to be a self-closing

Table 2-8 Wetted Area versus ft³ Free Air per Hour¹ [14.7 psia and 60°F (101.3 kPa and 15.6°C)]

\mathbf{ft}^2	cfh	\mathbf{ft}^2	cfh	ft²	cfh
20	21,100	200	211,000	1000	524,000
30	31,600	250	239,000	1200	557,000
40	42,100	300	265,000	1400	587,000
50	52,700	350	288,000	1600	614,000
60	63,200	400	312,000	1800	639,000
70	73,700	500	354,000	2000	662,000
80	84,200	600	392,000	2400	704,000
90	94,800	700	428,000	2800	742,000
100	105,000	800	462,000	and over	•
120	126,000	900	493,000		
140	147,000	1000	524,000		
160	168,000				
180	190,000				
200	211,000				

SI units: $10 \text{ ft}^2 = 0.93 \text{ m}^2$; $36 \text{ ft}^3 = 1.0 \text{ m}^3$.

manhole cover, or one using long bolts that permit the cover to lift under internal pressure, or an additional or larger relief valve or valves. The wetted area of the tank shall be calculated on the basis of 55 percent of the total exposed area of a sphere or spheroid, 75 percent of the total exposed area of a horizontal tank, and the first 30 ft (9 m) above grade of the exposed shell area of a vertical tank. (See Appendix B for the square footage of typical tank sizes.)

2-3.6.5 For tanks and storage vessels designed for pressures over 1 psig (6.9 kPa), the total rate of venting shall be determined in accordance with Table 2-8, except that when the exposed wetted area of the surface is greater than 2800 ft² (260 m²), the total rate of venting shall be in accordance with Table 2-9 or calculated by the following formula:

$$CFH = 1107 A^{0.82}$$

Where:

CFH = venting requirement, in cubic feet of free air per

A = exposed wetted surface, in square feet

The foregoing formula is based on $Q = 21,000 A^{0.82}$

 $\begin{tabular}{ll} Table 2-9 & Wetted Area Over 2800 ft$^2(260 m$^2)$ and Pressures Over 1 psig (gauge pressure of 6.9 kPa) \\ \end{tabular}$

ft²	cfh	\mathbf{ft}^2	cfh
2800	742,000	9000	1,930,000
3000	786,000	10,000	2,110,000
3500	892,000	15,000	2,940,000
4000	995,000	20,000	3,720,000
4500	1,100,000	25,000	4,470,000
5000	1,250,000	30,000	5,190,000
6000	1,390,000	35,000	5,900,000
7000	1,570,000	40,000	6,570,000
8000	1,760,000	• • •	,- ,-

SI units: $10 \text{ ft}^2 = 0.93 \text{ m}^2$; $36 \text{ ft}^3 = 1.0 \text{ m}^3$.

¹Interpolate for intermediate values.

2-3.6.6 The total emergency relief venting capacity for any specific stable liquid can be determined by the following formula:

Cubic feet of free air per hour =
$$V \frac{1337}{L\sqrt{M}}$$

Where:

V = cubic feet of free air per hour from Table 2-8

L = latent heat of vaporization of specific liquid in Btu per pound

M = molecular weight of specific liquids

2-3.6.7 For tanks containing stable liquids, the required airflow rate of 2-3.6.4 or 2-3.6.6 shall be permitted to be multiplied by the appropriate factor listed in the following schedule when protection is provided as indicated. Only one of the following factors shall be used for any one tank:

0.5 for drainage in accordance with 2-3.4.2 for tanks over $200 \text{ ft}^2 (18.6 \text{ m}^2)$ of wetted area;

0.3 for water spray in accordance with NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, and drainage in accordance with 2-3.4.2;

0.3 for insulation in accordance with 2-3.6.7(a);

0.15 for water spray with insulation in accordance with 2-3.6.7(a) and drainage in accordance with 2-3.4.2 (see Appendix B).

Exception No. 1:* Where water-miscible liquids whose heats of combustion and rates of burning are equal to or less than those of ethyl alcohol (ethanol) are stored, processed, or handled and where there is no potential fire exposure from liquids other than these liquids, the above factors shall be permitted to be reduced by 50 percent. Drainage shall not be required to obtain this reduction. In no case shall the above factors be reduced to less than 0.15.

Exception No. 2: Where liquids that are not water-miscible and whose heats of combustion and rates of burning are equal to or less than those of ethyl alcohol (ethanol) are stored, processed, or handled and where there is no potential fire exposure from liquids other than these liquids, the above factors for insulation alone and drainage alone shall be permitted to be reduced by 50 percent. No further reduction shall be allowed for protection by means of water spray. Drainage shall not be required to obtain this reduction. In no case shall the above factors be reduced to less than 0.15.

- (a) Insulation systems for which credit is taken shall meet the following performance criteria:
 - 1. Remain in place under fire exposure conditions.
- 2. Withstand dislodgment when subjected to hose stream impingement during fire exposure. This requirement can be waived where use of solid hose streams is not contemplated or would not be practical.
- 3. Maintain a maximum conductance value of 4.0 Btu per hr per ft² per degree Fahrenheit (Btu/hr/ft²/°F) when the outer insulation jacket or cover is at a temperature of 1660°F (904.4°C) and when the mean temperature of the insulation is 1000°F (537.8°C).
- **2-3.6.8** The outlet of all vents and vent drains on tanks equipped with emergency venting to permit pressures exceeding 2.5 psig (17.2 kPa) shall be arranged to discharge in such a way as to prevent localized overheating of or flame impingement on any part of the tank, in the event vapors from such vents are ignited.
- **2-3.6.9** Each commercial tank venting device shall have stamped on it the opening pressure, the pressure at which

the valve reaches the full open position, and the flow capacity at the latter pressure. If the start to open pressure is less than 2.5 psig (17.2 kPa) and the pressure at full open position is greater than 2.5 psig (17.2 kPa), the flow capacity at 2.5 psig (17.2 kPa) shall also be stamped on the venting device. The flow capacity shall be expressed in cubic feet per hour of air at 60°F (15.6°C) and 14.7 psia (760 mm Hg).

(a) The flow capacity of tank venting devices under 8 in. (20 cm) in nominal pipe size shall be determined by actual test of each type and size of vent. These flow tests can be conducted by the manufacturer if certified by a qualified, impartial observer or can be conducted by a qualified, impartial outside agency. The flow capacity of tank venting devices 8 in. (20 cm) nominal pipe size and larger, including manhole covers with long bolts or equivalent, can be calculated provided that the opening pressure is actually measured, the rating pressure and corresponding free orifice area are stated, the word "calculated" appears on the nameplate, and the computation is based on a flow coefficient of 0.5 applied to the rated orifice area.

(b) A suitable formula for this calculation is:

$$CFH = 1667 C_f A \sqrt{P_t - P_a}$$

Where:

CFH = venting requirement in cubic feet of free air per hour

 $C_f = 0.5$ (the flow coefficient)

A = the orifice area in in. 2

 P_t = the absolute pressure inside the tank in inches of water

 P_a = the absolute atmospheric pressure outside the tank in inches of water

2-3.7 Vent Piping for Aboveground Tanks.

2-3.7.1 Vent piping shall be constructed in accordance with Chapter 3.

2-3.7.2 Where vent pipe outlets for tanks storing Class I liquids are adjacent to buildings or public ways, they shall be located so that the vapors are released at a safe point outside of buildings and not less than 12 ft (3.6 m) above the adjacent ground level. In order to aid their dispersion, vapors shall be discharged upward or horizontally away from closely adjacent walls. Vent outlets shall be located so that flammable vapors will not be trapped by eaves or other obstructions and shall be at least 5 ft (1.5 m) from building openings.

2-3.7.3 The manifolding of tank vent piping shall be avoided except where required for special purposes such as vapor recovery, vapor conservation, or air pollution control. Where tank vent piping is manifolded, pipe sizes shall be such as to discharge, within the pressure limitations of the system, the vapors they are required to handle when manifolded tanks are subject to the same fire exposure.

2-3.7.4 Vent piping for tanks storing Class I liquids shall not be manifolded with vent piping for tanks storing Class II or Class III liquids unless positive means are provided to prevent the vapors from Class I liquids from entering tanks storing Class II or Class III liquids, to prevent contamination (*see A-1-2*) and possible change in classification of the less volatile liquid.

2-3.8 Tank Openings Other than Vents for Aboveground Tanks.

TANK STORAGE

- **2-3.8.1** Each connection to an aboveground tank through which liquid can normally flow shall be provided with an internal or an external valve located as close as practical to the shell of the tank.
- **2-3.8.2** Each connection below the liquid level through which liquid does not normally flow shall be provided with a liquidtight closure. This can be a valve, plug, or blind, or a combination of these.
- **2-3.8.3** Openings for gaging on tanks storing Class I liquids shall be provided with a vaportight cap or cover. Such covers shall be closed when not gaging.
- **2-3.8.4** Fill pipes that enter the top of a tank shall terminate within 6 in. (15 cm) of the bottom of the tank. Fill pipes shall be installed or arranged so that vibration is minimized.

Exception: Fill pipes in tanks handling liquids that have a minimum potential for the accumulation of static electricity or fill pipes in tanks whose vapor space, under normal operating conditions, is not in the flammable range or is inerted need not meet this requirement. (Examples include most crude oils, residual oils, asphalts, and water-miscible liquids.)

2-3.8.5 Filling and emptying connections for Class I, Class II, and Class IIIA liquids that are made and broken shall be located outside of buildings at a location free from any source of ignition and not less than 5 ft (1.5 m) away from any building opening. Such connections for any liquid shall be closed and liquidtight when not in use and shall be properly identified.

2-3.9 Abandonment or Reuse of Aboveground Tanks.

- **2-3.9.1*** Tanks taken out of service or abandoned shall be emptied of liquid, rendered vapor-free, and safeguarded against trespassing.
- **2-3.9.2** Only those used tanks that comply with the applicable sections of this code and are approved by the authority having jurisdiction shall be installed for flammable or combustible liquids service.

2-4 Installation of Underground Tanks.

2-4.1 Location. Excavation for underground storage tanks shall be made with due care to avoid undermining of foundations of existing structures. Underground tanks or tanks under buildings shall be so located with respect to existing building foundations and supports that the loads carried by the latter cannot be transmitted to the tank. The distance from any part of a tank storing Class I liquids to the nearest wall of any basement or pit shall be not less than 1 ft (0.3 m), and to any property line that can be built upon, not less than 3 ft (0.9 m). The distance from any part of a tank storing Class II or Class III liquids to the nearest wall of any basement, pit, or property line shall be not less than 1 ft (0.3 m).

2-4.2 Burial Depth and Cover.

2-4.2.1* All underground tanks shall be installed in accordance with the manufacturer's instructions, where available, and shall be set on firm foundations and surrounded with at least 6 in. (15 cm) of noncorrosive inert material such as clean sand or gravel well tamped in place. The tank shall be placed in the hole with care, since dropping or rolling the tank into the hole can break a weld, puncture or damage the tank, or scrape off the protective coating of coated tanks.

- **2-4.2.2** All underground tanks shall be covered with a minimum of 2 ft (0.6 m) of earth, or shall be covered with not less than 1 ft (0.3 m) of earth on top of which shall be placed a slab of reinforced concrete not less than 4 in. (10 cm) thick. Where they are, or are likely to be, subjected to traffic, they shall be protected against damage from vehicles passing over them by at least 3 ft (0.9 m) of earth cover, or 18 in. (45.7 cm) of well-tamped earth plus either 6 in. (15 cm) of reinforced concrete or 8 in. (20 cm) of asphaltic concrete. When asphaltic or reinforced concrete paving is used as part of the protection, it shall extend at least 1 ft (0.3 m) horizontally beyond the outline of the tank in all directions.
- **2-4.2.3** For underground tanks built in accordance with 2-2.3.1, the burial depth shall be such that the static head imposed at the bottom of the tank will not exceed 10 psig (68.9 kPa) if the fill or vent pipe are filled with liquid. If the depth of cover is greater than the tank diameter, the tank manufacturer shall be consulted to determine if reinforcement is required.
- **2-4.3 External Corrosion Protection.** Tanks and their piping shall be protected by either:
- (a) A properly engineered, installed, and maintained cathodic protection system in accordance with recognized standards of design, such as:
- 1. American Petroleum Institute Publication 1632, Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems;
- 2. Underwriters Laboratories of Canada ULC-S603.1 M, Standard for Galvanic Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids;
- 3. Steel Tank Institute Standard No. sti- P_3 *, Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks;
- 4. National Association of Corrosion Engineers Standard RP-01-69 (1983 rev.), Recommended Practice, Control of External Corrosion of Underground or Submerged Metallic Piping Systems;
- 5. National Association of Corrosion Engineers Standard RP-02-85, Recommended Practice, Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems; and
- 6. Underwriters Laboratories Inc., Standard for External Corrosion Protection Systems for Steel Underground Storage Tanks, UL 1746, Part 1.
- (b)* Approved or listed corrosion-resistant materials or systems, which can include special alloys, fiberglass reinforced plastic, or fiberglass reinforced plastic coatings.
- **2-4.3.1*** Selection of the type of protection to be employed shall be based upon the corrosion history of the area and the judgement of a qualified engineer. The authority having jurisdiction can waive the requirements for corrosion protection where evidence is provided that such protection is not necessary.

2-4.4 Temporary and Permanent Closure of Underground Tanks.

2-4.4.1 The procedures outlined in this subsection shall be followed when taking underground tanks temporarily out of service, closing them in place permanently, or removing them. All applicable safety procedures associated with working in proximity to flammable and combustible materials shall be strictly adhered to. (*See Appendix C for additional information*.)

- **2-4.4.2 Taking Tanks Temporarily Out of Service.** Tanks shall be rendered temporarily out of service only when it is planned that they will be returned to active service, closed in place permanently, or removed within a reasonable period not exceeding one year. The following requirements shall be met:
- (a) Corrosion protection and release detection systems shall be maintained in operation.
 - (b) The vent line shall be left open and functioning.
 - (c) The tank shall be secured against tampering.
 - (d) All other lines shall be capped or plugged.

Tanks remaining temporarily out of service for more than one year shall be permanently closed in place or removed in accordance with 2-4.4.3 or 2-4.4.4, as applicable.

- **2-4.4.3 Permanent Closure of Tanks in Place.** Tanks shall be permitted to be permanently closed in place, if approved by the authority having jurisdiction. All of the following requirements shall be met:
- (a) All applicable authorities having jurisdiction shall be notified.
- (b)* A safe workplace shall be maintained throughout the prescribed activities.
- (c) All flammable and combustible liquids and residues shall be removed from the tank, appurtenances, and piping and shall be properly disposed of.
- (d) The tank shall be made safe by either purging it of flammable vapors or inerting the potential explosive atmosphere in the tank. Confirmation that the atmosphere in the tank is safe shall be by periodic testing of the atmosphere using a combustible gas indicator, if purging, or an oxygen meter, if inerting.
- (e) Access to the tank shall be made by careful excavation to the top of the tank.
- (f) All exposed piping, gauge and tank fixtures, and other appurtenances, except the vent, shall be disconnected and removed.
- (g) The tank shall be completely filled with an inert solid material.
- (h) The tank vent and remaining underground piping shall be capped or removed.
 - (i) The tank excavation shall be backfilled.
- **2-4.4.4 Removal of Underground Tanks.** Tanks shall be removed in accordance with the following requirements:
- (a) The steps described in 2-4.4.3(a) through (e) shall be followed.
- (b) All exposed piping, gauge and tank fixtures, and other appurtenances, including the vent, shall be disconnected and removed.
- (c) All openings shall be plugged, leaving a $\frac{1}{4}$ -in. opening to avoid buildup of pressure in the tank.
- (d) The tank shall be removed from the excavation and shall be secured against movement.
 - (e) Any corrosion holes shall be plugged.
- (f) The tank shall be labeled with its former contents, present vapor state, vapor-freeing method, and a warning against reuse.
- (g) The tank shall be removed from the site promptly, preferably the same day.

- **2-4.4.5 Storage of Removed Tanks.** If it is necessary to temporarily store a tank that has been removed, it shall be placed in a secure area where public access is restricted. The following requirements shall be met:
- (a) During such temporary storage, the atmosphere in the tank shall be periodically tested according to 2-4.4.3(d) to ensure that it remains safe.
- (b) A $\frac{1}{4}$ -in. opening shall be maintained to avoid buildup of pressure in the tank.
- **2-4.4.6 Disposal of Tanks.** Disposal of tanks shall meet the following requirements:
- (a) Before a tank is cut up for scrap or landfill, the atmosphere in the tank shall be tested in accordance with 2-4.4.3(d) to ensure that it is safe.
- (b) The tank shall be made unfit for further use by cutting holes in the tank heads and shell.
- **2-4.4.7 Documentation.** All necessary documentation shall be prepared and maintained, in accordance with all federal, state, and local rules and regulations.
- **2-4.4.8 Reuse of Underground Tanks.** Only those used tanks that comply with the applicable sections of this code and are approved by the authority having jurisdiction shall be installed for flammable or combustible liquids service.
- **2-4.4.9** Change of Service of Underground Tanks. Tanks that undergo any change of stored product shall meet the requirements of Section 2-2.

2-4.5 Vents for Underground Tanks.

2-4.5.1* Location and Arrangement of Vents for Class I Liquids. Vent pipes from underground storage tanks storing Class I liquids shall be so located that the discharge point is outside of buildings, higher than the fill pipe opening, and not less than 12 ft (3.6 m) above the adjacent ground level. Vent pipes shall not be obstructed by devices provided for vapor recovery or other purposes unless the tank and associated piping and equipment are otherwise protected to limit back-pressure development to less than the maximum working pressure of the tank and equipment by the provision of pressure-vacuum vents, rupture discs, or other tank venting devices installed in the tank vent lines. Vent outlets and devices shall be protected to minimize the possibility of blockage from weather, dirt, or insect nests, shall be so located and directed that flammable vapors will not accumulate or travel to an unsafe location, enter building openings, or be trapped under eaves, and shall be at least 5 ft (1.5 m) from building openings and at least 15 ft (4.5 m) from powered ventilation air intake devices. Tanks containing Class IA liquids shall be equipped with pressure and vacuum venting devices that shall be normally closed except when venting under pressure or vacuum conditions. Tanks storing Class IB or Class IC liquids shall be equipped with pressure-vacuum vents or with listed flame arrestors. Tanks storing gasoline are exempt from the requirements for pressure and vacuum venting devices, except as required to prevent excessive back pressure, or flame arrestors, provided the vent does not exceed 3-in. (7.6-cm) nominal inside diameter.

TANK STORAGE 30–21

Table 2-10 Vent Line Diameters

Maximum Flow gpm	50 ft	Pipe Length ¹ 100 ft	200 ft
100	1 ½-in.	1 ½-in.	1½-in.
200	1 ½-in.	1 ½-in.	1 ½-in.
300	1 ¼-in.	1 ½-in.	1½-in.
400	1 ¼-in.	1½-in.	2-in.
500	1 ⅓2-in.	1 ½-in.	2-in.
600	1 ⅓2-in.	2-in.	2-in.
700	2-in.	2-in.	2-in.
800	2-in.	2-in.	3-in.
900	2-in.	2-in.	3-in.
1000	2-in.	2-in.	3-in.

SI units: 1 in. = 2.5 cm; 1 ft = 0.3 m; 1 gal = 3.8 L. Vent lines of 50 ft, 100 ft, and 200 ft of pipe plus 7 ells.

- **2-4.5.2 Vent Capacity.** Tank venting systems shall be provided with sufficient capacity to prevent blowback of vapor or liquid at the fill opening while the tank is being filled. Vent pipes shall not be less than 1½-in. (3-cm) nominal inside diameter. The required venting capacity depends upon the filling or withdrawal rate, whichever is greater, and the vent line length. Unrestricted vent piping sized in accordance with Table 2-10 will prevent back-pressure development in tanks from exceeding 2.5 psig (17.2 kPa). Where tank venting devices are installed in vent lines, their flow capacities shall be determined in accordance with 2-3.6.9.
- **2-4.5.3** Location and Arrangement of Vents for Class II or Class IIIA Liquids. Vent pipes from tanks storing Class II or Class IIIA liquids shall terminate outside of the building and higher than the fill pipe opening. Vent outlets shall be above normal snow level. They shall be permitted to be fitted with return bends, coarse screens, or other devices to minimize ingress of foreign material.
- **2-4.5.4** Vent piping shall be constructed in accordance with Chapter 3. Tank vent pipes and vapor return piping shall be installed without sags or traps in which liquid can collect. Condensate tanks, if utilized, shall be installed and maintained so as to preclude the blocking of the vapor return piping by liquid. The vent pipes and condensate tanks shall be located so that they will not be subjected to physical damage. The tank end of the vent pipe shall enter the tank through the top.
- **2-4.5.5** Where tank vent piping is manifolded, pipe sizes shall be such as to discharge, within the pressure limitations of the system, the vapors they can be required to handle when manifolded tanks are filled simultaneously. Float-type check valves installed in tank openings connected to manifolded vent piping to prevent product contamination shall be permitted to be used provided that the tank pressure will not exceed that permitted by 2-4.2.3 when the valves close.

Exception: For service stations, the capacity of manifolded vent piping shall be sufficient to discharge vapors generated when two manifolded tanks are simultaneously filled.

2-4.5.6 Vent piping for tanks storing Class I liquids shall not be manifolded with vent piping for tanks storing Class II or Class III liquids unless positive means are provided to prevent the vapors from Class I liquids from entering tanks storing Class II or Class III liquids, to prevent contamination (*see A-1-2*) and possible change in classification of the less volatile liquid.

2-4.6 Tank Openings Other than Vents for Underground Tanks.

- **2-4.6.1** Connections for all tank openings shall be liquidtight.
- **2-4.6.2** Openings for manual gaging, if independent of the fill pipe, shall be provided with a liquidtight cap or cover. Covers shall be kept closed when not gaging. If inside a building, each such opening shall be protected against liquid overflow and possible vapor release by means of a springloaded check valve or other approved device.
- **2-4.6.3** Fill and discharge lines shall enter tanks only through the top. Fill lines shall be sloped toward the tank. Underground tanks for Class I liquids having a capacity of more than 1000 gal (3785 L) shall be equipped with a tight fill device for connecting the fill hose to the tank.
- **2-4.6.4** Fill pipes that enter the top of a tank shall terminate within 6 in. (15 cm) of the bottom of the tank. Fill pipes shall be installed or arranged so that vibration is minimized.

Exception: Fill pipes in tanks handling liquids that have a minimum potential for the accumulation of static electricity or fill pipes in tanks whose vapor space, under normal operating conditions, is not in the flammable range or is inerted need not meet this requirement. (Examples include most crude oils, residual oils, asphalts, and water-miscible liquids.)

- **2-4.6.5** Filling and emptying and vapor recovery connections for Class I, Class II, or Class IIIA liquids that are made and broken shall be located outside of buildings at a location free from any source of ignition and not less than 5 ft (1.5 m) away from any building opening. Such connections shall be closed and liquidtight when not in use and shall be properly identified.
- **2-4.6.6** Tank openings provided for purposes of vapor recovery shall be protected against possible vapor release by means of a spring-loaded check valve or dry-break connection, or other approved device, unless the opening is pipe-connected to a vapor processing system. Openings designed for combined fill and vapor recovery shall also be protected against vapor release unless connection of the liquid delivery line to the fill pipe simultaneously connects the vapor recovery line. All connections shall be vaportight.
- 2-5* Storage Tank Buildings. Tank installations storing Class I, II, and IIIA liquids shall be permitted inside buildings where in compliance with this section. Tanks storing Class IIIB liquids shall not be required to comply with the provisions of this section. A tank installation that has a canopy or roof that does not limit the dissipation of heat or dispersion of flammable vapors and does not restrict fire-fighting access and control shall be treated as an outside aboveground tank in accordance with Section 2-3.

Exception: Tanks that meet the requirements of Section 5-5.

2-5.1 Location. Tanks and any associated equipment within the storage tank building shall be so located that a fire in the area shall not constitute an exposure hazard to adjoining buildings or tanks for a period of time consistent with the response and suppression capabilities of the fire-fighting operations available to the location. Compliance with 2-5.1.1 through 2-5.1.5 shall be deemed as meeting the requirements of 2-5.1.

Table 2-5.1.1 Location of Storage Tank Buildings with Respect to Property Lines, Public Ways, and the Nearest Important Building on the Same Property¹

Minimum Distance from Property
Line that Is or Can Be Built
Upon, Including Opposite Side
of Public Way (ft)

Minimum Distance from Nearest Side of Any Public Way or from Nearest Important Building on Same Property (ft)

	Stable Liquid Emergency Relief		Unstable Liquid Emergency Relief		Stable Liquid Emergency Relief		Unstable Liquid Emergency Relief	
Largest Tank ² — Operating Liquid Capacity (gal)	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig
Up to 12,000	15	25	40	60	5	10	15	20
12,001 to 30,000	20	30	50	80	5	10	15	20
30,001 to 50,000	30	45	75	120	10	15	25	40
50,001 to 100,000	50	75	125	200	15	25	40	60

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 psig = 6.9 kPa.

Double all distances shown if protection for exposures is not provided. Distances need not exceed 300 ft.

2-5.1.1 The minimum distance from exposed property lines and buildings for tank installations within structures having walls with a fire resistance rating of less than 2 hours shall be in accordance with Table 2-5.1.1.

Exception: As modified by 2-5.1.2.

- **2-5.1.2** Where a storage tank building has an exterior wall facing an exposure, the distances in Table 2-5.1.1 can be modified as follows:
- (a) Where the wall is a blank wall having a fire resistance rating of not less than 2 hours, separation distance between the storage tank building and its exposure need not be greater than 25 ft (7.6 m).
- (b)* Where a blank wall having a fire resistance rating of not less than 4 hours is provided, the distance requirements of Table 2-5.1.1 shall not apply. In addition, where Class IA or unstable liquids are stored, the exposing wall shall have explosion resistance in accordance with good engineering practice, and adequate deflagration venting shall be provided in the nonexposing walls and roof.
- **2-5.1.3*** Other equipment associated with tanks, such as pumps, heaters, filters, exchangers, etc., shall not be located closer than 25 ft (7.6 m) to property lines where the adjoining property is or can be built upon or the nearest important building on the same property that is not an integral part of the storage tank building.

Exception: This spacing requirement shall not apply where exposures are protected as outlined in 2-5.1.2.

- **2-5.1.4** Tanks in which unstable liquids are stored shall be separated from potential fire exposures by a clear space of at least 25 ft (7.6 m) or by a wall having a fire resistance rating of not less than 2 hours.
- **2-5.1.5** Each storage tank building and each tank within the building shall be accessible from at least two sides for fire fighting and fire control.

2-5.2 Construction.

2-5.2.1 Storage tank buildings shall be constructed so as to maintain structural integrity for 2 hours under fire exposure conditions and to provide adequate access and egress for unobstructed movement of all personnel and fire protection equipment. Compliance with 2-5.2.2 through 2-5.2.8 shall be deemed as meeting the requirements of 2-5.2.1.

- **2-5.2.2*** Buildings or structures shall be of at least 2-hr fire resistance rating except that noncombustible or combustible construction is permitted when protected by automatic sprinklers or equivalent protection subject to the approval of the authority having jurisdiction.
- **2-5.2.3** Class I liquids and Class II or Class IIIA liquids heated above their flash points shall not be stored in basements. Means shall be provided to prevent liquid spills from running into basements. Where Class I liquids are stored abovegrade within buildings with basements or other belowgrade areas into which flammable vapors can travel, such belowgrade areas shall be provided with mechanical ventilation designed to prevent the accumulation of flammable vapors. Enclosed storage tank pits shall not be considered basements.
- **2-5.2.4*** Storage tanks shall be separated from other occupancies within the building by construction having at least a 2-hr fire resistance rating. As a minimum, each opening shall be protected by either a listed, self-closing fire door or a listed fire damper having a minimum 11/2-hr fire protection rating and installed in accordance with NFPA 80, Standard for Fire Doors and Fire Windows; NFPA 90A, Standard for the Installation of Air Conditioning and Ventilating Systems; or NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials; whichever is applicable. Where Class IA or unstable liquids are being stored, deflagration vents shall be provided to the exterior of the building and any walls separating this storage from other occupancies shall have explosion resistance in accordance with good engineering practice. Adequate deflagration venting shall be provided for the nonexposing walls.
- **2-5.2.5*** Storage tank buildings shall have exit facilities arranged to prevent occupants from being trapped in the event of fire. Exits shall not be exposed by the drainage facilities described in 2-5.4.
- **2-5.2.6** Access aisles of at least 3 ft (0.9 m) shall be maintained for movement of fire-fighting personnel and fire protection equipment.
- **2-5.2.7** Clearance between the top of the tank and the building structure shall be a minimum of 3 ft (0.9 m) for buildings protected in accordance with 2-5.8.7.3. For buildings without fixed fire suppression systems, space shall be provided to allow for the application of hose streams to the top of the tank(s) for cooling purposes.

²Capacity of any individual tank shall not exceed 100,000 gal without the approval of the authority having jurisdiction.

2-5.3 Ventilation.

- **2-5.3.1** Storage tank buildings storing Class I liquids or Class II or Class IIIA liquids at temperatures above their flash points shall be ventilated at a rate sufficient to maintain the concentration of vapors within the building at or below 25 percent of the lower flammable limit. Compliance with sections 2-5.3.2 through 2-5.3.5 shall be deemed as meeting the requirements of 2-5.3.1.
- **2-5.3.2*** Ventilation requirements shall be confirmed by one of the following:
- (a) Calculations based on the anticipated fugitive emissions. (See Appendix F for calculation methods.)
- (b) Sampling of the actual vapor concentration under normal operating conditions. The sampling shall be conducted at a distance of 5 ft (1.5 m) radius from each potential vapor source extending to or toward the bottom and the top of the enclosed storage area. The vapor concentration used to determine the required ventilation rate shall be the highest measured concentration during the sampling procedure.
- (c) Ventilation at a rate of not less than 1 ft³ per min per ft² of solid floor area (0.3 m³ per min per m²).
- **2-5.3.3** Ventilation shall be accomplished by natural or mechanical ventilation, with discharge or exhaust to a safe location outside the building, without recirculation of the exhaust air.

Exception: Recirculation is permitted where it is monitored continuously using a fail-safe system that is designed to automatically sound an alarm, stop recirculation, and provide full exhaust to the outside in the event that vapor-air mixtures having concentrations over 25 percent of the lower flammable limit are detected.

- **2-5.3.4*** Provision shall be made for introduction of make-up air in such a manner as to avoid short-circuiting the ventilation. Ventilation shall be arranged to include all floor areas or pits where flammable vapors can collect. Where natural ventilation is inadequate, mechanical ventilation shall be provided and shall be kept in operation while flammable liquids are being handled. Local or spot ventilation might be needed for the control of special fire or health hazards. Such ventilation, if provided, shall be permitted to be used for up to 75 percent of the required ventilation.
- **2-5.3.5** For storage tank buildings with the interior grade more than 1 ft (30 cm) below the average exterior grade, continuous mechanical ventilation in accordance with 2-5.3.2(c) shall be provided or a vapor detection system shall be provided and set to give a warning alarm at 25 percent of the lower flammable limit and to start the mechanical ventilation system. The alarm shall sound at a constantly attended location.

2-5.4 Drainage.

- **2-5.4.1** Drainage systems shall be designed to minimize fire exposure to other tanks and adjacent properties or waterways. Compliance with 2-5.4.2 through 2-5.4.6 shall be deemed as meeting the requirements of 2-5.4.1.
- **2-5.4.2** A facility shall be designed and operated to prevent the normal discharge of flammable or combustible liquids to public waterways, public sewers, or adjoining property.
- **2-5.4.3** Except for drains, solid floors shall be liquidtight and the room shall be liquidtight where the walls join the floor and for at least 4 in. (10 cm) above the floor.

- **2-5.4.4** Openings in interior walls to adjacent rooms or buildings shall be provided with noncombustible, liquidtight raised sills or ramps at least 4 in. (10 cm) in height or shall be otherwise designed to prevent the flow of liquids to the adjoining areas. A permissible alternative to the sill or ramp is an open-grated trench (across the width of the opening inside of the room) that drains to a safe location.
- **2-5.4.5*** The containment area shall have a capacity not less than that of the largest tank that can drain into it. Emergency drainage systems shall be provided to direct flammable or combustible liquid leakage and fire protection water to a safe location. This might require curbs, scuppers, or special drainage systems to control the spread of fire (*see 2-3.4*).
- **2-5.4.6** Emergency drainage systems, if connected to public sewers or discharged into public waterways, shall be equipped with traps or separators.

2-5.5 Vents.

- **2-5.5.1** Vents from tanks inside buildings shall be designed to ensure that flammable vapors are not released inside the building. Compliance with 2-5.5.2 and 2-5.5.3 shall be deemed as meeting the requirements of 2-5.5.1.
- **2-5.5.2** Vents for tanks inside buildings shall be as required in 2-3.5 and 2-3.6, except that emergency venting by the use of weak roof-to-shell seam shall not be permitted. Automatic sprinkler systems designed in accordance with the requirements of NFPA 13, *Standard for the Installation of Sprinkler Systems*, shall be accepted by the authority having jurisdiction as equivalent to water spray systems for purposes of calculating the required airflow rates for emergency vents in 2-3.6.7, provided the density and coverage requirements of NFPA 15, *Standard for Water Spray Fixed Systems for Fire Protection*, 4-4.4.2 are met. Vents shall terminate outside the building.
- **2-5.5.3** Vent piping shall be in accordance with 2-3.7.

2-5.6 Tank Openings Other than Vents.

2-5.6.1 Tank openings other than vents from tanks inside buildings shall be designed to ensure that flammable liquids or vapors are not released inside the building. Compliance with 2-5.6.2 through 2-5.6.9 shall be deemed as meeting the requirements of 2-5.6.1.

2-5.6.2 All tank openings:

- (a) Located at or below the maximum liquid level shall be liquid tight; and
- (b) Located above the maximum liquid level shall be normally closed and shall be mechanically secured to prevent release of vapors.
- **2-5.6.3** Each connection through which liquid can gravity flow from a tank inside a building shall be provided with an internal or an external valve located as close as practical to the shell of the tank.
- **2-5.6.4** Each liquid transfer connection on any tank storing Class I or Class II liquids inside buildings shall be provided with:
 - (a) A normally closed remotely activated valve; or
 - (b) An automatic-closing, heat-activated valve; or
 - (c) Another approved device.

Exception: Connections used for emergency disposal or to provide for quick cutoff of flow in the event of fire in the vicinity of the tank need not meet this requirement.

- **2-5.6.4.1** The requirements of 2-5.6.4 shall be permitted to be met by the valve required in 2-5.6.3. If a separate valve is used, it shall be located adjacent to the valve required in 2-5.6.3.
- **2-5.6.5** Openings for manual gauging of Class I or Class II liquids, if independent of the fill pipe, shall be provided with a vaportight cap or cover. Openings shall be kept closed when not in use. Each such opening for any liquid shall be protected against liquid overflow and possible vapor release by means of a spring-loaded check valve or other approved device. Substitutes for manual gauging include, but are not limited to, heavy-duty flat gauge glasses, magnetic, hydraulic, or hydrostatic remote reading devices, and sealed float gauges.
- **2-5.6.6** Fill pipes that enter the top of a tank shall terminate within 6 in. (15 cm) of the bottom of the tank. Fill pipes shall be installed or arranged so that vibration is minimized.

Exception: Fill pipes in tanks handling liquids that have a minimum potential for the accumulation of static electricity or fill pipes in tanks whose vapor space, under normal operating conditions, is not in the flammable range or is inerted need not meet this requirement. (Examples include most crude oils, residual oils, asphalts, and water-miscible liquids.)

- **2-5.6.7** The inlet of the fill pipe and the outlet of a vapor recovery line for which connections to tank vehicles and tank cars are made and broken shall be located outside of buildings at a location free from any source of ignition and not less than 5 ft (1.5 m) away from any building opening. Such connections shall be closed tight and protected against tampering when not in use and shall be identified.
- **2-5.6.8** Tanks storing Class I, Class II, or Class IIIA liquids inside buildings shall be equipped with a device, or other means shall be provided, to prevent overflow into the building. Suitable devices include, but are not limited to, a float valve, a pre-set meter on the fill line, a low head pump inca-

pable of producing overflow, or a liquidtight overflow pipe, at least one pipe size larger than the fill pipe, that discharges by gravity back to the outside source of liquid or to an approved location.

2-5.6.9 Tank openings provided for purposes of vapor recovery shall be protected against possible vapor release by means of a spring-loaded check valve or dry-break connection or other approved device, unless the opening is pipe-connected to a vapor processing system. Openings designed for combined fill and vapor recovery shall also be protected against vapor release unless connection of the liquid delivery line to the fill pipe simultaneously connects the vapor recovery line. All connections shall be vapor tight.

2-5.7 Electrical Equipment.

- **2-5.7.1** This section shall apply to areas where Class I liquids are stored and to areas where Class II or Class IIIA liquids are stored at temperatures above their flash points (*see A-1-2*). Any electrical equipment provided shall not constitute a source of ignition for the flammable vapor that might be present under normal operations or during a spill. Compliance with 2-5.7.2 through 2-5.7.5 shall be deemed as meeting the requirements of 2-5.7.1.
- **2-5.7.2** All electrical equipment and wiring shall be of a type specified by and installed in accordance with NFPA 70, *National Electrical Code*®.
- **2-5.7.3*** So far as it applies, Table 2-5.7.3 shall be used to delineate and classify areas for the purpose of installation of electrical equipment under normal conditions. In the application of classified areas, a classified area shall not extend beyond a floor, wall, roof, or other solid partition that has no communicating openings. The designation of classes and divisions is defined in NFPA 70, *National Electrical Code*, Chapter 5, Article 500.

Table 2-5.7.3 Electrical Area Classification

Location	NEC Class I Division	Extent of Classified Area All equipment located belowgrade level Any equipment located abovegrade level		
Tank storage installation	1 2			
Tank openings installed in accordance with 2-5.5 and 2-5.6 where flammable vapor-air mixtures might exist under normal operation	1	Area within 5 ft of any tank opening, extending in all directions		
	2	Area between 5 ft and 8 ft of any tank opening, extending in all directions; also, area up to 3 ft above floor or grade level within 5 ft to 25 ft horizontally from any tank opening ¹		
Vents extending to the outside, discharging upward	1 2	Within 3 ft of open end of vent, extending in all directions Area between 3 ft and 5 ft of open end of vent, extending in all directions		
Pumps, bleeders, withdrawal fittings, meters, and similar devices indoors	2	Within 5 ft of any edge of such devices, extending in all directions; also up to 3 ft above floor or grade level within 25 ft horizontally from any edge of such devices ¹		
Sumps and drainage trenches				
Without mechanical ventilation	1	Entire area within pit, if any part is within a Division 1 or 2 classified area		
With adequate mechanical ventilation	2	Entire area within pit, if any part is within a Division 1 or 2 classified area		
Containing valves, fittings, or piping and not within a Division 1 or 2 classified area	2	Entire pit		

SI units: 1 ft = 0.3 m.

^{&#}x27;The release of Class I liquids can generate vapors to the extent that the entire building and, possibly, a zone surrounding it might have to be considered a Class I, Division 2, location.

- **2-5.7.4** The area classifications listed in Table 2-5.7.3 are based on the premise that the installation shall meet the applicable requirements of this code in all respects. Should this not be the case, the authority having jurisdiction shall have the authority to classify the extent of the area.
- **2-5.7.5*** Where the provisions of 2-5.7.2 through 2-5.7.4 require the installation of electrical equipment suitable for Class I, Division 1 or Division 2, locations, ordinary electrical equipment, including switchgear, shall be permitted to be used if installed in a room or enclosure that is maintained under positive pressure with respect to the classified area. Ventilation make-up air shall not be contaminated.

2-5.8 Fire Prevention and Control.

- **2-5.8.1 General.** Storage tank buildings shall have fire prevention control systems and methods, for life safety, for minimizing property loss, and for reducing fire exposure to adjoining operations and property resulting from fire and explosion. Compliance with Sections 2-5.8.1.1 through 2-5.8.7.4 shall be deemed as meeting the requirements of 2-5.8.1.
- **2-5.8.1.1** This section shall cover the commonly recognized management control systems and methods used to prevent or minimize the loss from fire or explosion in tank storage facilities. The wide range in size, design, and location of tank storage facilities shall preclude the inclusion of detailed fire prevention and control systems and methods applicable to all such facilities. The authority having jurisdiction shall be permitted to be consulted on specific cases, where applicable; otherwise, qualified engineering judgment shall be exercised in accordance with 2-5.8.1.2.
- **2-5.8.1.2** The extent of fire prevention and control provided for the tank storage facility shall be determined by an engineering evaluation of the operation, followed by the application of sound fire protection and process engineering principles. The evaluation shall include, but not be limited to:
- (a) Analysis of fire and explosion hazards of the liquid operations;
- (b) Analysis of local conditions, such as exposure to and from adjacent properties, flood potential, or earthquake potential;
 - (c) Fire department or mutual aid response.

2-5.8.2 Control of Ignition Sources.

- **2-5.8.2.1** Precautions shall be taken to prevent the ignition of flammable vapors. Sources of ignition include, but are not limited to:
 - (a) Open flames,
 - (b) Lightning,
 - (c) Hot surfaces,
 - (d) Radiant heat,
 - (e) Smoking,
 - (f) Cutting and welding,
 - (g) Spontaneous ignition,
 - (h) Frictional heat or sparks,
 - (i) Static electricity,
 - (j) Electrical sparks,
 - (k) Stray currents, and
 - (l) Ovens, furnaces, and heating equipment.

- **2-5.8.2.2** Smoking shall be permitted only in designated and properly identified areas.
- **2-5.8.2.3*** Welding, cutting, and similar spark-producing operations shall not be permitted in areas containing flammable liquids until a written permit authorizing such work has been issued. The permit shall be issued by a person in authority following inspection of the area to assure that proper precautions have been taken and will be followed until the job is completed.
- **2-5.8.2.4* Static Electricity.** All equipment such as tanks, machinery, and piping where an ignitable mixture might be present shall be bonded or connected to a ground. The bond or ground or both shall be physically applied or shall be inherently present by the nature of the installation. Electrically isolated sections of metallic piping or equipment shall be bonded to the other portions of the system or individually grounded to prevent hazardous accumulation of static electricity.

2-5.8.3 Inspection and Maintenance.

- **2-5.8.3.1** All fire protection equipment shall be properly maintained and periodic inspections and tests shall be done in accordance with both standard practice and equipment manufacturer's recommendations.
- **2-5.8.3.2** Maintenance and operating practices shall control leakage and prevent spillage of flammable liquids.
- **2-5.8.3.3** Combustible waste material and residues in operating areas shall be kept to a minimum, stored in covered metal containers, and disposed of daily.
- **2-5.8.3.4** Storage of combustible materials and empty or full drums or barrels shall not be permitted within the storage tank building.
- **2-5.8.3.5** Ground areas around storage tank buildings shall be kept free of weeds, trash, or other unnecessary combustible materials.
- **2-5.8.3.6** Asiles established for movement of personnel shall be maintained clear of obstructions to permit orderly evacuation and ready access for manual fire-fighting activities.

2-5.8.4 Emergency Planning and Training.

- **2-5.8.4.1** An emergency action plan, consistent with the available equipment and personnel, shall be established to respond to fire or other emergencies. This plan shall include the following:
- (a) Procedures to be used in case of fire, such as sounding the alarm, notifying the fire department, evacuating personnel, and controlling and extinguishing the fire;
- (b) Appointment and training of persons to carry out fire safety duties;
 - (c) Maintenance of fire protection equipment;
 - (d) Holding fire drills;
- (e) Shutdown or isolation of equipment to reduce the escape of liquid;
- (f) Alternate measures for the safety of occupants while any fire protection equipment is shut down.
- **2-5.8.4.2** Personnel responsible for the use and operation of fire protection equipment shall be trained in the use of that equipment. Refresher training shall be conducted at least annually.

- **2-5.8.4.3** Planning of effective fire control measures shall be coordinated with local emergency response agencies. This shall include, but not be limited to, the identification of all tanks by location, contents, size, and hazard identification as required in 2-9.2.
- **2-5.8.4.4** Procedures shall be established to provide for safe shutdown of operations under emergency conditions. Provisions shall be made for periodic training, inspection, and testing of associated alarms, interlocks, and controls.
- **2-5.8.4.5** The emergency procedures shall be kept readily available in an operating area and updated regularly.
- **2-5.8.4.6** Where premises are likely to be unattended for considerable periods of time, a summary of the emergency plan shall be posted or located in a strategic and accessible location.

2-5.8.5 Detection and Alarm.

- **2-5.8.5.1** An approved means shall be provided to promptly notify those within the plant and the available public or mutual aid fire department of any fire or other emergency.
- **2-5.8.5.2** Those areas, including buildings, where a potential exists for a flammable liquid spill shall be monitored as appropriate. Such methods include:
 - (a) Personnel observation or patrol; and
- (b) Monitoring equipment that indicates a spill or leak has occurred in an unattended area.

2-5.8.6 Portable Fire-Control Equipment.

- **2-5.8.6.1*** Listed portable fire extinguishers shall be provided for facilities in such quantities, sizes, and types as might be needed for special storage hazards as determined in accordance with 2-5.8.1.
- **2-5.8.6.2*** Where the need is indicated in accordance with 2-5.8.1.2, water shall be utilized through standpipe and hose systems, or through hose connections from sprinkler systems using combination spray and straight stream nozzles to permit effective fire control.
- **2-5.8.6.3*** Where the need is indicated in accordance with 2-5.8.1.2, mobile foam apparatus shall be provided.
- **2-5.8.6.4** Automotive and trailer-mounted fire apparatus, where determined necessary, shall not be used for any purpose other than fire fighting or training.

2-5.8.7 Fixed Fire Control Equipment.

- **2-5.8.7.1** A reliable water supply or other suitable fire control agent shall be available in pressure and quantity to meet the fire demands indicated by special storage hazards or exposure as determined by 2-5.8.1.2.
- **2-5.8.7.2*** Hydrants, with or without fixed monitor nozzles, shall be provided in accordance with accepted practice. The number and placement will depend on the hazard of the storage, or exposure, as determined by 2-5.8.1.2.
- **2-5.8.7.3*** Where the need is indicated by the hazards of storage or exposure as determined by 2-5.8.1.2, fixed protection shall be required utilizing approved foam-water sprinkler systems, sprinkler systems, water spray systems, deluge systems, fire resistive materials, or a combination of these.

- **2-5.8.7.4*** If provided, fire control systems shall be designed, installed, and maintained in accordance with the following NFPA standards:
 - (a) NFPA 11, Standard for Low Expansion Foam;
- (b) NFPA 11A, Standard for Medium- and High-Expansion Foam Systems;
 - (c) NFPA 12, Standard on Carbon Dioxide Extinguishing Systems;
- (d) NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems;
 - (e) NFPA 13, Standard for the Installation of Sprinkler Systems;
- (f) NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection:
- (g) NFPA 16, Standard on the Installation of Deluge Foam-Water Sprinkler and Foam-Water Spray Systems;
- (h) NFPA 17, Standard for Dry Chemical Extinguishing Systems; and
- (i) NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protecton Systems.

2-6 Supports, Foundations, and Anchorage for All Tank Locations.

- **2-6.1*** Tanks shall rest on the ground or on foundations made of concrete, masonry, piling, or steel. Tank foundations shall be designed to minimize the possibility of uneven settling of the tank and to minimize corrosion in any part of the tank resting on the foundation.
- **2-6.2** Where tanks are supported above the foundations, tank supports shall be installed on firm foundations. Supports for tanks storing Class I, Class II, or Class IIIA liquids shall be of concrete, masonry, or protected steel. Single wood timber supports (not cribbing), laid horizontally, shall be permitted to be used for outside aboveground tanks if not more than 12 in. (0.3 m) high at their lowest point.
- 2-6.3* Steel supports or exposed piling for tanks storing Class I, Class II, or Class IIIA liquids shall be protected by materials having a fire resistance rating of not less than 2 hours, except that steel saddles need not be protected if less than 12 in. (0.3 m) high at their lowest point. At the discretion of the authority having jurisdiction, water spray protection in accordance with NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, or NFPA 13, Standard for the Installation of Sprinkler Systems, or equivalent shall be permitted to be used.
- **2-6.4*** The design of the supporting structure for tanks such as spheres shall require special engineering consideration.
- **2-6.5** Every tank shall be so supported as to prevent the excessive concentration of loads on the supporting portion of the shell.

2-6.6 Tanks in Areas Subject to Flooding.

2-6.6.1 Where a tank is located in an area subject to flooding, provisions shall be taken to prevent tanks, either full or empty, from floating during a rise in water level up to the established maximum flood stage.

2-6.6.2 Aboveground Tanks.

2-6.6.2.1 Each vertical tank shall be located so that its top extends above the maximum flood stage by at least 30 percent of its allowable storage capacity.

- **2-6.6.2.2** Horizontal tanks located so that more than 70 percent of the tank's storage capacity will be submerged at the established flood stage shall be anchored; shall be attached to a foundation of concrete or of steel and concrete of sufficient weight to provide adequate load for the tank when filled with flammable or combustible liquid and submerged by flood water to the established flood stage; or shall be adequately secured from floating by other means. Tank vents or other openings that are not liquidtight shall be extended above maximum flood stage water level.
- **2-6.6.2.3** A dependable water supply shall be available for filling an empty or partially filled tank, except that where filling the tank with water is impractical or hazardous because of the tank's contents, tanks shall be protected by other means against movement or collapse.
- **2-6.6.2.4** Spherical or spheroid tanks shall be protected by applicable methods as specified for either vertical or horizontal tanks.

2-6.6.3 Underground Tanks.

- **2-6.6.3.1** At locations where there is an ample and dependable water supply available, underground tanks containing flammable or combustible liquids, so placed that more than 70 percent of their storage capacity will be submerged at the maximum flood stage, shall be so anchored, weighted, or secured as to prevent movement when filled or loaded with water and submerged by flood water to the established flood stage. Tank vents or other openings that are not liquidtight shall be extended above maximum flood stage water level.
- **2-6.6.3.2** At locations where there is no ample and dependable water supply or where filling of underground tanks with water is impractical because of the contents, each tank shall be safeguarded against movement when empty and submerged by high ground water or flood water by anchoring or by securing by other means. Each such tank shall be so constructed and installed that it will safely resist external pressures if submerged.
- **2-6.6.4 Water Loading.** The filling of a tank to be protected by water loading shall be started as soon as flood waters are predicted to reach a dangerous flood stage. Where independently fueled water pumps are relied upon, sufficient fuel shall be available at all times to permit continuing operations until all tanks are filled. Tank valves shall be locked in a closed position when water loading has been completed.

2-6.6.5 Operating Instructions.

- **2-6.6.5.1** Operating instructions or procedures to be followed in a flood emergency shall be readily available.
- **2-6.6.5.2** Personnel relied upon to carry out flood emergency procedures shall be informed of the location and operation of valves and other equipment necessary to effect the intent of these requirements.
- **2-6.7** In areas subject to earthquakes, the tank supports and connections shall be designed to resist damage as a result of such shocks.
- **2-7* Sources of Ignition.** In locations where flammable vapors could be present, precautions shall be taken to prevent ignition by eliminating or controlling sources of ignition. Sources of ignition can include open flames, lightning, smoking, cutting and welding, hot surfaces, frictional heat, sparks (static, electrical, and mechanical), spontaneous ignition, chemical and physicochemical reactions, and radiant heat.

2-8 Testing and Maintenance.

- **2-8.1** All tanks, whether shop-built or field-erected, shall be tested before they are placed in service in accordance with the applicable paragraphs of the code under which they were built. The ASME code stamp or the listing mark of Underwriters Laboratories Inc. on a tank shall be evidence of compliance with this test. Tanks not marked in accordance with the above codes shall be tested before they are placed in service in accordance with good engineering principles and reference shall be made to the sections on testing in the codes listed in 2-2.3.1, 2-2.4.2, or 2-2.5.2.
- 2-8.2 Where the vertical length of the fill and vent pipes is such that when filled with liquid the static head imposed on the bottom of the tank exceeds 10 psi (68.9 kPa), the tank and related piping shall be tested hydrostatically to a pressure equal to the static head thus imposed. In special cases where the height of the vent above the top of the tank is excessive, the hydrostatic test pressure shall be determined by using recognized engineering practice.
- **2-8.3*** In addition to the test called for in 2-8.1 and 2-8.2, all tanks and connections shall be tested for tightness. Except for underground tanks, this test shall be made at operating pressure with air, inert gas, or water prior to placing the tank in service. Air pressure shall not be used to test tanks that contain flammable or combustible liquids or vapors. (See Section 3-9 for testing pressure piping.)
- **2-8.3.1** In the case of field-erected tanks, the test called for in 2-8.1 or 2-8.2 shall be permitted to be considered the test for tank tightness.
- **2-8.3.2** Horizontal shop-fabricated aboveground tanks shall be tested for tightness either hydrostatically or with air pressure at not less than 3 psi (20.6 kPa) and not more than 5 psi (34.5 kPa). Vertical shop-fabricated aboveground tanks shall be tested for tightness either hydrostatically or with air pressure at not less than 1.5 psi (10.3 kPa) and not more than 2.5 psi (17.3 kPa).
- **2-8.3.3** Single-wall underground tanks and piping, before being covered, enclosed, or placed in use, shall be tested for tightness either hydrostatically or with air pressure at not less than 3 psi (20.6 kPa) and not more than 5 psi (34.5 kPa).
- **2-8.3.4** Underground secondary containment tanks and horizontal aboveground secondary containment-type tanks shall have the primary (inner) tank tested for tightness either hydrostatically or with air pressure at not less than 3 psi (20.6 kPa) and not more than 5 psi (34.5 kPa). The interstitial space (annulus) of such tanks shall be tested either hydrostatically or with air pressure at 3 psig to 5 psig (20.6 kPa to 34.5 kPa) or vacuum at 5.3 in. Hg (17.9 kPa) or in accordance with the listing or manufacturer's instructions. The pressure or vacuum shall be held for one hour. Care shall be taken to ensure that the interstitial space is not overpressured or subjected to excessive vacuum.
- **2-8.3.5** Vertical aboveground secondary containment-type tanks shall have the primary (inner) tank tested for tightness either hydrostatically or with air pressure at not less than 1.5 psi (10.3 kPa) and not more than 2.5 psi (17.3 kPa). The interstitial space (annulus) of such tanks shall be tested either hydrostatically or with air pressure at 1.5 to 2.5 psig (10.3 to 17.3 kPa) or vacuum at 5.3 in. Hg (17.9 kPa) or in accordance with the listing or manufacturer's instructions.

The pressure or vacuum shall be held for one hour. Care shall be taken to ensure that the interstitial space is not overpressured or subjected to excessive vacuum.

- **2-8.4** Before the tank is initially placed in service, all leaks or deformations shall be corrected in an acceptable manner. Mechanical caulking is not permitted for correcting leaks in welded tanks except pinhole leaks in the roof.
- **2-8.5** Tanks to be operated at pressures below their design pressure can be tested by the applicable provisions of 2-8.1 or 2-8.2 based upon the pressure developed under full emergency venting of the tank.
- **2-8.6** Each tank shall be maintained liquidtight. Each tank that is leaking shall be emptied of liquid or repaired in a manner acceptable to the authority having jurisdiction.
- **2-8.7*** Tanks that have been structurally damaged, have been repaired, or are suspected of leaking shall be tested in a manner acceptable to the authority having jurisdiction.
- **2-8.8*** Tanks and all tank appurtenances, including normal vents and emergency vents and related devices, shall be properly maintained to ensure that they function as intended.

2-9 Fire Protection and Identification.

- **2-9.1** A fire extinguishing system in accordance with an applicable NFPA standard shall be provided or be available for vertical atmospheric fixed-roof storage tanks larger than 50,000 gal (189,250 L) capacity, storing Class I liquids, if located in a congested area where there is an unusual exposure hazard to the tank from adjacent property or to adjacent property from the tank. Fixed-roof tanks storing Class II or III liquids at temperatures below their flash points and floating-roof tanks storing any liquid generally shall not require protection when installed in compliance with Section 2-3.
- **2-9.2** The application of NFPA 704, Standard System for the Identification of the Fire Hazards of Materials for Emergency Response, to storage tanks containing liquids shall not be required except where the contents have a health or reactivity degree of hazard of 2 or more or a flammability rating of 4. The marking shall not need to be applied directly to the tank but shall be located where it can readily be seen, such as on the shoulder of an accessway or walkway to the tank or tanks or on the piping outside of the diked area. If more than one tank is involved, the markings shall be so located that each tank can readily be identified.
- **2-9.3** Unsupervised, isolated aboveground storage tanks shall be secured and marked in such a manner as to identify the fire hazards of the tank and its contents to the general public. The area in which the tank is located shall be protected from tampering or trespassing, where necessary.

2-10 Prevention of Overfilling of Tanks.

- **2-10.1** Aboveground tanks at terminals receiving transfer of Class I liquids from mainline pipelines or marine vessels shall follow formal written procedures to prevent overfilling of tanks utilizing one of the following methods of protection:
- (a) Tanks gauged at frequent intervals by personnel continuously on the premises during product receipt with frequent acknowledged communication maintained with the supplier so that flow can be promptly shut down or diverted;

- (b) Tanks equipped with a high-level detection device that is independent of any tank gauging equipment. Alarms shall be located where personnel who are on duty throughout product transfer can promptly arrange for flow stoppage or diversion;
- (c) Tanks equipped with an independent high-level detection system that will automatically shut down or divert flow: or
- (d) Alternatives to instrumentation described in (b) and (c) where approved by the authority having jurisdiction as affording equivalent protection.
- **2-10.1.1** Instrumentation systems covered in 2-10.1(b) and (c) shall be electrically supervised or equivalent.
- **2-10.2** Formal written procedures required in 2-10.1 shall include:
- (a) Instructions covering methods to check for proper lineup and receipt of initial delivery to tank designated to receive shipment;
- (b) Provision for training and monitoring the performance of operating personnel by terminal supervision; and
- (c) Schedules and procedures for inspection and testing of gaging equipment and high-level instrumentation and related systems. Inspection and testing intervals shall be acceptable to the authority having jurisdiction, but shall not exceed one year.
- **2-10.3** An underground storage tank shall be equipped with overfill prevention equipment that will:
- (a) Automatically shut off the flow of liquid into the tank when the tank is no more than 95 percent full; or
- (b) Alert the transfer operator when the tank is no more than 90 percent full by restricting the flow of liquid into the tank or triggering a high-level alarm; or
- (c) Other methods approved by the authority having jurisdiction.
- 2-11* Leakage Detection and Inventory Records for Underground Tanks. Accurate inventory records or a leak detection program shall be maintained on all Class I liquid storage tanks for indication of possible leakage from the tanks or associated piping.

Chapter 3 Piping Systems

3-1 Scope.

- **3-1.1** This chapter shall apply to piping systems consisting of pipe, tubing, flanges, bolting, gaskets, valves, fittings, flexible connectors, the pressure containing parts of other components such as expansion joints and strainers, and devices that serve such purposes as mixing, separating, snubbing, distributing, metering, controlling flow, or secondary containment of liquids and associated vapors.
- **3-1.2** This chapter shall not apply to any of the following:
- (a) Tubing or casing on any oil or gas wells and any piping connected directly thereto;
- (b) Motor vehicles, aircraft, boats, or piping that are integral to a stationary engine assembly; and
- (c) Piping within the scope of any applicable boiler and pressure vessel code.

3-2 General.

- **3-2.1** The design, fabrication, assembly, test, and inspection of piping systems containing liquids shall be suitable for the expected working pressures and structural stresses. Conformity with the applicable sections of ANSI B31, *American National Standard Code for Pressure Piping*, and the provisions of this chapter shall be considered prima facie evidence of compliance with the foregoing provisions.
- **3-2.2** Piping systems shall be maintained liquidtight. A piping system that has leaks that constitute a hazard shall be emptied of liquid or repaired in a manner acceptable to the authority having jurisdiction.

3-3 Materials for Piping, Valves, and Fittings.

- **3-3.1** Pipe, valves, faucets, couplings, flexible connectors, fittings, and other pressure-containing parts as covered in 3-1.1 shall meet the material specifications and pressure and temperature limitations of ANSI B31.3, *Petroleum Refinery Piping*, or ANSI B31.4, *Liquid Petroleum Transportation Piping Systems*, except as provided by 3-3.2, 3-3.3, and 3-3.4. Plastic or similar materials, as permitted by 3-3.4, shall be designed to specifications embodying recognized engineering principles or shall be listed, and shall be compatible with the fluid service.
- **3-3.2** Nodular iron shall conform to ASTM A 395, Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures.
- **3-3.3** Valves at storage tanks, as required by 2-3.8.1 and 2-5.6.3, and their connections to the tank shall be of steel or nodular iron except as provided in 3-3.3.1 or 3-3.3.2.
- **3-3.3.1** Valves at storage tanks shall be permitted to be other than steel or nodular iron where the chemical characteristics of the liquid stored are not compatible with steel or where installed internally to the tank. Where installed externally to the tank, the material shall have a ductility and melting point comparable to steel or nodular iron so as to withstand reasonable stresses and temperatures involved in fire exposure or otherwise be protected, such as by materials having a fire resistance rating of not less than 2 hours.
- **3-3.3.2** Cast iron, brass, copper, aluminum, malleable iron, and similar materials shall be permitted to be used on tanks described in 2-3.3.2 or for tanks storing Class IIIB liquids where the tank is located outdoors and not within a diked area or drainage path of a tank storing a Class I, Class II, or Class IIIA liquid.
- **3-3.4** Low melting point materials such as aluminum, copper, and brass, materials that soften on fire exposure such as plastics, or nonductile material such as cast iron shall be permitted to be used underground for all liquids within the pressure and temperature limits of ANSI B31, *American National Standard Code for Pressure Piping*. If such materials are used outdoors in aboveground piping systems handling Class I, Class II, or Class IIIA liquids or within buildings handling any liquid they shall be either: (a) resistant to damage by fire, (b) so located that any leakage resulting from the failure will not unduly expose persons, important buildings, or structures, or (c) located where leakage can readily be controlled by operation of an accessible remotely located valve(s).
- **3-3.5** Piping, valves, and fittings shall be permitted to have combustible or noncombustible linings.

3-3.6 Nonmetallic piping, including piping systems incorporating secondary containment, shall be built in accordance with recognized standards of design or approved equivalents and shall be installed in accordance with 3-3.4. Nonmetallic piping shall be built, installed, and used within the scope of their approvals or within the scope of Underwriters Laboratories Inc.'s *Standard for Nonmetallic Underground Piping for Flammable Liquids*, UL 971.

3-4 Pipe Joints.

- **3-4.1** Joints shall be made liquidtight and shall be either welded, flanged, or threaded, except that listed flexible connectors shall be permitted to be used where installed in accordance with 3-4.2. Threaded joints shall be made up tight with a suitable thread sealant or lubricant. Joints in piping systems handling Class I liquids shall be welded when located in concealed spaces within buildings.
- **3-4.2** Pipe joints dependent upon the friction characteristics or resiliency of combustible materials for mechanical continuity or liquidtightness of piping shall not be used inside buildings. They shall be permitted to be used outside of buildings aboveground or belowground. If used aboveground outside of buildings, the piping shall either be secured to prevent disengagement at the fitting, or the piping system shall be so designed that any spill resulting from disengagement could not unduly expose persons, important buildings, or structures and could be readily controlled by remote valves.
- **3-5 Supports.** Piping systems shall be substantially supported and protected against physical damage and excessive stresses arising from settlement, vibration, expansion, or contraction. The installation of nonmetallic piping shall be in accordance with the manufacturer's instructions.
- **3-5.1*** Load-bearing piping supports that are located in areas with a high fire exposure risk shall be protected by one or more of the following:
- (a) Drainage to a safe location to prevent liquid from accumulating under pipeways;
 - (b) Fire-resistive construction;
 - (c) Fire-resistant protective coatings or systems;
- (d) Water spray systems designed and installed in accordance with NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection;
- (e) Other alternate means acceptable to the authority having jurisdiction.
- **3-6* Protection against Corrosion.** All piping systems for liquids, both aboveground and underground, that are subject to external corrosion shall be protected. Underground piping systems shall be protected in accordance with 2-4.3.
- **3-7 Underground Piping.** In areas subject to vehicle traffic, the trench shall be of sufficient depth to permit a bedding of at least 6 in. (15 cm) of well-compacted backfill material and shall be covered with at least 18 in. (45.7 cm) of well-compacted backfill material and pavement. In areas not subject to vehicle traffic, the piping shall be provided with a cover of at least 6 in. (15 cm) of well-compacted backfill material. A greater burial depth shall be provided when required by the manufacturer's instructions or where frost conditions are present.

- **3-7.1** Piping within the same trench shall be separated as follows:
 - (a) Two pipe diameters between steel lines;
- (b) Two pipe diameters between fiberglass-reinforced plastic lines; and
 - (c) Piping need not be separated by more than 9 in. (23 cm).
- **3-7.2** Two or more levels of pipes within the same trench shall be separated by a minimum 6 in. (15 cm) of well-compacted backfill.
- **3-8 Valves.** Piping systems shall contain a sufficient number of valves to operate the system properly and to protect the plant. Piping systems in connection with pumps shall contain a sufficient number of valves to control properly the flow of liquid in normal operation and in the event of physical damage. Each connection to piping by which equipment such as tank cars, tank vehicles, or marine vessels discharge liquids into storage tanks shall be provided with a check valve for automatic protection against back-flow if the piping arrangement is such that back-flow from the system is possible. (*See also 2-3.8.1.*)
- **3-8.1** If loading and unloading is done through a common pipe system, a check valve is not required. However, a block valve shall be provided. This valve shall be located so that it is readily accessible or shall be remotely operable.
- **3-9 Testing.** Unless tested in accordance with the applicable sections of ANSI B31, *American National Standard Code for Pressure Piping*, all piping, before being covered, enclosed, or placed in use, shall be hydrostatically tested to 150 percent of the maximum anticipated pressure of the system, or pneumatically tested to 110 percent of the maximum anticipated pressure of the system but not less than 5 psi (34.5 kPa) gauge at the highest point of the system. This test shall be maintained for a sufficient time to complete visual inspection of all joints and connections, but for at least 10 minutes.
- **3-10* Identification.** Each loading and unloading riser for liquid storage shall be identified by color code or marking to identify the product for which the tank is used.

Chapter 4 Container and Portable Tank Storage

4-1 General.

4-1.1 Scope.

4-1.1.1 This chapter shall apply to the storage of liquids in drums or other containers that do not exceed 60 gal (227 L) individual capacity and in portable tanks that do not exceed 660 gal (2498 L) individual capacity and to limited transfers incidental thereto. For portable tanks that exceed 660 gal (2498 L), Chapter 2 shall apply.

4-1.1.2 This chapter shall not apply to the following:

- (a) Storage of containers in bulk plants, service stations, refineries, chemical plants, and distilleries;
- (b) Liquids in the fuel tanks of motor vehicles, aircraft, boats, or portable or stationary engines;
- (c) Beverages, where packaged in individual containers that do not exceed 1 gal (3.8 L) capacity;

- (d) Medicines, foodstuffs, cosmetics, and other consumer products that contain not more than 50 percent by volume of water-miscible liquids, with the remainder of the solution not being flammable where packaged in individual containers that do not exceed 1 gal (3.8 L) capacity;
- (e) Liquids that have no fire point when tested by ASTM D 92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup, up to the boiling point of the liquid or up to a temperature at which the sample being tested shows an obvious physical change;
- (f) Liquids with a flash point greater than 95°F (35°C) in a water-miscible solution or dispersion with a water and inert (non-combustible) solids content of more than 90 percent by weight;
 - (g) Distilled spirits and wines in wooden barrels or casks.

4-1.2 General Provision.

- **4-1.2.1** For the purpose of this chapter, unstable liquids shall be treated as Class IA liquids.
- **4-1.2.2** For the purposes of this chapter, protected storage installed after January 1, 1997, shall mean storage installed after January 1, 1997, that is protected in accordance with Section 4-8. All other storage shall be considered to be unprotected storage unless an alternate means of protection has been approved by the authority having jurisdiction. (See 4-8.2.3 and 4-8.3.)

Exception: As provided for in Section 4-5.

4-2 Design, Construction, and Capacity of Containers.

- **4-2.1** Only approved containers, intermediate bulk containers (IBCs), and portable tanks shall be used.
- (a) Metal containers, metal intermediate bulk containers, and metal portable tanks meeting the requirements of, and containing products authorized by, Chapter I, Title 49, of the Code of Federal Regulations (U.S. Department of Transportation Hazardous Materials Regulations), Chapter 9 of the United Nations Recommendations for the Transport of Dangerous Goods, or NFPA 386, Standard for Portable Shipping Tanks for Flammable and Combustible Liquids, shall be acceptable. Any metal container larger than 60 gal (228L) and meeting the requirements of NFPA 386 shall be considered a portable tank for purposes of this chapter.
- (b) Plastic containers meeting the requirements of, and used for petroleum products within the scope of, one or more of the following specifications shall be acceptable:
- 1. ASTM F 852, Standard for Portable Gasoline Containers for Consumer Use;
- 2. ASTM F 976, Standard for Portable Kerosene Containers for Consumer Use;
- $3. \ ANSI/UL \ 1313, \textit{Nonmetallic Safety Cans for Petroleum Products}.$
- (c) Plastic drums meeting the requirements of and containing products authorized by Title 49 of the Code of Federal Regulations or by Chapter 9 of the United Nations Recommendations on the Transport of Dangerous Goods shall be acceptable.
 - (d) Fiber drums that:
- 1. Meet the requirements of Item 296 of the National Motor Freight Classification (NMFC) or Rule 51 of the Uniform Freight Classification (UFC) for Types 2A, 3A, 3B-H, 3B-L, or 4A, and

- 2. Meet the requirements of and contain liquid products authorized either by Chapter I, Title 49, of the *Code of Federal Regulations* (U.S. Department of Transportation Hazardous Materials Regulations) or by U.S. Department of Transportation exemption shall be acceptable.
- (e) Rigid plastic intermediate bulk containers (IBCs) and composite intermediate bulk containers (IBCs) that meet the requirements of and containing products authorized by Title 49 of the Code of Federal Regulations or Chapter 16 of the United Nations Recommendations on the Transport of Dangerous Goods for Classes 31H1, 31H2, and 31HZ1 shall be acceptable.
- 4-2.2 Each portable tank or intermediate bulk container shall be provided with one or more devices installed in the top with sufficient emergency venting capacity to limit internal pressure under fire exposure conditions to 10 psig (68.9 kPa) or 30 percent of the bursting pressure of the portable tank, whichever is greater. The total venting capacity shall be not less than that specified in 2-3.6.4 or 2-3.6.6. At least one pressure-actuated vent having a minimum capacity of 6000 ft³ (170 m³) of free air per hour [14.7 psia (760 mm Hg) and 60°F (15.6°C)] shall be used. It shall be set to open at not less than 5 psig (34.5 kPa). If fusible vents are used, they shall be actuated by elements that operate at a temperature not exceeding 300°F (148.9°C). Where plugging of a pressure-actuated vent can occur, such as when used for paints, drying oils, and similar materials, fusible plugs or venting devices that soften to failure at a maximum of 300°F (148.9°C) under fire exposure shall be permitted to be used for the entire emergency venting requirement.
- **4-2.3** The maximum allowable size of a container or metal portable tank shall not exceed that specified in Table 4-2.3.

Exception: As provided for in 4-2.3.1, 4-2.3.2, and 4-2.3.3.

- **4-2.3.1** Medicines, beverages, foodstuffs, cosmetics, and other common consumer products, where packaged according to commonly accepted practices for retail sales, shall be exempt from the requirements of 4-2.1 and 4-2.3.
- **4-2.3.2** U.S. Department of Transportation (DOT) Type III nonreusable polyethylene containers, constructed and tested in accordance with DOT specification 2U and treated if necessary to prevent permeation, shall be permitted to be used for storage of Class II and Class III liquids, in any capacity that does not exceed $2\frac{1}{2}$ gal (9.5 L).
- **4-2.3.3** Class IA and Class IB liquids shall be permitted to be stored in glass containers of not more than 1-gal (3.8-L) capacity, if the required liquid purity (such as ACS analytical reagent grade or higher) would be affected by storage in metal containers or if the liquid can cause excessive corrosion of the metal container.

4-3 Design, Construction, and Capacity of Storage Cabinets.

- **4-3.1** Not more than 120 gal (454 L) of Class I, Class II, and Class IIIA liquids shall be stored in a storage cabinet. Of this 120-gal total, not more than 60 gal (227 L) shall be Class I and Class II liquids.
- **4-3.2** Not more than three storage cabinets shall be located in any one fire area.

Exception No. 1: In an industrial occupancy, additional storage cabinets shall be permitted to be located in the same fire area, if a minimum separation of 100 ft (30 m) is maintained between each group of not more than three cabinets.

- Exception No. 2: In an industrial occupancy that is protected by an automatic sprinkler system that is designed and installed in accordance with Chapters 5 or 6 of NFPA 13, Standard for the Installation of Sprinkler Systems, the number of cabinets in any one group shall be permitted to be increased to six.
- **4-3.3** Storage cabinets that meet at least one of the following sets of requirements, as specified in (a), (b), or (c), shall be acceptable for storage of liquids.
- (a) Storage cabinets that are designed and constructed to limit the internal temperature at the center of the cabinet and 1 in. (2.5 cm) from the top of the cabinet to not more than 325°F (162.8°C), when subjected to a 10-min fire test that simulates the fire exposure of the standard time-temperature curve specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials, shall be acceptable. All joints and seams shall remain tight and the door shall remain securely closed during the test.
- (b) Metal storage cabinets that are constructed in the following manner shall be acceptable. The bottom, top, door, and sides of the cabinet shall be at least No. 18 gauge sheet steel and shall be double-walled, with $1\frac{1}{2}$ in. (3.8 cm) air space. Joints shall be riveted, welded, or made tight by some equally effective means. The door shall be provided with a three-point latch arrangement and the door sill shall be raised at least 2 in. (5 cm) above the bottom of the cabinet to retain spilled liquid within the cabinet.
- (c) Wooden cabinets constructed in the following manner shall be acceptable. The bottom, sides, and top shall be constructed of exterior grade plywood that is at least 1 in. (2.5 cm) thick and of a type that will not break down or delaminate under fire conditions. All joints shall be rabbetted and shall be fastened in two directions with wood screws. Where more than one door is used, there shall be a rabbetted overlap of not less than 1 in. (2.5 cm). Doors shall be equipped with a means of latching and hinges shall be constructed and mounted in such a manner as to not lose their holding capacity when subjected to fire exposure. A raised sill or pan capable of containing a 2 in. (5 cm) depth of liquid shall be provided at the bottom of the cabinet to retain spilled liquid within the cabinet.
- (d) Listed storage cabinets that have been constructed and tested in accordance with 4-3.3(a) shall be acceptable.
- **4-3.4*** The storage cabinet shall not be required by this code to be vented for fire protection purposes and vent openings shall be sealed with the bungs supplied with the cabinet or with bungs specified by the manufacturer of the cabinet. However, if the storage cabinet is vented for any reason, the cabinet shall be vented directly to outdoors in such a manner that will not compromise the specified performance of the cabinet and in a manner that is acceptable to the authority having jurisdiction.
- **4-3.5** Storage cabinets shall be marked in conspicuous lettering: "FLAMMABLE KEEP FIRE AWAY."
- **4-4* Design, Construction, and Operation of Inside Liquid Storage Areas.** (See Section 1-6 for definitions. See Figures A-4-4(a) and (b) for explanatory information on the types of inside liquid storage areas. See Appendix D for information on protection criteria.)
- **4-4.1 Scope.** Section 4-4 shall apply to inside areas where the primary function is the storage of liquids. This shall include inside rooms, cutoff rooms, attached buildings, liquid warehouses, and hazardous material storage lockers that are used as inside storage areas. (See Section 4-5 for storage of liquids in other types of occupancies.)

Table 4-2.3 Maximum Allowable Size of Containers and Portable Tanks

Liquids		Flammable Liquids		Combustible	
Container Type	Class IA	Class IB	Class IC	Class II	Class III
Glass	1 pt	l qt	l gal	l gal	5 gal
Metal (other than DOT drums) or Approved	•	•	,	•	V
Plastic	1 gal	5 gal	5 gal	5 gal	5 gal
Safety Cans	2 gal	5 gal	5 gal	5 gal	5 gal
Metal Drum (DOT	.,	ζ,	C/	· ·	
Specification)	60 gal	60 gal	60 gal	60 gal	60 gal
Approved Metal Porta-	(,	,	· ·	· ·	· ·
ble Tanks and IBCs	660 gal	660 gal	660 gal	660 gal	660 gal
Rigid Plastic IBCs (UN		· ·	· ·	· ·	· ·
31H1 or 31H2) and					
Composite IBCs (UN					
31HŽ1)	NP	NP	NP	660 gal	660 gal
Polyethylene DOT Spec-					
ification 34, UN 1H1,					
or as authorized by					
DOT Exemption	1 gal	5 gal	5 gal	60 gal	60 gal
Fibre Drum					
NMFC or UFC Type					
2A; Types 3A, 3B-H,					
or 3B-L; or Type 4A	NP^{1}	NP^{1}	NP^1	60 gal	60 gal

SI units: 1 pt = 0.473 L; 1 qt = 0.95 L; 1 gal = 3.8 L.

Not permitted.

4-4.2 Design and Construction Requirements.

4-4.2.1 All storage areas shall be constructed to meet the specified fire resistance ratings in Table 4-4.2.1. Such construction shall comply with the test specifications given in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials.

4-4.2.2 Openings in interior walls to adjacent rooms or buildings and openings in exterior walls with fire resistance ratings shall be provided with normally closed, listed fire doors with fire protection ratings corresponding to the fire resistance rating of the wall as specified in Table 4-4.2.2. Such doors shall be permitted to be arranged to stay open during material handling operations if the doors are designed to close automatically in a fire emergency by provision of listed closure devices. Fire doors shall be installed in accordance with NFPA 80, *Standard for Fire Doors and Fire Windows*.

4-4.2.3 Communicating openings in fire walls separating liquid warehouses from adjacent building areas shall be protected by 3-hr fire doors on each side of the wall.

4-4.2.4 Construction design of exterior walls shall provide ready accessibility for fire-fighting operations through provision of access openings, windows, or lightweight noncombustible wall panels.

Exception: This shall not apply to inside rooms.

4-4.2.5* Where Class IA or IB liquids or unstable liquids are dispensed or where Class IA liquids or unstable liquids are stored in containers larger than 1 gal (4 L), the exterior wall or roof construction shall incorporate deflagration venting.

Exception No. 1: This does not apply to inside rooms.

Exception No. 2: This does not apply to Class IB liquids that are dispensed from containers smaller than 60 gal (228L) capacity.

4-4.2.6 Effective January 1, 1997, and where required by Figure 4-4.2.6, containment or drainage shall be provided for all new construction.

Table 4-4.2.1 Fire Resistance Ratings for Inside Liquid Storage Areas

	Fire Resistance Rating, hr			
Type of Storage Area	Interior Walls ¹ , Ceilings, Intermediate Floors	Roofs	Exterior Walls	
Inside Rooms				
Floor area < 150 ft ² Floor area > 150 ft ² and	1	_		
< 500 ft ² Cutoff Rooms and Attached	2	_	_	
Buildings Floor area < 300 ft ² Floor area > 300 ft ² Liquid Warehouses	1 2 4 ⁴	$\frac{1^2}{2^2}$	$\frac{-}{2^3}$ 2 ⁵ or 4 ⁶	

SI units: $1 \text{ ft}^2 = 0.09 \text{m}^2$

¹Between liquid storage areas and any adjacent areas not dedicated to liquid storage.

'Roofs of attached buildings, one story in height, shall be permitted to be of lightweight, noncombustible construction if the separating interior walls have minimum 3-ft (0.90-m) parapets.

*Where other portions of buildings or other properties are exposed.

This shall be a standard fire wall.

For exposing walls that are located more than $10~{\rm ft}$ (3 m) but less than $50~{\rm ft}$ (15 m) from an important building or line of adjoining property that can be built upon.

'For exposing walls that are located 10 ft (3 m) or less from an important building or line of adjoining property that can be built upon.

Table 4-4.2.2 Fire Protection Ratings for Fire Doors

Fire Resistance Rating of Wall ¹ , hr	Fire Protection Rating of Door, hr		
1	3/4		
2	$1\sqrt{2}$		
4	3^{2}		

As required by Table 4-4.2.1.

²One fire door required on each side of interior openings for attached liquidwarehouses. (*See 4-4.2.3*.)

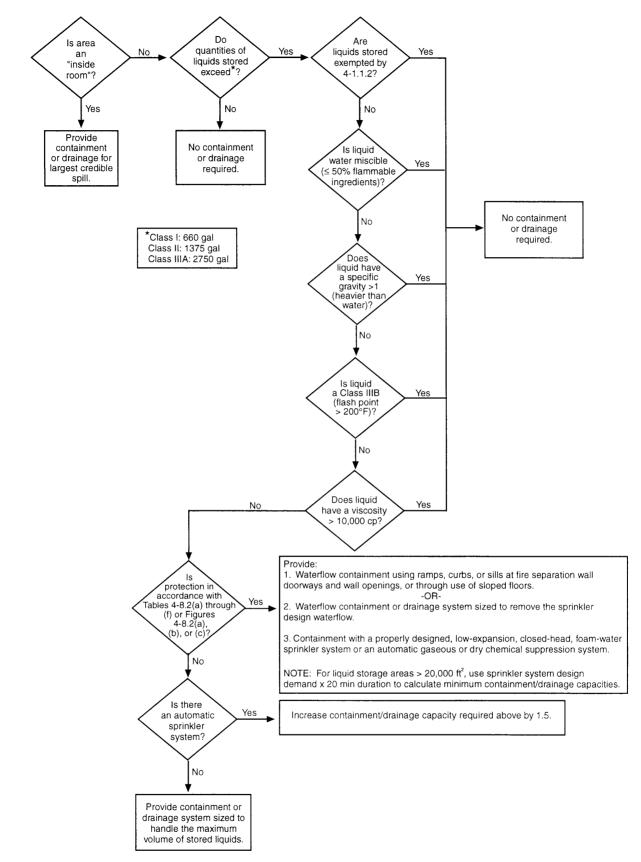


Figure 4-4.2.6 Containment/drainage requirements for inside liquid storage areas.

- **4-4.2.7*** When containment or drainage is required by Figure 4-4.2.6, means shall be provided to prevent the flow of burning liquid under emergency conditions into adjoining building areas, property, or critical natural resources.
- **4-4.2.8*** Where automatic sprinkler protection is provided, in addition to the requirements of 4-4.2.7, means shall also be provided to prevent burning liquids from exposing other storage piles or racks and from exposing other important buildings, adjoining property, or critical natural resources.

Exception No. 1: This requirement shall not apply to areas where only the following are stored:

- (a) Class III liquids;
- (b) Liquids that are heavier than water;
- (c) Water-miscible liquids;
- (d) Liquids having viscosities greater than 10,000 centipoise.

Exception No. 2: This requirement shall not apply to areas where fire protection is provided by non-water extinguishing systems, such as total flooding CO₂, high-expansion foam, or aqueous film-forming foam (AFFF).

- **4-4.2.9*** Electrical equipment and wiring in inside rooms used for the storage of Class I liquids shall be suitable for Class I, Division 2, classified locations. Electrical equipment and wiring in inside rooms used for the storage of only Class II and Class III liquids shall be suitable for general purpose use.
- **4-4.2.10*** Where Class I liquids are dispensed or where Class II or Class III liquids at temperatures at or above their flash points are dispensed, electrical equipment and wiring shall be suitable for Class I, Division 2, classified locations. In addition, electrical equipment and wiring located within 3 ft (0.9 m) of dispensing nozzles shall be suitable for Class I, Division 1, classified locations.
- **4-4.2.11** Liquid storage areas where dispensing is conducted shall be provided with either a gravity or a continuous mechanical exhaust ventilation system. Mechanical ventilation shall be used if Class I liquids are dispensed within the room.
- (a) Exhaust air shall be taken from a point near a wall on one side of the room and within 12 in. (30 cm) of the floor with one or more make-up inlets located on the opposite side of the room within 12 in. (30 cm) of the floor. The location of both the exhaust and inlet air openings shall be arranged to provide, as far as practicable, air movements across all portions of the floor to prevent accumulation of flammable vapors. Exhaust from the room shall be directly to the exterior of the building without recirculation.

Exception: Recirculation is permitted where it is monitored continuously using a fail-safe system that is designed to automatically sound an alarm, stop recirculation, and provide full exhaust to the outside in the event that vapor-air mixtures in concentration over one-fourth of the lower flammable limit are detected.

If ducts are used, they shall not be used for any other purpose and shall comply with NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials. If make-up air to a mechanical system is taken from within the building, the opening shall be equipped with a fire door or damper, as required in NFPA 91. For gravity systems, the make-up air shall be supplied from outside the building.

(b) Mechanical ventilation systems shall provide at least 1 ft³ per min of exhaust per ft² of floor area (1 m³ per min per 3 m²), but not less than 150 cfm (4 m³ per min). The mechanical ventilation system for dispensing areas shall be equipped with an airflow switch or other equally reliable method that is interlocked to sound an audible alarm upon failure of the ventilation system.

4-4.3 General Storage Requirements.

- **4-4.3.1** The storage of any liquids shall not physically obstruct means of egress.
- **4-4.3.2** Wood at least 1-in. (2.5-cm) nominal thickness shall be permitted to be used for shelving, racks, dunnage, scuffboards, floor overlay, and similar installations.
- **4-4.3.3** Where storage on racks exists as permitted in this code, a minimum 4-ft (1.2-m) wide aisle shall be provided between adjacent rack sections and any adjacent storage of liquids. Main aisles shall be a minimum of 8 ft (2.4 m) wide.
- **4-4.3.4** Solid pile and palletized storage in liquid warehouses shall be arranged so that piles are separated from each other by at least 4 ft (1.2 m). Aisles shall be provided and so arranged that no container or portable tank is more than 20 ft (6 m) from an aisle. Main aisles shall be a minimum of 8 ft (2.4 m) wide.
- **4-4.3.5** Class I liquids shall not be permitted in basement areas. Class II and Class IIIA liquids shall be permitted to be stored in basements provided that automatic sprinkler protection and other fire protection facilities are provided in accordance with Section 4-8.
- **4-4.3.6** Limited quantities of combustible commodities, as defined in the scope of NFPA 231, *Standard for General Storage*, and NFPA 231C, *Standard for Rack Storage of Materials*, shall be permitted to be stored in liquid storage areas if the ordinary combustibles, other than those used for packaging the liquids, are separated from the liquids in storage by a minimum of 8 ft (2.4 m) horizontally, either by aisles or by open racks, and if protection is provided in accordance with Section 4-8.
- **4-4.3.7** Storage of empty or idle combustible pallets inside an unprotected liquid storage area shall be limited to a maximum pile size of 2500 ft² (232 m²) and to a maximum storage height of 6 ft (1.8 m). Storage of empty or idle combustible pallets inside a protected liquid storage area shall comply with NFPA 231, *Standard for General Storage*. Pallet storage shall be separated from liquid storage by aisles that are at least 8 ft (2.4 m) wide.
- **4-4.3.8*** Containers in piles shall be stacked in such manner as to provide stability and to prevent excessive stress on container walls. Portable tanks stored over one tier high shall be designed to nest securely, without dunnage. Materials handling equipment shall be suitable to handle containers and tanks safely at the upper tier level.
- **4-4.3.9** Containers or portable tanks in unprotected liquid storage areas shall not be stored closer than 36 in. (0.9 m) to the nearest beam, chord, girder, or other roof member.

4-4.4 Allowable Quantities and Storage Heights.

4-4.4.1 Except as provided for in 4-4.4.2 through 4-4.4.4, indoor unprotected liquid storage shall comply with Table 4-4.4.1. Where storage of liquids is protected, the protection shall meet the protection requirements of Section 4-8.

	(Container Storage			Tank/Metallic IB(C Storage	Rigid Plastic and Composite Intermediate Bulk Containers		
Class	Maxium Pile Height (ft)	Maximum Quantity per Pile (gal)	Maximum Total Quantity (gal) ¹	Maximum Pile Height (ft)	Maximum Quantity per Pile (gal)	Maximum Total Quantity (gal) ¹	Maximum Pile Height (ft)	Maximum Quantity per Pile (gal)	Maximum Total Quantity (gal) ^I
IA	5	660	660	_	Not permitted	_			
IB	5	1375	1375	7	2000	2000	_	_	_
IC	5	2750	2750	7	4000	4000	_	_	_
H	10	4125	8250	7	5500	11,000	7	4125	8250
IIIA	15	13,750	27,500	7	22,000	44,000	7	13,750	27,500
HIB	15	13,750	55,000	7	22,000	88,000	7	13,750	55,000

Table 4-4.4.1 Indoor Unprotected Storage of Liquids in Containers, Portable Tanks, and IBCs

SI Units: 1 ft = 0.3 m; 1 gal = 3.8 L.

Applies only to cut-off rooms and attached buildings.

Exception*: Other quantities and arrangements of storage shall be permitted to be used where the storage is suitably protected and approved by the authority having jurisdiction.

4-4.4.2 Storage in inside rooms shall meet the requirements specified in Table 4-4.4.2. In addition, containers over 30 gal (113.5 L) capacity that contain Class I or Class II liquids shall not be stored more than one container high in inside rooms.

Table 4-4.4.2 Storage Limitations for Inside Rooms

Total Floor Area (ft²)	Automatic Fire Protection Provided? ¹	Total Allowable Quantity (gal per ft² of floor area)
≤ 150	No Yes	2 5
$> 150 \text{ and} \le 500$	No Yes	$\frac{4^2}{10}$

SI units: $1 \text{ ft}^2 = 0.09 \text{ m}^2$; 1 gal = 3.8 L.

4-4.4.3 Unprotected storage of liquids in racks shall not exceed the maximum total quantities allowed by Table 4-4.4.1.

Exception: Liquid warehouses need not comply with this requirement.

4-4.4.4 The total quantity of liquids stored in a liquid warehouse shall not be restricted. However, the storage heights and maximum quantity per pile or rack section for unprotected storage shall comply with Table 4-4.4.1.

Exception: An unprotected liquid warehouse that is located a minimum of 100 ft (30 m) from exposed buildings or any property line that is or can be built upon need not comply with Table 4-4.4.1 if there is protection for exposures. Where protection for exposures is not provided, this minimum distance shall be increased to 200 ft (61 m).

4-4.4.5 Where two or more classes of liquids are stored in a single pile or rack section, the maximum total quantity and the maximum storage height permitted in that pile or rack section shall be the smallest of the individual maximum total quantities and maximum storage heights for the specific classes present,

respectively. The maximum total quantity permitted shall be limited to a sum of the proportional amounts that each class of liquid present bears to the maximum total quantity permitted for its respective class. The sum of the proportional amounts shall not exceed 100 percent.

Exception: The maximum total quantities in liquid warehouses shall not be restricted. (See 4-4.4.3.)

4-4.5 Operations.

- **4-4.5.1** Dispensing of Class I liquids or Class II or Class III liquids at temperatures at or above their flash points shall not be permitted in cutoff rooms or attached buildings that exceed 1000 ft² (93 m²) in floor area or in liquid warehouses unless the dispensing area is suitably cut off from the storage areas in accordance with Table 4-4.2.1 and meets all other requirements of 4-4.2.
- **4-4.5.2** Dispensing operations shall comply with the applicable requirements of Chapter 5.
- 4-5 Requirements for Liquid Storage Areas in Other Occupancies.

4-5.1 Basic Conditions.

- **4-5.1.1 Scope.** Section 4-5 applies to areas where the storage of liquids is incidental and not the primary purpose of the area.
- **4-5.1.2** Where inside liquid storage areas are required in other occupancies, they shall meet all applicable requirements of Section 4-4 and all applicable requirements of this section. Where other factors substantially increase or decrease the hazard, the authority having jurisdiction shall be permitted to modify the quantities specified.
- **4-5.1.3** Storage of liquids shall not physically obstruct a means of egress. Class I liquids shall be so placed that a fire in the liquid storage would not prevent egress from the area.
- **4-5.1.4** Liquids used for building maintenance, painting, or other similar infrequent maintenance purposes shall be permitted to be stored temporarily in closed containers outside of storage cabinets or inside liquid storage areas, if limited to an amount that does not exceed a 10-day supply at anticipated rates of use.
- **4-5.1.5** Class I liquids shall not be stored in basements.

¹The fire protection system shall be automatic sprinklers, water spray, carbon dioxide, dry chemical, or other approved system. (See Section 4-8.)

²Total allowable quantities of Class IA and IB liquids shall not exceed the quantities permitted in Table 4-4.4.1 or those permitted by 4-4.4.4.

- **4-5.2 General-Purpose Warehouses.** (See Section 1-6, Definitions.)
- **4-5.2.1** General-purpose warehouses storing liquids (as defined in this code) shall be separate, detached buildings or shall be separated from other occupancies by a standard 4-hr fire wall or, if approved, by a fire partition having a fire resistance rating of not less than 2 hours. Each opening shall be protected as provided for in 4-4.2.2.
- **4-5.2.2** Warehousing operations that involve storage of liquids shall be restricted to inside liquid storage areas in accordance with Section 4-4.

Exception: As provided for in 4-5.2.3.

- **4-5.2.3** Class IB and IC liquids in containers of 1 gal (3.8 L) or less capacity, Class II liquids in containers of 5 gal (18.9 L) or less capacity, and Class III liquids in containers of 60 gal (227 L) or less capacity shall be permitted to be stored in warehouses that handle combustible commodities, as defined in NFPA 231, *Standard for General Storage*, provided that the storage area is protected with automatic sprinklers in accordance with the provisions of NFPA 231 for 20-ft (6-m) high storage of Class IV commodities and the quantities and height of liquid storage are limited to:
 - (a) Class IA liquids: not permitted;
- (b) Classes IB and IC: 660 gal (2498 L), maximum 5 ft (1.5 m) high;
- (c) Class II: 1375 gal (5204 L), maximum 5 ft (1.5 m) high;
- (d) Class IIIA: 2750 gal (10,409 L), maximum 10 ft (3.0 m) high;
- (e) Class IIIB: 13,750 gal (52,044 L), maximum 15 ft (4.6 m) high.

The liquid storage shall also comply with 4-5.2.4 through 4-5.2.9.

4-5.2.4 Liquids in Plastic Containers. Class I and Class II liquids in plastic containers shall not be stored in general-purpose warehouses, but shall be stored in inside liquid storage areas that meet the requirements of Section 4-4.

Exception No. 1: The following liquids, packaged in plastic containers, shall be permitted to be stored in general-purpose warehouses in accordance with the protection and storage limitations specified in 4-5.2.3 as follows:

- (a) Products containing not more than 50 percent by volume of water-miscible liquids, with the remainder of the solution not being a Class I liquid, where packaged in individual containers;
- (b) Products containing more than 50 percent water-miscible liquids in individual containers not exceeding 16 oz. (0.5 L) capacity.
- Exception No. 2*: Class I and Class II liquids in plastic containers shall be permitted to be stored in a general purpose warehouse if the packaging systems are listed and labeled for use with these materials. All other provisions of 4-5.2 shall also apply.
- **4-5.2.5 Palletized, Solid Pile, or Rack Storage.** Liquids in containers shall be permitted to be stored on pallets, in solid piles, or on racks, subject to the maximum total quantity and maximum storage height provisions of 4-5.2.3.
- **4-5.2.6 Basement Storage Areas.** Storage of liquids in basement areas of general purpose warehouses shall only be permitted as provided for in 4-4.3.5.

- **4-5.2.7 Mixed Liquid Storage.** Where two or more classes of liquids are stored in a single pile or single rack section, the maximum total quantity and maximum storage height permitted shall be as provided for in 4-4.4.4.
- **4-5.2.8 Separation and Aisles.** Storage of liquids in general purpose warehouses shall be arranged as provided for in 4-4.3.3 and 4-4.3.4.
- **4-5.2.9 Liquids and Ordinary Combustible Storage.** The following applies to the storage of liquids and ordinary combustible commodities:
- (a) Liquids shall not be stored in the same pile or in the same rack sections as ordinary combustible commodities [see 4-5.2.9(b)]. Where liquids are packaged together with ordinary combustibles, as in kits, the storage shall be considered on the basis of whichever commodity predominates.
- (b) Except as provided for in 4-5.2.9(a), ordinary combustible commodities shall be separated from liquids in containers by a minimum distance of 8 ft (2.4 m).
- **4-5.2.10 Operations.** Dispensing of Class I and Class II liquids in general purpose warehouses shall not be permitted unless the dispensing area is suitably cut off from other ordinary combustible or liquid storage areas, as specified in 4-4.2, and otherwise complies with the applicable provisions of 4-4.2.
- 4-5.3 Dwellings and Residential Buildings Containing Not More than Three Dwelling Units and Accompanying Attached and Detached Garages. Storage in excess of 25 gal (94.6 L) of Class I and Class II liquids combined shall be prohibited. In addition, storage in excess of 60 gal (227 L) of Class IIIA liquid shall be prohibited.
- **4-5.4** Assembly Occupancies, Buildings Containing More than Three Dwelling Units, and Hotels. Storage in excess of 10 gal (37.8 L) of Class I and Class II liquids combined or 60 gal (227 L) of Class IIIA liquids shall be in containers stored in storage cabinets, in safety cans, or in an inside storage area that does not have openings that communicate with that portion of the building used by the public.
- **4-5.5 Office, Educational, and Institutional Occupancies.** The following requirements shall apply to office, educational, and institutional occupancies.
- **4-5.5.1** Storage shall be limited to that required for operation of office equipment, maintenance, demonstration, and laboratory work. This storage shall comply with the provisions of 4-5.5.2 through 4-5.5.5, except that the storage for industrial and educational laboratory work shall comply with NFPA 45, *Standard on Fire Protection for Laboratories Using Chemicals*.
- **4-5.5.2** Containers of Class I liquids that are stored outside of an inside liquid storage area shall not exceed a capacity of 1 gal (3.8 L).

Exception: Safety cans shall be permitted up to a 2-gal (7.6-L) capacity.

4-5.5.3 Not more than 10 gal (37.8 L) of Class I and Class II liquids combined shall be stored in a single fire area outside of a storage cabinet or an inside liquid storage area unless in safety cans.

Table 4-5.6 Allowable Storage and Display Amounts for Mercantile Occupancies³

		Liqu	id Classification	
Level of Protection		\mathbf{IA}^2	IB, IC, II, and IIIA (Any Combination)	IIIB
Unprotected	Maximum quantity allowed ¹	60 gal	3750 gal per building area; a maximum of two areas permitted per occupancy when separation is provided by a minimum 1-hr-rated fire separation wall	15,000 gal
	Maximum storage density	2 gal per so	quare foot in storage or display area and adjacen	aisles
NFPA 13, Ordinary Hazard (Group 2) Sprinkler Sys- tem	Maximum quantity allowed ¹	120 gal	7500 gal per building area; a maximum of two areas permitted per occupancy when separation is provided by a minimum 1-hr-rated fire separation wall	Unlimited
	Maximum storage density	4 gal per so	quare foot in storage or display area and adjacen	t aisles
NFPA 30, Section 4-8	Maximum quantity allowed ¹	120 gal	30,000 gal per occupancy	Unlimited

SI units: 1 gal = 3.8 L.

²Ground-level floor only.

- **4-5.5.4** Not more than 25 gal (94.6 L) of Class I and Class II liquids combined shall be stored in a single fire area in safety cans outside of an inside liquid storage area or storage cabinet.
- **4-5.5.5** Not more than 60 gal (227 L) of Class IIIA liquids shall be stored outside of an inside liquid storage area or storage cabinet.

4-5.6 Mercantile Occupancies.

- **4-5.6.1** This section shall apply to mercantile occupancies that handle, store, and display liquids, as defined in this code.
- **4-5.6.2** The display arrangement, storage arrangement, and maximum total quantity of liquids allowed shall meet the requirements of this subsection and Table 4-5.6.
- **4-5.6.3** On floors above the ground level, the storage or display of Class I and Class II liquids shall be limited to 60 gal in unprotected occupancies and 120 gal in protected occupancies.
- **4-5.6.4** Class I and Class II liquids shall not be permitted to be stored or displayed in basements.
- **4-5.6.5** Liquids in containers of greater than 5 gal capacity shall not be stored or displayed in areas that are accessible to the public.

Exception: This shall not apply to any liquid that is exempt from the requirements of this chapter, as set forth in 4-1.1.2.

4-5.6.6 Class II liquids that are not water-miscible and are packaged in plastic containers of 1 gal capacity or greater shall be limited to a maximum total quantity of 30 gal per pile. Adjacent piles shall be separated by a minimum distance of 50 ft. This maximum total quantity shall be permitted to be doubled to 60 gal, if the liquids are stored in listed flammable liquids storage cabinets or are in areas protected by an automatic sprinkler system having a design density of 0.60 gpm per ft² over 2500 ft² and using high temperature, extra-large orifice quick-response sprinklers.

- **4-5.6.7** Protection systems for storage and display of liquids that are designed and developed based on full-scale fire tests performed at an approved test facility shall be considered an acceptable alternative to the protection criteria set forth in Section 4-8. Such alternative protection systems shall be approved by the authority having jurisdiction.
- **4-5.6.8** Means of egress from mercantile occupancies shall meet applicable requirements of NFPA 101, Life Safety Code.
- **4-5.6.9** Power-operated industrial trucks used to move Class I liquids shall be selected, operated, and maintained in accordance with NFPA 505, Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Maintenance, and Operation.

4-6* Hazardous Materials Storage Lockers.

- **4-6.1** Hazardous materials storage lockers that are used as inside rooms shall be considered inside liquid storage rooms and shall meet the requirements for inside rooms as set forth in Section 4-4, as applicable.
- **4-6.2** Subsections 4-6.3 and 4-6.4 shall apply to storage of flammable and combustible liquids in containers, in hazardous material storage lockers (hereinafter referred to as lockers) that are located outside.
- 4-6.3 The design and construction of a locker shall meet all applicable local, state, and federal regulations and requirements and shall be subject to the approval of the authority having jurisdiction. Movable prefabricated structures that have been examined, listed, or labeled by an organization acceptable to the authority having jurisdiction for use as a hazardous materials storage facility shall be acceptable.
- **4-6.3.1** Lockers governed by this standard shall not exceed 1500 ft² (139 m²) gross floor area. Vertical stacking of lockers shall not be permitted.
- **4-6.3.2** Where electrical wiring and equipment is required, it shall comply with 4-4.2.9.

Does not include liquids exempted by Section 4-1.1.

Existing unprotected mercantile occupancies in operation prior to January 1, 1997, are permitted to store or display up to 7500 gal of Class IB, IC, II, and IIIA liquids (any combination) in each area.

Table 4-6.4 Designated Sites

Area of Designated Site ¹ (ft ²)	Distance between Individual Lockers (ft)	Distance from Locker to Property Line that Is or Can Be Built Upon ² (ft)	Distance from Locker to Nearest Side of Public Ways or to Important Buildings on Same Property ^{2,5} (ft)
≤ 100	5	10	5
> 100 ≤ 500	5	20	10
$> 500 \le 1500^4$	5	30	20

SI units: 1 ft = 0.3 m, 1 sq ft = 0.093 m^2 .

¹Site area limits are intended to differentiate the relative size and thus the number of lockers that are permitted in one designated site.

²Distances apply to properties that have protection for exposures, as defined. If there are exposures and such protection for exposures does not exist, the distances

shall be doubled.

8 When the exposed building has an exterior wall, facing the designated site, that has a fire resistance rating of at least 2 hours and has no openings to abovegrade areas within 10 ft (3 m) horizontally and no openings to belowgrade areas within 50 ft (15 m) horizontally of the designated area, the distances can be reduced to half of those shown in the table, except they shall never be less than 5 ft (1.5 m).

When a single locker has a gross single story floor area that will require a site area limit of greater than 1500 sq ft (139 m²) or when multiple units exceed the area

limit of 1500 sq ft (139 m²), the authority having jurisdiction shall be consulted for approval of distances.

- **4-6.3.3** Where dispensing or filling is permitted inside a locker, operations shall comply with the provisions of Chapter 5.
- 4-6.3.4 Ventilation shall be provided in accordance with 4-4.2.11.
- 4-6.3.5 Spill or Leakage Control. Lockers shall include a spill containment system to prevent the flow of liquids from the structure under emergency conditions. The containment system shall have sufficient capacity to contain 10 percent of the volume of containers allowed or the volume of the largest container, whichever is greater.
- 4-6.4 Designated sites shall be provided for the location and use of lockers and shall be subject to the approval of the authority having jurisdiction. The designated sites shall be arranged to provide at least the minimum separation distance between individual lockers, distance from locker to property line that is or can be built upon, and distance from locker to nearest side of public ways or to important buildings on the same property, as given in Table 4-6.4 and explanatory notes 1, 2, 3, and 4, as applicable.
- 4-6.4.1 Once the designated site is approved, it shall not be changed without the approval of the authority having jurisdiction.
- 4-6.4.2 More than one locker shall be permitted on a designated site, provided that separation distance between individual lockers is maintained in accordance with Table 4-6.4.
- 4-6.4.3 The approved designated storage site shall be protected from tampering or trespassing where the area is accessible to the general public.

4-6.4.4 Storage Practices.

- 4-6.4.4.1 Containers of liquid in their original shipping packages shall be permitted to be stored either palletized or solid piled. Unpackaged containers shall be permitted to be stored on shelves or directly on the floor of the locker. Containers over 30 gal (113.5 L) capacity storing Class I or Class II liquids shall not be stored more than two containers high. In all cases, the storage arrangement shall provide unrestricted access to and egress from the locker.
- 4-6.4.4.2 No other flammable or combustible material storage shall be permitted within the designated site approved for lockers.

4-6.4.4.3 Placarding or warning signs for lockers shall be in accordance with applicable local, state, and federal regulations or with NFPA 704, Standard System for the Identification of the Hazards of Materials for Emergency Response.

4-7 Outdoor Storage.

- 4-7.1 Outdoor storage of liquids in containers, intermediate bulk containers, and portable tanks shall be in accordance with Table 4-7, 4-7.1.1 through 4-7.1.4, and 4-7.2 through 4-7.4.
- 4-7.1.1 Where two or more classes of materials are stored in a single pile, the maximum gallonage in that pile shall be the smallest of the two or more separate gallonages.
- 4-7.1.2 No container, intermediate bulk container, or portable tank in a pile shall be more than 200 ft (60 m) from a 12-ft (3.6-m) wide access way to permit approach of fire control apparatus under all weather conditions.
- 4-7.1.3 The distances listed in Table 4-7 apply to properties that have protection for exposures as defined. If there are exposures, and such protection for exposures does not exist, the distance to property line that is or can be built upon shall be doubled.
- 4-7.1.4 Where total quantity stored does not exceed 50 percent of maximum per pile, the distances to property line that is or can be built upon and to streets, alleys, or public ways shall be permitted to be reduced 50 percent, but not to less than 3 ft (0.9 m).
- 4-7.2 A maximum of 1100 gal (4163 L) of liquids in closed containers, intermediate bulk containers, and portable tanks shall be permitted to be stored adjacent to a building under the same management provided that:
- (a) The adjacent building wall has an exterior fire resistance rating of 2 hours,
- (b) There are no openings to areas at grade or above grade that are within 10 ft (3 m) horizontally of the storage,
 - (c) There are no openings directly above the storage, and
- (d) There are no openings to areas below grade within 50 ft (15 m) horizontally of the storage.

Exception: The above provisions are not necessary if the building in question is limited to one story, is of fire-resistive or noncombustible construction, is devoted principally to the storage of liquids, and is acceptable to the authority having jurisdiction.

Table 4-7 Outdoor Liquid Storage in Containers and Portable Tanks

Class		itainers im per Pile Height (ft)	Comp	Plastic and osite IBCs oper Pile gal ⁵ Height (ft)		anks and Metal um per Pile gal ¹ Height (ft)	Distance between Piles or Racks (ft)	Distance to Property Line that Is or Can Be Built Upon (ft) ^{2,5}	Distance to Street, Alley, or a Public Way (ft) ³
IA	1100	10		-	2200	7	5	50	10
IB	2200	12	_	_	4400	14	5	50	10
IC	4400	12			8800	14	5	50	10
II	8800	12	8800	12	17,600	14	5	25	5
III	22,000	18	22,000	18	44,000	14	5	10	5

SI units: 1 ft = 0.3 m; 1 gal = 3.8 L.

⁵Storage of Class I liquids in rigid plastic and composite IBCs not permitted.

- **4-7.2.1** The quantity of liquids stored adjacent to a building protected in accordance with 4-7.2 shall be permitted to exceed that permitted in 4-7.2, provided the maximum quantity per pile does not exceed 1100 gal (4163 L) and each pile is separated by a 10-ft (3-m) minimum clear space along the common wall.
- **4-7.2.2** Where the quantity stored exceeds the 1100 gal (4163 L) permitted adjacent to the building given in 4-7.2, or the provisions of 4-7.2 cannot otherwise be met, a minimum distance equal to that shown in Table 4-7 for distance to property line that is or can be built upon shall be maintained between buildings and the nearest container or portable tank.
- **4-7.3** The storage area shall be graded in a manner to divert possible spills away from buildings or other exposures or shall be surrounded by a curb at least 6 in. (15 cm) high. Where curbs are used, provisions shall be made for draining of accumulations of ground or rain water or spills of liquids. Drains shall terminate at a safe location and shall be accessible to operation under fire conditions.
- **4-7.4** The storage area shall be protected against tampering or trespassers where necessary and shall be kept free of weeds, debris, and other combustible materials not necessary to the storage.
- **4-7.5** Outdoor storage of containers that are protected from the weather by a canopy or roof that does not limit the dissipation of heat or dispersion of flammable vapors and does not restrict fire-fighting access and control shall be treated as outside storage in accordance with this section and shall not be considered an inside storage area subject to the requirements of Section 4-4.

4-8 Fire Protection and Control.

- **4-8.1 Scope.** Section 4-8 shall apply to all storage of liquids in containers and portable tanks as specified in Sections 4-2 through 4-7.
- **4-8.1.1** Where different classes of liquids and container types are stored in the same protected area, protection shall meet the requirements of this section for the most severe hazard class present.
- **4-8.1.2** Where storage is on racks as permitted by this code, racks storing Class I or Class II liquids shall be either single-row or double-row, as described in NFPA 231C, *Standard for Rack Storage of Materials*.

- **4-8.1.3** For the purpose of this section, a relieving-style container shall mean a metal container, intermediate bulk container, or portable tank that is equipped with at least one pressure-relieving mechanism at its top that is designed and sized to relieve the internal pressure generated due to exposure to fire so as to prevent rupture of the container, intermediate bulk container, or portable tank.
- **4-8.1.4** For new fire protection systems installed after January 1, 1997, fire protection systems shall meet the requirements of this section.
- **4-8.1.5** Aisles between adjacent rack sections or piles shall be a minimum of 6 ft wide.

NOTE: See Tentative Interim Amendment 96-1 on page 90.

4-8.2* Automatic Sprinkler and Foam-Water Fire Protection Systems. Where automatic sprinklers or low-expansion foam-water sprinkler systems are used, the protection criteria of Tables 4-8.2(a) through 4-8.2(f) shall be followed for the applicable liquid class, container type, and storage arrangement. Figures 4-8.2 (a), (b), and (c) shall be permitted to be used to specify protection criteria for liquid classes, container types, and storage arrangements not specifically covered in Tables 4-8.2(a) through 4-8.2(f).

Exception No. 1: Except as otherwise permitted in Sections 4-2 through 4-7.

Exception No. 2: Tables 4-8.2(a) through 4-8.2(f) shall not apply to unstable liquids.

4-8.2.1 In-rack sprinklers shall be installed in accordance with the provisions of NFPA 231C, *Standard for Rack Storage of Materials*.

Exception: As modified in (a) through (e) below.

- (a) Alternate lines of in-rack sprinklers shall be staggered vertically in the longitudinal flue space.
- (b) Sprinkler heads of multiple-level sprinkler systems shall be provided with water shields unless they are separated by horizontal barriers or are specifically listed for installation without water shields.
- (c) A vertical clear space of at least 6 in. shall be maintained between the sprinkler deflector and the top of the tier of storage.
- (d) Sprinkler discharge shall not be obstructed by horizontal rack structural members.
- (e) Longitudinal and transverse flue spaces of at least 6 in. shall be maintained between each rack load.

¹See 4-7.1.1 regarding mixed-class storage.

²See 4-7.1.3 regarding protection for exposures.

See 4-7.1.4 for smaller pile sizes.

For storage in racks, the quantity limits per pile do not apply, but the rack arrangements shall be limited to a maximum of 50 ft (15 m) in length and two rows or 9 ft (2.7 m) in depth.

Table 4-8.2(a) Water Sprinkler Protection Single or Double Row Rack Metal Containers

(For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

			1	Non-Relievii		ling		I	T	Τ
Liquid Class	Container Size and Arrangement	Maximum Storage Height (ft)	Maximum Ceiling Height (ft)	Sprinkl Orifice ^l	er Type Response²	Density (gpm/ft²)	Design Area	In-Rack Sprinkler Protection	Notes	Fire Test Ref.
IB, IC, II, or III	≤ l gal	16	30	ELO	QR	0.60	2000	One line 8 ft above floor	(2),(5)	1
	≤ 1 gal	20	30	LO or ELO	SR or QR	0.60	2000	One line 6 ft above floor; one line 12 ft above floor	(2),(5)	2
IB, IC, II, or IIIA	≤ 5 gal	25	30	STD or LO	SR or QR	0.30	3000	Every level	(2)	3
IIIB	≤ 5 gal	40	50	STD or LO	SR or QR	0.30	2000	One line every other level, begin- ning above first storage level	(2),(6)	4
IB, IC, II, or IIIA	$> 5 \text{ gal} \le 60 \text{ gal}$	25	30	LO or ELO	SR	0.40	3000	Every level	(4)	5
IIIB	> 5 gal ≤ 60 gal	40	50	STD or LO	SR	0.30	3000	One line every other level, begin- ning above first storage level	(2),(6)	6
				Relieving	Style Contain	ners				
IB, IC, II, or IIIA	≤ 5 gal	14	18	ELO	QR	0.65	2000	None	(1),(3)	7
	≤ 5 gal	25	30	STD or LO	SR or QR	0.30	3000	One line every other level, begin- ning above first storage level	(2),(7)	8
IIIB	≤5 gal	40	50	STD or LO	SR or QR	0.30	2000	One line every other level, begin- ning above first storage level	(2),(6)	9
IB, IC, II, or IIIA	> 5 gal ≤ 60 gal	25	30	LO or ELO	SR	0.60	3000	One line every other level, begin- ning above first storage level	(2)	10
IIIB	> 5 gal ≤ 60 gal	40	50	STD or LO	SR	0.30	3000	One line every other level, begin- ning above first storage level	(2),(6)	11
IB, IC, II, or IIIA	Portable tanks	25	30	LO or ELO	SR	0.60	3000	Every level	(4)	12
IIIB	Portable tanks	40	50	LO	SR	0.30	3000	One line every other level, begin- ning above first storage level	(4)	13

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m^2 ; 1 gpm/ft² = 40.7 Lpm/m^2 .

NOTES

- 1. Double row racks 6 ft wide maximum.
- 2. Space in-rack sprinklers on maximum 9 ft centers, staggered vertically. Base design on 30 gpm per head, with six hydraulically most remote heads operating in each of upper three levels, or eight hydraulically most remote heads if only one level. Sprinklers are STD or LO, QR, 165°F operating temperature, with shields.
- 3. Use pendent-style ELO ceiling sprinklers.
- 4. Space in-rack sprinklers on maximum 9 ft centers staggered vertically, 30 gpm per head, STD or LO, QR or SR, with shield, 165°F, six hydraulically most remote sprinklers each level (upper three levels) operating. Eight sprinklers operating, if only one level.
- 5. Protection for uncartoned or case-cut nonsolid shelf display up to 61/2 ft and storage above in pallets on racking, shelf material, open wire mesh, or 2 in. × 6 in. wooden slats, spaced a minimum of 2 in. apart.
- 6. A 0.60 density shall be used if more than one level of storage exists above the top level of in-rack sprinklers (LO or ELO orifice for ceiling sprinklers).
- 7. A 0.60 density/2000 ft² shall be used if more than one level of storage exists above the top level of in-rack sprinklers (LO or ELO orifice for ceiling sprinklers).

¹Larger orifice sprinklers are preferred when installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems. STD = Standard Orifice, LO = Large Orifice, ELO = Extra-Large Orifice.

²SR = Standard Response, QR = Quick Response. Where both are listed, QR is preferred.

³Ceiling sprinklers high temperature

See Appendix D-2, Table 4-8.2(a), for references to fire tests on which the protection criteria given in this table is based.

Table 4-8.2(b) Water Sprinkler Protection **Bulk or Palletized Storage Metal Containers**

(For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

			Non-Reli	eving-Style Con	tainers				
					Cei	ling			
Liquid Class	Container Size and Arrangement	Maximum Storage Height (ft)	Maximum Ceiling Height (ft)	Sprinkle Orifice ¹	er Type Response ²	Density (gpm/ft²)	Design Area	Notes	Fire Test Ref. ⁴
IB, IC,	≤ 5 gal	4	18	STD or LO	SR or QR	0.21	1500	(1)	1
II, or IIIA	≤ 5 gal	5	18	STD or LO	SR or QR	0.30	3000		2
	≤ 5 gal	61/2	30	LO or ELO	QR	0.45	3000		3
	> 5 gal ≤ 60 gal	5 (1-high)	18	LO or ELO	SR	0.40	3000		4
IIIB	≤ 5 gal	18	30	STD or LO	SR or QR	0.25	3000		5
	$> 5 \text{ gal} \le 60 \text{ gal}$	10 (3-high)	20	STD or LO	SR	0.25	3000		6
		18	30	STD or LO	SR	0.35	3000		7
			Relievi	ng-Style Contai	ners				+
IB, IC,	≤ 5 gal	12	30	ELO	QR	0.60	3000	(2),(3)	8
II, or IIIA	$> 5 \text{ gal} \le 60 \text{ gal}$	5 (1-high)	30	LO or ELO	SR	0.40	3000		9
	> 5 gal ≤ 60 gal	6½ (2-high)	30	LO or ELO	SR	0.60	3000	(4)	10
IIIB	≤ 5 gal	18	30	STD or LO	SR or QR	0.25	3000		11
	$> 5 \text{ gal} \le 60 \text{ gal}$	10 (3-high)	20	STD or LO	SR	0.25	3000		12
		18	30	STD or LO	SR	0.35	3000		13
IB, IC,	Portable tanks	1-high	30	STD or LO	SR	0.30	3000		14
II, or IIIA		2-high	30	LO or ELO	SR	0.60	5000		15
IIIB	Portable tanks	1-high	30	STD or LO	SR	0.25	3000		16
		2-high	30	LO or ELO	SR	0.50	3000		17

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m^2 ; 1 gpm/ft² = 40.7 Lpm/m^2 .

*Ceiling sprinklers high temperature.

See Appendix D-2, Table 4-8.2(b), for references to fire tests on which the protection criteria given in this table is based.

NOTES:

- Minimum hose stream demand 250 gpm for 2 hours.

 Sprinklers shall also be hydraulically calculated to provide a density of 0.80 gpm/ft² over 1000 ft².

 Use pendent-style ELO ceiling sprinklers.

 Drums placed on open slotted pallet, not nested, to allow pressure relief from drums on lower levels.

Larger orifice sprinklers are preferred when installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems. STD = Standard Orifice, LO = Large Orifice, ELO = Extra-Large Orifice.

*SR = Standard Response, QR = Quick Response. Where both are listed, QR is preferred.

Table 4-8.2(c) Foam-Water Sprinkler Protection Single or Double Row Racks **Metal Containers**

(For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

			N	on-Relieving-St	yle Containers	5				
		Maximum	Maximum		Ceilir	ıg				
Liquid Class	Container Size and Arrangement	Storage Height (ft)	Ceiling Height (ft)	Sprinkle Orifice ¹	er Type Response ²	Density (gpm/ft²)	Design Area (ft²)³	In-Rack Sprinkler Protection	Notes	Fire Test Ref.
IB, IC, II, or IIIA	≤5 gal	25	30	STD or LO	SR or QR	0.30	2000	Every level	(1),(2)	1
	> 5 gal ≤ 60 gal	25	30	STD or LO	SR	0.30	3000	Every level	(1),(3)	2
IIIB	≤ 60 gal	40	50	STD or LO	SR	0.30	2000	One line every other level, beginning above first storage level	(1)	3
				Relieving-Style	e Containers					-
IB, IC, II, or IIIA	≤ 5 gal	25	30	STD or LO	SR or QR	0.30	2000	One line every other level, beginning above first storage level.	(1),(2)	4
	> 5 gal ≤ 60 gal and portable tanks	25	30	STD or LO	SR	0.30	3000	One line every other level, beginning above first storage level	(1),(3)	5
ШВ	≤ 60 gal	40	50	STD or LO	SR	0.30	2000	One line every other level, beginning above first storage level	(1)	6

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m^2 ; 1 gpm/ft² = 40.7 Lpm/m^2 .

²SR = Standard Response, QR = Quick Response. Where both are listed, QR is preferred.

³Ceiling sprinklers high temperature.

See Appendix D-2, Table 4-8.2(c), for references to fire tests on which the protection criteria given in this table is based.

- 1. Space in-rack sprinklers on maximum 9 ft centers, staggered vertically. Base design on 30 gpm per head, with six hydraulically most remote heads operating in each of upper three levels. Sprinklers are STD or LO, SR or QR, 165°F operating temperature, with shields. Hydraulic design can be reduced to three heads operating per level — three levels operating simultaneously when using a pre-primed foam-water system installed in accordance with NFPA 16A, Standard for the Closed-Head Foam-Water Sprinkler Systems, and maintained according to NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection
- Design area can be reduced to 1500 ft³ when using a pre-primed foam-water system installed in accordance with NFPA 16A and maintained according to NFPA 25.
 Design area can be reduced to 2000 ft² when using a pre-primed foam-water system installed in accordance with NFPA 16A and maintained according to NFPA 25.

Table 4-8.2(d) Foam-Water Sprinkler Protection **Bulk or Palletized Storage Metal Containers**

(For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

		Ī	Non-Relieving-Style C	ontainers						
		Maximum Storage	Maximum Ceiling		Ceiling					
Liquid	Container Size and	Height	Height	Sprinkle	ег Туре	Density	Design Area		Fire Tes	
Class	Arrangement	(ft)	(ft)	Orifice ¹	Response ²	(gpm/ft²)	(ft²)3	Notes	Ref.	
IB, IC,	≤ 5 gal cartoned	11	30	LO or ELO	SR or QR	0.40	3000	(2)	1	
I, or IIIA	≤ 5 gal uncartoned	12	30	STD or LO	SR or QR	0.30	3000	(2)	2	
	> 5 gal ≤ 60 gal	5 (1-high)	30	STD or LO	SR	0.30	3000		3	
			Relieving-Style Con	tainers						
IB, IC, II, or IIIA	> 5 gal ≤ 60 gal	6½ (2-high)	30	STD or LO	SR	0.30	3000	(1)	4	
	Portable tanks	2-high maximum	30	STD or LO	SR	0.30	3000		5	

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m^2 ; 1 gpm/ft² = 40.7 Lpm/m^2 .

Larger orifice sprinklers are preferred when installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems. STD = Standard Orifice, LO = Large Orifice, ELO = Extra-Large Orifice.

 ${}^{2}SR = Standard Response$, QR = Quick Response. Where both are listed, QR is preferred.

³Ceiling sprinklers high temperature.

See Appendix D-2, Table 4-8.2(d), for references to fire tests on which the protection criteria given in this table is based.

Drums placed on open slotted pallet, not nested, to allow pressure relief from drums on lower levels.

Design area can be reduced to 2000 ft² when using a pre-primed foam-water system installed in accordance with NFPA 16A, Standard for the Installation of Closed-Head Foam-Water Sprinkler Systems, and maintained according to NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.

Larger orifice sprinklers are preferred when installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems. STD = Standard Orifice, LO = Large Orifice.

Table 4-8.2(e) Water Sprinkler Protection Single, Double, or Multirow Open Frame Racks Plastic Containers in Corrugated Fibreboard Boxes (For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

					Ceiling				
Liquid Class	Container Size and Arrangement	Maximum Storage Height	Maximum Ceiling Height	Sprinkler Type ¹	Density (gpm/ft²)	Design Area (ft²)	In-Rack Sprinkler Protection	Notes	Fire Test Ref.
IIIB	≤ 5 gal	Unlimited	Unlimited	STD, LO, ELO, large drop or ESFR	0.20	3000	Double Row Racks: Three lines per level with deflectors no more than 9 in. below each barrier and no less than 6 in. above the top of the storage. One line of in-rack sprinklers shall be located in the longitudinal flue and one line shall be located at each face of the racks.	(1), (2), (3), (4), (5)	1
						Multiple Row Racks: Protect as described for double row racks, except that there shall be an in-rack sprinkler located at each intersection of transverse and longitudinal flue, as well as the rack faces.			
							Single Row Racks (up to 5 ft wide): Protect using a barrier above the second tier of storage with a single line of in-rack sprinklers down the center of the rack. Sprinklers shall be spaced 4 to 5 ft apart, at each transverse flue. As an alternate method, for single row racks that will be loaded from one side, in-rack sprinklers can be installed beneath the barrier at each rack upright at the face of the rack is loaded. On the opposite face, in-rack sprinklers shall be installed at the transverse flue centered between the rack uprights.		

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m²; 1 gpm/ft² = 40.7 Lpm/m²; 1 in. = 2.5 cm.

STD = Standard Orifice, LO = Large Orifice, ELO = Extra-Large Orifice, ESFR = Early Suppression-Fast Response. See Appendix D-2, Table 4-8.2(e), for references to fire tests on which the protection criteria given in this table is based.

NOTES:

1. Ceiling sprinkler system design shall be based on demand of surrounding occupancy or minimum design as stated, whichever is greater. If Class IIIB liquid storage does not extend to full height of rack, protection for other commodity stored above barrier shall be in accordance with appropriate standard and based on height of storage of other commodity.

2. Provide plywood (minimum ⅓s in.) or sheet metal (minimum 22 gal) barriers within rack at approximately 10 ft vertical intervals (maximum 12 ft, including over top level of Class IIIB liquid storage). Barrier shall be solid and continuous except at rack uprights where a maximum 12 in. gap is allowed, assuming minimum 8 ft spacing between rack uprights. For Class IIIB liquids having a closed cup flashpoint ≥ 450°F (232°C), a horizontal barrier is not necessary.

3. Longitudinal flue sprinklers shall be located at each transverse flue between pallet loads (approximately 4 ft to 5 ft on centers). Face sprinklers shall be located in the transverse flue at rack uprights on maximum 10 ft centers. If rack uprights are more than 10 ft on center, locate face sprinklers centered between rack uprights and at uprights. In-rack sprinklers shall be quick-response, large orifice with shields, 165°F (74°C), 57 gpm per head, most remote six heads (three on two lines), if one horizontal barrier level; or most remote eight heads (four on two lines), if two or more horizontal barrier levels.

4. Ceiling sprinkler demand shall not be included in hydraulic calculations for in-rack sprinklers. Water demand at point of supply shall be calculated separately for in-rack and ceiling sprinklers and based on the greater demand.

5. If there are adjacent bays of in-rack arrays not dedicated to Class IIIB liquid storage, the barrier and in-rack sprinkler protection shall be extended at least one rack bay (approximately 8 ft) beyond the Class IIIB liquid storage. Additionally, a vertical plywood barrier or similar insulating material shall be installed at both ends of the Class IIIB liquid storage area. The vertical barrier shall extend the full rack width and shall fit flush against any horizontal barriers. Clearance at cutouts for both in-rack sprinkler piping and horizontal rack members shall not exceed 3 in.

Table 4-8.2(f) Water Sprinkler Protection Shelf Storage Metal Containers

(For Nonmiscible Liquids or Miscible Liquids with Flammable Liquid Concentration > 50%)

					Ceiling					
Liquid Class	Container Size and Arrangement	Maximum Storage Height (ft)	Maximum Ceiling Height (ft)	Sprinkle Orifice ¹	er Type Response ²	Density (gpm/ft²)	Design Area (ft²)³	Notes	Fire Test Ref. ⁴	
IB, IC, II, or III	≤ l gal	6	18	STD or LO	SR or QR	0.19	1500	(1),(2)	1	

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 ft² = 0.093 m^2 ; 1 gpm/ft² = 40.7 Lpm/m^2 .

Larger orifice sprinklers are preferred when installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems. STD = Standard Orifice, LO = Large Orifice.

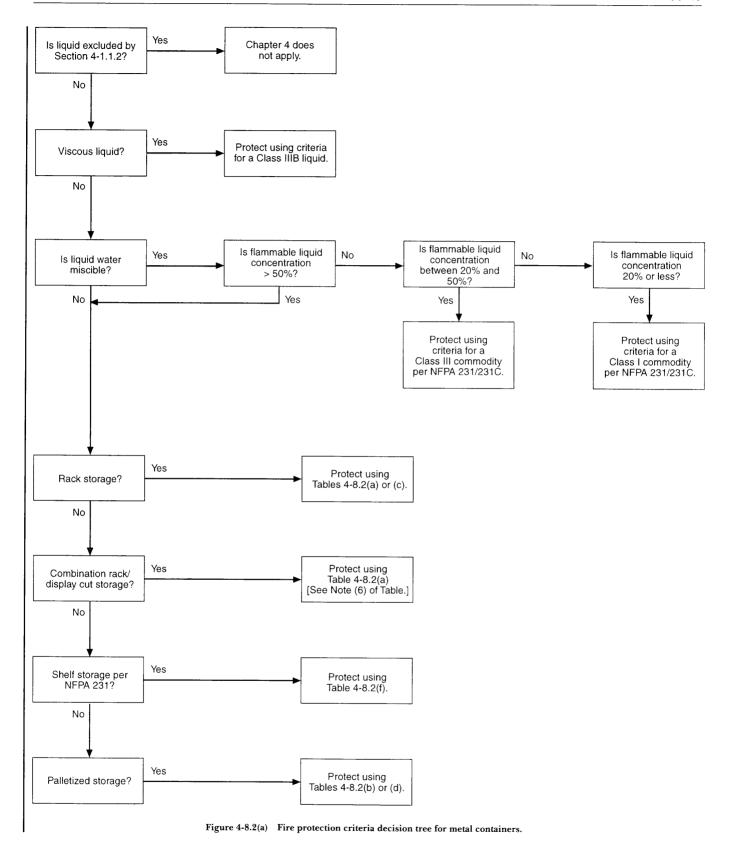
²SR = Standard Response, QR = Quick Response. Where both are listed, QR is preferred.

*Ceiling sprinklers high temperature.

See Appendix D-2, Table 4-8.2(f), for references to fire tests on which the protection criteria given in this table is based.

NOTES

- 1. Protection for "gondola"-type shelving 2 ft or less in depth per side.
- 2. Minimum hose stream demand 250 gpm for 2 hours
- **4-8.2.2** Ceiling sprinklers shall be installed in accordance with NFPA 13, *Standard for the Installation of Sprinkler Systems*, and shall be permitted to have the following maximum head spacing:
 - (a) Classes I, II, and IIIA Liquids: 100ft² per sprinkler head;
 - (b) Class IIIB Liquids: 120 ft² per sprinkler head.
- **4-8.2.3** Protection systems that are designed and developed based on full-scale fire tests performed at an approved test facility or on other engineered protection schemes shall be considered an acceptable alternative to the protection criteria set forth in this section. Such alternative protection systems shall be approved by the authority having jurisdiction.
- **4-8.2.4** Water-based fire protection systems shall be inspected, tested, and maintained in accordance with NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.
- **4-8.2.5** The ceiling heights given in Tables 4-8.2(a) through 4-8.2(f) can be increased by a maximum of 10 percent if an equivalent percent increase in ceiling sprinkler design density is provided.
- **4-8.2.6** Low-expansion foam-water sprinkler systems shall be designed and installed in accordance with NFPA 16A, Standard for the Installation of Closed-Head Foam-Water Sprinkler Systems. The system shall have at least 15 minutes of foam concentrate, based on the required design flow rate.
- **4-8.3** Other Automatic Fire Protection Systems. Alternate fire protection systems, such as automatic water spray systems, automatic water mist systems, high-expansion foam systems, dry chemical extinguishing systems, alternate sprinkler system configurations, or combinations of systems shall be permitted if approved by the authority having jurisdiction. Such alternate systems shall be designed and installed in accordance with the appropriate NFPA standard and with manufacturer's recommendations for the system(s) selected.
- **4-8.4 Portable Fire Extinguishers and Hoselines.** Portable fire extinguishers or pre-connected hoselines, either $1\frac{1}{2}$ in. lined fire hose or 1 in. hard rubber hose, shall be provided where liquids are stored. If $1\frac{1}{2}$ in. lined fire hose is used, it shall be installed in accordance with NFPA 14, Standard for the Installation of Standpipe and Hose Systems.


- **4-8.4.1** Portable fire extinguishers shall meet the following requirements:
- (a) At least one portable fire extinguisher having a capability of not less than 40:B shall be located outside of, but not more than 10 ft from, the door opening into an inside liquid storage area.
- (b) At least one portable fire extinguisher having a capability of not less than 40:B shall be located within 30 ft of any Class I or Class II liquid storage area that is located outside of an inside liquid storage area or liquid warehouse.

Exception: An acceptable alternative is at least one portable fire extinguisher having a capability of 80:B located within 50 ft of such a storage area.

- **4-8.4.2** Hoselines shall meet the following requirements:
- (a) In protected general purpose warehouses and in protected liquid storage areas, hoseline connections shall be provided as appropriate.
- (b) The water supply for the hoselines shall be sufficient to meet the fixed fire protection demand plus a total of at least 500 gpm for inside and outside hoselines.

Exception: As otherwise specified in Tables 4-8.2(a) through 4-8.2(f).

- **4-8.5 Control of Ignition Sources.** Precautions shall be taken to prevent the ignition of flammable vapors. Sources of ignition include, but are not limited to: open flames; lightning; smoking; cutting or welding; hot sources; frictional heat; static electricity; electrical or mechanical sparks; spontaneous heating, including heat-producing chemical reactions; and radiant heat.
- **4-8.5.1*** Materials that are water-reactive, as described in NFPA 704, Standard System for the Identification of the Hazards of Materials for Emergency Response, shall not stored in the same area with other liquids.
- **4-8.5.2*** Power-operated industrial trucks used to move Class I liquids shall be selected, operated, and maintained in accordance with NFPA 505, Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Maintenance, and Operation.

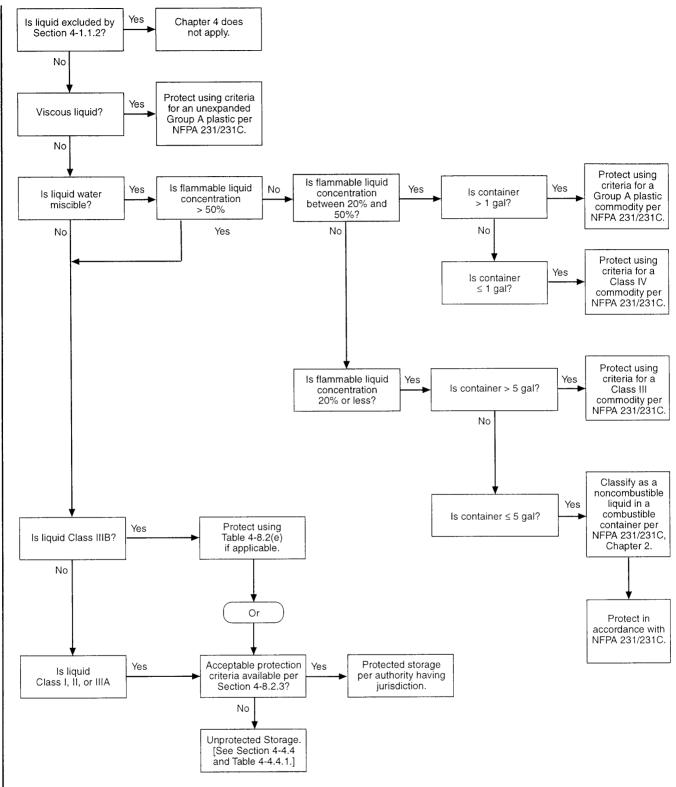


Figure 4-8.2(b) Fire protection criteria decision tree for plastic/fiberboard containers.

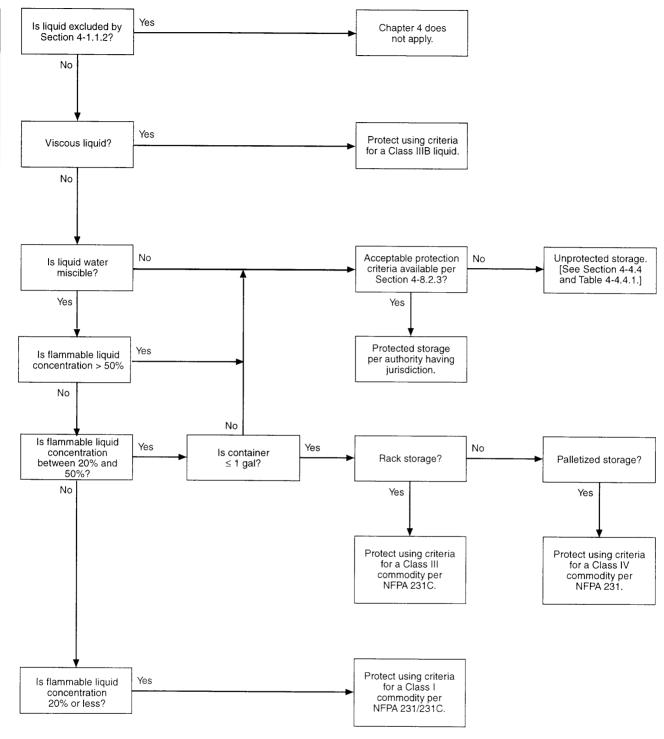


Figure 4-8.2(c) Fire protection criteria decision tree for glass containers.

Chapter 5 Operations

5-1 Scope.

- **5-1.1** This chapter applies to operations involving the use or handling of liquids either as a principal or incidental activity, except as covered elsewhere in this code or in other NFPA standards.
- **5-1.2** The provisions of this chapter relate to the control of hazards of fire involving liquids. These provisions might not provide adequate protection for operations involving hazardous materials or chemical reactions nor do they consider health hazards resulting from exposure to such materials.
- **5-1.3** Provisions of this chapter shall not prohibit the use of movable tanks in conjunction with the dispensing of flammable or combustible liquids into fuel tanks of motorized equipment outside on premises not accessible to the public. Such uses shall only be made with the approval of the authority having jurisdiction.
- **5-2 General.** Liquid processing operations shall be located and operated so that they do not constitute a significant fire or explosion hazard to life, to property of others, or to important buildings or facilities within the same plant. Specific requirements are dependent on the inherent risk in the operations themselves, including the liquids being processed, operating temperatures and pressures, and the capability to control any liquid or vapor releases or fire incidents that might occur. The interrelationship of the many factors involved must be based on good engineering and management practices to establish suitable physical and operating requirements.
- **5-2.1** Requirements for specific operations are covered in Sections 5-3 through 5-8. Requirements for procedures and practices for fire prevention, fire protection, and fire control in these operations are covered in Sections 5-9 through 5-12 and shall be applied as appropriate.

5-3 Facility Design.

- **5-3.1 Scope.** This section shall apply to operations where the handling and use of liquids is a principal activity. This section does not apply to operations where the handling and use of liquids is incidental to the principal activity. (*See Section 5-5, Incidental Operations.*)
- **5-3.2 Location.** Liquid processing vessels and equipment shall be located in accordance with the requirements of this subsection.
- **5-3.2.1** Processing vessels and buildings containing such processing vessels shall be located so that a fire involving the vessels does not constitute an exposure hazard to other occupancies. The minimum distance of a processing vessel to a property line that is or can be built upon, including the opposite side of a public way, to the nearest side of a public way, or to the nearest important building on the same property shall:
 - (a) Be in accordance with Table 5-3.2.1, or
- (b) Be determined by an engineering evaluation of the process, followed by application of sound fire protection and process engineering principles.

- Exception: Where process vessels are located in a building and the exterior wall facing the exposure (line of adjoining property that is or can be built upon or nearest important building on the same property) is greater than 25 ft (7.6 m) from the exposure and is a blank wall having a fire resistance rating of not less than 2 hr, any greater distances required by Table 5-3.2.1 shall be permitted to be waived. If the exterior wall is a blank wall having a fire resistance rating of not less than 4 hr, all distances required by Table 5-3.2.1 shall be permitted to be waived.
- **5-3.2.2** Where Class IA liquids or unstable liquids, regardless of class, are handled or processed, the exposing walls shall have explosion resistance in accordance with good engineering practice. (See 5-3.3.7 for information on explosion relief of other building walls.)
- **5-3.2.3*** Other liquid processing equipment, such as pumps, heaters, filters, exchangers, etc., shall not be located closer than 25 ft (7.6 m) to property lines where the adjoining property is or can be built upon or to the nearest important building on the same property that is not an integral part of the process. This spacing requirement shall be permitted to be waived where exposures are protected as outlined in 5-3.2.1.
- **5-3.2.4** Processing equipment in which unstable liquids are handled shall be separated from unrelated plant facilities that use or handle liquids by either 25-ft (7.6-m) clear spacing or a wall having a fire resistance rating of not less than 2 hr. The wall shall also have explosion resistance in accordance with good engineering practice.
- **5-3.2.5** Each process unit or building containing liquid-processing equipment shall be accessible from at least one side for fire fighting and fire control.

5-3.3 Construction.

- **5-3.3.1*** Processing buildings or structures shall be of fire-resistive or noncombustible construction, except that combustible construction shall be permitted to be used where automatic sprinklers or equivalent protection is provided, subject to approval of the authority having jurisdiction.
- **5-3.3.2*** Load-bearing building supports and load-bearing supports of vessels and equipment capable of releasing appreciable quantities of liquids so as to result in a fire of sufficient intensity and duration to cause substantial property damage shall be protected by one or more of the following:
- (a) Drainage to a safe location to prevent liquids from accumulating under vessels or equipment,
 - (b) Fire-resistive construction,
 - (c) Fire-resistant protective coatings or systems,
- (d) Water spray systems designed and installed in accordance with NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, or
- (e) Other alternate means acceptable to the authority having jurisdiction.
- **5-3.3.** Class I liquids shall not be handled or used in basements. Where Class I liquids are handled or used abovegrade within buildings with basements or closed pits into which flammable vapors can travel, such belowgrade areas shall be provided with mechanical ventilation designed to prevent the accumulation of flammable vapors. Means shall be provided to prevent liquid spills from running into basements.

OPERATIONS 30–49

Table 5-3.2.1 Location of Processing Vessels from Property Lines and Nearest Important Building on the Same Property Where Protection for Exposures Is Provided

Minimum Distance from Property Line that Is or Can Be Built Upon, Including Opposite Side of Public Way (ft) Minimum Distance from Nearest
Side of Any Public Way or
from Nearest Important
Building on Same Property that Is Not an
Integral Part of the Process (ft)

	Stable Liquid Emergency Relief		Unstable Liquid Emergency Relief		Stable Liquid Emergency Relief		Unstable Liquid Emergency Relief	
Vessel Maximum Operating Liquid Capacity (gal)	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig	Not Over 2.5 psig	Over 2.5 psig
275 or less	5	10	15	20	5	10	15	20
276 to 750	10	15	25	40	5	10	15	20
751 to 12,000	15	25	40	60	5	10	15	20
12,001 to 30,000	20	30	50	80	5	10	15	20
30,001 to 50,000	30	45	75	120	10	15	25	40
50,001 to 100,000	50	75	125	200	15	25	40	60
Over 100,000	80	120	200	300	25	40	65	100

SI units: 1 gal = 3.8 L; 1 ft = 0.3 m; 1 psig = a gauge pressure of 6.9 kPa.

NOTE: Double all of above distances where protection for exposures is not provided.

- **5-3.3.4*** Provision for smoke and heat venting shall be permitted to assist access for fire fighting.
- **5-3.3.5*** Areas shall have exit facilities arranged to prevent occupants from being trapped in the event of fire.

Exits shall not be exposed by the drainage facilities described in 5-3.5.

- **5-3.3.6** Adequate aisles shall be maintained for unobstructed movement of personnel and fire protection equipment.
- **5-3.3.7*** Areas where Class IA or unstable liquids are processed shall have explosion venting through one or more of the following methods:
 - (a) Open air construction,
 - (b) Lightweight walls and/or roof,
 - (c) Lightweight wall panels and roof hatches, or
 - (d) Windows of explosion-venting type.

5-3.4 Ventilation.

- **5-3.4.1** Enclosed processing areas handling or using Class I liquids or Class II or Class III liquids, heated to temperatures at or above their flash points, shall be ventilated at a rate sufficient to maintain the concentration of vapors within the area at or below 25 percent of the lower flammable limit. Compliance with 5-3.4.2 through 5-3.4.4 shall be deemed as meeting the requirements of 5-3.4.1.
- **5-3.4.2*** Ventilation requirements shall be confirmed by one of the following:
- (a) Calculations based on the anticipated fugitive emissions (see Appendix F for calculation method), or
- (b) Sampling of the actual vapor concentration under normal operating conditions. The sampling shall be conducted at a 5-ft (1.5-m) radius from each potential vapor source extending to or toward the bottom and the top of the enclosed processing area. The vapor concentration used to determine the required ventilation rate shall be the highest measured concentration during the sampling procedure.

Exception: Where a ventilation rate of not less than 1 ft³ per min per ft² of solid floor area (0.3 m^3 per min per m^2) is provided, the above ventilation confirmation requirement shall not apply.

5-3.4.3 Ventilation shall be accomplished by mechanical or natural exhaust ventilation. Exhaust ventilation discharge shall be to a safe location outside the building, without recirculation of the exhaust air.

Exception: Recirculation is permitted where it is monitored continuously using a fail-safe system that is designed to automatically sound an alarm, stop recirculation, and provide full exhaust to the outside in the event that vapor-air mixtures in concentration over one-fourth of the lower flammable limit are detected.

- **5-3.4.4*** Provision shall be made for introduction of make-up air in such a manner as to avoid short-circuiting the ventilation. Ventilation shall be arranged to include all floor areas or pits where flammable vapors can collect. Local or spot ventilation might be needed for the control of special fire or health hazards. Such ventilation, if provided, shall be permitted to be utilized for up to 75 percent of the required ventilation.
- 5-3.4.5 Equipment used in a building and the ventilation of the building shall be designed to limit flammable vaporair mixtures under normal operating conditions to the interior of equipment and to not more than 5 ft (1.5 m) from equipment that exposes Class I liquids to the air. Examples of such equipment are dispensing stations, open centrifuges, plate and frame filters, open vacuum filters, and surfaces of open equipment.

5-3.5 Drainage.

- **5-3.5.1*** Emergency drainage systems shall be provided to direct liquid leakage and fire protection water to a safe location. This might require curbs, scuppers, or special drainage systems to control the spread of fire.
- **5-3.5.2** Emergency drainage systems, if connected to public sewers or discharged into public waterways, shall be equipped with traps or separators.

- **5-3.5.3** A facility shall be designed and operated to prevent the discharge of liquids to public waterways, public sewers, or adjoining property.
- **5-3.6 Electrical Equipment.** Electrical wiring and utilization equipment shall meet the requirements of Section 5-9.

5-3.7 Liquid Handling, Transfer, and Use.

- **5-3.7.1** Class I liquids shall be kept in closed tanks or containers when not actually in use. Class II and Class III liquids shall be kept in closed tanks or containers when ambient or process temperature is at or above their flash point.
- **5-3.7.2** Where liquids are used or handled, provisions shall be made to promptly and safely dispose of leakage or spills.
- **5-3.7.3** Class I liquids shall not be used outside closed systems where there are open flames or other ignition sources within the classified areas as set forth in Table 5-9.5.3.
- **5-3.7.4** Transfer of liquids among vessels, containers, tanks, and piping systems by means of air or inert gas pressure shall be permitted only under all of the following conditions:
- (a) The vessels, containers, tanks, and piping systems shall be designed for such pressurized transfer and shall be capable of withstanding the anticipated operating pressure.
- (b) Safety and operating controls, including pressure relief devices, shall be provided to prevent overpressure of any part of the system.
- (c) Only inert gas shall be used to transfer Class I liquids. Inert gas shall be used to transfer Class II and Class III liquids that are heated above their flash points.
- **5-3.7.5** Positive displacement pumps shall be provided with pressure relief discharging back to the tank, pump suction, or other suitable location or shall be provided with interlocks to prevent overpressure.
- **5-3.7.6** Piping, valves, and fittings shall be in accordance with Chapter 3, Piping Systems.
- **5-3.7.7** Listed flexible connectors shall be permitted to be used where vibration exists. Approved hose shall be permitted to be used at transfer stations.
- **5-3.8* Equipment.** Equipment shall be designed and arranged to prevent the unintentional escape of liquids and vapors and to minimize the quantity escaping in the event of accidental release.

5-4 Reserved.

5-5 Incidental Operations.

- **5-5.1*** This section shall apply to areas where the use, handling, and storage of liquids is only a limited activity to the established occupancy classification. Examples include automobile assembly, assembly of electronic equipment, furniture manufacturing, and areas within refineries, distilleries, and chemical plants where the use of liquids is incidental, such as in maintenance shops, office equipment, or vehicle repair shops.
- **5-5.2** Class I liquids or Class II or Class III liquids that are heated up to or above their flashpoints shall be drawn from or transferred into vessels, containers, or portable tanks using one of the following methods:
- (a) From original shipping containers with a capacity of 5 gal (19 L) or less;

- (b) From safety cans;
- (c) Through a closed piping system;
- (d) From portable tanks or containers by means of a device that has anti-siphoning protection and that draws through an opening in the top of the tank or container;
- (e) By gravity through a listed self-closing valve or self-closing faucet.
- **5-5.2.1** If hose is used in the transfer operation, it shall be equipped with a self-closing valve without a hold-open latch in addition to the outlet valve. Only listed or approved hose shall be used.
- **5-5.2.2** Means shall be provided to minimize generation of static electricity. Such means shall meet the requirements of 5-9.4.
- **5-5.2.3** Where pumps are used for liquid transfer, means shall be provided to deactivate liquid transfer in the event of a liquid spill or fire.
- 5-5.3 All storage of liquids shall comply with Chapter 4.

Exception: As provided in 5-5.4 and 5-5.5.

- **5-5.4** The quantity of liquid located outside of identified storage areas (storage cabinets, other inside liquid storage areas, general purpose warehouses, or other specific processing areas that are cut off from the general plant area by at least a 2-hr fire separation) shall meet 5-5.4.1.
- **5-5.4.1** The aggregate of the sum of all incidental operations in each single fire area shall not exceed the sum of:
 - (a) 25 gal (95 L) of Class IA liquids in containers;
- (b) 120 gal (454 L) of Classes IB, IC, II, or III liquids in containers:
- (c) Two portable tanks each not exceeding 660 gal (2498 L) of Class IB, IC, Class II, or Class IIIA liquids; and
- (d) 20 portable tanks each not exceeding $660~{\rm gal}~(2498~L)$ of Class IIIB liquids.

Exception: Where quantities of liquid in excess of the above limits are needed to supply an incidental operation for one continuous 24-hour period, that greater quantity shall be allowed.

- **5-5.4.2** Where quantities of liquids in excess of the limits in 5-5.4.1 are necessary, storage shall be in tanks that meet all applicable requirements of Chapter 2 and Section 5-3.
- **5-5.5** Areas in which liquids are transferred from one tank or container to another container shall be provided with:
- (a) Separation from other operations that might represent an ignition source by distance or by fire-resistant construction;
- (b) Drainage or other means shall be provided to control spills; and
- (c)* Natural or mechanical ventilation that meets the requirements of 5-3.4.

5-6 Loading and Unloading Operations.

- **5-6.1** This section shall apply to operations involving the loading or unloading of tank cars and tank vehicles and the areas in facilities where these operations are conducted.
- **5-6.2** Bonding requirements, as specified in this subsection, shall not be required:

30–51

- (a) Where tank cars and tank vehicles are loaded exclusively with products that do not have static accumulating properties, such as asphalts (including cutback asphalts), most crude oils, residual oils, and water-soluble liquids;
- (b) Where no Class I liquids are handled at the loading facility and where the tank cars and tank vehicles loaded are used exclusively for Class II and Class III liquids; and
- (c) Where tank cars and tank vehicles are loaded or unloaded through closed connections.
- 5-6.3* Tank vehicle and tank car loading and unloading facilities shall be separated from aboveground tanks, warehouses, other plant buildings, or the nearest line of adjoining property that can be built upon by a distance of at least 25 ft (7.6 m) for Class I liquids and at least 15 ft (4.6 m) for Class II and Class III liquids, measured from the nearest fill spout or transfer connection. These distances shall be permitted to be reduced if there is suitable protection for exposures. Buildings for pumps or shelters for personnel shall be permitted to be a part of the facility.
- **5-6.4*** Loading and unloading facilities shall be provided with drainage systems or other means to contain spills.
- **5-6.5** A loading or unloading facility that has a canopy or roof that does not limit the dissipation of heat or dispersion of flammable vapors and does not restrict fire-fighting access and control shall be treated as an outdoor facility.
- **5-6.6*** Loading and unloading facilities that are used to load liquids into tank vehicles through open domes shall be provided with a means for electrically bonding to protect against static electricity hazards. Such means shall consist of a metallic bond wire that is permanently electrically connected to the fill pipe assembly or to some part of the rack structure that is in electrical contact with the fill pipe assembly. The free end of this wire shall be provided with a clamp or an equivalent device for convenient attachment to some metallic part that is in electrical contact with the cargo tank of the tank vehicle. All parts of the fill pipe assembly, including the drop tube, shall form a continuous electrically conductive path.
- **5-6.7** Tank car facilities where flammable and combustible liquids are loaded or unloaded through open domes shall be protected against stray currents by permanently bonding the fill pipe to at least one rail and to the facility structure, if of metal. Multiple pipelines that enter the area shall be permanently bonded together. In addition, in areas where excessive stray currents are known to exist, all pipelines entering the area shall be provided with insulating sections to electrically isolate them from the facility piping.

Exception: These precautions shall not be required where only Class II or Class III liquids are handled and where there is no probability that tank cars will contain vapors from previous cargoes of Class I liquids.

5-6.8 Equipment such as piping, pumps, and meters used for the transfer of Class I liquids between storage tanks and the fill stem of the loading facility shall not be used for the transfer of Class II or Class III liquids.

Exception No. 1: This provision shall not apply to water-miscible liquid mixtures where the class of the mixture is determined by the concentration of liquid in water.

Exception No. 2: This provision shall not apply where the equipment is cleaned between transfers.

- **5-6.9** Remote pumps located in underground tanks shall have a listed leak-detection device installed on the pump discharge side that will indicate if the piping system is not essentially liquidtight. This device shall be checked and tested at least annually according to the manufacturer's specifications to ensure proper installation and operation.
- **5-6.10* Switch Loading.** To prevent hazards due to a change in flash point of liquids, no tank car or tank vehicle that has previously contained a Class I liquid shall be loaded with a Class II or Class III liquid unless proper precautions are taken.

5-6.11 Loading and Unloading of Tank Vehicles.

- **5-6.11.1** Liquids shall be loaded only into cargo tanks whose material of construction is compatible with the chemical characteristics of the liquid. The liquid being loaded shall also be chemically compatible with the liquid hauled on the previous load unless the cargo tank has been cleaned.
- **5-6.11.2** Before loading tank vehicles through open domes, a bonding connection shall be made to the vehicle or tank before dome covers are raised and shall remain in place until filling is completed and all dome covers have been closed and secured.

Exception: As modified by 5-6.2.

- **5-6.11.3** When transferring Class I liquids, engines of tank vehicles or motors of auxiliary or portable pumps shall be shut down during making and breaking hose connections. If loading or unloading is done without requiring the use of the motor of the tank vehicle, the motor shall be shut down throughout any transfer operations involving Class I liquids.
- **5-6.11.4*** Filling through open domes into the tanks of tank vehicles that contain vapor-air mixtures within the flammable range, or where the liquid being filled can form such a mixture, shall be by means of a downspout that extends to within 6 in. of the bottom of the tank. This precaution shall not be required when loading liquids that are not accumulators of static electric charges.
- **5-6.11.5** When top loading a tank vehicle with Class I or Class II liquids without a vapor control system, valves used for the final control of flow shall be of the self-closing type and shall be manually held open except where automatic means are provided for shutting off the flow when the vehicle is full. Automatic shutoff systems shall be provided with a manual shutoff valve located at a safe distance from the loading nozzle to stop the flow if the automatic system fails. When top loading a tank vehicle with vapor control, flow control shall be in accordance with 5-6.11.7 and 5-6.11.8.
- **5-6.11.6** When bottom loading a tank vehicle, a positive means shall be provided for loading a predetermined quantity of liquid, together with a secondary automatic shutoff control to prevent overfill. The connecting components between the loading rack and the tank vehicle that are required to operate the secondary control shall be functionally compatible. The connection between the liquid loading hose or pipe and the truck piping shall be by means of a dry disconnect coupling.
- **5-6.11.7** When bottom loading a tank vehicle that is equipped for vapor control, but when vapor control is not used, the tank shall be vented to the atmosphere, at a height not lower than the top of the cargo tank of the vehicle, to

prevent pressurization of the tank. Connections to the facility's vapor control system shall be designed to prevent the escape of vapor to the atmosphere when not connected to a tank vehicle.

- **5-6.11.8** When bottom loading is used, reduced flow rates (until the fill opening is submerged), splash deflectors, or other devices shall be used to prevent splashing and to minimize turbulence.
- **5-6.11.9** Metal or conductive objects, such as gauge tapes, sample containers, and thermometers, shall not be lowered into or suspended in a compartment while the compartment is being filled or immediately after cessation of pumping to permit the relaxation of charge.

5-6.12 Loading and Unloading of Tank Cars.

- **5-6.12.1** Liquids shall be loaded only into tank cars whose material of construction is compatible with the chemical characteristics of the liquid. The liquid being loaded shall also be chemically compatible with the liquid hauled on the previous load unless the tank car has been cleaned.
- **5-6.12.2*** Filling through open domes into the tank cars that contain vapor-air mixtures within the flammable range or where the liquid being filled can form such a mixture shall be by means of a downspout that extends to within 6 in. of the bottom of the tank. This precaution shall not be required when loading liquids that are not accumulators of static electric charges.
- **5-6.12.3** When bottom loading is used, reduced flow rates (until the fill opening is submerged), splash deflectors, or other devices shall be used to prevent splashing and to minimize turbulence.
- **5-6.12.4** Metal or conductive objects, such as gauge tapes, sample containers, and thermometers, shall not be lowered into or suspended in a compartment while the compartment is being filled or immediately after cessation of pumping to permit the relaxation of charge.

5-7 Wharves.

- **5-7.1** This section shall apply to all wharves as defined in Section 1-6 whose primary purpose is the bulk transfer of liquids. General purpose wharves that handle bulk transfer of liquids and other commodities shall meet the requirements of NFPA 307, *Standard for the Construction and Fire Protection of Marine Terminals, Piers, and Wharves*.
- **5-7.2** This section shall not apply to the following:
- (a) Marine service stations, as covered in NFPA 30A, Automotive and Marine Service Station Code;
- (b) Marinas and boatyards, as covered in NFPA 303, Fire Protection Standard for Marinas and Boatyards;
- (c) Wharves that handle liquefied petroleum gases, as covered in NFPA 59A, Standard for the Production, Storage, and Handling of Liquefied Natural Gases (LNG), and NFPA 58, Standard for the Storage and Handling of Liquefied Petroleum Gases.
- **5-7.3** Incidental handling of packaged cargo of liquids and loading/unloading of general cargo, such as ships' stores, during transfer of liquids shall be conducted only when approved by the wharf supervisor and the senior officer of the vessel.

- 5-7.4 Wharves at which liquid cargoes are to be transferred in bulk to or from tank vessels shall be at least 100 ft (30 m) from any bridge over a navigable waterway or from any entrance to or superstructure of a vehicular or railroad tunnel under a waterway. The termination of the loading or unloading fixed piping shall be at least 200 ft (60 m) from any bridge or from any entrance to or superstructure of a tunnel.
- 5-7.5 The substructure and deck of the wharf shall be substantially designed for the use intended. The deck shall be permitted to be of any material that will afford the desired combination of flexibility, resistance to shock, durability, strength, and fire resistance. Heavy timber construction shall be permitted.
- **5-7.6** Tanks used exclusively for ballast water or Class II or Class III liquids shall be permitted to be installed on a suitably designed wharf.
- 5-7.7 Loading pumps capable of building up pressures that exceed the safe working pressure of cargo hose or loading arms shall be provided with bypasses, relief valves, or other arrangements to protect the loading facilities against excessive pressure. Relief devices shall be tested at least annually to determine that they function satisfactorily at their set pressure.
- 5-7.8 All pressure hoses and couplings shall be inspected at intervals appropriate to their service. With the hose extended, the hose and couplings shall be tested using the in-service maximum operating pressure. Any hose showing material deterioration, signs of leakage, or weakness in its carcass or at the couplings shall be withdrawn from service and repaired or discarded.
- **5-7.9** Piping, valves, and fittings shall meet applicable requirements of Chapter 3 and shall also meet the following requirements:
- (a) Flexibility of piping shall be assured by appropriate layout and arrangement of piping supports so that motion of the wharf structure resulting from wave action, currents, tides, or the mooring of vessels will not subject the piping to excessive strain.
- (b) Pipe joints that depend on the friction characteristics of combustible materials or on the grooving of pipe ends for mechanical continuity of piping shall not be permitted.
- (c) Swivel joints shall be permitted to be used in piping to which hoses are connected and for articulated swivel-joint transfer systems, provided the design is such that the mechanical strength of the joint will not be impaired if the packing materials should fail, for example, by exposure to fire.
- (d) Each line conveying Class I or Class II liquids leading to a wharf shall be provided with a readily accessible block valve located on shore near the approach to the wharf and outside of any diked area. Where more than one line is involved, the valves shall be grouped in one location.
- (e) Means shall be provided for easy access to any cargo line valves that are located below the wharf deck.
- **5-7.10** Pipelines on wharves that handle Class I or Class II liquids shall be adequately bonded and grounded. If excessive stray currents are encountered, insulating flanges or joints shall be installed. Bonding and grounding connections on all pipelines shall be located on the wharf side of insulating flanges, if used, and shall be accessible for inspection. Bonding between the wharf and the vessel shall not be required.

- **5-7.11** Hose or articulated swivel-joint pipe connections used for cargo transfer shall be capable of accommodating the combined effects of change in draft and change in tide. Mooring lines shall be kept adjusted to prevent surge of the vessel from placing stress on the cargo transfer system. Hose shall be supported to avoid kinking and damage from chafing.
- **5-7.12** Material shall not be placed on wharves in such a manner as to obstruct access to fire-fighting equipment or important pipeline control valves. Where the wharf is accessible to vehicle traffic, an unobstructed roadway to the shore end of the wharf shall be maintained for access of fire-fighting apparatus.
- **5-7.13** Loading or unloading shall not commence until the wharf supervisor and the person in charge of the tank vessel agree that the tank vessel is properly moored and all connections are properly made.
- **5-7.14** Mechanical work shall not be performed on the wharf during cargo transfer, except under special authorization based on a review of the area involved, methods to be employed, and precautions necessary.
- **5-7.15** Sources of ignition shall be controlled during transfer of liquids. Mechanical work, including but not limited to vehicular traffic, welding, grinding, and other hot work, shall not be performed during cargo transfer except as

- authorized by the wharf supervisor and the senior officer on the vessel. Smoking shall be prohibited at all times on the wharf during cargo transfer operations.
- **5-7.16** For marine terminals handling flammable liquids, Figure 5-7.16 shall be used to determine the extent of classified areas for the purpose of installation of electrical equipment.
- **5-7.17** Where a flammable atmosphere might exist in the vessel cargo compartment, cargo transfer systems shall be designed to limit the velocity of the incoming liquid stream to 3 ft per second until the compartment inlet opening is sufficiently submerged to prevent splashing.
- **5-7.18** Filters, pumps, wire screens, and other devices that might produce static electric charges through turbulence shall be so located to allow a minimum of 30 seconds relaxation time prior to discharging cargo into the compartment.
- **5-7.19*** Spill collection shall be provided around manifold areas to prevent spread of liquids to other areas of the wharf or under the wharf. Vapor seals shall be provided on all drain lines leaving the wharf.
- **5-7.20** Where required, wharves shall have a system to isolate and shut down the loading operation in the event of failure of a hose, loading arm, or manifold valve. This system shall meet all of the following requirements:

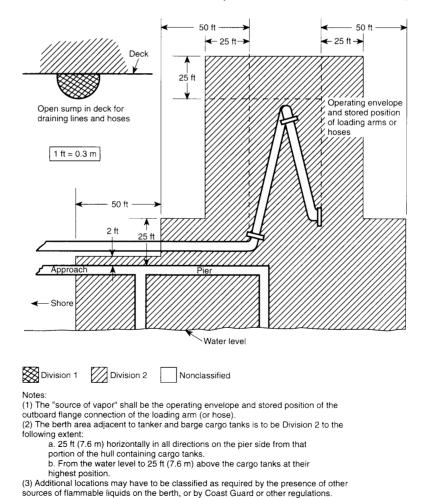


Figure 5-7.16 Marine terminal handling flammable liquids.

- (a) If the protective system closes a valve on a gravity-fed or pipeline-fed loading system, care shall be taken to ensure the line is protected from any resulting pressure surges.
- (b) Emergency shutdown systems shall be permitted to be automatically or manually activated. Manually activated device(s) shall be well marked and accessible during an emergency.
- **5-7.21*** Fire protection for wharves shall be related to the products being handled, emergency response capability, size, location, frequency of use, and adjacent exposures.
- **5-7.21.1** Where a fire water main is provided, the main shall be permitted to be wet or dry. In all cases, isolation valves and fire department connections shall be provided at the wharf-to-shore connection.
- **5-7.21.2** Where a fire water main is provided, hydrants and monitors shall be provided so that effective fire water streams can be applied to any berth or loading manifold from two directions.
- **5-7.21.3** Fire water pumps, fire hoses, fire water mains, foam systems, and other fire suppression equipment shall be maintained and tested in accordance with NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.
- **5-7.21.4** Where no fire water main is provided, at least two 150-lb dry chemical extinguishers shall be provided. The extinguishers shall be located within 50 ft of pump or manifold areas and shall be easily reached along emergency access paths.

5-8 Reserved.

5-9 Control of Ignition Sources.

- **5-9.1** Precautions shall be taken to prevent the ignition of flammable vapors. Sources of ignition include, but are not limited to:
 - (a) Open flames,
 - (b) Lightning,
 - (c) Hot surfaces,
 - (d) Radiant heat,
 - (e) Smoking,
 - (f) Cutting and welding,
 - (g) Spontaneous ignition,
 - (h) Frictional heat or sparks,
 - (i) Static electricity,
 - (j) Electrical sparks,
 - (k) Stray currents, and
 - (l) Ovens, furnaces, and heating equipment.
- **5-9.2** Smoking shall be permitted only in designated and properly identified areas.
- **5-9.3*** Welding, cutting, and similar spark-producing operations shall not be permitted in areas containing flammable liquids until a written permit authorizing such work has been issued. The permit shall be issued by a person in authority following his/her inspection of the area to assure that proper precautions have been taken and will be followed until the job is completed.

5-9.4* Static Electricity. All equipment, such as tanks, machinery, and piping, where an ignitable mixture could be present shall be bonded or connected to a ground. The bond or ground or both shall be physically applied or shall be inherently present by the nature of the installation. Electrically isolated sections of metallic piping or equipment shall be bonded to the other portions of the system or individually grounded to prevent hazardous accumulations of static electricity.

5-9.5 Electrical Installations.

- **5-9.5.1** This section shall apply to areas where Class I liquids are stored or handled and to areas where Class II or Class III liquids are stored or handled at temperatures above their flash points (*see 1-1.3*).
- **5-9.5.2** Electrical wiring and utilization equipment shall be designed and installed in accordance with NFPA 70, *National Electrical Code*, and this section. Electrical wiring and utilization equipment in classified locations shall be designed and installed in accordance with Chapter 5 of NFPA 70.
- **5-9.5.3*** Table 5-9.5.3 shall be used to determine the extent of classified locations for the purpose of installation of electrical equipment. In establishing the extent of a classified location, it shall not extend beyond a floor, wall, roof, or other solid partition that has no communicating openings.
- **5-9.5.4*** Where the provisions of 5-9.2 require the installation of Class I, Division 1, or Class I, Division 2, electrical equipment, ordinary electrical equipment, including switchgear, shall be permitted to be used if installed in a room or enclosure that is maintained under positive pressure with respect to the classified area. Ventilation make-up air shall not be contaminated.

5-10 Vapor Recovery and Vapor Processing Systems.

5-10.1 Scope.

- **5-10.1.1** This section shall apply to vapor recovery and vapor processing systems where:
- (a) The vapor source operates at pressures from vacuum up to and including 1 psig (6.9 kPa), or
- (b) There is a potential for vapor mixtures in the flammable range.

5-10.1.2 This section shall not apply to:

- (a) Marine systems that comply with U.S. DOT Regulations, *Code of Federal Regulations*, Title 33, Parts 154, 155, and 156, and U.S. Coast Guard Regulations, *Code of Federal Regulations*, Title 46, Parts 30, 32, 35, and 39, and
- (b) Marine and automotive service station systems that comply with NFPA 30A, Automotive and Marine Service Station Code.
- **5-10.2 Overpressure/Vacuum Protection.** Tanks and equipment shall have independent venting for overpressure or vacuum conditions that might occur from malfunction of the vapor recovery or vapor processing system.

Exception: For tanks, venting shall comply with 2-3.5 or 2-3.6.

5-10.3 Vent Location.

5-10.3.1 Vents on vapor processing systems shall be not less than 12 ft (3.6 m) from adjacent ground level, with outlets located and directed so that ignitible vapors will disperse to a concentration below the lower flammable limit (lfl) before reaching any location that might contain an ignition source.

Table 5-9.5.3 Electrical Area Classifications

NEC Class I Division	Extent of Classified Area
1 2	Area within 5 ft of any edge of such equipment, extending in all directions Area between 5 ft and 8 ft of any edge of such equipment, extending in all directions; also, area up to 3 ft above floor or grade level within 5 ft to 25 ft horizontally from any edge of such equipment
1 2	Area within 3 ft of any edge of such equipment, extending in all directions Area between 3 ft and 8 ft of any edge of such equipment, extending in all directions; also, area up to 3 ft above floor or grade level within 3 ft to 10 ft horizontally from any edge of such equipment
1	Area inside dike where dike height is greater than the distance from the tank to the dike for more
2	than 50 percent of the tank circumference Within 10 ft from shell, ends, or roof of tank. Area inside dikes to level of top of dike
1	Within 5 ft of open end of vent, extending in all directions
2	Area between 5 ft and 10 ft from open end of vent, extending in all directions
1	Area above the roof and within the shell
1	Any pit, box, or space below grade level, if any part is within a Division 1 or 2 classified area
2	Up to 18 in. above grade level, within a horizontal radius of 10 ft from a loose fill connection and within a horizontal radius of 5 ft from a tight fill connection
1	Within 3 ft of open end of vent, extending in all directions
2	Area between 3 ft and 5 ft of open end of vent, extending in all directions
1	Within 3 ft of vent and fill openings, extending in all directions
2	Area between 3 ft and 5 ft from vent or fill opening, extending in all directions; also up to 18 in. above floor or grade level within a horizontal radius of 10 ft from vent or fill openings
2	Within 5 ft of any edge of such devices, extending in all directions; also up to 3 ft above floor or grade level within 25 ft horizontally from any edge of such devices
2	Within 3 ft of any edge of such devices, extending in all directions; also up to 18 in. above grade level within 10 ft horizontally from any edge of such devices
1	Entire area within pit if any part is within a Division of 2 classified area
2	Entire area within pit if any part is within a Division or 2 classified area
2	Entire pit
2	Area up to 18 in. above ditch, separator, or basin; also up to 18 in. above grade within 15 ft horizon- tally from any edge Same classified area as pits
	Division 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

Table 5-9.5.3 Electrical Area Classifications (continued)

Location	NEC Class I Division	Extent of Classified Area
Tank vehicle and tank car² loading through open dome	1	Within 3 ft of edge of dome, extending in all directions
	2	Area between 3 ft and 15 ft from edge of dome, extending in all directions
Loading through bottom connections with atmospheric venting	1	Within 3 ft of point of venting to atmosphere, extending in all directions
	2	Area between 3 ft and 15 ft from point of venting to atmosphere, extending in all directions; also up to 18 in. above grade within a horizontal radius of 10 ft from point of loading connection
Office and rest rooms	Ordinary	If there is any opening to these rooms within the extent of an indoor classified area, the room shall be classified the same as if the wall, curb, or partition did not exist
Loading through closed dome with atmospheric venting	1	Within 3 ft of open end of vent, extending in all directions
	2	Area between 3 ft and 15 ft of open end of vent, extending in all directions; also within 3 ft of edge of dome, extending in all directions
Loading through closed dome with vapor control	2	Within 3 ft of point of connection of both fill and vapor lines, extending in all directions
Bottom loading with vapor control any bottom unloading	2	Within 3 ft of point of connections, extending in all directions; also up to 18 in. above grade within a horizontal radius of 10 ft from point of connections
Storage and repair garage for tank vehicles	1 2	All pits or spaces below floor level
	2	Area up to 18 in. above floor or grade level for entire storage or repair garage
Garages for other than tank vehicles	Ordinary	If there is any opening to these rooms within the extent of an outdoor classified area, the entire room shall be classified the same as the area classification at the point of the opening
Outdoor drum storage	Ordinary	
Indoor warehousing where there is no flammable liquid transfer	Ordinary	If there is any opening to these rooms within the extent of an indoor classified area, the room shall be classified the same as if the wall, curb, or partition did not exist
Piers and wharves		See Figure 5-7.16.

SI units: 1 in. = 2.5 cm; 1 ft = 0.3 m.

5-10.3.2 Vapor processing equipment and vents shall be located in accordance with 5-3.2.

5-10.4 Vapor Collection Systems.

5-10.4.1 Vapor collection piping shall be designed to prevent trapping liquid.

5-10.4.2 Vapor recovery and vapor processing systems that are not designed to handle liquid shall be provided with a means to eliminate any liquid that carries over to or condenses in the vapor collection system.

5-10.5* Liquid Level Monitoring.

5-10.5.1 A liquid knock-out vessel used in the vapor collection system shall have means to verify the liquid level and a high liquid level sensor that activates an alarm.

5-10.5.2 For unmanned facilities, the high liquid level sensor shall initiate shutdown of liquid transfer into the vessel and shutdown of vapor recovery or vapor processing systems.

5-10.6 Overfill Protection.

5-10.6.1 Storage tanks served by vapor processing or vapor recovery systems shall be equipped with overfill protection in accordance with Section 2-10.

5-10.6.2 Overfill protection of tank vehicles shall be in accordance with 5-6.4.5 through 5-6.4.7.

5-10.7 Sources of Ignition.

5-10.7.1 Vapor Release. Tank or equipment openings provided for purposes of vapor recovery shall be protected against possible vapor release in accordance with 2-4.6.6, 5-6.4.6, and 5-6.4.7.

The release of Class I liquids can generate vapors to the extent that the entire building, and possibly a zone surrounding it, should be considered a Class I, Division 2, location.

²When classifying extent of area, consideration shall be given to the fact that tank cars or tank vehicles can be spotted at varying points. Therefore, the extremities of the loading or unloading positions shall be used.

OPERATIONS 30–57

- **5-10.7.2* Electric.** Electrical area classification shall be in accordance with 5-3.6.
- **5-10.7.3* Static Electricity.** Vapor collection and vapor processing equipment shall be protected against static electricity in accordance with 5-9.4.
- **5-10.7.4* Spontaneous Ignition.** Where there is the potential for spontaneous ignition, precautions shall be taken either by design or written procedures to prevent ignition.
- **5-10.7.5*** Friction Heat or Sparks from Mechanical Equipment. Mechanical equipment used to move vapors that are in the flammable range shall be designed to prevent sparks or other ignition sources under both normal and equipment malfunction conditions.
- **5-10.7.6* Flame Propagation.** Where there is reasonable potential for ignition of a vapor mix in the flammable range, means shall be provided to stop the propagation of flame through the vapor collection system. The means chosen shall be appropriate for the conditions under which they will be used.
- **5-10.7.7 Explosion Protection.** Where used, explosion protection systems shall comply with NFPA 69, *Standard on Explosion Prevention Systems*.
- **5-10.8 Emergency System Shutdown.** Emergency shutdown systems shall be designed to fail to a safe position in the event of loss of normal system power (i.e., air or electric) or equipment malfunction.

5-11 Management of Fire Hazards.

- **5-11.1** This section shall apply to the management methodology used to identify, evaluate, and control the hazards involved in processing and handling of flammable and combustible liquids. Theses hazards include, but are not limited to, preparation, separation, purification, and change of state, energy content, or composition.
- **5-11.2** Operations involving flammable and combustible liquids shall be reviewed to ensure that fire and explosion hazards resulting from loss of containment of liquids are provided with corresponding fire prevention and emergency action plans.
- Exception No. 1: Operations where liquids are used solely for on-site consumption as fuels.
- Exception No. 2: Operations where Class II or Class III liquids are stored in atmospheric tanks or transferred at temperatures below their flash points.
- Exception No. 3: Mercantile occupancies, crude petroleum exploration, drillings, and well servicing operations, and normally unoccupied facilities in remote locations.
- **5-11.3** The extent of fire prevention and control that is provided shall be determined by means of an engineering evaluation of the operation and application of sound fire protection and process engineering principles. This evaluation shall include, but not be limited to:
- (a) Analysis of the fire and explosion hazards of the operation;

- (b) Analysis of hazardous materials and chemicals and hazardous reactions used in the operation and the safeguards taken to control them;
- (c) Analysis of applicable facility design requirements in Sections 5-3 through 5-7;
- (d) Analysis of applicable requirements for liquid handling, transfer, and use, as covered in Sections 5-3 through 5-7:
- (e) Analysis of local conditions, such as exposure to and from adjacent properties and exposure to floods, earthquakes, and windstorms; and
- (f) Analysis of the emergency response capabilities of the local emergency services.
- **5-11.4** A written emergency action plan that is consistent with available equipment and personnel shall be established to respond to fires and related emergencies. This plan shall include the following:
- (a) Procedures to be followed in case of fire, such as sounding the alarm, notifying the fire department, evacuating personnel, and controlling and extinguishing the fire.
- (b) Procedures and schedules for conducting drills of these procedures.
- (c) Appointment and training of personnel to carry out assigned duties. These duties shall be reviewed at the time of initial assignment, as responsibilities or response actions change, and whenever anticipated duties change.
 - (d) Maintenance of fire protection equipment.
- (e) Procedures for shutting down or isolating equipment to reduce the release of liquid. This shall include assigning personnel responsible for maintaining critical plant functions or shutdown of plant processes.
 - (f) Alternate measures for the safety of occupants.
- **5-11.5** The fire hazards management review conducted in accordance with 5-11.2 shall be repeated whenever the hazards leading to a fire or explosion change significantly. Conditions that might require repeating a review include, but are not limited to:
 - (a) When changes occur in the materials in process:
 - (b) When changes occur in process equipment;
 - (c) When changes occur in process control;
- (d) When changes occur in operating procedures or assignments.

5-12 Fire Protection and Fire Suppression.

5-12.1 General.

- **5-12.1.1** This section covers the commonly recognized management control systems and methods used to prevent or minimize the loss from fire or explosion in liquid processing facilities. Other recognized fire prevention and control factors, involving construction, location, separation, etc., are addressed elsewhere in this chapter.
- **5-12.2** The wide range in size, design, and location of liquid processing facilities precludes the inclusion of detailed fire prevention and control systems and methods applicable to all such facilities. The authority having jurisdiction shall be consulted on specific cases or qualified engineering judgment shall be exercised.

5-12.3 Portable Fire-Control Equipment.

- **5-12.3.1*** Listed portable fire extinguishers shall be provided for facilities in such quantities, sizes, and types as might be needed for the special hazards of operation and storage.
- **5-12.3.2** When the need is indicated in accordance with 5-11.3, standpipe and hose systems, installed in accordance with NFPA 14, Standard for the Installation of Standpipe and Hose Systems, or hose connections from sprinkler systems using combination spray and straight stream nozzles, installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems, shall be used.
- **5-12.3.3*** When the need is indicated in accordance with 5-11.3, mobile foam apparatus shall be provided.
- **5-12.3.4** Automotive and trailer-mounted fire apparatus, where determined necessary, shall not be used for any purpose other than fire fighting.

5-12.4 Fixed Fire Control Equipment.

- **5-12.4.1** A reliable water supply or other suitable fire control agent shall be available in pressure and quantity to meet the fire demands indicated by the special hazards of operation, storage, or exposure.
- **5-12.4.2*** Hydrants, with or without fixed monitor nozzles, shall be provided in accordance with accepted practice. The number and placement will depend on the hazard of the liquid-processing facility.
- **5-12.4.3*** Where the need is indicated by the hazards of liquid processing, storage, or exposure as determined by 5-11.3, fixed protection shall be provided by means of approved sprinkler systems, water spray systems, deluge systems, fire-resistive materials, or a combination of these.
- **5-12.4.4** Where provided, fire control systems shall be designed, installed, and maintained in accordance with the following NFPA standards:
 - (a) NFPA 11, Standard for Low Expansion Foam;
- (b) NFPA 11A, Standard for Medium- and High-Expansion Foam Systems;
- (c) NFPA 12, Standard on Carbon Dioxide Extinguishing Systems;
- (d) NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems;
- (e) NFPA 16, Standard on the Installation of Deluge Foam-Water Sprinkler and Foam-Water Spray Systems; and
 - (f) NFPA 17, Standard for Dry Chemical Extinguishing Systems.

5-12.5 Detection and Alarm.

- **5-12.5.1** An approved means for prompt notification of fire or emergency to those within the plant and to the available public or mutual aid fire department shall be provided.
- **5-12.5.2** Those areas, including buildings, where a potential exists for a flammable liquid spill shall be monitored as appropriate. Some methods can include:
 - (a) Personnel observation or patrol;
- (b) Process monitoring equipment that would indicate a spill or leak might have occurred; and
- (c) Provision of gas detectors to continuously monitor the area where facilities are unattended.

5-12.6 Emergency Planning and Training.

- **5-12.6.1** Personnel responsible for the use and operation of fire protection equipment shall be trained in the use of that equipment. Refresher training shall be conducted at least annually.
- **5-12.6.2** Planning of effective fire control measures shall be coordinated with local emergency response agencies.
- **5-12.6.3** Procedures shall be established to provide for safe shutdown of operations under emergency conditions. Provisions shall be made for periodic training, inspection, and testing of associated alarms, interlocks, and controls.
- **5-12.6.4** The emergency procedure shall be kept readily available in an operating area and updated regularly.
- **5-12.6.5** Where premises are likely to be unattended for considerable periods of time, a summary of the emergency plan shall be posted or located in a strategic and accessible location.

5-12.7 Inspection and Maintenance.

- **5-12.7.1** All fire protection equipment shall be properly maintained, and periodic inspections and tests shall be done in accordance with both standard practice and the equipment manufacturer's recommendations. Water-based fire protection systems shall be inspected, tested, and maintained in accordance with NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.
- **5-12.7.2** Maintenance and operating practices shall control leakage and prevent spillage of flammable liquids.
- **5-12.7.3** Combustible waste material and residues in operating areas shall be kept to a minimum, stored in covered metal containers, and disposed of daily.
- **5-12.7.4** Ground areas around facilities where liquids are stored, handled, or used shall be kept free of weeds, trash, or other unnecessary combustible materials.
- **5-12.7.5** Asiles established for movement of personnel shall be maintained clear of obstructions to permit orderly evacuation and ready access for manual fire-fighting activities.

Chapter 6 Referenced Publications

- **6-1** The following documents or portions thereof are referenced within this code and shall be considered part of the requirements of this document. The edition indicated for each reference is the current edition as of the date of the NFPA issuance of this document.
- **6-1.1 NFPA Publications.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.
 - NFPA 11, Standard for Low Expansion Foam, 1994 edition.
- NFPA 11A, Standard for Medium- and High-Expansion Foam Systems, 1994 edition.
- NFPA 12, Standard on Carbon Dioxide Extinguishing Systems, 1993 edition.
- NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems, 1992 edition.

NFPA 13, Standard for the Installation of Sprinkler Systems, 1996 edition.

NFPA 14, Standard for the Installation of Standpipe and Hose Systems, 1996 edition.

NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, 1996 edition.

NFPA 16, Standard on the Installation of Deluge Foam-Water Sprinkler and Foam-Water Spray Systems, 1995 edition.

NFPA 16A, Standard for the Installation of Closed-Head Foam-Water Sprinkler Systems, 1994 edition.

NFPA 17, Standard for Dry Chemical Extinguishing Systems, 1994 edition.

NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 1995 edition.

NFPA 30A, Automotive and Marine Service Station Code, 1996 edition.

NFPA 32, Standard for Drycleaning Plants, 1996 edition.

NFPA 33, Standard for Spray Application Using Flammable or Combustible Materials, 1995 edition.

NFPA 34, Standard for Dipping and Coating Processes Using Flammable or Combustible Liquids, 1995 edition.

NFPA 35, Standard for the Manufacture of Organic Coatings, 1995 edition.

NFPA 36, Standard for Solvent Extraction Plants, 1993 edition.

NFPA 37, Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines, 1994 edition.

NFPA 45, Standard on Fire Protection for Laboratories Using Chemicals, 1996 edition.

NFPA 58, Standard for the Storage and Handling of Liquefied Petroleum Gases, 1995 edition.

NFPA 59A, Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG), 1996 edition.

NFPA 69, Standard on Explosion Prevention Systems, 1992 edition.

NFPA 70, National Electrical Code, 1996 edition.

NFPA 80, Standard for Fire Doors and Fire Windows, 1995 edition.

NFPA 90A, Standard for the Installation of Air Conditioning and Ventilating Systems, 1996 edition.

NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials, 1995 edition.

NFPA 99, Standard for Health Care Facilities, 1996 edition.

NFPA 101, Life Safety Code, 1994 edition.

NFPA 231, Standard for General Storage, 1995 edition.

NFPA 231C, Standard for Rack Storage of Materials, 1995 edition.

NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials, 1995 edition.

NFPA 303, Fire Protection Standard for Marinas and Boat-yards, 1995 edition.

NFPA 307, Standard for the Construction and Fire Protection of Marine Terminals, Piers, and Wharves, 1995 edition.

NFPA 386, Standard for Portable Shipping Tanks for Flammable and Combustible Liquids, 1990 edition.

NFPA 395, Standard for the Storage of Flammable and Combustible Liquids at Farms and Isolated Sites, 1993 edition.

NFPA 505, Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Maintenance, and Operation, 1996 edition.

NFPA 704, Standard System for the Identification of the Fire Hazards of Materials for Emergency Response, 1996 edition.

6-1.2 Other Publications.

6-1.2.1 ANSI Publications. American National Standards Institute, Inc., 11 West 42nd Street, New York, NY 10036.

ANSI B31, American National Standard Code for Pressure Piping, 1991.

ANSI B31.3, Petroleum Refinery Piping, 1993.

ANSI B31.4, Liquid Petroleum Transportation Piping Systems, 1992.

ANSI/UL 1313, Nonmetallic Safety Cans for Petroleum Products, 1993.

6-1.2.2 API Publications. American Petroleum Institute, 1220 L Street, N.W., Washington, DC 20005.

API 12B, Bolted Tanks for Storage of Production Liquids, twelfth edition, 1995.

API 12D, Field Welded Tanks for Storage of Production Liquids, eighth edition, 1994.

API 12F, Shop Welded Tanks for Storage of Production Liquids, seventh edition, 1994.

API 620, Recommended Rules for the Design and Construction of Large, Welded, Low-Pressure Storage Tanks, fifth edition, 1990.

API 650, Welded Steel Tanks for Oil Storage, eighth edition, 1993.

API 1632, Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems, 1987.

API 2000, Venting Atmospheric and Low-Pressure Storage Tanks, 1992.

6-1.2.3 ASME Publication. American Society of Mechanical Engineers, 234 East 47th Street, New York, NY 10017.

ASME, Boiler and Pressure Vessel Code.

6-1.2.4 ASTM Publications. American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

ASTM A 395, Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures, 1988.

ASTM D 5, Test for Penetration for Bituminous Materials, 1994.

ASTM D 56, Standard Method of Test for Flash Point by the Tag Closed Cup Tester, 1993.

ASTM D 86, Standard Method of Test for Distillation of Petroleum Products, 1995.

ASTM D 92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup, 1990.

ASTM D 93, Standard Test Methodsfor Flash Point by the Pensky-Martens Closed Tester, 1994.

ASTM D 323, Standard Method of Test for Vapor Pressure of Petroleum Products (Reid Method), 1989.

ASTM D 3278, Standard Method of Tests for Flash Point of Liquids by Setaflash Closed Tester, 1995.

- ASTM D 3828, Standard Test Methods for Flash Point by Small ScaleClosed Tester, 1993.
- ASTM D 4021, Standard Specification for Glass-Fiber Reinforced Polyester Underground Petroleum Storage Tanks, 1992.
- ASTM F 852, Standard for Portable Gasoline Containers for Consumer Use, 1986.
- ASTM F 976, Standard for Portable Kerosene Containers for Consumer Use, 1986.
- **6-1.2.5 ATA Publication.** American Trucking Association-Traffic Department, 2200 Mill Road, Alexandria, VA 22314.

National Motor Freight Classification.

- **6-1.2.6 NACE Publications.** National Association of Corrosion Engineers, P.O. Box 218340, Houston, TX 77218.
- NACE Standard RP-01 (1983 Rev.), Recommended Practice, Control of External Corrosion of Underground or Submerged Metallic Piping Systems, 1969.
- NACE Standard RP-02, Recommended Practice, Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems, 1985.
- **6-1.2.7 NRFC Publication.** National Railroad Freight Committee, 222 South Riverside Plaza, Chicago, IL 60606-5945.

Uniform Freight Classification.

- **6-1.2.8 STI Publication.** Steel Tank Institute, 570 Oakwood Road, Lake Zurich, IL 60047.
- sti-P₃, Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks, 1996.
- **6-1.2.9 UL Publications.** Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062.
- UL 58, Standard for Steel Underground Tanks for Flammable and Combustible Liquids, 1986.
- UL 80, Standard for Steel Inside Tanks for Oil Burner Fuel, 1980.
- UL 142, Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids, 1993.
- UL 971, Standard for Nonmetallic Underground Piping for Flammable Liquids, 1992.
- UL 1316, Standard for Glass-Fiber Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures, 1994.
- UL 1746, Standard for External Corrosion Protection Systems for Steel Underground Storage Tanks, Part I, 1993.
- UL 2085, Standard for Insulated Aboveground Tanks for Flammable Liquids, 1995.
- **6-1.2.10 ULC Publication.** Underwriters Laboratories of Canada, 7 Crouse Road, Scarborough, Ontario, Canada.
- ULC-S603.1 M, Standard for Galvanic Corrosion Protection Systems for Steel Underground Tanks for Flammable and Combustible Liquids.
- **6-1.2.11 UN Publication.** United Nations, Headquarters, New York, NY 10017.

Recommendations on the Transport of Dangerous Goods, ninth revised edition, 1995.

6-1.2.12 U.S. Government Publication. U.S. Government Printing Office, Washington, DC 20402.

Code of Federal Regulations, Title 49, Transportation.

Appendix A Explanatory Material

This Appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

- **A-1-1.2(a)** Liquids that are solid at 100°F or above, but are handled, used, or stored at temperatures above their flash-points should be reviewed against pertinent sections of this code.
- **A-1-1.2(c)** Certain mixtures of flammable or combustible liquids and halogenated hydrocarbons either do not exhibit a flash point using the standard closed-cup test methods or will exhibit elevated flash points. However, if the halogenated hydrocarbon is the more volatile component, preferential evaporation of this component can result in a liquid that does have a flash point or has a flash point that is lower than the original mixture. In order to evaluate the fire hazard of such mixtures, flash point tests should be conducted after fractional evaporation of 10, 20, 40, 60, or even 90 percent of the original sample or other fractions representative of the conditions of use. For systems such as open process tanks or spills in open air, an open-cup test method might be more appropriate for estimating the fire hazard.
- **A-1-1.2(d)** See NFPA 30B, Code for the Manufacture and Storage of Aerosol Products.
- A-1-1.3(a) Requirements for transportation of flammable and combustible liquids are found in NFPA 385, *Standard for Tank Vehicles for Flammable and Combustible Liquids*, and in Title 49, *Code of Federal Regulations*, Parts 100 through 199.
- **A-1-1.3(b)** See NFPA 31, Standard for the Installation of Oil-Burning Equipment.
- A-1-2 Requirements for the safe storage and use of the great variety of flammable and combustible liquids commonly available depend primarily on their fire characteristics, particularly the flash point, which is the basis for the classification system given in Section 1-7. It should be noted that a liquid's classification can be changed by contamination. For example, placing a Class II liquid into a tank that last contained a Class I liquid can change the flash point of the former so that it falls into the range of a Class I liquid. The same situation can exist where a Class II liquid is exposed to the vapors of a Class I liquid via an interconnecting vapor line. (See 2-3.7.4 and 2-4.5.6.) Care must be exercised in such cases to apply the requirements appropriate to the actual classification. Refer to NFPA 49, Hazardous Chemicals Data, and NFPA 325, Guide to Fire Hazard Properties of Flammable Liquids, Gases, and Volatile Solids, for flash point and other fire hazard data.

The volatility of a liquid is increased by heating. Where Class II or Class III liquids are exposed to storage conditions, use conditions, or process operations where they are naturally or artificially heated to or above their flash points, additional fire safety features might be necessary. These include ventilation, exposure to ignition sources, diking, and electrical area classification.

Additional fire safety considerations might also be necessary for the safe storage and use of liquids that have unusual

APPENDIX A 30–61

burning characteristics, that are subject to self-ignition when exposed to air, that are highly reactive with other substances, that are subject to explosive decomposition, or that have other special properties that dictate safeguards over and above those specified for a normal liquid of similar flash point classification.

- **A-1-6 Approved.** The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization concerned with product evaluations that is in a position to determine compliance with appropriate standards for the current production of listed items.
- **A-1-6 Atmospheric Tank.** Older style flat roof tanks were designed to operate at pressures from atmospheric through 0.5 psig (760 mm Hg through 786 mm Hg), measured at the top of the tank. This limitation was established to avoid continuous stress on the roof plates of the tank.
- A-1-6 Authority Having Jurisdiction. The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.
- **A-1-6 Boil-Over.** A boil-over is an entirely different phenomenon from a slop-over or froth-over. Slop-over involves a minor frothing that occurs when water is sprayed onto the hot surface of a burning oil. Froth-over is not associated with a fire but results when water is present or enters a tank containing hot viscous oil. Upon mixing, the sudden conversion of water to steam causes a portion of the tank contents to overflow.
- **A-1-6 Listed.** The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.
- **A-1-6 Warehouses.** Warehousing operations referred to in these definitions are those operations not accessible to the public and include general purpose, merchandise, distribution, and industrial warehouse-type operations.

A-1-7.2 Boiling Point. At the boiling point, the surrounding atmospheric pressure can no longer hold the liquid in the liquid state and the liquid boils. A low boiling point is indicative of a high vapor pressure and a high rate of evaporation.

A-1-7.2 Flash Point. Flash point is a direct measure of a liquid's volatility, its tendency to vaporize. The lower the flash point, the greater the volatility and the greater the risk of fire. Flash point is determined using one of several different test procedures and apparatus that are specified in 1-7.4.

A liquid that has a flash point at or below ambient temperature is easy to ignite and will burn quickly. On ignition, the spread of flame over the surface of such a liquid will be rapid, because it is not necessary for the fire to expend energy heating the liquid to generate more vapor. Gasoline is a familiar example. A liquid with a flash point above ambient temperature presents less risk because it must be heated to generate enough vapor to become ignitible; it is more difficult to ignite and presents less potential for the generation and spread of vapor. A common example is home heating oil (Fuel Oil No. 2). Home heating oil must be atomized to a fine mist in order for it to be easily ignited.

Certain solutions of liquids in water exhibit a flash point using the standard closed-cup test procedures but will not burn and might even extinguish a fire. To assist identifying such solutions, the following standards are helpful: ASTM D 4207, Standard Test Method for Sustained Burning of Low Viscosity Liquid Mixtures by the Wick Test, and ASTM D 4206, Standard Test Method for Sustained Burning of Liquid Mixtures by the Setaflash Tester (Open Cup). Liquid mixtures that do not sustain combustion for a specified time at a specified temperature are considered to be noncombustible. These tests provide additional data for determining proper storage and handling of such mixtures. In a confined space, such mixtures might still create an ignitible vapor-air mixture, depending on the amount of flammable liquid in the mixture and the quantity of the spill.

Related to the flash point is the "fire point." The fire point of a liquid is the temperature at which ignition of vapors will result in continued burning. As the term "flash point" suggests, the vapors generated at that temperature will flash, but will not necessarily continue to burn. The difference between flash point and fire point has some significance when conducting flash point tests [see 4-1.1.2 references to ASTM D 92, Fire Point, and Code of Federal Regulations, Title 49, (U.S. Department of Transportation Hazardous Materials Regulations), Method of Testing for Sustained Combustibility.] However, a closed-cup flash point is used to classify the liquid and characterize its hazard.

For more information, see ASTM E 502, Standard Test Method for Selection and Use of ASTM Standards for the Determination of Flash Point of Chemicals by Closed Cup Methods and the ASTM Manual on Flash Point Standards and Their Use.

A-1-7.2 Vapor Pressure. Vapor pressure is a measure of the pressure that the liquid exerts against the atmosphere above it. Just as the atmosphere exerts pressure on the surface of the liquid, the liquid pushes back. Vapor pressure is normally less than atmospheric pressure and is a measure of the liquid's tendency to evaporate, to move from the liquid to the gaseous state. This tendency is also referred to as volatility, thus the use of the term "volatile" to describe liquids that evaporate very easily. The higher the vapor pressure, the greater the rate of evaporation and the lower the boiling point. Simply put, this means more vapors and increased fire risk.

A-1-7.3 The classification of liquids is based on flash points that have been corrected to sea level, in accordance with the relevant ASTM test procedures. At high altitudes, the actual flash points will be significantly lower than those either observed at sea level or corrected to atmospheric pressure at sea level. Allowances might be necessary for this difference in order to appropriately assess the risk.

Table A-1-7.3 presents a comparison of the definitions and classification of flammable and combustible liquids, as set forth in section 1-7 of this code, with similar definitions and classification systems used by other regulatory bodies.

NOTE: The Hazardous Materials Regulations of the U.S. Department of Transportation (DOT), as set forth in the *Code of Federal Regulations*, Title 49, Parts 173.120(b)(2) and 173.150(f), provide an exception whereby a flammable liquid that has a flash point between 100°F (37.8°C) and 141°F (60.5°C) and does not also meet the definition of any other DOT hazard class, can be reclassified as a combustible liquid [i.e., one having a flash point above 141°F (60.5°C)] for shipment by road or rail within the United States.

A-2-3.1 See PEI RP200, Recommended Practices for Installation of Aboveground Storage Systems for Motor Vehicle Fueling, for additional information.

A-2-3.4.3(b) An aboveground storage tank dike is normally sized to contain the entire contents of the largest single tank within it. Some designs might also incorporate sufficient freeboard (additional capacity) to accommodate precipitation or fire-fighting water. The amount of this freeboard is usually governed by local conditions.

A-2-3.5.7 See NFPA 69, Standard on Explosion Prevention Systems.

A-2-3.6.7 Exception No. 1. Ethyl alcohol (ethanol) has a heat of combustion of 11,548 Btu/lb (26.8 mill Joules per kg) and a rate of burning of 0.000626 lb/sq ft per sec (0.015 Kg/m² sec). The burning rate was calculated based on pan pool fires of diameters between 0.7 ft and 16.5 ft (0.2 m to 5.0 m). The pool fires were burning at steady state in a wind-free environment. The ratio of the lip height of the pan (freeboard) to the diameter of the pan was approximately 0.06. Details of these tests can be found in "Fire Tests of Distilled Spirit Storage Tanks," Client Report CR-5727.1, for the Association of Canadian Distillers.

A-2-3.9.1 For further information see API 2015, Cleaning Petroleum Storage Tanks; API 2015A, A Guide for Controlling the Lead Hazard Associated with Tank Entry and Cleaning; and API 2015B, Cleaning Open Top and Covered Floating Roof Tanks.

A-2-4.2.1 See PEI RP100-90, Recommended Practices for Installation of Underground Liquid Storage System.

A-2-4.3(b) See Underwriters Laboratories Standard for Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures, UL 1316, and Standard for External Corrosion Protection Systems for Steel Underground Storage Tanks, UL 1746.

A-2-4.3.1 See API 1615, Installation of Underground Petroleum Storage Systems, for further information.

A-2-4.4.3(b) Special training might be required.

A-2-4.5.1 See also 2-1.1 of NFPA 30A, Automotive and Marine Service Station Code.

Table A-1-7.3 Comparative Classification of Liquids

Agency	Agency Classification	Agency F	NFPA Definition	NFPA Classification	NFPA Flash Point				
ANSI/CMA Z129.1-1994	Flammable	< 141°F	< 60.5°C	Flammable Combustible	Class I Class II Class IIIA	< 100°F ≥100°F to <140°F ≥140°F to <200°F			
	Combustible	≥141°F to <200°F	≥60.5°C to <93°C	Combustible	Class IIIA	≥140°F to <200°F	≥60°C to <93°C		
DOT	Flammable	<141°F	< 60.5°C	Flammable Combustible	Class I Class II Class IIIA	< 100°F ≥ 100°F to < 140°F ≥ 140°F to < 200°F			
	Combustible	≥141°F to <200°F	≥60.5°C to <93°C	Combustible	Class IIIA	≥140°F to <200°F	≥60°C to <93°C		
DOT HM-181	Flammable	<100°F	(37.8°C)	Flammable	Class I	<100°F	(37.8°C)		
Domestic Exemption ¹	Combustible	≥100°F to <200°F	≥37.8°C to <93°C	Combustible	Class II Class IIIA	≥ 100°F to < 140°F ≥ 140°F to < 200°F			
UN	Flammable	<141°F	< 60.5°C	Flammable Combustible	Class I Class II Class IIIA	<100°F ≥100°F to <140°F ≥140°F to <200°F			
	Combustible	≥141°F to <200°F	≥60.5°C to <93°C	Combustible	Class II Class IIIA	$\geq 100^{\circ}$ F to $< 140^{\circ}$ F $\geq 140^{\circ}$ F to $< 200^{\circ}$ F	≥37.8°C to <60°C ≥60°C to <93°C		
OSHA	Flammable	<100°F	(37.8°C)	Flammable	Class I	<100°F	(37.8°C)		
	Combustible ²	≥100°F	≥37.8°C	Combustible	Class II Class IIIA Class IIIB ²	≥100°F to <140°F ≥140°F to <200°F ≥200°F			

See "NOTE" in A-1-7.3. See Code of Federal Regulations, Title 29, 1910.106 for Class IIIB liquid exemptions.

APPENDIX A **30**–63

- **A-2-5** Section 2-5 provides an approach that allows considerable flexibility for compliance without compromising fire safety, while fostering ingenuity in application of fire safety principles to achieve the intended objectives, outlined in the performance criteria set out at the beginning of each subsection. Each subsection has been written with the first sentence outlining the performance criteria which, if implemented, would achieve compliance with that subsection. In order to clarify the intent of each performance criterion, the subsequent paragraphs constitute one method of achieving compliance with the intent envisioned in the performance requirements. It is recognized that other combinations of requirements can also be used to meet the intent of the performance criteria, provided such requirements are acceptable to the authority having jurisdiction.
- **A-2-5.1.2(b)** See NFPA 68, *Guide for Venting of Deflagrations*, for information on deflagration venting.
- **A-2-5.2.2** See NFPA 220, Standard on Types of Building Construction.
- **A-2-5.2.4** See NFPA 68, Guide for Venting of Deflagrations, for information on deflagration venting.
- **A-2-5.2.5** NFPA *101*, *Life Safety Code*, provides information on the design of exit facilities.
- **A-2-5.3.2** Equipment in enclosed storage areas can deteriorate over time and periodic sampling should be conducted to assure that leakage rates have not increased or that the ventilation rate is adequate for any increase in leakage rates.
- A-2-5.3.4 NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials, and NFPA 90A, Standard for the Installation of Air Conditioning and Ventilating Systems, provide information on this subject.
- **A-2-5.4.5** Appendix A of NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, provides information on this subject.
- A-2-5.7.3 See NFPA 497A, Recommended Practice for Classification of Class I Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas, and NFPA 497M, Manual for Classification of Gases, Vapors, and Dusts for Electrical Equipment in Hazardous (Classified) Locations, for guidance.
- **A-2-5.7.5** NFPA 496, Standard for Purged and Pressurized Enclosures for Electrical Equipment, provides details for these types of installations.
- **A-2-5.8.2.3** See NFPA 51B, Standard for Fire Prevention in Use of Cutting and Welding Processes.
- **A-2-5.8.2.4** NFPA 77, Recommended Practice on Static Electricity, provides information on this subject.
- **A-2-5.8.6.1** NFPA 10, Standard for Portable Fire Extinguishers, provides information on the suitability of various types of extinguishers.

A-2-5.8.6.2 See NFPA 13, Standard for the Installation of Sprinkler Systems, and NFPA 14, Standard for the Installation of Standpipe and Hose Systems.

- **A-2-5.8.6.3** NFPA 11C, Standard for Mobile Foam Apparatus, provides information on the subject.
- A-2-5.8.7.2 See NFPA 24, Standard for the Installation of Private Fire Service Mains and Their Appurtenances, for information on this subject.
- **A-2-5.8.7.3** See NFPA 13, Standard for the Installation of Sprinkler Systems; NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection; and NFPA 16, Standard for the Installation of Deluge Foam-Water Sprinkler and Foam-Water Spray Systems, for information on these subjects.
- **A-2-5.8.7.4** See also NFPA 16A, Standard for the Installation of Closed-Head Foam-Water Sprinkler Systems.
- A-2-6.1 Appendix E of API 650, Welded Steel Tanks for Oil Storage, and Appendix B of API 620, Recommended Rules for the Design and Construction of Large, Welded, Low-Pressure Storage Tanks, provide information on tank foundations.
- **A-2-6.3** For further information see ASTM E 119, Standard Test Methods for Fire Tests of Building Construction and Materials, and UL 1709, Standard for Rapid Rise Fire Tests of Protection Materials for Structural Steel.
- **A-2-6.4** Appendix N of API 620, Recommended Rules for the Design and Construction of Large, Welded, Low-Pressure Storage Tanks, contains information regarding supporting structures.
- **A-2-7** NFPA 77, Recommended Practice on Static Electricity, and NFPA 780, Standard for the Installation of Lightning Protection Systems, provide information on such protection.
- A-2-8.3 See PEI RP200-94, Recommended Practices for Installation of Aboveground Storage Systems for Motor Vehicle Fueling and STI R931-96, Double Wall AST Installation and Testing Instructions for additional requirements to test secondary containment tanks.
- **A-2-8.7** For information on testing of underground tanks, see NFPA 329, Recommended Practice for Handling Underground Releases of Flammable and Combustible Liquids. For information on testing aboveground tanks, see API 653, Tank Inspection, Repair, Alteration, and Reconstruction.
- **A-2-8.8** For additional information, see API 653, *Tank Inspection, Repair, Alteration, and Reconstruction*.
- **A-2.11** See NFPA 329, Recommended Practice for Handling Underground Releases of Flammable and Combustible Liquids, for information on testing methods.
- **A-3-5.1** API 2218, Fireproofing Practices in Petroleum and Petrochemical Processing Plants, contains guidance on selecting and installing fire-resistant coatings to protect exposed steel supports from a high-challenge fire exposure. It also contains a general discussion on determining need for such protection and estimating the extent of the area exposed.

A-3-6 Buried steel piping should be coated with a suitable material and should be cathodically protected. Galvanized steel pipe, by itself and without other corrosion protection methods, is not acceptable for underground piping. Steel swing joints and stainless steel flexible connectors should also be made corrosion resistant when in contact with the soil. Thus, such fittings should also be coated and cathodically protected when installed between nonmetallic, compatible tanks and piping, such as fiberglass reinforced plastic.

A-3-10 Where loading and unloading risers for Class II or Class IIIA liquids are located in the same immediate area as loading and unloading risers for Class I liquids, consideration should be given to providing positive means, such as different pipe sizes, connection devices, special locks, or other methods designed to prevent the erroneous transfer of Class I liquids into or from any container or tank used for Class II or Class IIIA liquids.

Exception No. 1: This provision need not apply to water-miscible liquids where the class is determined by the concentration of liquid in water.

Exception No. 2: This provision need not apply where the equipment is cleaned between transfers.

A-4-3.4 Venting of storage cabinets has not been demonstrated to be necessary for fire protection purposes. Additionally, venting a cabinet could compromise the ability of the cabinet to adequately protect its contents from involvement in a fire since cabinets are not generally tested with any venting. Therefore, venting of storage cabinets is not recommended.

However, it is recognized that some jurisdictions can require storage cabinets to be vented and that venting can also be desirable for other reasons, such as health and safety. In such cases, the venting system should be installed so as to not affect substantially the desired performance of the cabinet during a fire. Means of accomplishing this can include thermally actuated dampers on the vent openings or sufficiently insulating the vent piping system to prevent the internal temperature of the cabinet from rising above that specified. Any make-up air to the cabinet should also be arranged in a similar manner.

If vented, the cabinet should be vented from the bottom with make-up air supplied to the top. Also, mechanical exhaust ventilation is preferred and should comply with NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials. Manifolding the vents of multiple storage cabinets should be avoided.

A-4-4.2.5 NFPA 68, Guide for Venting of Deflagrations, provides information on this subject.

A-4-4.2.7 The appropriate height for sills, curbs, or ramps will depend on a number of factors, including the maximum expected spill volume, the floor area, and the existence of any drainage systems. Historically, curbs and sills have been 4 in. (10 cm) high. A variety of ramp, curb, or sill heights can be used to obtain the desired containment volume in each containment area. As a guide, 1 sq ft (0.09 m²) area of water at a 1 in. (2.5 cm) height equals 0.62 gal (2.35 L). Once the total quantity of necessary liquid containment has been established, the necessary ramp, curb, or sill heights can then be calculated. Where open-grated trenches are used, the volume of the trench should be able to contain the maximum expected spill volume or otherwise be connected to a properly designed drainage system.

A-4-4.2.8 Sprinkler water can transport burning liquids to unaffected areas, including underneath other storage piles or racks, further spreading the fire. It is therefore important to control the flow of liquids, including sprinkler water, and safely remove it from the affected area.

This can be accomplished by using one or more of the following:

- (a) Noncombustible, liquidtight raised sills, curbs, or ramps of suitable height at exterior openings;
- (b) Interior, noncombustible and liquidtight raised sills, curbs, or other flow diverting structures;
 - (c) Sloped floors;
- (d) Open-grated trenches or floor drains connected to a properly designed drainage system;
- (e) Wall scuppers discharging to a safe location or a properly designed drainage system; and
- (f) Other means acceptable to the authority having jurisdiction.

Drainage systems, including trenches, drains, and wall scuppers themselves, should be designed to handle the expected flow rate of water from sprinklers and hose streams. Otherwise, burning liquids could spread throughout the storage area and potentially into other unaffected areas. The drainage systems should also terminate in a safe location so as to not subsequently expose other important facilities, adjoining property, or important natural resources. Such "safe locations" can be specially designed containment basins, sumps, pits, collection tanks, waste treatment facilities, or other locations able to safely contain the discharge liquids. Since in nearly all cases it is impractical to size such locations based on the maximum possible operating time of sprinklers and hose streams, it is common practice to base the size on sprinklers and hose streams operating for a specified period of time. The appropriate period of time depends on the particular situation and the potential consequences of exceeding the determined volume. Evaluation of the potential consequences should include consideration of the following:

- (a) Properties and hazards of materials in liquid storage area;
- (b) Type and design of fire protection system(s), including expected flow rates;
 - (c) Surrounding topography and surface (soil type);
- (d) Proximity to other important buildings, adjoining property, and critical natural resources;
- (e) Contingency plans (or backup systems) and the availability of resources to implement;
- (f) Capabilities and response time of emergency responders; and
 - (g) Other applicable codes and regulations.
- **A-4-4.2.9** See NFPA 70, *National Electrical Code*, for information on the design and installation of electrical wiring and equipment.
- **A-4-4.2.10** See NFPA 70, National Electrical Code, for further information.
- **A-4-4.3.8** See NFPA 386, Standard for Portable Shipping Tanks for Flammable and Combustible Liquids, for information on portable tank design.

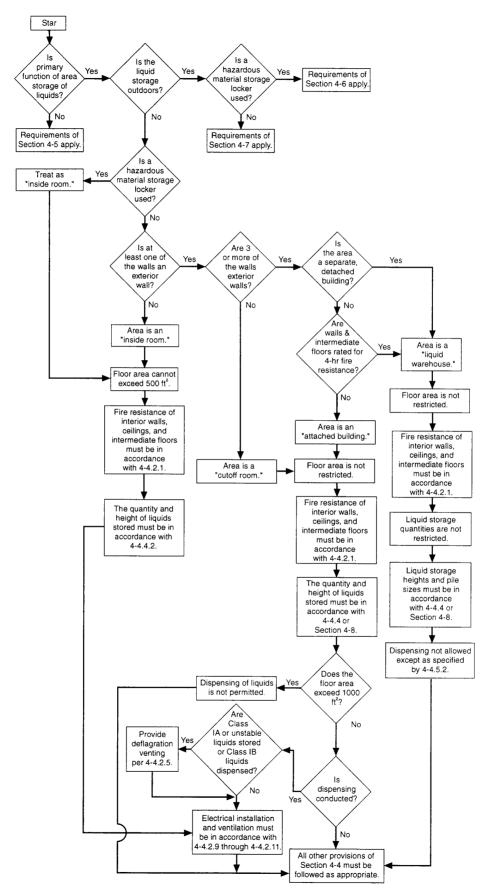


Figure A-4-4(a) Guide to application of Chapter 4, Container and Portable Tank Storage.

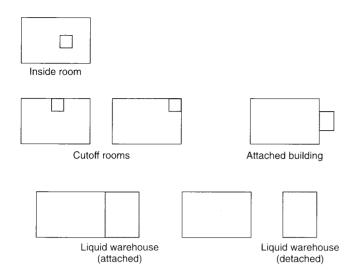


Figure A-4-4(b) Examples of the various inside liquid storage areas. Shaded areas are the liquid storage areas.

A-4-4.4.1 Exception. Other arrangements include, but are not limited to, increases in pile height, pile size, or maximum total quantity stored, or use of multiple-row racks or high-rise warehouses.

A-4-5.2.4 Exception No. 2. Based on work done by the Factory Mutual Research Corp., it was determined that flammable liquids in plastic containers could cause uncontrollable fires under certain conditions of storage in general purpose warehouses. A research project on flammable liquids container storage carried out by Underwriters Laboratories Inc., under the auspices of the National Fire Protection Research Foundation, has suggested a test protocol that can judge the capability of packaging systems to withstand a small ignition source or to minimize the rate at which the lading is released from the containers, so that the fire can be controlled by automatic sprinklers.

There is currently no nationally recognized consensus standard for conducting such tests.

A-4-6 Environmental concerns have dictated special handling of hazardous materials, chemicals, and wastes. Some of these have flammable and combustible liquid characteristics, in addition to their environmental and health problems, thus causing some questions as to how they should be stored and handled.

Several manufacturers have met this problem by designing and manufacturing movable, modular prefabricated storage lockers — working diligently with various building officials and authorities having jurisdiction. This results in a product that is intended to meet government standards and regulations for hazardous materials storage. Several municipalities have passed model ordinances covering the design, construction, and location of hazardous materials storage lockers. Design features can include but are not limited to the following:

- (a) Secondary spill containment sumps;
- (b) Deflagration venting;

- (c) Ventilation requirements, including mechanical ventilation where dispensing operations are expected;
- (d) Electrical equipment for hazardous locations in accordance with NFPA 70, National Electrical Code;
 - (e) Static electricity control;
 - (f) Fire suppression systems (dry chemical or sprinklers);
 - (g) Heavy structural design for:
 - 1. Security provisions
 - 2. Doors that lock and permit pallet loading
 - 3. Wind load, snow load, and storage load conditions
 - 4. Anchorage provisions and
 - 5. Skid design, permitting relocation using lift trucks
 - (h) Fire rated exterior walls, if required;
 - (i) Interior partitions to segregate incompatible materials;
- (j) Size limits to limit quantities that can be stored within preassembled or ready-to-assemble designs;
 - (k) Nonsparking floors;
 - (l) Shelving, if required;
 - (m) Heating or cooling units, if needed;
 - (n) Corrosion protection as required;
 - (o) Employee safety provisions (eye/face wash); and
- (p) NFPA 704, Standard System for the Identification of the Fire Hazards of Materials for Emergency Response hazard symbols.

Features provided are determined by specific storage requirements and needs of the owner, keeping in mind applicable regulations and ordinances that apply and the approval requirements of the authority having jurisdiction.

Several testing laboratories have developed internal procedures for the examination, testing, and listing or labeling of hazardous material storage lockers submitted by manufacturers.

A-4-8.2 Protected storage allowed under previous editions of this code can be continued if the class of liquids stored, the quantity of liquids stored, fire protection, and building configuration remain unchanged. Tables A-4-8.2(a) and A-4-8.2(b), reprinted here from the 1993 edition of this code, can be used as a reference for storage arrangements in previously approved protected inside liquids storage areas.

A-4-8.5.2 Subsection 1-5.3.2 of NFPA 505, Fire Safety Standard for Powered Industrial Trucks, Including Type Designations, Area of Use, Maintenance, and Operation, states "In location used for the storage of liquids in sealed containers or liquefied or compressed flammable gases in containers, approved power-operated industrial trucks designated as Types DS, ES, GS, LPS, or GS-LPS may be used if permitted for such locations by the authority having jurisdiction. Compared to the above types, industrial trucks that are designated DY or EE have significantly less potential for igniting flammable vapors (such as might result from a spill of Class I liquid) and should be used in inside liquid storage areas where conditions warrant.

A-4-8.8 The indiscriminate mixed storage of materials that have a high toxicity or high reactivity hazard that are also flammable liquids is a practice that might result in either a catastrophic release of toxic materials or an explosion. (*See also 1-1.4.*)

Table A-4-8.2(a) Storage Arrangements for Protected Palletized or Solid Pile Storage of Liquids in Containers and Portable Tanks

	_	Maximum Storage	Height (ft)	Maximum Quanti	ty per Pile (gal)	Maximum Quantity (gal) ²			
Class	Storage Level	Containers	Portable Tanks	Containers	Portable Tanks	Containers	Portable Tanks		
IA	Ground floor	5	_	3000		12,000	_		
	Upper floors Basement	5 Not permitted	_	2000	_	8000	_		
IB	Ground floor	61/9	7	5000	20,000	15,000	40,000		
	Upper floors	$6\frac{1}{2}$	7	3000	10,000	12,000	20,000		
	Basement	Not permitted	_	_	<u> </u>	_	<u></u>		
IC	Ground floor	61/91	7	5000	20,000	15,000	40,000		
	Upper floors	$6^{1/2}$	7	3000	10,000	12,000	20,000		
	Basement	Not permitted			<u> </u>		<u> </u>		
II	Ground floor	10	14	10,000	40,000	25,000	80,000		
	Upper floors	10	14	10,000	40,000	25,000	80,000		
	Basement	5	7	7500	20,000	7500	20,000		
H	Ground floor	20	14	15,000	60,000	55,000	100,000		
	Upper floors	20	14	15,000	60,000	55,000	100,000		
	Basement	10	7	10,000	20,000	25,000	40,000		

SI units: 1 ft = 0.3 m; 1 gal = 3.8 L.

Table A-4-8.2(b) Storage Arrangements for Protected Rack Storage of Liquids in Containers

			Maximum Storage Height (ft)	Maximum Quantity (gal) ^{1,2}		
Class	Type Rack	Storage Level	Containers	Containers		
IA	Double row	Ground floor	25	7500		
	or	Upper floors	15	4500		
	single row	Basement	Not permitted	—		
IB IC	Double row or single row	Ground floor Upper floors Basement	25 15 Not permitted	15,000 9000 —		
11	Double row	Ground floor	25	24,000		
	or	Upper floors	25	24,000		
	single row	Basement	15	9000		
III	Multirow,	Ground floor	40	55,000		
	double row,	Upper floors	20	55,000		
	or single row	Basement	20	25,000		

SI units: 1 ft = 0.3 m; 1 gal = 3.8 L.

A-5-3.3.1 See NFPA 220, Standard on Types of Building Construction.

A-5-3.3.2 API 2218, Fireproofing Practices in Petroleum and Petrochemical Processing Plants, contains guidance on selecting and installing fire-resistant coatings to protect exposed steel supports from a high-challenge fire exposure. It also contains a general discussion on determining need for such protection and estimating the extent of the area exposed.

A-5-3.3.4 NFPA 204M, Guide for Smoke and Heat Venting, provides information on this subject.

A-5-3.3.5 NFPA 101, Life Safety Code, provides information on the design of exit facilities.

A-5-3.3.7 NFPA 68, Guide for Venting of Deflagrations, provides information on this subject.

A-5-3.4.2 Equipment in enclosed processing areas can deteriorate over time, and periodic sampling should be conducted to ensure that leakage rates have not increased or that the ventilation rate is adequate for any increase in leakage rates.

^PThese height limitations shall be increased to 10 ft for containers of 5 gal capacity or less.

²Applies only to cutoff rooms and attached buildings

¹Maximum quantity allowed on racks in cutoff rooms and attached buildings. ²Maximum quantity allowed per rack section in liquid warehouses.

A-5-3.2.3 Equipment operated at pressures over 1000 psig (7000 kPa) could require greater spacing.

- A-5-3.4.4 NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials, and NFPA 90A, Standard for the Installation of Air Conditioning and Ventilating Systems, provide information on this subject.
- **A-5-3.5.1** Appendix A of NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, provides information on this subject.
- A-5-3.8 Where the vapor space of equipment is usually within the flammable range, the probability of explosion damage to the equipment can be limited by inerting, by providing an explosion suppression system, or by designing the equipment to contain the peak explosion pressure that can be modified by explosion relief. Where the special hazards of operation, sources of ignition, or exposures indicate a need, consideration should be given to providing protection by one or more of the above means.

See NFPA 68, Guide for Venting of Deflagrations, and NFPA 69, Standard on Explosion Prevention Systems, for additional information on various methods of mitigating losses from explosions.

- **A-5-5.1** Incidental operations are operations that utilize liquids only as a limited activity to that which establishes the occupancy classification. Listed below are four examples where liquid use is incidental to the occupancy classification.
- (a) Vehicle Assembly. Vehicle assembly operations usually involve both process and incidental use of liquids. An example of a process operation would be paint storage and mixing utilized for application of the vehicle primer, color coats, and clear coats. For these operations, the requirements of Section 5-3 apply. Examples of incidental use would be sealer deck wipedown operations, windshield washer solvent dispensing, brake fluid filling, and final line paint repair operations. These operations might be continuous. However, the quantities of liquids used and the vapor exposures are significantly reduced from larger volume usage found within vehicle body component paint mixing and storage operations.
- (b) Assembly of Electrical Equipment. Examples of incidental use of liquids in these types of occupancies might include wet etching operations in clean rooms, "photoresist" coating operations, "softbaking" operations, wave solder operations, and wipedown operations.
- (c) Chemical Plant Maintenance Shop. Incidental use of liquids is commonplace in maintenance shops located within a chemical plant. Examples are cutting oils used in a machine shop, Class II solvents for degreasing, and Class I and II paint solvents and fuels associated with automotive and industrial truck repair.
- (d) Cleaning and Sanitation. Under provisions established by the U. S. Food and Drug Administration (FDA) in the Code of Federal Regulations, Title 21, "GMP for Medical Devices," Class I and Class II liquids can be used for cleaning and sanitation purposes. Limited quantities are used to remove manufacturing materials, mold release compounds, and other contaminants not intended to be on the final product. An example would be the use of isopropyl alcohol (IPA), transferred to a cleaning wipe via a plunger-type liquid-dispensing container. The cleaning wipe is then used to remove manufacturing materials not intended to be on the final product. The key point here is not that the liquid is not part of the final product, but that limited quantities of liquid are used and the use is incidental to the manufacturing operation that produces the product.

- A-5-5.5(c) NFPA 91, Standard for Exhaust Systems for Air Conveying of Materials, provides information on the design and installation of mechanical ventilation.
- **A-5-6.3** Use of fixed fire protection systems, dikes, firerated barriers, or a combination of any of these can provide suitable protection from exposures.
- **A-5-6.4** The intent of this requirment is to prevent the spread of uncontrolled, spilled liquid from traveling beyond the loading or unloading area and exposing surrounding equipment and buildings.
- **A-5-6.6** The use of nonconductive materials in the fill pipe assembly should be avoided to prevent any electrical discontinuity in the piping of the system. Serious accidents have occurred when nonconductive materials, such as plastic or rubber hose, have been used in the fill pipe assembly.

A-5-6.10 The term "switch loading" describes a situation that warrants special consideration.

When a tank is emptied of a cargo of Class I liquid, there is left a mixture of vapor and air, which can be, and often is, within the flammable range. When such a tank is refilled with a Class I liquid, any charge that reaches the tank shell will be bled off by the required bond wire. Also, there will be no flammable mixture at the surface of the rising oil level because the Class I liquid produces at its surface a mixture too rich to be ignitible. This is the situation commonly existing in tank vehicles in gasoline service. If, as occasionally happens, a static charge does accumulate on the surface sufficient to produce a spark, it occurs in a too-rich, nonignitible atmosphere and thus causes no harm.

A very different situation arises if the liquid is "switch loaded," that is, when a Class II or Class III liquid is loaded into a tank vehicle that previously contained a Class I liquid.

Class II or Class III liquids are not necessarily more potent static generators than the Class I liquid previously loaded, but the atmosphere in contact with the rising oil surface is not enriched to bring it out of the flammable range. If circumstances are such that a spark should occur either across the oil surface or from the oil surface to some other object, the spark occurs in a mixture that can be within the flammable range, and an explosion can result.

It is emphasized that bonding the tank to the fill stem is not sufficient; a majority of the recorded explosions have occurred when it was believed the tank had been adequately bonded. The electrostatic potential that is responsible for the spark exists inside the tank on the surface of the liquid and cannot be removed by bonding. Measures to reduce the change of such internal static ignition can be one or more of the following:

- (a) Avoid spark promoters. Conductive objects floating on the oil surface increase the charge of sparking to the tank wall. Metal gauge rods or other objects projecting into the vapor space can create a spark gap as the rising liquid level approaches the projection. A common precaution is to require that fill pipes (downspouts) reach as close to the bottom of the tank as practicable. Any operation such as sampling, taking oil temperature, or gauging that involves lowering a conductive object through an opening into the vapor space on the oil should be deferred until at least 1 minute after flow has ceased. This will permit any surface charge to relax.
- (b) Reduce the static generation by one or more of the following:
- 1. Avoid splash filling and upward spraying of oil where bottom filling is used.

- 2. Employ reduced fill rates at the start of filling through downspouts, until the end of the spout is submerged. Some consider 3 ft (0.914 m) per sec to be a suitable precaution.
- 3. Where filters are employed, provide relaxation time in the piping downstream from the filters. A relation time of 30 sec is considered by some to be a suitable precaution.
- (c) Eliminate the flammable mixture before switch loads by gas freeing or inerting.
- See NFPA 77, Recommended Practice on Static Electricity, and NFPA 385, Standard for Tank Vehicles for Flammable and Combustible Liquids, for further information.
- **A-5-6.11.4** NFPA 77, Recommended Practice on Static Electricity, provides additional information on protection against static electricity.
- **A-5-6.12.2** NFPA 77, *Recommended Practice on Static Electricity*, provides additional information on static electricity protection.
- **A-5-7.19** Where practical, the collection basin should be drained to a remote location.
- **A-5-7.21** Because of the many variables involved, exact requirements cannot be provided. However, Table A-5-7.21 provides guidance on the level of fire protection typically provided at wharves and marine terminals handling flammable liquids.
- **A-5-9.3** See NFPA 51B, Standard for Fire Prevention in Use of Cutting and Welding Processes.
- **A-5-9.4** NFPA 77, Recommended Practice on Static Electricity, provides information on this subject.
- **A-5-9.5.3** The classifications listed in Table 5-9.5.3 are based on the premise that the installation meets all applicable requirments of this code and NFPA 70, *National Electrical Code*. Should this not be the case, the authority having jurisdiction has the authority to determine the extent of the classified locations.

For additional information, see NFPA 497A, Recommended Practice for Classification of Class I Hazardous (Classified) Locations

for Electrical Installations in Chemical Process Areas, and NFPA 497M, Manual for Classification of Gases, Vapors, and Dusts for Electrical Equipment in Hazardous (Classified) Locations.

- A-5-9.5.4 NFPA 496, Standard for Purged and Pressurized Enclosures for Electrical Equipment, provides details for these types of installations.
- **A-5-10.5** If the liquid knock-out vessel utilizes a pump for automatic liquid removal, consideration should be given to a low-level alarm and shutdown to avoid running the pump dry, resulting in a potential source of ignition.
- **A-5-10.7.2** Electrical enclosures that need to be opened frequently for maintenance (i.e., enclosures housing vapor processing system controls) have a higher potential for mechanical damage that could render the enclosures unable to contain an explosion. Additional inspection might be needed to ensure the integrity of the enclosure.
- **A-5-10.7.3** The most recent edition of American Petroleum Institute Recommended Practice 2003, *Protection Against Ignition Arising Out of Static, Lightning, and Stray Currents*, can be used as a reference for protections against static ignition.
- A-5-10.7.4 Spontaneous ignition can be a problem in:
- (a) Facilities where pyrophoric deposits can accumulate from the handling of oxygen-deficient vapors containing sulfur compounds or asphaltic materials. When air is introduced into the system, the pyrophoric materials can react, resulting in potential ignition and fire.
- (b) Facilities that handle fluids in such a way that mixing of hypergolic or otherwise incompatible materials can occur. Such mixing could occur with fluids remaining in the vapor recovery system from prior loading activities.
- (c) Facilities handling oxygenated hydrocarbons in carbon absorption units. Higher heats of absorption for these types of vapors can potentially lead to overheated carbon beds and increase the chance that an oxidation reaction can be initiated. (For further information, refer to American Petroleum Institute Report, "An Engineering Analysis of the Effects of Oxygenated Fuels on Marketing Vapor Recovery Equipment," September 1990.)

Table A-5-7.21 Typical Fire Protection for Wharves and Marine Terminals

			Monitors and Hose Foam						
	Water Demand gpm	Hydrant Monitors gpm ¹	Hose Reels	30 lb	Chemical 150 lb Wheeled	International Shore Connection	Emergency Equipment Lockers	Concentrate gal Required	Fire Boat Connection
Barge Terminals	500-1000	Two 500	Two 1 ¹ / ₄	2	NR	NR	1	100 ²	NR
Tanks 20,000 DWT and under	1000–2000	Two 500	Two 11/4	2	1	1	1	300 ²	2
20,000–70,000 DWT 70,000 DWT and over	2000 2000 ⁸	Two 1000 Two 1000	Four 11/4 ³ Four 11/4 ³	2 3	2 ⁴ 2 ⁴	2 2	1 1	2000 2000 ⁵	2 2
Sea Islands	2000- 4000 ⁸	Three 1000	Four 1 1/43	4	2	3	2	3000	2

SI units: 1 gpm = 3.8 Lpm; 1 gal = 3.8 L; 1 lb = 0.45 kg.

NR = Not Required.

¹ A minimum of two 1½-in. hydrant outlets should be provided at each monitor riser.

² Can be provided by onshore mobile equipment.

One hose reel at each berth should have foam capability.

The proximity of adjacent berths can reduce total required.
 Add foam for under-dock system (0.16 × 0.3 × 30 × area).

⁶*Add water for under-dock system (0.16 \times area).

^{*}Under-dock systems are optional.

A-5-10.7.5 Department of Transportation Coast Guard Regulation of the *Code of Federal Regulations*, Title 33, Part 154, Section 154.826(b), (c), and (d) can be used as a reference for vapor mover designs that minimize the potential for ignition.

A-5-10.7.6 The potential for ignition in the vapor collection system needs to be evaluated on a case-by-case basis.

If ignition occurs, flame propagation in piping systems containing vapor mixtures in the flammable range normally starts with low-speed burning (deflagration). As the flame moves through the piping, it accelerates and, within a short distance, can reach supersonic speeds (detonation). Initial low-speed flame propagation can be stopped by flame arresters, liquid seals, or automatic fast-acting valve systems where designed, operated, and tested within the requirements of NFPA 69, *Standard on Explosion Prevention Systems*. Flame propagation can also be stopped for both deflagrations and detonations by use of detonation arresters tested in accordance with U.S. Department of Transportation Coast Guard Regulations of the *Code of Federal Regulations*, Title 33, Part 154, Appendix A, or other procedures acceptable to the authority having jurisdiction, or automatic fast-acting valve systems tested under the appropriate conditions.

A-5-12.3.1 NFPA 10, *Standard for Portable Fire Extinguishers*, provides information on the suitability of various types of extinguishers.

A-5-12.3.3 NFPA 11C, *Standard for Mobile Foam Apparatus*, provides information on the subject.

A-5-12.4.2 See NFPA 24, Standard for the Installation of Private Fire Service Mains and Their Appurtenances, for information on this subject.

A-5-12.4.3 See NFPA 13, Standard for the Installation of Sprinkler Systems, and NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection, for information on these subjects.

Appendix B Emergency Relief Venting for Fire Exposure for Aboveground Tanks

This Appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

The requirements for emergency venting given in Table 2-8 and the modification factors in 2-3.6.7 are derived from a consideration of:

- (a) Probable maximum rate of heat transfer per unit area;
- (b) Size of tank and the percentage of total area likely to be exposed;
 - (c) Time required to bring tank contents to boil;
- (d) Time required to heat unwet portions of the tank shell or roof to a temperature where the metal will lose strength;
- (e) Effect of drainage, insulation, and the application of water in reducing fire exposure and heat transfer.

Table 2-8 is based on a composite curve that is composed of three straight lines when plotted on log-log paper. The curve can be defined in the following manner:

(a) The first straight line is drawn on log-log paper between the point 400,000 Btu/hr, at 20 ft² (1.858 m²) exposed surface area and the point 4,000,000 Btu/hr, at 200 ft² (18.58 m²) exposed surface area. The equation for this portion of the curve is Q = 20,000A.

- (b) The second straight line is drawn on log-log paper between the points 4,000,000 Btu/hr, at 200 ft² (18.58 m²) exposed surface area and 9,950,000 Btu/hr, at 1000 ft² (92.9 m²) exposed surface area. The equation for this portion of the curve is $Q=199,300A^{0.566}$.
- (c) The third straight line is plotted on log-log graph paper between the points 9,950,000 Btu/hr, at 1000 ft² (92.9 m²) exposed surface area and 14,090,000 Btu/hr, at 2800 ft² (260.12 m²) exposed surface area. The equation for this portion of the curve is $Q=963,400A^{0.338}. \label{eq:controller}$

Q =	= 20,000A	Q = 1	$99,300A^{0.566}$	$Q = 963,400A^{0.338}$					
A	Q	Q A Q			Q				
20	400,000	200	4,000,000	1000	10,000,000				
30	600,000	250	4,539,000	1200	10,593,000				
40	800,000	300	5,032,000	1400	11,122,000				
50	1,000,000	350	5,491,000	1600	11,601,000				
60	1,200,000	400	5,922,000	1800	12,040,000				
70	1,400,000	500	6,719,000	2000	12,449,000				
80	1,600,000	600	7,450,000	2400	13,188,000				
90	1,800,000	700	8,129,000	2800	14,000,000				
100	2,000,000	800	8,768,000	and over					
120	2,400,000	900	9,372,000						
40	2,800,000	1000	10,000,000						
160	3,200,000		·						
.80	3,600,000								
00	4,000,000								

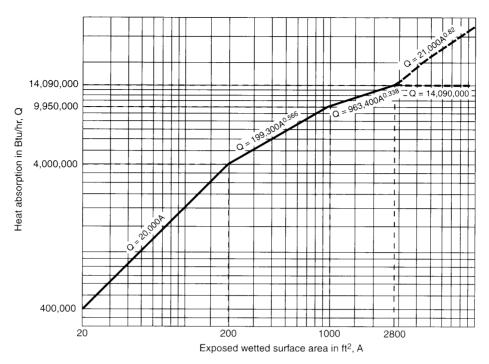
For areas exceeding 2800 ft² (260.12 m²) it has been concluded that complete fire involvement is unlikely, and loss of metal strength from overheating will cause failure in the vapor space before development of maximum possible vapor evolution rate. Therefore, additional venting capacity beyond the vapor equivalent of 14,090,000 Btu/hr (4130 kw) will not be effective or required.

For tanks and storage vessels designed for pressures over 1 psig (6.89 kPa), additional venting for exposed surfaces beyond 2800 sq ft (260.12 m²) is believed to be desirable because, under these storage conditions, liquids are stored close to their boiling points. Therefore, the time to bring the container contents to boiling conditions might not be significant. For these situations, a heat input value should be determined on the basis of

$$Q = 21,000A^{0.82}$$

The flow capacities are based on the assumption that the stored liquid will have the characteristics of hexane, and the vapor liberated has been transposed to equivalent free air at 60°F (15.6°C) and 14.7 psia (101.3 kPa) by using appropriate factors in:

$$CFH = \frac{70.5Q}{L\sqrt{M}}$$


Where:

70.5 = the factor for converting pounds of gas to ft³ of air

Q = the total heat input per hour expressed in Btu

L = latent heat of vaporization

M = molecular weight

NOTE: See Table B-1 for approximate wetted area for horizontal tanks.

Figure B-1 Curve for determining requirements for emergency venting during fire exposure.

Table B-1 Appropriate Wetted Areas for Horizontal Tanks (Wetted Area Equals 75 Percent Total Area)

Tank Diam. (ft)	3	4	5	6	7	8	9	10	11	12	Tank Diam. (ft)	3 4	5	6	7	8	9	10	11	12
Tank Length (ft)	$\mathbf{A}_{\mathbf{j}}$	pprox	imate	Wett	ed Ar	ea of	Γanks	with	Flat He	eads	Tank Length (ft)	App	oroxi	imat	e Wet	ted Are	a of Ta	nks with	Flat H	eads
3	32										38				685	791	902	1013	1129	1244
4	39	55									39				701	810	923	1036	1155	1272
5	46	65	88								40				718	828	944	1060	1181	1301
6	53	74	100	128							41				734	847	966	1083	1207	1329
7	60	84	112	142	173						42				751	866	987	1107	1233	1357
8	67	93	124	156	190	226					43				767	885	1008	1130	1259	1385
9	74	102	136	170	206	245	286				44					904	1029	1154	1284	1414
10	81	112	147	184	223	264	308	353			45					923	1051	1178	1310	1442
11	88	121	159	198	239	283	329	377	428		46					941	1072	1201	1336	1470
12	95	131	171	213	256	301	350	400	454	509	47					960	1093	1225	1362	1498
13	102	140	183	227	272	320	371	424	480	537	48					979	1114	1248	1388	1527
14	109	150	194	241	289	339	393	447	506	565	49					998	1135	1272	1414	1555
15	116	159	206	255	305	358	414	471	532	594	50						1157	1295	1440	1583
16	123	169	218	269	322	377	435	495	558	622	51						1178	1319	1466	1612
17	130	178	230	283	338	395	456	518	584	650	52						1199	1342	1492	1640
18	137	188	242	298	355	414	477	542	610	678	53						1220	1366	1518	1668
19		197	253	312	371	433	499	565	636	707	54						1246	1389	1544	1696
20		206	265	326	388	452	520	589	662	735	55						1263	1413	1570	1725
21		216	277	340	404	471	541	612	688	763	56							1437	1593	1753
22		225	289	354	42 I	490	562	636	714	792	57							1460	1622	1781
23		235	300	368	437	508	584	659	740	820	58							1484	1648	1809
24		244	312	383	454	527	605	683	765	848	59							1507	1674	1839
25			324	397	470	546	626	706	791	876	60							1531	1700	1866
26			336	411	487	565	647	730	817	905	61								1726	1894
27			347	425	503	584	668	754	843	933	62								1752	1923
28			359	440	520	603	690	777	869	961	63								1778	1951
29			371	454	536	621	711	801	895	989	64								1803	1979
30			383	468	553	640	732	824	921	1018	65								1829	2007
31			395	482	569	659	753	848	947	1046	66								1855	2036
32				496		678	775	871	973	1074	67									2064
33				510	602	697	796	895	999	1103	68									2092
34				524	619	715	817	918	1025	1131	69									2120
35				539	635	734	838	942	1051	1159	70									2149
36				553	652	753	860	966	1077	1187	71									2177
37				567	668	772	881	989	1103	1216	72									2205

SI units: 1 ft = 0.3 m; 1 ft² = 0.09 m².

Table B-2 Values of L for Various Flammable Liquids

Chemical	$L\sqrt{M}$	Molecular Weight	Heat of Vaporization Btu per lb at Boiling Point
Acetaldehyde	1673	44.05	252
Acetic acid	1350	60.05	174
Acetic anhydride	1792	102.09	177
Acetone	1708	58.08	224
Acetonitrile	2000	41.05	312
Acrylonitrile	1930	53.06	265
n-Amyl alcohol	2025	88.15	216
iso-Amyl alcohol	1990	88.15	212
Aniline	1795	93.12	186
Benzene	1493	78.11	169
n-Butyl acetate	1432	116.16	133
n-Butyl alcohol	2185	74.12	254
iso-Butyl alcohol	2135	74.12	248
Carbon disulfide	1310	76.14	150
Chlorobenzene	1422	112.56	134
Cyclohexane Cyclohexanol	1414 1953	84.16	154
		100.16	195
Cyclohexanone	1625	98.14	164
o-Dichlorobenzene	1455	147.01	120
cis-Dichloroethylene	1350	96.95	137
Diethylamine Dimethylacetamide	1403 1997	73.14	164
 /	****	87.12	214
Dimethylamine	1676	45.08	250
Dimethylformamide	2120	73.09	248
Dioxane (diethylene ether)	1665	88.10	177
Ethyl acetate	1477	88.10	157
Ethyl alcohol	2500	46.07	368
Ethyl chloride	1340	64.52	167
Ethylene dichloride	1363	98.96	137
Ethyl ether	1310	74.12	152
Furan Furfural	1362 1962	68.07 96.08	165
			200
Gasoline	1370–1470	96.0	140–150
n-Heptane	1383	100.20	138
n-Hexane	1337	86.17	144
Hydrogen cyanide Methyl alcohol	2290 2680	27.03	430
		32.04	474
Methyl ethyl ketone	1623	72.10	191
Methyl methacrylate	1432	100.14	143
n-Octane	1412	114.22	132
n-Pentane	1300	72.15	153
n-Propyl acetate	1468	102.13	145
n-Propyl alcohol	2295	60.09	296
iso-Propyl alcohol	2225	60.09	287
Tetrahydrofuran	1428	72.10	168
Toluene	1500	92.13	156
Vinyl acetate	1532	86.09	165
o-Xylene	1538	106.16	149

SI units: 1 Btu per lb = 2.3 KiloJoule/kilogram.

NOTE: For data on other chemicals refer to available handbooks on properties of chemicals.

No consideration has been given to possible expansion from the heating of the vapor above the boiling point of the liquid, its specific heat, or the difference in density between the discharge temperature and 60°F (15.6°C), since some of these changes are compensating.

Since tank vent valves are ordinarily rated in CFH standard air, the figures derived from Table 2-8 can be used with the appropriate tank pressure as a basis for valve selection.

Table B-2 gives for a variety of chemicals the constants that can be used to compute the vapor generated and equivalent free air for liquids other than hexane, where greater exactness is desired. Inspections of the table will show that the use of hexane in deriving Table 2-8 provides results that are within an acceptable degree of accuracy for the listed liquids.

Appendix C Temporarily Out of Service, Closure in Place, or Closure by Removal of Underground Tanks

This Appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

C-1 Introduction.

- C-1-1 Care is required not only in the handling and use of flammable or combustible liquids, but also in the process of rendering temporarily out of service, closing, or removing tanks that have held flammable or combustible liquids. This is particularly true of underground service station tanks that are most frequently used for the storage of motor fuel and occasionally for the storage of other flammable or combustible liquids, such as crankcase drainings (which can contain some gasoline). Through carelessness, explosions have occurred because flammable or combustible liquid tanks have not been properly conditioned before being rendered temporarily out of service, closed, or removed.
- **C-1-2** In order to prevent accidents caused by improper conditioning, it is recommended that the procedures outlined below be followed when underground tanks are temporarily taken out of service, closed, or removed.
- **C-1-3** Underground tanks taken out of service can be safeguarded or disposed of by any one of the following three means:
- (a) Placement in a temporarily out-of-service condition. Tanks should be rendered temporarily out of service only when it is planned that they will be returned to active service within a reasonable period or pending closure in place or closure by removal.
 - (b) Permanent closure in place, with proper safeguarding.
 - (c) Permanent closure by removal.
- **C-1-4** In cases where tanks are either rendered temporarily out of service or permanently closed, records should be kept of tank size, location, date of closure, and method used for placing the closed tank in a safe condition.
- **C-1-5** Procedures for carrying out each of the above methods of disposing of underground tanks are described in the following sections. No cutting torch or other flame- or spark-producing equipment should be used until the tank has been completely purged or otherwise rendered safe. In each case, the numbered steps given should be carried out successively.

C-2 Rendering Tanks "Temporarily Out of Service."

- **C-2.1** When the underground storage tank system (UST) is temporarily out of service for less than three months, the owners and operators must comply with the following:
- (a) Continue operation and maintenance of corrosion protection. Requirements can be found in U.S. Environmental Protection Agency (EPA), *Code of Federal Regulations*, Title 40, Part 280, "Technical Standards and Requirements for Owners and Operators of Underground Storage Tanks," Paragraph 280.31.
- (b) Continue operation and maintenance of any release detection in accordance with U.S. EPA *Code of Federal Regulations*, Title 40, Part 280, Subpart D, or empty the UST system by removing all materials so that no more than 2.5 cm (1 in.) of residue, or 0.3 percent by weight of the total capacity of the UST system, remains in the system.
- **C-2-2** When a UST system is temporarily out of service for three months or more, owners and operators must also comply with the following requirements:
 - (a) Leave vent lines open and functioning.
- (b) Cap or plug all other lines such as fill line, gauge opening, pump suction, and ancillary equipment. Secure against tampering.
- C-3 When a UST system is temporarily closed for more than 12 months, owners and operators must permanently close the UST system in accordance with U.S. EPA *Code of Federal Regulations*, Title 40, Part 280.71–280.74. An extension of this 12-month period can be granted by the implementing agency. However, before such an extension can be applied for, a site assessment must be completed in accordance with U.S. EPA *Code of Federal Regulations*, Title 40, Part 280.72.

C-4 Closure of Underground Tanks in Place.

- **C-4-1** At least 30 days before beginning closure procedures, owners and operators must notify the implementing agency of their intent to close unless such action is in response to corrective action proceedings.
- **C-4-2** Closure of tanks either in place or by removal requires the owners and operators to measure for the presence of a release where contamination is most likely to be present at the UST site. This requirement can be satisfied if one of the external release detection methods allowed in the *Code of Federal Regulations*, Title 40, Part 280.43, (e) and (f), is operating in accordance with the requirements in Part 280.43 at the time of closure, and indicates no release has occurred.
- **C-4-3** Prepare a safe workplace by following the special safety precautions and cleaning and closure procedures in:
- (a) API 1604, Removal and Disposal of Used Underground Petroleum Storage Tanks, or
- (b) New England Interstate Water Pollution Control Commission (NEIWPCC), Tank Closure Without Tears: An Inspector's Safety Guide.
- **C-4-4** Safe work preparation should include:
 - (a) No smoking in the area.
- (b) Shutting down all open flame and spark-producing equipment not necessary for the removal of the underground tank.

- (c) Using only hand tools to expose tank fittings and preparing for the vapor-freeing procedures.
- (d) Controlling static electricity or providing a conductive path to discharge static electricity by bonding or grounding equipment and vehicles.
- (e) Roping off tank area from pedestrian and vehicular traffic.
 - (f) Locating and marking all utility lines on site.
- (g) Determining meteorological conditions. Vapor accumulation can occur on still and high-humidity days. Under these conditions, test the area for vapor accumulation (refer to Section C-4-10) and if present either provide additional forced ventilation or delay the job until there is a breeze and it is less humid. Excavated soil should be tested for vapor release. Artificial ventilation or repeated turning of excavated soil might be necessary to avoid ignitable concentration of vapors.
- (h) Ensuring that personnel are wearing hard hats, safety shoes, and safety glasses and that a combustible gas indicator is available. Providing any other safety measures or methods that might be required to meet local requirements.
- **C-4-5** Remove all flammable or combustible liquid and residue from the tank and from all connecting lines.
- **C-4-6** Residual product and solids must be disposed of properly.
- **C-4-7** Excavate to the top of the tank.
- **C-4-8** Disconnect the suction, inlet, gauge, and all other tank fixtures, except the vent line. The vent line should remain connected until the tank is purged.
- **C-4-9** Make the tank safe either by purging the tank of flammable vapors or inerting the potentially explosive atmosphere in the tank.
- (a) Purging or ventilating the tank replaces the flammable vapors in the tank with air, reducing the flammable mixture of fuel and oxygen below the lower explosive limit or LFL. Two methods can be used to introduce air into the tank. One is the use of a "diffused-air blower" to pump air into the bottom of the tank through the fill pipe or a properly bonded air-diffusing pipe. The second method is the use of an "eductor-type air mover," typically driven by compressed air. It draws vapors out of the tank and brings fresh air into the tank. The vent pipe can be used to exhaust vapors 12 ft above grade and 3 ft from any roof lines.
- (b) Inerting the tank does not replace the flammable vapors, but instead reduces the concentration of oxygen to a level insufficient to support combustion (refer to Section C-4-10). Two inert gasses can be used. Carbon dioxide gas can be generated by crushing and distributing dry ice evenly over the bottom of the tank. The dry ice will release carbon dioxide as it warms. Nitrogen gas can be pumped into the tank from a hose through the fill hole to the bottom of the tank. Oxygen will be reintroduced into the tank unless all holes are effectively plugged except for the vent line.

C-4-10 Testing the tank to determine if it is safe:

(a) When purging, a "combustible gas indicator" is used to measure the reduction in the concentration of flammable vapors. The meter reads from 0 to 100 percent of the LFL. The goal is to achieve a reading of 10 to 20 percent LFL for petroleum tanks.

- (b) When inerting, an "oxygen meter" is used to determine when a tank has been successfully inerted. The meter reads from 0 to 100 percent oxygen content. The goal is to achieve a reading of 1 to 10 percent, which is safe for most petroleum products.
- **C-4-11** Fill the tank completely with an inert solid material. One or more holes can be cut in the tank top if existing tank openings are not adequate for the introduction of the inert material. Cap or remove remaining underground piping. The tank can now be backfilled.

C-5 Closure by Removal of Underground Tanks.

- **C-5-1** Observe all procedures listed under Section C-4 except for Section C-4-11, filling the tank with an inert solid material and backfilling the excavation.
- **C-5-2** After the tank has been made safe by following purging or inerting procedures and before it is removed from the excavation, plug or cap all accessible holes. One plug should have a ¹/₈-in. vent hole to prevent the tank from being subjected to excessive differential pressure caused by temperature changes. This vent should be positioned on top of the tank during subsequent transportation or storage.
- **C-5-3** Excavate around the tank to uncover it for removal. Remove the tank from the excavation and check for corrosion holes in the tank shell. Use screwed boiler plugs to plug any corrosion holes.
- **C-5-4** Tanks should be labeled with information about the former contents, present vapor state, vapor freeing treatment method, and a warning against reuse.
- **C-5-5** Tanks should be removed from the site promptly and preferably the same day as removal since additional vapor can be released from liquid absorbed in tank wall corrosion or residues. However, before removal, the tank atmosphere must be checked to ensure the flammable vapor concentration does not exceed safe levels.

C-6 Disposal of Tanks.

- **C-6-1** If the reuse of a tank is permitted by the controlling jurisdiction, the tank should be certified that it is tight, structurally sound, and will meet all requirements of a new installation.
- **C-6-2** The storage of used tanks should be in secure areas where the public will not have access. Tanks should be rendered safe consistent with Sections C-4-9 and C-4-10 and vented consistent with Section C-5-10.
- **C-6-3** If a steel tank is to be disposed of, it should retested for flammable vapors and, if necessary, again rendered gasfree. Tanks that have been lined internally or coated externally with fiberglass, epoxy-based, or similar materials might not be accepted by scrap processors. Before releasing to a scrap metal dealer, a sufficient number of holes or openings should be made in the tank to render it unfit for further use. NFPA 327, Standard Procedures for Cleaning or Safeguarding Small Tanks and Containers Without Entry, provides information on safe procedures for such operations.
- **C-7** If the tank to be disposed of is nonmetallic or is a steel tank lined internally or coated externally with fiberglass, epoxy-based, or similar materials, it might not be accepted by scrap metal dealers. An alternative disposal method would be to cut up the tank in sections suitable for disposal in a sanitary landfill.