402

S.O.P. AIRCRAFT RESCUE AND FIRE FIGHTING 1963

\$1.50

Copyright © 1963

NATIONAL FIRE PROTECTION ASSOCIATION

International

60 Batterymarch Street, Boston 10, Mass.

3M-6-63 WP Printed in U.S.A.

National Fire Protection Association

International

The National Fire Protection Association was organized in 1896 to promote the science and improve the methods of fire protection. Its membership includes national and regional societies and associations (list on outside back cover) and twenty-one thousand individuals, corporations, and organizations. Anyone interested may become an Associate Member; the annual dues are \$20.00. Full membership information is available on request.

This is one of a large number of publications on fire safety issued by the Association. All NFPA standards and recommended practices, including this text, are prepared by the technical committees of the NFPA and adopted at an Annual Meeting of the Association. They are intended to prescribe reasonable measures for minimizing losses of life and property by fire.

This text and most other NFPA standards and recommended practices are published in the National Fire Codes, a compilation of NFPA's official technical material. Full information on the availability of these Codes and other NFPA publications can be secured from the Association.

Official NFPA Definitions

SHALL is intended to indicate requirements.

Should is intended to indicate recommendations, or that which is advised but not required.

Approved refers to approval by the authority having jurisdiction.

Units of measurements used here are U. S. standard. 1 U. S. gallon = 0.83 Imperial gallons = 3.785 liters. One foot = 0.3048 meters. One inch = 25.40 millimeters. One pound per square inch = 0.06805 atmospheres = 2.307 feet of water.

Approved Equipment

The National Fire Protection Association does not "approve" individual items of fire protection equipment, materials or services. The suitability of devices and materials for installation under NFPA standards indicated by the listing of nationally recognized testing laboratories, whose findings are customarily used as a guide to approval by agencies applying these standards. Underwriters' Laboratories, Inc., Underwriters' Laboratories of Canada, the Factory Mutual Laboratories and the American Gas Association (gas equipment) test devices and materials for use in accordance with the appropriate standards, and publish lists which are available on request.

Copyright and Republishing Rights

This publication is copyright © by the National Fire Protection Association. Permission is granted to republish material herein in laws or ordinances, and in regulations, administrative orders or similar documents issued by public authorities. Those desiring permission for other republication should consult the National Fire Protection Association.

Discount Prices on this Pamphlet

The following schedule of discount prices for multiple copies of this pamphlet have been established:

6-11 copies: 10% 24- 47: 20% 12-23 copies: 15% 48-100: 25%

Over 100: Special Quotation

Standard Operating Procedures Aircraft Rescue and Fire Fighting

NFPA No. 402 - 1963

1963 Edition of No. 402

These Standard Operating Procedures for Aircraft Rescue and Fire Fighting were developed by the following Subcommittee of the NFPA Sectional Committee on Aircraft Rescue and Fire Fighting:

B. V. Hewes, Chairman Air Line Pilots Association

Gil Haas, Miami Fire Department
 J. K. Schmidt, Eglin Air Force Base
 William T. Schmidt, South Bend (Indiana) Fire Dept.

N. L. Christoffel, United Air Lines

Douglas C. Wolfe, American Association of Airport Executives

The text was approved by the Sectional Committee and the NFPA Committee on Aviation and then adopted at the 1963 Annual Meeting of the Association held May 13-17. It is a complete revision of a similar text dated 1954.

Origin and Development of No. 402

These Standard Operating Procedures were first developed by the sponsoring NFPA committee in 1947 and were first adopted by the Association in 1951. The latest previous edition to this 1963 text was 1954. Companion publications of special importance are the NFPA Suggestions for Aircraft Rescue and Fire Fighting Services at Airports and Heliports (No. 403), the NFPA Guide on Aircraft Rescue and Fire Fighting Techniques Using Conventional Fire Apparatus and Equipment (No. 406M), the Standard for Aircraft Rescue and Fire Fighting Vehicles (No. 414), and the Guide on Foaming Runways for Crash Protection (No. 420M).

Committee on Aviation

Jerome Lederer,† Chairman,

Flight Safety Foundation, 468 Park Avenue South, New York 16, N. Y.

Harvey L. Hansberry, Vice-Chairman, Fenwal, Inc., Ashland, Mass.

George H. Tryon,† Secretary, National Fire Protection Association, 60 Batterymarch St., Boston 10. Mass.

- J. C. Abbott, British Overseas Airways Corp. (Personal)
- W. Bedell, American Petroleum Institute.
- . F. Blumel, Jr., American Airlines. Chairman of Sectional Committee.
- Henry G. Bone, Jr., The Boeing Co. (Personal)
- E. Thomas Burnard, Airport Operators Council.
- L. Butler, Eastern Air Lines. (Personal)
- R. C. Byrus, University of Maryland. Chairman of Sectional Committee.
- John J. Carroll, Civil Aeronautics Board.
- J. M. Chase, Flight Safety Foundation. Chairman of Sectional Committee.
- N. L. Christoffel, United Air Lines. (Personal)
- William L. Collier, Air Line Pilots Association.
- G. T. Cook, Department of the Air Force.
- Carl Dreesen, Bureau of Naval Weapons. Department of the Navy.
- Charles Freesch, Society of Automo-
- tive Engineers. G. C. Koth, Factory Mutual Engi-
- neering Division. R. Dan Mahaney,† Federal Aviation Agency.
 - Alternates.

Alternate to Mr. Burnard Ross A. KNIGHT (Airport Operators Council)

Alternate to Mr. Collier B. V. Hewes (Air Line Pilots Association)

Alternate to Mr. Cook
Roscoe L. Bell (Dept. of the Air Force)

Alternate to Mr. Northrop

CHARLES S. Rust (Association of Casualty and Surety Companies) Alternate to Mr. Tabisz

G. L. Toppin (Underwriters' Laboratories of Canada)

Alternate to Mr. Tolson and Mr. Bedell C. F. REINHARDT (American Petroleum Institute)

Liaison Representatives.†

Allen W. Dallas, Air Transport Association

S. Krzyczkowski, International Air Transport Association

W. A. McGowan, National Aeronautics and Space Administration

J. A. Pope, National Business Aircraft Association

Dr. A. F. Robertson, National Bureau of Standards

E. J. C. Williams, Air Ministry, United Kingdom

Chief, Aerodromes, Air Routes and Ground Aids Section, International Civil Aviation Organization

C. M. Middlesworth,† Federal Aviation Agency.

Willard Northrop, Association of Casualty & Surety Companies.

- A. O'Donnell, American Airlines. Chairman of Sectional Committee.
- E. Parker, Australian Dept. Civil Aviation.
- Clarence C. Pell, Jr., Associated Avia-
- tion Underwriters. R. C. Petersen, Port of New York
- Authority. (Personal) H. B. Peterson, U. S. Naval Research
- Laboratory.
- S/L B. C. Quinn, Canadian Department of National Defence.
- George Schrank, Fire Equipment Manufacturers Association.
- S. W. Sheat, United Kingdom Ministry of Aviation.
- John T. Stephan, American Association of Airport Executives.
- E. F. Tabisz, Underwriters' Laboratories of Canada.
- H. Tolson, American Petroleum Institute.
- Lawrence Wilkinson, United States Aviation Underwriters.
- Douglas C. Wolfe, American Association of Airport Executives.

[†]Non-voting member.

Sectional Committee on Aircraft Rescue and Fire Fighting

Robert C. Byrus, Chairman, Fire Service Extension, University of Maryland, College Park, Md.

J. C. Abbott, British Overseas Airways Corp. (Personal)

J. J. Brenneman, United Air Lines. (Personal)

Martin P. Casey, Hdqrs. Air Force Systems Command, USAF.

N. L. Christoffel, United Air Lines. (Personal)

William L. Collier, Air Line Pilots Association.

Gifford T. Cook, Hdars. USAF, Fire Protection Group, Deputy Director for Civil Engineer Operations.

Chief John F. Dowd, Westover Air Force Base Fire Dept. (Personal) Carl Dreesen, Bureau of Naval Weap-

ons, Department of the Navy. A. Earsy, United Aircraft Corp.

(Personal) Chief Milton M. Fischer. (Personal) Bertil Florman, Stockholm Arlanda

Airport. (Personal) Capt. John F. Gill, Eastern Air Lines.

(Personal) Harvey L. Hansberry† (ex-officio),

Fenwal. Vic Hewes, Air Line Pilots Associa-

tion. W. S. Jacobson, North American Aviation Fire Dept. (Personal)

Harold M. Karrmann, Sperry Gyroscope Co. (Personal)

Ross A. Knight, Airport Operators Council.

. R. Laidley, Fire Extinguisher Manufacturers' Institute of Canada.

Hervey F. Law, Airport Operators Council.

Jerome Lederer; (ex-officio), Flight Safety Foundation.

Capt. R. Macdonald, Canadian Air Line Pilots Association.

Donald G. MacKinnon, Canadian Department of Transport, Air Services.

R. Dan Mahaney, † Federal Aviation Agency.

Chief Claude J. McGlamery, Chance Vought Aircraft, Inc. (Personal)

A. O'Donnell, American Airlines. (Personal)

John Peloubet, Magnesium Association.

H. B. Peterson, U. S. Naval Research Laboratory.

S/L B. C. Quinn, Canadian Department of National Defence.

W. D. Robertson, Seattle-Tacoma Airport. (Personal)

James Rogers, Firemen's School of Instruction, Nassau County (New York).

J. K. Schmidt, Air Proving Ground Center, USAF. (Personal)

William T. Schmidt, South Bend Fire Department. (Personal)

George Schrank, Fire Equipment Manufacturers Association.

John T. Stephan, American Association of Airport Executives.

E. F. Tabisz, Underwriters' Laboratories of Canada.

Eric R. Thorsell, Fire Apparatus Manufacturers Association.

Douglas C. Wolfe, American Association of Airport Executives.

Alternates.

Alternate to Mr. Cook ROSCOE L. BELL

Alternate to S/L Quinn F/L A. E. GRAHAM

Alternate to Mr. Rogers Chief Paul Kowall

Alternate to Mr. Tabisz G. L. TOPPIN

Liaison Representatives.

G. A. Brelie, Ansul Chemical Company
George R. Cooper, Jr., Walter Motor Truck Company
J. P. Dunne, Chicago-O'Hare International Airport
Henry W. Marryatt, Wormald Brothers (Victoria) Pty., Ltd.
D. N. Meldrum, National Foam System, Inc.
James O'Regan, Rockwood Sprinkler Company
L. E. Rivkind, Mearl Corporation
George Scharbach, Willys Motors Inc.
M. S. Stuart, Chrysler Corporation
Garvin C. Tyler, Aeronautical Systems Division. USAF Marvin C. Tyler, Aeronautical Systems Division, USAF
Hubert Walker, American LaFrance, Div. of Sterling Precision Corp.
H. V. Williamson, Cardox Corporation, Division of Chemetron
J. H. Yankie, Yankee Walter Corp.

⁺Non-voting members.

Standard Operating Procedures Aircraft Rescue and Fire Fighting

NFPA No. 402 - 1963

INTRODUCTION

- 1. The purpose of these recommendations is to inform airport and municipal fire and rescue services of standard operating procedures designed to provide maximum effective use of aircraft rescue and fire fighting equipment provided at airports. Included herein is information on conditions that may exist at the scene of an aircraft accident and a guide that can be used as a basis for establishing training programs and operational procedures.
- 2. The recommendations set forth herein are based on the premise that the rescue of aircraft occupants takes precedence over all other operations and until it is established that there is no further life hazard, fire suppression is an important enabling supporting measure. It should be emphasized that speed and skill are of the utmost importance in situations where life hazards exist.

100. Location of Airport Fire Stations

- 101. In order to provide effective aircraft rescue and fire fighting protection at airports it is recommended that rescue and fire equipment meeting the NFPA Suggestions for Aircraft Rescue and Fire Fighting Services at Airports and Heliports (No. 403) be maintained and garaged in a suitable airport fire station on the airport (see Appendix E).
- 102. The location of the airport fire station is of prime importance. Emergency equipment should have instant access to airport movement areas and be capable of reaching the extremities of the airport and runways in minimum time.

Note: The geographical center may not be the best location; before selecting the actual location, distance-time trials should be run to determine the optimum location to assure the quickest response to all potential accident sites and an evaluation placed on present and future usage of the airport movement areas to assure proper selection of the fire station site.

- 103. Aircraft rescue is the prime purpose of the airport fire department. Locating the airport fire station for structural fire fighting utility is of secondary importance.
- 104. Care should be taken that access to or from the airport fire station cannot and will not be blocked by taxiing or parked aircraft. Fire equipment should not be required to cross active runway(s) to reach the principal operational ramp area(s) where aircraft may be serviced or parked.

Note: Paving in front of airport fire stations should be prominently marked to prevent unauthorized use.

- 105. At large airports where a central location for the airport fire station is unavailable or undesirable, it may be necessary to have two airport fire stations located strategically on the airport. Accident statistics show that the greatest percentage of airport accidents occur on or just off the instrument runway(s) and locations to provide the quickest response to these areas are desirable.
- 106. Airport fire stations located close to taxiways and runways or adjacent to flight patterns have a noise problem. It is thus necessary to soundproof all training rooms, living quarters, and the alarm room. The high noise level of turbine engines can cause damage to the hearing senses; at airports handling turbine powered aircraft firemen on duty outside of soundproofed areas should be provided with protective ear coverings.

200. Preplanning for Emergencies

201. Preplanning is a necessity for all emergencies.

202. A system for locating and reaching each accident site in minimum time, with adequate rescue, fire fighting and medical equipment, should be employed at each airport. A grid map (or similar useful equivalent) will be helpful in this connection. Such a map should be prepared for each airport, including the area contiguous to and surrounding the airport, as appropriate (a distance of 5 miles extending from the center of the airport is frequently shown). Copies of this map should be maintained at the airport operations office, at the air traffic control tower, at airport and local fire stations in the vicinity, at all local hospitals, at police and sheriff offices, at local telephone exchanges, and at other similar emergency and information centers in the area. In addition, copies of this map should be kept on all vehicles and liaison aircraft that may be utilized in an aircraft emergency. Maps of this type are ruled off in numbered grids and marked for easy identification of any point within the map area. Prominent local features and roads should be shown as well as compass headings to facilitate location of accident sites by aircraft. Such maps may need to be coordinated between other airports in the same geographical area to avoid confusion. Instruction classes on the use of such maps should be held periodically. (See Appendix E, Figure E-4.)

Note: At some airports which experience dense fog conditions at critical frequencies, ground radar equipment may be necessary to assist in locating aircraft which may be in difficulty on the ground. Care must be exercised to avoid "blind spots" on airport ground radar surveillance scopes by interference from other airport radar equipment.

- 203. Quick access roads for use by emergency vehicles should extend to airport boundaries and to overrun areas wherever practical. They should be usable under all types of weather conditions. If necessary, bridges capable of supporting the heaviest emergency equipment should be constructed over deep gullies, streams or drainage canals. The responsible parties should be kept informed as to any impairment of these access roads, such as their being closed for repairs or unusable because of high water, snow, etc.
- 204. If the airport is fenced, gates should be placed in strategic locations to provide for the movement of rescue equip-

ment to locations outside of the airport boundary. Gates with frangible locks or knock-down fence sections should be installed. Keys to gate locks should be carried by each piece of emergency apparatus, by airport police and other appropriate local authorities.

- 205. A mutual aid program should be worked out with neighborhood fire and rescue units:
- a. Local fire departments should be included in aircraft rescue and fire fighting training activities conducted at the airport by participating in drills, tests, and aircraft familiarization programs. Such activities should be specifically pointed toward increasing the utility of local fire defense personnel in handling off-airport accidents and assisting in a mutual aid capacity at serious on-airport accidents. Municipal and rural fire departments should train using the NFPA "Guide on Aircraft Rescue and Fire Fighting Techniques Using Conventional Fire Apparatus and Equipment" (No. 406M).
- b. Confidence in handling aircraft fires can only be attained by frequent training sessions of realistically simulated accidents.
- c. If local fire department crews arrive at the scene of an aircraft fire first, they should be trained to proceed with the rescue and fire suppression work. In such situations, upon arrival of the specialized airport equipment and personnel, the Chief of the Airport Emergency Crew should consult with the officer in charge on what rescue efforts have not been successfully completed and should then assist in the furtherance of this aspect of the accident. After rescues are completed, all agencies should concentrate on final extinguishment. The division of responsibilities in any given situation is a matter for individual determination by those in charge in accordance with previous arrangements and with legal assignments.
- d. Local public fire departments should be tied in closely with airport emergency alarm services, preferably by radio or direct line telephone. Having been provided with grid maps (as recommended in Paragraph 202) they should be able to quickly respond to the designated accident sites in minimum time. They should be encouraged to carry special equipment for aircraft rescue and fire suppression purposes (not uncommon to equipment carried for gasoline tank truck or other flammable liquid fire fighting).

- e. Ambulance and medical services, like rescue and fire fighting services, are necessary to administer aid to victims. Response of such aid to aircraft accident sites should be automatic regardless of whether or not it is apparent that medical services are required. Some ambulance and medical services may be an integral part of the airport rescue and fire fighting organization and this is recommended where feasible (see NFPA No. 403). Such services should be available during all operating periods on an identical schedule with the companion activity. Where a permanent airport-based ambulance service is not feasible and to supplement any such services, prearrangements with local, private or public ambulance and medical services should be arranged to assure prompt dispatch of a satisfactory assignment of personnel, equipment, and medical supplies. It is of special importance that aircraft rescue and fire fighting crews be well trained in first-aid practices by completing the Red Cross Advanced First Aid Course as a minimum.
- f. Prearrangements are also needed to assure that doctors are available for any aircraft emergency. A current roster for enlisting such assistance should be established in cooperation with the nearest local medical association. The responsibility for alerting those needed in any particular case should be assigned to a representative of airport management, airport control, or an appropriate local medical official.
- g. Airport fire equipment essential for its primary mission should not be used for fires off the airport while flight operations are in progress.
- 206. The cooperation of local news media should be obtained to restrict the dissemination of news via radio or television during the critical period of response by the rescue, fire and medical services in the interest of traffic control.
- 207. Adequate security protection should be planned to handle the large crowds that always collect at the scene of an accident. It is necessary that this force be maintained for a long period of time to deter souvenir hunters and guard the wreckage under supervision of official investigating authorities. Measures should be taken to secure the crash, area.
- 208. Due to the complexity of modern aircraft and the variety of types in service, it is virtually impossible to train

rescue personnel on all the important design features of each one, although they should become familiar with the types normally using the airport being serviced. Information about the following design features is of special importance to rescue and fire fighting personnel to assure effective use of their equipment:

- a. Location and operation of normal and emergency exits.
- b. Seating configuration.
- c. Location of fuel tanks.
- d. Location of ejection seats and armament, if any.

General information on the above items can be found in the Appendix.

209. Aircraft crews are trained to handle in-flight fires but the airborne fire control agents are limited. Many emergency landings are the result of uncontrollable fires experienced in flight. In general, there are three types of in-flight fires, those involving (1) powerplants, (2) heaters, and (3) cabin fires. It is reasonable for fire fighters responding to aircraft fires to assume that the following has been accomplished by the flight crew in the event of an in-flight powerplant fire (see also Paragraph 307):

a. Powerplant stopped and prop (if any) feathered.

b. Fuels to affected powerplant turned off.

- c. Electrical power to affected powerplant turned off.
- d. Aircraft fire extinguishers used.
- e. Aircraft depressurized.
- f. Oxygen systems deactivated.

These conditions should be orally or visually verified when conditions permit. Heaters located in wings, fuselage, and tail sections of aircraft are normally protected with a fire extinguishing system and it is assumed that in the event of such fires, these bottles have been already used.

210. All aircraft carry small portable fire extinguishers in addition to the fixed extinguishers mentioned above, that could be of possible use to rescuers. Normally, a carbon dioxide extinguisher is carried in the cockpit, at galleys and sometimes in the cabins of cargo planes. Water extinguishers are normally carried in the cabins of passenger-carrying aircraft. Water and other beverages found in the buffet compartment provide an additional source of water for extinguishment purposes. It should be emphasized that these extinguishing agents are of secondary value and should not be relied on.

Note: Vaporizing liquid hand extinguishers are not normally carried on civil aircraft.

- 211. Flight crews are trained in the use of emergency evacuation slides provided at normal and emergency exit doors to assist in the rapid evacuation of passengers. Where these slides are provided and are in use when rescue and fire fighting crews arrive, they should not be disturbed unless they have been damaged by use or fire exposure, thus necessitating the use of ladders or emergency stairs provided by the fire department (see Figures A-10, A-11 and A-12 in Appendix A and Figures E-12, E-13 and E-14 of Appendix E. for further details).
- 212. All rescue and fire fighting equipment should carry two-way radios. Portable "Walkie-Talkie" type radios prove invaluable in off-airport accidents. Where it is anticipated that apparatus of more than one agency will operate in mutual support, it is suggested that mutual radio frequencies be used or that there be cross monitoring by base stations.

Note: Should the aircraft captain request foaming of the runway, a decision on this request should be based on the considerations outlined in the NFPA "Guide on Foaming Runways for Crash Protection" (NFPA No. 420M).

300. Anticipated Accidents and Standbys

- 301. If, prior to landing, any abnormal condition existing on the aircraft is reported to Airport Control, a report of this condition should be made to the Chief of Emergency Crew who may order a stand-by alert, either on the landing area or in the fire station, as conditions warrant.
- 302. The following information should be obtained as soon as possible from the Control Tower or airline personnel in the event of an anticipated accident (e.g., fire in flight, loss of gear, hydraulic failure, etc.):
 - a. Type of aircraft.
 - b. Nature of emergency.c. Amount of fuel aboard.
- d. Number of passengers and crew and injuries, if any. (Determine, where feasible, the physical and/or emotional status of personnel.)
 - e. Runway to be used.
- f. Nature and location of any cargo of critical significance.
- 303. Emergency equipment should then be positioned to provide the best possible coverage of the potential crash area with the view that at least one unit of rescue or fire fighting equipment is in position to reach the accident site in the briefest period of time. Detailed pre-emergency plans for each locality must be worked out in accordance with local factors.
- 304. Airport Control should have facilities to maintain continuous verbal, radio or other contact with the Chief of Emergency Crew to inform him of last-minute changes in the distressed aircraft's flight plan or emergency conditions existing. When advised of the situation, mutual aid to the extent needed or judged desirable should be put into effect by the Chief of Emergency Crew. Where advisable, Airport Control should then notify the pilot of the distressed aircraft of the emergency action being taken to receive the aircraft.
- 305. For emergencies involving gear malfunction or tire difficulty, there is always a possibility of the aircraft veering off the runway and possibly hitting emergency equipment. In such cases, it is preferable for the emergency equipment to be located near the point of touchdown and

then to follow the aircraft down the runway after ground contact.

306. Should a large fuel spillage occur without fire breaking out, it is important to eliminate as many ignition sources as possible while the spill is being neutralized or covered with foam*. Engine ignition sources should be inerted or cooled.

Note: There may be enough residual heat in turbine aircraft engines to ignite fuel vapors up to thirty (30) minutes after shutdown, or ten (10) minutes on piston engines.

307. It is reasonable to assume that, in the anticipated emergency, the aircraft crew has shut off the fuel and deenergized the electrical systems immediately prior to or upon touchdown. This information should be obtained from the crew as soon as possible. However, if unable to contact them, request the aid of competent personnel to re-check the systems.

Note: It is desirable to have trained personnel, if possible rated mechanics, who can perform this duty as it is almost impossible for fire personnel to know where these systems are located in today's complex aircraft.

308. Rescue and fire fighting personnel should stay at least 25 feet from the intake of an operating turbine engine to avoid being sucked in, and 150 feet from the rear to avoid being burned from the blast. On piston aircraft the propellers should never be touched, even when at rest.

^{*}For routine fuel spill situations, see NFPA Standard on Aircraft Fueling on the Ground (No. 407).

400. Unexpected Emergencies and Features Common to All

- 401. Constant observation of flight and ramp activity should be maintained from the Airport Fire Station. Watchmen should be provided with every possible visual aid, and also should have communication facilities for prompt transmission of alarms. Proper location of the fire station is essential to afford maximum visibility of movement areas.
- 402. If facilities are provided, Emergency Crew personnel should alternate on watch during all hours of flight activity. Observation duties may include the following visual checks wherever feasible (on some large airports the areas are too large to permit performing one or more of these functions):
- a. Continuity of power in aircraft powerplants in the air and at time of take-off.
- **b.** Taxiing operations, ground operations of engines, security of landing gears, and aircraft maintenance operations on the flight line (including fuel servicing).
- c. Availability of roads runways and fire lanes. These are often blocked by parked aircraft awaiting take-off or taxi clearance.

Note: The load-bearing characteristics of the airport soil structure for various weather conditions should be known and drivers should be trained in off-road driving problems.

- d. Effect of current weather conditions as a possible restriction on movement of emergency vehicles.
- 403. When approaching an aircraft fire, rescue and fire fighting equipment should be placed so as to facilitate rescue operations. The following conditions should be particularly noted:
 - a. Wind direction.
 - b. Location and extent of fire.
 - c. Location of aircraft occupants relative to fire.
 - d. Relationship of wind, fire, personnel and fuel tanks.
 - e. Terrain conditions and exposures.
 - f. Flammable liquid spillages.
 - g. Position of fuselage exits.

Proper training of drivers of the equipment is vital in this connection.

404. All personnel operating directly in the involved area of the crash should be provided with adequate protective clothing. Standard protective clothing and accessories

("approach" or "proximity" clothing) are recommended for fire fighters (see NFPA No. 403 and NFPA No. 406M for further information). Supporting protective measures with foam hose lines are usually necessary to provide access and egress routes for both rescuers and victims. When protective clothing is worn by the rescuers, adequate protective measures still should be taken to also protect the victims. In each case, rescue personnel should be fully trained in the value and limitations of their protective equipment to avoid a false sense of security and to recognize that they could unwittingly lead the occupants of the aircraft through a dangerous atmosphere. Care should be taken to avoid direct application of foam on rescuers unless absolutely necessary as foam can cover face shields and thus impair vision. Intermittent drenching of protective clothing with liquid could cause steam scalds under high heat exposure conditions; in cases where this occurs, either accidentally or as a protective measure, application should continue until those affected are clear of the high heat area.

- 405. Lines to be used should be charged for use on the fire after equipment is properly positioned irrespective of the extent of the fire at time of arrival. This should assure an immediate discharge capability in case of fuel flash fire which would endanger emergency crews and equipment at the scene as well as occupants of the aircraft. If no fire is visible, all equipment should be placed in immediate readiness for service. All personnel should wear standard protective clothing in order to reduce the possibility of injury in case of a flash and also to save the valuable time it would take to don it.
- 406. All spills of flammable liquids should be neutralized or blanketed with foam as quickly as possible taking into consideration the water requirements for the primary rescue mission and the total supply available. Since a continuous water supply is essential and usually not available at all points on an airport, tankers or pumpers should be immediately alerted at the time of alarm, ready to relay water to the aircraft rescue and fire fighting equipment. In addition, general purpose vehicles should be available on prearranged schedules to bring additional supplies of extinguishing agents and equipment to the scene. (If the airport maintenance equipment includes a ladder truck, an elevated platform truck, or portable emergency lighting equipment,

it is important that prearrangements also include their response when one or more may be needed.)

- 407. Rescue operations should be accomplished through regular doors and hatches wherever possible but emergency crews must be trained in forcible entry procedures and be provided with the necessary tools (see NFPA No. 403 and No. 414 for further information on tools).
- 408. Rescue of personnel involved in aircraft accidents should proceed with the greatest possible speed. While care is necessary in the evacuation of injured occupants so as not to aggravate their injuries, removal from the firethreatened area is the primary requirement.
- 409. Broken fuel, hydraulic fluid (flammable type), alcohol and oil lines should be plugged or crimped when possible to reduce the amount of spill and extent of fire.
- 410. If the source of heat cannot be removed and flames threaten, fuel tanks exposed but not involved should be protected by appropriate agents to prevent involvement or explosion.
- 411. Aircraft windows may often be used for rescue or for ventilation. Some are designed to be used as emergency exits. On all aircraft these exits are identified and have latch release facilities on both the outside and inside of the cabin. Most of these exits open towards the inside. Most cabin doors are used as emergency exits except those incorporating air-stair facilities. With a few exceptions these doors open outwards. When exits are used for ventilation they should be opened on the downwind side. It is essential that the rescue crews have a sound knowledge of all design features on aircraft normally using the airport (see Appendix A and B).
- 412. Assure that the "No Smoking" rule is rigidly enforced at the scene of the accident and in the immediate vicinity.
- 413. Where the use of cables is necessary to expedite rescue or to assist in controlling fires, exercise discretion lest such procedure result in strains which might release quantities of fuel from partially damaged tanks or cause greater injuries to entrapped personnel.

Note: Care must be used in ventilating fuel tank areas. In a number of cases misuse of forcible entry tools has resulted in unnecessary fuel spills increasing the hazard.

- 414. Burning magnesium parts should be *isolated* where possible; otherwise cover with dry dirt, dry sand, or use special extinguishing techniques to prevent reflashes (see NFPA No. 403 for further information).
- 415. When the major fire and rescue vehicles have been dispatched to an accident, the control tower should be notified so that they can inform all inbound and outbound flights that substandard or no fire protection exists during the period of the emergency.
- 416. Response by aircraft rescue and fire fighting equipment to off-airport accident sites should be organized to avoid delays en route. Local police cooperation should be prearranged. Radio equipment should keep the major equipment, the Fire Station, and Airport Control within constant communication. Wherever possible, local fire departments should monitor these frequencies. The fastest and most mobile aircraft rescue and fire fighting equipment should proceed independently of slower heavier units, but the former should direct the latter by radio, supplying route information wherever necessary. Drivers must exercise alert caution in driving along routes that may be used by apparatus using intersecting roads.
- 417. Auxiliary water tank trucks and pumpers with auxiliary water tanks should be dispatched wherever there is an indication of their possible utilization and especially when the accident site is known to be beyond normal fire-protected zones (underground water mains and hydrants) or where water relays may be required. Careful utilization of agents supplied is particularly important in unprotected off-airport locations and techniques of employment must be carefully selected to permit most advantageous use.
- 418. Prior surveys of off-airport terrain and traffic conditions should be made to prevent delays at time of emergency. Significant factors should be charted on the grid maps supplied to aircraft rescue and fire fighting equipment.

500. Accidents in the Water

- 501. Where airports are situated adjacent to large bodies of water such as rivers or lakes, or where they are located on coastlines, special provisions should be made to expedite rescue (see Appendix E).
- 502. In such incidents the possibility of fire is appreciably reduced due to the suppression of ignition sources. In situations where fire is present, its control and extinguishment present unusual problems unless the proper equipment is available.
- 503. It can be anticipated that the impact of the aircraft into the water might rupture fuel tanks and lines. It is reasonable to assume that quantities of fuel will be found floating on the surface of the water. Boats having exhausts at the waterline may present an ignition hazard if operated where this condition is present. Wind and water currents must be taken into consideration in order to prevent floating fuel from moving into areas where it would be hazardous. As soon as possible these pockets of fuel should either be broken up or moved with large velocity nozzles or neutralized by covering them with foam or a high concentration of chemical agents. Calm surfaces will usually present more of a problem than choppy or rough surfaces.
- 504. Diving units should be dispatched to the scene. When available, helicopters can be used to expedite the transportation of divers to the actual area of the crash. All divers who may be called for this type service should be highly trained in both SCUBA diving and underwater search and recovery techniques. In areas where there are no operating governmental or municipal underwater search and recovery teams, agreements may be made with private diving clubs. The qualifications of the individual divers should be established by training and practical examination.
- 505. In all operations where divers are in the water, the standard diver's flag should be flown and boats operating in the area should be warned to exercise extreme caution.
- 506. Where fire is present, approach should be made after wind direction and velocity, water current and swiftness are taken into consideration. Fire may be moved away from the area by using a sweeping technique with hose

- streams. Foam and other extinguishing agents should be used where necessary.
- 507. It should be anticipated that victims are more apt to be found downwind or downstream. This should be taken into consideration in planning the attack.
- 508. Where the distance offshore is within range, dacron-covered, rubber-lined fire lines can be floated into position by divers or boats and used to supplement fire boats. In an emergency, rafts can be assembled by 2 men exhaling into a section of $2\frac{1}{2}$ -inch fire hose, coupling it to itself, folding and binding it with hose straps (see Appendix E, Figure E-11).
- 509. Where occupied sections of aircraft are found floating, great care must be exercised to not disturb their watertight integrity. Removal of the inhabitants should be accomplished as smoothly and quickly as possible. Any shift in weight or lapse in time may result in its sinking. Rescuers should use caution so that they are not trapped and drowned in these situations.
- 510. Where occupied sections of the aircraft are found submerged, there remains the possibility that there may be enough air trapped inside to maintain life. Entry by divers should be made at the deepest point possible.
- 511. Where only the approximate location of the crash is established upon arrival, divers should use standard underwater search patterns marking the locations of the major parts of the aircraft with marker buoys. If sufficient divers are not available, dragging operations should be conducted from surface craft. In no instance should dragging and diving operations be conducted simultaneously.
- 512. A command post should be established at the most feasible location on adjacent shore. This should be located in a position to facilitate the in and out movement of emergency vehicles.

600. Post-Accident Procedures

- 601. After fire suppression and survivor rescue have been completed, the following procedures should be observed:
- 602. Rescue units should familiarize themselves with all regulations, national and local, regarding movement of wreckage and disposition of human remains (see Appendix D).
- 603. When it has been decided by authorities that the aircraft should be moved, interior portions of the aircraft should first be ventilated. Runway and ground surfaces should be thoroughly flushed of all flammable liquid spills before moving aircraft or permitting normal traffic to resume. Fuel tanks should be drained by qualified technicians (approved methods followed for fire safety — see NFPA No. 407) prior to removing aircraft if conditions necessitate and permit. One rescue and fire fighting unit should be retained at the site while this work is performed. If the aircraft or parts must be moved prior to completion of full investigation and safeting, a record should be made of the accident locations of all parts and care exercised to preserve any evidence available that might help determine the cause of the accident. (In the United States, aircraft cannot be moved without the authority of the Civil Aeronautics Board or their designated agents (see Appendix D).
- 604. Removal of bodies of fatally injured victims remaining in wreckage after fire has been extinguished or essentially controlled should be accomplished only by responsible medical authorities. Premature body removal has, in many cases, interfered with identification and destroyed pathological evidence required by the medical examiner, coroner or authority having investigational jurisdiction. (If body removal is necessary to prevent further incineration, the original location should be noted, and the body so labelled, and reported to investigators.)
- 605. The wreckage of an aircraft involved in an accident, including controls, shall not be disturbed (moved) until released for removal by the investigational authority having jurisdiction. If the aircraft, parts, or controls must be moved because they directly present a hazard to human life, efforts should be made to record their original condition, positions, and locations, and due care should be afforded to preserve all physical evidence.

- 606. The location of mail sacks and pouches should be observed and this information given to postal authorities. If necessary, the mail should be protected from further damage.
- 607. If hazardous cargoes are believed present (radioactive materials), procedures should be carried out as prescribed in Appendix C.

Appendix A

Civil Aircraft Data for Fire Fighters and Rescue Crews

This Appendix presents information on the principles of rescue (Figures A-1, A-2, and A-3) and the principles of fire fighting (Figures A-4, A-5 and A-6) in aircraft fire emergencies. Also included as typical are Charts and Figures on some particular *Civil* aircraft in common usage including the following:

Roging 707

rigutes A-1 and A-0
Figure A-9
Figures A-10, A-11, A-12
Figures A-13 through A-19
Figure A-20
Figure A-21
Figure A-22
Figure A-23
Figure A-24
Figure A-25
Figure A-26

Figures A-7 and A-8

This material is published solely to give basic information on rescue and fire fighting procedures of *representative* aircraft. Personal inspections of each type are necessary to have all the desired data on any one type of aircraft, and fire department personnel are urged to make such inspections to increase their opportunity to preplan their operations.

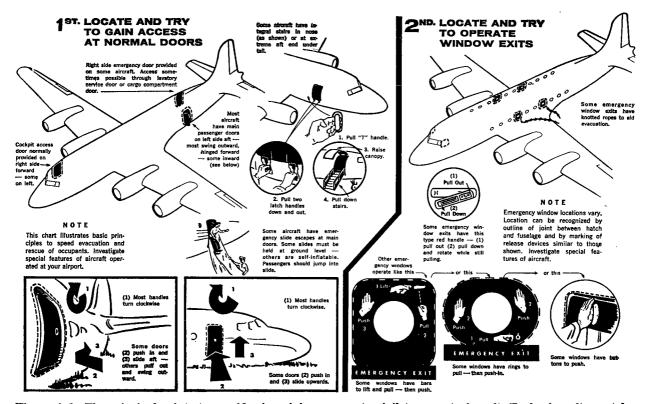
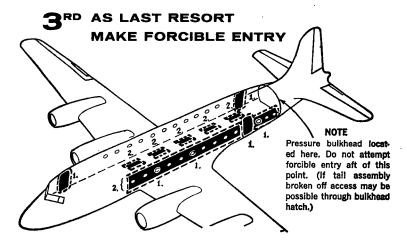
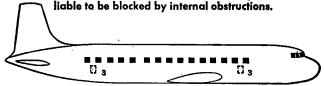



Figure A-1. The principal points to consider in gaining access to civil transport aircraft. Each aircraft must be examined individually to know how doors and windows may be most easily opened from outside.



PREFERRED FORCIBLE ENTRY LOCATIONS

NOTE

This chart illustrates basic principles to speed evacuation and rescue of occupants. Investigate special features of aircraft operated at your airport.

- 1. Force normal or emergency doors or windows if possible.
- 2. Saw or cut in at or between windows above seat arm level and below the hat rack or on either side of center line of top fuselage section (some aircraft marked in this area for "cut-in" as below). Remember when cutting-in, occupants may be exposed to injury from cutting tools. Other areas lighly to be blocked by integral obstructions.

Saw or cut in at locations marked on some aircraft with red or yellow corner marks and/or words: "cut here".

Figure A-2. These illustrations show reciprocating-engine aircraft. See Figures A-8 and A-9 for forcible entry locations on modern turbine-powered transport. These latter aircraft are most difficult to cut into because of the thickness of the metals used, the extensive framing of the fuselage, the insulation, etc.

ALWAYS KNOW THE PRINCIPAL FIRE HAZARD ZONES IN CIVIL AIRCRAFT

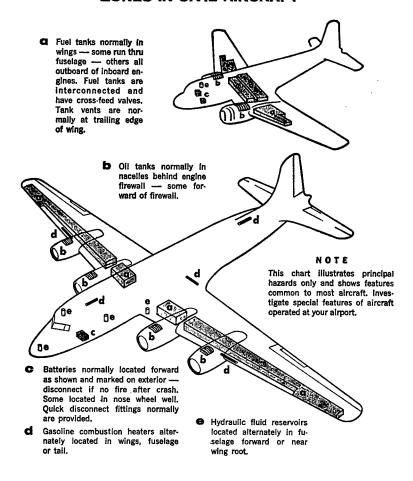


Figure A-3. These are simplified drawings of the principal fire hazard zones on reciprocating engine aircraft. Typical turbine aircraft are illustrated elsewhere in this Appendix.

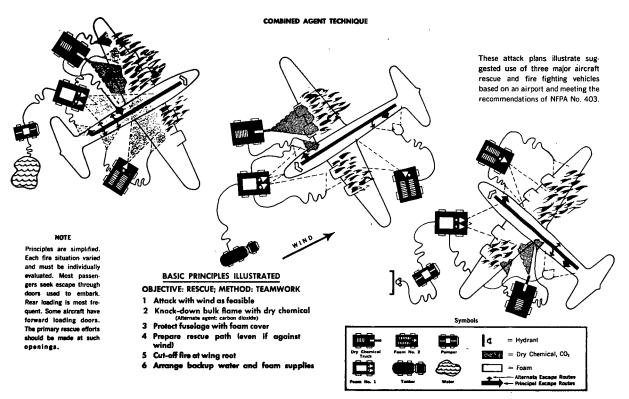


Figure A-4. Principles of fire fighting for civil aircraft using two foam trucks and one dry chemical or carbon dioxide unit. Dry chemical usage is limited to handline applications. If turbine powered, see warning in Paragraph 308.

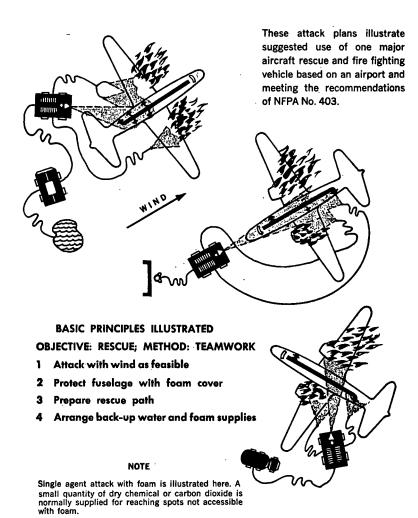
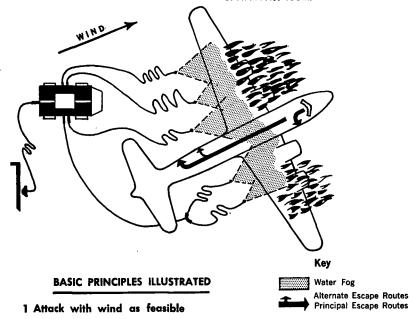



Figure A-5. Principles of fire fighting for civil aircraft using one foam truck and a back-up supply of water. If turbine powered, see warning in Paragraph 308.

This attack plan illustrates suggested use of equipment generally available in municipal and rural fire departments and are based on the recommendations of NFPA No. 406M.

- 2 Approach along fuselage and wet fuselage with water fog
- 3 Drive flames outward to side perimeters
- 4 Protect rescue path
- 5 Arrange back-up water supplies

NOTE

Technique shown assumes only water available dispensed as fog from multiple 1½ inch hose lines at about 100 psi nozzle pressure.

Figure A-6. Principles of fire fighting for civil aircraft using one standard fire department pumper with back-up supply of water. If turbine powered, see warning in Paragraph 308. NFPA No. 406M gives procedures for aircraft rescue and fire fighting using conventional fire apparatus.

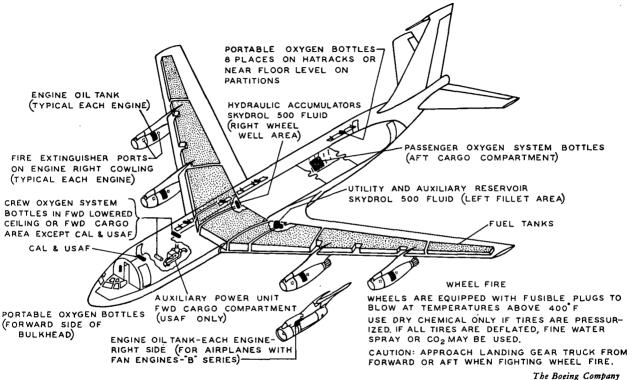
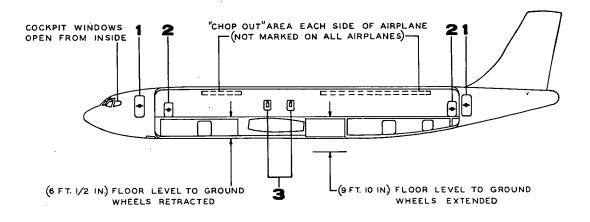
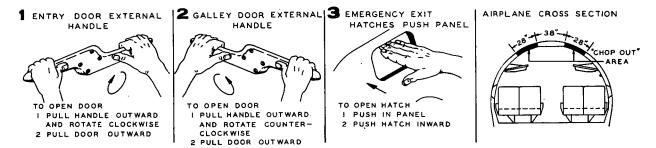




Figure A-7. The Boeing 707 Stratoliner showing the flammable material locations. Other models (the Intercontinental and the 720 series) vary somewhat in size and fuel capacity.

The Boeing Company
Figure A-8. The Boeing 707 Stratoliner showing emergency rescue access points and how they are operable from
the exterior.

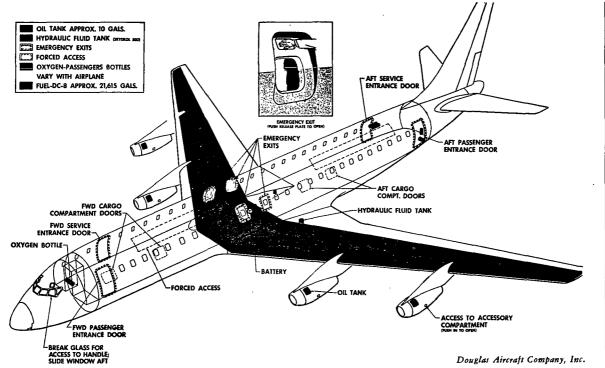
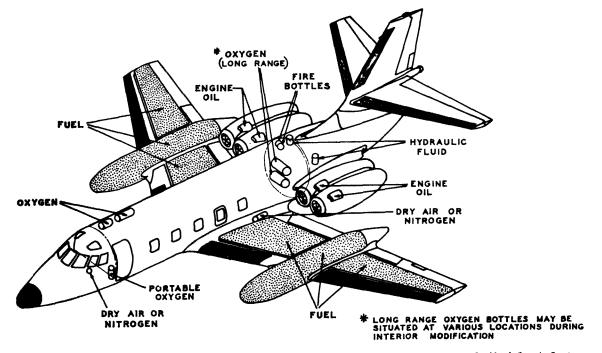


Figure A-9. The exterior arrangement of the Douglas DC-8 showing principal items of concern to aircraft rescue and fire fighting crews.


Upper Left
Figure A-10

Upper Right Figure A-11

Figures A-10, A-11 and A-12 illustrate the main cabin door opening mechanism from the exterior on the Convair 880 Jet Airliners and the integral self-inflating slide used for emergency evacuation. This aircraft has these slides at forward and rear main doors. The emergency window hatches have an exterior plate which should be pushed; the hatch will then release inwards. Most other turbine transports have similar slides.

Lower Left Figure A-12

Courtesy Lockbeed Georgia Company

Figure A-13. The Lockheed JetStar's total fuel capacity is 2,654 gallons.

Courtesy Lockheed Georgia Company

Figure A-14. The JetStar is typical of modern turbine powered jet transports carrying a two-man crew and up to eight passengers.

Figure A-15. Normal entry at main entry door — first pull door handle outward.

Figure A-16. (Cont'd. from Fig. A-15.) Then rotate one quarter turn clockwise.

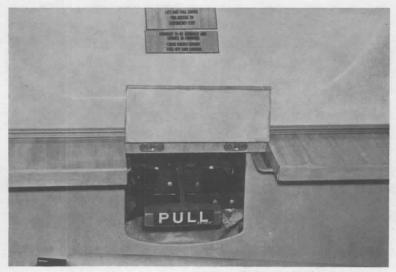


Figure A-17. (Cont'd. from Fig. A-16.)
Then push in, slide aft.

Courtesy Lockheed Georgia Company

Figure A-18. The fourth window from the front on each side of the JetStar fuselage is an emergency hatch. To open from the outside, push in on the bottom of the flush latch plate underneath the bottom edge of the window. Push inward.

Courtesy Lockheed Georgia Company

Figure A-19. From the inside of the JetStar pull on release handle to unlock and release the hatch (will fall inward).

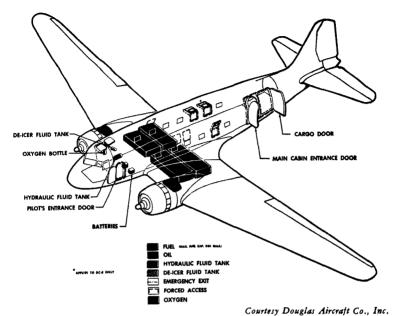
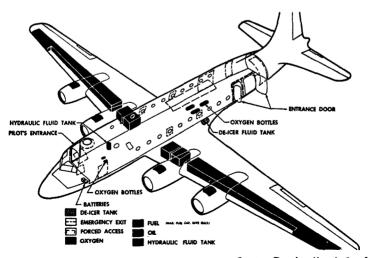



Figure A-20. The DC-3 (C-47) crash crew chart.

Courtesy Douglas Aircraft Co., Inc.

Figure A-21. The DC-4 (C-54) crash crew chart.

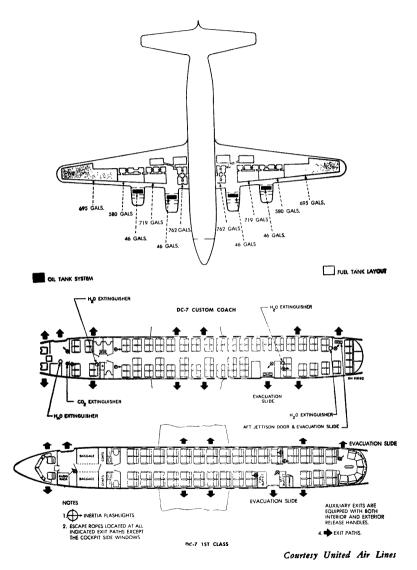


Figure A-22. The DC-7 as operated by United Air Lines showing general arrangement and two seating arrangements.

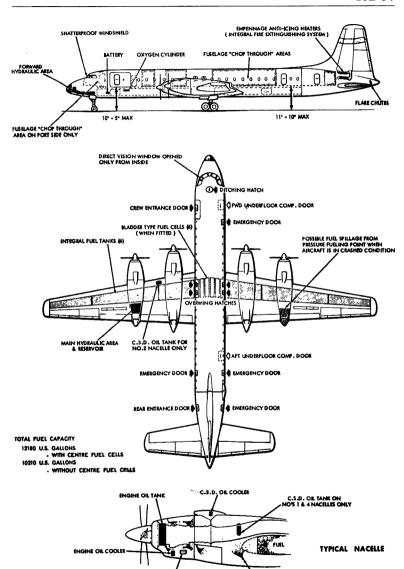


Figure A-23. Canadair CL-44D4 cargo/passenger aircraft rescue and fire fighting data. (Courtesy: Canadair Ltd.)

FORED FIRE EXTINGUISHERS

*PUSH IN" PANELS FOR EXTERNAL FIRE EXTINGUISHER (ONE ON EITHER SIDE OF EACH NACELLE)

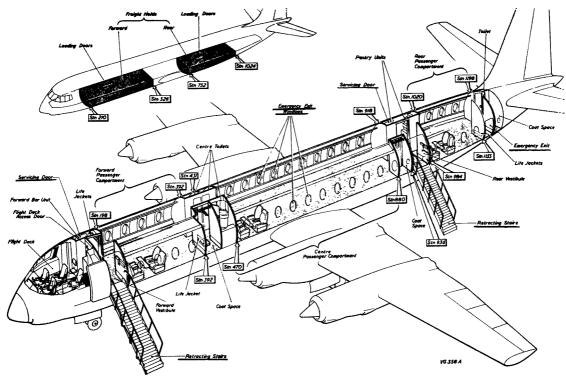


Figure A-24. The Vanguard aircraft showing general arrangements and emergency equipment.

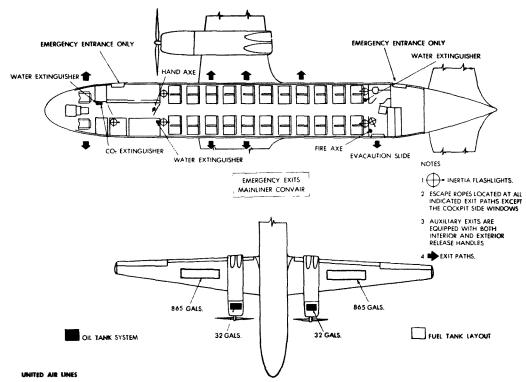
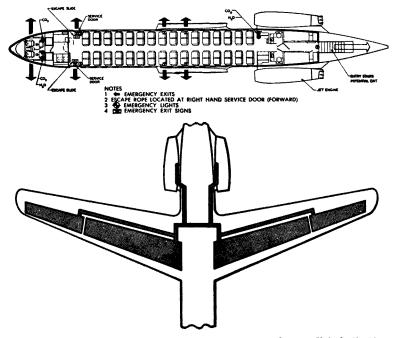



Figure A-25. The Convair 340. Note that fuel tanks are outboard of engine nacelles.

Courtesy United Air Lines

Figure A-26. The new Caravelle as operated by United Air Lines. The turbine engines are mounted on the rear fuselage with the fuel tanks in the swept-back wings. Fuel lines run from the tankage to the engines in the unpressurized portion of the fuselage.

Appendix B Military Aircraft — Aircrew Rescue Data

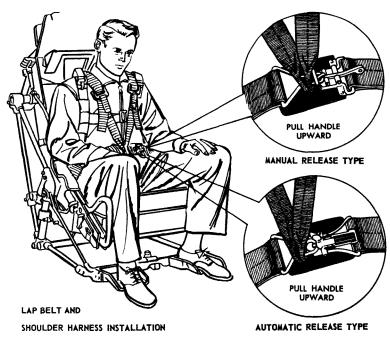


Figure B-1. One USAF lap belt and shoulder harness installation.

Figure B-2 (Left). One downward ejection seat lap belt and shoulder harness used on many USAF aircraft.

Note

The lap belts and shoulder harnesses are strong webbed material which is difficult to cut. Knowledge of release mechanisms is important. Inspection of actual installations will increase needed knowledge of operating principles.

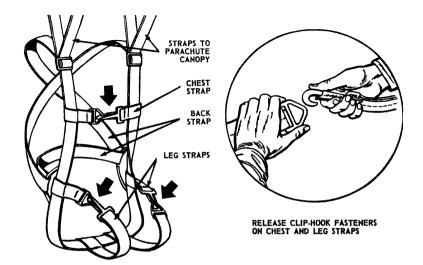


Figure B-3. One type USAF parachute harness release.

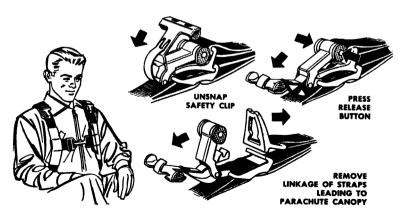


Figure B-4. Release mechanism on one type canopy release type harness.

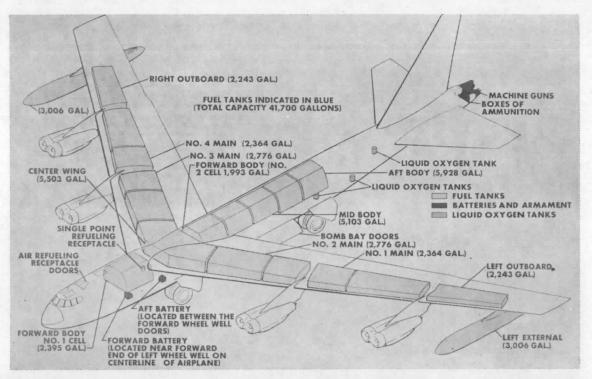


Figure B-5. The general arrangement of the B-52F aircraft is typical of the larger type USAF bomber type aircraft.

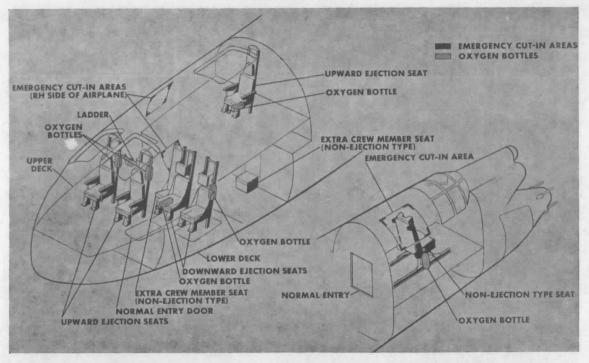


Figure B-6. Emergency entrance to crew compartments on the B-52F USAF bomber aircraft.

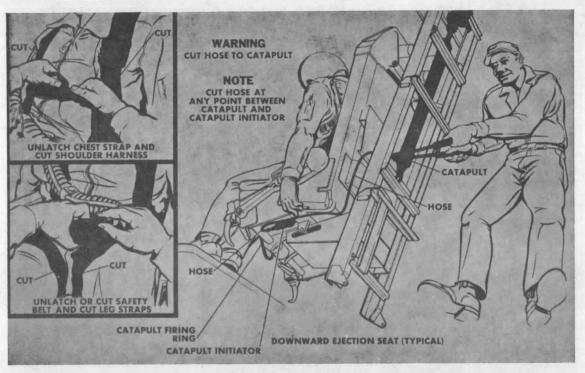


Figure B-7. Emergency rescue of B-52F crew members in downward ejection seats (typical).

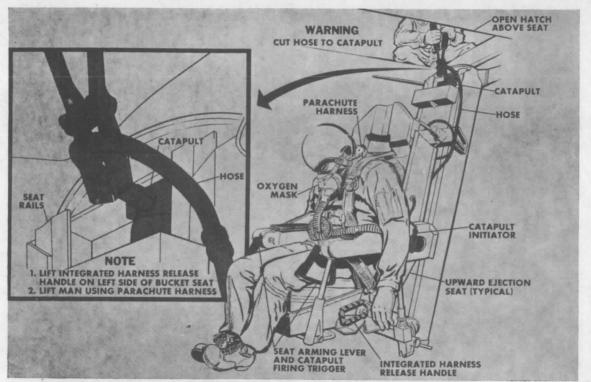


Figure B-8. Emergency rescue of B-52F crew members in upward ejection seats (typical).

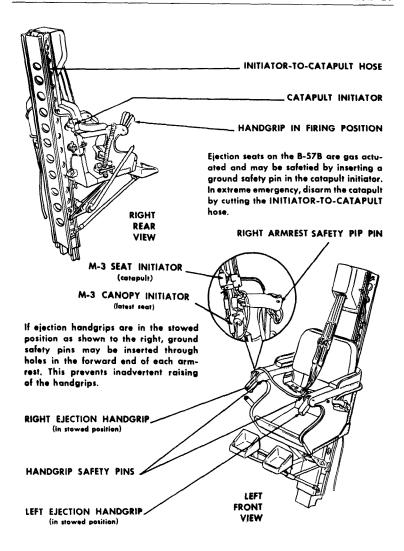


Figure B-9. Ejection seat of the B-57B type military aircraft shown as an example of operating principles and techniques to safeguard against unintentional operation during rescue operations. This seat is gas actuated and may be safetied by inserting a ground safety pin in the catapult initiator. Under severe fire conditions cut the initiator to catapult hose to disarm.

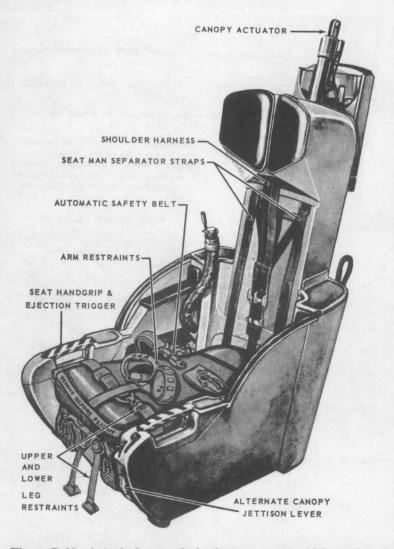


Figure B-10. A typical upward-ejecting crew seat which employs a rocket catapult capable of accelerating the seat and occupant from 0 to 70 miles per hour in less than two-thirds of a second. Disarming the seats by cutting or disconnecting the ejection hose is essential when rescues are being made. Know how to do it. WARNING: check exact seat design; this typical seat is on the B-58.

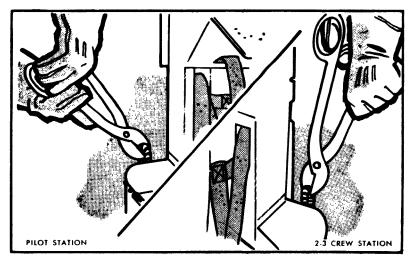


Figure B-11. Immediately upon entry to any crew station where an ejection type seat escape system is installed, cut the seat ejection hose. A heavier metal cutting tool than shown is normally needed.

Note: Figures B-11 through B-16 illustrate the B-58 rescue procedures.

Figure B-12. If time permits the seat ejection hose may be disconnected instead of cut if the fitting is exposed. This particular one may be disconnected by pushing down hard on the spring attachments, loosening the hose at the disconnect fitting.

Figure B-13. Extreme caution is needed to avoid inadvertent raising of the seat handgrips in aircraft equipped with ejection seats as doing so will expose the ejection triggers. Any personal leads from the pilot to release handle must be disconnected.

Figure B-14. Where possible, the survival kit should be removed to facilitate emergency rescue. This is normally done by pulling the seat-kit handle on the top of the kit. In some situations, the pilot's helmet face plate may be removed to aid in his removal.

Figure B-15. Harness releases include lower leg restraints at the ankles (pull release pins at rear of ankle straps), upper leg restraints at left knee, lap belt, shoulder and crotch harness straps. Disconnect also oxygen hose and mike cord.



Figure B-16. To remove crewman grasp the parachute risers and underarm, lifting him up and out of the cockpit and onto cabin sill. A two-man lift is normally needed. The parachute should not be released prior to removal as it supports the pilot's back and provides handgrips for rescue personnel.

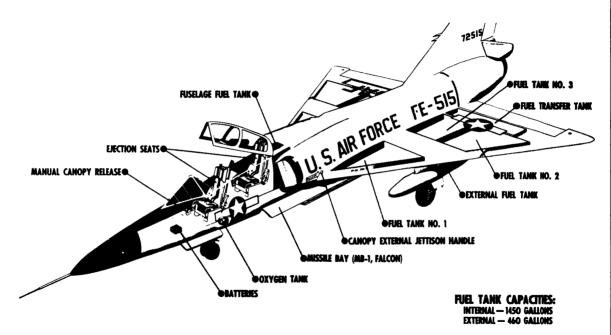


Figure B-17. This is the F-106B showing general arrangements of this modern USAF fighter aircraft.

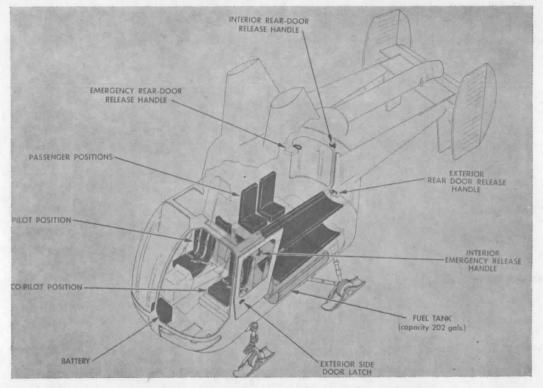


Figure B-18. The H-43B helicopter as operated by the USAF. Note that fuel tank is located under the passenger compartment over rear landing gear.

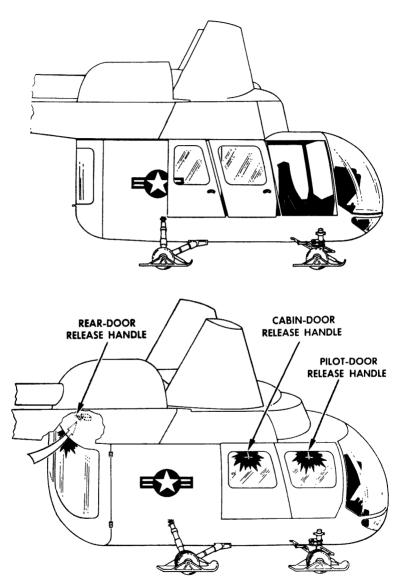


Figure B-19. Normal and emergency entrance into H-43B.

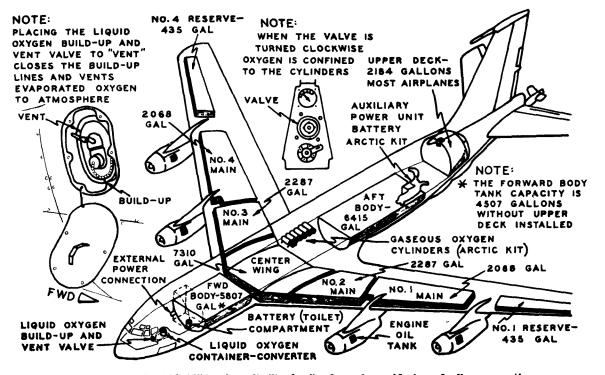


Figure B-20. The KC-135A aircraft "tanker" plane for mid-air refueling operations.

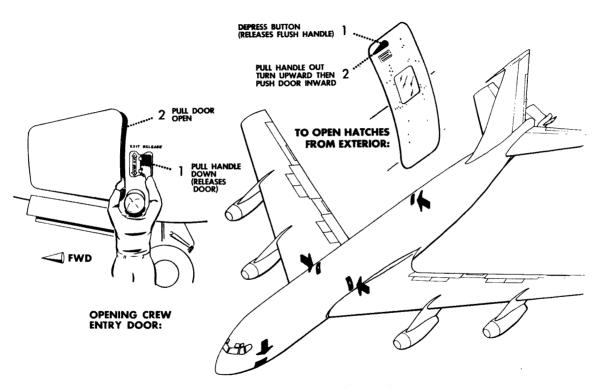


Figure B-21. Emergency entrances into the KC-135A crew positions.

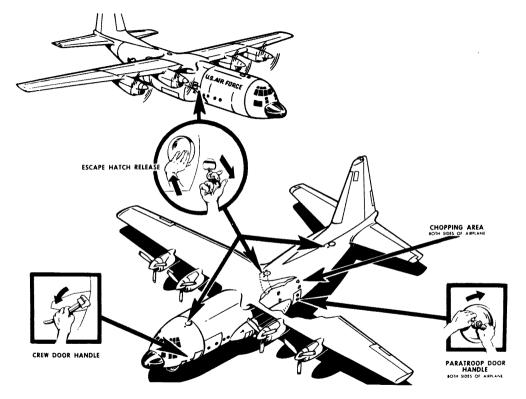


Figure B-22. Emergency entrance into the USAF C-130A troop transport.

Appendix C

Air Transport of Radioactive Materials and Nuclear Weapons

C-10. Commercial Air Transport of Radioactive Materials

- C-11. The carriage in commercial transport aircraft of radioactive cargo is closely controlled by national and international regulations.* Reference should be made to the applicable regulations for full details.
- C-12. Radioactive materials are being carried in commercial transport aircraft, particularly in cargo aircraft, regularly. While the containers used to transport these materials are rugged, the possibility of breakage cannot be overlooked and this introduces the hazard of radioactive contamination of an accident site.† By knowing and recognizing the radioactive symbols (see references), firemen can be alerted to this hazard. The following procedures should then be followed in the U.S. (similar procedures are followed in other countries):
- a. Notify the nearest Atomic Energy Commission office or military base of the accident immediately. They in turn will respond with a radiological team to the accident scene.
- **b.** Restrict the public as far from the scene as practical. Souvenir collectors should be forbidden in all accidents.
- c. Segregate fire fighters who have had possible contact with radioactive material until they have been examined further by competent authorities.
- d. Remove injured from the area of the accident with as little contact as possible and hold them at a transfer

^{*}In the U.S. an Official Air Transport Restricted Articles Tariff has been issued by the Air Traffic Conference of America, 1000 Connecticut Ave., N.W., Washington 6, D. C. (Subscription price: \$2.50 annual). Civil Aeronautics Manual Part 49 on Transportation of Explosives and Other Dangerous Articles is issued by the Federal Aviation Agency. The International Air Transport Association has issued "IATA Regulations Relating to the Carriage of Restricted Articles by Air"; this is available from IATA, Terminal Centre Building, Montreal 3, Quebec, Canada.

[†]See "Fire Protection Handbook" (Section 19) for a discussion of radiation hazards, available from the NFPA for \$17.50 a copy (2216 pages) and "Radiation Control" by A. A. Keil, also published by the NFPA (\$4.75 a copy, 256 pages).

point. Take any measures necessary to save lives, but carry out minimal (no more than necessary) first aid and surgical procedures until help is obtained from the radiological team physicians or other physicians familiar with radiation medicine. Whenever recommended by a doctor, an injured individual should be removed to a hospital or office for treatment, but the doctor or hospital should be informed when there is reason to suspect that the injured individual has radioactive contamination on his body or clothing.

- e. In accidents involving fire, fight fires upwind as far as possible, keeping out of any smoke, fumes, or dust arising from the accident. Handle as a fire involving toxic chemicals (using self-contained gas masks and gloves). Do not handle suspected material until it has been monitored and released by monitoring personnel. Segregate clothing and tools used at fire until they can be checked by the radiological emergency team.
- f. Do not eat, drink or smoke in the area. Do not use food or drinking water that may have been in contact with material from the accident.
- g. The use of instruments such as Geiger counters, ionization chambers, dosimeters, etc., is the only accurate means of determining if radioactive radiation is being given off.

C-20. Military Aircraft Carrying Nuclear Weapons

- C-21. While most military aircraft will attempt to return to a military airbase in case of emergency, this is sometimes impossible and landings are frequently made at non-military airports. There are also many cases where "joint-use" airports serve both the military and civil aircraft operations. For these reasons it is advisable for aircraft rescue and fire fighting crews to be familiar with the various types of military aircraft operating in the area. For this purpose, training visits to promote knowledge of the special features of military aircraft at nearby military installations are of value. Such liaison is encouraged by the military.
- C-22. Any person receiving information of a military aircraft accident should immediately notify the base operations office at the nearest military establishment giving all relevant information. Telephone numbers of such military installations should be kept on hand at civil airport and nearby municipal fire stations and in airport control towers.

- C-23. Care should be exercised by the rescue and fire fighting crews when approaching any military aircraft involved in fire. Armament, ejection seats, hazardous or other dangerous cargoes may present severe hazards during such operation (see Appendix B).
- C-24. The possibility of a nuclear contribution (atomic explosion) from the detonation of a nuclear weapon or warhead involved in a fire, inadvertent release, or impact accident, is so small as to be practically non-existent. Safety features and devices have been carefully designed and incorporated in nuclear weapons and warheads to make this assurance possible. The danger from a nuclear weapon is associated with the high explosive (HE) used plus radiation from the components.
- C-25. The presence of nuclear weapons in aircraft generally creates no greater hazard than does the presence of conventional high explosives. Most weapons do contain a high explosive which could detonate upon moderate to severe impact or when subject to fire. In fact, exposure to heat may make the high explosive more sensitive. In nuclear weapons the amount of high explosive is considerably less than that found in conventional high explosive bombs. Chemical and/or radiological hazards may exist during and after an accident or fire where a nuclear weapon is involved.
- C-26. Basically, the same techniques are used for fighting aircraft fires involving nuclear weapons as those in which conventional high explosive bombs are involved; special extinguishing agents are not required to control and extinguish such fires. The brief length of time available to control or extinguish the fire, before an explosion might be expected, is the only special factor to be considered.
- a. Description. In general, nuclear weapons resemble conventional bombs in that they are enclosed in a shell or casing that is generally cylindrical in shape, with tail fins. The weapon or warhead casings are of various thickness and may or may not break up upon impact. Most weapons contain a conventional type of high explosive which may detonate upon moderate to severe impact or when subject to fire. The quantity of high explosive involved in a detonation, if one occurs, may vary from a small amount to several hundred pounds and constitutes the major hazard in such an accident. If the casing breaks upon impact, the exposed and unconfined pieces of high explosive can ignite and burn or may explode if stepped on or run over. Some

minor radiological hazards may exist regardless of the type of weapon, if the weapon burns or if detonation of high explosive occurs.

- Time Factors. The length of time available to b. fight a fire involving nuclear weapons safely, depends largely upon the physical characteristics of the weapon or warhead case, the intensity of the fire and the proximity of the fire. Since weapon and warhead cases vary in thickness, fire fighting "time factors" range from three minutes to an indefinite period if the fire-impact incident does not detonate the high explosive immediately. The time element for each type of nuclear weapon and/or component is an important factor in fighting these fires. As soon as fire envelops the weapon area these "time factors" become effective. For weapons or warheads within a fire impact incident area, and subject to extreme heat but not enveloped in flames, a time factor of fifteen minutes will apply; if the fire fighting time factor is unknown to the fire fighters, the minimum time factor should be observed. Military flight communications procedures normally provide for notifica-tion of control towers of pertinent information regarding such time factors. When a weapon or warhead has been involved in fire and the time factor has expired, even though the fire has been extinguished or burned out, safe evacuation distances should be observed until the arrival of authorized Explosives Ordnance Disposal personnel.
- c. High Explosive Blast and Fragmentation. The radius of a weapon high explosive blast varies, depending on the amount of high explosive which actually detonates; high explosive blast fragmentation distances for these weapons range from a minimum radius of 400 ft. to a maximum of 1000 ft. Personnel within these areas may be seriously injured from blast or fragmentation upon detonation of the high explosive. These areas and distances must be considered in evacuating fire fighting personnel and during the initial fire department approach to an accident where weapons have been enveloped in flames for a period approximating or exceeding the weapon time factor limitations. All except experienced fire fighting personnel should immediately evacuate to a minimum distance of 1500 feet for protection against blast or fragmentation.
- d. Precautionary Measures. Under no circumstances should any high explosive material from ruptured weapons that have been exposed to fire (or any components that

have been scattered) be handled, stepped on, driven over, or disturbed in any manner. This material is extremely sensitive to minor detonations from shock or impact and may cause serious injury. Protective clothing and breathing apparatus (self-contained) must be worn during fire fighting operations to provide the fire fighter maximum protection from any chemical or minor radiological hazards that may be present. Additional protection is afforded by fighting any fire from an upwind position. All exposed clothing, apparatus, and equipment used during a fire or impact incident where nuclear weapons or components have been involved, should be monitored for possible radiological contamination by specialized recovery personnel equipped for this purpose.

e. Associated Hazards.

- (1) Radiological. In the event of a high explosive detonation or burning of a weapon, one has to concern himself principally with Alpha-emitting contamination which is serious only when ingested. Other types of radiation, which are harmless at the low levels produced in a weapon. may be detected with the use of sensitive detection instruments. (The effect of this radiation may be likened to the effects of radiation emanating from a luminous dial wristwatch.) Since Alpha-emitting particles are so fine that they are carried as smoke or dust from the burning or high explosive detonation of a nuclear weapon, some Alphaemitting contamination may be expected in the immediate accident area and downwind. Although this material may present a minor radiation problem, danger from these particles exists only when they are inhaled in significant amounts. Protection against highest expected Alpha levels from such burning or high explosive detonation incidents is afforded fire fighting personnel by the prescribed protective clothing and breathing apparatus.
- (2) Fire. Hazards associated with the burning of nuclear weapons and components are generally the same as those presented by conventional high explosives.
- (3) Impact. Weapon or warheads may break up and the high explosive detonate from impact. Detonation and break-up is contingent to a large degree upon the characteristics of the weapon or warhead case, the impact velocity, and the location of aircraft suspension devices.

- (4) Sympathetic Detonation. Detonation of a weapon or warhead, by fire or by impact, is also likely to induce detonation (non-nuclear) of any other weapon or warhead in the open within a 50 to 300 foot radius of the incident area.
- (5) High Explosive Burning Characteristics. Flame and smoke characteristics of burning high explosives vary, and provide no specific pattern upon which to determine when the high explosive is about to detonate. Burning high explosives produce flames of various colors; they may be bright red, yellow, greenish-white or combinations of no predominant color. Some give off a white smoke, while others burn with no trace of smoke.

 T.	ef	ì
 1.	4.1	и

An Atomic Energy Commission (USA) Radiation Symbol. The tag has a yellow background with the printing purple in color.

Below

An Atomic Energy Commission (USA) Radioactive Materials Symbol which is applied to packages containing materials of this type. The tag has a yellow background with the printing purple in color.

RADIOACTIVE	CONTENTS
	ISOTOPE ½ LIFE
	EST. MICROCURIES
	INSTRUMENT USED
	READING (MR/HR CONTACT)
	DATE
	REMARKS
	•••••
RADIOACTIVE	SIGNED

*Group I Radioactive Materials emit gamma rays only or both gamma and electrically charged corpuscular rays. Group II Radioactive Materials emit neutrons and either or both the types of radiation characteristic of Group I Materials. The external radiation emanating from shipping containers is required to be maintained at safe limits. The maximum allowable radiation from the surface of a container is 200 milliroentgens per hour. The Atomic Energy Commission reports that 95 per cent of the shipments have an exterior radiation level of 15 milliroentgens per hour or less. It is unlikely that any hazard would exist where the shipping container is intact.

**Group III Radioactive Materials emit electrically charged corpuscular rays only; i.e., Alpha or Beta, etc., or any other that is so shielded that the gamma radiation at the surface of the package does not exceed 10 milliroentgens for 24 hours at any time during transportation. These materials present a radiation hazard only when the shipping container is broken or damaged. It is unlikely that any hazard would exist where the shipping container is intact.

Appendix D

Civil Aircraft Accident Investigation

- D-10. Civil aircraft accident investigation is normally conducted by a number of investigators interested in establishing the probable cause. Federal or State governments are usually charged with the official responsibility but the operators, pilot groups, airport management, and others may be active in accident investigation work. Fire officials normally make their own investigation and most use the NFPA Aircraft Fire Report form to guide them in their study of the fire factors involved (see NFPA No. 403 for reproduction of this form) and cooperating agencies send one copy of this form to the Association to aid in the international study conducted by the NFPA in this field.
- D-11. It is the duty of firemen to extinguish fires and to protect property and life from fires. No person, including the owner of the property or any governmental regulatory authority, has the right to interfere with or hinder a fireman in the performance of his duty and a fireman has the right to resort to any reasonable measures, including force. necessary to enable him to perform his duties as a fireman. In aircraft accidents where investigation of cause is most important, efforts consistent with the duty described above may involve moving parts and operating controls. When this is done, firemen should be prepared to subsequently advise responsible investigative authorities of the actions they took in carrying out their rescue, fire control, or fire prevention responsibilities which may be of importance in the accident investigation work.
- **D-12.** In the United States, the Federal Aviation Act of 1958, as amended, Title VII Aircraft Accident Investigation, states in Section 701(d):

"Any civil aircraft, aircraft engine, propeller, or appliance affected by, or involved in, an accident in air commerce, shall be preserved in accordance with, and shall not be moved except in accordance with, regulations prescribed by the Board."

The "Board" referred to is the Civil Aeronautics Board, Washington, D. C. The CAB's Safety Investigation Regulations, Part 320, Sections 320.15 through 320.17 read:

"PRESERVATION OF WRECKAGE AND RECORDS. Aircraft wreckage and records thereof involved in or pertaining to an aircraft accident shall be preserved for the Board by the operator."

"PROHIBITION AGAINST REMOVING OR DISTURBING WRECKAGE AND RECORDS. Aircraft wreckage or records thereof involved in or pertaining to an aircraft accident shall not be disturbed or removed, unless specific permission is granted by an authorized representative of the Civil Aeronautics Board, except where necessary (a) to give assistance to persons injured or trapped therein, (b) to protect such wreckage from further serious damage, or (c) to protect the public from injury."

"RECORDING OF ORIGINAL POSITION AND CONDITION OF WRECKAGE. Whenever wreckage is moved in accordance with the provisions of Section 320.16, prior to the removal, sketches or photographs shall be made of the original position and condition of the wreckage and marks on the ground, and any pertinent data which cannot be effectively photographed shall be recorded, unless the resultant delay would endanger the lives of persons injured or trapped, or unless essential public interest can be protected only by immediate movement. In any event, movement of the wreckage shall be so accomplished as to entail the minimum possible disturbance thereof, and shall be preserved in accordance with the provisions of Section 320.15."

Appendix E

Airport Facilities and Aids

Fire stations at airports should be adequate to garage the vehicles provided and be located as described in Article 100. Photographs included herein are representative fire stations in use at various civil airports and the selection of them is based strictly on having the photographs available as this Edition of NFPA No. 402 is being printed. In the U. S. the Federal Aviation Agency has issued Airport Engineering Data Sheet (Item No. 32) on "Airport Fire and Rescue Equipment Buildings Guide" which is available by writing that Agency, Airports Division, Washington 25, D.C.

Part E-1. Typical Airport Fire Stations

Courtesy Dept. of Industry and Commerce

Figure E-1. The fire station at Shannon is a single story concrete structure containing a garage, watch room, workshop, stores, offices, mess room, kitchen and wash room. The garage, of which the floor space is approximately 6,600 sq. ft., contains nine bays each with a separate exit facing the airfield so that all appliances can be turned out in the minimum time.

There is an observation tower rising one story above the main building in which the watch room is located and from which there is an unobstructed view of the airport and approaches. All parts of the station are connected by an internal broadcasting system which may be operated either from the watch room or from the Station Officer's office. There is direct telephone communication between the watch room and the Control Tower in the Terminal Building which is about 400 yds. distant. The fire alarm in the station can be operated from points inside the station and also from the Control Tower.

Aerodrome Fire Service - A. J. Kemsley

Figure E-2. This is the North Fire Station, completed in April, 1962 at London (Heathrow) Airport, of composite brick and concrete construction the appliance bay accommodates 7 appliances. The watch room gives an excellent view of the airfield. Doors are 14 ft. high, 13 ft. 2 in. wide and retraction of each door is achieved in 14 seconds with controls for operating the doors in the watch room with separate controls at each door on the left hand pillar of each. They are electrically operated but have manual controls in case of total electrical failure. For complete details, see NFPA Aviation Bulletin No. 301.

J. B. Gussett

Figure E-3. The fire station at the Atlanta Municipal Airport operated as an integral part of the Atlanta Fire Department. The tower shown on the top of the Airport Fire Station has a fireman on alert duty 24 hours a day. The station has sleeping and eating accommodations and a conference room used for on-the-job training.