400 Commonwealth Drive, Warrendale, PA 15096-0001 # AEROSPACE MATERIAL SPECIFICATION SAE **AMS 3281A** Issued Revised NOV 1994 NOV 1996 Superseding AMS 3281 Submitted for recognition as an American National Standard SEALING COMPOUND, POLYSULFIDE (T) SYNTHETIC RUBBER for Integral Fuel Tank and Fuel Cell Cavities Low Density (1.20 to 1.35 sp gr), for Intermittent Use to 360 °F (182 °C) ### 1. SCOPE: ## 1.1 Form: This specification covers three classes of fuel-resistant polysulfide (T) sealing compound with low specific gravity, supplied as a two-component system which cures at room temperature. # 1.2 Application: This sealing compound has been used typically in sealing aircraft integral fuel tanks, fuel tank fillets and faying surfaces, pressure barriers and moldline surfaces, but usage is not limited to such applications. The sealing compound is resistant to jet fuels and is capable of withstanding long-term exposure from -65 to +250 °F (-54 to +121 °C) and short-term exposure (six hours) to 360 °F (182 °C). #### 1.3 Classification: Sealing compounds covered by this specification are classified by method of application and application times as follows: - Class A Suitable for application by brushing, injecting, or spraying. Available with application times of A-1/2 and A-2. - Class B Suitable for application by extrusion gun or spatula. Available with application times of B-1/2 and B-2. - Class C Suitable for faying surface or shim sealing, brush coating, or wet installation. Available with application times of C-2, C-8, C-12, C-48, and C-96. SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user." SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright 1996 Society of Automotive Engineers, Inc. All rights reserved. 1.3.1 The specific sealing compound supplied shall conform to the class and application time ordered. ### 1.4 Safety - Hazardous Materials: While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address the hazards which may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved. ### 2. APPLICABLE DOCUMENTS: The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. ### 2.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001. | AMS 2471 | Anodic Treatment of Aluminum Alloys Sulfuric Acid Process, Undyed Coating | |----------|--| | AMS 2629 | Jet Reference Fluid | | AMS 3100 | Adhesion Promoter for Polysulfide Sealing Compounds | | AMS 3819 | Cloths, Cleaning, For Aircraft Primary and Secondary Structural Surfaces | | AMS 4045 | Aluminum Alloy Sheet and Plate, 5.6Zn - 2.5Mg - 1.6Cu - 0.23Cr (7075: -T6 Sheet, | | | -T651 Plate), Solution and Precipitation Heat Treated | | AMS 4049 | Aluminum Alloy Sheet and Plate, Alclad, 5.6Zn - 2.5Mg - 1.6Cu - 0.23Cr, (Alclad | | | 7075 -T6 Sheet, 7651 Plate), Solution and Precipitation Heat Treated | | AMS 4901 | Titanium Sheet, Strip and Plate, Commercially Pure, Annealed, 70.0 ksi (485 MPa) | | AMS 5516 | Steel Sheet, Strip, and Plate, Corrosion Resistant, 18Cr - 9.0Ni (SAE 30302), | | | Solution Heat Treated | ### 2.2 ASTM Publications: Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. | ASTM D 412 | Rubber Properties - Vulcanized Rubber and Thermoplastic Rubbers and | |--------------------|--| | | Thermoplastic Elastomers - Tension | | ASTM D 792 | Specific Gravity (Relative Density) and Density of Plastic by Displacement | | ASTM D 2240 | Rubber Property-Durometer Hardness | | AMS 3281A | SAE | AMS 3281A | |-----------|-----|-----------| | | | | ## 2.3 U.S. Government Publications: Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094. | L-P-390 | Plastic, Molding and Extrusion Material, Polyethylene and Co-Polymers (Low, | |-------------|---| | TT N 07 | Medium, and High Densities) | | TT-N-97 | Naphtha, Aromatic | | CCC-C-419 | Cloth, Duck, Unbleached, Plied Yarns, Army and Numbered | | PPP-C-96 | Cans, Metal, 28 Gage and Lighter | | PPP-D-729 | Drum, Metal, 55-Gallon, for Shipment of Non-Corrosive Material | | PPP-P-704 | Pail, Metal (Shipping, Steel, 1 through 12 gallon) | | FED-STD-141 | Paint, Varnish, Lacquer and Related Materials, Methods of Inspection, | | | Sampling and Testing | | | | | MIL-A-9962 | Abrasive Mats, Non-Woven, Non-Metallic | | MIL-P-23377 | Primer Coatings: Epoxy, High Solids | | MIL-C-27725 | Coating, Corrosion-Preventive, for Aircraft Integral Fuel Tanks | | MIL-C-38334 | Corrosion Removing Compound, Prepaint, for Aircraft Aluminum Surfaces | | MIL-S-38714 | Sealant Cartridge for Two Component Materials | | MIL-C-38736 | Cleaning Compound, Solvent Mixtures (Metric) | | MIL-C-81706 | Chemical Conversion Materials for Coating Aluminum and Aluminum Alloys | | MIL-S-83430 | Sealing Compound, Integral Fuel Tank and Fuel Cell Cavities, Intermittent Use | | | to 360 Deg. F (182 Deg. C) | | MIL-C-85285 | Coating, Polyurethane, High Solids | | MIL-P-85582 | Primer Coatings: Epoxy Waterborne | | MIL-C-87936 | Cleaning Compounds, Aircraft Exterior Surfaces, Water Dilutable | | MIL-STD-453 | Inspection, Radiographic | | | | | MS 21042 | Nut, Self-Locking, 450 Deg F, Reduced Hexagon, Reduced Height, Ring Base, | | | Non-Corrosion Resistant Steel | # 2.4 AIA Publications: Available from National Standards Association, Inc., 1321 14th Street, N.W., Washington, DC 20005. | AN 4 | Bolt and Machine, Aircraft | |----------|--| | LS 10133 | Angle | | NAS 679 | Nut, Self-Locking, Hexagon-Low Height | | NAS 1154 | Screw, Machine-Flat, 100 Deg Head, Close Tolerance, Short Thread, Torque Set | ### 3. TECHNICAL REQUIREMENTS: ### 3.1 Materials: The basic ingredient shall be synthetic rubber, made from liquid polysulfide and derivations thereof. The sealing compound shall cure by the addition of a separate curing agent to the base compound and shall not depend on solvent evaporation for curing. The curing agent shall possess sufficient color contrast to the base compound to permit easy identification of an unmixed or incompletely mixed sealing compound. Neither the base compound nor the cured sealing compound shall be red or pink in color. ## 3.2 Properties: The sealing compound, when mixed in accordance with manufacturer's instructions and cured as specified in 4.5.2.8, shall conform to requirements shown in Table 1 determined in accordance with specified test methods. TABLE 1 - Properties | | | الاري | | |-------|--------------------------------------|---|-------------| | Parag | raph Property | Requirement | Test Method | | 3.2.1 | Specific Gravity | 1.20 to 1.35 | 4.5.4 | | 3.2.2 | Hardness: Shore A Durometer, min | 30 Shore A | 4.5.5 | | 3.2.3 | Nonvolatile Content, by weight), min | | 4.5.6 | | | Class A | 85% | | | | Class B | 92% | | | | Class C | 85% | | | 3.2.4 | Vicosity of Base Compound | | 4.5.7 | | | Class A | 100 to 500 poises
(10 to 50 Pa [·] S) | | | | Class B | 9000 to 16,000 poises
(900 to 1600 PaS) | | | | Class C | 1000 to 4000 poises
(100 to 400 Pa'S) | | | 3.2.5 | Viscosity of Curing Agent | 400 to 1600 poises
(40 to 160 Pa S) | 4.5.8 | | 3.2.6 | Flow | (1010100100) | 4.5.9 | | | Class B | 0.05 to 0.75 inch | | | | Class C, min | (1.2 to 19.0 mm)
0.010 inch (0.25 mm) | | | AMS 3281A | SAE | AMS 3281A | |--|---|-------------| | | TABLE 1 (Continued) | | | Paragraph Property | Requirement | Test Method | | 3.2.7 Application Time, min | • | 4.5.10 | | 3.2.7.1 Class A - From the beginning of mixing, the viscosity shat not exceed 2500 poises (250 Pars) | ıll | \ \$ | | A-1/2 | 1/2 hour | 08/10 | | A-2 | 2 hours | 251 | | 3.2.7.2 Class B - From the beginning of mixing, not less than 15 grams per minute shall be extruded. | ing O | ans32818 | | B-1/2 | 1/E 11001 - | | | B-2 | 2 hours | | | 3.2.7.3 Class C - From the beginn of mixing, not less than 30 grams per minute shall be extruded | 2 hours ing 2 hours 8 hours 12 hours 48 hours | | | C-2 | 2 hours | | | C-8 | 8 hours | | | C-12
C-48 | 12 hours
48 hours | | | C-96 | 96 hours | | | 3.2.8 Assembly Time, min | | 4.5.11 | | | | | | Class C+2
Class C-8 | N/A
24 hours | | | Class C-6
Class C-12 | 48 hours | | | Class C-48 | 168 hours | | | Class C-96 | 336 hours | | | 3.2.9 Tack Free Time (measured from the beginning of | | 4.5.12 | | mixing), max | See Table 2 | | | 3.2.10 Standard Cure Time, max | | 4.5.13 | | (30 Shore A, min) | See Table 2 | | # SAE # AMS 3281A # TABLE 1 (Continued) | Paragrap | | Requirement | Test Method | |----------|---
---|-------------| | 3.2.11 | Fluid Immersion Cure Time
(Class A-1/2 and B-1/2 only),
min | | 4.5.14 | | | After 48 hours
After 120 hours | 25 Shore A
35 Shore A | A | | 3.2.12 | Peel Strenth, min | 20 nounds force per | 4.5.15 | | 3.2.12.1 | Class A and C | 20 pounds force per inch (3503 N/m) 100% cohesive failure | | | 3.2.12.2 | Class B | 20 pounds force per
inch (3503 N/m)
100% cohesive failure | | | 3.2.13 | Chalking | Slight | 4.5.16 | | 3.2.14 | Shear Strength, min Class C only | 200 psi (1379 kPa)
100% cohesive failure | 4.5.17 | | 3.2.15 | Class C only Deleted | | | | 3.2.16 | Weight Loss, Flexibility and Swell | | 4.5.19 | | 3.2.16.1 | Weight Loss, max | 8% | | | 3.2.16.2 | Flexibility | No cracking or checking | | | 3.2.16.3 | Swell | 5 to 20% | | | 3.2.17 | Resistance to Thermal
Rupture, Class A and B only | No greater than 0.156 inch (3.96 mm) deflection | 4.5.20 | | 3.2.18 | Resistance to Thermal Expansion, Class B only | Sealant flush with groove within +0.010 and -0.003 inch (+0.25 and -0.08 mm) at the wide end of the test block and within +0.005 and -0.003 inch (+0.13 and -0.08 mm) at the narrow end | 4.5.21 | | AMS 32 | 81A | SAE | AMS 3281A | |----------|--|--|-------------| | <u> </u> | TABLE 1 | (Continued) | | | Paragra | ph Property | Requirement | Test Method | | 3.2.19 | Heat Reversion Resistance,
Class B and C only | The sealant shall not revert
to a liquid or paste-like
consistency, nor shall it
become brittle or lose
adhesion | 4.5.22 | | 3.2.20 | Fluid Rupture Resistance,
Class B-1/2 only | No pressure loss | 4.5.23 | | 3.2.21 | Tensile Strength and
Elongation, Classes B-1/2, B-2
and C-2 only | See Table 3 | 4.5.24 | | 3.2.22 | Low-Temperature Flexibility | No cracking, checking, or loss of adhesion | 4.5.25 | | 3.2.23 | Hydrolytic Stability, min | 30 Shore A | 4.5.26 | | 3.2.24 | Corrosion Resistance | No corrosion under sealant or signs of deterioration | 4.5.27 | | 3.2.25 | Repairability Click to | Sealant suitable for repairing minor breaks in itself and other sealant classes. Peel strength of repaired sealant shall be 20 pounds force per inch (3502 N/m) min, 100% cohesive failure | | | 3.2.26 | Paintability | No separation from sealant | 4.5.29 | | 3.2.27 | Weather Resistance | No cracking, chalking, peeling, or loss of adhesion | 4.5.30 | | 3.2.28 S | Shaving and Sanding | No rolling or tearing of the sealant, smooth surface | 4.5.31 | | 3.2.29 | Radiographic Density | | 4.5.32 | | 3.2.29.1 | Difference between plate and plate plus sealant, max | 1.00 | | | 3.2.29.2 | Through sealant in the slot, approximately | 3.00 | | AMS 3281A SAE # TABLE 1 (Continued) | Paragraph | n Property | Requirement | Test Method | |------------|---------------------------|----------------|----------------------------| | 3.2.30 | Storage Stability | | 4.5.33 | | 3.2.30.1 | Accelerated Storage | | 4.5.33.1 | | | Hardness | Same as 3.2.2 | 4.5.5 | | | Vicosity of Base Compound | Same as 3.2.4 | 4.5.7 | | | Viscosity of Curing Agent | Same as 3.2.5 | 4.5.8 | | | Flow | Same as 3.2.6 | 4.5.9 | | | Application Time | Same as 3.2.7 | 4.5.10
4.5.11
4.5.12 | | | Assembly Time | Same as 3.2.8 | 9 4.5.11 | | | Tack-Free Time | Same as 3.2.9 | 4.5.12 | | | Peel Strength | Same as 3.2.12 | 4.5.15 | | 3.2.30.2 | Long-Term Storage | POK | 4.5.33.2 | | 3.2.30.2.1 | Application Time | Same as 3.2.7 | 4.5.10 | | 3.2.30.2.2 | Tack-Free Time | Same as 3.2.8 | 4.5.12 | | 3.2.30.2.3 | Standard Cure Time | Same as 3.2.10 | 4.5.13 | TABLE 2 - Application, Tack-Free, and Standard Cure Time | | ~ N . | | | |------------|------------------|----------------|------------| | | Application Time | Tack-Free Time | Cure Time | | Class | Hours, min | Hours, max | Hours, max | | A . | 1/2 | 10 | 30 | | 10k | 2 | 24 | 72 | | ⊗ B | 1/2 | 10 | 30 | | | 2 | 24 | 72 | | С | 2 | 24 | 72 hours | | | 8 | 96 | 168 hours | | | 12 | N/A | 336 hours | | | 48 | N/A | 8 weeks | | | 96 | N/A | 16 weeks | SAE **AMS 3281A** TABLE 3 - Tensile Strength and Elongation | Test Conditioning | Tensile Strength psi (kPa) | Elongation
Percent | |---|----------------------------|-----------------------| | Standard Cure (4.5.2.8) | 250 (1724) | 250 | | 12 days at 140 °F (60 °C) plus
60 hours at 160 °F (71 °C)
plus six hours at 180 °F (82 °C)
All in AMS 2629 Type I | 125 (862) | 100 | | 12 days at 140 °F (60 °C) plus
60 hours at 160 °F (71 °C)
plus six hours at 180 °F (82 °C)
All in AMS 2629 Type I plus
24 hours at 120 °F (49 °C) plus
standard heat cycle (4.5.1.3) | 125 (862) | of amass 28 h | | Standard heat cycle (4.5.1.3) | 100 (689) | 25 | | 72 hours in AMS 3020 | 125 (862) | 100 | | 72 hours in AMS 3021 | 125 (862) | 100 | ### 3.3 Quality: The base compound and the curing agent (accelerator), as received by purchaser, shall each be of uniform blend and shall be free of excessive air, skins, lumps, and gelled or coarse particles. There shall be no separation of ingredients which cannot be readily dispersed. ## 4. QUALITY ASSURANCE PROVISIONS: # 4.1 Responsibility for Inspection: The manufacturer of sealing compound shall supply all samples and shall be responsible for all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the sealing compound conforms to the requirements of this specification. #### 4.2 Classification of Tests: 4.2.1 Acceptance Tests: Tests for the following requirements are acceptance tests and shall be performed on each batch. A batch shall be the quantity of sealing compound run through a mill or mixer at one time. Hardness (3.2.2) Nonvolatile content (3.2.3) Viscosity of the base compound (3.2.4) Viscosity of the curing agent (3.2.5) Flow (Class B and C only) (3.2.6) Application time (3.2.7) Assembly time (Class C only) (3.2.8) Tack-free time (3.2.9) Standard cure time (3.2.10) Fluid immersion cure time (Class A-1/4, B-1/2 only) (3.2.11) Peel strength (3.2.12) Chalking (3.2.13) Shear strength (Class C only) (3.2.14) Weight Loss, Flexibility and Swell (3.2.16) Resistance to thermal rupture (3.2.17) - the full PDF of ams 32818 Testing for viscosity of base compound or curing agent need not be performed on sealant 4.2.1.1 packaged in sectionalized containers of small size under 8 ounces (237 mL). - 4.2.1.2 Acceptance test requirements can be satisfied by use of the National Aerospace Defense Contractor's Accreditation Program (NADCAP). If the NADCAP system is used, the sealant manufacturer shall be NADCAP accredited and product surveillance in accordance with NADCAP procedures must be performed on each batch of sealant. All tests specified in 4.2.2 must be performed by the manufacturer. - 4.2.2 Preproduction and Qualification Tests: All technical requirements are preproduction and qualification tests and shall be performed prior to or on the initial shipment of sealing compound to a purchaser, when a change in ingredients and/or processing requires reapproval as in 4.4.2, and when purchaser deems confirmatory testing to be required. - The first compound that a manufacturer must qualify is Class B-2 (See 8.2). That compound 4.2.2.1 must meet all technical requirements with the exception of those requirements that are for other classes. Once qualification for Class B-2 is completed, other classes may be qualified. The formulation for the other classes and other Class B materials shall be the same as that for the Class B-2, except for minor variations necessary for viscosity and application life. It will not always be necessary for the qualifying agency to conduct all tests on the other classes. In general, the acceptance tests will be sufficient, although additional tests can be required. The manufacturer shall show proof that all requirements are met prior to requesting qualification approval for any class. This includes assurance that the sealant will cure at standard conditions. After the compound has been accepted for qualification, approval will be granted and the sealant will be identified by reference to the manufacturer's identification. AMS 3281A SAE 4.3 Sampling and Testing: Shall be as follows: 4.3.1 For Acceptance Tests: Sufficient sealing compound shall be taken at random from each batch to perform all required tests. The number of determinations for each requirement shall be as specified in the applicable test procedure or, if not specified herein, not less than three. Multiple testing is not required for viscosity, application time, flow, tack-free time, and hardness. AMS 3281A - 4.3.1.1 Compound for testing shall be mixed, whenever possible, in the same containers in which the sealing compounds were procured. - 4.3.1.2 If the compound is being procured in plastic injection kits, such as those conforming to MIL-S-38714, all tests shall be conducted on compound that has been packaged and mixed in the initial sample injection kits except for viscosity of base compound and viscosity of the curing agent. During filling of the initial sample injection kits, base compound and curing agent shall be placed in 1-quart (1-L) cans for the viscosity tests. If more than one size of injection kits are to be packaged from a particular batch, it is necessary to test compound from only one size kit. - 4.3.1.3 If the compound is being procured in
cans, pails, or drums, the batch shall be tested on the compound placed in 1-quart (1-L) cans. - 4.3.1.4 If the compound is being procured in both type containers, the quality conformance tests shall be conducted on the compound packaged in plastic injection kits (See 4.3.1.2). - 4.3.1.5 A statistical sampling plan, acceptable to purchaser, may be used in lieu of sampling as in 4.3.1. - 4.3.1.6 For U.S. Government Procurement: Each batch shall be subjected to both initial and final acceptance testing. Sufficient compound for initial acceptance testing shall be packaged in the same type containers that are being procured. Initial acceptance tests are those listed in 4.2.1. After successful completion of the initial quality conformance tests, the batch shall be released for final packaging. During packaging, tests kits shall be picked at random to perform the following final acceptance tests: Application time (3.2.7) Tack-free time (3.2.9) Standard cure time (3.2.10) - 4.3.1.6.1 If the batch is being packaged in different type and/or different size containers, the final acceptance tests shall be conducted on each type and/or each size containers. If the compound is being procured under different purchase orders, but the purchase orders call for the same type and size containers, it is only necessary to conduct the final acceptance tests once. - 4.3.2 For Qualification Tests: Samples shall consist of one 5-gallon (19-L) pail of base compound with one 1 gallon (4 L) pail of curing compound, two 1-quart (1-L) kits of sealing compound, and two pints (1/2 L) of adhesion promoter. Samples shall be identified as follows and forwarded to the activity responsible for qualification testing as designated in letter of authorization from that activity (See 8.2). SEALING COMPOUND, POLYSULFIDE (T) SYNTHETIC RUBBER, INTEGRAL FUEL TANK AND FUEL CELL CAVITIES, LOW DENSITY (1.20 to 1.35 sp gr), INTERMITTENT USE TO 360 °F (182 °C) AMS 3281, CLASS ____ MANUFACTURER'S IDENTIFICATION NAME OF MANUFACTURER LOT NUMBER DATE OF MANUFACTURE SUBMITTED BY (NAME) (DATE) FOR QUALIFICATION TESTS IN ACCORDANCE WITH AMS 3281 UNDER AUTHORIZATION (REFERENCE AUTHORIZING LETTER) - 4.3.3 For Shelf-Life Surveillance and Updating: - 4.3.3.1 Sampling: The minimum number of samples to be tested during shelf-life surveillance and updating are shown in Table 4. TABLE 4 - Shelf-Life Surveillance Samples | Items in Stock | Samples to be Tested | |------------------|----------------------| | Up to 100, excl | 3 | | 100 to 500, incl | 5 | | Over 500 | 7 | 4.3.3.2 Testing: The following inspections are to be conducted for shelf-life surveillance and updating: Condition of container Application time Tack-free time Standard cure time Viscosity of base compound (not possible with sectional-type containers) Viscosity of curing agent (not possible with sectional-type containers) Peel Strength; two aluminum panels, sulfuric acid anodized per AMS 2471, coated with MIL-C-27725 corrosion-preventive coating, and aged in AMS 2629, Type , for seven days at 140 °F (60 °C) 4.3.3.2.1 Tests are to be conducted in accordance with specified test methods. If the tests are being performed at the end of the stated shelf-life to update the shelf-life of the sealing compound, and all tests are passed, the shelf-life will be extended an additional three months. Up to three updatings will be allowed. ### 4.4 Approval: - 4.4.1 Sealing compound shall be approved by purchaser before sealing compound for production use is supplied, unless such approval be waived by purchaser. Results of tests on production sealing compound shall be essentially equivalent to those on the approved sample. - 4.4.1.1 For direct U.S. Military procurement and for procurement for use on U.S. Military contracts, the sealing compound shall be listed, or approved for listing, on the applicable U.S. Military qualified products list. - 4.4.2 Manufacturer shall use ingredients, manufacturing procedures, processes, and methods of inspection on production sealing compound which are essentially the same as those used on the approved sample. If necessary to make any change in ingredients, in type of equipment for processing, or in manufacturing procedures, manufacturer shall submit for reapproval a statement of the proposed changes in ingredients and/or processing and, when requested, a sample of sealing compound. Production sealing compound made by the revised procedure shall not be shipped prior to receipt of reapproval. - 4.5 Test Methods: Shall be as follows: - 4.5.1 Standard Conditions: - 4.5.1.1 Test Conditions: Standard laboratory test conditions shall be 77 °F (25 °C) and 50% \pm 5 relative humidity. Except as otherwise specified herein, all test specimens shall be prepared and cured under these conditions. 4.5.1.2 Standard Tolerances: Unless otherwise specified herein, the standard tolerances shown in Table 5 shall apply. **TABLE 5 - Standard Tolerances** | Measurement Units | Tolerance | | |-------------------|-----------------------|---| | Temperatures | ±2 °F (1 °C) | , | | Days | ±2 hours | | | Hours | ±5 minutes | | | Minutes | ±10 seconds | | | Inches (mm) | ±0.010 inch (0.25 mm) | | - 4.5.1.3 Standard Heat Cycle: Standard heat cycle shall consist of the cure cycle of 4.5.2.8 followed by 24 hours ± 1 at 250 °F (121 °C), 4 hours ± 0.5 at 320 °F (160 °C), and 6 hours ± 1 at 360 °F (182 °C) divided evenly into six portions, each consisting of 4 hours ± 5 minutes at 250 °F (121 °C), followed by 40 minutes ± 5 at 320 °F (160 °C) and 1 hour ± 5 minutes at 360 °F (182 °C). At the completion of each 360 °F (182 °C) exposure, the temperature shall be reduced to below 100 °F (38 °C) before reexposing to the 250 °F (121 °C) cycle. - 4.5.2 Preparation of Test Specimen: - 4.5.2.1 Chemical Conversion Coating Application (Aluminum Panels): - 4.5.2.1.1 Coating Preparation: A chemical conversion coating, conforming to MIL-C-81706, Class 1A, Form II, Method C, shall be prepared according to manufacturer's instructions. The pH of the resulting solution shall be adjusted to 1.5 using nitric acid. - 4.5.2.1.2 Panel Preparation: Vapor or solvent degrease and alkaline detergent clean using MIL-C-87936, Type I, compound, or equivalent commercially available alkaline cleaner. The cleaning may be accomplished by brushing, swabbing, or soaking the panels in the detergent solution or by a combination of the above techniques. Rinse the cleaned panels in warm flowing tap water, 60 to 100 °F (16 to 38 °C), and check for a waterbreak-free surface. If waterbreak occurs on the panel surfaces, return them to the detergent solution and repeat the cleaning procedure until a waterbreak-free surface is obtained. Immediately transfer the cleaned panels to a deoxidizing solution consisting of the composition shown in Table 6. TABLE 6 - Deoxidizing Solution Composition | Ingredient | Percentage by Weight | |---------------------------------|----------------------| | Butyl alcohol | 35 | | Distilled or deionized water | 22 | | Isopropyl alcohol | 25 | | Phosphoric acid (85% by weight) | 18 | 4.5.2.1.2.1 Acid deoxidizer conforming to MIL-C-38334 may be used in lieu of the deoxidizing solution shown in Table 6. Allow the panels to remain in deoxidizing solution of 4.5.2.1.2 for 3 to 5 minutes. Rinse the panels thoroughly under flowing tap water. - 4.5.2.1.3 Coating Application (Immersion): Transfer the deoxidized panels immediately to the MIL-C-81706 chemical conversion coating solution. Immerse the panels in the solution at standard temperature for 3 to 5 minutes or until a light straw color develops. Color development time will vary with the aluminum alloy being conversion coated. After removal from the conversion coating solution, immediately rinse thoroughly in flowing distilled or deionized water. Arrange the panels in an upright position to drain dry. Apply the test materials to the conversion coated surfaces within 48 hours. - 4.5.2.1.3.1 Mix the conversion coating solution in either 18-8 type stainless steel, polyethylene, or other compatible plastic containers. DO NOT MIX IN GLASS CONTAINERS. - 4.5.2.2 Preparation of Composite Panels: - 4.5.2.2.1 Graphite Epoxy: AS 4/3501-6 test panels shall be fabricated using eight plies of unidirectional tape laid (0, 45, 90, 135) symmetrical. Size of the test panels shall be 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm). Cure as in 4.5.2.2.2.1. - 4.5.2.2.2 Graphite Bismaleimide (BMI): IM7/5250-4 BMI test panels shall be fabricated using eight plies of unidirectional tape laid (+45°, 90°, 45°, 0°) symmetrical. Size of the test panels shall be 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 1.52 mm). Cure as in 4.5.2.2.2.1. - 4.5.2.2.1 Install peel ply to bag surface of laminate. Nylon peel ply is acceptable. Apply a vacuum of not less than 28 inches (711 mm) of mercury and 85 psi (587 kPa) pressure. Heat to 375 °F ± 10 (191 °C ± 5) at a rate of 1 to 4 F (0.5 to 2 C) degrees per minute. From 320 °F (160 °C) to 375 °F (191 °C) heat at a rate of less than 1 F (0.5 C) degrees per minute. Keep free air temperature at or below 390 °F (199 °C). Hold laminate at 375 °F (191 °C) for 360 minutes ± 20. Cool laminate to 150 °F (65 °C) or below at an average rate less than or equal to 5 F (3 C) degrees per minute while maintaining a minimum of 25 psi pressure. Remove peel ply. - 4.5.2.3 Preparation of Sealing Compound: - 4.5.2.3.1 Acceptance Tests: The quantity of sealing compound required for tests shall be hand mixed, as thoroughly as possible, according to manufacturer's instructions. MIL-S-38714 containers shall be used when applicable. - 4.5.2.3.2 For Qualification Tests: The quantity of sealing compound required for the tests shall be machine mixed with a minimum inclusion of air. Where applicable, the sealing compound, immediately after mixing, shall be placed in cartridges for extrusion from a pneumatic sealing gun. Sealing compound in sectional-type containers shall be machine mixed. - Quick Freezing: After machine
mixing, two cartridges shall be held at room temperature. 4.5.2.4 One cartridge shall be used for testing application time and the other for tack-free time, curing rate, and flow. The remainder of the cartridges shall be quick frozen. After the compound is loaded into the cartridges, both ends of the cartridges shall be closed after filling. The installed plunger shall be quick frozen immediately in TT-N-97, Type I, Grade B, aromatic naphtha and dry ice bath at -90 °F (-68 °C) or lower for 30 minutes. The cartridge shall be placed in a plastic bag and immersed with its plugged nozzle end down and the upper end about 1 inch (25 mm) above the liquid level. For tests for tack-free time, cure rate, application time, and flow, the sealant shall be stored at or below -40 °F (-40 °C) for at least 16 hours but not more than 48 hours. Thaw-out shall be accomplished by immersion of the frozen cartridge in a 120 °F (49 °C) water bath for 18 minutes with the plugs installed and the upper end of the cartridge 1 inch (25 mm) above the liquid level. Time zero shall be considered as occurring at the end of the 18-minute period and the timed tests begun. For all other tests. the storage time of the frozen material shall not exceed 10 days at 40 °F (-40 °C). Thaw-out shall be accomplished as shown except sealant may be thawed out at room temperature if desired. - 4.5.2.5 Cleaning of Test Panels: All test panels shall be cleaned by scrubbing and rinsing with MIL-C-38736 solvent and clean AMS 3819, Grade A, cloths which are free of sizing and any other contaminant. The panels shall be wiped dry immediately with clean AMS 3819, Grade A, cloths. Titanium, stainless steel, and epoxy graphite panels shall be scrubbed with abrasive mats and MIL-C-38736 solvent. After scrubbing, the panels shall be rinsed using MIL-C-38736 solvent and clean cloth and then wiped dry. The abrasive mats shall conform to MIL-A-9962, Type I, Class 1, Grade A, for stainless steel and epoxy graphite panels and MIL-A-9962, Type III, Class 1, Grade A, for titanium panels. - 4.5.2.5.1 When organic coatings are specified for test panels, the coatings shall be fully cured as defined by the applicable coating specification before cleaning. The applied coatings, when stored at ambient indoor temperatures, shall be at least 14 days but not more than six months old. - 4.5.2.6 Application of Adhesion Promoter: When specified, the panel surface shall be treated with AMS 3100 adhesion promoter, immediately after the panel is cleaned, by wetting a clean AMS 3819, Grade A, cloth and wiping the surface. Allow adhesion promoter to air dry for 30 minutes to two hours before applying the sealant. If more than two hours has elapsed, reclean and reapply the adhesion promoter before applying the sealant. - 4.5.2.7 Application of Sealing Compound: Unless otherwise specified herein, test panels shall be given an application of sealing compound to produce a coating having a total thickness of 0.125 inch \pm 0.016 (3.18 mm \pm 0.41) when cured. For Class A material, a time equal to the rated application life shall be used between applications to permit release of solvents. - 4.5.2.8 Cure of Sealing Compound: For qualification testing, the sealing compound shall be cured for 14 days at 77 °F (25 °C) and $50\% \pm 5$ relative humidity. For acceptance testing, the sealing compound shall be given an accelerated cure for 48 hours at 77 °F (25 °C) and $50\% \pm 5$ relative humidity plus 24 hours at 140 °F (60 °C). Tests on the cured sealing compound shall commence not more than two days after the completion of the specified cure. - 4.5.3 Jet Reference Test Fluid: The jet reference fluid (JRF) required for conducting fluid immersion tests shall conform to AMS 2629. Type I fluid shall be used for conducting all tests requiring fluid except that Type II shall be used for the chalking test (4.5.16). - 4.5.4 Specific Gravity: Three test specimens, approximately 0.125 x 1 x 1 inch (3.18 x 25 x 25 mm), shall be cut out with a sharp razor blade or scalpel from a sheet of the sealing compound that has been cured as in 4.5.2.8. Determine the specific gravity of each sample in accordance with ASTM D 792, Method A, and report the average value. - 4.5.5 Hardness: The instantaneous hardness shall be determined in accordance with ASTM D 2240, Method 3021, after the sealing compound is cured as in 4.5.2.8. The reading shall be taken on a double back-to-back, 0.125 inch (3.18 mm) thick specimen making the total thickness 0.25 inch (6.4 mm). - 4.5.6 Nonvolatile Content: Within five minutes after mixing or warming to application temperature, 11 to 12 grams of mixed sealing compound shall be transferred, as rapidly as possible, to a previously weighed (W1) aluminum dish approximately 2 inches (51 mm) in diameter. The Class A and C sealants shall be poured into the dish. The Class B sealant shall be extruded from a plastic cartridge, fitted with 0.125 inch (3.18 mm) orifice nozzle, to fill the bottom of the dish to a uniform depth. The initial weight (W2) shall be determined using an analytical balance accurate within ±1 milligram. Immediately following weighing, the sample and dish shall be placed in a circulating-air oven preheated to 158 °F (70 °C), allowed to dwell for three days, removed from the oven, and allowed to cool in a desiccator to room temperature. Final weight (W3) shall be determined on the same balance used for the initial weights. All weights shall be recorded to the nearest milligram. - 4.5.6.1 Percent nonvolatile content shall be determined from the average of three samples and calculated using Equation 1. Percent Nonvolatile = $$\frac{(W3 - W1) \times 100}{W2 - W1}$$ (Eq.1) - 4.5.7 Viscosity of Base Compound: - 4.5.7.1 Shall be determined with the base compound placed in a 1-quart (1-L) can. The can shall be filled with the base compound to within 0.5 inch (13 mm) of the top, covered, and stored at 77 °F (25 °C) for not less than eight hours. The base compound shall be thoroughly mixed by stirring slowly for not less than three minutes after which the can shall be closed and the base compound allowed to stand for one hour. - 4.5.7.2 The Brookfield Model RVF viscosimeter, or equivalent, shall be used. The readings obtained shall be converted to poises (Pa'S). For Class A sealant, the No. 6 spindle at 10 rpm shall be used for the test. For Class B sealant, the No. 7 spindle at 2 rpm shall be used. For Class C sealant, the No. 6 spindle at 2 rpm shall be used. The highest reading shall be taken after the instrument has run in the base compound for one minute. - 4.5.8 Viscosity of the Curing Agent: The viscosity of the curing agent shall be determined in accordance with 4.5.7 except a No. 7 spindle at 10 rpm shall be used. - 4.5.9 Flow (Class B and C Only): - 4.5.9.1 Class B: A standard sealant cartridge, fitted with a suitable nozzle, shall be filled with freshly mixed sealing compound. The application gun and sealing compound shall be maintained at standard conditions throughout the test. The test shall be conducted with the flow test fixture shown in Figure 1. Depth of the plunger tolerance is critical and shall be controlled within the specified tolerance during all tests. The flow fixture shall be placed on a table with the front face upward and the plunger depressed to the limit of its travel. Within 15 minutes after the beginning of mixing, enough of the mixed sealing compound shall be extruded from the application gun to fill the recessed cavity of the fixture and leveled off with the block. The test at this interval shall be considered the initial flow of the sealing compound. Within ten seconds after the leveling operation, the fixture shall be placed on its end and the plunger immediately advanced to the limit of its forward travel. The flow measurement shall be taken 30 minutes after the sealing compound has been applied to the test fixture. The flow shall be measured from tangent to the lower edge of the plunger to the farther point to which the flow has advanced. As the sealing compound progresses in its application time, the flow test shall be repeated at the time intervals specified below. All time intervals, other than for the initial test, shall be measured from the end of the mixing period. Class B-1/2 Initial Reading Only Class B-2 Initial, 50 minutes, and 90 minutes - 4.5.9.2 Class C: A 0.015 to 0.020 inch (0.38 to 0.51 mm) layer of freshly mixed sealant shall be applied to an AMS 4049 aluminum alloy panel, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm). Immediately place the panel in a vertical position and allow to stand for a period equivalent to the rated tack-free time (3.2.9). The sealant thickness at its thinnest spot shall conform to 3.2.6 - 4.5.10 Application Time: - 4.5.10.1 Class A Material: - 4.5.10.1.1 The base compound and curing agent shall be stabilized at standard conditions (4.5.1.1) for not less than eight hours before a sample of the base compound is mixed with the proper amount of curing agent sufficient to fill a standard 0.5-pint (0.24-L) can, 2.88 inches (73.2 mm) in diameter by 2.88 inches (73.2 mm) high to within 0.5 inch (13 mm) of the top. This can shall be tightly covered except when testing for viscosity. - 4.5.10.1.2 At the end of 0.5 hour for A-1/2 and two hours for A-2, measured from the beginning of the mixing period, the sealing compound shall be tested for viscosity using a Brookfield Model RVF viscosimeter, or equivalent. The No. 7 spindle at 10 rpm shall be used. One reading shall be taken after the instrument has run in the sealing compound for one minute. ### 4.5.10.2 Class B and C Material: - 4.5.10.2.1 The base compound, curing agent, and application gun shall be stabilized at standard conditions (4.5.1.1) for not less than eight hours before not less than 250 grams of the base compound is mixed with the proper amount of curing agent. - 4.5.10.2.2 The mixed sealing compound shall be used to fill a standard sealing cartridge,
with the standard test nozzle (See Figure 2). The application gun and sealing compound shall be maintained at standard conditions (4.5.1.1) throughout the test. - 4.5.10.2.3 The gun shall be attached to a constant air supply of 90 psi ± 5 (621 (Pa ± 34)). From 2 to 3 inches (51 to 76 mm) of sealing compound shall be extruded initially to clear any entrapped air. At the end of the rated application time, measured from the beginning of the mixing period, the sealing compound shall be extruded onto a previously weighed suitable receptacle for one minute and the weight of extruded sealing compound determined. - Assembly Time (Class C Only): Six test panels, 0.040 x 1.5 x 4 inches (1.02 x 38 x 102 mm), 4.5.11 shall be prepared from AMS 4049 aluminum alloy. Drill two holes with a No. 11 drill, 1.2 inches (30 mm) from one end with centers 0.75 inch (19 mm) apart and 0.38 inch (9.7 m) from each side. Deburr and clean as in 4.5.2.5. Accurately determine the thickness of the panels around the holes. Apply approximatel 0.015 inch (0.38 mm) of freshly mixed sealant to the drilled end of three specimens and allow to cure for 0.5 hour. Place the other cleaned panels on those with sealant so that the holes line up and results in a one inch (25 mm) faying surface overlap area. Insert two 10-32 steel bolts, heat treated to at least 160 ksi (1103 MPa) tensile strength, into the holes and tighten NAS 679-A3 nuts only until sealant starts to squeeze out. The thickness of the assembly shall be measured and the thickness of the sealant shall be 0.010 to 0.015 inch (0.25 to 0.38 mm). Allow the specimens to be exposed to standard conditions (4.5.1.1) for the assembly time indicated in 3.2.8. Tighten nuts to a torque value of 40 inch-pounds (4.5 N.m). Measure the thickness of the assembly at the bolts with a micrometer and from this thickness subtract the thickness of the panels. The mixed sealing compound shall have an assembly time as stated in 3.2.8. The sealant must squeeze out to a thickness of 0.005 inch (0.13 mm) or less at the bolts. # 4.5.12 Tack-Free Time: - 4.5.12.1 A 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm) AMS 4049 aluminum alloy panel shall be cleaned in accordance with 4.5.2.5. Sealing compound shall be applied in accordance with 4.5.2.7. The sealant shall be given a standard cure (See 4.5.2.8). - 4.5.12.2 At the end of the tack-free time (See 3.2.9), two 1 x 7 inch (25 x 178 mm) strips of polyethylene 0.005 inch \pm 0.002 (0.13 mm \pm 0.05) thick shall be applied to the sealing compound and held in place at a pressure of approximately 0.5 ounces per square inch (0.0002 N/mm²) for two minutes. - 4.5.12.3 The strips shall be slowly and evenly peeled back at right angles to the sealing compound surface. The polyethylene shall come away clean and free of sealing compound. - 4.5.13 Standard Cure Time: The instantaneous hardness shall be determined in accordance with ASTM D 2240 (instantaneous) using a Type A Durometer after the sealing compound is allowed to cure at standard conditions (4.5.1.1) for the time specified in 3.2.10. The reading shall be taken on a double back-to-back, 0.125 inch (3.18 mm) thick specimen. - 4.5.14 Fluid Immersion Cure Time (Classes A-1/2 and B-1/2 Only): An AMS 4049 aluminum alloy test panel, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm), shall be cleaned in accordance with 4.5.2.5 and covered with sealing compound to a depth of 0.25 inch (6.4 mm) in one application. After curing at standard conditions (4.5.1.1) for six hours, the test panel shall be immersed in AMS 2629 at 77 °F (25 °C). The hardness shall be determined after a total of 48 hours (42 hours in fluid) and after a total of 120 hours (114 hours in fluid) in accordance with ASTM D 2240 (instantaneous) using a Type A Durometer. - 4.5.15 Peel Strength: - 4.5.15.1 The type, quantity, and thickness of panels shown in Table 7 shall be used for evaluation of peel strength. All panels shall be as described in Figure 3. The panels shall be prepared in accordance with Table 7. When required, the manufacturer's recommended adhesion promoter shall be applied as in 4.5.2.6. The center 4 inches (102 mm) of the panels shall be coated on one face with a 0.125 inch (3.18 mm) thickness of sealing compound. An optional configuration consists of coating the bottom, approximately 5 inches (127 mm), of the panel with sealant (Figure 3). A 2.75 x 12 inch (69.8 X 305 mm) strip of 20 to 40 (850 to 425 μm) mesh aluminum or monel wire fabric or CCC-C-419, Type III, cloth shall be impregnated with the sealing compound, so that approximately 5 inches (127 mm) at one end is completely covered on both sides. The sealant coated end of the fabric shall be placed on the sealant coated panel, and smoothed down on the layer of sealing compound, taking care not to trap air beneath the fabric. An additional coating of sealing compound shall be applied over the fabric approximately 0.031 inch (0.79 mm) thick. The sealant shall be given a standard cure as in 4.5.2.8. SAE **AMS 3281A** TABLE 7 - Peel Strength Panels | Quantity | Panel Material | Panel Dimensions | |----------|---|--| | 6 | AMS 4049 aluminum alloy, chemical treated in accordance with 4.5.2.1 | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 6 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471 | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 6 | AMS 5516 stainless steel (Use AMS 3100 Adhesion Promoter) | 0.025/0.040 x 2.75 x 6.0 inch
(0.64/1.02 x 69.8 x 152 mm) | | * 10 | AMS 4901 titanium (Use AMS 3100 Adhesion Promoter) | 0.025/0.040 x 2.75 x 6.0 inch
(0.64/1.02 x 69.8 x 152 mm) | | • 10 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471, and coated with MIL-C-27725 | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 6 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471, and coated with MIL-C-27725 (Use AMS 3100 Adhesion Promoter) | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 2 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471, coated with MIL-C-23377, and cured 7 days at standard conditions | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 2 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471, coated with MIL-P-23377, cured 2 hours at 200 °F (93 °C) | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 2 | AMS 4045 aluminum alloy, anodized in accordance with AMS 2471, coated with MIL-P-85582 waterbased primer (Use AMS 3100 adhesion promoter) | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 6 | Graphite Epoxy as in 4.5.2.2. Test both sides and tool side. Do not test both sides of the same panel | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | | 6 | Graphite Bismaleimide (BMI) as in 4.5.2.2.2 Test both sides and tool side. Do not test both sides of same panel. | 0.040 x 2.75 x 6.0 inch
(1.02 x 69.8 x 152 mm) | 4.5.15.2 At the end of the sealing compound cure, two panels of each substrate listed in Table 7, except those coated with MIL-P-23377 primer, MIL-C-85285 urethane topcoat, and MIL-P-85582 primer, shall be subjected to each of the following test conditions: Seven days at 140 °F (60 °C) in AMS 2629, Type I Seven days at 140 °F (60 °C) in equal parts AMS 2629, Type I, and 3% by weight aqueous sodium chloride solution 100 hours at 140 °F (60 °C), 10 hours at 160 °F (71 °C), one hour at 180 °F (82 °C) in equal parts AMS 2629, Type I, and 3% by weight aqueous sodium chloride solution. Repeat cycle five times, six cycles total, using new fluid each time. - 4.5.15.2.1 In addition, two panels of each of the substrates marked with an asterisk (*) in Table 7 shall be subjected to each of the following test conditions: - 70 days at 140 °F (60 °C) in AMS 2629, Type I, with fluid change every 14 days. - 70 days at 140 °C (60 °C) in equal parts AMS 2629, Type I, and 3% by weight aqueous sodium chloride solution with fluid change every 14 days. - 4.5.15.2.2 Four of the panels coated with MIL-P-23377 primer (two cured at standard conditions and two cured at 200 °F (93 °C)), two of the panels coated with MIL-C-85285 prethane topcoat, and two of the panels coated with MIL-P-85582 primer shall be subjected to seven days at 140 °F (60 °C) in 3% by weight aqueous sodium chloride solution. - 4.5.15.3 After specified exposure, the panels shall be retained in the fluid for one day at standard conditions (4.5.1.1). Measure peel strength within five minutes after removal from the test fluid. - 4.5.15.4 Two 1-inch (25-mm) wide strips shall be cut through the sealing compound and wire screen or fabric to the metal and extended the full length of the wire screen or fabric. - 4.5.15.5 The specimens shall be stripped back at an angle of 180 degrees to the metal panel in a suitable tensile testing machine having a jaw separation rate of 2 inches per minute (0.8 mm/s). During the peel strength testing, three cuts shall be made through the sealing compound to the panel in an attempt to promote adhesive failure. The cuts shall be at approximately 1-inch (25-mm) intervals. The results reported shall be the numerical average of the peak loads during cohesive failure. Bond failure between sealant compound and fabric shall not be included in the peel strength values. - 4.5.15.6 Tack-Free Peel Strength: For Classes A-1/2 and B-1/2, two AMS 4045 aluminum alloy panels, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm), shall be anodized in accordance with AMS 2471 and coated with MIL-C-27725. Apply sealing compound in accordance with 4.5.15.1. After curing at standard conditions for ten hours, immerse the panels in AMS 2629 at 77 °F (25 °C) for seven days. Test the panels in accordance with 4.5.15.4 and 4.5.15.5. - 4.5.15.7 Acceptance Tests: Four AMS 4045 aluminum alloy panels, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152
mm), shall be anodized in accordance with AMS 2471 and coated with MIL-C-27725. Prepare peel panel as in 4.5.15.1. Soak two panels in AMS 2629 and two panels in AMS 2629/salt water for seven days at 140 °F (60 °C). Test the panels in accordance with 4.5.15.4 and 4.5.15.5. 4.5.16 Chalking: Four, 0.125 x 0.125 x 5 inch (3.18 x 3.18 x 127 mm), specimens shall be cut from a sheet of the sealing compound cured as in 4.5.2.8. The specimens shall be suspended on a nylon cord in a closed glass container with 900 mL of AMS 2629, Type II, so that the specimens are totally immersed in the fluid. Aluminum foil shall be used to seal the lids of the containers. No metal items shall be allowed to be in contact with fluid or specimens during the immersion period. The specimens shall not touch each other; all sides of specimens shall be exposed to the fluid. The immersion temperature shall be 77 °F (25 °C). The tests shall be started on a Wednesday and the fluid changed on the following Friday. The specimens shall be examined for chalking on the following Monday. Remove the specimens from the fluid and allow the fluid to evaporate. The specimens are not to be blotted or wiped. Inspect strips in a well lighted area. Use an original specimen for comparison with the specimens under test to detect chalking. The rating criteria for sealant chalking are: Slight Chalk: Initial observation of white or light gray formation usually at the edges of the sealant. Moderate Chalk: The white or light gray formation has spread to one-quarter to one-half of the surface area. Heavy Chalk: The white or light gray formation has spread to three-quarters or more of the surface. - 4.5.17 Shear Strength (Class C Only): Six AMS 4049 aluminum alloy test panels 0.040 x 1 x 3 inches (1.02 x 25 x 76 mm), shall be prepared. Apply a coat of sealant 0.010 to 0.020 inch (0.25 to 0.51 mm) thick to one end of three panels covering approximately 1 inch (25 mm) on each panel. Overlap the sealant with another panel making a 1 square inch (645 square mm) lap test specimen. The fixture shown in Figure 4 can be used. Reduce the thickness of the sealant to 0.005 to 0.010 inch (0.13 to 0.25 mm). Cure the sealant as in 4.5.2.8 and determine the shear strength by pulling the panels in shear in a suitable tensile testing machine having a jaw separation rate of 2 inches per minute (0.8 mm/s). - 4.5.18 Deleted - 4.5.19 Weight Loss, Flexibility, and Swell: - 4.5.19.1 Four, 0.125 x 1 x 5 inch (3.18 x 25 x 127 mm), specimens shall be cut from a sheet of the sealing compound that has been cured in accordance with 4.5.2.8. 4.5.19.2 Specimens shall be weighed in air (W1) and in water (W2) and then dried. The specimens shall be immersed in 900 mL of AMS 2629 for seven days at 140 °F (60 °C) in a closed container. At the end of the exposure period, the specimens shall be removed from the fluid, dipped momentarily in methyl alcohol, and reweighed in air (W3) and in water (W4). The specimens shall be dried for 24 hours at 120 °F (49 °C), cooled to standard conditions (4.5.1.1) in a desiccator, and weighed (W5). The percent swell shall be calculated using Equation 3 and percent weight loss shall be calculated using Equation 4. Percent Swell = $$\frac{(W2 + W3) - (W1 + W4)}{W1 - W2} \times 100$$ (Eq.3) Percent Weight Loss = $$\frac{(W1 - W5)}{W1} \times 100$$ (Eq.4) - 4.5.19.3 After weighing, the specimens shall be bent 180 degrees over a 0.125-inch (3.18-mm) mandrel. Visual evidence of cracking or checking is not acceptable. - 4.5.20 Resistance to Thermal Rupture: - 4.5.20.1 Two specimens shall be prepared, each having a fillet of sealing compound, approximately 0.125 inch (3.18 mm) thick by 2 inches (51 mm) in diameter, applied to AMS 4045 aluminum alloy test panel. The test panels shall be 0.040 x 3.5 x 3.5 inches (1.02 x 89 x 89 mm) with a hole 0.25 inch (6.4 mm) in diameter in the center of the panel. The hole in the test panel shall be filled with sealant. - 4.5.20.2 The sealing compound fillets shall be cured as in 4.5.2.8 and tests shall begin not more than two days after cure cycle. - 4.5.20.3 One of the panels shall be immersed in AMS 2629 for 120 hours \pm 4 at 140 °F (60 °C), plus 60 hours \pm 4 at 160 °F (71 °C), plus 6 hours \pm 1 at 180 °F (82 °C). - 4.5.20.4 The panels shall be removed from the fluid and immediately applied to the fixture, shown in Figure 6, using the suitable gasket. The panel shall be positioned on the fixture such that the sealant is within the fixture chamber. - 4.5.20.5 The fixture shall be placed in an oven at 300 °F (149 °C). An air pressure of 10 psi (69 kPa) shall be applied using an air regulator. The clamp fixture shall be maintained in the oven for 30 minutes after the pressure is applied. - 4.5.20.6 Deformation shall be measured from the surface of the test panel not exposed to pressure, to the point of maximum deformation of the sealant compound. - 4.5.20.7 The test shall be repeated on the panel not immersed in AMS 2629. - 4.5.21 Resistance to Thermal Expansion: The thermal expansion block shown in Figure 7 shall be anodized in accordance with AMS 2471 and overcoated with MIL-P-23377 primer. Fill the groove in the block with sealant. Care shall be taken to prevent air entrapment during filling. The sealant shall be given a standard cure as in 4.5.2.8, and the surface trimmed flush with the block, if necessary. Expose the specimen to a standard heat cycle as in 4.5.1.2, remove from the oven, and measure the amount of sealant expansion 2 inches (51 mm) from each end of the block. Allow the block to cool to 77 °F (25 °C) and repeat the measurements. The expansion or contraction shall be reported. - 4.5.22 Heat Reversion Resistance: Two AMS 4045 aluminum panels, 0.040 x 3 x 12 inches (1.02 x 76 x 305 mm) anodized in accordance with AMS 2471, and coated with 0.001 inch (0.025 mm) of MIL-C-27725, shall be coated with freshly mixed sealing compound applied over one surface of one panel and the other panel positioned over the sealant-covered surface to form a sandwich with a layer of sealing compound approximately 0.010 inch (0.25 mm) thick. The panels shall be given a standard cure as in 4.5.2.8 and then exposed to a standard heat cycle as in 4.5.1.2. The panels shall be cooled to room temperature and peeled apart in a tensile testing machine at a jaw separation rate of 2 inches per minute (0.8 mm/s). Report the peak load value. - 4.5.23 Fluid Rupture Resistance: A 0.125 inch (3.18 mm) hole shall be drilled in the center of a 0.040 x 3.5 x 3.5 inch (1.02 x 89 x 89 mm) AMS 4045 aluminum alloy test panel. A fillet of sealant 0.125 inch (3.18 mm) thick and 0.50 inch (12.7 mm) in diameter shall be applied to the center of the panel covering the hole. After curing two hours at standard conditions (4.5.1.1), a 0.50 inch (12.7 mm) cork borer shall be used to trim excess sealant and the panel shall be installed in the Figure 8 apparatus. This apparatus consists of a glass bulb fitted with a buna-N O-ring. After installation of the panel, 100 mL of AMS 2629 shall be added to the apparatus, the plastic tubing attached, and 10 psi (69 kPa) air pressure applied to the top of the fluid. This pressure shall be maintained for 24 hours at standard conditions (4.5.1.1). Report any pressure loss. - 4.5.24 Tensile Strength and Elongation: - 4.5.24.1 Mixed sealing compound, 0.125 inch \pm 0.015 (3.18 mm \pm 0.4) thick, shall be prepared by pressing between two polyethylene sheets, removing the top sheet at the end of the tackfree time, and allowing the sealing compound to cure as in 4.5.2.8. Twelve tensile specimens shall be cut from the sheet using Die C, as specified in ASTM D 412. Three specimens shall be exposed to each of the environmental conditions listed in Table 3. - 4.5.24.1.1 Standard cure as in 4.5.2.8. - 4.5.24.1.2 Cured plus 14 days immersed in AMS 2629 at 140 °F (60 °C). - 4.5.24.1.3 Cured plus 8 hours at 360 °F (182 °C). - 4.5.24.1.4 Cured plus 72 hours immersed in AMS 2629 at 140 °F (60 °C), followed by 72 hours air drying at 120 °F (49 °C), followed by seven days at 250 °F (121 °C). - 4.5.24.1.5 Cured plus standard heat cycle (4.5.1.2) followed by seven days immersed in AMS 2629 at 140 °F (60 °C). - 4.5.24.2 Where fluid immersion is specified in Table 3, the specimens shall be immersed in 400 mL of AMS 2629. Specimens to be tested after the fluid immersion shall be cooled for 24 hours at 77 °F (25 °C) and tested within five minutes after removal from the fluid. - 4.5.24.3 Specimens to be tested after oven aging shall be allowed to cool for 16 to 48 hours at standard conditions (4.5.1.1) before testing. - 4.5.24.4 The tensile and elongation tests shall be conducted, at standard conditions (4.5.1.1), in accordance with ASTM D 412 at a jaw separation rate of 20 inches ± 1 per minute (8.5 mm/s \pm 0.4). - 4.5.25 Low-Temperature Flexibility: - 4.5.25.1 Four AMS 4049 aluminum alloy test panels, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm), shall be prepared. A coating of the sealing compound 0.10 x 1.5 x 4 inches (2.5 x 38 x 102 mm) shall be applied to the center of each of the four panels. Care shall be taken to maintain an accurate sample thickness of 0.1 inch (2.5 mm). At the end of a standard cure, as in 4.5.2.8, the specimens shall be immersed in 900 mL of AMS 2629 for 120 hours ± 4 at 140 °F (60 °C) followed by 60 hours ± 4 at 160 °F (71 °C) and 6 hours ± 1 at 180 °F (82 °C). At the completion of the fluid exposure, the specimens shall be removed from the fluid and given a standard heat cycle as in 4.5.1.2. All four panels shall then be immediately placed in a low-temperature flexibility fixture (See Figure 9) consisting of a clamp support that will grip both sides of both 6 inch (152 mm) edges of the panel for 3 inches (76 mm) from one end without touching the sealant. The fixture shall be capable of flexing the panel through a 30 degree arc, 15 degrees each side of the center, at a constant speed of one cycle per five seconds.
The temperature shall be reduced to -65 °F (-54 °C), stabilized at this temperature for at least two hours, and the panels flexed through 130 consecutive cycles. - 4.5.26 Hydrolytic Stability: A cured specimen, approximately 0.50 inch (12.7 mm) thick x 3 inches (76 mm) in diameter, shall be exposed for 120 days in an environment of 160 °F (71 °C) and 95% ± 5 relative humidity. To do this, pour a solution of 22% by weight glycerin in distilled water into a desiccator until the liquid level is 1 inch (25 mm) below the desiccator plate. Suspend the sealant specimen in the desiccator so that it does not touch anything. Apply vacuum grease to the lid and slide the lid in place. Loosen stopper in the hole to prevent vacuum build up. Place the desiccator in a circulating-air oven set at 158 °F (70 °C) and tightly stopper the hole to prevent water evaporation. Change the glycerin solution every 30 days or when it becomes cloudy. After 120 days, remove the desiccator from the oven and allow to cool, frequently loosening the stopper. Remove the specimen from the desiccator and hold at standard conditions (4.5.1.1) for 14 days. The instantaneous hardness shall be determined in accordance with ASTM D 2240 and reported. 4.5.27 Corrosion Resistance: Two AMS 4045 aluminum alloy panels, 0.040 x 2.75 x 6 inch (1.02 x 69.8 x 152 mm), shall be prepared as follows; a controlled area 1 inch (25 mm) wide by 5 inches (127 mm) long shall be masked in the center on one side of each panel and the remainder of the panel shall be chemical coated as in 4.5.2.1 and overcoated with MIL-C-27725. After the coating has cured, an 0.062 inch (1.57 mm) thick layer of sealing compound shall be applied to the area, overlapping not less than 0.25 inch (6.4 mm) onto the coated portion. The sealant shall be given a standard cure (4.5.1.1) and the panels conditioned as follows: The panels shall be immersed vertically in a covered glass vessel containing a two-layer liquid consisting of a 3% by weight aqueous sodium chloride solution and AMS 2629 so that 2 inches (51 mm) of the panel is exposed to the salt solution, 2 inches (51 mm) is exposed to AMS 2629, and the remainder of the panel is exposed to the air-vapor mixture. The temperature of the fluid shall be maintained at 140 °F (60 °F) for 12 days, followed by 60 hours at 160 °F (71 °C), and six hours at 180 °F (82 °C). Immediately upon removal from the liquid, the sealant shall be removed by mechanical means using a nonmetallic scraper and the panel examined. ## 4.5.28 Repairability: - 4.5.28.1 Prepare sufficient number of AMS 4045 aluminum alloy panels, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm), so that there are two panels for each Class B-2 sealing compound already qualified to this specification, plus two panels for the sealant being qualified and two panels for sealant qualified to MIL-S-83430. Anodize panels in accordance with AMS 2471 and overcoat with MIL-C-27725. - 4.5.28.2 Apply adhesion promoter as in 4.5.2.6 and overcoat one side of the panels with 0.125 inch (3.18 mm) of sealing compound so that two panels are coated with each Class B-2 sealing compound already qualified to this specification, two panels are coated with MIL-S-83430 polysulfide sealing compound and two panels are coated with the sealing compound being qualified. After curing for 14 days at standard conditions (4.5.1.1), expose one panel of each sealing compound to AMS 2629 for three days at 140 °F (60 °C), followed by three days air drying at 120 °F (49 °C), and seven days air aging at 248 °F (120 °C). - 4.5.28.3 Clean all panels in accordance with 4.5.2.5 and apply a thickness of 0.125 inch (3.18 mm) of newly mixed sealing compound over the existing compound. A peel strength panel shall be prepared in accordance with 4.5.15. After a standard cure as in 4.5.2.8, the specimens shall be tested as specified in 4.5.15. - 4.5.29 Paintability: Two, 0.040 x 2.75 x 6 inch (1.02 x 69.8 x 152 mm), AMS 4045 aluminum alloy panels shall be anodized in accordance with AMS 2471 and coated with MIL-C-27725. A thin layer of sealant, approximately 0.031 inch (0.79 mm) thick, shall be applied to one surface and allowed to cure as in 4.5.2.8. After curing, the sealant coated surface of one panel shall be painted with MIL-P-23377 primer. The sealant coated surface of the other panel shall be coated with MIL-P-23377 primer and MIL-C-85285 polyurethane coating. When the coatings are thoroughly cured, test panels for adhesion using a "wet tape adhesion test" in accordance with FED-STD-141, Method 6301.2. Soak the panels in distilled water for 24 hours. - 4.5.30 Weather Resistance: A test specimen shall be prepared using a thermal expansion block (Figure 7) finished with MIL-P-23377 primer coating. After the coating is cured, the groove shall be filled approximately flush with sealant. After a standard cure, as in 4.5.2.8, the test specimen shall be exposed in an Atlas Weatherometer, or equivalent, for 30 days. The temperature shall be 140 °F (60 °C) and a cycle of three minutes water spray and 17 minutes sunshine shall be maintained during the exposure. Visually inspect specimen for evidence of cracking, chalking, peeling, or loss of adhesion. - 4.5.31 Shaving and Sanding (Class B Only): The groove and screw heads of a thermal expansion block (Figure 7), coated with MIL-P-23377, shall be filled with sealant allowing a small excess for shaving and sanding. After being given a standard cure, the excess compound shall be shaved off with a nonmetallic scraper and the surface sanded with 400 grit abrasive paper on a sanding block. Visually inspect for rolling or tearing of the sealant. - 4.5.32 Radiographic Density: - 4.5.32.1 Preparation of Test Panels: A 6 inch (152 mm) square plate, 0.25 inch (6.4 mm) thick, shall be prepared from AMS 4049 aluminum alloy. A notch 0.25 inch (6.4 mm) wide shall be milled to a depth of 0.125 inch (3.18 mm) half way across the plate. A continuation of this notch shall be milled completely through the remaining half so as to form a slot in the plate. - 4.5.32.2 Application of Sealant: A sample of the sealant to be tested shall be machined mixed, after which a strip, 1 inch (25 mm) wide and 0.125 inch (3.18 mm) thick, shall be applied over the entire length of the notched portion and slot in the test plate. A mold shall be used during application of the sealant to the plate to ensure uniform thickness of the sealant. - 4.5.32.3 Test Procedure: The test panel, prepared in 4.5.32.1 and 4.5.32.2, shall be radiographed in accordance with MIL-STD-453 to obtain a 2% sensitivity through the plate at an H & D density of 2.5 ± 0.2, using Dupont 510 film, Kodak M film, or equivalent. All density measurements shall be measured with an Ansco-Sweet densitometer, or equivalent. - 4.5.33 Storage Stability: - 4.5.33.1 Accelerated Storage Stability: A full, tightly closed 1-quart (1-L) container of the base compound and a full, tightly closed container of the appropriate amount of the curing agent shall be maintained 14 days at 120 °F (49 °C). After cooling to standard conditions (4.5.1.1) for 24 hours, tests shall be conducted in accordance with 4.5.5, 4.5.7, 4.5.8, 4.5.9, 4.5.10, 4.5.11, 4.5.12, and 4.5.15. Four AMS 4045 aluminum alloy panels, 0.040 x 2.75 x 6 inches (1.02 x 69.8 x 152 mm), anodized in accordance with AMS 2471 and overcoated with MIL-C-27725 shall be prepared for peel panels as in 4.5.15. The panels shall be aged for seven days at 140 °F (60 °C) with two panels immersed in AMS 2629 and 3% by weight aqueous sodium chloride solution. The panels shall be tested as in 4.5.15. - 4.5.33.2 Long-Term Storage: Three original unopened 1 pint (1/2 L) kits of sealing compounds (12 fluid ounces (355 mL) of base compound in each kit and the appropriate amount of curing agent) shall be stored at 77 °F (25 °C) for nine months. At the end of the storage period, the sealant shall be tested in accordance with 4.5.7, 4.5.8, 4.5.10, 4.5.12, and 4.5.13. ### 4.6 Reports: The supplier of sealing compound shall furnish with each shipment a report showing the results of tests to determine conformance to the acceptance test requirements and stating that the sealing compound conforms to the other technical requirements. This report shall include the purchase order number, batch number, AMS 3281, manufacturer's compound designation, and quantity. ### 4.7 Resampling and Retesting: If any specimen used in the above tests fails to meet the specified requirements disposition of the sealing compound may be based on the results of testing three additional specimens for each original nonconforming specimen. Failure of any retest specimen to meet the specified requirements shall be cause for rejection of the sealing compound represented. Results of all tests shall be reported. ### 5. PREPARATION FOR DELIVERY: ### 5.1 Packaging: - 5.1.1 A batch of sealing compound may be packaged in small quantities and delivered under the basic batch approval provided batch identification is maintained. - 5.1.2 Sealing compound shall be furnished in individual containers for the base compound and the curing compound or in sectional containers. The ratio of the quantity contained in the base compound container to the quantity contained in the curing agent container shall be the same as the recommended mixing ratio of the base compound to the curing agent. - 5.1.3 Individual Containers: The base compound shall be furnished in 1/2-pint (236-mL), 1-pint (473-mL), 1-quart (1-L), or 1-gallon (3.78-L) metal cans conforming to PPP-P-704, in 5-gallon (19-L) pails, in 55-gallon (208-L) drums conforming to PPP-D-729, Type III, except that tin plate cans with paper labels may be used or as specified in the purchase order. The air in the base compound containers shall be replaced with nitrogen immediately prior to closing the containers. The base compound contained in each size container shall be as shown in Table 8. TABLE 8 - Base Compound Content | Size of | Container |
Amount of Base Compound | |-----------|-----------|---| | 1/2 pint | (236 mL) | 6 fluid ounces ± 0.125 (178 mL ± 5) | | 1 pint | (473 mL) | 12 fluid ounces ± 0.25 (355 mL ± 5) | | 1 quart | (1 L) | 24 fluid ounces ± 0.5 (710 mL ± 5) | | 1 gallon | (3.78 L) | 96 fluid ounces ± 2 (2840 mL ± 60) | | 5 gallon | s (19 L) | 5 gallons \pm 10 ounces (19 L \pm 0.3) | | 55 gallon | s (208 L) | 50 gallons ± 0.5 gallon (189 L ± 2) | - 5.1.3.1 The curing agent for kits 1 gallon (3.78 L) or under shall be furnished in glass jars or in suitable containers acceptable to purchaser. Glass jars or plastic containers, as applicable, shall have vertical, smooth inside walls and no internal projections or internal lips exceeding 0.062 inch (1.57 mm). The glass jars shall be closed with enameled metal or plastic continuous thread screw caps having a nonabsorbent lining material. Caps shall be tightened adequately and further sealed with cellulose bands, or equivalent. Curing agent for 5-gallon (19-L) pails shall be packaged in 1-gallon (3.79-L) cans conforming to PPP-C-96, Type 5, Class 2. Curing agent for 55-gallon (208-L) drums shall be packaged in pails conforming to PPP-P-704. - 5.1.3.2 One container each of the base compound and the curing agent, individually packaged in accordance with 5.1.2 and 5.1.3, shall be enclosed in a container acceptable to purchaser and shall constitute a complete kit. - 5.1.4 Sectional-Type Containers: The base compound and the curing agent shall be furnished in high-density polyethylene sectional-type 2.5-ounce (74-mL) or 6-ounce (178-mL) cartridges, conforming to MIL-S-38714, as specified in the purchase order. The total content of the base compound and curing agent contained in each sectional-type container shall be as shown in Table 9. TABLE 9 - Container Content | Size of Container | Total Content (Base and Curing) | |---------------------|--| | 2.5 ounces (74 mL) | 2 fluid ounces ± 0.0125 (69 mL ± 4) | | 6 ounces (178 mL) | 3.5 fluid ounces ± 0.125 (105 mL ± 4) | | 6 ounces (178 mL) | 3.5 fluid ounces ± 0.125 (105 mL ± 4)
4.5 fluid ounces ± 0.125 (135 mL ± 4) | 5.1.5 Containers of compound shall be prepared for shipment in accordance with commercial practice and in compliance with applicable rules and regulations pertaining to handling, packaging, and transportation of the compound to ensure carrier acceptance and safe delivery. | AMS 3281A | | SAE | AMS 3281A | |-----------|--|--|-----------------------| | 5.2 | Identification: | | | | 5.2.1 | Compound: Each container and each boless than the following: | ox shall be permanently and legibly mar | ked with not | | | SEALING COMPOUND, POLYSULFIDE
TANKS AND FUEL CELL CAVITIES, LO
USE TO 360 °F (182 °C) | (T) SYNTHETIC RUBBER, FOR INTE
W DENSITY (1.20 to 1.35 sp gr), INTE | GRAL FUEL
RMITTENT | | | AMS 3281 MANUFACTURER'S IDENTIFICATION MANUFACTURER'S PRODUCT DESIGN | | > | | | COMPOUND NUMBERBATCH NUMBER | ans | | | | DATE OF MANUFACTURE | 50 | | | | STORE BELOW 80 °F (27 °C) | | | | 5.2.2 | than the following: SEALING COMPOUND, POLYSULFIDE TANKS AND FUEL CELL CAVITIES, LOUSE TO 360 °F (182 °C) AMS 3281 PURCHASE ORDER NUMBER MANUFACTURER'S IDENTIFICATION MANUFACTURER'S MATERIAL DESIGNO DESCRIPTION BATCH NUMBER NET WEIGHT | (T) SYNTHETIC RUBBER, FOR INTE
W DENSITY (1.20 to 1.35 sp gr), INTE | GRAL FUEL
RMITTENT | | 6. A | CKNOWLEDGMENT: | | | | | supplier shall mention this specification nu urchase orders. | mber in all quotations and when acknow | wledging | | 7. P | EJECTIONS: | | | | | ealing compound not conforming to this spoill be subject to rejection. | ecification, or to modifications authorize | ed by purchaser, | ### 8. NOTES: - 8.1 Properties are divided into two classes; performance (acceptance test) and application (preproduction tests) requirements. Performance requirements define those properties of the cured sealant and its performance in service. Application requirements define those properties of the uncured sealant and affect the application parameters of the sealant, but have little or no effect on the performance properties of the cured sealant. Minor variations in application requirements during acceptance testing may not be cause for rejection if approved by the procuring agency. - 8.2 Qualification of Sealing Compound for U.S. Government Procurement: With respect to sealing compounds requiring qualification, awards will be made only for sealing compounds which are, prior to the award of a contract, qualified for inclusion in the applicable qualified products list (QPL) whether or not such products have been so listed up to that date. The attention of contractors is called to these requirements, and manufacturers are urged to arrange to have the sealing compound that they propose to offer to the U.S. Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the sealing compound covered by this specification. The activity responsible for the QPL is the Wright Research and Development Center, ATTN: MLSE, Wright-Patterson Air Force Base, Ohio 45433-6533, and information pertaining to qualification of sealing compound may be obtained from that activity. - 8.2.1 Qualification tests must be performed every three years in order to remain on the U.S. Government qualified products list (QPL). - 8.3 Dimensions and properties in inch/pound units and the Fahrenheit temperatures are primary; dimensions in SI units and the Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information. - 8.4 Purchase documents should specify not less than the following: Title, number, and date of this specification Type and size of containers (kits) desired Quantity of containers (kits) desired Special packaging, if required. 8.5 Sealing compounds meeting the requirements of this specification have been classified under Federal Supply Classification (FSC) 8030. PREPARED UNDER THE JURISDICTION OF AMS COMMITTEE "G-9"