

AEROSPACE RECOMMENDED PRACTICE

ARP1110

REV. C

Issued Revised 1969-11 2015-08

Superseding ARP1110B

Minimizing Stress Corrosion Cracking in Wrought Forms of Steels and Corrosion Resistant Steels and Alloys

RATIONALE

ARP1110C is a Five-Year Review and update of this specification.

1. SCOPE

The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide the aerospace industry with recommendations concerning the minimization of stress corrosion cracking in wrought heat-treatable carbon and low alloy steels and in austenitic, precipitation hardenable, and martensitic corrosion-resistant steels and alloys.

The detailed recommendations are based on laboratory and field experience and reflect those design practices and fabrication procedures which should avoid in-service stress corrosion cracking.

2. REFERENCES

2.1 Applicable Documents

The following publications form a part of this document to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. In the event of conflict between the text of this document and references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

2.1.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org

AMS2430 Shot Peening

AMS2431 Peening Media, General Requirements

AMS2432 Shot Peening, Computer Monitored

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2015 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/ARP1110C

SAE WEB ADDRESS:

2.1.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM G49 Preparation and Use of Direct Tension Stress-Corrosion Test Specimens

ASTM G58 Preparation of Stress Corrosion Test Specimens for Weldments

2.1.3 Other Publications

Damage Tolerant Design Handbook, MCIC-HB-01, Air Force Materials Lab, Air Force Flight Dynamics Laboratory

Aerospace Structural Metals Handbook (formerly AFML-TR-68-115), CINDAS/Purdue University, West Lafayette, IN 47907

Deformation and Fracture Mechanics of Engineering Materials, Richard W. Hertzberg, Materials Research Center, Lehigh University, Wiley Publishing, ISBN 0471012149

Corrosion Engineering, Fontana and Greene, McGraw-Hill Book Company, ISBN 0072939737

2.2 Definitions

2.2.1 STRESS CORROSION CRACKING

The combined action of sustained tensile stresses and corrosion to cause premature failure (see 5.2).

2.2.2 The relative resistance of a material and its thermomechanical condition (heat treatment or degree of work hardening) to stress corrosion cracking is characterized by the following terms:

2.2.2.1 LOW RESISTANCE TO STRESS CORROSION CRACKING

The material and condition are generally susceptible to stress corrosion cracking.

2.2.2.2 MODERATE RESISTANCE TO STRESS CORROSION CRACKING

The material and condition are not generally susceptible to stress corrosion cracking, but conditions of high stress or aggressive environments have been shown to result in stress corrosion cracking.

2.2.2.3 HIGH RESISTANCE TO STRESS CORROSION CRACKING

The material and condition are not likely to exhibit stress corrosion cracking under a wide range of exposure environments.

3. GENERAL

- 3.1 The following three conditions must be present for stress corrosion cracking to occur:
- a. An alloy and material condition that is susceptible to stress corrosion cracking.
- b. A sustained or residual tensile stress that, especially if associated with geometric features (e.g., notches, corners) or surface discontinuities that generate a stress intensity that exceeds the threshold for the specific alloy/condition/environment combination.
- c. A specific corrosive environment that the alloy and material condition is susceptible.

- 3.2 Stress corrosion cracking growth rates are accelerated by increasing stress, temperature, and concentration of the contaminating environment.
- 3.3 Carbon and low alloy steels with an ultimate tensile strength below 180 ksi (1241 MPa) are generally resistant to stress corrosion. At ultimate tensile strengths above 180 ksi (1241 MPa) and below 200 ksi (1379 MPa), these steels generally have moderate resistance to stress corrosion. Above 200 ksi (1379 MPa) ultimate tensile strength, these steels generally have poor resistance to stress corrosion except for AISI 1095 and music wire, both of which have high resistance to stress corrosion. Surface treatments such as carburizing, carbonitriding, and induction hardening will increase the susceptibility to stress corrosion cracking.
- 3.4 The relative stress corrosion resistance of various stainless steels and corrosion resistant alloys when exposed to saltwater, seacoast environment or mild industrial environments at ambient temperature are shown in Table 1.

Table 1 - Relative resistance of wrought austenitic, precipitation hardenable, and martensitic corrosion-resistant steels to stress corrosion cracking (4)

			Condition for	
		Condition for	Moderate	Condition for
Alloy	UNS	High Resistance	Resistance	Low Resistance
300 Series Stainless Steel (2)		All	₹ Ø. <u> </u>	
A286 Stainless Steel	S66286	All	O)	
Almar® 362 Stainless Steel	S36200	H1000 and above		
Custom 450®, 455® Stainless Steel	S4500, S45500	H1000 and above	Below H1000	
15-5PH® Stainless Steel	S15500	H1000 and above	Below H1000	
PH15-7Mo® Stainless Steel	S15700	CH900		All Except CH900
403, 410, 431 Stainless Steel	S40300, S41000, S43100	1/-3	(1)	- <u>-</u> -
PH13-8Mo® Stainless Steel	S13800		All	
17-4PH® Stainless Steel	S17400	~~	All	
Nitronic® 32	S24100	Annealed		
440C Stainless Steel	S44004	<i></i>		All
Nitronic® 60	S21800	3	Annealed	
17-7PH® Stainless Steel	S17700	CH900		All Except CH900
AM350, AM355 Stainless Steel	S35000, S35500 🙀 🔾	SCT1000 & above		Below SCT1000
21-6-9 Stainless Steel	S21904	Annealed		
20Cb-3® Stainless Steel	N08020	All		
Nitronic® 33 (3)	S24000	All		

- (1) Tempering between 700 and 1100 °F (371 and 593 °C) reduces general corrosion and stress corrosion resistance.
- (2) Non-free machining grades which are unsensitized, including weldments of 304L, 316L, 321, and 347.
- (3) Including weldments.
- (4) These ratings presume a typical microstructure. Certain orientations of crystallography or grain structure may enhance or may inhibit stress corrosion cracking.
- ® Custom 450, Custom 455, and 20Cb-3 are registered trade names of Carpenter Technology Corp. Nitronic,15-5PH, PH15-7 Mo, PH13-8 Mo, and 17-4PH are registered trademarks of Armco. Almar is a registered trademark of Allegheny Ludlum.
- 3.5 The levels of stress intensity necessary to produce stress corrosion crack growth in susceptible alloys/conditions (see 5.3 and 5.4) can be found in a number of references (see 2.3) including:
- Damage Tolerant Handbook, MCIC-HB-01
- Aerospace Structural Metals Handbook (formerly AFML-TR-68-115)
- Deformation and Fracture Mechanics of Engineering Materials, Richard W. Hertzberg
- Corrosion Engineering, Fontana and Greene
- 4. PREVENTION

Prevention of stress corrosion cracking is best achieved by eliminating one or more of the necessary conditions specified in 3.1. This can be accomplished by applying practices such as the following for selecting and processing materials for aerospace applications:

- 4.1 Alloy/Condition/Optimization (see 5.8)
- 4.1.1 Use alloys/conditions with inherently high stress corrosion cracking resistance as shown in 3.3 or Table 1.
- 4.1.2 Steels that include elements such as titanium, columbium, vanadium, molybdenum, and tungsten, permitting tempering or precipitation hardening at relatively high temperatures without losing strength, tend to display improved stress corrosion resistance.
- 4.1.3 Vacuum melted high purity steels appear to be more resistant to stress corrosion than air melted steels and those where nonessential residual elements are not restricted. A general correlation exists between improved fracture toughness, improved impact strength, and improved stress corrosion resistance.
- 4.1.4 Avoid exposure of austenitic stainless steels to the range of 900 to 1500 °F (482 to 816 °C) to prevent formation of grain boundary carbide precipitation.
- 4.2 Sustained Tensile Stress Minimization (see 5.9)
- 4.2.1 Exercise care in quenching, machining, welding, and assembly to avoid generating residual tensile stresses (see 5.1).
- 4.2.2 Relieve any residual tensile stresses generated during manufacture. Stress relieving, tempering, and precipitation hardening should follow machining and welding operations wherever practical.
- 4.2.3 Avoid sharp notches, crevices, and rough finishes.
- 4.2.4 Avoid situations where tensile stresses from assembly have been applied in the short transverse direction.
- 4.2.5 Shot peen or surface burnish to produce surface compressive stresses to assist in preventing stress corrosion (see AMS2430 or AMS2432). Do not straighten or thermally stress relieve after peening.
- 4.2.6 Use glass beads, ceramic beads, or corrosion resistant stainless steel shot when peening stainless steel to avoid anodic corrosion of the surface from shot residue. Where it is necessary to peen using cast steel or cut carbon steel wire shot, passivate after peening to avoid anodic corrosion (see AMS2431).
- 4.2.7 Whenever possible for steels with an ultimate tensile strength of 200 ksi (1379 MPa) or greater, limit sustained tensile stresses to 50% of the longitudinal 0.2% offset yield strength, 35% of the long-transverse yield strength, and 25% of the short-transverse yield strength.
- 4.2.8 Surface pits, ridges, contaminants, or discontinuities can be initiation points for stress corrosion cracking.
- 4.2.9 Resistance to stress corrosion cracking of stainless steels and corrosion resistant alloys can be increased significantly by polishing (electrolytically or mechanically) surfaces, at least those that are expected to be exposed to a corrosive environment. Polishing (electrolytically or mechanically) should be done after fabrication and surface working. Do not remove more than 10% of the depth of the compressive residual stress layer from surfaces that have been shot peened.
- 4.3 Minimizing Exposure to Unfavorable Environments

This is the most difficult and least reliable approach to avoiding stress corrosion cracking; however, the following are some important considerations (see 5.6 and 5.7).

- 4.3.1 Conditions that decrease the potential for corrosion generally decrease the potential for stress corrosion cracking.
- 4.3.2 Organic coatings are generally helpful in minimizing stress corrosion if they are adherent and nonporous. However, their adhesion to stainless steel and corrosion resistant alloys in demanding environments may not be sufficient to provide protection.