

SURFACE VEHICLE STANDARD

J1926™-2

MAR2023

Issued Revised

1988-08 2023-03

Superseding J1926-2 SEP2016

Connections for General Use and Fluid Power Ports and Stud Ends with ASME B1.1 Threads and O-Ring Sealing -Part 2: Heavy-Duty (S Series) Stud Ends

RATIONALE

This document was revised in order to remove Table 5.

FOREWORD

SAE J1926 consists of the following parts, under the general title:

- Connections for General Use and Fluid Power Ports and Stud Ends with ASME B1.1 Threads and O-Ring Sealing:
 - Part 1: Port with O-Ring Seal in Truncated Housing
 - Part 2: Heavy-Duty (S Series) Stud Ends
 - Part 3: Light-Duty (L Series) Stud Ends
 - Part 4: External Hex and Internal Hex Inch Port Plugs Dimensions, Design, Test Methods, and Requirements

These standards define performance requirements dimensions, and designs for port and stud end connections for heavy-duty in Part 2 and light-duty in Part 3. Significant testing through 25 years of use has confirmed the performance requirements of these ports and stud ends (up through size -24). SAE J1926-2 stud ends up through size -24 were originally designed for high pressure connectors of SAE 1/1453 (current SAE J1453-3). Size -32 was developed later with performance verification via round robin testing by FCCTC-C1 committee members.

In fluid power systems, power is transmitted and controlled through a fluid (liquid or gas) under pressure within an enclosed circuit. In general applications, a fluid may be conveyed under pressure. Components are connected through their threaded ports by stud ends on fluid conductor fittings to tubes/pipes, or to hose fittings and hoses.

SAE Executive Standards Committee Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2023 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: 877-606-7323 (inside USA and Canada) Tel: Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

For more information on this standard, visit

https://www.sae.org/standards/content/J1926/2 202303/

SAE WEB ADDRESS:

1. SCOPE

This part of SAE J1926 specifies dimensions, performance requirements, and test procedures for adjustable and nonadjustable heavy-duty (S series) stud ends with ASME B1.1 threads for use in fluid power and general applications.

Stud ends in accordance with this part of SAE J1926 may be used at working pressures up to 63 MPa for nonadjustable stud ends and up to 41.3 MPa for adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc.

For threaded ports and stud ends specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new design in hydraulic fluid power applications.

NOTE: This document specifies inch as well as metric hexes for the stud ends. Therefore, any product drawing specifying stud ends in accordance with this document must specify hex type, inch or metric, to assure detting intended hex.

Stud ends or parts specified before January 1, 2010, using this standard, shall be supplied with inch hexes, unless otherwise specified.

Conformance to the dimensional information does not guarantee rated performance. Each manufacturer shall perform testing according to the specification contained in this document to ensure that components made to this document comply the full PDF of with the performance rating.

Appendices A and B of this document are informative.

REFERENCES

Applicable Documents 2.1

The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply.

2.1.1 **SAE Publications**

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

Specification for O-Ring Materials Used with Hydraulic Connectors **SAE J515**

Connections for General Use and Fluid Power - Ports and Stud Ends with ASME B 1.1 Threads and O-Ring SAE J1926-1 Sealing - Part 1: Port with O-Ring Seal in Truncated Housing

SAE J2593 Information Report for the Installation of Fluid Conductors and Connectors

ISO Publications 2.1.2

Copies of these documents are available online at https://webstore.ansi.org/.

ISO 4759-1 Tolerances for Fasteners - Part 1: Bolts, Screws, and Nuts with Thread Diameters Between 1.6 (Inclusive) and 150 mm (Inclusive) and Product Grades A, B, and C

ISO 5598 Fluid Power Systems and Components Vocabulary

ISO 19879 Metallic Tube Connections for Fluid Power and General Use - Test Methods for Hydraulic Fluid Power

Connections

2.1.3 ASME Publications

Available from American Society of Mechanical Engineers, 22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007-2900, Tel: 973-882-1170, www.asme.org.

ASME B1.1 Unified Inch Screw Threads (UN and UNR Thread Form)

2.2 Related Publications

The following publications are provided for information purposes only and are not a required part of this SAE Technical Report.

2.2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

- SAE J1453-3 Specification for O-Ring Face Seal Connectors Part 3: Requirements, Dimensions, and Tests for Steel Unions, Bulkheads, Swivels, Braze Sleeves, Connectors, Caps, and Connectors with SAE J1926-2 Inch Stud Ends
- SAE J1926-3 Connections for General Use and Fluid Power Ports and Stud Ends with ASME B1.1 Threads and O-Ring Sealing Part 3: Light-Duty (L Series) Stud Ends
- SAE J1926-4 Connector for Fluid Power and General Use Ports and Stud Ends with ASME B1.1 Threads and O-Ring Seal Part 4: External Hex and Internal Hex Inch Port Plugs Dimensions, Design, Test Methods, and Requirements

2.2.2 ISO Publications

Copies of these documents are available online at https://webstore.ansi.org/.

- Rubber, Vulcanized or Thermoplastic Determination of Hardness (Hardness Between 10 IRHD and 100 IRHD)
- ISO 1101 Technical Drawings Tolerancing of form, Orientation, Location and Run-Out Generalities, Definitions, Symbols, Indications on Drawings
- ISO 1302 Technical Drawings Method of Indicating Surface Texture on Drawings
- ISO 1179-1 Connections for General Use and Fluid Power Ports and Stud Ends with ISO 228-1 Threads with Elastomeric and Metal-to-Metal Sealing Part 1: Threaded Port
- ISO 1179-2 Connections for General Use and Fluid Power Ports and Stud Ends with ISO 228-1 Threads with Elastomeric and Metal-to-Metal Sealing Part 2: Heavy-Duty (S Series) and Light-Duty (L Series) Stud Ends with Elastomeric Sealing (Type E)
- ISO 1179-3 Connections for General Use and Fluid Power Ports and Stud Ends with ISO 228-1 Threads with Elastomeric and Metal-to-Metal Sealing Part 3: Light-Duty (L Series) Stud End with Sealing by O-Ring with Retaining Ring (Types G and H)
- ISO 1179-4 Connections for General Use and Fluid Power Ports and Stud Ends with ISO 228-1 Threads with Elastomeric and Metal-to-Metal Sealing Part 4: Stud End for General Use Only with Metal-to-Metal Sealing (Type B)
- ISO 6149-1 Connections for Fluid Power and General Use Ports and Stud Ends with ISO 261 Threads and O-Ring Sealing Part 1: Port with O-Ring Seal in Truncated Housing

ISO 6149-2	Connections for Fluid Power and General Use - Ports and Stud Ends with ISO 261 Threads and O-Ring Sealing - Part 2: Heavy-Duty (S Series) Stud Ends - Dimensions, Design, Test Methods, and Requirements
ISO 6149-3	Connections for Fluid Power and General Use - Ports and Stud Ends with ISO 261 Threads and O-Ring Sealing - Part 3: Light-Duty (L Series) Stud Ends - Dimensions, Design, Test Methods, and Requirements
ISO 6410-1	Technical Drawings - Screw Threads and Threaded Parts - Part 1: General Conventions
ISO 9974-1	Connections for General Use and Fluid Power - Ports and Stud Ends with ISO 261 Threads with Elastomeric and Metal-to-Metal Sealing - Part 1: Threaded Port
ISO 9974-2	Connections for General Use and Fluid Power - Ports and Stud Ends with ISO 261 Threads with Elastomeric and Metal-to-Metal Sealing - Part 2: Stud End with Elastomeric Sealing (Type E)
ISO 9974-3	Connections for General Use and Fluid Power - Ports and Stud Ends with ISO 261 Threads with Elastomeric and Metal-to-Metal Sealing - Part 3: Stud End with Metal-to-Metal Sealing (Type B)
ISO 11926-2	Connections for General Use and Fluid Power - Ports and Stud Ends with ISO 261 Threads and O-Ring Sealing - Part 2: Heavy-Duty (S Series) Stud Ends

3. DEFINITIONS

For the purpose of this part of SAE J1926, the definitions given in ISO 5598 and the following shall apply.

3.1 ADJUSTABLE STUD END

A stud end connector that allows for fitting orientation before final tightening of the locknut to complete the connection. This type of stud end is typically used on shaped fittings (e.g., tees, cosses, and elbows).

3.2 NONADJUSTABLE STUD END

A stud end connector that does not require specific orientation before final tightening of the connection because it is typically used on straight fittings.

4. STUD END

4.1 Size Designation

The stud ends shall be designated by SAE J1926-2 and the thread size, separated by a colon, for example, SAE J1926-2: 1/2-20. Products drawings specifying this stud end shall have the type of hex, inch or metric, listed.

4.2 Reduced Size Stud Ends for Jump Size Connectors

For jump size connectors where the hex size of the other end, e.g., tube/hose end, is larger than the stud hex "V" in Tables 1 and 6, a shoulder may have to be turned to the appropriate diameter and length to avoid interference with the port spot face. For details, see appropriate connector standard, e.g., SAE J1453-3.

4.3 Assembly

For proper stud end assembly, follow instructions in SAE J2593.

REQUIREMENTS

5.1 Dimensions

Heavy-duty (S series) SAE J1926-2 stud ends shall conform to the dimensions in Figures 1A and 1B and Tables 1 and 6. Hex tolerances across flats shall be according to ISO 4759-1 product grade C.

5.2 Working Pressure

Heavy-duty (S series) stud ends made of low-carbon steel shall be designed for use at the working pressures given in Table 2.

CAUTION: The pressures for sizes -40 (3-12 UN) and -48 (3-1/2-12) are based on calculations for guidance only.

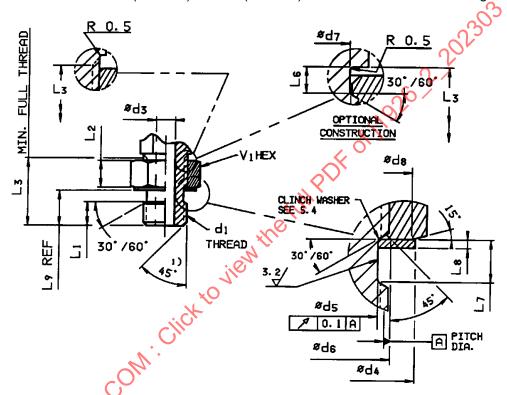


Figure 1A-Adjustable SAE J1926-2 heavy-duty (S series) stud end detail

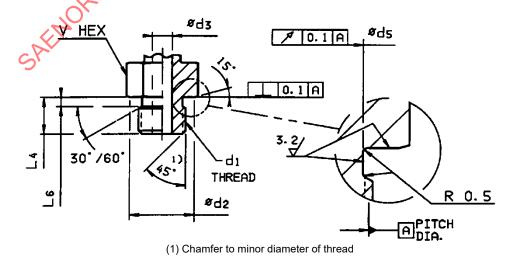


Figure 1B - Nonadjustable SAE J1926-2 heavy-duty (S series) stud end detail

Table 1 - SAE J1926-2 heavy-duty (S series) stud end dimensions

										Dimension	ons are in r	millimeters
Nominal Tube OD Inches Tubing Dash	Nominal Tube OD Inches Tubing	Nominal Tube OD Inches Tubing Inches	Nominal Tube OD Metric Tubing	d ₁ ⁽¹⁾ Thread Size Inches	φd ₂ ±0.2 for Metric	14	Tol.	φ d ₄ ±0.4	φd₅ +0.05 -0.08	ϕd_6	φd ₇ +0	φd ₈ ±0.2 for Metric
Size	mm		mm		Hex	φd ₃				±0.2	-0.3	Hex
-3	4.76	0.188	5	3/8-24	13.8	3	±0.1	14.6	7.95	9.9	8	13.8
-4	6.35	0.250	6	7/16-20	14.1 ⁽²⁾	4.5	±0.1	16.5	9.25	11.5	9.3	13.8
- 5	7.94	0.312	8	1/2-20	16.8	6	±0.1	18.3	10.85	13	10.9	16.8
										3		
-6	9.52	0.375	10	9/16-18	18.8	7.5	±0.2	20.2	12.24	14.6	12.3	18.8
-8	12.70	0.500	12	3/4-16	23.8	10	±0.2	25.7	16.76	19.4	16.8	23.8
-10	15.88	0.625	16	7/8-14	26.8	12.5	±0.2	29.3	19.63	22.6	19.7	26.8
									$\Omega_{\rm s}$,		
-12	19.05	0.750	20	1-1/16-12	31.8	15.5	±0.2	36.7	24	27.3	24	35.8
-14	22.22	0.875	22	1-3/16-12	35.8	18	±0.2	40.4	27.18	30.5	27.2	40.8
-16	25.40	1.000	25	1-5/16-12	40.8	21.5	±0.2	44.0	30.35	33.7	30.4	40.8
								(/)				
-20	31.75	1.250	30	1-5/8-12	49.8	27.5	±0.2	55	38.28	41.6	38.3	48.8
-24	38.10	1.500	38	1-7/8-12	54.8	33.5	±0.3	62.3	44.6	48	44.6	54.8
-32	50.8	2.000	50	2-1/2-12	69.8	40.0	±0.3	80.3	60.48	63.8	60.5	69.8
							111					
-40	63.5	2.500	-	3-12	84.8	53	<u>≠</u> 0.3	93	73.2	76.5	73.2	84.8
-48	76.2	3.000	-	3-1/2-12	94.8	63 _ (2	±0.3	105	85.9	89.2	85.9	94.8

Table 1 - SAE J1926/2 heavy-duty (S series) stud end dimensions (continued)

					711				Dime	nsions are in r	millimeters
Nominal Tube OD	Nominal Tube OD	Nominal Tube OD	Nominal Tube OD	Click							
Tubing	Inches	Inches	Metric	. · ·							
Dash Size	Tubing mm	Tubing Inches	Tubing mm	L₁ ±0.2	L ₂ ±0.2	L_3 min	L₄ ±0.2	L ₆ ±0.15	L ₇ ±0.1	L ₈ ±0.08	L ₉ Ref
-3	4.76	0.188	, 50	7	7.2	18.8	9.5	1.75	3.4	0.8	9.6
-4	6.35	0.250	6	7.8	8	20.5	11	2.05	4.1	0.9	11
-5	7.94	0.312	8	7.8	8	20.5	11	2.05	4.1	0.9	11
-6	9.52	0.375	10	9	8.5	22.4	12	2.25	4.1	0.9	12.2
-8	12.70	0.500	12	10	10.3	26.1	14	2.55	4.9	1	13.9
-10	15.88	0.625	16	11.8	11.5	30.2	16	2.85	5.7	1.25	16.3
-12	19.05	0.750	20	13.8	12.8	33.8	18.5	3.35	6	1.25	18.6
-14	22.22	0.875	22	13.8	12.8	33.8	18.5	3.35	6	1.25	18.6
-16	25.40	1.000	25	13.8	13.6	34.6	18.5	3.35	6	1.25	18.6
-20	31.75	1.250	30	13.8	13.6	34.6	18.5	3.35	6	1.25	18.6
-24	38.10	1.500	38	13.8	13.6	34.6	18.5	3.35	6	1.25	18.6
-32	50.80	2.000	50	13.8	13.6	34.6	18.5	3.35	6	1.25	18.6
-40	63.5	2.500	-	16	16	40.0	21	3.5	6.5	1.5	21
-48	76.2	3.000	-	20	20	48.0	25	3.5	6.5	1.5	25

Table 1 - SAE J1926/2 heavy-duty (S series) stud end dimensions (continued)

Dimensions are in millimeters Nominal Tube OD Nominal Nominal Nominal Tube OD Tube OD Tube OD Inches V⁽³⁾⁽⁴⁾ V₁⁽⁴⁾ Inches Inches Metric Tubing Dash **Tubing Tubing Tubing** Hex Hex Size mm Inches mm mm mm -3 0.188 5 14 14 4.76 -4 0.250 6 17 6.35 14 -5 0.312 8 17 17 7.94 -6 9.52 0.375 10 19 -8 0.500 12 24 12.70 27 -10 15.88 0.625 16 20 -12 19.05 0.750 36 41(6) -14 22.22 0.875 22 -16 25.40 1.000 25 41 50⁽⁷⁾ -20 31.75 30 1.250 38 55 38.10 55 -24 1.500

2.000

2.500

-32

-40

-48

50.80

63.5

76.2

50

70

85

95

85

^{3.000} Sizes 3/8 through 7/8 (-3 through -10) are UNF-2A; sizes 3/8 through 3-1/2 are UN-2A.

^{(2) 15} degree chamfer is limited to 13.9/14.3 diameter to increase contact area at port face.

^{(3) &}quot;V" hex is the minimum hex required for proper functioning of the straight thread O-ring port connection. It does not always control the connector hex. The connector hex is controlled by the larger of the minimum hex required for proper functioning of either end of the connector. Also see 4.2.

Stud ends or parts specified before January 1, 2010, using this standard, shall be supplied with inch hexes, unless otherwise specified.

Hex corners shall be turned to a diameter of 40 mm ± 0.2 mm to prevent possible interference with the port spotface diameter.

Hex corners shall be turned to a diameter of 44 mm ± 0.2 mm to prevent possible interference with the port spotface diameter.

Hex corners shall be turned to a diameter of 57 mm \pm 0.2 mm to prevent possible interference with the port spotface diameter.

5.3 Performance

Heavy-duty (S series) stud ends made of low-carbon steel shall meet or exceed the burst and impulse pressures given in Table 2 when tested according to 5.5.

Table 2 - SAE J1926-2 heavy-duty (S series) stud end pressures

Units are in megapascals⁽²⁾

					Onto	are in megapassais
	Stud End Styles Nonadjustable	Stud End Styles Nonadjustable	Stud End Styles Nonadjustable	Stud End Styles Adjustable	Stud End Styles Adjustable	Stud End Styles Adjustable
Thread Size	Working ⁽¹⁾	Test Pressure	Test Pressure	Working ⁽¹⁾	Test Pressure	Test Pressure
Inches	Pressure	Burst	Impulse ⁽³⁾	Pressure	Burst	Impulse ⁽³⁾
3/8-24 UNF-2A	63	252	84	42	168	56
7/16-20 UNF-2A	63	252	84	42	168	56
1/2-20 UNF-2A	63	252	84	42	7168	56
					1 /	
9/16-18 UNF-2A	63	252	84	42	168	56
3/4-16 UNF-2A	63	252	84	42	168	56
7/8-14 UNF-2A	63	252	84	42	168	56
				0,		
1-1/16-12 UN-2A	42	168	56	42	168	56
1-3/16-12 UN-2A	42	168	56	42	168	56
1-5/16-12 UN-2A	42	168	56	35	140	47
			0,			
1-5/8-12 UN-2A	28	112	3 7 37	28	112	37
1-7/8-12 UN-2A	28	112	37	21	84	28
2-1/2-12 UN-2A	21	84	28	17.5	70	23
		×	0			
3-12 UN-2A	17.5	70	23	14	56	19
3-1/2-12 UN-2A	17.5	70	23	14	56	19

⁽¹⁾ These pressure ratings were established using fittings made of low-carbon steel and tested in accordance with 4.5, except the ratings for sizes 3-12 and 3-1/2-12 are calculated based on the stress levels of size 2-1/2-12.

5.4 Adjustable Stud End Washer Fit and Flatness

The washer shall be clinched to the stud end with a tight slip fit to an interference fit. The slip fit shall be tight enough so that the washer cannot be shaken loose to cause it to drop from its uppermost position by its own weight. The locknut torque needed to move the washer at the maximum washer interference fit shall not exceed the torques given in Table 3.

Any washer surface that is out of flatness shall be uniform (i.e., not wavy) and concave with respect to the stud end and shall conform to the allowance given in Table 3.

⁽²⁾ To convert from MPa to bar multiply by 10. To convert from MPa to psi, multiply by 145.04.

⁽³⁾ Cyclic endurance test pressure.

Table 3 - Adjustable stud end washer torque and flatness allowance

-			_
	Maximum Nut	Maximum Washer	
Thread	Torque to Move	Flatness	
Size	Washer	Allowance	
Inches	N ⋅m ⁽¹⁾	mm	_
3/8-24 UNF-2A	3	0.25	
7/16-20 UNF-2A	4	0.25	
1/2-20 UNF-2A	5	0.25	
9/16-18 UNF-2A	7	0.25	
3/4-16 UNF-2A	10	0.25	
7/8-14 UNF-2A	12	0.25	On
1-1/16-12 UN-2A	15	0.40	902
1-3/16-12 UN-2A	18	0.40	No.
1-5/16-12 UN-2A	20	0.40	J.
1-5/8-12 UN-2A	25	0.50	. /
1-7/8-12 UN-2A	30	0.50	
2-1/2-12 UN-2A	40	0.50	
3-12 UN-2A	50	0.50	
3-1/2-12 UN-2A	60	0.50	_
(1) —			

 $^{^{(1)}~}$ To convert from N·m to lb.ft, multiply by 0.737.

5.5 Test Methods

Stud ends shall be tested for burst and impulse per ISO 19879 with assembly torque values shown in Table 4.

Table 4 - SAE J1926-2 stud end qualification torque

	Thread Size	Torque +10%, -0 N·m ⁽¹⁾
	3/8-24 UNF-2A	10 ⁽²⁾
	7/16-20 UNF-2A	20 ⁽²⁾
	1/2-20 UNF-2A	40
ORM.C	9/16-18 UNF-2A	45
OW.	3/4-16 UNF-2A	85
AENORY	7/8-14 UNF-2A	115
	1-1/16-12 UN-2A	170
AL	1-3/16-12 UN-2A	215
3 '	1-5/16-12 UN-2A	270
	1-5/8-12 UN-2A	285
	1-7/8-12 UN-2A	370
	2-1/2-12 UN-2A	540
	3-12UN-2A	540 ⁽³⁾
	3-1/2-12 UN-2A	640 ⁽³⁾
	(1) To convert from N m to lb ft mi	ultiply by 0.737

⁽¹⁾ To convert from N·m to lb ft multiply by 0.737.

NOTE: These torque values are for testing only. Assembly tightening torque depends on many factors, including lubrication, coating and surface finish. The manufacturer shall be consulted.

⁽²⁾ These values are for adjustable stud end. Nonadjustable values are 15 and 35 for sizes 3/8-24 and 7/16-20, respectively.

⁽³⁾ These are calculated values. They have not been verified by tests.