

A Product of the Cooperative Engineering Program

SAE J271 DEC88

Special Quality High Tensile, Hard Drawn Mechanical Spring Wire and Springs

SAE Recommended Practice Reaffirmed December 1988

SAENORM. CIICK TO

S.A.E. LIBRARY

Submitted for Recognition as an American National Standard

Cick to view the full Police of 1211, 1986

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright 1989 Society of Automotive Engineers, Inc.

MATERIALS PRACTICE

SAE J271

Issued June 1972 Reaffirmed Dec. 1988

Reaffirming J271 JUN72

400 COMMONWEALTH DRIVE, WARRENDALE, PA 15096

Submitted for recognition as an American National Standard

SPECIAL QUALITY HIGH TENSILE, HARD DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1. SCOPE:

This recommended practice covers the mechanical and chemical requirements of special quality high tensile, hard drawn carbon steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This recommended practice also covers basic materials and processing requirements of springs and forms fabricated therefrom.

2. MANUFACTURE AND WORKMANSHIP:

The steel shall be made by electric furnace, open hearth, or basic oxygen process. Sufficient discard must be made to insure freedom from pipe and undue segregation. Rolling practice shall be controlled to insure that the finished wire shall have no seams greater than 3.5% of the wire diameter or 0.010 in (0.25 mm), whichever is the smaller, as measured on a transverse section.

Using either properly patented or uniformly control cooled rods, the wire shall be cold drawn to produce the specified mechanical properties. The wire shall be uniform in quality, not kinked or improperly cast. To test for cast, one or more convolutions of wire shall be cut from the coil and placed on a flat surface. The wire shall lay substantially flat on itself and not show a wavy condition. Each finished coil shall be one continuous length of wire, properly coiled and firmly tied. Welds prior to cold drawing are permitted.

SAE Technical Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

3. CHEMICAL COMPOSITION:

The steel shall conform to the following chemical composition (percent by weight):

Carbona	0.70 - 1.00
Manganese ^a	0.20 - 1.30
Phosphorus	0.040 max
 Sulfur	0.040 max
 Silicon	0.10 - 0.30

NOTE: For permissible variations from specified chemical ranges and limits for steel, refer to SAE J409.

aCarbon in any one lot shall not vary more than 0.20% and Manganese not more than 0.30%. Normally, lower Mn is used for the smaller size wire, and higher Mn is used for the larger sizes.

4. MECHANICAL PROPERTIES:

The tensile properties of the wire shall conform to the requirements shown in Table 1 by sizes.

TABLE 1 - Tensile Properties

·			Tensile Str	engtha	. `
Wire Dia		Min		Max	
in	mm	ksi	MPa	ksi	MPa
0.020	0.508	350	2415	387	2670
0.023	0.584	346	2385	381	2630
0.026	0.660	337	2325	373	2570
0.029	0.737	332	2290	367	2530
0.032	0.813	327	2255	361	2490
0.035	0.889	325	2245	359	2480
0.041	1.041	314	2165	348	2400
0.048	1.219	306	2110	339	2335
0.054	1.377	301	2075	332	2290
0.062	1.575	295	2035	325	2245
0.072	1.829	287	1980	317	2185
0.080	2.032	282	1945	312	2150
0.092	2.337	276	1905	305	2100
0.106	2.692	269	1855	297	2050
0.120	3.048	263	1815	291	2005
0.135 0.148 0.162 0.177 0.192	3.429 3.760 4.115 4.496	258 253 249 245 241	1780 1745 1715 1690 1660	285 280 275 270 267	1965 1930 1895 1860 1840
0.207	5.258	238	1640	264	1820
0.225	5.715	235	1620	260	1795
0.250	6.350	230	1585	255	1760
0.312	7.925	217	1495	242	1670
0.375	9.525	210	1450	235	1620
0.438	11.125	206	.1420	231	1590
0.500	12.700	195	1345	220	1515
0.531	13.487	190	1310	210	1450

 $^{{\}tt a}{\sf Tensile}$ strength for intermediate sizes shall be interpolated.

SAE

5. PERMISSIBLE VARIATIONS IN DIMENSIONS:

The diameter of the wire shall not vary from that specified by more than shown in Table 2.

TABLE 2 - Permissible Variations

Diame	ters	Permissible Variations	Permissible Out-of-Round
in	mm	±in ±mm	in mm
0.020 to 0.026 incl Over 0.026 to 0.063 incl Over 0.063 to 0.207 incl Over 0.207 to 0.375 incl Over 0.375	0.51 to 0.66 incl Over 0.66 to 1.60 incl Over 1.60 to 5.26 incl Over 5.26 to 9.52 incl Over 9.52	0.0003 0.0005 0.0010 0.0020 0.0020 0.0030 0.008	0.0003 0.0005 0.0010 0.0010 0.0020 0.0030 0.008

6. WRAP TEST REQUIREMENTS:

Wire shall withstand winding (at least five turns closely wound) without fracture over an arbor of diameter as indicated below. The test shall be conducted on wire prior to stress relieving.

Wire Dia, in (mm)	Mandrel Size	
0.020 to 0.162 (0.51 to 4.11) incl	2X dia	
Over 0.162 to 0.312 (4.11 to 7.92) incl	4X dia	
Over 0.312 (7.92)	Wrap test not applicable	

7. SURFACE CONDITION:

The surface of the wire shall be smooth and free from rust, scale, die marks, deep scratches, slivers, seams, laps, pits, or cracks which would affect the fabrication of the finished parts of their serviceability.

8. FINISHED PARTS:

- 1. The surface of the finished springs shall be as described for the wire. In addition, there shall be no excessive coiling marks, nicks, or gouges which would impair the serviceability of the parts.
- 2. Unless otherwise agreed upon by purchaser and supplier, tension and compression springs coiled from this wire shall be stress relieved for a minimum of 30 min at heat. The normal temperature range is 450-550°F (232-288°C).
- 3. Electroplating of parts made from special quality high strength, hard drawn wire is not recommended because of susceptibility to hydrogen embrittlement. If plating is necessary, parts should be heated at a temperature of not less than 350°F (177°C) for a minimum of 2 h immediately after plating. Other temperatures and times may be necessary.

SAENORM. COM. Click to View the full Profit of

1.00

J271 DEC88

RATIONALE:

Not applicable.

RELATIONSHIP OF SAE STANDARD TO ISO STANDARD:

Not applicable.

APPLICATION:

This recommended practice covers the mechanical and chemical requirements of special quality high tensile, hard drawn carbon steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This recommended practice also covers basic materials and processing requirements of springs and forms fabricated therefrom.

REFERENCE SECTION:

SAE J409 JUN84, Product Analysis - Permissible Variations from Specified Chemical Analysis of a Heat or Cast of Steel

COMMITTEE COMPOSITION:

DEVELOPED BY THE SAE DIVISION 17 - SPRING WIRE:

E. H. Judd, Associated Spring Co., Livonia, MI - Chairman

SPONSORED BY THE SAE IRON AND STEEL TECHNICAL COMMITTEE:

- G. G. Witt, Ford Motor Company, Dearborn, MI Chairman
- F. J. Arabia, General Motors Corp., Warren, MI
- R. J. Belz, Bloomfield Hills, MI
- R. D. Bennett, White Farm Equip. Co., Charles City, IA
- F. P. Bens, Kolene Corp., Detroit, MI
- E. T. Bittner, Brookfield, WI
- H. N. Bogart, Traverse City, MI
- F. Borik, Climax Molybdenum Company, Ann Arbor, MI
- R. W. Buenneke, Caterpillar Inc., East Peoria, IL
- E. F. Chojnowski, Heat Transfer Systems Co., Jackson, MI
- A. G. Cook, Oakmont, PA
- W. J. Cormack, Caterpillar Inc., E. Peoria, IL
- D. D. Day, Meehanite Worldwide, Fairlawn, OH
- S. Denner, National Steel Corp., Livonia, MI
- S. Dinda, Chrysler Corporation, Detroit, MI
- D. V. Doane, Ann Arbor, MI
- J. M. Dobos, Ford Motor Co., Dearborn, MI
- J. R. Easterday, Kolene Corp., Detroit, MI
- I. Ekis, Mercury Marine, Oshkosh, WI
- R. Fabian, Lindberg Heat Treating Co., Berlin, CT
- M. L. Frey, Leesburg, FL
- C. N. Grant, General Motors Corp., Flint, MI
- J. S. Hanson, Lathrop Village, MI