

SURFACE VEHICLE RECOMMENDED PRACTICE

34 J2975 DEC2011

Issued

2011-12

Measurement of Copper and Other Elements in Brake Friction Materials

RATIONALE

The states of Washington and California passed laws in 2011 restricting the amount of cadmium, copper, hexavalent chromium, lead and mercury their compounds in brake friction materials. As part of the legislation, brake friction materials are required to be analyzed to confirm the levels of the restricted elements are below the values stated in the legislation. The SAE J2975 provides a method on how to generate samples of brake friction material for analysis, how to prepare the samples for analysis and how to analyze the samples.

TABLE OF CONTENTS

1.	SCOPE	2
1.1	SCOPE	2
2.	REFERENCES	2
2.1	REFERENCESApplicable Documents	2
3.	DEFINITIONS	2
3.1	Symbols and Abbreviations	2
	· · · · · · · · · · · · · · · · · · ·	_
4.	SAMPLE PREPARATIONPreparation of Brake Friction Material	3
4.1	Preparation of Brake Friction Material	3
4.2	Friction Material Sample Processing for Chemical Analysis	
4.3	Chemical Analysis of Brake Friction Material Sample	
4.4	Presentation of Results	6
_	NOTES	_
5. 5.1	NOTES	/
J. I	warginai muicia	/
APPENDIX A	PUBLICALLY DISCLOSED FRICTION FORMULATIONS USED DURING THE INTERLABORATORY	
AFFEINDIA A	STUDY TO ESTABLISH THIS RECOMMENDED PRACTICE	
	STODI TO ESTABLISH THIS RECOMMENDED FRACTICE	0
FIGURE 1	MEASUREMENT OF FRICTION MATERIAL THICKNESS	3
FIGURE 2	SETTING THE DRILL PRESS STOP AT ½ THE FRICTION MATERIAL THICKNESS	
FIGURE 3	A SCHEMATIC REPRESENTATION OF A DISC PAD AND LINING SHOWING THE AREA THAT	0
	CAN BE USED FOR SAMPLE COLLECTION (GRAY SHADED). ALSO SHOWN (RIGHT) IS A	
	BRAKE FRICTION ASSEMBLY IN A SEALABLE PLASTIC BAG READY FOR THE START OF	
	SAMPLE COLLECTION	4
FIGURE 4	THE DIFFERENCE IN DRILL TURNING MORPHOLOGIES THAT RESULTS FROM VARYING	••••
-	THE DRILL PLUNGE RATES	5

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2011 SAE International

SAE WEB ADDRESS:

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-732

Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/J2975 201112

1. SCOPE

This procedure describes a method for generating, preparing and analyzing samples of new and unused brake friction materials for their chemical constituents.

1.1 Purpose

This recommended test practice is intended to establish a standardized and repeatable method for analyzing the amount of specific chemical elements in a new and unused brake friction material. Results from this test practice provide the basis to determine the appropriate environmental marking per SAE J866.

2. REFERENCES

2.1 Applicable Documents

The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply.

2.1.1 EPA Publications

Available from the United States Environmental Protection Agency (EPA), http://www.epa.gov.

EPA Method 3050B	Acid Digestion of Sediments, Sludges and Soils
EPA Method 3051A	Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils
EPA Method 6010C	Inductively Coupled Plasma - Atomic Emission Spectrometry
EPA Method 7471B	Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)
EPA Method 3060A	Alkaline Digestion for Hexavalent Chromium
EPA Method 7196A	Chromium, Hexavalent (Colorimetric)
EPA Method 7199	Determination of Hexavalent Chromium in Drinking Water, Groundwater and Industrial Wastewater Effluents by Ion Chromatography
EPA/600/R-93/116	Method for the Determination of Asbestos in Bulk Building Materials

Friction Coefficient Identification and Environmental Marking System for Brake Linings

3. DEFINITIONS

SAE J866

3.1 Symbols and Abbreviations

ICP-AES - Inductively Coupled Plasma - Atomic Emission Spectrometry

4. SAMPLE PREPARATION

- 4.1 Preparation of Brake Friction Material
- 4.1.1 Wipe entire friction assembly with lint-free wipe (i.e., Kimwipe®) to ensure assembly is free of any dust and foreign objects. Multiple wipes may be needed to accomplish this task. Alternatively, the assembly may be rinsed with de-ionized water and then dried with a lint free wipe.
- 4.1.2 Determine the thickness of the friction material. For assemblies without any steel back or shoe assembly, simply measure the thickness. For friction assemblies, the thickness of the friction material can be measured directly as shown in Figure 1 or the total assembly can be measured and then subtract the thickness of the pressure plate / shoe steel to obtain the friction material thickness.

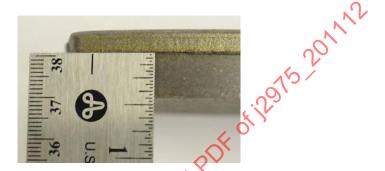


FIGURE 1 - MEASUREMENT OF FRICTION MATERIAL THICKNESS

- 4.1.3 Place friction assembly in a heavy gage sealable plastic bag (to collect turnings). Place friction assembly on the table of the drill press in a safe manner that meets the desired safety requirements of the laboratory. Care should be taken to insure the plastic bag does not tear or become damaged during the clamping or drilling. (Some drill presses may have guarding that prohibits the effective use of a plastic bag. In this case, care should be taken to keep all grinding debris on the friction face.)
- 4.1.4 Set the depth stop on the drill press such that it is at the midpoint of the friction material thickness measured in 4.1.2 as shown in Figure 2.

FIGURE 2 - SETTING THE DRILL PRESS STOP AT 1/2 THE FRICTION MATERIAL THICKNESS

- 4.1.5 Set the speed of the drill such that it rotates approximately 400 ± 100 rpm at the spindle.
- 4.1.6 Using a 3mm diameter solid carbide drill bit, drill numerous borings (35-40 borings to a 5mm depth yields greater than 2 grams of sample) into the friction material uniformly around the entire area to generate enough fines (>2 g) for subsequent acid digestion. For larger samples of friction, a minimum of 1 hole per 2 cm² is recommended to ensure uniform sampling. To avoid any edge effects from the processing of the friction material, do not drill within 6 mm of the outer circumference of the friction material (Figure 3).

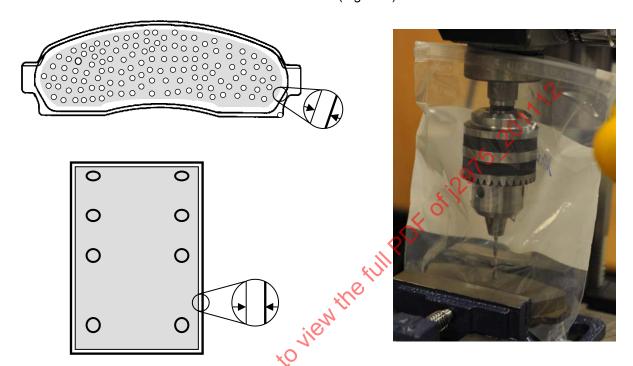


FIGURE 3 - A SCHEMATIC REPRESENTATION OF A DISC PAD AND LINING SHOWING THE AREA THAT CAN BE USED FOR SAMPLE COLLECTION (GRAY SHADED). ALSO SHOWN (RIGHT) IS A BRAKE FRICTION ASSEMBLY IN A SEALABLE PLASTIC BAG READY FOR THE START OF SAMPLE COLLECTION

4.1.7 The morphology of the drillings is dependent on the plunge rate and drill spindle speed which is specified in section 4.15 while drilling. A plunge rate of less than 0.33 mm/sec is recommended (~15 sec to drill a 5mm deep hole) to achieve a consistent and uniform granular particulate. Slower plunge rates yield a more powdery consistency. A faster plunge rate yields a mixture of coarser turnings and granules which results in an unacceptable measurement variation of the chemical content. The different morphologies resulting from different plunge rates are shown in Figure 4.ferred Morphology

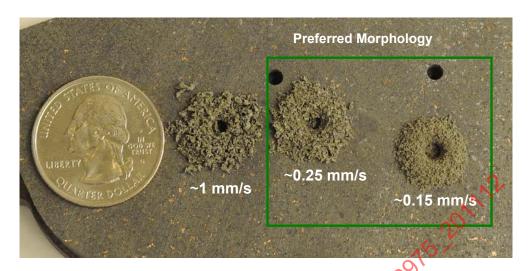


FIGURE 4 - THE DIFFERENCE IN DRILL TURNING MORPHOLOGIES THAT RESULTS FROM VARYING THE DRILL PLUNGE RATES

- 4.1.8 Collect drill turnings from the working face of the friction material and place in a clean sealable container. Label the sample accordingly.
- 4.2 Friction Material Sample Processing for Chemical Analysis
- 4.2.1 Either EPA Method 3050B (via hot block) or EPA Method 3051A may be used for the digesting the friction material powder collected in 4.1. If analysis of antimony is desired, follow the optional digest listed in the EPA Method 3050B section 7.5 or EPA Method 3051A section 11.3.2.
- 4.3 Chemical Analysis of Brake Friction Material Sample
- 4.3.1 Using the digested sample generated in section 4.2.1, perform an analysis for the desired chemical elements following EPA Method 6010C Inductively Coupled Plasma Atomic Emission Spectrometry. Because of the complex and heterogeneous nature of brake friction materials, it is recommended that digestion and analysis for each pad be performed in triplicate (as a minimum) and the average value be reported. Percent Relative Standard Deviation (standard deviation / measurements average *100) should be less than 20% for the triplicate measurements. Depending on the amount of specific components in the friction materials, additional dilutions during the analysis may be necessary.
- 4.3.2 If chromium is identified in section 4.3.1 at a level exceeding the criteria of 0.1% by weight, then use either EPA Method 7196A Chromium, Hexavalent (Colorimetric) or EPA Method 3060A Alkaline Digestion for Hexavalent Chromium followed by EPA Method 7199 Determination of Hexavalent Chromium in Drinking Water, Groundwater and Industrial Wastewater Effluents by Ion Chromatography to determine the hexavalent chromium content.
- 4.3.3 To determine the mercury content, follow EPA Method 7471B Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique) or EPA Method 245.5.
- 4.3.4 For asbestos fiber analysis, follow EPA/600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

Presentation of Results 4.4

- At a minimum, the presentation of the results is to contain: 4.4.1
 - Client
 - Project
 - **Project Number**
 - Laboratory Name
 - IN DEM. COM. Circk to view the full PUF of 120th 2011. Sample Identification - Manufacturer, Edge Code, etc.
 - Sample Type friction pad, friction block, etc.
 - Laboratory Sample Number
 - Matrix
 - Sample Date / Time
 - Sample Preparation Date / Time
 - Analysis Data / Time
 - Batch ID
 - Preparation Method Code
 - **Preparation Method Name**
 - **Analysis Method Number Code**
 - Analyte Name
 - Result
 - **Detection Limit**
 - Reporting Limit
 - Reporting Units
 - **Result Qualifier**
 - Basis (dry/wet)
 - Dilution
 - Spike Level
 - % Recovery
 - **Upper Control Limit**
 - **Lower Control Limit**
 - **RPD Analyst**
 - Sample Comments
 - **Result Comments**